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Preface

The notion of human-centered AI increasingly dominates the public AI debate. It postu-
lates the development and use of AI beneficial to humans on both individual and social
level. As a discipline, human-centered AI (HCAI) aims to create AI systems that collab-
orate with humans, enhancing human capabilities and empowering humans to achieve
their goals. That is, the focus amplify and augment rather than displace human abilities.

HCAI seeks to preserve human control in a way that ensures artificial intelligence
meets our needs while also operating transparently, delivering equitable outcomes, and
respecting human rights and ethical standards.Designmethods that enable representation
of and adherence to values such as privacy protection, autonomy (human in control),
and non-discrimination are core to HCAI.

These are themes closely connected to some of the most fundamental challenges of
AI. This volume provides a first comprehensive set of lecture notes on HCAI, developed
for the European Advanced Course on AI (ACAI 2021). The chapters focus on issues
related to the interface between AI and human-computer interaction (HCI), computa-
tional social science, and complexity science, as well as ethics and legal issues, with the
objective to provide readers the basic knowledge needed to design, implement, oper-
ate and research the next generation of human-centric AI systems that enhance human
capabilities and cooperate with humans on both the individual and the social level.

The present volume includes extended and improved lecture notes from ACAI 2021
courses, the following topics that are central to the understanding of the broad research
field of human-centered AI. The topics also constitute the learning objectives of this
volume:

– Learning and Reasoning with Human in the Loop: Learning, reasoning, and plan-
ning are interactive processes involving close synergistic collaboration between AI
system(s) and user(s)within a dynamic, possibly open-ended real-world environment.
Key gaps in knowledge and technology that must be addressed toward this vision
include combining symbolic and sub-symbolic learning, explainability, translating a
broad, vague notion of “fairness” into concrete algorithmic representations, contin-
uous and incremental learning, compositionality of models and ways to adequately
quantify and communicate model uncertainty.

– Multimodal Perception: Human interaction and human collaboration depend on the
ability to understand the situation and reliably assign meanings to events and actions.
People infer such meanings either directly from subtle cues in behavior, emotions,
and nonverbal communications or indirectly from the context and background knowl-
edge. This requires not only the ability to sense subtle behavior, and emotional and
social cues but an ability to automatically acquire and apply background knowledge to
provide context. The acquisition must be automatic because such background knowl-
edge is far too complex to be hand-coded. Research on artificial systems with such
abilities requires a strong foundation for the perception of humans, human actions,
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and human environments. This foundation builds on recent advances in multimodal
perception and modelling sensory, spatiotemporal, and conceptual phenomena.

– Representations and Modeling: Perception is the association of external stimuli
to an internal model. Perception and modelling are inseparable. Human ability to
correctly perceive and interpret complex situations, even when given limited and/or
noisy input, is inherently linked to a deep, differentiated, understanding based on the
human experience. A new generation of complex modelling approaches is needed
to address this key challenge of human-centered AI including hybrid representations
that combine symbolic, compositional approaches with statistical and latent repre-
sentations. Such hybrid representations will allow the benefits of data-driven learning
to be combined with knowledge representations that are more compatible with the
way humans view and reason about the world around them.

– Human-Computer Interaction (HCI): Beyond considering the human in the loop,
the goal of human-AI is to study and develop methods for combined human-machine
intelligence, where AI and humans work in cooperation and collaboration. This
includes principled approaches to support the synergy of human and artificial intelli-
gence, enabling humans to continue doing what they are good at but also be in control
whenmaking decisions. It has been proposed thatAI research anddevelopment should
follow three objectives: (i) to technically reflect the depth characterized by human
intelligence; (ii) improve human capabilities rather than replace them; and (iii) focus
on AI’s impact on humans. There has also been a call for the HCI community to play
an increasing role in realizing this vision, by providing their expertise in the following:
human-machine integration/teaming, UI modelling and HCI design, transference of
psychological theories, enhancement of existing methods, and development of HCI
design standards.

– Social AI: As increasingly complex socio-technical systems emerge, consisting of
many (explicitly or implicitly) interacting people and intelligent and autonomous
systems, AI acquires an important societal dimension. A key observation is that a
crowd of (interacting) intelligent individuals is not necessarily an intelligent crowd.
Aggregated network and societal effects of AI and their (positive or negative) impacts
on society are not sufficiently discussed in the public and not sufficiently addressed
by AI research, despite the striking importance of understanding and predicting the
aggregated outcomes of socio-technical AI-based systems and related complex social
processes, as well as how to avoid their harmful effects. Such effects are a source
of a whole new set of explainability, accountability, and trustworthiness issues, even
assuming that we can solve those problems for an individual machine-learning-based
AI system.

– Societal, Legal and Ethical Impact of AI: Every AI system should operate within an
ethical and social framework in understandable, verifiable and justifiable ways. Such
systems must in any case operate within the bounds of the rule of law, incorporating
fundamental rights protection into the AI infrastructure. Theory and methods are
needed for the responsible design of AI systems as well as to evaluate and measure
the “maturity” of systems in terms of compliance with legal, ethical and societal
principles. This is not merely a matter of articulating legal and ethical requirements
but involves robustness, and social and interactivity design. Concerning the ethical
and legal design of AI systems, we clarify the difference between legal and ethical
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concerns, as well as their interaction and ethical and legal scholars work side by side
to develop both legal protection by design and value-sensitive design approaches.

ACAI School

The 18th European Advanced Course on AI (ACAI) took place in Berlin during October
11–15, 2021. It was organized by the European project HumaneAINet1, in collaboration
with EURAI2, the European AI Association. Over 60 students participated in person in
Berlin,while another 50 joined the school remotely.Most participantswerePhDstudents,
but also MSc students and postdocs attended ACAI 2021.

The school included 23 tutorials on different topics. The ACAI chairs invited senior
members for HumanE AI Net and other EU AI networks to develop a tutorial in specific
topics. The proposals were evaluated by the ACAI chairs in collaboration with HumanE
AI Net scientific coordination team. After school, the lecturers were invited to submit a
chapter, which were again reviewed by chairs, HumanE AI Net scientific coordination
team as well as reviewers.

Next to the tutorials, the school also included invited talks by Yvonne Rogers, Kate
Crawford, Yoshua Bengio and Ben Shneiderman, student poster presentations, and a
mentorship program

Summary of Contributions

The themes of the volume cover topics on human-centeredmachine learning, explainable
AI, ethics, law, argumentation and social simulation.

The contributions include learning objectives, a reading list and various resources
(e.g., links to source codes).

The first section, Introduction to Human-centered AI, presents the main definitions
and concepts covered in this volume.

The second section,Human-centeredMachineLearning, includes several chapters on
machine learning ranging from basic concepts of neural networks to interactive learning.
This section also describes modern approaches such as transformers in natural language
processing, speech processing, vision and multi-modal processing.

The third section, Explainable AI, deals with both technical and philosophical con-
cepts. The section includes a conceptual overview of computational cognitive vision
together with practical demonstrations.

The fourth section, ethics, law and society AI, introduces main concepts of Ethics
and Law. This section also discusses ethics in communication.

The fifth section, Argumentation, focuses on concepts of arguments and attacks.
The concepts are illustrated with several concrete examples in cognitive technologies of
learning and explainable inference or decision making.

1 https://www.humane-ai.eu/.
2 https://www.eurai.org/.

https://www.humane-ai.eu/
https://www.eurai.org/
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The last section, Social Simulation, deals with agent-based social simulations that
are used to investigate complex phenomena within social systems. The chapters show
how they could be designed, evaluated and employed by decision makers.

September 2022 Mohamed Chetouani
Virginia Dignum
Paul Lukowicz
Carles Sierra
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The Advanced Course
on Human-Centered AI: Learning

Objectives

Mohamed Chetouani1(B) , Virginia Dignum2 , Paul Lukowicz3 ,
and Carles Sierra4

1 Sorbonne University, Paris, France
mohamed.chetouani@sorbonne-universite.fr

2 Ume̊a University, Ume̊a, Sweden
virginia@cs.umu.se

3 German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,
Germany

paul.lukowicz@dfki.de
4 Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain

sierra@iiia.csic.es

Abstract. Human-centered AI mobilizes several disciplines such as AI,
human-machine interaction, philosophy, ethics, law and social sciences.
In such a context, being introduced to the basic concepts of Human-
centered AI is challenging. In this chapter, we describe the learning objec-
tives of the Advanced Course on AI organized in 2021 with a focus on
Human-centered AI.

Keywords: Machine Learning · Explainable AI · Ethics · Law ·
Argumentation · Social simulation

1 Introduction

There is broad agreement on a high level definition of “Human Centered AI” as
AI that is “beneficial to humans and society”. There is much less agreement on
translating that broad vision into specific lower level technological requirements
and scientific research questions. This is on one hand due to the fact that the
notions of being beneficial to humans and society differ from stakeholder to
stakeholder (and between cultures). On the other hand it is difficult (if not
impossible) to come up with a 1:1 complete and consistent translation between
a notion of “being beneficial” defined on a policy level and concrete technical
properties of an AI system.

This work has received funding from European Union’s Horizon 2020 ICT-48 research
and innovation actions under grant agreement No 952026 (HumanE-AI-Net)). The
ACAI school has also received support from EurAI.

c© Springer Nature Switzerland AG 2023
M. Chetouani et al. (Eds.): ACAI 2021, LNAI 13500, pp. 3–7, 2023.
https://doi.org/10.1007/978-3-031-24349-3_1
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The HumanE-AI-Net project1 brings together leading European research cen-
tres, universities and industrial enterprises into a network of centres of excellence
to conduct fundamental and applied research on Human-centered AI. In partic-
ular, to develop robust, trustworthy AI systems that can ‘understand’ humans,
the challenge is to adapt to complex real-world environments and interact appro-
priately in complex social settings.

The Advanced Course on AI (ACAI) is a specialized course in Artificial
Intelligence sponsored by the European Association on AI (EurAI)2 in odd-
numbered years. The theme of the 2021 ACAI School was Human-centered AI.

Within ACAI 2021 (Advanced course on AI), researchers from the HumanE-
AI-Net consortium as well as invited speaker gave lectures related to the state
of the art in Human-centered AI, focusing not just on narrow AI questions but
emphasizing issues related to the interface between AI and Human-Computer
Interaction (HCI), Computational Social Science (and Complexity Science) as
well as ethics and legal issue.

This volume provides the reader with the basic knowledge needed to design,
implement, operate and research the next generation of Human-centered AI
systems that are focused on enhancing Human capabilities and optimally coop-
erating with humans on both the individual and the social level.

The volume gathers researchers from different backgrounds such as AI,
human-machine interaction, philosophy, ethics, law and social sciences. A first
chapter, from Luc Steels, is dedicated to the introduction and discussion of
conceptual foundations. Then, a series of chapters are proposed to the reader
focusing on specific scientific themes:

– Human-centered Machine Learning
– Explainable AI
– Ethics, Law and Society
– Argumentation
– Social Simulation

In the following, we describe the specific Learning Objectives of these chap-
ters.

2 Specific Learning Objectives

2.1 Human-Centered Machine Learning

The first theme deals with machine learning from basic concepts to modern
approaches using deep learning and interactive machine learning. Seven chapters
are proposed.

Three chapters from James Crowley introduce neural networks, generative
networks, autoencoders and convolutional neural networks. The first chapter
describes fundamental concepts of deep-learning that are described and used
1 https://www.humane-ai.eu.
2 https://www.eurai.org.

https://www.humane-ai.eu
https://www.eurai.org
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in later chapters. The second one covers fundamental concepts from informa-
tion theory as well as applications such as Variational Autoencoders (VAEs)
and Generative Adversarial Networks (GANs). The last chapter reviews popu-
lar architectures that have played a key role in the emergence of Deep Learning
as an enabling technology for Artificial Intelligence.

Three other chapters focus on Transformers, which is a model relying entirely
on the attention mechanism. Transformers brought significant improvements in
performance on several machine learning tasks. In a chapter dedicated to Natural
Language Processing, François Yvon presents different facets of the Transformer
architecture. He also discusses limitations. In the chapter Vision and Multi-
modal Transformers from Camille Guinaudeau, the reader will learn more about
the historical approaches for computer vision, namely convolutions and self-
attention. The learning objectives are also (i) to understand the adaptation of the
Transformers architecture to deal with the visual data peculiarities; and (ii) grasp
the functioning principles of recent work applying Transformers architecture to
multimodal tasks and data. The last chapter, from Marc Evrard, provides a short
history of the evolution of automatic speech recognition systems and shows how
Transformers impacted the speech processing domain.

The last chapter of the Human-centered Machine Learning theme deals with
Interactive Robot Learning. In this chapter, Mohamed Chetouani overviews
methods and models of the research domain. The learning objectives are the
following: (i) Understand human teaching strategies; (ii) Gain knowledge about
learning from feedback, demonstrations and instructions; (iii) Explore ongoing
works on how human teaching biases could be modeled; and (iv) Discover appli-
cations of interactive robot learning.

2.2 Explainable AI

This second theme addresses the challenge of Explainable AI with three chapters
from different disciplines such as computer science and social sciences.

The first chapter from Gionnatati et al. provides a reasoned introduction to
the work of Explainable AI (XAI) to date and surveys the literature focusing on
symbolic AI-related approaches. The authors motivate the needs of XAI in real-
world and large-scale applications while presenting state-of-the-art techniques
and best practices and discussing the many open challenges.

The second chapter from Stefan Buijsman provides another view and high-
lights accounts of explanation in philosophy that might inform what those tech-
nical tools should ultimately deliver. The learning objectives there are (i) Aware-
ness of the recent arguments against the need for explanations of machine learn-
ing algorithms; (ii) Ability to discuss the merits of these arguments; and (iii)
Knowledge of the main accounts of explanation in the philosophical literature.

The last chapter of this theme is from Mehul Bhatt and Jakob Suchan. The
chapter presents general methods for the processing and semantic interpretation
of dynamic visuospatial imagery with a particular emphasis on the ability to
abstract, learn, and reason with cognitively rooted structured characterisations
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of commonsense knowledge pertaining to space and motion. The chapter pro-
vides a practical or operational view of visuospatial commonsense reasoning and
learning through five complementary examples (including source codes).

2.3 Ethics, Law and Society

The third theme focuses on Ethics, Law and Society with five chapters.
Boella and Mori propose in the first chapter an introduction to Ethics and

AI. The learning objectives are (i) to have a glimpse about what is Ethics; (ii)
to understand that Ethics evolves over time, also as a result of the emergence of
new technologies; and (iii) to acquire the width of the impact of AI on Ethics.

The second chapter is an introduction to Law. Hildebrandt and De Bois
provide insights on what law does, how it operates and why it matters. The
chapter (i) provides a better understanding of the inner workings of the law;
(ii) Identifies nonsensical headlines about the law as such (similar to tech head-
lines); (iii) offers a taste of EU legislation that co-defines the global marketplace
for AI systems (Brussels Effect: EU exporting rules and standards); and enables
reasoning about the content of the law (the interpretation of legal conditions
when deciding on legal effect).

The third chapter from Marija Slavkovik is primarily intended for students
of computer science and artificial intelligence (AI) who are interested in how to
establish what ethical impact the research and products they develop have on
individuals and society. The aim is to gain knowledge and familiarity with eth-
ical principles of interest to AI problems such as Accountability, Transparency,
Explainability, Interpretability, Fairness, and Privacy. Among the learning objec-
tives of this chapter, we have the ability to discern between ethically motivated
computation properties of an AI system and the extent to which an AI system
satisfies an ethical principle.

The chapter of Methnani et al. presents ongoing research in the field of
Responsible AI and explores numerous methods of operationalising AI ethics.
The learning objectives of this chapter are: (i) Understand core concepts and mis-
conceptions related to Responsible AI (RAI); (ii) Gain knowledge about ongoing
policy initiatives around AI; (iii) Develop a practical grasp of why and how RAI
is applied; and (iv) Explore ongoing research in the theme of RAI.

In the last chapter, Carme Torras and Lúıs G. Ludescher address how science
and science fiction can inspire each other and how science fiction can be used as
an educational tool in teaching ethics of AI and robotics. The chapter includes
sections containing the questions asked by the audience during the tutorial as
well as the provided answers.

2.4 Argumentation

In the first chapter, Fazzinga and Mellema focus on abstract argumentation
and probabilistic abstract argumentation. In particular, they provide the reader
with a proper knowledge of how dialogues and disputes are modeled as abstract
argumentation graphs and how analysts reason over them.
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The second chapter from Dietz et al. examines the role of Computational
Argumentation at the theoretical and practical level of Human-centered AI.

2.5 Social Simulation

The last theme of this volume is dedicated to agent-based social simulations that
are used to investigate complex phenomena within social systems.

The first chapter from Fabian et al. introduces agent-based social simulation
(ABSS) models and methods. The learning objectives are: (i) to describe and
relate the principles of ABSS, including fundamental ABSS approaches and tech-
niques as well as applications of ABSS to real-world problems; (ii) to conduct
and analyze experiments using an existing ABSS model and a well-established
ABSS simulator (NetLogo); (iii) to identify and relate the key cognitive compo-
nents in advanced ABSS models, to explain the main reasons for using cognitive
models, and to identify the need for such models on a real-world problem; (iv)
to explain and specify how an existing agent architecture in an ABSS model can
be extended for facilitating the investigation of new policies; (v) to explain how
using ABSS for policy making alters the ABSS-making activities and to relate
these activities to concrete deliverables; (vi) to analytically discover the origin of
a complex emerging phenomena, based on extensive raw multidimensional ABSS
output.

The last chapter from Pedreschi et al. discusses the social dimension of Arti-
ficial Intelligence in terms of how AI technologies can support or affect emerging
social challenges. The learning objectives of this tutorial are (i) understand and
approach the emergent properties of real networks as well as their possible harm-
ful effects on society; (ii) leverage agent-based models to understand phenomena
where human behavior plays a key role; and (iii) familiarize with the previously
illustrated concepts through python libraries and tailored notebooks.



Conceptual Foundations
of Human-Centric AI

Luc Steels1,2(B)

1 Barcelona Supercomputing Center, Barcelona, Spain
2 Venice International University, Venice, Italy

steels@arti.vub.ac.be

Abstract. This tutorial does not focus on specific techniques or applica-
tions but on the conceptual foundations of human-centric AI. It discusses
a number of fundamental questions: What is needed to make AI more
human-centered or ‘humane’? Why do we need to combine reactive and
deliberative intelligence for human-centric AI? What is the nature of
meaning and understanding in human intelligence? Why is emulating
understanding in artificial systems necessary but hard? What is the role
of narratives in understanding? What are some of the open issues for
realizing human-centric AI capable of narrative-based understanding?

Keywords: Meaning · Understanding · Human-centric AI ·
Meaningful AI · Narrative · Conceptual foundations of AI

Learning objectives

1. Learn the distinction between reactive and deliberative intelligence and
why we need both for human-centric AI.

2. Realize why emulating understanding in AI systems is hard and what
can be done to cope with its difficulties.

3. Find out the role of multi-layered models and narratives in understand-
ing.

4. Learn about the breakthroughs that are needed to reach narrative-based
understanding.

1 Introduction

Despite the success in performance of data-driven AI, it also exhibits ‘weird’
behavior, because it lacks the capacity to understand and exercise deliberative

The writing of this paper was funded by the EU Pathfinder Project MUHAI on ‘Mean-
ing and Understanding in Human-centric AI’ (EU grant 951846 to the Venice Inter-
national University) and by the ‘HumaneAI-Net’ EU Coordination Project (EU grant
952026 to the Universitat Pompeu Fabra in Barcelona).

c© Springer Nature Switzerland AG 2023
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intelligence. You can consider this weird behavior humorous [46] but when it
happens with applications that are operating in the real world and have real-life
consequences, weird AI behavior becomes dangerous and unethical, for example,
when an AI system recommends children to execute life-threatening challenges1

or is making technocratic social decisions that are unfair and cause hardship for
those undergoing those decisions.2

In reaction to a growing number of such incidents, there have been calls for
the development of ‘human-centric’ or ‘humane’ AI. As suggested by Nowak,
Lukowicz and Horodecki:

“Human-centric AI focuses on collaborating with humans, enhancing
human capabilities, and empowering humans to better achieve their goals”
[34].

Human-centric AI has become a focal point of current research and development,
particularly in Europe, where the EU Commission’s strategy on AI and the AI
strategies of many EU member states call for AI that shows human agency
and oversight, technical robustness and safety, privacy and data governance,
transparency, care for diversity, non-discrimination and fairness, focus on societal
and environmental well-being, and accountability [63].

Research in human-centric AI calls for a change in focus compared to the
machine-centered AI typified by data-driven statistical machine learning:

– Human-centric AI systems are asked to be aware of the goals and intentions
of their users and base their own goals and dialog on meanings rather than
on statistical patterns of past behavior only, even if statistical patterns can
play a very important role as well.

– Human goals and values should always take precedence. Respect for human
autonomy should be built into the system by design, leading to qualities such
as fairness and respect.

– Human-centric AI systems should be able to explain their reasoning and learn-
ing strategies so that the decisions are understandable by humans. Only by
emphasizing human understandability will human-centric AI achieve proper
explainability and transparency.

– Human-centric AI systems should not only learn by observation or theorizing
about reality but also by taking advice from humans, as suggested in John
McCarthy’s original 1958 proposal of the Advice Taker [27].

– Human-centric AI should be able to use natural communication, i.e. commu-
nication primarily based on human language, not only by mimicking language
syntax but, more importantly, using the rich semantics of natural languages,

1 In december 2021 the chatbot ALEXA by Amazon recommended a 10 year old to
‘plug in a phone charger about halfway into a wall outlet, then touch a penny to the
exposed prongs’.

2 In 2020 a scandal known as the ‘toeslagenaffaire’ (benefit scandal) hit the Dutch
political world forcing a fall of the government. Due to excessive zeal of the tax
agency controlling the allocation of child benefits and the use of machine learning
on social data (which were supposed to be private) many families were pushed into
poverty and experienced devastating legal difficulties.
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augmented with multi-modal communication channels. This is needed to sup-
port explainability, and accountability.

– Human-centric AI systems should have the capacity of self-reflection which
can be achieved by a meta-level architecture that is able to track decision-
making and intervene by catching failures and repairing them. By extension,
the architecture should support the construction of a theory of mind of other
agents, i.e. how they see the world, what their motivations and intentions are,
and what knowledge they are using or lacking. Only through this capacity
can AI achieve intelligent cooperation and adequate explicability, and learn
efficiently through cultural transmission.

– Finally, human-centric AI systems should reflect the ethical and moral stan-
dards that are also expected from humans or organisations in our society,
particularly for supporting tasks that are close to human activity and inter-
est.

All of these objectives point in the direction of meaningful AI, i.e. AI where
meaningful distinctions are used to build rich models of problem situations and
where deliberative reasoning complements reactive behavior. The desired proper-
ties of human-centric AI are all very difficult to achieve and certainly far beyond
the state of the art. They will not appear by decree. Most importantly they
require going towards a hybrid form of intelligence that combines reactive and
deliberative AI [31].

Two arguments have been raised against the hypothesis that meaning, under-
standing and deliberative intelligence are necessary for advancing AI and its
applications. The first argument is that big data and statistical training is suf-
ficient to approximate human intelligence for most application areas of (eco-
nomic) value. The limitations of reactive AI that are increasingly becoming
apparent, namely the lack of robustness, a weak capacity to come up with human-
understandable explanations and the difficulty to deal with novel situations and
outliers, suggest that this argument is not true, or at least not true for many
domains of human interest.

But there is a second counter-argument, namely that even though a delib-
erative form of intelligence would be beneficial, particularly for human-centric
AI, it is an impossible target because the required knowledge is not available
and cannot be acquired by machines. Proponents of this argument point to ear-
lier research in AI on understanding and deliberation in the 1970s and 1980s.
Although this work lead to an earlier strong wave of AI applications (namely
expert systems in the 1990s and the semantic web in the 2000s) they argue this
research has stalled once it was realized that understanding requires a massive
amount of encyclopedic knowledge, fine-grained accurate language processing
based on in-depth grammars, and the ability to categorize perceived reality in
terms of the ontologies required for rich models.

However, the situation has changed compared to decades ago. Not only are
there now more powerful symbolic learning strategies, we also have very large
knowledge bases in the form of knowledge graphs that provide some of the needed
encyclopedic background knowledge [1]. They have been made possible by the
large-scale collective efforts to feed information to various open encyclopedic
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resources such as Wikipedia, and by AI-based ‘crawlers’ that scavange the web
for information. These knowledge graphs are still expanding at a rapid pace.

Moreover thanks to advances in fine-grained precision language processing,
particularly for computational construction grammar, we can now go signifi-
cantly beyond the coarse-grained surface analysis that is common in statistical
NLP and analyze sentences from a semantic and pragmatic point of view [53].
In addition, techniques for grounding situation models in real world sensory-
motor data have made significant advances as well mainly due to advances in
data-driven approaches to perception [58].

Nevertheless, a huge amount of work remains to be done to complement exist-
ing data-driven AI with the capacity for understanding and deliberation. The
work consists partly in expanding greatly the knowledge sources already available
today (knowledge graphs, fine-grained grammars, etc.) but also in researching
novel architectures and learning strategies for emulating the process of under-
standing.

Summarizing:

Human-centric AI systems are asked to be aware of the goals and
intentions of their users, exhibit fairness and respect, explain
their decisions in human terms, take human advice, use natu-
ral communication, can self-reflect and follow ethical and moral
standards. All this requires going beyond data-driven reactive
AI and integrating the capacity to understand in a human-like
narrative way, be sensitive to context, and perform delibera-
tive reasoning in addition to reacting quickly with ready-made
stimulus-response associations.

The rest of this paper unpicks the various concepts used in this summary.

2 What is the Distinction Between Reactive
and Deliberative Intelligence?

Try to complete the sentence:
(1) Frank cannot come because his wife has tested positive for ...

Most people (and data-driven AI systems) would not hesitate for one second
and complete this sentence automatically and quickly with the word ‘covid’ or
a synonym of that word. Kahneman [22] categorises this as a reactive form of
intelligence, which he calls system 1. It is fast thinking - if we could even call
this thinking. It is automatic, effortless and without awareness. A fast response is
possible when there is an associative memory that directly relates stimuli with
responses and these stimulus-response patterns can be acquired by sufficient
exposure to examples and an induction algorithm. In this case, the fast response
is possible because the word ‘covid’ has been appearing a lot in this specific
textual context (n-grams) and we (or an AI system) have acquired the statistical
frequency of the n-gram ‘tested positive for covid’. A decade ago the word ‘AIDS’
or ‘Ebola’ would have been more frequent in this n-gram.
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Whereas reactive intelligence is found in all animals (and some would argue
also in plants), human intelligence is unique because it can operate not only in a
reactive but also in a deliberative mode (Kahneman’s system 2). A deliberative
mode of intelligence is classified as slow thinking because it takes more time and
more effort. A deliberative mode is based on making a rich model of the situation
that enables the formation and consideration of different hypotheses. The model
should be grounded in the facts known about the situation but also in previous
experiences of similar situations. In a deliberative mode we become aware of our
reasoning, can verbalize the argumentation, and explain to others why we are
thinking in a particular way. We learn in a constructivist fashion by creatively
generating, testing and adapting theories and by cultural transmission through
language and education.

Using a deliberative mode we can also complete the sentence above but now
based on a model that contains not only the stated facts (for example that Frank
has a wife and that she tested positive) but also inferences based on common
sense knowledge (for example that a husband and a wife typically live together
and hence have a lot of exposure to each other’s infections) as well as specific
knowledge (for example about what rules hold during the covid pandemic in a
particular country).

Here are some more facts a rich model for sentence (1) could include:

– Frank was supposed to come to a meeting.
– Covid is an infectious disease
– There is a covid pandemic.
– Covid can be tested.
– A person infected has to stay in quarantine.
– Quarantine means you have to stay home.
– If you have been in contact with an infected person you have to go in quar-

antine yourself.
– A husband and wife typically live together and hence have a lot of exposure

to each other.
– Frank’s wife is a high risk contact for Frank.

Given these facts and additional world knowledge, it is possible to answer
questions like ‘If only Frank’s wife has tested positive, why is he himself not able
to come to the meeting?’ ‘Does Frank also have to be tested?’, and counterfactual
questions like ‘Suppose that the meeting alluded to is in Australia and Frank
has been spending the last month there without his wife who stayed in the
Netherlands, would Frank still not be allowed to come?’ The model also supports
the formulation of specific hypotheses, such as ‘Frank’s wife was probably tested
recently for Covid’ or general hypotheses, such as ‘Where Frank lives, people
who have had contact with a positive person are supposed to receive a message
to quarantine’.

A rich model gives insight into the problem situation and shows paths to
problem solutions. It not only helps in question-answering, problem solving or
decision making. It also prevents inappropriate predictions. Consider for example
sentence (2):
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(2) Soon after her marriage, Lise was even more happy because she tested pos-
itive for ...

Completion with the word ‘pregnancy’ is now more appropriate despite the
higher frequency of the n-gram ‘tested positive for Covid’. Understanding this
sentence and providing the most sensible completion requires knowing and infer-
ring facts such as: marriage is typically the beginning of forming a family, getting
children requires getting pregnant, pregnancy can be tested, a positive test for
pregnancy makes you happy if you want children, testing positive for Covid does
not make you happy.

Summarizing:

Reactive intelligence rests on associations between stimulus pat-
terns and responses. Deliberative intelligence rests on making
rich models and using reasoning and inference to find a solution.

3 Are Reactive and Deliberative Intelligence both Needed
for AI?

Recent advances in AI have shown that neural networks trained on sufficient
amounts of data are able to emulate reactive intelligence and reach unexpected
high levels of performance. The training is typically carried out through a pre-
diction task. For example, a large corpus of language texts is assembled and the
network is trained to predict the next word in a sentence in this corpus, [10]
or a large set of images is assembled and labeled and the network is trained to
predict which label should be assigned to an image [39]. Due to the capacity of
neural networks to generalize, the prediction is not just based on a simple recall
but can handle variations in the input, as long as they stay within the statistical
distribution found in the training data.

We call AI systems that emulate reactive intelligence reactive AI. Reactive
AI is not the exclusive province of neural networks. The earlier rule-based expert
systems from the 1970s and 80s mostly tried to solve expert problems by rec-
ognizing patterns and finding solutions as fast as possible by the application of
heuristic rules [13]. A lot of the work in behavior-based robotics in the early
1990s also attempted to come to grips with reactive intelligence, but now by
the construction of dynamical systems that establish direct connections between
sensing and actuating without sophisticated world models [57].

On the other hand research in deliberative intelligence was the focal point
of earlier AI research that emphasized the construction of symbolic (i.e. non-
numerical) models, logical inference procedures, the design and implementation
of ontologies, the gathering and implementation of large amounts of domain
knowledge, symbolic and constructivist learning strategies, and fine-grained pre-
cision language processing based on grammars [19]. This research has also lead
to impressive demonstrations ranging from mathematical theorem provers to
expert systems supporting the configuration of complex equipment.
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However, it has also become clear that there is no ‘magic bullet’ to obtain
deliberative intelligence. Currently available techniques for artificial deliberative
intelligence or deliberative AI, such as answer-set programming, constraint solv-
ing or logic programming, are powerful but they require that a problem is first
exhaustively stated in a logical form and that all needed knowledge is expressed
in carefully formalized axioms. Only in that case can the inference machine go
to work.

It is precisely this first step, namely to define, formalize and structure the
problem and the relevant world knowledge, that requires the process we call
understanding. Certainly, understanding rests on vast amounts of knowledge
and considerable ingenuity and effort is needed to sufficiently catch up and keep
up with human competence. This makes deliberative AI not economically viable
in many circumstances. But that does not mean that deliberative intelligence is
not an integral component of human intelligence nor that deliberative AI is for
ever out of reach. It is simply crucial in a wide range of applications that society
expects from AI.

The Achilles’ heel of achieving reactive AI based on statistical induction is
the need for a large amount of representative high quality data, which often is not
available or not available in a clean enough form to be reliable. The Achilles’ heel
of deliberative AI is the need for large amounts of knowledge, which may not
exist or cannot be verbalized by human experts. The cooperation between the
two modes of intelligence can potentially overcome both limitations and lead us
to the next wave of AI.

Already many reactive AI systems are trained using the outcome of deliber-
ative intelligence and they fall back on deliberative intelligence when there are
no ready-made solution patterns available yet. This approach was first demon-
strated by Arthur Samuel in 1959 [42] for the game of checkers but underlies
also the success of AlphaGo and other AI systems for board games. At the same
time many systems using deliberative intelligence rely on reactive intelligence
to tackle larger scale problems, restrict search, provide fast access to very large
knowledge bases or deal with grounding issues.

So it is a safe bet that the future lies in a combination of reactive and
deliberative AI, even for sensory-motor intelligence. This combination is called
hybrid AI (although that is also used for AI systems that work closely with
humans) or also composite or integrated AI.

Summarizing:

Human intelligence relies both on reactive and deliberative intel-
ligence and so should AI. Reactive intelligence can bring fast
solutions to subproblems and agents can therefore solve more
challenging problems. On the other hand deliberative intelligence
can solve problems where no ready-made solution is available by
exploiting domain knowledge and problems where solutions to
subproblems have to be combined in novel ways.
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4 What is Understanding?

Where do the rich models needed for deliberative intelligence come from? They
are based on language input, data, images and sounds, actions and their effect, as
well as contextual knowledge, memory of past episodes, mental simulation, and
inference based on semantic memory. The process of constructing a model that
integrates all these different sources of information in the service of making the
rich models needed for deliberative intelligence is what we call understanding
(Fig. 1). It requires reactive intelligence: for grounding the model in sensory
data through feature detection and pattern recognition, for the fast access to
possibly relevant information and for the acquisition and application of heuristics
to decide which hypothesis deserves to be prioritized. The construction of a rich
model also requires deliberative intelligence to fill in gaps through inference
based on world knowledge and using fine-grained analysis of linguistic, visual or
other kinds of input.

Fig. 1. Understanding constructs a rich model for use by deliberative intelligence from
multi-modal sources (text, image, sound, action) by combining the outcome of a variety
of knowledge sources.

Here is an example to clarify further the notion of understanding. Consider
the image in Fig. 2 (left) (adapted from [56]). This is from a poster that used to
be employed in French and Belgian schools to teach children about daily life and
to learn how to talk about it. We instantly recognize that this is a scene from a
restaurant, using cues like the dress and activities of the waiter and waitress, or
the fact that people are sitting at different tables in the room. Data-driven image
recognition algorithms are able to segment and identify some of the people and
objects in the scene and in some cases label them with a fair degree of accuracy,
see Fig. 2 (right).

But these algorithms do not understand the picture in the way we would
commonly use the term understanding. Understanding requires a lot more than
segmentation and labeling. For example, when asked whether a person is missing
at the table on the right, we could all come up with a straightforward answer: Yes
there is a person missing, because there is an empty chair, a plate and cutlery
on the table section in front of the chair, and a napkin hanging over the chair.
So there must have been a third person sitting there, probably the mother of the
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Fig. 2. Left: Didactic image of a scene in a restaurant. Right: Image segmentation
identifying regions that contain people (based on Google’s Cloud Vision API).

child also sitting at the table. Moreover nobody has a lot of difficulty to imagine
where the mother went. There is a door marked ‘lavabo’ (meaning ‘toilet’ in
French) and it is quite plausible that she went to the toilet while waiting for the
meal to arrive. Any human viewer would furthermore guess without hesitation
why the child is showing his plate to the waitress arriving with the food and why
the person to the left of the child (from our perspective) is probably the father
looking contently at the child. We could go on further completing the description,
for example, ask why the cat at the feet of the waitress looks eagerly at the food,
observe that the food contains chicken with potatoes, notice that it looks windy
outside, that the vegetation suggests some place in the south of France, and so
on.

Clearly these interpretations rely heavily on inferences reflecting knowledge
about restaurants, families, needs and desires, roles played by people in restau-
rants (waiter, waitress, bar tender, cashier, customer). These inferences are not
only necessary to properly interpret the visual image in Fig. 1 but also to answer
questions such as ‘Who is the waitress?’, ‘Why is she approaching the table?’,
‘Where is the missing person at the table?’, ‘Who will get food first?’, We can
also make predictions and reconstructions, for example, that the waitress will
reach the table, put the food on the table, cut the chicken into pieces, and put
them on the different plates, or that the mother of the child will come back from
the toilet, sit down again at the table, and start eating herself.

Summarizing:

Understanding is the process of constructing a meaningful model
of a situation and linking this model to background knowledge,
memory of similar past situations and factual observations. The
model needs to be sufficiently detailed to support deliberative
intelligence in tasks like answering questions, giving explanations
for these answers, generating hypotheses, seeking more evidence,
handling counterfactuals, inferring a plan of action and making
predictions in a deliberative way.
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5 What are Meanings?

The definition of understanding given earlier emphasizes that a model must be
‘meaningful’, but what does that mean? The concept of meaning is notoriously
difficult to define and it has many facets. For the present purpose, let us adopt a
definition articulated by philosophers Sperber and Wilson [50]: A model consists
of descriptions and the building blocks of these descriptions are distinctions, also
commonly called categorisations or concepts. We say that a model is meaningful
if the distinctions it uses are relevant to the interaction between the agent making
the model and the environment, in other words if the descriptions making up
the model are critical for the tasks and contexts the agent has to cope with.

For example, the distinction between red and green is meaningful in the
context of traffic because red means you should stop and green means you can
advance. The exact choice for which region in the spectrum represents red or
green is not critical - and its perception would vary with the ambient light and
the context anyway. The spectral value is even culturally determined so that
in some countries the green traffic light looks rather blue3 or the orange traffic
light amber or yellow. This example makes the point that a perceptual category
exploits a regularity in the environment but is not entirely dependent on it
and consequently human perceptual categories are not derivable from statistical
induction over examples only.

Here is a second example: The distinction between adult and non-adult is
meaningful in the context of law because it refers to the moment at which one
acquires full capacities and responsibilities under the law. The age is usually
defined as 18 years, but that can differ between countries (in Scotland it is
16 years) and purposes (like obtaining a driver’s licence which may be allowed
earlier). Moreover, in many countries (like Belgium) you can also be classified
as adult (in the sense of gaining full legal capacity) if you are a parent or have
gotten married before 18 years. The meaning of adult is therefore rooted in
interactions between the agent and the environment, which now includes other
agents and legal institutions and customs. This example makes again the point
that human distinctions cannot be learned empirically from observations because
the data simply does not contain the necessary information. As Wittgenstein
said: Meaningful distinctions are imposed on reality, shared through conventions
and procedures, and defined and transmitted through language.

It is not only that the distinctions used in meaningful models must be rel-
evant, also the way the context is segmented into different entities must be
relevant. Which entities are included in a model depends on the task and the
context for which the model is intended. For example, a sequence of events may
be considered as a single episode to be described as a whole or as different
3 For example, in Japan the green light looks more blueish because until a century ago

Japanese did not have a basic color word for green, only for blue (“ao”) and green was
considered a shade of ao. Contemporary Japanese has a word for green, “midori”,
but the traffic light is still called “ao”. As a compromise to abide by international
regulations but not deviate too much from language custom, traffic lights in Japan
are a greenish shade of blue rather than prototypical green.
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episodes, depending on the purposes of the model and the available data. How
we decompose an object into its subcomponents depends on whether we have to
recognize the object or to dismantle and repair it.

Although data-driven statistical AI applications are responsible for the recent
headlines in AI, there are indications that the distinctions these applications
acquire and use are not meaningful in a human sense. This leads to a lack of
robustness and difficulty to provide human-understandable explanations.

Consider image recognition. Although on benchmarks like digit recognition
very high scores are reached, adversarial examples show that for natural image
recognition, segmentation and labeling, there is an important lack of robustness
(one pixel can be enough to derail the recognition process), gross misclassification
when an object is not exactly in a setting similar to that used in the training set
or the object is slightly altered or its orientation shifted [60]. These limitations
show that the acquired statistical models are sensitive to image features and
categorisations which are to some extent adequate for a prediction task but
only very indirectly related to the way humans visually identify and categorize
objects for other tasks - including tasks which require recognizing objects in a
way human intelligence would find natural.

Or consider language processing. BERT, a state-of-the-art statistical lan-
guage model trained with a 300Mi word corpus and a neural bi-directional
encoder transformer algorithm, correctly completes “A robin is a ...” with the
word “bird”, based on statistical frequency, but if you ask for the completion of
“A robin is not a ...” it also answers “bird” for the same reason [41]. A human
observer cannot help but conclude that BERT does not understand what the sen-
tence is about and is therefore unreliable. BERT has been trained for language
prediction but that task is not the same as that of language understanding or lan-
guage production in communication tasks, which is after all what language is for.
The observed success of BERT is due to the use of statistical short-cuts rather
than actual understanding. This observed lack of robustness in performance will
not improve with more data or with a better induction algorithm because it
is due to fundamental epistemological limitations of empirically derived knowl-
edge [35] and the fact that often the analyses which have to be learned are not
observable. For example, we cannot expect that the semantic aspects of language
grammars can be learned purely based on data of possible language forms [5].
To claim that BERT, or similar systems such as GPT-3 which are trained on
sentence completion, understand language is confusing the issues and creates
unrealistic expectations for the general public.

Coming up with explanations based on statistical models trained in predic-
tion tasks has proven to be a headache as well. There is a large amount of research
going on at the moment and many approaches are being tried: [32] Translating
the decision making by a statistical black box model into another more com-
prehensive but still numerical model (for example decision trees); illustrating
which features have been used in decision making by highlighting the areas of
the input (for example in an image) that played a role; etc. This is all helpful
but is only a stopgap to avoid constructing the kind of meaningful explanations
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that humans are able to provide and expect, i.e. explanations that explicate the
background knowledge and the reasoning steps how a conclusion was reached
in terms of rich models composed in human-understandable concepts, in other
words using distinctions that overlap with those humans find relevant to their
own experiences [33].

Summarizing:
We say that a model is meaningful if the entities described in the
model and the distinctions (categories) and entities being used
to form descriptions are relevant to the interaction between the
agent and the environment in a specific set of tasks and domains.
We call AI based on meaningful models Meaningful AI.

6 Why is Understanding Hard?

Many problem situations in which humans find themselves have properties that
make it very hard to solve them with reactive intelligence alone. But these prop-
erties also make it hard to construct the models needed for deliberative intelli-
gence, even though that is the only way to find and justify solutions in many
cases. These properties include: indeterminacy, ambiguity, uncertainty, combi-
natorial complexity and the characteristics of open worlds.

– Underspecification arises when the situation or the problem definition does
not contain enough information to find a solution. The missing information
must be inferred based on prior knowledge.

– Incompleteness arises when there is so much knowledge involved in a domain
that it cannot all be formalized or foreseen. This is known as the frame
problem in AI [28]. The default cases can be described but all the exceptions
cannot.

– Ambiguity arises when the same signal or sign can have many possible inter-
pretations. The interpretation valid in the specific problem context must then
be inferred by examining the consequences of the different possibilities. This
is for example the case in parsing and interpreting human language where
every word or phrase typically has more than one meaning or function.

– Uncertainty arises when facts can only be established approximately, for
example because they are based on a measurement that gives only an approxi-
mation to what is to be measured or because facts were derived through induc-
tion and the data was incomplete or polluted. Medical diagnosis is a typical
example of a domain where uncertainty is rampant because not everything
can be measured accurately and detailed information of the behavior of a
disease is often not available.

– Combinatorial complexity arises as a consequence of underspecification, ambi-
guity, incompleteness and uncertainty and when solution steps need to be
chained. In those cases you need to construct a search space to explore dif-
ferent hypotheses and this space can grow exponentially. Board games, such
as chess, are the prototypical example of combinatorial complexity, but this
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issue is equally present in virtually all applications of AI, for example in syn-
tactic and semantic analyis of natural language sentences or in the design of
systems where many different components have to be chosen and put together
to achieve a particular function.

– Open worlds arise when problem situations come up that are significantly
different from anything seen before, i.e. not only variations within known
statistical boundaries or new facts that deviate from templates derived from
earlier facts. This issue is the norm for socio-economic applications or appli-
cations which involve living systems. It is also the case for handling natural
language where novel sounds, words, phrases, constructions and pragmatic
interaction patterns may appear, sometimes at a rapid pace.

Certainly, there are domains where the world is closed and the basic rules do
not change. There are no ambiguous inputs, full knowledge is available of the
situation, and the combinatorics can be worked out and computed in advance
or sufficiently tamed with powerful heuristics to guide the search. A board game
like checkers and most other adversarial games are examples of this. The rules
of checkers are fixed, the board positions are totally determined and observable
without ambiguity and the search space is large but computable. Recent progress
in game playing (for chess, Go, and other games) is due to massive increases
in computer power so that many more games can be tried and heuristics for
navigating much bigger search spaces can be learned than before.

On the other hand there are plenty of domains of high human interest where
these issues are very much present. These are the domains that cannot be solved
in an algorithmic way and have therefore been traditionally the core research
target of AI. They require that the AI system understands.

All the above issues were identified from the very beginning of the field in the
1950s, for example, in the work of Herbert Simon on bounded rationality [47],
the work of John McCarthy on non-monotic reasoning to cope with incomplete-
ness and open worlds [27], or the development of various probability calculi for
uncertainty and inductive inference by Ray Solomonoff and many others [48].
To illustrate the issues further, I briefly introduce an example from the domain
of common sense problem solving which has received considerable attention in
recent AI research, namely cooking recipes [4].

Nothing seems to be more straightforward than preparing a dish from a
recipe, except when you start cooking, and then it often turns out to be hard.
I am not referring to all the skill required to handle food but of reading and
understanding the recipe, in other words making a sufficiently rich model of the
food preparation process so that concrete cooking actions can be undertaken.
Part of the problem is to figure out what items and actions the descriptions
in the recipe refer to, which objects are involved in each action, and what the
parameters of actions are, such as how long something needs to be cooked. Often
you also need to come up with alternative solutions to reach the same (implicit)
goals.
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Consider for example a recipe for preparing Linguine con lenticchie e pancetta
(Linguine pasta with lentils and pancetta)4. The recipe starts with a list of the
ingredients and some initial preparations:

200 g small brown lentils from Umbria.
Two tablespoons of extra virgin olive oil.
125 g Pancetta cut into small strips.
400 g of linguine, etc.

The first challenge is already to find these ingredients or decide on alterna-
tives depending on their availability in your kitchen or in local shops. Although
Umbria is renowned for lentils, other regions, like Puy in the Auvergne in France,
produce excellent lentils as well. The pancetta can be replaced by bacon, the lin-
guine by pappardelle. Notice that generating and selecting these alternatives
already rests on significant knowledge of the different types of cooking ingredi-
ents and their functions in a recipe. For example, the pancetta can be replaced
by bacon because they are both salt-cured pork belly salume, the linguine by
pappardelle because they are both long dried pasta.

The first line of the recipe says: ‘Place the lentils in a pan and add enough
water to cover them with a layer of 5 cm’. Some of the words in this sentence are
ambiguous. For example ‘pan’ means here a cooking pan but the word can also
refer to the action of taking a wider view with a camera. ‘Cover’ means here ‘to
put something over something else’ but it can also mean ‘the object with which
you cover something’, ‘to deal with a subject’, ‘the outside of a book’, ‘a place
to go hiding’. We have such powerful context-sensitive parsing mechanisms that
we do not even notice these ambiguities.

Then there is underspecification. The recipe talks about ‘a pan’ assuming
there is such an object available in the context. ‘Them’ is presumably refering to
the lentils. The water has to be added but to what - presumably to the pan. The
recipe does not specify the exact quantity of water to be added but describes
instead the end state (‘until there is a layer of 5 cm’.).

The next line says ‘Add salt and put the lid on the pan.’ The salt is not
mentioned in the ingredients but assumed to be present by default. Neither does
the recipe specify what kind of salt should be added; regular kitchen salt, sea
salt, Himalayan black salt? ‘Add salt’, yes - but to what? How much salt? ‘The
lid’, but which lid? The lid has not been mentioned yet but because a pan has
been mentioned and pans have lids, we know that it must be the lid of a pan.
But which pan? Presumably the one mentioned in the first line of the recipe.

Clearly, a recipe is not like a computer program which is fully determinate and
unambiguous. Understanding the recipe so that you can cook the dish, requires
disambiguating, contextualizing and grounding the objects mentioned in order
to resolve ambiguities and handle underspecification and incompleteness as much
as needed. Doing this requires a significant amount of background knowledge but
also the ability to build models of reality based on sensori-motor input, perform

4 Werle, L. (2009) La Cucina della Mamma. Allegrio, Olen (BE), p. 22.
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mental simulation of actions, and link the referents of descriptions in the recipe
to the model.

The cooking domain is representative of a much larger set of domains with
similar properties such as instructions for putting together IKEA furniture, man-
uals for installing and operating equipment, office procedures, legal procedures,
instructions for a field trip in the forest. And there are many more domains where
the same issues arise. Here are two more examples: making sense of events and
medical or technical diagnosis.

All of us are constantly trying to understand the connections between events,
both at a personal level and at a historical and political level, and there are
scientific fields such as history, criminology, anthropology or journalism that
are specialized in trying to piece together what has happened from bits and
pieces of indeterminate, ambiguous and uncertain information and structure
them into a coherent whole. This is another class of task challenges where the
construction of rich models is central even though the ‘true’ sequence of events
is often impossible to reconstruct, particularly for turbulent historical events,
such as a coup d’état or a revolution. The efforts at the moment by a special
parliamentary commission to document and understand the attack on the United
States Capitol on January 6, 2021 shows how difficult the exercise is, even for
recent events. In the case of events further in the past this reconstruction often
has to happen from accounts that are only partly true due to lack of knowledge
or because the available accounts warp the facts to convey particular viewpoints
to serve certain agendas.

Here is another example: Medical or technical diagnosis. Both rest on a set
of inputs that need to be puzzled together into a coherent model of a disease
or a malfunction, which is sufficiently detailed to allow treatment or repair. The
inputs are almost always incomplete. It may be possible to perform additional
measurements but these measurements typically still yield uncertain outcomes
and they may be too expensive or risky to perform. Knowledge about many
diseases or causes of faults is often incomplete and continously evolving, not
only because knowledge advances thanks to science but also because diseases
themselves may change as the biological organisms that cause them (viruses and
bacteria) change. The Covid pandemic that exploded world wide in 2021 is a
contemporary example, where the medical profession as well as politicians and
the public are visibly trying to cope with the changing nature of a virus and the
unpredictable effect of rules to contain the pandemic. Here we see the process
of understanding in action. It is another example domain showing not only why
understanding is central to human intelligence, but also why it is hard.

Summarizing:

Understanding is hard in many tasks of human interest because
of the indeterminacy, ambiguity and uncertainty of inputs and
available knowledge. In addition, there may be rampant combi-
natorial complexity if different hypotheses have to be explored,
and we may need to cope with novel situations due to the fact
that the real world is open and in constant flux.
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The issues listed here are experienced by humans and by machines alike. But
human intelligence has distinct advantages: We collect throughout life a mas-
sive amount information that is relevant for our interactions with the world and
others. We have all the necessary subsystems ranging from sensory-motor intel-
ligence, language processing, mental simulation, semantic and episodic memory
and learning to meta-level reflection and affective response generation ‘under
one roof’ and we seamlessly integrate all these capacities in the service of solv-
ing hard problems. All of this is truely astounding and an enormous challenge to
emulate in artificial systems. The argument, sometimes heard these days, that
‘Artificial General Intelligence’ surpassing human intelligence is just around the
corner [61], underestimates human intelligence and/or overestimates the true
state of the art in AI. Mastering understanding is the hard problem of AI and
achieving it will require considerable breakthroughs and concerted effort.

7 Rich Models Have Multiple Layers and Perspectives

Let us now turn to the kind of models that area required for deliberative intelli-
gence. I mentioned earlier that they have to be ‘rich’. What should we mean by
that? The first way in which deliberative models are rich is because they typically
have several layers and describe situations from many different perspectives.

For example, understanding a recipe up to a point where you can execute it
requires models at four layers:

– A Linguistic description is formulated in natural language and used to com-
municate among people. An example is the recipe text as found in a cook
book. Linguistic descriptions are typically vague and highly underspecified
and require a lot of knowledge, including knowledge of the language, to
decode. For example, the cookbook may say ‘add a handful of herbs’ leaving
it open which herbs to add or how much herbs constitute a handful [3].

– Symbolic models describe the situation in qualitative terms but in a com-
putational form. Symbolic models are already more precise but still leave a
lot of the exact parameters for concrete action open. They already support
inference, including qualitative simulation, when the model is expanded with
defaults, contextual and background knowledge [16].

– Analog models describe the situation in quantitative terms. They approach
realistic conditions but are not necessarily identical to an actual situation in
the world. Analog models support quantitative simulation, for example, using
a physics simulator as used in computer games to simulate the execution of
a recipe [4]. Sensors can be embedded in the simulation in order to answer
questions about the course of an action that cannot be handled by symbolic
models [9].

– Perceptual models are directly grounded in real world perceptual or proprio-
ceptive data and therefore maintain continuous contact with reality. The raw
data needs to be processed considerably to eliminate noise, callibration errors,
intermittent sensor failure, etc. Various inferences can already be performed
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directly on perceptual models, such as Kalman filters which predict what the
world is going to look like at the next instant of time [51].

One of the main challenges in building understanding systems is to maintain inti-
mate dependencies between these different models, namely to couple data from
the perceptual models to the analog model so that the analog model becomes
more realistic, to couple categorisations from perceptual or analog models to the
symbolic models so that these models are grounded, and to couple the symbolic
model to the language description. Conversely, the language description informs
the symbolic model which constrains the analog model and provides expecta-
tions or completions of the perceptual model. AI systems that establish these
dependencies during the life-time of objects are known as digital twins. They
are considered the basis for future smart manufacturing, system maintenance,
retail, medical care, and many other fields [?].

A perspective highlights a situation from a particular point of view. For exam-
ple, architectural design requires a layout perspective, a functional and spatial
perspective, a user perspective, perspectives for electrical systems, plumbing
systems, etc. Maintaining the dependencies between these different viewpoints
is another challenge for rich models, often handled using methods of constraint
propagation and consistency checking.

Summarizing:

The rich models used for deliberative intelligence are multi-
layered (linguistic, symbolic, analog, and perceptual) and
describe situations from multiple perspectives.

8 Human Models Often Take the Form of Narratives

The models needed for deliberative intelligence studied by human-oriented and
social disciplines (psychology, anthropology, economics, linguistics, semiotics,
sociology, medicine, social neuroscience to name just these) are also rich in
another sense. They take the form of narratives. A narrative is a way to struc-
ture experiences [6,62]. It identifies the relevant events connected principally
by temporal and causal links, further enhanced with spatial, logical, analogical,
hierarchical and other relations. A narrative identifies the actors and entities
and the roles they play in events and the relevant properties of the events. It
includes insights into the broader context and the motivations, deliberations and
intentions of the actors.

The more a domain is related to human issues, the more narratives also
include a moral viewpoint on the events and an ideological framing [18]. So
a narrative combines a set of seemingly disconnected facts and episodes into
a coherent structure in which the relationships between events and facts, the
relevance of the events, as well as their moral and ethical framings are made
explicit in order to explain and justify actions or convince others of a particular
viewpoint.
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Narrative intelligence is the ability to come up with narratives, either based
on observations of reality or on semiotic representations of narratives (texts,
novels, drawings, movies) created by others. Narrative intelligence exploits gen-
eral facts in semantic memory to fill in details, sensory-motor data stored in
episodic-procedural memory to ground narratives into reality, mental simulation
to imagine how situations in the world will unfold visually, and memory of past
narratives, often called narrative memory - or autobiographic or personal mem-
ory if the narratives are about making sense of your personal life. In human
intelligence these different types of memory are personal, based on your history
of interactions with the world and others. Today knowledge graphs and other
semantic resources are assumed to be universal, but we must expect that future
meaningful AI systems have their own ‘personal’ dynamic memories which they
have acquired through their own interactions with the world and other agents.
They will undoubtly have their own opinions or ways of framing reality that may
differ from that of other AI systems or from humans [56].

Narratologists make a distinction between three levels of narratives: [2]

(i) There is the set of facts that the narrative is about. This is called the fabula.
These facts may be objective data directly obtained by sensing the envi-
ronment or qualitative descriptions without being colored by a particular
viewpoint.

(ii) There is the plot which is the viewpoint, organisation and framing imposed
on the fabula, partly in order to make a convincing narration.5

(iii) There is the narration of the narrative, in the form of a text or another
medium, for example as a documentary film, a theatre piece, a painting, an
opera.6

Narrations use signs, which brings us on the terrain of semiotics [11]. A sign
is an association between a signifier (its form appearance) and a signification
(its meaning) as governed by a code. The signifiers are constructed from mate-
rial components (sounds, lines, colors, gestures, marks). Furthermore narrations
abide by larger scale narrative structures classified and studied in the field of
narratology.

Elements at the three levels of a narrative are intricately linked with each
other. For example, a real world person in the fabula becomes a character in the
plot and is presented by particular signifiers in the narration, such as a proper
name, a specific dress, perhaps a melodic theme in an opera. Creating these
linkages between levels is an important part of the understanding process and
narrations have to contain enough cues to make these links detectable by readers
or viewers.

5 It is also common, particularly in earlier narratological research, to conflate fabula
and plot, in which case the two terms become interchangable and there are only two
levels.

6 Somewhat confusingly, a narration is also often called a narrative (cf. narrativo in
Spanish), whereas here it refers to both the facts and the plot on the one hand and
their narration on the other hand.
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The narration of a narrative by a narrator consists in gathering facts from
observations or from collected data, selecting key facts, and organising them in
terms of a plot, including the introduction of a viewpoint and framing of the
facts, and then translating the story into a text or other form of semiotic repre-
sentation by choosing signs that introduce the elements of the plot. Conversely,
an interpreter has to recognize and decode the signs, connect their various signi-
fications into a coherent representation, reconstruct from the plot the narrative
and the underlying facts, and ground these facts into observed data. The inter-
preter also has to fit the reconstructed narrative into his or her past experience
stored in a personal dynamic memory. Each of these processes is in itself extraor-
dinarily complex. Understanding how they work and operationalizing them are
the core technical challenge for the advancement of meaningful AI.

Clearly narratives have different purposes and characteristics and each nar-
rative is a point in a continuum along many different dimensions. One important
dimension is the veracity dimension, where on one side we find non-fictional nar-
ratives considered (or claimed) to be true in the sense of conform to reality. Such
narratives are called theories and their construction or reconstruction is based on
strategies intended to guarantee veracity. These are the kinds of narratives that
scientists, doctors or lawyers strive to construct and communicate accurately or
that everybody constructs when dealing with reality, as in interpreting cooking
recipes.

At the other end of the veracity dimension we find fictional narratives. They
have ingredients based on reality but they do not pretend to be verifiably con-
form to reality. They may include fictional characters and events, exaggerations,
unproven causal relations, rearrangements of the temporal order of events, etc.
These changes are all in the interest of making the narrative more compelling and
hence more effective in convincing others of a particular viewpoint and ensuring
that the narrative spreads faster in the population. Fictional or semi-fictional
narratives arise spontaneously if not enough facts are known but people still try
to make sense of what happens to have some degree of prediction and control.

There are still other dimensions of narratives as summarized in the following
table. Rationality refers to the role of logic in the narrative and the sobriety with
which the narrative is told, i.e. how much rhetorical devices are used.

Dimension Definition High Low

Veracity Relation to
reality

Truthful Suggestive

Rationality Argumentation
basis

Logic and utility
maximization

Compatibility with
values and fit with prior
experience

Sobriety Persuasion style Close to facts and
logic

Amplified and selective
expression of facts
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The human propensity for creating narratives and adopting, modifying and
communicating them as narrations is particularly well illustrated with the dis-
course on the Covid pandemic and vaccination campaigns. Because there is a
general lack of understanding and an ongoing change in the nature of the covid
virus, we see that scientific theories need to adapt constantly to new insights,
observations, the behavior of variants and the behavior of populations (keeping
distance, masks, etc.). But we also see a wealth of spontaneous semi-fictional
narratives, some of them taking the form of conspiracy theories or fake news
stories, narrated through memes on social media, that are actually harmful for
those believing them and hamper gaining collective control over the pandemic.

The various disciplines that use the concept of a narrative provide important
insights into the nature of narratives and the functioning of narrative intelligence
that are very useful to advance the state of the art in understanding. These
disciplines have also produced many case studies and challenges for concrete AI
experiments which suggest new application areas for AI. Let me just give two
examples.

Economics and sociology use the term ‘narrative’ in two ways, either for
the narratives that people develop about economic and social phenomena, like
inequality, or for the scientific models of these processes, in which case we speak
about socio-economic theories. Scientific socio-economic theories strive for high
veracity and typically treat humans as rational economic agents. ‘Folk’ economic
narratives are often low on the veracity and rationality scale, but they can nev-
ertheless have an important impact on socio-economic behavior. Identifying folk
socio-economic narratives and studying their impact on the real economy is the
primary topic in the recently emerging field of narrative economics [45] which
includes studies of the strategic use of narratives in order to advance economical
agendas as is common in advertising or negotiation. There is also the emerging
field of narrative sociology [21], which focuses on how narratives shape social
movements and social identity. It has similar concerns and approaches as nar-
rative economics but focuses on social behaviors. Narrative sociology has strong
interactions with social psychology and social neuroscience where the study of
narratives and particularly narrative pathologies (leading to the construction
and belief in conspiracy theories or radicalization) plays a growing role [64].

In medicine there is a similar dichotomy between non-expert narratives and
scientific theories. Patients spontaneously construct narratives to come to grips
with the symptoms and evolution of their disease. Although many doctors do
not feel the need to encourage or influence these narratives, there is a field
called narrative medicine which sees the construction of such narratives (in a
co-construction between doctor and patient) as a path to healing or maintain-
ing health, complementary to natural science-based treatments [7,49]. Narrative
medicine encourages close (attentive) reading of texts, authentic discourse and
reflective writing with an emphasis on personal reflections on facts.

Knowledge-based medical AI is concerned with the natural science-based
approach to the study of diseases and treatments. In that field medical narratives
are making headway as well in order to support search and hypothesis generation
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[24]. The notion of narrative is more narrow here than in the social sciences
and humanities and the term theory is often considered more appropriate. The
narratives now focus almost exclusively on temporal and causal relations and
recurring explanation patterns. Veracity and rational argumentation are primary
and a moral stance and rhetoric to express this stance does not play a role.

Summarizing:

Narratives play a central role in understanding because they are
the frameworks that provide the structures underlying the kind
of rich models humans make. These frameworks are imposed on
experience in order to bring out the relations between events
and entities playing a role in them, formulate a moral stance,
justify our actions and decisions, remember new experiences in
terms of past ones, put experiences into a broader context, and
communicate experiences and our views on them to others.

There was already a flurry of research activity in AI on narratives between the
mid nineteen-sixties and late nineteen-seventies. One of the first ideas that came
up is the notion of a semantic network, as first proposed by Quillian [37], which
blossomed into the knowledge graphs that we have today. Another notion is that
of a schema or frame, as first proposed by Minsky [30], or script, as proposed
and worked out by Schank and colleagues [44]. A frame is a set of questions to
be asked about a particular situation with constraints, defaults and strategies
to find answers. The classical example is a restaurant frame that structures the
experience of entering a restaurant.

Schank also triggered the first AI research into dynamic semantic and episodic
memory and how they play a crucial role in understanding [43]. These ideas
developed further in memory-based or case-based AI applications [23]. Frames
and scripts have underpinned a large number of earlier experimental AI systems
for story understanding and story generation and for expert systems not based
on rules but on solving cases by analogy with earlier cases. They also lead to
some remarkable early demonstrations of language understanding capacities in
the 1970s, such as Winograd’s SHRDLU system, dubbed a system that could
understand natural language, [65] and the HEARSAY speech understanding sys-
tem that worked on spoken language [38]. Later in the 1980s we also saw the
first attempts to build encyclopedic knowledge bases, of which CYC [25] was the
most important representative.

Interest in narratives waned somewhat in the late 1990s as the attention of
AI shifted to behavior-based robotics, neural networks, and the semantic web.
Moreover it was realized that incorporating narratives as the core of AI was going
to be a daunting task. The broad humanistic scope that characterized AI in its
first four decades began to shrink with a focus on narrowly defined problems
with measurable performance under economic pressures. But the past decade
we have seen renewed attention in AI research to narratives [15,17,26,29,40,66].
Efforts now incorporate also data-driven AI methods to learn aspects of narrative
intelligence, such as the reconstruction of timelines or characters [20]. Still, it is
early days and many problems remain unsolved.
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9 Open Issues for Understanding

Clearly the integration of narratives in the understanding process by AI systems
is very challenging, partly because of the many different components and skills
that are needed (sensori-motor input, language, semantic memory, mental sim-
ulation, episodic memory) (see Fig. 3) and partly because they all need to be
integrated.

Fig. 3. Understanding calls upon a variety of knowledge sources and uses itself the par-
tially constructed rich model. The knowledge sources use both reactive and deliberative
AI.

What are some of the main priority problems we should focus on today?
Given space limitations, I cannot do more here than list three directions in
which further work is going on or needed - this is of course in addition to further
advancing the state of the art for each of the knowledge sources.

1. Computational represention of narratives: It is obvious that we need a datas-
tructure that captures all the information about a narrative and its narration.
This datastructure must represent the facts in the fabula, the way the facts
are selected, framed and organized as a story, and the intermediary structures
that are being built to produce or comprehend a narration. Clearly this datas-
tructure takes the form of a network, similar to a knowledge graph, but with
much more information and meta-information. I will call it a narrative net-
work. A narrative network is transient in the sense that it grows and changes
as more information comes in during the construction or interpretation pro-
cess. It has to be able to represent different hypotheses given the ambiguity
and underspecification of inputs and the uncertainties associated with facts
or inferences. It should support the exploration of multiple hypotheses and
adapt to progressive insight or changes, both in the inputs and in the avail-
able knowledge sources.
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There have been plenty of experiments and technical advances, for exam-
ple for dealing with uncertainty or dealing with the exploration of multiple
hypotheses, but the big challenge here is to create a comprehensive design
and, if possible, standardize it so that many people can collaborate as has
happened with ontologies. Work on narrative annotation tools and formal
ontologies for ontologies already go in this direction [14,29,36].

2. Cognitive architecture Many different knowledge sources contribute to the
build up of a narrative network and we certainly need to go beyond a strict
pipeline model that dominates data-driven AI, towards a flexible architec-
ture in which different knowledge sources can contribute at any time, either
because new information has become available, so that a knowledge source can
make a useful contribution, or because they are called in a top-down manner
to expand areas of the narrative network. In past AI work, this kind of flexibil-
ity was often achieved with blackboard architectures based on the metaphor
of a blackboard on which various knowledge sources can read and write [12].
In the case of understanding, the blackboard contains the transient narrative
network. The knowledge sources include sensory input, language input, men-
tal simulation and semantic and episodic memory. Blackboard architectures
have resonated with models of consciousness in neuroscience, specifically the
Global Neural Workspace Model by Bernard Baars and refined by Stanislas
DeHaene and colleagues [8].
A blackboard-like architecture is a first step but we will need much more:

– First of all, we need ways in which the understanding system can mea-
sure progress: (i) how far ambiguity, incompleteness, underspecification
and incompleteness is being reduced, (ii) how information has become
integrated, meaning in how far network fragments could be connected
to each other and how connections between different levels of the narra-
tive (the fabula, story, and narration) could be established, and (iii) how
far the distance towards a satisfactory narrative closure could be bridged.
Narrative closure happens when the key questions for which the narrative
is being developed have been answered.

– Second, these measures should be input to an attention mechanism that
decides where further effort should go: Should more resources be applied
for analyzing and interpretating certain inputs? Which nodes in the net-
work are to be expanded preferentially? What additional inputs might
profitably be sought? Should a knowledge graph be consulted? How many
extra resources should be put into visual processing? It is unavoidable
that the degree of understanding of a narration will sometimes decrease
because new input enters that is not compatible with what was seen before
or new facts are supplied by semantic memory that create a cognitive dis-
sonance with the narrative network built so far.

– Third, there needs to be a meta-level that plays three crucial roles: (a)
It should monitor progress and avoid catastrophic failure by catching fail
states in components (in the same way an operating system catches an
error in running applications and possibly repairs them to avoid that the
whole system collapses). (b) It should govern learning processes, such as
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the process by which a narrative is stored in episodic memory to deal with
similar situations in the future. (c) It should include a value system that
monitors decision-making (and subsequent real-world action) to make it
compatible with a moral framework that is compatible with human values
in order to realize a form of value-aware AI.

3. Other paths to learning: Current AI applications focus on a narrow set of
learning mechanisms but we need to become adventurous (again) and explore
other learning strategies. I just list two possible paths for further exploration:
(a) It was argued in Sect. 5 on meaning that the distinctions (categories

or concepts) used in AI systems should be meaningful with respect to
tasks and contexts and that an exclusive focus on prediction does not
yield the kind of distinctions that humans find natural or fit with other
tasks than prediction. So we need to find new frameworks for learning.
In the case of language, one such framework are language games [59].
Language games are played by two agents selected out of a population
of agents, possibly including humans. They have a communicative task,
such as drawing attention to an object in their shared world-setting or
giving instructions to carry out a certain action and should use some
form of language to do so. However, the agents should start without a
shared language system or a shared ontology of distinctions and build
that up as part of becoming successful in playing games. This approach
has now been followed for dozens of domains (color, space, time, action,
etc.) [54] and for many different aspects of language [55]. It shows that
categories need not be formed by induction over a large dataset only
but can be learned in an incremental fashion and relevant for the task
of communication.

(b) The coupling of reactive and deliberative intelligence provides new
avenues. For example, we could explore more constructivist (or abduc-
tive) approaches to learning domain knowledge for deliberative intel-
ligence. A constructivist approach suggests that the learner is able to
partially solve problems and then examine what domain knowledge is
missing in order to complete the solution. Or the learner solves a prob-
lem but gets feedback whether the derived solution is adequate. If not,
constructivist learning analyses in which way domain knowledge can be
changed and repair it [52].

10 Conclusions

This paper briefly explored some of the conceptual foundations of human-centric
AI, arguing that AI needs to come to grips with meaning and understanding in
order to address the many demands and expectations for human-centric AI.
Understanding is defined as the process of building up a rich model of the prob-
lem situation from which solutions and explanations can be derived by deliber-
ative intelligence. The models made by human intelligence most often take the
form of narratives with scientific models being a special case.
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The state of the art in AI is not yet up to a level where the integration
of narratives has become practical enough to be routinely applied. There are
some very serious challenges for many areas of AI, including language processing,
computer vision, knowledge representation, mental simulation, memory, learning
and cognitive architecture. But with a clear vision where we need to go, we can
look forward for a new jump forward in AI and perhaps a subsequent new wave
of meaningful, human-centric AI.
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Abstract. Artificial neural networks provide a distributed computing technology
that can be trained to approximate any computable function, and have enabled
substantial advances in areas such as computer vision, robotics, speech recogni-
tion and natural language processing. This chapter provides an introduction to
Artificial Neural Networks, with a review of the early history of perceptron learn-
ing. It presents a mathematical notation for multi-layer neural networks and shows
how such networks can be iteratively trained by back-propagation of errors using
labeled training data. It derives the back-propagation algorithm as a distributed
form of gradient descent that can be scaled to train arbitrarily large networks given
sufficient data and computing power.

LearningObjectives:This chapter provides an introduction to the training and use
of Artificial Neural Networks, and prepares students to understand fundamental
concepts of deep-learning that are described and used in later chapters.

Keywords: Machine learning · Perceptrons · Artificial neural networks ·
Gradient descent · Back-propagation

Glossary of Symbols

xd A feature. An observed or measured value.
�X A vector of D features.
D The number of dimensions for the vector �X
y A dependent variable to be estimated.
a = f ( �X ; �ω, b) A model that predicts an activation a from a vector �X .
�w, b The parameters of the model f ( �X ; �ω, b).
{ �Xm} {ym} A set of training samples with indicator values.
�Xm A feature vector from a training set.
ym An indicator or target value for �Xm.
M The number of training samples in the set { �Xm}.
am = f ( �Xm; �ω, b) The output activation for a training sample, �Xm.
δoutm = am − ym The error from using �ω and b to compute ym from �Xm.
C( �Xm, ym; �ω, b) The cost (or loss) for computing am from �Xm using ( �ω, b).
�∇C( �Xm, ym; �ω, b) The gradient (vector derivative) of the cost.
L The number of layers in a neural network.
l An index for the lth layer in a network 1 ≤ l ≤ L.
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a(l)
j The activation output of the jth neuron of the lth layer.

w(l)
ij The weight from unit i of layer l–1 to the unit j of layer l.

b(l)
j The bias for unit j of layer l.

η A variable learning rate. Typically very small (0.01).
δ
(l)
j,m Error for the jth neuron of layer l, from sample �Xm.

�w(l)
ij,m = −a(l−1)

i δ
(l)
j,m Update for the weight from unit i of layer l–1 to the unit j layer

l.
�b(l)

j,m = −δ
(l)
j,m Update for bias for unit j of layer l.

1 Machine Learning

Machine learning explores the study and construction of algorithms that can learn from
and make predictions about data. The term machine learning was coined in 1959 by
Arthur Samuel, a pioneer in the field of computer gaming and inventor of the first
computer program capable of learning to play checkers. Machine Learning is now seen
as a core enabling technology for artificial intelligence.

Many of the foundational techniques for machine learning were originally devel-
oped in the late 19th and early 20th for problems of detecting signals for telegraph and
radio communications. Throughout much of the 20th century, the science of machine
learning was primarily concerned with recognizing patterns in data. For example, a key
reference was the 1973 text-book by Duda and Hart named “Pattern Recognition and
Scene Analysis” [1]. However, as the scientific study of machine learning has matured,
and as computing and data have become increasingly available, it has become clear that,
given enough data and computing, machine learning can be used to learn to imitate any
computable function. In particular, machine learning and can be used to learn to con-
trol machines, to interact with humans with natural language, and to imitate intelligent
behavior. Much of this progress has been due to the emergence of a technology for
training artificial neural networks.

Over the last 50 years, artificial neural networks have emerged as a key enabling
technology for machine learning. Such networks are composed of layers of identical
units, each computing a weighted sum of inputs followed by a non-linear activation
function. Such networks are computed as a form of Single-Instruction-Multiple-Data
(SIMD) parallel algorithm, and thus can be scaled using parallel computers to arbitrarily
large numbers of trainable parameters. The parameters can be learned from training data
by a parallel form of gradient descent referred to as back propagation. Back propagation
is also a SIMD algorithm. Thus both network computation (forward propagation) and
network training (backward propagation) can be implemented using the highly parallel
Graphical Processing Units (GPUs) now found in many personal computers, tablets and
cell phones.

Many machine learning techniques, including neural networks, were originally
developed for pattern recognition. In this case, the classic approach is to use a set
of training data { �Xm} to learn the parameters for a model that can compute a vector

of activation functions �a( �X ). A decision function, d
(
�a
( �Xm

))
, is then used to select
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a pattern label from a predefined set of possible labels. The full model has the form

f ( �Xm) = d
(
�a
( �Xm

))
= ŷm where ŷm is a predicted value for the target label, ym.

For signal generation, a generator function g
(
�a
( �X

))
can be designed (or trained)

to approximate (or imitate) a desired output function such as a word, text, sound, image

or video. In this case, the full model is f ( �Xm) = g
(
�a
( �Xm

))
= �Ym where Ŷm is a

prediction of the desired output for �Xm. During learning, a cost function, C(−), is used
to evaluate the quality of the category label or generated signal. The learning process
involves adjusting the parameters of the model in order to minimize this cost function,
computed from the difference between the actual and desired function.

A variety of techniques have been developed to learn the function f ( �X ).

Supervised Learning. Most classical methods for machine learning learn to estimate
a function from a set of training data with known ground truth labels. The data set is
composed ofM independent examples, {Xm}, for which target values {ym} are known.
Having a target value for each training sample makes it much easier to estimate the
function. Examples of popular techniques include K-nearest neighbors [1], Support
Vector Machines [2], and Bayesian Estimation [3].

Semi-supervised Learning. A number of hybrid algorithms exist that initiate learning
from a labeled training set and then extend the learning with unlabeled data, using the
initial algorithm to generate synthetic labels for new data [4].

Unsupervised Learning. Unsupervised Learning techniques learn the functionwithout
a labeled training set. Most unsupervised learning algorithms are based on clustering
techniques that associate data based on statistical properties. Examples includeK-nearest
neighbors, and Expectation-Maximization [5].

Reinforcement Learning. Reinforcement learning refers to techniques were a system
learns through interaction with an environment. While originally developed for training
robots to interact with the world, reinforcement learning combined with deep learning
has recently produced systems that outperform humans at games such as Go or Chess.
Deep reinforcement learning uses training with realistic simulators adapted through
additional training with a target domain by transfer learning [6].

Transfer Learning. With transfer learning a system is first trained using supervised
learning with a very large general-purpose data set or simulator, and then refined through
additional training in a target domain. Transfer learning has provided a very useful
method for overcoming the need for very large training data sets for most modern
machine learning techniques based on Neural networks. [7].

Self-supervised Learning. Self-supervised learning learns to reconstruct missing data
and to predict associated data from examples. Two classic self-supervised techniques
aremasked-token replacement andnext-tokenprediction.WithSelf-Supervised learning,
indicator variables are not needed. The data set is its own ground truth. Self-supervised
learning makes it possible to pretrain a general purpose system with a very large collec-
tion unlabeled training data, followed by transfer learning using supervised learning or
reinforcement learning to specialize for a particular problem [8].
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2 Perceptrons

The Perceptron is an incremental learning algorithm for linear classifiers. The perceptron
was first proposed byWarrenMcCullough andWalter Pitts in 1943 as a possible universal
computational model [9]. In 1957 Frank Rosenblatt at Cornell University, constructed a
Perceptron as a room-sized analog computer and demonstrated it for the popular press
[10]. Rosenblatt claimed that the Perceptron was “the embryo of an electronic computer
that would someday be able to walk, talk, see, write, reproduce itself and be conscious
of its existence.” Journalists called it the electronic brain. The obvious limitations of the
perceptron led serious scientists to denounce such claims as fantasy.

The perceptron is an on-line learning algorithm that learns a linear decision bound-
ary (hyper-plane) for separable training data. As an “on-line” learning algorithm, new
training samples can be used at any time to update the recognition algorithm. The Per-
ceptron algorithm uses errors in classifying the training data to iteratively update the
hyper-plane decision boundary. Updates may be repeated until no errors exist. However,
if the training data cannot be separated by a linear surface, the learning algorithm will
not converge, and must be stopped after a certain number of iterations.

Assume a training set ofM observations { �Xm} of vectors composed ofD components
(features), with indicators variables, {ym}where ym = {–1, + 1}. The indicator variable,
ym, indicates the class label for a sample, �Xm. For a binary pattern detection,

ym = +1 for examples of the target class (class 1)
ym = –1 for all others (class 2)

The Perceptron will learn the coefficients, �w, b for a linear boundary such that for
all training data, �Xm,

f ( �Xm) =
{

1 if �wT �Xm + b ≥ 0
−1 if �wT �Xm + b < 0

(1)

Note that �wT �Xm + b ≥ 0 is the same as �wT �Xm ≥ −b. Thus b can be considered as a
threshold on the product: �wT �Xm.

A training sample is correctly classified if:

ym ·
(
�wT �Xm + b

)
≥ 0 (2)

The algorithm requires a learning rate, η, typically set to a very small number such
as η = 10–3. Lack of a theory for how to set the learning rate, or even an explanation for
why such a small learning rate was required was a frequent criticism. In 1969, Marvin
Minsky and Seymour Papert at MIT published a monography entitled “Perceptrons”,
that claimed to document the fundamental limitations of the perceptron approach [11].
Notably, they observed that a linear classifier could not be constructed to perform an
Exclusive OR (XOR) function. Ironically, in their final chapter, they noted that while this
is true for a single perceptron, it is not true for multi-layer perceptrons. However, they
argued that a multi-layer perceptron would require excessively expensive computations,
exceeding what was reasonable for computers at the time.
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A more fundamental criticism was that if the data was not separable, then the Per-
ceptron would not converge, and learning would continue as an infinite loop. Thus it
was necessary to set a limit for the number of iterations.

3 Artificial Neural Networks

In the 1970s, frustrations with the limits of Artificial Intelligence based on Symbolic
Logic led a small community of researchers to explore the use of multi-layer perceptrons
for recognizing patterns. As noted above, many of the problems described by Minsky
and Papert could be solved with multilayer networks. For example, around this time,
Fukushima demonstrated a mult-layered network for the interpretation of handwritten
characters known as the Cognitron [12]. It was soon recognized that a perceptron could
be generalised to non-separable training data by replacing the “hard” discontinuous
decision function with a soft, differentiable “activation function”, making it possible to
train a perceptron with the classic gradient descent algorithm.

In 1975, Paul Werbos reformulated gradient descent as a distributed algorithm
referred to as “Back-propagation” [13]. Back-propagation implements gradient descent
as a backwards flow of “correction energy” mirroring the forward flow of activation
energy computed by a multi-layer network of perceptrons. Back-propagation made it
possible to train and operate arbitrarily large layered networks using SIMD (single-
instruction-multiple-data) parallel computing.Multi-layer perceptronswere increasingly
referred to as “Artificial Neural Networks”.

Artificial Neural Networks are computational structures composed a network of
“neural” units. Each neural unit is composed of a weighted sum of inputs, followed by
a non-linear decision function.

x1

…

xD

+1

Layer 1

Layer 2

Layer 0 

+1

a1
(1)

a2
(1)

a3
(1)

w11
(1)

w11
(2)

b1
(1) b1

(2) 

a1
(2) a

Fig. 1. A fully connected two-layer neural network, with 3 units in the hidden layer (layer 1) and
a single unit in the output layer (layer 2). The input vector is composed of the D components of a
feature vector, �X , plus a constant term that provides a trainable bias for each unit.

During the 1980’s, neural networks went through a period of popularity with
researchers showing that networks could be trained to provide simple solutions to prob-
lems such as recognizing handwritten characters, recognizing spokenwords, and steering
a car on a highway. However, the resulting systemswere fragile and difficult to duplicate.
The popularity of Artificial Neural Networks was overtaken by more mathematically
sound approaches for statistical pattern recognition based on Bayesian learning [1, 3].
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These methods were, in turn, overtaken by techniques such as support vector machines
and kernel methods [2].

The Artificial Neuron. The simplest possible neural network is composed of a single
neuron (Fig. 2).

w2

x1

x2

+1

z 
w1

b

f(z) 

…

a=f(z) 

Fig. 2. A single neural unit. On the left side, z is the weighted sum of the coefficients of the input
vector, �X plus a bias. This is used to compute a non-linear activation, a = f(z) shown on the right.

A “neuron” is a computational unit that integrates information from a vector of
features, �X , to compute an activation, a.

The neuron is composed of a weighted sum of input values

z = w1x1 + w2x2 + ... + wDxD + b = �wT �X + b (3)

followed by a non-linear activation function, f (z).

a = f (z) (4)

A classic non-linear decision function is the hyperbolic tangent. This function
provides a soft, differentiable, decision surface between +1 and +1, shown in Fig. 3.

f (z) = tanh(z) = ez − e−z

ez + e−z
(5)

The hyperbolic tangent can be used to define a simple decision function:

if f (�wT ⇀

X +b) ≥ 0 then P elseN (6)

Most importantly, the hyperbolic tangent has a simple derivative function, making it
possible to use gradient descent to train the unit. The derivative of the hyperbolic tangent
is:

∂tanh(z)

∂z
= 1 − tanh2(z) (7)
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Fig. 3. The hyperbolic tangent is a soft decision function ranging from –1 to 1.

3.1 Gradient Descent

Gradient descent is a first-order iterative optimization algorithm for finding the localmin-
imum of a differentiable function. Gradient descent is generally attributed to Augustin-
Louis Cauchy, who first suggested it in 1847, and has long been a popular algorithm for
estimating parameters for a large variety of models.

The gradient of a scalar-valued differentiable function of several variables, f ( �X ) is
a vector of derivatives:

�∇f ( �X ) = ∂f ( �X )

∂ �X =

⎛
⎜⎜⎜⎜⎜⎝

∂f ( �X )
∂x1

∂f ( �X )
∂x2
...

∂f ( �X )
∂xD

⎞
⎟⎟⎟⎟⎟⎠

(8)

The gradient of the function f ( �X ) tells the direction and rate of change for the
greatest slope of the function at the point �X . The direction of the gradient is the direction
of greatest slope at that point. The magnitude of the gradient is the slope at that point.
Following the direction of greatest change provides an iterative algorithm that leads to
a local minimum of the function.

Interestingly, the components of the gradient of a function with respect to its parame-
ters tells howmuch to correct each parameter tomove towards theminimum. Subtracting
the components of the gradient from the parameters of the function moves the function
toward a local minimum. To use this to determine the parameters for a perceptron (or
neural unit), we must introduce the notion of cost (or loss) for an error for that function,
and then use the gradient to correct the parameters of the function until the cost reaches
a minimum.

Cost (Loss) Function. A cost or loss function represent the cost of making an error
when classifying or processing data. Assume a training sample �X with ground truth y
and a network function a = f ( �X ; �w, b) with network parameters �w and b. The error for
a function is δ = a − y. We can compute a cost for this error as 1/2 the square of the
error.

C( �X , y; �ω, b) = 1

2
(a − y)2 (9)
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where the term 1/2 has been included to simplify the algebra when working with the
derivative.

The gradient of the cost indicates how sensitive the cost is to each parameter of the
network and can be used to determine how much to correct the parameter to minimize
errors, as shown in Eq. 10 (Fig. 4).

�∇C( �X , y; �ω, b) = ∂C( �X , y; �ω, b)

∂(�w, b)
=

⎛
⎜⎜⎜⎜⎜⎝

∂C( �X ,y; �ω,b)
∂w1
...

∂C( �X ,y; �ω,b)
∂wD

∂C( �X ,y; �ω,b)
∂b

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

�w1
...

�wD

�b

⎞
⎟⎟⎟⎠ (10)

Fig. 4. Descending a gradient to the local minimum.

However, the gradient of the function depends on the point at which the function is
evaluated. Real data tend to contain randomvariations (generally referred to as noise). As
a result, while the ensemble of gradientswill point in a general direction that improves the
network, individual data points generally yield gradients that point in different directions.
These random effects are minimized by multiplying the correction by a small learning
rate, and using multiple passes through the training data to slowly converge towards a
global minimum.

The derivative of the cost with respect to each parameter can be evaluated by using
the chain rule. For example, suppose that we have a single neural unit composed of D
inputs. The unit will have D weights indexed with the letter d, where 1 ≤ d ≤ D. The
contribution of the weight, wd , to this error is given by the derivative of the cost with
respect wd . This can be evaluated by the chain rule, working back from the cost with
respect to the activation, a, the derivative of the activation, a, with respect to the linear
sum, z, and the derivative of the linear sum, z, with respect to wd , as shown in Eq. 11.

�wd = ∂C( �X , �ω, b)

∂wd
= ∂C( �X , �ω, b)

∂a
· ∂a

∂z
· ∂z

∂wd
(11)

The network can be improved by subtracting a fraction of gradient from each of the
network parameters. Because the training data typically contains un-modelled phenom-
ena, the correction is weighted by a (very small) learning rate “η” to stabilize learning,
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as shown in Eq. 12.

�w(i) = �w(i−1) − η��w and b(i) = b(i−1) − η�b (12)

Typical values for η are from η = 0.01 to η = 0.001 and are often determined dynam-
ically be an optimization algorithm. The superscripts (i) and (i−1) refer to successive
iterations for the values of �w and b.

The optimum network parameters are the parameters that provide the smallest cost or
loss. To determine the best parameters, the network is iteratively refined by subtracting
a small fraction of the gradient from the parameters. Ideally, at the optimum parameters,
both the loss and the gradient would be zero. This can occur when training a network
to approximate a mathematical function or a logic circuit from examples of uncorrupted
outputs. However, this is almost never the case for real data, because of the intrinsic
variations of samples within the data. As a result, if you evaluate gradient descent by
hand with real world data samples, do not expect to easily see a path to convergence.
Arriving at an optimum typically requires many passes through the training data, where
each pass is referred to as an “epoch”. Gradient descent may require many epochs to
reach an optimal (minimum loss) model.

Feature Scaling. For a training set { �Xm} of M training samples with D values, if the
individual features do not have a similar range of values, than features with a larger
range of values will dominate the gradient resulting in non-optimal convergence. One
way to assure sure that features have similar ranges is to normalize the range of each
feature with respect to the entire training set. For example, the range for each feature
can be normalized by subtracting the minimum for that feature from the training data
and dividing by the range, as shown in Eq. 13.

∀Mm=1 : x′
dm := xdm − min(xd )

max(xd ) − min(xd )
(13)

This has the effect of mapping a highly elongated cloud of training data into a sphere,
as shown in Fig. 5. Ideally this will lead to a spherical cost function with the minimum
at the center.

Fig. 5. Feature scaling improves gradient descent by projecting the data to a space where features
have a similar range if values. This reduces the effects of small variations in the gradient.

Note that the 2-D surface shown in Fig. 5 is an idealized representation that portrays
only two parameters, for example w, b for a single neural unit with a scalar input x. The
actual cost surfaces are hyper-dimensional and not easy to visualize.
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Local Minima. Gradient descent assumes that the loss function is convex. However,
the loss function depends on real data with un-modeled phenomena (noise). Variations
in the training samples can create a non-convex loss with local minima (Fig. 6).

Fig. 6. Variations in the training samples can create a non-convex loss with local minima.

In most networks, the gradient has many parameters, and the cost function is evalu-
ated in a very high dimensional space. It is helpful to see the data as a hyper-dimensional
cloud descending (flowing over) a complex hyper-dimensional surface, as shown in
Fig. 7.

Fig. 7. The data can be seen as a hyper-dimensional cloud descending (flowing over) a complex
hyper-dimensional surface. (Drawing recovered from the internet - Source unknown)

Batch Mode: A popular technique to reduce the random variations of corrections is
to average the gradients from many samples, and then correct the network with this
average. This is referred to as “batch mode”. The training data is divided into “folds”
composed of M samples, and an average correction vector is computed from the average
of the gradients of the M samples.

��w = 1

M

M∑
m=1

��wm = 1

M

M∑
m=1

�∇Cm (14)

The model is then updated with the average gradient, using a learning rate “η” to
stabilize learning as described above.

�w(i) = �w(i−1) − η��w (15)

While batch mode tends to be more efficient than updating the network with each
sample, it is more likely to learning that is stuck in a local minimum. This likelihood
can be reduced using stochastic gradient descent.
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Stochastic Gradient Descent. With Stochastic gradient descent, individual training
samples are randomly selected and used to update the model. This will send the model in
random directions that eventually flow to the global minima. While much less efficient
than batch mode, this is less likely to become stuck in local minima.

3.2 Multilayer Neural Networks

Artificial Neural Networks are typically composed of multiple layers of neural units,
where each each neural unit is composed of a weighted sum of inputs, followed by a non-
linear decision function. Such structures are often referred to as multi-layer perceptrons,
abbeviated as MLP. For example, Fig. 1 shows a 2-layer network with 3 hidden units at
layer l = 1 and a single output unit at level l = 2.

We will use the following notation to describe MLPs:

L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer).
N(l) The number of units in layer l. N(0) = D
�a(0) = �X is the input layer. For each component a(0)

i = xd
a(l)
j The activation output of the jth neuron of the lth layer.

w(l)
ij The weight from the unit i of layer l-1 for the unit j of layer l.

b(l)
j The bias term for jth unit of the lth layer.
f(z) A non-linear activation function, such as a sigmoid, relu or tanh.

Note that all parameters carry a superscript, referring to their layer. For example:
a(2)
1 is the activation output of the first neuron of the second layer.

w(2)
13 is the weight for neuron 1 from the first level to neuron 3 in the second layer.

The network in Fig. 1 would be described by:

a(1)
1 = f (w(1)

11 x1 + w(1)
21 x2 + w(1)

31 x3 + b(1)
1 )

a(1)
2 = f (w(1)

12 x1 + w(1)
22 x2 + w(1)

32 x3 + b(1)
2 )

a(1)
3 = f (w(1)

13 x1 + w(1)
23 x2 + w(1)

33 x3 + b(1)
3 )

a(2)
1 = f (w(2)

11 a
(1)
1 + w(2)

21 a
(1)
2 + w(2)

31 a
(1)
3 + b(2)

1 ) (16)

This can be generalized to multiple layers. For example, Fig. 8 shows a 3-layer
network, with an output vector �a(3) at layer 3 composed of 2 units.

In general, unit j at layer l is computed as shown in Eq. 17, illustrated by Fig. 9.

a(l)
j = f

⎛
⎝

N (l−1)∑
i=1

w(l)
ij a

(l−1)
i + b(l)

j

⎞
⎠ (17)
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Fig. 8. A three layer network with an output vector of size N(3) = 2 at level 3.

Fig. 9. The jth unit at layer l.

3.3 Activation Functions

Neural units are composed of a weighted sum of inputs followed by a non-linear acti-
vation function. The activation function must have a first derivative, so that the network
can be trained using gradient descent.

For binary problems, the hard decision surface of the original perceptron is easily
replaced with is the hyperbolic tangent (Fig. 10):

Fig. 10. The hyperbolic Tangent activation function

The derivative for the hyperbolic tangent is:

∂tanh(z)

∂z
= 1

cosh2(z)
= sech2(z) (18)
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A popular choice for activation function is the logistic sigmoid function. The logistic
function is also knownas theS-shaped curveor sigmoid curve and iswidely used tomodel
saturation phenomena in fields such as biology, chemistry, and economics (Fig. 11).

Fig. 11. The sigmoid function, σ(z).

The sigmoid has a simple derivative function

∂σ(z)

∂z
= σ(z)(1 − σ(z)) (19)

Because the output of the sigmoid varies from0 to 1, the sigmoid is easily generalized
for multi-class problems, using the Softmax activation function.

f (zk) = ezk∑K
k=1 e

zk
(20)

The softmax function takes as input a vector �z of K real numbers, and normalizes it
into a distribution consisting of vector of K values that sum to 1. The result of a softmax
sums to 1, and can be interpreted as a probability distribution indicating the likelihood of
each component. Softmax is widely used as the output activation function for networks
with multiclass outputs.

The rectified linear function is popular for intermediate levels in deep networks
because of its trivial derivative (Fig. 12):

ReLu(z) max(0, z)

Fig. 12. The rectified linear (ReLu) activation function.

For z ≤ 0, the derivative is 0. For z > 0 the derivative is 1. Many other activations
have been proposed, for a variety of uses.

3.4 Backpropagation as Distributed Gradient Descent

As stated above, the weights and biases for a multi-layer network can be computed using
the back-propagation algorithm.Back-propagation is a distributed algorithm for comput-
ing gradient descent and can thus be scaled to extremely large networks composed of bil-
lions of parameters, provided sufficient computing and training data are available. The
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back propagation algorithmcan be directly derived from the gradient using the chain rule.
Back-propagation propagates error terms back through the layers, using the weights and
activations of units to determine the component of the gradient for each parameter.

As a form of gradient descent, back-propagation determines the correction factors
to adjust the network the weights w(l)

ij and biases b(l)
j so as to minimize an error function

between the network output �aLm and the target value �ym for the M training samples { �Xm},
{�ym}. Each input sample is input to the network to compute an output activation, �aLm.
This can be referred to as forward propagation. An error term is then computed from
the difference of �aLm with the target vector, �ym. This error is propagated back through the
network to determine the correction vector for each parameter.

To keep things simple, let us consider the case of a two class network with a single
unit, so that δoutm , am, and ym are scalars. The results are easily generalized to vectors for
multi-class networks with multiple layers. For a single neuron, at the output layer, the
“error” for each training sample is the error resulting from using am as a value for ym.

δoutm = (
am − ym

)
(21)

The error term δoutm is the total error for the whole network for sample m. This error
is used to compute an error term for the weights that activate the neuron: δm. As shown
in Fig. 13.

Fig. 13. The error term is propagated back through each unit to adjust the weights and biases.

The error term for the input activations is given Eq. 22:

δm = ∂f (z)

∂z
δoutm (22)

This correction is then used to determine a correction term for the weights:

�wd ,m = xd δm (23)

�bm = δm (24)

Back propagation can be easily generalized for multiple neurons at multiple layers
(l = 1 to L) with multiple outputs (k = 1 to K). In this case, both the network output
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activation and the indicator variable would be vectors with k components, with one
component for each class, giving an error vector, �δoutm as shown in Eq. 25.

�δoutm =
(
�a(out)
m − �ym

)
with k components: δoutk,m =

(
a(out)
k,m − yk,m

)
(25)

The error term for unit k at layer L is:

δ
(L)
k,m = ∂f (z(L)

k )

∂z
δoutm (26)

For the hidden units in layers l < L the error δ
(l)
j is based on a weighted average of the

error terms for δ
(l+1)
k .

δ
(l)
j,m = ∂f (z(l)j )

∂z(l)j

N l+1∑
k=1

w(l+1)
jk δ

(l+1)
k,m (27)

An error term, δ(l)
j is computed for each unit j in layer l and projected back to layer

l–1 using the sum of errors times the corresponding weights times the derivative of the
activation function. This error term tells howmuch the activation of unit jwas responsible
for differences between the output activation vector of the network �a(L)

m and the target
vector �ym. This error term can then used to correct the weights and bias terms leading
from layer j to layer i.

�w(l)
ij,m = a(l−1)

i δ
(l)
j,m (28)

�b(l)
j,m = δ

(l)
j,m (29)

Note that the corrections �w(l)
ij,m and �b(l)

j,m are NOT applied until after the error has

propagated all the way back to layer l = 1, and that when l = 1, a(0)
i = xi.

For “batch learning”, the corrections terms, �w(l)
ji,m and �b(l)

j,m are averaged over M
samples of the training data and then only an average correction is applied to the weights.

�w(l)
ij = 1

M

M∑
m=1

�w(l)
ij,m

�b(l)
j = 1

M

M∑
m=1

�b(l)
j,m

(30)

then

w(l)
ij ← w(l)

ij − η · �w(l)
ij

b(l)
j ← b(l)

j − η · �b(l)
j

(31)

where η is the learning rate.
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Back-propagation is a parallel algorithm to compute a correction term for each
network parameter from the gradient of the loss function. A common problem with
gradient descent is that the loss function can have local minimum. This problem can be
minimized by regularization. A popular regularization technique for back propagation
is to use “momentum”

w(l)
ij ← w(l)

ij − η · �w(l)
ij + μ · w(l)

ij

b(l)
j ← b(l)

j − η · �b(l)
j + μ · b(l)

j

(32)

where the terms μ · w(l)
j and μ · b(l)

j serves to stabilize the estimation.
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Abstract. Neural networks were invented to classify signals. However, networks
can also be used to generate signals. This chapter introduces generative networks,
and shows that discriminative networks can be combinedwith generative networks
to produce an autoencoder. Autoencoders can be trained with self-supervised
learning to provide a compact code for signals. This code can be used to recon-
struct clean copies of noisy signals.With a simplemodification to the loss function
using information theory, an autoencoder can be used for unsupervised discov-
ery of categories in data, providing the basis for self-supervised learning that is
at the heart of Transformers. To explain this modification, this chapter reviews
basic concepts from information theory including entropy, cross entropy and the
Kullback-Leiblier (KL) divergence. The chapter concludes with brief presenta-
tions of Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs).

Learning Objectives: This chapter provides students with an introduction to gen-
erative neural networks and autoencoders, covering fundamental concepts from
information theory aswell aswell as applications such asVariationalAutoencoders
(VAEs) and Generative Adversarial Networks (GANs). Mastering the material in
this chapter will enable students to understand how a neural network can be trained
to generate signals, and how an auto-encoder can be used for unsupervised and
self-supervised learning. Students will acquire an understanding of fundamental
concepts from information theory such as entropy and sparsity. Students will be
able to explain how generative networks can be combined with discriminative
networks to construct generative adversarial networks.

Keywords: Generative Networks · Autoencoders · Entropy · Kulback-Leibler
divergence · Variational Autoencoders (VAEs) · Generative Adversarial
Networks (GANs)

1 Generative Networks

Neural networks were originally invented to recognize categories of phenomena in sig-
nals. For recognition, a network is trained to map a feature vector, �X , into a predicted
category label, ŷ, taken from a discrete set of possible categories.1 Such networks are
called discriminative networks.
1 The predicted category label is displayed with a “hat” symbol to distinguish it as an estimation
that may vary from the true label, y.
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y D(X )X 

Fig. 1. A discriminative network maps a feature vector, �X , into a predicted category label, ŷ.

In principle, with enough data and computing, networks can be trained to estimate
any computable function. In particular, networks can be trained to generate a typical
feature vector from a category label. This is called a generative network. With sufficient
data and computing, generative networks can be trained to generate realistic imitations
for any signal including image, sounds, video, and motor commands for coordinated
robot motions.

y G(y) X 

Fig. 2. A generative network maps a category label to a typical feature vector.

A discriminative network can be pairedwith a generative network to create an autoen-
coder. The autoencoder maps an input vector onto a compact code vector. This code
vector can then be used to generate a clean copy of the signal, as shown in Fig. 2. When
trained with a least squares loss function, as described in chapter 1, the autoencoder
represents a signal with the largest principal values that would be found by eigenspace
analysis of the training data. Augmenting the least-squares loss function with an infor-
mation theoretic measure of sparsity enables the autoencoder to learn a minimal set of
independent components that can be used to provide an abstract representation for a data
set.

Fig. 3. An autoencoder combines a disciminative encoder with a generative decoder to create a
clean (denoised) copy of a signal.
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2 The AutoEncoder

An autoencoder is an unsupervised learning algorithm that uses back-propagation to
learning a sparse set of features for describing a set of data. In the early days of perceptron
learning, the autoencoder was used to compensate for a lack of labeled training data
required to develop the back-propagation algorithm for computing gradient descent [1].
With the autoencoder, the data is its own ground truth! The autoencoder was gradually
recognized as a powerful technique for self-supervised learning [2].

Rather than learn to estimate a target class label, y, the auto-encoder learns to recon-
struct an approximation, X̂ , for an input vector �X using a minimum size code vector.
The autoencoder is trained to preserve the forms that are common to all of the training
data while ignoring random variations (noise). The hidden units provide a code vector
that is said to represent the latent energy (or information) in the signal.

Let X̂ be the reconstructed version for a signal, �X . The error from using the recon-
structed version to replace the signal is the difference between the input and ouput.
The square of this error can be used as a loss function, C(−) to learn a set of network
parameters2, �w, using gradient descent, as shown in Eq. 1.

C( �X , �w) = (X̂ − �X )2 (1)

When computedwith a loss function based on the least-squares error, the autoencoder
converges to a code vector that captures a maximum quantity of signal energy from the
training set for any given size of code vector. The theoretical minimum for such an
encoding is provided by the eigenvectors of the training set. Thus, when computed
with least squares error, the autoencoder provides an approximation for the principal
components of the training data that express the largest energy. The addition of an
information theoretic term for sparsity can force the auto-encoder to learn independent
components of the data set, providing a minimal abstract representation for the data.

Fig. 4. A 2-layer autoencoder with an input vector of D = 5, and code vector of N = 3.

2 In the following, we will simplify the notation by including the bias term, b, as a component
of the network parameters, �w.
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Consider a two-layer autoencoder for a signal composed of D elements as shown in
Fig. 4. The first (hidden) layer, referred to as layer 1, is composed of N hidden units that
provide a code vector, such that N is smaller than D. The second layer, referred to as
layer 2, is composed of D units that use this code vector to generate a clean copy of the
input signal. Each of the N hidden code units is fed by D input signals plus a bias. Using
the notation from Chapter 3, these D·(N + 1) parameters are {w(1)

ij , b(1)
j }. The N(D + 1)

weights and biases the second layer (layer 2) are {w(2)
jk , b(2)

k }.
By training with the least-squares error between the signal and its reconstruction,

the network learns to provide an approximate copy X̂ of the input signals, �X using the
N coefficients of the hidden code vector. The code vector provides a lossy encoding for
�X . Training the network with a least-squares loss function trains the network to learn
minimal set of features that approximates a form of eigenspace coding of the training
data, as explained above. The weights and biases of each neural unit (the receptive fields)
define an orthogonal basis space that can be used for a minimum energy reconstruction
of input signals. However, the energy for any input pattern is typically spread over many
of the coefficients of a code vector. For pattern recognition, what we would like is to
learn a set of independent categories for the data, such that any input data vector would
be reflected by a concentration of energy in only one of the hidden units, with the other
hidden units nearly zero. In this way, the hidden units provide a form of “one-hot coding”
for the categories in the training data. This can be done by training the autoencoder with
a cost function that includes an additional term that forces the coefficients to be unique
for each data sample. This additional cost term is referred to as “sparsity”, represented
by the symbol, ρ. Defining the loss function for sparsity requires some background from
information theory.

3 Background from Information Theory

3.1 Entropy

The entropy of a random variable is the average level of “information”, “surprise”, or
“uncertainty” inherent in the variable’s possible outcomes. Consider a set of M random
integers, {Xm}, with N possible values in the range 1 to N. We can count the frequency
of occurrence for each value with table of N cells, h(x). This is commonly referred to as
a histogram.

∀m = 1, M : h(Xm) ← h(Xm) + 1 (2)

From this training set we can compute a probability distribution that tells us the
probability that any random variable Xm has the value x. This is written as P(Xm = x)
or more simply as P(x).

P(x) = 1

M
h(x) (3)

The information about the set {Xm} provided by the observation that a sample Xm

has value x, is measured with the formula:

I(x) = −log2(P(x)) (4)
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This is the formal definition of information used in information theory. In physics,
the practice is to use logarithms of base 10. In informatics and computer science we
generally prefer base 2 because a base 2 logarithm measures information in binary
digits, referred to as bits. The information content in bits tells us the minimum number
of base 2 (binary) digits that would be needed to encode the data in the training set. The
negative sign assures that the number is always positive or zero, as the log of a number
less than 1 is negative.

Information expresses the number of bits needed to encode and transmit the value
for an event. Low probability events are surprising and convey more information. High
probability events are unsurprising and convey less information. For example, consider
the case where X has N = 2 values and the histogram has a uniform distribution, P(x) =
0.5.

I(x) = −log2(P(x)) = −log2
(
2−1

)
= 1 (5)

The information from a sample Xm is 1 bit. If Xm had 8 possible values then, all
equally likely, then P(Xm = x) = 1/8 = 2–3 and the information is 3 bits.

3.2 Computing Entropy

For a set of M observations, the entropy is the expected value from the information from
the observations. The entropy of a distribution measures the surprise (or information)
obtained from the observation of a sample in the distribution. For a distribution P(x) of
features with N possible values, the entropy is

H (X ) = −
N∑

x=1

P(x)log2(P(x)) (6)

For example, for tossing a coin, there are two possible outcomes (N= 2). The probability
of each outcome is P(x) = 1/2. This is the situation of maximum entropy

H (X ) = −
2∑

x=1

1

2
log2

(
1

2

)
= 1 (7)

This is the most uncertain case. In the case where N = 4 values, the entropy is 2 bits.
It would require 2 bits to communicate an observation. In the general case, there are N
possible values for X, and all values are equally likely, then

H (X ) = −
N∑

x=1

1

N
log2

(
1

N

)
= −log2

(
1

N

)
(8)

On the other hand, consider when the distribution is a Dirac function, where all
samples Xm have the same value, xo.

P(x) = δ(x − xo) =
{
1 if x = xo

0 otherwise
(9)

In this case, there is no surprise (no information) in the observation that Xm = xo

and the entropy will be zero. For any distribution, Entropy measures the non-uniformity
of the distribution (Fig. 5).
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Fig. 5. Entropy measures the non-uniformity of a distribution. A uniform distribution, where all
samples are equally likely, has an entropy of 1. (Image from [3], copied from wikipedia3).

3.3 Cross Entropy

Cross-entropy is a measure of the difference between two probability distributions.
Cross-entropy can be thought of as the total entropy between two distributions and is
a measure of the difference (or lack of similarity) of the two distributions. Perfectly
matching distributions have a cross entropy of 0.

Cross-entropy loss is commonly used to measure the performance of a classification
model whose output is a probability between 0 and 1, as with the sigmoid or soft-max.
Cross-entropy loss increases as the predicted probability diverges from the actual label.
So predicting a probability of .012 when the actual observation label is 1 would be bad
and result in a high value for the log of the cross-entropy. A perfect model would have
a log-loss of 0 (Fig. 6).

Fig. 6. Cross entry measures the difference of two distributions. Copied from “read the docs”4

3 Wikipedia, The Free Encyclopedia, s.v. “Entropy (information theory),” (accessed August
20, 2022), https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&oldid=
1101826646

4 https://docs.readthedocs.io/en/stable/privacy-policy.html.

https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&amp;oldid=1101826646
https://docs.readthedocs.io/en/stable/privacy-policy.html
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Binary Cross-entropy loss is useful for training binary classifiers with the sigmoid
activation function. Categorical Cross-Entropy is used to train a multi-class network
where softmax activation is used to output a probability distribution, P(a), over a set of
output activations for K classes.

3.4 Binary Cross Entropy

For binary classification, a network has a single activation output, a(out):

a(out) = f (z(L)) = 1

1 + e−z(L)
= ez(L)

ez(L) + 1
(10)

For a target variable of y, the binary cross entropy is

H (a(out), y) = y log(a(out)) + (1 − y)log(1 − a(out)) (11)

3.5 Categorical Cross Entropy Loss

For a network with a vector of K activation outputs, a(out)
k with indicator vector yk ,

each target class, k = 1,…,K, contributes to the cost (or loss) function used for gradient
descent. This is represented by using a softmax activation function where the activation
energy for each component, ak , is

ak = f (zk) = ezk

∑K
k=1 ezk

(12)

This results in a categorical cross entropy of

H (�a(out), �y) = −
K∑

k=1

yk log(a
(out)
k ) (13)

When the indicators variables are encoded with one-hot encoding (1 for the true
class, zero for all others), only the positive class where yk = 1 is included in the cost
function. All of the other K−1 activations are multiplied by 0. In this case:

H (�a(out), �y) = ezk

∑K
k=1 ezk

(14)

where zk is the linear sum of weighted activations. The derivative for the positive
activations is

∂ak

∂zk
= ∂f (zk)

∂zk
= ∂

∂zk

(
−log

(
ezk

∑K
k=1 ezk

))
= ezk

∑K
k=1 ezk

− 1 (15)

The derivative for the negative class activations is:

∂ak

∂zk
= ezk

∑K
k=1 ezk

(16)



62 J. L. Crowley

3.6 The Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence, DKL(P||Q) also known as the relative entropy
of Q with respect to P, measures the divergence between two probability distributions,
P(n) and Q(n).

DKL(P||Q) =
N∑

x=1

P(x)log

(
P(x)

Q(x)

)
(17)

The KL divergence can be used to define cross entropy as

H (P, Q) = H (P) + DKL(P||Q) (18)

The KL divergence can also be used to measure the divergence between a constant
and a distribution. For example, KL divergence can provide a measure of the distance
between a target activation energy, a, and a distribution of activation energy for a set of
n units, an.

The KL divergence between a target activation, a, and a distribution of N activations,
an, is:

DKL(a||an) =
N∑

n=1

a · log
(

a

an

)
(19)

Adding the KL divergence to the loss function for the input layer of an autoencoder
forces the autoencoder to learn a sparse code vector resembling a one-hot coding vector
for the independent categories of a training set, as explained below.

3.7 Sparsity

Sparsity measures the average activation energy for theN hidden units of an autoencoder
from a batch of M samples. During training with M training samples, the Kullback-
Leibler (KL) divergence can be used to compare the sparsity of the activation values for
the N hidden (latent) code variables to a target value, ρ. Including a target for sparsity
in the loss function during batch training constrains the network parameters to converge
toward a configuration that concentrates activation to a single unit for each training sam-
ple. This forces the autoencoder to learn a code vector where each latent unit represents
one of independent components of the training data. The independent components are
assumed to represent independent categories of phenomena in the training set.

Consider a simple 2-layer autoencoder that learns to reconstruct data from a training
set { �Xm} of M training samples of dimension D features. Assume a code vector, �a, of N
<< D latent variables, an. For any input vector �X , the N coefficients of the code vector,
�a, are computed by

an = f

(
D∑

d=1

w(1)
dn xd + b(1)

n

)
(20)
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where f(−) is a non-linear activation function, such as sigmoid or RELU. The sparsity
for this vector is the average activation energy:

ρ = 1

N

N∑
n=1

an (21)

The D components of the output vector, X̂ , are computed as

x̂d = f

(
N∑

n=1

w(2)
nd an + b(2)

d

)
(22)

The least squares cost for using X̂m as an estimate for �Xm is:

C( �Xm; �w) = 1

2
(X̂m − �Xm)2 (23)

where �w represents the network parameters including the bias terms as explained above
in Eq. 1. The average least squares loss for a training set { �Xm} of M training samples is

C({ �Xm}; �w) = 1

2

M∑
m=1

(X̂m − �Xm)2 (24)

The auto-encoder can be trained to minimize the sparsity by addition of a loss term
that uses the KL divergence to measure the difference between a target sparsity, ρ, and
the vector of sparsities from the training data,ρ̂n.

C({ �Xm}; �w) = 1

2

M∑
m=1

(X̂m − �Xm)2 + β

N∑
n=1

DKL(ρ||ρ̂n) (25)

where ρ is a target value for sparsity, typically close to zero, and β controls the importance
of sparsity. Computing the cost requires a pass through theM training samples to compute
the sparsity for the training data, and thus requires batch learning.

The auto-encoder forces the hidden units to become approximately independent,
representing hidden, or latent, information in the data set. Incorporating KL divergence
into back propagation requires adding the derivative of the KL divergence to the average
error term used to compute backpropagation. Recall that when computed with least-
squares error, the output error for mth training sample is;

�δout
m =

(
X̂m − �Xm

)
(26)

The average error term for a batch of M samples is

�δout =
M∑

m=1

(
X̂m − �Xm

)
(27)
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This output error is used to compute the error energy for updating weights and
biases with backpropagation, as explained in Sect. 1. For example the error term for the
D individual output units is

�δ(2)
d = �δ(out) ∂f (z(2)

d )

∂z(2)
d

(28)

where f() is the non-linear activation function, typically a sigmoid for the autoencoder.
The error energy for the discriminative layer is:

�δ(1)
n = ∂f (z(2)

n )

∂z(2)
n

D∑
d=1

w(2)
dn

�δ(2)
d (29)

The discriminator can be trained to learn a sparse code by adding a penalty term
based on the KL divergence of the activation energies of the code vector to the error
energy at level 1 as shown in Eq. 30.

δ(1)
n = ∂f (z(2)

n )

∂z(2)
n

D∑
d=1

w(2)
dn δ

(2)
d + β

(
− ρ

ρ̂n
+ 1 − ρ

1 − ρ̂n

)
(30)

where ρ is the target sparsity, and ρ̂n is the sparsity (average activation energy) of the nth

hidden unit for the training set of M samples. The error energy computed with Eq. 30 is
then used to update the weights and biases of the hidden units at level 1, as discussed in
in the previous chapter.

4 Variational Autoencoders

The output of an auto-encoder can be used to drive a decoder to produce a filtered version
of the encoded data or of another training set. However, the output from an auto-encoder
is discrete. We can adapt an auto-encoder to generate a nearly continuous output by
replacing the code with a probabilistic code represented by a mean and variance. This
is called a Variational Autoencoder (VAE) [4]. VAEs combine a discriminative network
with a generative network. VAEs can be used to generate “deep fake” videos as well as
realistic rendering of audio, video or movements.

Neural networks can be seen as learning a joint probability density function P( �X , Y )

that associates that associates a continuous random vector, �X , with a discrete random
category, Y. A discriminative model gives a conditional probability distribution P(Y | �X ).
A generative model gives a conditional probability P( �X |Y ). Driving the conditional
probability P( �X |Y ) with a probability distribution P(Y) can be used to generate a signal
that varies smoothly between learned outputs (Fig. 7).
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Fig. 7. A Variational autoencoder generates an animated output based on the motion patterns of
an input. (Image from Lilian Weng5)

Normally, for an autoencoder, the latent vector is a one-hot encoded binary vector �Z
with k binary values. The VAE learns a probabilistic encoder that provides a mean and
variance in this latent space, �Z . The probabilistic decoder is trained to generate a target
output �Ym for the latent encoding for each training sample �Xm. Driving this decoder with
the smoothly varying probability distribution leads to a smoothly varying output, Ŷ .

5 Generative Adversarial Networks

It is possible to put a discriminative network together with a generative network and have
them train each other. This is called a Generative Adversarial Network (GAN) [5–7].
A Generative Adversarial Network places a generative network in competition with a
Discriminative network (Fig. 8).

Fig. 8. A Generative Adversarial Network combines a Discriminative network with a genrative
network. (Image from Thalles Silva6)

5 https://lilianweng.github.io/posts/2018-08-12-vae/
6 https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-net
works-gans-7a2264a81394.

https://lilianweng.github.io/posts/2018-08-12-vae/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
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The two networks compete in a zero-sum game, where each network attempts to
fool the other network. The generative network generates examples of an image and the
discriminative network attempts to recognize whether the generated image is realistic
or not. Each network provides feedback to the other, and together they train each other.
The result is a technique for unsupervised learning that can learn to create realistic
patterns. Applications include synthesis of images, video, speech or coordinated actions
for robots.

Generally, the discriminator is first trained on real data. The discriminator is then
frozen and used to train the generator. The generator is trained by using random inputs
to generate fake outputs. Feedback from the discriminator drives gradient ascent by
back propagation. When the generator is sufficiently trained, the two networks are put
in competition.
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Abstract. This chapter presents Convolutional Neural Networks (CNNs). The
chapter begins with a review of the convolution equation, and a description of the
original LeNet series of CNN architectures. It then traces the emergence of Con-
volutional Networks as a key enabling technology for Computer Vision resulting
from the publication of AlexNet at the 2012 ImageNet Large Scale Image Recog-
nition Challenge. This is followed by a description of the VGG architecture and
the YOLO Single Shot Detection network for Image Object Detection.

LearningObjectives:This chapter presentsConvolutionalNeuralNetworks,with
a summary of the history, fundamental theory, and a review of popular architec-
tures that have played a key role in the emergence of Deep Learning as an enabling
technology for Artificial Intelligence. After reading this chapter, students will be
able to understand the basic principles of convolutional neural networks and how
such networks can be used to detect patterns in signals. Students will understand
the meaning and significance of network hyper-parameters, and be able to select
among the commonly used architectures such as VGG and YOLO to solve prob-
lems in pattern analysis and signal detection in audio, visual and other forms of
multidimensional signals.

Keywords: Convolutional Neural Networks (CNNs) · Hyper-parameters · CNN
architectures · LeNet · AlexNet · VGG · You Only Look Once (YOLO)

1 Convolutional Neural Networks

During the second wave of popularity of Neural Networks in the 1980s, researchers
began experimenting with networks for computer vision and speech recognition. Direct
application of neural networks in these domains required training networks with an
excessively large number of parameters, greatly exceeding the memory and comput-
ing power of available computers. For example, direct recognition of the 44 English
phonemes (speech elements) in a speech signal required a network capable of process-
ing an audio signal composed of 1600 samples. A fully connected two layer networkwith
1600 hidden units in the first layer and 44 output units in the second layer would have
more than 2.5 Million trainable parameters, while typical computer memory address
spaces in this period were less than 1 Million bytes. In the case of computer vision, the
situation was even more extreme. A typical digital image at that time was sampled at 512
× 512 rows and columns, represented by 218 (or 256 K) 8-bit grayscale pixels. Training

© Springer Nature Switzerland AG 2023
M. Chetouani et al. (Eds.): ACAI 2021, LNAI 13500, pp. 67–80, 2023.
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a fully connected 2-layer perceptron to recognize a large set of objects in an image was
not a serious proposition.

Inspiration for a solution was provided by neuroscience. In the early 1960s, David
Hubel and TorstenWiesel [1] fixed a cat’s head in a rig and probed the visual cortex with
electrodes while scanning patterns of light on a screen, as shown in Fig. 1. They found
that individual cells in the visual cortex responded to specific patterns of light at specific
locations and sized. They referred to these patterns as receptive fields. By systematic
probing, they found that the visual cortex of the cat is composed of layers of retinotopic
maps that respond to patterns of spots, bars, and edges at a narrow range of positions, sizes
and orientations. Subsequent research showed that the receptive fields could be modeled
as local filters for spatial frequency patterns at different spatial frequency bands and
orientation. As they moved through the visual cortex, Hubel andWeisel found that these
patterns were combined to form more complex patterns, such as corners and crosses.
These more complex patterns were named “complex” receptive field.

Fig. 1. David Hubel and Torsten Wiesel probed the visual cortex of a cat with electrodes and
found layers of cells that responded to local patterns of stimulation. (Image widely used on the
internet - source unknown)

Inspired by these results (and the subsequent Nobel Prize of Hubel and Weisel),
computer vision researchers explored the use of image descriptions using convolution
with Finite Impulse Response digital filters based on mathematical models of receptive
fields [2, 3] including Gaussian derivatives and Gabor Functions [4]. Researchers in
Machine learning speculated that it would be better to learn the weights for such filters
with back-propagation. This would eventually lead to a new form of neural network
known as a convolutional neural network. To properly understand such networks it can
be worthwhile to review some basics from digital signal processing.

1.1 Convolution

Convolution describes the response of a linear time-invariant system to an input stimulus
or driving function. An example of convolution is provided by shouting into a tunnel.
The tunnel can bemodeled as a shift invariant acoustic function that describe themultiple
paths that sound waves of the shout may follow through the tunnel, with different lengths
and different durations. The sound at the far end of the tunnel will be composed of
multiple superimposed copies of the shout arriving at different times. An observer at
the far end of the tunnel will hear a sonically blurred version of the shout. In addition,
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some vocal frequencies may resonate in the tunnel and dominant the sound at the far
end, while other frequencies may be attenuated by interference. The effect is described
mathematically as a convolution as shown in Eq. 1, where s(t) is the waveform of a
sound, f(t) is a characteristic impulse response that describes the possible paths of the
sound through the tunnel, and u is a dummy variable used for integration.

(s ∗ f )(t) =
∞∫

−∞
s(t − u)f (u)du (1)

A copy of the waveform for the sound, s(u), is placed at each time, t, and then multiplied
by the characteristic impulse response of the tunnel, f(u). For each time step, the resulting
products are integrated and the result is placed in the output signal at position t. The
result is a distorted version of the sound.

Computer science students generally find this operation easier to visualize and under-
stand when expressed using sampled digitized signals. Let s(n) represent a sampled copy
of the sound and f(n) represent the linear shift invariant system created by the tunnel. In
order to compute the convolution it is necessary for at least one of the signals to have
a finite duration. Let N represent the duration of the shorter of the two signal s(n) and
f(n). The discrete convolution equation is written as

(s ∗ f )(n) =
N−1∑
m=0

s(n − m)f (m) (2)

A copy of the sound s(−), is placed at each time, n, and then scaled by the value of
system, f(n). For each value of n, the products are summed and the result is placed in
the output signal. This is exactly the equation for convolution with a Finite Impulse
Response (FIR) digital filter, f(n) composed of N coefficients with a digital signal, s(n).
Both multiplication and convolution are commutative, and so the order of the signals
does not matter. In the engineering literature, convolution is commonly written as shown
in Eq. 3.

f (n) ∗ s(n) =
N−1∑
m=0

f (m)s(n − m) (3)

Note that the operator “*” is exclusively reserved to represent convolution. This operator
should never be used for multiplication in a context involving convolution.

For image processing, the image and filter are generally finite 2D signals with a
positions defined over a range from 1 to N. For an image P(x, y) with the horizontal and
vertical axes noted as x and y, the 2D convolution of an N × N filter f(x, y) would be
written:

(f ∗ P)(x, y) =
N∑
v=1

N∑
u=1

f (u, v)P(x − u, y − v) (4)

This operation can be seen as sliding the 2D filter, f(x, y) over the image and at each
position, multiplying the weights of the filter f(u, v) by the pixels of the image, summing



70 J. L. Crowley

the product and placing this at the position (x, y). Any image positions less than 1 or
greater than the size of the image are taken as zero. The use of x – u and y – v rather
than y + u and x + v flips the filter around the zero position, resulting in a mirror image
of the filter. This is a mathematical convenience to assure that convolution is equivalent
to multiplication in the Fourier domain, and has no relevance to Convolutional Neural
Networks. In the machine learning literature, it is not unusual to see authors neglect this
detail and write y + u and x + v.

In the 1980s, researchers inmachine learning asked if such filters could not be learned
using back-propagation1. It was observed that learning perceptrons for small local win-
dows greatly reduces the number of parameters to learn, while greatly increasing the
availability of training data. Training a single perceptron to provide a binary classifica-
tion for 512 × 512 image would require learning 218 parameters and each image would
provide only one training sample for a binary decision. Alternatively, training a percep-
tron for an 8 by 8 receptive field would require learning only 257 parameters, and each
512 × 512 image could provide up to 218 examples of local neighborhoods to use as
training samples. This makes it practical to learn many layers of local perceptrons with
several perceptrons at each level, much like the visual cortex of cats or humans. Such a
network could be used to recognize many different classes of visual patterns.

The dominant paradigm in computer vision at the time (and until well after 2000)was
that receptive fields should be designed as digital filters with well-defined mathematical
properties for bandwidth and invariance to scale or rotation. However, one area where
image processing with neural networks did show promise was in reading handwritten
digits for mail sorting and check processing.

1.2 Early Convolutional Neural Networks: LeNet

In the early 1990s, the US National Institute of Standards and Technology (NIST) pub-
lished a data set of digitized images of handwritten digits collected during the 1980
US census and issued a research challenge for recognizing handwritten digits using this
data set. Such a technology could potentially be used to build machines for labor inten-
sive tasks such as sorting mail and processing checks. A team of researchers at AT&T
led by Yann Lecun began experimenting with neural networks architectures for this
task. The team proposed a family of neural network architectures, referred to as LeNet,
composed of multiple layers of receptive fields using a number of insights inspired by
techniques used in image processing and computer vision [5]. A typical example of a
LeNet architecture is shown in Fig. 2.

The first insight was to process the image as a set of 5 × 5 overlapping windows.
Training a perceptron to process a 5 × 5 window requires learning only 26 parameters.
Processing every position in the image with the same perceptron greatly increases the
amount of data available for training, as each position of the image provides a training
sample. Processing an image in this way is referred to as a “sliding window” detector.
For a perceptron, the linear part of the perceptron is equivalent to convolving a digital
filter with the image. This was referred to as a convolutional neural network (Fig. 3).

1 Private discussion between the author and Geoff Hinton at CMU in 1982 or 1983.
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Fig. 2. An early LeNet architecture for recognizing handwritten digits on checks and postal codes.
Image copied from [5].

Fig. 3. A convolutional network processes a stream of 2-D overlapping windows. In equation 4,
p(i, j) is a 2D input layer, w(u, v) is an N × N learned receptive field, b is a learned bias, f(−)
is a non-linear activation function as discussed in the chapter on training neural networks with
back-propagation [6], and a(i, j) is the resulting output layer.

A second insight was to use several neural units in parallel to describe each window,
as seen with the retinotopic maps observed in the visual cortex of the cat by Hubel and
Weisel. This lead to a map of features for each pixel with the number of features referred
to as the depth of the feature map. Figure 2 show that the first layer of LeNet-1 has a
depth of 4 (Fig. 4).

ad (i, j) = f wd (u,v)p(i u, j v)+ bd
u,v

N

(5)

Fig. 4. A convolutional network processes each window in parallel with D receptive fields, result-
ing in vector of D feature values �a(i, j) for each image position (i, j). Equation 5 generalizes equa-
tion 4 by replacing a single learned receptive field, w(i, j), with a vector of D learned receptive
fields, wd(i, j) generating a vector of d output layers, ad(i, j).

A third insight was to reduce the resolution of each layer by resampling and then
processing the resulting resampled feature map with another convolutional network. For
example the second layer of LeNet-1 was produced by subsampling the feature map of
first level using a sample distance of 2, and then processing the result with convolution by
another set of 4 perceptrons trained with back-propagation. This resampling operation
was referred to as “pooling” and had the effect of increasing the effective size of the
receptive field at the second level, in a manner that is similar to the image pyramids
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used for computer vision at the time, and to the layers of larger receptive fields found
in the deeper in the visual cortex of the cat by Hubel and Weisel. As the number of
rows and columns of the feature map is reduced by successive resampling (or pooling),
the number of features (depth) at each layer was increased. For example layers 3 and 4
of LeNet-1 contain features from convolution with 12 receptive fields (depth = 12), as
can be seen in Fig. 2. Once the image has been reduced to a 5 × 5 map of 16 features,
the resulting 400 features are directly mapped by a perceptron to one of the 10 possible
output class labels.

Fig. 5. The LeNet-5 architecture presented at the 1997 IEEE CVPR [7].

TheAT&T teamexperimentedwith several such architectures. TheLeNet-5 architec-
ture, shown in Fig. 5, was found to provide the best recognition rates for the NIST dataset
of hand-written digits and was used to construct a commercially successful system for
processing checks.

In order to describe the architectures for convolutional networks such as LeNet,
we need to define some of the common “hyper-parameters” that are used to define
convolutional networks.

1.3 Convolutional Network Hyper-parameters

Convolutional networks are commonly specified by a number of hyper-parameters.
These include the Spatial Extent, Depth, Stride, Padding and Pooling:

Spatial Extent: This is the size of the filter. Early networks followed computer vision
theory and used 11 × 11 or 9 × 9 filters. Experimentation has shown that 3 × 3 filters
can work well with multi-layer networks.

Depth: This is the number D of receptive fields for each position in the feature map.
For a color image, the first layer depth at layer 0 would be D = 3. If described with 32
image descriptors, the depth would be D = 32 at layer 1. Some networks will use N ×
N × D receptive fields, including 1 × 1 × D.

Stride: Stride is the step size, S, between window positions. By default, stride is
generally set to 1, but for larger windows, it is possible define larger step sizes.

Zero-Padding: Size of region at the border of the feature map that is filled with zeros
in order to preserve the image size (typically N).
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Pooling: Pooling is a form of down-sampling that partitions the image into non-
overlapping regions and computes a representative value for each region. An example
of 2 × 2 max pooling is shown in Fig. 6. The feature map is partitioned into small
non-overlapping rectangles, typically of size 2 × 2 or 4 × 4, and a single value it deter-
mined for each rectangle. The most common pooling operators are average and max.
Median is also sometimes used. The earliest architectures used average pooling, where
the neighborhood is replaced with the average value of the samples, creating a form
of multi-resolution pyramid. Max pooling has generally been found to provide slightly
better performance.

Fig. 6. Max pooling replaces an N × N window of features with the largest feature value in the
window. For example the 2 × 2 red square in the upper left corner is replaced by the largest of the
4 values in the square (5). (Color figure online)

1.4 The LeNet-5 Architecture

LeNet-5 is composed of multiple repetitions of 3 operations: Convolution, Pooling, and
Non-linearity. The system uses convolution of receptive fields of size 5 × 5 with a stride
of 1, no zero padding and a depth of 6. Six receptive fields are learned for each pixel in
the first layer. Using 5× 5 filters without zero padding reduces the input window of 32×
32 pixels to a layer of composed of 6 sets of 28× 28 units. A sigmoid activation function
was used for the activation function. Pooling was performed as a spatial averaging over
2x2 windows giving a second layer of 6× 14× 14. The output was then convolved with
sixteen 5× 5 receptive fields, yielding a layer with 16× 10× 10 units. Average pooling
over 2 × 2 windows reduced this to a layer of 16 × 5 × 5 units. These were then fed
to two fully connected layers and then smoothed with a Gaussian filter to produce 10
output units, one for each possible digit.

Despite the experimental and commercial success of LeNet, the approachwas largely
ignored by the computer vision community, which was more concerned at that time with
multi-camera geometry and Bayesian approaches to recognition. The situation began to
change in the early 2000’s, driven by the availability of GPUs, and planetary scale data,
made possible by the continued exponential growth of the World Wide Web, and the
emergence of challenge-based research in computer vision. During this period, computer
vision and machine learning were increasingly organized around open competitions for
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performance evaluation for well-defined tasks using publically available benchmark
data-sets.

Many of the insights of LeNet-5 continued to be relevant as more training data, and
additional computing power enabled larger and deeper networks, as they allowed more
effective performance for a given amount of training data and parameters.

2 Classic CNN Architectures

The emergence of the internet and theworld-widewebmade it possible to assemble large
collections of training data with ground truth labels, and to issue global challenges for
computer vision techniques for tasks such as image classification and object detection.
Many of the most famous CNN architectures have been designed to compete in these
large-scale image challenges, and the size of the input image and the number of output
categories are often determined by the parameters of the challenge for which the network
was designed.

Several key data sets that have influenced the evolution of the domain. Perhaps the
most influential of these has been ImageNet. ImageNet is an image database organized
according to the nouns in theWordNet hierarchy compiled for research in Linguistics. In
2006, Fei-Fei Li began working on the idea for ImageNet based on the idea of providing
image examples for eachword inWordNet, eventually usingAmazonMechanical Turk to
help with assigningWordNet words to images. The ImageNet data set was first presented
as a poster at the 2009 Conference on Computer Vision and Pattern Recognition (CVPR)
in Florida and later published in the Journal of Vision [8].

In 2010 Li joined with the European PASCAL Visual Object Class (POC) challenge
team to create a joint research challenge on several visual recognition tasks. The resulting
annual competition is known as the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). The ILSVRC uses a list of 1000 image categories or classes, including 90
of the 120 dog breeds classified by the full ImageNet schema. In 2010 and 2011, a good
score for the ILSVRC top-5 classification error rate was 25%.

Winning teams during the first years used statistical recognition techniques such as
Support Vector Machines (SVM) combined with image features such as Scale Invariant
Feature Transform (SIFT) and Histogram of Oriented Gradients (HoG). However, in
2012,AlexKrizhevskywon the competitionwith a deep convolutional neural net inspired
by LeNet-5 called AlexNet, as shown in Fig. 7. AlexNet achieved an error rate of 16%
(accuracy of 84%). This dramatic quantitative improvement marked the start of the rapid
shift to techniques based on Deep Learning using Neural Networks by the computer
vision community. By 2014, more than fifty institutions participated in the ILSVRC,
almost exclusively with different forms of Network Architectures. In 2017, 29 of 38
competing teams demonstrated error rates less than 5% (better than 95% accuracy).
Many state-of-the-art object detection networks now pre-train on ImageNet and then
rely on transfer learning to adapt the learned recognition system to a specific domain.
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Fig. 7. Error rates for the top 5 entries in the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [9]

2.1 AlexNet

AlexNet [10], is a deeper and larger variation of LeNet5, using two parallel tracks of 5
convolutional layer followed by 3 fully connected layer. The initial receptive field is 11
× 11 with a stride (sample distance) of 4, followed by 48 parallel 5 × 5 receptive fields.

Innovations in AlexNet include:

1. The use of ReLU avtivation instead of sigmoid or tanh: ReLU provided a 6 times
speed up with no loss of accuracy, allowing more training for the same cost in
computation.

2. DropOut: A technique called “dropout” randomly chose units that are temporarily
removed during learning. This was found to prevent over-fitting to training data.

3. Overlap pooling: Max pooling was performed with overlapping windows (Fig. 8).

The AlexNet architecture is composed of 5 convolutional layers followed by 3 fully
connected layers. ReLU activation is used after each convolution and in each fully
connected layer. The input image size of 224 × 224 is dictated by the number of layers
in the architecture.

Source code for AlexNet can be found in PyTorch2. The network has 62.3 million
parameters, and needs 1.1 billion computations in a forward pass. The convolution layers
account for 6% of all the parameters, and consume 95% of the computation. The network
is commonly trained in 90 epochs, with a learning rate 0.01, momentum 0.9 and weight
decay 0.0005. The learning rate is divided by 10 once the accuracy reaches a plateau.

2 An open source machine learning framework available at https://pytorch.org/.

https://pytorch.org/
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Fig. 8. TheAlexNet architecture [10]. Image copied from https://medium.com/coinmonks/paper-
review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160

2.2 VGG-16 - Visual Geometry Group 16 Layer Architecture

In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at the
Univ of Oxford demonstrated a series of networks referred to as VGG [11], shown in
Fig. 9. An important innovation in VGGwas the use of many small (3× 3) convolutional
receptive fields. VGG also introduced the idea of a 1 × 1 convolutional filter, using a
perceptron to reduce the number of features (depth) at each image position. For a layer
with a depth of D receptive fields, a 1 × 1 convolution performs a weighted sum of the
D features, followed by non-linear activation using ReLU activation.

Fig. 9. The VGG-16 architecture.

VGG uses a stack of 18 convolutional layers in which decreases in resolution pro-
vided by pooling are accompanied by increases in depth. The final 7 × 7 × 512 con-
volutional layer is followed by three Fully-Connected layers: the first two have 4096

https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160
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channels while the third fully connected layer outputs a probability distribution for each
of the 1000 classes of the ILSVR Challenge using a soft-max activation function. All
except the last output layer use Relu activation.

2.3 YOLO: You Only Look Once

YOLO [12] poses object detection as a single regression problem that estimates bound-
ing box coordinates and class probabilities at the same time directly from image pixels.
This is known as a Single Shot Network (SSD). A single convolutional network simul-
taneously predicts multiple bounding boxes and class probabilities for each box in a
single evaluation. The result is a unified architecture for detection and classification that
is very fast (Fig. 10).

Fig. 10. YouOnly LookOnce (YOLO). The Yolo network simultaneously estimate bounding box
coordinates and class probabilities for objects. Image copied from [12].

The input image is divided into an S × S grid of cells. Each grid cell predicts B
bounding boxes as well as C class probabilities. The bounding box prediction has 5
components: (x, y, w, h, confidence). The (x, y) coordinates represent the center of the
predicted bounding box, relative to the grid cell location. Width and height (w, h) are
predicted relative to the entire image. Both the (x, y) coordinates and the window size (w,
h) are normalized to a range of [0,1]. Predictions for bounding boxes centered outside
the range [0, 1] are ignored. If the predicted object center (x, y) coordinates are not
within the grid cell, then object is ignored by that cell (Fig. 11).

Each grid cell predicts C class conditional probabilities P(Classi | Object). These
are conditioned on the grid cell containing an object. Only one set of class probabilities
are predicted per grid cell, regardless of the number of boxes. The scores encode the
probability of a member of class i appearing in a box, and how well the box fits the
object. If no object exists in a cell, the confidence score should be zero. Otherwise the
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Fig. 11. Yolo uses a CNN architecture followed by a fully connected layer to simultaneously
bounding boxes and classes for objects. Image copied from [13].

confidence score should equal the intersection over union (IOU) between the predicted
box and the ground truth.

These predictions are encoded as an S × S × (5B + C) tensor. Where S × S is the
number of grid cells, B is the number of Bounding Boxes predicted and C is the number
of image classes. For the Pascal visual Object Classification challenge, S = 7, B = 2
and C = 20 yielding a 7 × 7 × 30 tensor.

The detection network has 24 convolutional layers followed by 2 fully connected
layers as shown in Fig. 12. The convolutional layers were pretrained on the ImageNet
data-set at half the resolution (224 by 224 input image). Image resolution was then
doubled to (448 × 448) for detection.

Fig. 12. YOLO is composed of 24 convolutional layers followed by 2 fully connected layers.
(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/)

2.4 YOLO-9000 (YOLOv2)

In 2017, the YOLO team published performance evaluation results and source code for
a new version of YOLO referred to as Yolo9000. Yolo9000 employed a number of inno-
vations, including ideas that had emerged in the machine learning literature the previous
year. At low resolutions YOLO9000 operates as a cheap, fairly accurate detector. At
288x288 it runs at more than 90 FPS. This makes it ideal for smaller GPUs, high frame
rate video, or multiple video streams. At high resolution the network is competitive with

http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/
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Fig. 13. Typical output from YOLO-9000 [14].

the state of the art giving 78.6 mAP on VOC 2007 while still operating above real-time
speeds (Fig. 13).

3 Conclusions

Convolutional neural networks are now a well established technology for analysis of
multidimensional signals with applications in computer vision, recommender systems,
image classification, image segmentation, medical image analysis, natural language pro-
cessing, brain–computer interfaces, financial time series and many other areas. New
architectures for deep convolutional networks appear regularly addressing applications
in an ever expanding repertoire of domains.

Much of the progress of recent years has been obtained by training networks at ever-
increasing depths, leveraging the growing availability of computing power provided by
application specific integrated circuits and related technologies, and made possible by
the availability of very large data set of annotated data. However, much of this work
relied on supervised learning, and the need for annotated data has hindered development
in some application domains.

Recently transformers, based on stacked layers of encoders and decoders with pro-
cessing driven by self-attention, have begun to supplant convolutional neural networks in
many areas, by improving performance while decreasing computational requirements.
In addition, transformers can be trained by self-supervised learning, using data as its
own ground truth, and eliminating the need for annotated training data as described
in the chapter on Natural Language Processing with Transformers and Attention [15].
None-the-less, Convolutional networks remain an established tool with many practical
applications.
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Abstract. This chapter presents an overview of the state-of-the-art in
natural language processing, exploring one specific computational archi-
tecture, the Transformer model, which plays a central role in a wide
range of applications. This architecture condenses many advances in neu-
ral learning methods and can be exploited in many ways: to learn rep-
resentations for linguistic entities; to generate coherent utterances and
answer questions; to perform utterance transformations, a major applica-
tion being machine translation. These different facets of the architecture
will be successively presented, which will also allow us to discuss its
limitations.

Keywords: Natural language processing · Machine learning ·
Language models · Neural machine translation

1 Introduction

Language technologies are prominent among the applications of Artificial Intel-
ligence (AI) and are now reaching the general public. They are essential for an
effective access to textual information available on the Web or in large document
databases; they enable for new forms of interaction with the machine, either by
voice or by means of writing aids; they help to communicate with other humans,
for example through machine translation systems; in a more underground way,
these algorithms structure, organize, filter, select, transform and make possible
the management of the myriads of texts and audio recordings that circulate
continuously on the Web or on social networks.

These technologies are gradually becoming more efficient for ever-increasing
and varied uses. Their progress is the result of a combination of several factors:
on the one hand, the development of sophisticated machine learning algorithms
capable of taking advantage of the high performance computing devices; on
the other hand, the possibility to access vast amounts of textual data, whether
annotated or not, to feed the training process. Among the algorithms for text
processing, neural algorithms and, in particular, the Transformer architecture
are nowadays at the forefront. Transformers have become central to carry out
three types of computations that, until then, required dedicated architectures:
first, text mining and information retrieval algorithms, which benefit from the
richness of the internal representations calculated by this model; second,
c© Springer Nature Switzerland AG 2023
M. Chetouani et al. (Eds.): ACAI 2021, LNAI 13500, pp. 81–105, 2023.
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linguistic analysis algorithms, which can take advantage of the Transformers’
ability to integrate and model very long-distance dependencies; finally, text
generation algorithms, which use this model primarily for their predictive
ability. If we add that this same architecture is also suitable for the processing
of oral or even multimodal data, and that it allows efficient calculations on a very
large scale, we can better understand why this model has become the modern
workhorse of computational linguists.

This chapter proposes a gentle introduction to the Transformer architecture,
adopting an historical perspective, so as to highlight how this model inherits from
and extends previous machine learning approaches to Natural Language Pro-
cessing. We start in Sect. 2 with an introduction to discrete statistical language
models, before moving on to feed forward and recurrent neural architectures,
enabling us to introduce important concepts such as lexical embeddings and
attention. Section 3 then presents the Transformer architecture in details, and
showcases its main applications: representation extraction on the one hand, lan-
guage generation on the other hand. The last section is devoted to multilingual
extensions of this model, which will make its genericity and wide applicability
more obvious. We conclude in Sect. 5 by introducing the reader to the main lim-
itations of this models and motivate some directions for future research. After
studying this chapter, the reader should be in a position to understand why
this architecture has been so successful for language modeling, and get a better
grasp at the multiple extensions and developments that are happening in other
domains such as audio processing or computer vision.

2 Writing Machines: Language Models

2.1 The Simplest Model

Let us consider starting a basic task of language processing: spam filtering. Its
probabilistic treatment involves three steps:

1. the collection of a representative set of emails, containing a set Dok of accept-
able emails (hams) and a set Dko of unwanted emails (spams);

2. the construction of a numerical representation for texts. A very simple rep-
resentation encodes each email d as a large binary vector h in {0, 1}|V |, with
V a predefined vocabulary. For each component, hw = 1 if word w appears in
the email, 0 otherwise. These representations (so-called “bag-of-words”) are
inherently sparse, since most of the components of this vector are null;

3. learning a probabilistic model P (OK|d) ∝ exp
∑

w θwhw,1 which evaluates
the likelihood that a mail is acceptable. The parameter vector θ weights the
contribution of each individual word to the final decision. The estimation of

1 The notation P (u|x) ∝ exp f(θ, x) means that the conditional probability of event
u given x is proportional to the logit exp f(θ, x). P (u|x) is obtained by normalizing
this term, that is dividing by the summation over all possible outcomes

∑
u′ f(θ, x).
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θ is realized by maximizing the log-likelihood of the training data, according
to:

�(θ) =
∑

d∈Dok

log P (OK|d) +
∑

d∈Dko

log(1 − P (OK|d)).

This “historical” model is ubiquitous in modern natural language process-
ing: multi-class routing and classification of documents, “sentiment” or opin-
ion analysis (classes correspond to the polarity of the text), textual entailment,
aimed at deciding whether a sentence logically implies another sentence, etc.
It already highlights three essential concepts of the statistical approach that
has become dominant since the 1990s to address NLP problems: (a) the com-
putation of numerical representations (here binary representations) to encode
linguistic entities and their properties; (b) the use of these representations in
probabilistic models evaluating discrete decisions (here: to classify an email in
one of the two possible classes); (c) the estimation of model parameters using
annotated data (here: correct and incorrect emails). As we will see, the most
recent developments in the field continue to rely on these concepts, using neural
networks to learn incomparably more sophisticated representations and models
than the one outlined above.

2.2 Word Order

Filtering emails is a simple task: useful representations for this task can disregard
the order of word, and more broadly, the structure of the document. However,
these representations ignore one of the essential properties of texts, namely their
organization in a linear sequence of units. Language models are probabilistic
models designed to take into account this sequentiality. We use w = w1 . . . wT

to denote a discrete sequence including T units (words) denoted wt. In a n-gram
language model, the probability of this sequence is written as:

P (w1 . . . wT ) =
∏T

t=1 P (wt|w1 . . . wt−1)
=

∏T
t=1 P (wt|wt−n+1 . . . wt−1).

(1)

The first line breaks down the probability of the sequence as a product of con-
ditional distributions; the second makes this decomposition tractable by assum-
ing locality of dependencies within the sequence. Formally, this means that the
probability of occurrence of unit wt is independent from the past units, given the
context composed of the previous n − 1 words. The corresponding conditional
distributions are discrete probabilities that parameterize the model; the bulk of
these parameters will be denoted θ. Assuming that the vocabulary V is finite
and known, these parameters are in finite numbers. Conceptually, this model is
identical to the previous one: it assigns each “document” (here reduced to the
few words preceding the current position) to a “class” (here, one word among
all possible words). Effective estimation procedures for the n-gram model are
based on counts of occurrences in large corpora, and the resulting parameters
estimates take the following form for a trigram model (n = 2):
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∀u, v, w ∈ V : P (w|uv) =
n(uvw)

∑
w′∈V n(uvw′)

, (2)

where n(uvw) is the number of occurrences of the sequence uvw in a training
corpus.

The two basic assumptions of the n-grams model (local dependencies, finite
vocabulary) are linguistically naive. On the one hand, there are many examples of
dependencies between distant words. These dependencies can be syntactic as in
“the decisions of my branch manager are effective”, where the plural agreement is
between “decisions” and “are”, separated by four words; they can be semantic, as
in “the judges of the European Court of Justice have decided...”, where “decided”
can be predicted as a typical action carried out by judges; or even discursive,
thematic or stylistic. There are, on the other hand, multiple arguments that
oppose the idea of a finite vocabulary: we return to this issue in Sect. 2.4.

Despite their simplicity, language models are useful for a wide range of appli-
cations. First, they can be used as automatic text generators: it suffices to repeat-
edly use Eq. (1), sampling at each step the next word conditioned on the previ-
ously generated tokens. Second, these models make it possible to compare several
sequences in order to select the most plausible one, which often will also be the
most grammatically correct one. Such decisions are useful for a spell checker,
which must choose the best correction; or for a machine translation system, to
select the most correct translation hypothesis, etc. Third, they are useful for com-
paring languages: if a language model is trained with French texts and another
one with Italian texts, comparing the probabilities of a sentence for these two
models provides a way to decide the most likely language of that text. It can
also be used for other types of linguistic sequences: sequences of sounds, letters,
or even sequences of utterance to model discourse dependencies.

Initially developped for speech processing applications [38,39], language mod-
els have quickly became basic tools for the statistical processing of languages
and have given rise to countless developments, notably including improvements
in their estimation procedures. Pure count-base estimators (Eq. (2))) are in fact
not appropriate to model the probability of very rare events. When using vocab-
ularies of several tens of thousands of units, the vast majority of three word
sequences are never observed, and using counts yields zero estimates for most
parameters. Smoothing methods aim to improve these estimates, for instance
by using word clusters. A review of these developments is in [68]; generaliza-
tions of the n-gram based on Markov models or stochastic grammars are in [17];
recent introductions to these techniques can be found in various NLP textbooks
[26,41,54].

2.3 Neural Models: Smoothing the Context Space

Feedforward Language Models. The next word prediction task imple-
mented in language models is fundamentally a classification task: [9] propose to
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implement it using the feedforward network) of Fig. 1 (corresponding to a four-
gram model, n = 3).

Fig. 1. A multi-layer feedforward network implementing a 4-gram model

The network computing P (w|tuv) inputs the three vectors t,u,v in {0, 1}|V |,
where words t, u, and v are replaced by binary vectors whose only non-zero com-
ponent is the word index in the vocabulary (one-hot-encoding). The following
computations are then performed:

i = [R;R;R], with R ∈ R
3V |×dmd

h = φ(Wihi + bih), with Wih ∈ R
3dmd×dmd et bih ∈ R

dmd

o = Whoh + bho, with Who ∈ R
dmd×|V | and bho ∈ R

|V |

P (w|tuv) = softmax(o)w, with softmax(x)t = exp(xt)∑
t′ exp(xt′ )

(3)

These four steps respectively correspond to:

1. the computation of dense numerical representations, via the matrix R, which
projects each input vector into a dmd dimensional space, with dmd � |V |;

2. the introduction of a “nonlinearity”, via the function φ(), the hyperbolic
tangent function (tanh) in the original implementation;

3. the calculation of non-normalized logits for each of the words that can follow
the context tuv, obtained by comparing the output of the hidden layer h with
the lexical output representations Who

4. the normalization of these scores via the softmax operator, which outputs a
probability vector.
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Training such models requires to use numerical optimisation methods that
adjust parameters in θ = {R,Wih,bih,Who,bho} so as to make more likely the
associations between contexts and words observed in a large corpus. Formally,
for each sequence [t, u, v, w] in the training corpus, one wish that the quantity
log P (w|tuv) = ow − log

∑
w′ exp ow′ will be as large as possible. This leads to

maximizing (in θ) the following cross-entropy criterion:

�(θ) =
∑

[t,u,v,w]

log P (w|tuv) = ow − log
∑

w′
exp ow′ . (4)

This optimization is typically performed using stochastic gradient descent
methods, which update parameters based on gradient values. Note that training
again does not require any annotation and can be carried out on huge quantities
of texts, as long as they can be segmented into “words”.

The shift from discrete models to continuous space representations is compu-
tationally intensive, because computing the softmax operator involves a sum over
a large vocabulary. Practical solutions are proposed and evaluated in [45,69]; we
discuss them in Sect. 2.4. However, this shift has proven decisive to improve the
quality of applications such as speech recognition or machine translation. This
is because two quantities are learned simultaneously:

– a numerical representation h summarising the context made of several pre-
vious words into a low-dimensional vector, from which the conditional dis-
tribution of successor words is calculated. This ability to compute numerical
representations of the prediction context is assimilated to the encoding func-
tion of the neural network.

– a lexical embedding of the vocabulary V into R
dmd through matrix R. This

embedding has remarkable properties; in particular, words that share many
contexts, which are often semantically related words or words of the same mor-
phological family, tend to get close in the embedding space. The use of these
embeddings as generic lexical representations [20] has become widespread
with the development of rapid and effective methods for calculating them
[11,58].

Recurrent Neural Networks as Language Models. The previous model
shares with the n-gram model the use of a context restricted to neighbouring
n − 1 words. The use of recurrent networks [27] makes it possible to overcome
this limitation and to compute terms such as P (wt+1|w1 . . . wt) without resorting
to locality assumptions. The strength of this approach and its superiority over
the feedforward model are highlighted in [59], who present a network capable of
taking into account an unbounded context. It contains the same two components
as before, namely: (a) dense numerical representations for lexical units computed
by the matrix R; (b) a context encoding function defined here recursively by φ(),
which again denotes a non-linear function:
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ht = φ(Wh′hht−1 + Rwt + bh)
= φ(Wh′hφ(Wh′hht−2 + Rwt−1 + bh) + Rwt + bh). (5)

As before, the final step will project the internal representation ht to yield the
conditional output distribution associated with context w≤t = w1 . . . wt accord-
ing to P (w|w≤t) = P (w|ht) = softmax(Whoht + bo). Parameters of the recur-
rent network {θ = R,Wh′h,Who,bh,bo} are trained by maximizing the cross-
entropy loss function.

Unfolding the recursion (second line of Eq. (5)) makes the functional rela-
tionship between ht and words wt and wt−1, then, by recurrence, with all previ-
ous words. This also highlights that the influence of words decreases with their
distance to the current position. It also highlights a computational difficulty
associated to the direct computation of the gradient (by the rules of derivation
of compound functions), which gives rise to numerical instabilities that make
learning delicate. Remedies, which involve the use of more complex dependen-
cies between ht and ht−1 are proposed by [19,36]. They realize the full potential
of these networks, which are then able to partly capture dependencies between
distant words - such as the one observed in English between verb and sub-
ject, which must agree in number and person regardless of their distance in the
sentence (see [50] for a study of such phenomena). Their expressiveness as a
computational model is analyzed in [57].

In practice, however, the recursive formulation of the computation of latent
representations poses a major problem, as it requires each sequence to be pro-
cessed word by word from left to right in the order of their appearance. It is
impossible to build ht without having previously computed ht−1, which itself
requires ht−2 etc.; such models are said to be auto-regressive. As a result, it is
not possible to parallelize the computation of the objective function (Eq. (4))),
which significantly slows down the training process.

Recurrent Models as “Pure” Representations: ELMo. Among the many
extensions of these models, the most remarkable is their use as “pure” encoders.
Let us first note again that learning such language models does not require
annotation and can therefore be carried out on very large text corpora. Assuming
that the parameters are known, a recurrent network transforms a string of words
w1 . . . wT into a sequence of vectors h1 . . .hT . The same process can be performed
by running the sequence backwards, from wT down to w1, yielding another vector
sequence h̃1 . . . h̃T. Concatenating the two representations for word wt yields
[ht; h̃t], which encodes wt in a bidirectional context integrating both previous
and subsequent words. It also turns out that [h̃1;hT] is a very good way to
represent the whole variable-length sentence w1 . . . wT into a fixed-size vector.
This vector can then be used to compare sentences or to make predictions about
their polarity or their meaning. It finally appears that stacking bi-directional
recurrent layers, where [ht; h̃t] are used as the input of a new layer, will deliver
deeper and better representations. These principles are used to construct the
ELMo model [60] model, one of the first to highlight the richness of these deep
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contextual representations, which can serve as a beneficial plug-and-play pre-
processing module for any application dealing with linguistic sequences.

Consider, for instance, the task of textual entailment, which consists of
deciding whether sentence wP logically entails sentence wC . For this task,
we need to predict a Yes/No answer given the two input sentences, yield-
ing a model P (Yes |wP , wC). A possible approach encodes each sentence into
a single vector (respectively ELMo(wP ) and ELMo(wC)) that are then con-
catenated and used in a log-linear model according to: P (Yes |wP , wC) ∝
exp(W[ELMo(wP ); ELMo(wC)] + b), where matrix W and vector b are the
model parameters. By pre-training the parameters of the ELMo model, then by
fine-tuning those of the textual entailment model, it becomes possible to achieve
very good performance even when the train data of the textual entailment model
is limited.

2.4 Defining the Vocabulary

We left open the question of the support of probability distributions represented
by Eqs. (1) and (3). They presuppose the existence of a finite inventory V of
discrete units. To model sequences of letters, sounds or syllables, this hypothesis
is easy to defend. For sequences of words, it no longer makes sense, as no cor-
pus, however large, can exhaust the word formation processes, not to mention
borrowings from other languages, and extra-lexical (names, numbers, acronyms)
whose occurrences must also be modelled. This issue has long been a source of
difficulty for language models and has justified to take into account very large
vocabularies, despite the associated computational problems.

A better trade-off is achieved by abandoning the notion of word and seg-
menting texts into sub-lexical units, by means of processes that are themselves
optimized over large corpora to take frequencies of occurrences into account. Fre-
quent words are thus preserved in their integrity, while the rarest words are split
into subwords, if necessary reduced to mere sequences of letters. This makes
it possible to manipulate medium-size vocabularies (containing tens of thou-
sands of units), while at the same time preserving the ability to compute the
probability of arbitrary sequences (possibly including unknown words, made of
the concatenation of known subwords). The best known-algorithms for learning
such vocabularies are the Byte Pair Encoding (BPE) algorithm [31,70] and the
unigram algorithm [22,44].

Example segmentations realized by these algorithms are in Fig. 2.
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Fig. 2. Sub-lexical unit segmentation of the beginning of the French, English and Ger-
man versions of the Universal Declaration of Human Rights. The vocabulary contains
10,000 units, character ‘ ’ identifies word-initial units. With this segmentation model
optimized on French texts, only rare words (such as ‘dignité’, ‘fraternité’) are seg-
mented. It is also used to segment, with the same alphabet, texts written in other
languages, here sentences in English and German.

3 The Transformer Model

3.1 Attention, a Fundamental Mechanism

Having established all the necessary basic concepts of LMs, we now turn to the
Transformer model, which relies on a more generic and powerful model to encode
the context of each decision.

Encoding the Context. The main idea of the Transformer model of [77] is
to make the representation of word wt depend on all preceding words according
to ht = φ(w1 . . .wt), while at the same time removing the recurrence of the
computation of φ() so as to be able to parallelize it. In the Transformer model,
this computation is achieved by stacking L layers. Each layer l recombines the
representations from the previous layer h(l−1)

1 . . .h(l−1)
t to construct outputs

h(l)
1 . . .h(l)

t through elementary operations: linear projections, linear combina-
tions, vector concatenation, plus feedforward networks. The recursion of the
recurrent model is thus replaced by a stack of layers, each having a global scope.
The result remains the same as for other language models: a numerical vector
representation of the context that summarises all the previous words, based on
which one can predicts the next word in the sequence. Figure 3 illustrates the
context encodings computed by these various architectures.

Formally, each layer in a Transformer is parameterized by a set of K attention
heads and by a multi-layer feedforward model. Each attention head is param-
eterized by three projection matrices Q,K,V in R

dmd×dkv and performs the
following computations to derive h(l)

t from the outputs of the previous layer
{h(l−1)

s , s = 1 . . . t}. For the kth head in layer l:
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Fig. 3. The encodings of the left context computed by various language models: n-gram
feedforward models (FF LM) encode only a small context; Recurrent models (RNNs)
assume that close words are more important than remote words; Transformer models
(Tr LM) process all the context words on an equal footing.

(6.q) Query qt
(k,l) = Q(k,l)ht

(l−1) (∈ R
dkv)

(6.k) Keys ks
(k,l) = K(k,l)hs

(l−1),∀s ≤ t (∈ R
dkv)

(6.v) Values vs
(k,l) = V(k,l)hs

(l−1),∀s ≤ t (∈ R
dkv)

(6.a) Attention α
(k,l)
s = softmax( 1√

dkv
,ot)s,∀s ≤ t (∈ [0, 1])

avec ots = qt
(k,l)Tks

(k,l),∀s ≤ t

(6.o) Output gt
(k,l) =

∑
s≤t α

(k,l)
s vs

(k,l) (∈ R
dkv)

(6)

The first three steps compute dkv-dimensional projections of their input,
respectively called query, key and value. The dot product ots computes a sim-
ilarity between the query at position t and the keys at all positions before t
(included). These similarities are normalized by the softmax operator, which
transforms them into attention coefficients in [0, 1]. The last step linearly com-
bines the values to generate the output vector.

Each layer comprising several heads, it remains to aggregate their results.
Two elementary operations come into play. The first is a transform made by a
multi-layer perceptron according to:

{
f (l)
t = φ(Wif

(l)g(l)
t + bif ) ∈ R

dff , with φ() a non-linear function.
h(l)
t = Wfof

(l)
t + bfo ∈ R

dmd .
(7)
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The input g(l)
t of this perceptron is the concatenation of the outputs of

the K heads, to which we add the output of the previous layer: g(l)
t =

[g(1,l)
t ; . . . ;g(K,l)

t ]+h(l−1)
t . Adding the output of the previous layer serves several

purposes: (a) to provide gradients with a direct path from the higher layers to
the lower layers; (b) to ensure that ht

(l−1) and ht
(l) remain close, and that each

word thus retains its singularities, regardless of the influence of its context. One
consequence is that both terms must have the same dimensions, which implies
K × dkv = dmd. A typical implementation of this forward propagation step
projects g(l)

t via Wif
(l) into a dff -dimensional vector, with dff � dmd, for instance

dff = 4dmd; the non-linearity of the hidden layer uses function φ() = ReLU (for
Rectified Linear Unit).

The second basic operation normalizes the outputs, so that input and out-
put vectors will remain commensurable throughout the layers. At a high level,
each layer simply recombines the current representation at position t so as to
incorporate the influence of the preceding words. Unlike the recurrent model,
where the influence of the context words is computed in a left-to-right manner,
in this model no position is privileged, and each attention head, in each layer,
can select the positions that are the most significant for the current position, via
the attention coefficients α.

Limiting Conditions: Layers 0 and L. We still have to describe the inputs
and outputs of this system. For the input h(0)

1 , one can choose to use either one-
hot representations (see Sect. 2.3) or non-contextual representations computed
by the skip-gram model [58]. However, lexical representations alone are not suf-
ficient. In fact, equations ((6).[q–v]) do not distinguish between indices, whether
close to or distant from the current position t. This illustrates the potential
of Transformers to take into account non-local dependencies better than recur-
rent networks. However, it is useful to introduce the notion of position in the
sequence, for example by encoding each index with s a dmd-dimensional vector
ps, which is added to the lexical embedding. This positional encoding is either
learned or computed by a deterministic function defined in [77] as:

{
ps[2i] = sin(t/100002i/d)
ps[2i + 1] = cos(t/100002i/d)

The output of the last layer h(L)
t is used to compute the probability of the next

word at position t + 1 and involves the same steps as for the standard neuronal
model (Eq. (3)): a linear transformation in a |V |-dimensional space to obtain
logits, that are then normalized into a probability distribution.

3.2 Causal Transformer as Pure Language Models

The presentation above expresses the computation of h
(l)
t as a sequential oper-

ation: h(l)
1 , l = 1 . . . L are first computed, then h(l)

2 , l = 1 . . . L in the context
of h(l)

1 , l = 1 . . . L, etc. This is the most natural and computationally effective
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method for language models, since the representation of each word is computed
only once. This model is dubbed as self-attentional (since the context consists of
the previous words in the same sequence) and causal (the representation of each
word only depends on the previous words). It is used for instance in the GPT-
* architectures [14,64]. A non-causal variant recomputes all representations at
each time steps, i.e. first h(l)

1 , l = 1 . . . L, then {h(l)
1 ,h(l)

2 , l = 1 . . . L}: this means,
for instance, that the representation h

(l)
1 will change over time, integrating the

context of words to its right as they are revealed. This variant, sometimes called
prefix language model, is more computationally involved, but seems to yield bet-
ter results [65].

Like other LMs, these architectures generate texts from left to right, by sam-
pling at time step t the next word wt according to P (wt|ht−1). Trained on very
large corpora, they generate texts that are often grammatically correct, or even
show a form of global consistency. This suggests that Transformers are able to
model dependencies between distant words in the same sentence or even in differ-
ent sentences (when the context is sufficiently large). It is also possible to begin
a text and let the model continue the generation. This form of text initialization
is dubbed “prompting”, where the prompt denotes the user-selected prefix. It
turns out that with a proper choice of these “prompts”, a language model can
perform multiple tasks: when the prompt is composed of a text and comprehen-
sion questions, the model generate the answers, when prompted with a sentence
in French, the model generates the translation into English, etc. It is possible, at
the cost of a short learning stage, or by prompting with a handful of examples,
to improve this behavior [64]. Owing to these remarkable properties, some of
which are still poorly understood, large language models nowadays constitute a
basic building block to address a large number of language processing tasks.

3.3 Transformers as Representations: Bert and Its Clones

As with recurrent models, the use of Transformers as pure contextualized repre-
sentation extractors has proved to be extremely powerful and effective. Originally
proposed in [23], the BERT model is mostly a non-sequential and non-causal
Transformer. This means that the update formulas of Eq. (6) simultaneously
apply to all positions in the input sequence via matrix calculations, and that the
contextual representations of each word integrate both its left and right contexts.
Learning such model is typically performed by optimizing the reconstruction of
a noised input: in its basic form, noising simply randomly hides (masks) some
tokens wt, which the model then seeks to recover based on the representation
h

(L)
t . By maximizing the log-probability of original text, it becomes possible to

estimate model parameters (see Fig. 5) (Fig. 4).
As for other language models, this learning process does not require any

annotation and can be performed on very large corpora. BERT thus provides
contextualised “pre-trained” lexical representations that can be used as input
to any automatic processing system [23,52]. Other methods for constructing
denoising tasks have also been studied [65]: masking groups of words, parts
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Fig. 4. Prompting a language model. By varying the prompt, the same model can be
used to perform multiple tasks. From top to bottom, language generation is used to
write the continuation of a prompted text, to write a summary, to answer a question,
to check the implication between two sentences, etc. Examples are from [14,64]

Fig. 5. Learning the BERT model with random masking. The model parameters are
trained to maximize the probability of recovering the hidden tokens (bold on the figure).

of words, deleting and permuting words, etc. Due to their performance, these
models have quickly become central in NLP [71] and were quickly adapted to
multiple languages, such as French [46,55], German [16], Dutch [78], Spanish [15],
etc. Versions adapted to specialized textual genres such as patents [47], scientific
texts [5], tweets [4] or even sub-domains such as medicine [48] or nuclear physics
[37] have also developed. A rich literature also studies the empirical behaviour of
Transformers, trying in particular to analyze the internal representations {hl

t, t =
1 . . . T, l = 1 . . . L} in relationship to linguistic concepts; or use attention matrices
as a source of explanation of the system’s decisions. A recent bibliographical
survey of this “Bertological” literature has no less than 110 references [67].

3.4 Computational Costs of Transformer-ing

As Transformer based models take a central role in natural language processing,
it becomes necessary to take a closer look at the computations performed by
these algorithms and to better assess their cost, in a context where the carbon
footprint of Artificial Intelligence algorithms is also becoming a concern [35,
73]. A first observation is that, unlike recurring networks, the computations
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of Transformers are easy to parallelize. In particular, computing the output
representation of a word requires knowledge of its neighboring words, but not
of their deep output representations. These output representations can then all
be computed simultaneously by implementing Eq. (6) with operations. Table 1
provides indications regarding the size and number of parameters for some recent
models.

Table 1. Measuring the size of Transformer models. The number of parameters used
for lexical (L) and internal (I) representations are counted separately. Notations k, m, b
respectively denote thousands, millions and billions of units.

|V | T K L dmd dkv dff Params (L) Params (I)

32k 512 8 6 512 64 2048 32,8 m 49,9 m

32k 512 12 12 768 64 3072 49,2 m 127 m

32k 512 16 24 1024 64 4096 65,5 m 342 m

32k 512 32 24 1024 128 16384 65,5 m 2,38 b

32k 512 128 24 1024 128 65536 65,5 m 28,7 b

A last important dimension for complexity calculations is the sequences
length T , which determines the overall dimension at the input and output of
each layer (T × dmd). Sequences typically contains several hundreds of words or
even more (2048 for GPT-3). During training, it is necessary to keep the values
of all layers in memory, as they are needed to compute the gradient. To speed
up calculations, batches of B sequences are processed simultaneously, yielding
tensors of dimension B × T × dmd, whose manipulations are optimized on GPU
cards.

The computational complexity of the Transformer operations is dominated
by the evaluation of attention matrices in Eq. (6). This computation is linear in
dmd, but quadratic in T : for each of the T positions, the similarity with all the
other positions need to be computed, in order to derive the attentions weights α,
then the T output values vectors. To reduce this complexity, several directions
are considered in the literature. It is first possible to restrict the computation
of attention weight to a neighborhood N(t) of wt, by imposing words outside
N(t) to have null weights (αt(s) = 0,∀s �∈ N(t)); note that these words still
influence wt indirectly by influencing its neighbours (or the neighbors of its
neighbors) across the multiple computations layers. By choosing neighborhoods
N(t) of fixed size S, with S much smaller than T , the attention computation
becomes linear in T . There are several other ways to define N(t), using syntactic
dependencies, or using random subsets of indices: what matters is that for almost
every word, |N(t)| is small and, that for a few positions, N(t) encompasses the
whole sequence. Other approaches to speed up these computations focus on
effective approximations of dot products (Eq. (6)a). A recent survey of effective
implementations of the Transformer model is in [75]; some methods aimed to
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reduce the memory footprint are presented in [66]. Since the amount of training
data continues to increase the performance for many tasks [42], developing larger
models is likely to remain an active area of research [29], posing formidable
computational challenges both for learning and inference.

3.5 Transformers: A Flexible Architecture

The language models implemented in Transformer architectures combine all the
advantages of neuronal architectures: they can learn both predictive models
capable of taking into account long-range dependencies and rich contextual rep-
resentations for atomic units, which can be pre-trained and then used for multi-
ple language processing tasks. They result in effective implementations [79], and
have also been adapted for other types of structured data: acoustic sequences for
speech modelling [2], images for artificial vision [63], and even image sequences
[74]. Like other neural language models, their behavior remains difficult to con-
trol: while some regularities are almost perfectly learned, others are learned only
approximately, and it is difficult to predict or understand the reasons for these
failures.

4 Towards Multilingualism

4.1 Neural Machine Translation: Conditional Text Generation

A Simple Encoder-Decoder Model. The Transformer model presented
above as a language model is initially introduced for machine translation (MT)
[77]. This application formally corresponds to the generation (in a “target lan-
guage”) of a sentence e translating the input “source” sentence f . Viewed as a
probabilistic decision, this problem corresponds to finding:

e∗ = argmaxe P (e|f) = argmaxe

∏

t

P (et|f , e<t). (8)

This formalization again requires to define a probability distribution over a set of
sentences (see Eq. (1)), except that this distribution is conditioned by the input
sentence f . The Transformer model computes such a distribution by extend-
ing the neural encoder-decoder architectures proposed for MT in [3,18]. These
architectures rely on two computation steps:

(a) the computation of a numerical representation (encoding) for f taking the
form of a sequence of numerical vectors s1, . . . , sJ ;

(b) the iterative decoding of the translation, by choosing at each step the
most likely next word et given the source encoding [g(l)

1 , . . . ,g(l)
I ], l =

1 . . . L as well as the previous target words e<t, encoded as previously as
[h(l)

1 , . . . ,h(l)
t−1], l = 1 . . . L.
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The first neural MT systems perform these two steps using recurrent net-
works (Sect. 2.3). In a Transformer-based architecture, step (a) is performed by
a non-causal encoder (Sect. 3.3) and step (b) is performed by a causal decoder
(Sect. 3.2). During this stage, it is necessary to integrate the double dependency
in f and e<t, since the prediction of the next target word is influenced by these
two sequences (see Eq. (8)). This is implemented by the addition of an additional
cross-attentional sublayer within the decoder. The corresponding computations
are similar to those of Eq. (6), using h(l)

t . . .h(l)
t for the query, and g(L)

1 , . . . ,g(L)
J

for keys and values. In this way, the context vector of each target word inte-
grates not only the target prefix, but also all the words in the source phrase,
represented at the last layer (L) of the encoder. As before, the last layer vector of
the decoder is projected into a |V |—dimensional space, then normalized through
the softmax function to provide the desired output distribution P (et|f , e<t).

Difficulties of Machine Translation

Learning from Parallel Corpora. The learning of conditional models is similar to
the learning of language models and consists of optimizing the log-probability of
the training sequences, which decomposes into a sum of terms as in Eq. (4). This
computation requires both words from the source and the target sentences, which
are aligned in large parallel corpora matching sentences with their translation.
Such resources are now publicly available en masse from resource distribution
agencies such as ELDA or the Linguistic Data Consortium. A variety of parallel
corpora can be found specialized websites such as OPUS [76].

Machine Translation is Difficult. Once training (which can take days, depending
on the amount of available parallel data) is complete, the Transformer is ready
to translate. Translation is performed incrementally, word by word, in a greedy
manner and poses the same difficult problems as the unconditional generation
of texts. It appears, on the one hand, that choosing at each time step the best
next word is a risky strategy, since each past error might yield incorrect or
simply unusual internal representations, which in turn can cause more errors.
This problem is known as the exposure bias problem [8] and requires to use
of more sophisticated search strategies, such as beam search, to compute the
argmax (Eq. (8)). An alternative decoding strategy simultaneously predicts all
the target words in parallel, which dramatically speeds up decoding. However,
global constraints on the relative positions of words must apply to ensure that
the target sentence remains well-formed [32].

Two additional difficulties are directly related to the machine translation
problem: in MT, it is necessary to translate the entire source phase (each word
only once), without introducing any additional information. However, these two
constraints are not explicitly formulated in Eq. (8): to ensure that the length of
the target sentence matches that of the source, and effectively translates all input
words, the search algorithm must include additional heuristics: [40] presents the
most commonly used ones.

https://www.elda.org
https://ldc.upenn.edu
https://www.opus.eu
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4.2 Multilingual Representations, Multilingual Translations

An additional benefits of numeric representations is that they represent words
of different languages in a unified manner. It is then possible, assuming a shared
units directory for all languages, to use the same encoders and decoders to
process multiple languages. The easiest way to proceed is to implement the
same learning procedure as for BERT (Sect. 3.3), inputting sentences in multiple
languages into the system: this approach is used for mBERT [23] and XLM [21].

Such approaches readily deliver multilingual contextual representations that
bring together, in the same vector space, units (words, sentences) that are mutual
translations. Learning multilingual representations thus makes parallel sentences
in multiple languages almost indistinguishable (for the neural network). This
enables to transfer processing models and applications from a resource-rich lan-
guage into languages for which resources do not exist. Let us take the example
of a sentiment analysis system, which aims to associate textual comments on
a merchant site with satisfaction scores, and assume that we have annotated
training examples for language A, but not for language B. Learning to pre-
dict the numerical score from multilingual representations of texts in language
A makes us also able to predict the note of texts in language B without ever
having observed any training example associating a text in language B with its
evaluation (see Fig. 6).

Fig. 6. A multilingual architecture for spam filtering. The second step uses multilin-
gual pre-trained representations which enable to transfer knowledge across languages:
French spam mails can then be identify even though the classifier has never seen any
French example.

Learning multilingual representations is therefore a major challenge to
broaden the spectrum of languages covered by language technologies. Many
approaches have also been proposed to train non-contextual multilingual rep-
resentations, or to adapt existing representations to a specialized domain. A
recent survey of these methods is in [72].

Note finally, that the encoder-decoder architecture can also be used to com-
pute monolingual representations: this is again achieved by inputting noisy texts
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into the encoder, that the decode will then have to recover. All that is needed is
the definition of the noising operations used to generate parallel artificial data:
masking one or several words, replacing a word with a similar word, changing
the order of words are typical noising operations. BART, introduced by [49],
has the benefits of a faster learning than BERT (more words are noised in the
encoder). With an additional fine fine-tuning stage, BART can also be used as
a generation model, as the decoder is non-causal: a possible application there
is automatic summarization. Finally, like BERT, BART can be trained multi-
lingually, simultaneously computing multilingual representations and machine
translation.

4.3 One Model to Translate Them All

Multilingual translation combines the approaches described in the previous sec-
tions: the use of an encoder-decoder architecture, with conditional generation of
texts; the use of sentence pairs combining input and output for multiple language
pairs. This idea, originally proposed in [30,34] and recently used on a large scale
in [1,28] opens new perspectives: (a) operationally it means that we just need
one single system to handle all translations between N languages, where O(N2)
where previously required; (b) it also enable to compute translations between
languages for which no data is observed (again through cross-lingual transfer,
which happens here both in the encoder and in the decoder).

This approach is not without difficulty, in particular from the point of view
of collecting and balancing parallel learning data, as well as supporting a variety
of linguistic systems, which may, for example, use different writing systems, or
manipulate divergent underlying structures at the levels of word or phrases. For
such multilingual models, a necessary pre-processing step is to learn a shared
tokenization (in word and subwords, see Sect. 2.4) using multilingual corpora, so
that all input-outputs in the system use the same vocabulary.

4.4 Machine Translation as a Generic Task

Generalizing Machine Translation. The transition from the unconditional
model (Sect. 3) to the the conditional model (Sect. 4.1) outlines the flexibility of
numerical representations manipulated by neural networks: by adding a cross-
attention mechanism between two Transformers, it is possible to encode two word
sequences in a single vector h, from which the next word is generated. This tech-
nique enables to encode “generalized” contexts, to model more complex tasks or
scenarios. It is for instance possible to handle multi-source translation scenarios,
corresponding to the generation of a target sentence from several two sentences
f1 and f2. In such setting, the distribution P (e|f1, f2) can be obtained by com-
puting the cross-lingual based on a concatenation of the two source encodings.
Another illustration of this flexibility is document-level translation, which aims
to integrate long-distance dependencies beyond the sentence level. This might
be needed to handle pronominal references, as when computing the translation
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of “This bike is broken. It needs a fix.” from English into French. For this exam-
ple, the generation of the correct subject pronoun for the second sentence (“il”
ou “elle”) requires knowledge of the translation of “bike” in the previous sen-
tence: (“vélo” will imply a masculine subject, ”bicyclette” a feminine one). By
encoding contexts made of several previous sentences, such difficulties can be
addressed [56].

Monolingual and Multimodal Machine Translation. Machine translation
is an extreme example of a sequence transduction task, corresponding to a lan-
guage change, while preserving the global meaning. Similar problems appear in
a large number of monolingual tasks: for example, grammar correction can be
viewed as a ”translation” between a noisy sentence and its correction, a frame-
work that also includes spelling normalization (to turn short texts into standard
English). Simplification, paraphrase generation, style transfer (e.g from a formal
style to more relaxed style), automatic summarization [51] are other instances of
these monolingual translations: assuming the availability of pairs (input, output)
to learn the parameters, it will be possible to use Transformer architectures.

The encoder-decoder architecture is also generalized in other ways. By consid-
ering pairs associating voice recordings with their transcription, it is possible to
apply the same techniques for automatic speech recognition [24,33,43]; or even,
when recordings and transcripts are in different languages, to directly translate
the speech into foreign text [10]. Similar approaches consider the recognition of
patterns in images [25] or the generation of descriptions from images [53]. The
application of the Transformers to these other modalities is only starting and is
expected to develop, both to learn generation models and to train multimodal
representations. An introduction to these exciting developments is presented in
this volume in M. Evrard’s chapter on Transformer in Automatic Speech Recog-
nition and C. Guinaudeau’s chapter on Vision and Multi-modal Transformers.

4.5 Summary

The Transformer architecture readily generalizes to the conditional generation
framework, with an interdependent encoder and decoder, an approach that has
quickly become the de facto standard for neural machine translation. When fed
with inputs and outputs in multiple languages, this architecture learns multilin-
gual representations that can be used for cross-lingual transfer in many appli-
cations. By analogy with the translation task, the same approach model can be
used for many monolingual tasks as well as for tasks involving other modalities
(speech, image, video).

5 Conclusion

The Transformer architecture, both in its unconditional (Sect. 3) and in its con-
ditional (Sect. 4) versions has quickly emerged as a critical component of all
language processing tools and has often led to considerable improvements of the
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performance of these systems. This architecture generates contextual representa-
tions from vast amounts of raw data; these representations are useful for a wide
range of applications, and also enable to transfer learned knowledge between
tasks, domains and languages. This provides an operational response to the lack
of annotated data that would be necessary to carry out supervised learning in
many contexts. It is also used to learn word generation models capable of pro-
ducing coherent texts, and, at the cost of elementary reformulations, to handle a
large number of related tasks: sentiment analysis, textual implication, question
answering, summarization, translation, etc. Multilingual and multimodal exten-
sions of these architectures make it possible to build models from heterogeneous
data, further opening the range of possible applications. Finally, Transformers
define a shared conceptual framework for many communities of researchers and
developers, facilitating interdisciplinary exchanges and accelerating the dissem-
ination of effective implementations and sharing of models [12].

Have Transformer “solved natural language processing”? Several limitations
of these models are highlighted in recent papers, suggesting many avenues for
future research. A first limitation is that these models do not incorporate any lin-
guistic knowledge (regarding the structure of words and phrases), which makes
them unsuitable for reproducing the systematic behaviour that is expected
when dealing with regular phenomena, such as grammatical agreement, or co-
reference phenomena. Although possible, the integration of linguistic knowledge
runs against the increase in training data and in the number of languages taken
into account, and is not very actively researched. Similarly, the world knowl-
edge injected into Transformers is restricted to whatever occurs in the training
texts. Although these models are capable of memorizing and restoring many of
these factual knowledge, they remain incomplete and their learning is uncertain
and non-systematic [62]: it thus seems inappropriate to think that they help
us progress towards deep language understanding [7]. For this, the combination
of statistical models with knowledge graphs seems to be a promising research
direction [13,61].

Another limitation of these architectures is that their “black box” behaviour,
which creates multiple problems when these systems are run on a very large
scale. In particular, it is extremely hard to explain the decisions made, as they
ultimately result from the particular dynamics of model training, and from the
nature of the training data. As shown on many occasions [6], these models in
particular tend to amplify the biases present in the data, and may, for example,
generate uncontrolled statements of a sexist or racist nature. The apparent con-
sistency of automatically generated texts is also misleading, and may fool users
into endowing these systems with a form of understanding they do not actually
possess. These weaknesses are shared with all probabilistic models, which are
constrained in their performance by the limitations of the training data, which
are often too rare, incomplete, or biased, and result in systems that may be
incomplete and inconsistent.
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Abstract. Transformers that rely on the self-attention mechanism to
capture global dependencies have dominated in natural language mod-
elling and their use in other domains, e.g. speech processing, has shown
great potential. The impressive results obtained on these domains leads
computer vision researchers to apply transformers to visual data. How-
ever, the application of an architecture designed for sequential data is
not straightforward for data represented as 2-D matrices. This chapter
presents how Transformers were introduced in the domain of vision pro-
cessing, challenging the historical Convolutional Neural Networks based
approaches. After a brief reminder about historical methods in computer
vision, namely convolution and self-attention, the chapter focuses on the
modifications introduced in the Transformers architecture to deal with
the peculiarities of visual data, using two different strategies. In a last
part, recent work applying Transformer architecture in a multimodal
context is also presented.

Keywords: Convolutional neural networks · Vision transformers ·
Multimodal transformer

1 Introduction

Transformers introduced by Vaswani et al. in 2017 [23] are learning models
designed to handle sequential data using attention mechanisms. In particular,
they allow computers to learn sequences automatically, without having been
programmed specifically for this purpose. The Transformer is an instance of
the sequence-to-sequence (seq2seq) learning models, taking a sequence as input,
processing it, before returning another as output. If the Transformer uses an
attention mechanism, it still inherited the encoder-decoder pattern system from
the Recurrent Neural Networks (RNNs), the encoder being the input to the
sequence and the decoder being the output. Each of these two blocks includes
two layers of neural networks: the so-called self-attention layer which allows to
keep the interdependence of data in a sequence, and the layer called Feed-forward
Neural Network that leads the data to the output.

Transformers, originally designed for Natural Language Processing tasks:
translation, question-answering, etc. have been successfully applied in the field of
speech processing, particularly in speech synthesis [19], as presented in [9]. The
impressive results obtained on other domains leads computer vision researchers
c© Springer Nature Switzerland AG 2023
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to apply transformers to visual data. However, the application of an architec-
ture designed to be applied to sequential data (such as text or speech) is not
straightforward for data represented as 2-D matrix and containing spatial depen-
dencies. This difficulty becoming even greater for video data that add a temporal
dimension.

This chapter aims at presenting the adaptation of the Transformers architec-
ture, as it was developed in the Natural Language Processing domain, to visual
or multi-modal data to solve vision or multimedia tasks. A particular focus is
made on data representation for machine learning approaches, starting from the
historical Convolutional Neural Networks (CNN) and self-attention mechanism,
described in Sect. 2 to the Vision Transformers, proposed recently by Dosovit-
skiy et al. [8]. Finally, in the last Section, recent work applying Transformers in
a multi-modal context is presented.

In summary, the learning objectives presented in this paper are the following:

– reminisce the historical approaches for computer vision, namely convolutions
and self-attention;

– understand the adaptation of the Transformers architecture to deal with the
visual data peculiarities, using two different strategies;

– grasp the functioning principles of recent work applying Transformers archi-
tecture to multimodal tasks and data.

2 From Convolutional Neural Networks to Transformers

Computer vision is concerned with the automatic extraction, analysis and under-
standing of useful information from a single image or a sequence of images. Com-
puter vision tasks include object or event detection, object recognition, index-
ing, motion estimation, image restoration, etc. The most established algorithm
among various deep learning models is Convolutional Neural Network (CNN), a
class of artificial neural networks that has been a dominant method in computer
vision tasks since the astonishing results reported in 2012 in [14].

2.1 Convolutional Neural Networks (CNN)

In the context of computer vision, a Convolutional Neural Network (CNN) is a
Deep Learning algorithm that can take in an input image, identify salient regions
in the image, through learnable weights and biases, and is able to differentiate one
image from the others. A convolutional neural network architecture is composed
of a stack of processing layers: the convolutional layer which processes the
data of an input channel; the pooling layer which reduces the size of the
intermediate image, performing some information compression; the correction
layer; the fully connected layer, which is a perceptron-like layer. After several
layers of convolution and max-pooling, the high level decision in the neural
network is done through fully connected layers. Finally, the loss Layer specifies
how the gap between the expected and the actual signal is penalized. It is usually
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Fig. 1. Convolution of a 3 channel image with a 3 × 3 × 3 kernel - Image from
Rijul Vohra

the last layer in the network. For more details on the architecture and functioning
of Convolutional Neural Network, see [7].

The goal of the convolutional layer is to provide a representation of the input
image. Even if an image is just a matrix of pixel values, a simple flattening of
the image as a vector would not be enough to represent complex images having
pixel dependencies throughout. Therefore, to model the spatial and temporal
dependencies in an image, convolutions were introduced to capture them through
the application of relevant filters.

Figure 1 presents the process of applying a convolution filter to an image. At
each step, a convolution takes a set of weights (a kernel, for 3D structures, or a
filter, for 2-D arrays) and multiplies them with the input channels representing
the image. Each filter multiplies the weights with different input values; the total
inputs are summed, providing a unique value for each filter position. In the case
of images with multiple channels (e.g. RGB), all the results are summed with
the bias to give a value of the Convoluted Feature Output. To cover the entire
image, the filter is applied from right to left and from top to bottom, giving the
output matrix.

The advantage of convolutions is two-folds: they can be efficiently parallelized
using GPUs and their operations impose two important spatial constraints that
facilitate the learning of visual features. Indeed, the features extracted from a
convolution layer are 1) not sensitive to the global position of a feature 2) locality
sensitive as the operation only takes into account a local region of the image.
However, the image representation obtained through convolution operations lack
a global view of the image. If they are able to extract visual features, they are
not able to model the dependencies between them.

https://medium.datadriveninvestor.com/convolutional-neural-networks-3b241a5da51e
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Fig. 2. Show, attend and tell – examples of attending to the correct object - image
extracted from [28]

2.2 Self-attention

To overcome these limitations, recent studies [2,3,25,28] have proposed to use
self-attention layers in combination with or instead of convolutional layers. The
main difference between convolutional and self-attention layers is that the com-
puted value of a pixel depends on every other pixel of the image, instead of a K
× K neighborhood grid.

Introduced by [1] for neural machine translation, attention shows the ability
to learn to focus on important subparts of the input, as explained in [6]. This
ability can also be used in computer vision where the objective of self-attention
layers is to compute attention weights so each position in the image has infor-
mation about all the other features in the same image. Self-attention layers can
either replace or be combined with convolutions, as they are able to model depen-
dencies between spatially distant features by attending to larger receptive fields
than regular convolutions.

In [28], the attention mechanism is applied on images to generate captions.
The image is first encoded by a convolutional neural network to extract features.
To do so, the authors use a lower convolutional layer instead of a fully connected
layer to allow the decoder to selectively focus on certain parts of an image by
selecting a subset of all the feature vectors. Then a Long short-term memory
(LSTM) decoder is used to generate a caption by producing one word at every
time step based on a context vector, the previous hidden state and the previously
generated words. Figure 2 presents examples of attending to the correct object
where white, in the image, indicates the attended regions, and underline, in the
text, indicates the corresponding word.

When combined with self-attention, convolution models can improve the
results obtained on several vision tasks. For example, in [25], self-attention is used
for video classification and object detection with performance that can compete
or outperform with state-of-the-art approaches. Another milestone is [3], where
the authors obtain improvements on image classification and achieve state-of-the-
art results on video action recognition when using self-attention with convolution
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models. Finally, [2] augment convolutional operators with self-attention mech-
anism and show that attention augmentation leads to consistent improvements
in image classification and object detection.

However, self-attention layers can have expensive computational costs for
high resolution inputs, and can therefore be used only on small spatial dimen-
sions. Some works have already presented ways to overcome this problem, as
[24], which computes attention along the two spatial axes sequentially instead
of dealing directly with the whole image or [18], which uses patches of feature
maps instead of the whole spatial dimensions.

3 Transformers for Computer Vision

Instead of including self-attention within convolutional pipelines, other works
have proposed to adapt the original encoder-decoder architecture presented for
Transformers to Computer Vision tasks. In this section, works that have pro-
posed to use the transformer architecture to deal with images are described
with a focus on the way images are represented. As the original text Trans-
former takes as input a sequence of words to perform translation, classification,
or other NLP tasks, two different strategies can be used to apply this architec-
ture on image data. In the first one, the fewest possible modifications are made
to the transformer while input are modified to add information about positions
in the image. [8,21] and [4] are using this strategy. The second strategy consists
in modifying the architecture, for example, by introducing convolutions to the
vision transformer as proposed in [26] to fit images peculiarities.

3.1 Introduction of Positional Encodings

The first work that modifies the Transformer design to make it operate directly
on images instead of words is the Vision transformers (ViT) proposed by Doso-
vitskiy et al. [8]. In this paper, the authors make the fewest possible modifications
to the Transformer architecture and observe to which extend the model can learn
about image structure on its own1.

Figure 3 presents the Vision Transformers architecture that divides an image
into a grid of square patches. Each patch is flattened into a single vector by
concatenating the channels of all pixels in a patch and then linearly projecting
it to the desired input dimension. To introduce information about the structure
of the input elements, the authors add learnable position embeddings to each
patch. The idea is to make the Vision Transformers learn relevant information
about image structure from the training data and encode structural information
in the position embeddings.

To gain some intuition into what the model learns, the authors propose two
figures to visualize some of its internal workings. First, they present the position
embeddings: the parameters learned by the model to encode the relative location

1 https://github.com/google-research/vision transformer.

https://github.com/google-research/vision_transformer
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Fig. 3. Vision Transformers (ViT) architecture - image extracted from [8]

of patches. On the right part of Fig. 4, it can be seen that the vision transformer is
able to reproduce the image structure as closer patches tend to have more similar
position embeddings. Second, the authors also present the size of attended area
by head and network depth in order to evaluate to which extend the network
uses the ability to integrate information across the entire image, even in the
lowest layers, thanks to self-attention. If for depths between 10 and 20 only
large attention distances are visible, meaning that only global features are used,
in the lowest layers, a large range in the mean attention distance, showing that
the ability to integrate information globally, is indeed used by the model.

Table 1 reports the results obtained for variants of the ViT transformers,
compared to previous state-of-the-art models, applied on popular image classifi-
cation benchmarks. The first comparison model used is Big Transfer (BiT) which
performs supervised transfer learning with large ResNets [13] and the second one
is Noisy Student [27] which is a large EfficientNet trained using semi-supervised
learning on ImageNet and JFT300M with the labels removed. From this table,
we can see that the smaller ViT-L model, with a 16 × 16 image patch size,
pre-trained on JFT-300M outperforms BiT-L, which is pre-trained on the same
dataset, on all datasets. The larger model, ViT-H (with a 14 × 14 image patch
size), further improves the performance, especially on ImageNet, CIFAR-100,
and the VTAB suite, that are the more challenging datasets. The ViT-L model,
with a 16 × 16 image patch size, pre-trained on the public ImageNet-21k dataset
performs well on most tasks too. Finally, the last line of the Table reports the
number of TPUv3-core-days taken to pre-train each of the models on TPUv3
hardware, that is, the number of TPU v3 cores (2 per chip) used for training
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Fig. 4. Position embeddings and size of attended area by head and network depth -
image extracted from [8]

multiplied by the training time in days. From these values, it can be seen that
Vision Transformers results use fewer computing resources compared to previous
state-of-the-art CNNs.

Table 1. Accuracy for Vision Transformers and state of the art approaches on 7 image
classification benchmarks.

ViT-H/14 ViT-L/16 ViT-L/16 BiT-L Noisy student

JFT JFT I21k ResNet152 × 4 EfficientNet-L2

ImageNet 88.55 87.76 85.30 87.54 88.5

ImageNet ReaL 90.72 90.54 88.62 90.54 90.55

CIFAR-10 99.50 99.42 99.15 99.37

CIFAR-100 94.55 93.90 93.25 93.51

Oxford-IIIT Pets 97.56 97.32 94.67 96.62

Oxford Flowers-102 99.68 99.74 99.61 99.63

VTAB (19 tasks) 77.63 76.28 72.72 76.29

TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

If the Vision Transformers proposed in [8] reduces the need of computing
resources compared to previous state-of-the-art CNNs, while presenting excellent
results when trained with large labelled image dataset they do not generalize well
when trained on insufficient amounts of data. Furthermore, the training of these
models still involve extensive computing resources.

In order to overcome these problems, Touvron et al. [21] propose competitive
convolution-free transformers trained on a single 8-GPU node in two to three
days that is competitive with convolutional networks. Their Data-efficient Image
Transformers (DeiT) has a similar number of parameters and uses Imagenet as
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the sole training set2. To do so, the authors proposed the knowledge distillation
procedure specific for vision transformers. The idea of knowledge distillation is
to train one neural network (the student) on an output of another network (the
teacher). Such training improves the performance of the vision transformers. The
authors have tested the distillation of a transformer student by a CNNs and a
transformer teacher and surprisingly, image transformers learn more from CNNs
than from another transformer.

In the distillation procedure a new distillation token—i.e. a trainable vector,
appended to the patch tokens before the first layer—is included in order to inter-
act with the class and patch tokens through the self-attention layers. Similarly
to the class token, the objective of the distillation token is to reproduce the label
predicted by the teacher, instead of the true label. Both the class and distilla-
tion tokens input to the transformers are learned by back-propagation. There are
different types of distillation techniques, in [21], the authors use what is called
hard-label distillation, so the loss penalizes the student when it mis-classifies real
target and the target produced by the teacher.

To speed up the training of the system and improve its accuracy, [22] show
that it is preferable to use a lower training resolution and fine-tune the network
at the larger resolution. As the patch size stays the same when increasing the
resolution of an input image, the number of input patches does change and,
due to the architecture of transformer blocks and the class token, the model
and classifier do not need to be modified to process more tokens. However, it
is necessary to adapt the positional embeddings, because there are one for each
patch. To do so, [8] and [21] interpolate the positional encoding when changing
the resolution with a 2-D interpolation and a bicubic interpolation respectively.

Table 2 reports the accuracy obtained by DeiT models on ImageNet with
no external training data, compared with two variants of ViT with 16 × 16
input patch size. It also presents the number of parameters and the throughput
measured for images at resolution 224 × 224. This table first shows that DeiT
models have a lower parameter count than ViT models, and a faster through-
put, while having a better accuracy for images at resolution 384 × 384, when
fine-tuned at a larger resolution. It also presents that the transformer-specific
distillation increases the accuracy obtained for the three models DeiT-Ti, DeiT-S
and DeiT-B.

3.2 Dynamic Positional Encodings

In the two previous systems, the absolute positional encodings were added to
each token in the input sequence to take into account the order of the tokens.
If these absolute positional encodings are effective, they also have a negative
impact on the flexibility of the Transformers. For example, the encodings are
often a vector of dimension equal to the length of the input sequence to the input
sequence, which are jointly updated with the network weights during training,
causing difficulty to handle the sequences longer than the ones in the training

2 https://github.com/facebookresearch/deit.

https://github.com/facebookresearch/deit
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Table 2. Accuracy and Throughput for Transformers model on ImageNet.

Model Params Image
size

Throughput Accuracy on
ImageNet

ViT-B/16 86M 3842 85.9 77.9

ViT-L/16 307M 3842 27.3 76.5

DeiT-Ti 5M 2242 2536.5 72.2

DeiT-S 22M 2242 940.4 79.8

DeiT-B 86M 2242 292.3 81.8

DeiT-B384 86M 3842 85.9 83.1

DeiT-Ti dist 6M 2242 2529.5 74.5

DeiT-S dist 22M 2242 936.2 81.2

DeiT-B dist 87M 2242 290.9 83.4

Fig. 5. ViT vs. CPVT architecture - image extracted from [5]

data at test time. This limits the generalization of the Transformers. Moreover,
by adding unique positional encodings to each token (or each image patch), these
absolute positional encodings breaks the translation-invariance.

To overcome these limitations, Chu et al. propose the Conditional Positional
Encoding Vision Transformers (CPVT) architecture, [5], that integrates posi-
tional encodings that are dynamically generated and conditioned on the local
neighborhood of an input token3. Figure 5 presents the architecture of the Vision
Transformers, proposed by [8], with explicit 1-D learnable positional encodings
and the CPVT architecture proposed by [5] with conditional positional encoding

3 https://github.com/Meituan-AutoML/CPVT.

https://github.com/Meituan-AutoML/CPVT
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from the proposed Position Encoding Generator (PEG) plugin. Except that the
positional encodings are conditional, the authors exactly follow the Vision Trans-
formers and the Data-efficient Image Transformers architectures to design their
vision transformers. To condition the positional encodings on the local neighbor-
hood of an input token, the authors first reshape the flattened input sequence
used in the Vision Transformers [8] back in the 2-D image space. Then, a func-
tion is repeatedly applied to the local patch in the 2-D structure to produce the
conditional positional encodings.

Table 3 presents the accuracy obtained by the Conditional Positional Encod-
ing Vision Transformers (CPVT) [5] and the Data-efficient Image Transformers
(DeiT) [21] on ImageNet for two image sizes with direct evaluation on higher
resolutions without fine-tuning. From this Table, it can be seen that performance
degrades when DeiT models are applied to 384 × 384 images while CPVT model
with the proposed PEG can directly process the larger input images.

Table 3. Accuracy on ImageNet for 224 × 224 and 384 × 384 images, with direct
evaluation on higher resolutions without fine-tuning.

Model Params Top-1@224 Top-1@384

DeiT-Ti 6M 72.2 71.2

DeiT-S 22M 79.9 78.1

DeiT-B 86M 81.8 79.7

CPVT-Ti 6M 72.4 73.2

CPVT-S 22M 79.9 80.4

CPVT-B 86M 81.9 82.3

To picture what the model learns, the authors compare the attention weights
of three architectures, presented in Fig. 6. In the middle of the figure, the atten-
tion weights of DeiT with the original positional encodings, on the right, those
of DeiT after the positional encodings are removed and on the left the weights of
the CPVT model with PEG. In the middle of the figure, the attention weights
are high on the diagonal but low for the rest of the image, suggesting that DeiT
with the original positional encodings learns to attend the local neighbors of each
patch. When the positional encodings are removed (on the left), all the patches
produce similar attention weights meaning that they are not able to attend to the
patches in their neighbourhood. Finally, like the original positional encodings,
the model with PEG can also learn a similar attention pattern, which indicates
that the proposed PEG can provide the position information as well.
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Fig. 6. Normalized attention scores from the second encoder block of DeiT, DeiT
without position encoding (DeiT w/o PE), and CPVT on the same input sequence -
image extracted from [5].

3.3 Convolution and Transformers

To apply the Transformers, designed for NLP, to vision tasks, the three previous
architectures proposed minimal modifications. Despite the success of these mod-
els at large scale, their performances are still below similarly sized convolutional
neural network (CNN) counterparts when trained on smaller amounts of data.
This difference can be explained by the properties of convolutions. As explained
in Sect. 2.1, convolutions are able to capture the local structure of an image, and
also achieve some degree of shift, scale, and distortion invariance. To account for
the properties of convolutions, Wu et al. proposed to introduce two convolution-
based operations into the Vision Transformer architecture: Convolutional Token
Embedding and Convolutional Projection.

The Convolution vision Transformer (CvT), [26], introduces convolutions to
two core sections of the Vision Transformer architecture4. First, the authors
create a hierarchical structure of Transformers by partitioning the Transformers
in multiple stages. The beginning of each stage consists of a convolutional token
embedding that performs an overlapping convolution operation with stride on
a 2-D-reshaped token map, followed by layer normalization. Hence, the model
proposed captures local information and progressively decreases the sequence
length while increasing the dimension of token features across stages. This way
the model achieves spatial downsampling while increasing the number of feature
maps, as is performed in Convolutional Neural Networks. In a second step, the
linear projection prior to every self-attention block in the Transformer module is
replaced with a convolutional projection that allows the model to further capture
local spatial context and reduce semantic ambiguity in the attention mechanism.

Table 4 reports the results of the CvT architecture, compared to the ones
obtained by CNN and Vision Transformers on ImageNet. In this table, CvT-X
stands for Convolutional vision Transformer with X Transformer Blocks in total.
The authors also experiment with a wider model with a larger token dimension
for each stage, namely CvT-W24 (W stands for Wide) to validate the scaling
ability of the proposed architecture. On the upper part of the Table, it can be

4 https://github.com/microsoft/CvT.

https://github.com/microsoft/CvT
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seen that the two convolution-based operations introduced in the Vision Trans-
former architecture yield improved performance when compared to CNN and to
Vision Transformer for images with different resolutions. On the lower part of
the table, when the models are pre-trained on ImageNet22k at resolution 224
× 224, and fine-tuned on ImageNet1k at resolution of 384 × 384 (or 480 × 480
for BiT), the accuracy of the CvT models are almost on par with the accu-
racy of Transformers and CNNs while having a much lower number of model
parameters. Finally, when more data is involved, the wide model CvT-W24 pre-
trained on ImageNet22k reaches 87.7% of accuracy surpassing the previous best
Transformer Vit-L/16.

Table 4. Accuracy of CNN and Vision Transformers architectures on ImageNet.
Subscript22k indicates that the model is pre-trained on ImageNet22k, and finetuned
on ImageNet1k with the input size of 384 × 384 (except for BiT-M that is finetuned
with input size of 480 × 480).

Method type Network Params Image ImageNet

size top-1

Convolutional networks ResNet-50 [11] 25 2242 76.2

ResNet-101 [11] 45M 2242 77.4

ResNet-152 [11] 60M 2242 78.3

Transformers ViT-B/16 86M 3842 77.9

ViT-L/16 307M 3842 76.5

DeiT-S 22M 2242 79.8

DeiT-B 86M 2242 81.8

Convolutional transformers CvT-13 20M 2242 81.6

CvT-21 32M 2242 82.5

CvT-13↑384 20M 3842 83.0

CvT-21↑384 32M 3842 83.3

Convolutional Networks22k BiT↑480 [13] 928M 4802 85.4

Transformers22k ViT-B/16↑384 86M 3842 84.0

ViT-L/16↑384 307M 3842 85.2

ViT-H/16↑384 632M 3842 85.1

Convolutional transformers22k CvT-13↑384 20M 3842 83.3

CvT-21↑384 32M 3842 84.9

CvT-W24↑384 277M 3842 87.7

4 Transformers for Multimedia Data

As the Transformers architecture has been diverted from its primary use in Nat-
ural Language Processing to be applied to other modalities (audio and image),
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very recent works have proposed to use the transformer architecture to solve
multimodal challenges. For example, Sterpu et al. have proposed to adapt their
tool, AV Align for Speech Recognition to the Transformer architecture [20]. In
[16], Radford et al. present the Contrastive Language-Image Pre-training (CLIP)
system that is able to learn image representations from scratch on a dataset of
400 million (image, text) pairs collected from the internet. Another example is
the work of Gabeur [10] that uses video and text modalities to tackle the tasks
of caption-to-video and video-to-caption retrieval (MMT). In the last section
of this chapter, two multimodal systems using Transformers architectures are
presented, CLIP and MMT.

The idea behind the Contrastive Language-Image Pre-training (CLIP) sys-
tem proposed by Radford et al. [16] is to learn about images from free-text to
recognize objects in a visual scene and solve a variety of visual tasks5. So instead
of predicting the exact words of the text accompanying each image, the authors
try to predict only which text as a whole is paired with which image. Concerning
the training part of the system, given a batch of N (image, text) pairs, CLIP
is trained to predict which of the N ×N possible (image, text) pairings across
a batch actually occurred. To do this, CLIP learns a multi-modal embedding
space by jointly training an image encoder and text encoder to maximize the
cosine similarity of the image and text embeddings of the N real pairs in the
batch while minimizing the cosine similarity of the embeddings of the N2-N
incorrect pairings. CLIP is trained from scratch without initializing the image
encoder with ImageNet weights or the text encoder with pre-trained weights.
They use only a linear projection to map from each encoder’s representation to
the multi-modal embedding space.

As CLIP is pre-trained to predict if an image and a text are paired together in
its dataset, the authors reuse this capability to perform zero-shot classification
of images. For each image dataset, they use the names of all the classes in
the dataset as the set of potential text pairings and predict the most probable
(image, text) pair according to CLIP. In a bit more details, they first compute the
feature embedding of the image and the feature embedding of the set of possible
texts with their respective encoders. The cosine similarity of these embeddings
is then calculated and normalized into a probability distribution via a softmax
operation.

The system was trained on 400M image-text pairs from the internet and
evaluated on 27 image datasets that contains different kinds of images: satellite
images, car models, medical images, city classification, etc. Figure 7 shows that
CLIP is competitive with a fully supervised linear classifier fitted on ResNet-50
features as the CLIP classifier outperforms it on 16 datasets, including Ima-
geNet. On the right of the figure, the number of labeled examples per class a
linear classifier requires to match the performance of the zero-shot classifier is
represented. Performance varies widely from still underperforming a one-shot
classifier on two datasets to matching an estimated 184 labeled examples per
class.

5 https://github.com/openai/CLIP.

https://github.com/openai/CLIP
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Fig. 7. CLIP performance on 27 image datasets - image extracted from [16]

The second example of multi-modal transformers is the “Multi-modal trans-
former for video retrieval”6 (MMT) proposed in [10]. This system tries to solve
two tasks. In the first task of caption-to-video retrieval, it is given a query in the
form of a caption (e.g., “How to build a house”) and its goal is to retrieve the
videos best described by it (i.e., videos explaining how to build a house). The
other task is video-to-caption retrieval where it has to find among a collection of
captions the ones that best describe the query video. To solve these two tasks,
the multi-modal transformers use the self-attention mechanism to collect cross-
modal and temporal cues about events occurring in a video. The multi-modal
transformer is integrated in a cross-modal framework, which takes into account
both captions and videos, and estimates their similarity.

The video-level representation computed by the multi-modal transformer
(MMT) consists of stacked self-attention layers and fully collected layers. The
input is a set of embeddings, all of the same dimension, each of them represent-
ing the semantics of a feature, its modality, and the time in the video when the
feature was extracted. In order to learn an effective representation from differ-
ent modalities, the authors use video feature extractors called “experts”. Each
expert is a model trained for a particular task that is then used to extract fea-
tures from video. A transformer encoder produces an embedding for each of its
feature inputs, resulting in several embeddings for an expert. To obtain a unique
embedding for each expert, an aggregated embedding is defined to collect the
expert’s information. To take into account the cross-modality information, the
multi-modal transformer needs to identify which expert it is attending to. To do
so, the authors learn N embeddings to distinguish between embeddings of dif-
ferent experts. Finally the temporal embeddings provide temporal information
about the time in the video where each feature was extracted to the multi-modal
transformer.

6 https://github.com/gabeur/mmt.

https://github.com/gabeur/mmt
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The authors apply their method on three datasets: MSRVTT, ActivityNet
and LSMDC. While MSRVTT and LSMDC contain short video-caption pairs
(average video duration of 13s for MSRVTT, one-sentence captions), ActivityNet
contains much longer videos (several minutes) and each video is captioned with
multiple sentences. The authors show that the proposed system obtains state-
of-the-art results on all the three datasets.

5 Conclusion

In this chapter, the adaptation of the Transformers architecture, developed for
natural language processing tasks, to visual or multimodal data is presented. The
chapter mainly focuses on data representation and the necessary modifications
to the management of data represented in the form of a 2-D matrix. To this end,
some papers proposed to introduce positionnal embeddings, either absolute or
dynamically generated, while others integrate convolutions in the Transformers
architecture to capture local spatial context. Dealing with video data further
complicates the problem as it requires to account for the temporal dimension.
These recent applications of the Transformers architecture to these new domains
have shown great potential, outperforming previous approaches when apply on
purely visual data to reaching state-of-the-art results on multi-modal data.

In order to go further in understanding the issues related to the use of Trans-
formers in computer vision, several additional readings are recommended. Con-
cerning the specificities related to the representation of images, Dong Ping Tian
proposes an extensive overview on image feature extraction and representation
techniques in Computer Vision [15]. More details about CNNs architecture can
be found in [12] to understand both the theory behind CNNs and to gain hands-
on experience on the application of CNNs in computer vision. Finally, regarding
the internal representation structure of Vision Transformers (ViT) and CNNs,
Raghu et al. analyze the differences between the two architectures, how are
Vision Transformers solving these tasks; are they acting like convolutional net-
works, or learning entirely different visual representations [17]?
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Abstract. The Transformer, a model relying entirely on the attention
mechanism, brought significant improvements in performance on several
natural language processing tasks. This chapter presents its impact on
the speech processing domain and, more specifically, on the automatic
speech recognition task. A short history of the evolution of automatic
speech recognition systems is also given. A selection of important works
making use of transformers are presented, as well as pretraining self-
supervised architectures.
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1 Introduction

Spoken communication is a fast, natural, and simple way of communicating
information that we learn from an early age to make us all experts. It is thus
an obvious way of communicating and interacting with a system. In order to
transmit the information for further processing, the conversion to text is typically
required. This is done through a process called automatic speech recognition
(ASR). In this chapter, we will focus on the use of the Transformer architecture
for ASR systems.

A speech signal contains much more information than its pure verbal aspects.
It contains the speaker’s voice characteristics. It varies according to the expres-
sivity and psychological state of the speaker, among several other factors. Sev-
eral variations may occur: the timbre, the vocal quality, the disfluencies, or the
prosody (i.e., melody, intensity, rhythm, etc.). Hence, it is a complex mixture of
variations. Naturally, we tend to adjust our articulation of each phoneme produc-
tion according to its direct context, before or after. This phenomenon is called
coarticulation. Moreover, coarticulation leads to the perception that the signal
is continuous. There is thus no obvious segmentation at each phoneme or even
word boundary. There is also the problem of rate variation, which induces tem-
poral distortions. Speech information does not only depend on production but
also transmission, perception, and understanding constraints, the context vari-
ability of acoustic conditions, the attention of the listener, their hearing abilities,
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etc. Besides variation, another challenge arises from the linguistic point of view:
homophonies, i.e., when different words are pronounced identically.

This chapter will be presented from a historical perspective. After this intro-
duction, we will start in Sect. 2 with a summary of the history of ASR archi-
tectures, long before the advent of Transformers. In Sect. 3, we will describe
some prominent solutions designed around Transformers. In Sect. 4, we will talk
more generally about Transformers as representations of speech and introduce
self-supervised learning in the context of ASR applications.

2 Historical Perspective

2.1 The Prehistory

The 60s: Rule-Based Approach (Dawn of AI). In 1960, Gunnar Fant,
a Swedish researcher who specialized in speech synthesis, published the book
Acoustic theory of speech production [12], which introduced the source-filter
model of speech production. The source-filter model proposes to approximate
speech production as a combination of a sound source, the vocal folds, and a
linear filter, the vocal tract. Its simplicity and good approximation allowed the
building of robust systems both in speech synthesis and speech recognition appli-
cations.

In 1966, Fumitada Itakura (Nagoya University) and Shuzo Saito (Nippon
Telegraph and Telephone, NTT) proposed the Linear predictive coding (LPC)
method to model speech for speech recognition [41]. LPC is based on the source-
filter model approximation, with the assumption that voiced phonemes are pro-
duced by a buzzer at the end of a tube. Some other simple noises are included
for voiceless consonants (e.g., sibilants and plosives). Despite its simplicity, this
model offers a reasonable approximation of speech production in practice.

The 70s: Pattern Recognition (Isolated Words). In 1971, the Advanced
Research Projects Agency (ARPA, now DARPA) funded a five-year program
to demonstrate the capability of a large-vocabulary-connected speech under-
standing system. The program led to the birth of the Carnegie Mellon’s Harpy
speech-understanding system in 1976 [31]. It was able to recognize 1011 words
through a graph search. It used finite-state machines to represent each word
in terms of its phonemes and expanded the result into a network of possible
phoneme sequences. Given an input, it performed a probabilistic search through
the network, taking into account the acoustic matches between phonemes and
segments of the acoustic signal [40].

In 1968, Vintsyuk, a Ukrainian researcher, invented the dynamic time warp-
ing (DTW) algorithm [45] to tackle speech recognition by taking into account
the variation in speaking speed. The principle was to process speech signals into
short frames and align them to those of a reference speech recording of a list of
words. Then, using a distance metric, the closest word to the processed signal
was selected as the transcription candidate. The success of this approach for the
recognition of isolated words illustrates the success of engineering approaches.
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2.2 Statistical-Based ASR

The 80s: Statistical Approaches (Continuous Speech). Since the late 70s,
James and Janet Baker, a couple of researchers from Carnegie Mellon University
(CMU), began using the hidden Markov model (HMM) for speech recognition.
The main advantage of the HMM is that it is a doubly stochastic process allowing
to take into account both the intrinsic variability of speech and the structure
of the language in a unified probabilistic model. James and Janet Baker later
founded Dragon systems, which would later develop the first consumer product
for speech recognition.

During the same period, Frederick Jelinek and his colleagues at IBM indepen-
dently discovered the use of HMMs for speech recognition. They built Tangora,
a voice-activated typewriter that could handle a 20,000-word vocabulary. Even
though HMMs were supposed to be too simplistic to account for the complexity
of human languages, their performance on speech recognition tasks surpassed
those of rule-based systems built by linguists. Jelinek famously said: Anytime a
linguist leaves the group, the recognition rate goes up.

A crucial development for speech recognition during the same period is the
use of the n-gram language model (LM) that estimates the conditional proba-
bility of a word given its previous sequence of n words. In 1987, Katz proposed
the back-off model [24] that made the n-gram model practical for generative
purposes, despite its sparsity issue. It allowed the smoothing of probabilities by
progressively decreasing sequence length when a particular sequence was not
present in the training corpus.

The 90s: Birth of Neural Architectures. In 1990, Dragon Systems released
Dragon Dictate, the first consumer product for speech recognition. It was fol-
lowed in 1997 by the initial release of the software package Dragon Natu-
rallySpeaking, which still exists today and is now owned by Nuance Commu-
nications.

In 1992, Lawrence Rabiner and his team at AT&T Bell Laboratories devel-
oped the Voice Recognition Call Processing (VRCP), a service to route telephone
calls without the intervention of human operators [37].

During the same decade, several critical neural architectures that will allow
for speech representation were proposed.

In his diploma thesis at the Technical University of Munich, Sepp Hochreiter,
under the supervision of Jürgen Schmidhuber, outlined the initial version of a
solution to the vanishing gradient problem in recurrent neural networks (RNN):
the Long short-term memory (LSTM) [18]. This architecture will later become
the leading architecture used for sequence-to-sequence problems such as machine
translation or speech recognition.

In 1995, Yann LeCun, in collaboration with Yoshua Bengio, both also at
AT&T Bell Laboratories at that time, developed the Convolutional neural
network (CNN) [25], initially in the context of optical character recognition.
They also developed a version of the gradient descent algorithm for neural
networks [26]: gradient back-propagation. It allowed breakthrough speed per-
formance in neural networks training convergence.
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The 2000s: International Evaluation Campaigns. Since the end of the
90s and through the 2000s, the DARPA and the National Institute of Standards
and Technology (NIST) funded and started coordinating annual international
assessment campaigns. These campaigns made several large corpora available,
such as DARPA, which funded the famous collection of the Switchboard tele-
phone speech corpus. These large corpora, along with the increased performance
of computers and algorithms, participated in the steep rise of ASR systems.

2.3 Neural-Based ASR

The 2010s: Introduction of Deep Neural Networks. Neural networks were
initially applied mainly to the LM component of ASR systems1. However, since
2010, there has been a steady increase in the use of Deep neural network (DNN)
architectures for acoustic modeling [17] as well. The use of these architectures led
to a significant improvement of speaker-independent ASR. Previously, systems
used to require an adaptation training phase to be able to recognize new speakers’
voices.

This period also saw the multiplication of free consumer applications, e.g.,
Apple Siri in 2011, Google Now in 2012, and Microsoft Cortana in 2014.

In 2017, Microsoft announced that the Human parity milestone was reached
on the Switchboard conversational speech recognition corpus [48].

Early DNN-Based Architectures. The ASR task aims to find the most likely
text sequence Y ∗ that produced the given audio features X. The acoustic and
LMs specify the most likely sequence Y ∗ explicitly through:

Y ∗ = argmax
Y

P (X | Y )P (Y ) (1)

The different components required to perform ASR were initially specialized
and relied on principles and techniques that were specific to their domain. The
idea was to combine state-of-the-art architectures that improve all components
of the ASR system when compared to the standard statistical approach (see
Fig. 1). Here are examples of papers proposing neural architectures that could
be combined as components depicted in Fig. 1:

1. Learning a better representation of speech sound waves using restricted Boltz-
mann machines [20]

2. Deep neural networks for acoustic modeling in speech recognition [17]
3. Grapheme-to-phoneme conversion using Long Short-Term Memory recurrent

neural networks [39]
4. Recurrent neural network-based language model [32]

1 For more information on neural networks applied to language modeling, see François
Yvon, Transformers in Natural Language Processing, Advanced course on Human-
Centered AI, Editors Mohamed Chetouani, Virginia Dignum, Paul Lukowicz, and
Carles Sierra, Springer Lecture Notes in Artificial Intelligence (LNAI), 2022.
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Fig. 1. Example of architecture including state-of-the-art neural-based components,
compared to former statistical approach (inspired by Stanford cs224n 2017 class
lecture 12).

Since each component is trained independently, according to different objec-
tive functions, errors within each component may amplify those in others.
Although all components offer good performance for each task they were trained
for, their combination may lead to a suboptimal solution.

2.4 End-to-End Approach

A solution to solve the problem of independent component-based ASR archi-
tecture would be to train a global end-to-end model, which encompasses all
components with a unique objective function [14].

Connectionist Temporal Classification Loss. A challenge of end-to-end
models is to find an objective function that can fit the possibly very different
structures of the input and output sequences.

Connectionist temporal classification (CTC) [13] is a loss function for training
recurrent neural networks in the context of sequence-to-sequence problems where
timing may differ between the input and output sequences. It is typically used for
tasks such as handwriting recognition, phone-based, or character-based speech
recognition.

The principle is to find the best path through a matrix of softmax outputs at
each frame targeting the whole dictionary (and a blank token). It can be solved
efficiently through a dynamic programming algorithm.

Gradients can be calculated from the CTC scores and be back-propagated
to update the neural network weights. As shown in Fig. 2, a softmax is first
computed through the network for each feature frame. Figure 3 shows an example
of a result of finding the best path through the matrix of softmax at each frame
for the word cat.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf
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Fig. 2. CTC: A matrix of softmax, corresponding to the token vocabulary probability
distribution at each frame (inspired by Stanford cs224n 2017 class lecture 12).

Fig. 3. CTC: Find the best path through the matrix of softmax for the word “cat”
(inspired by Stanford cs224n 2017 class lecture 12).

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf


Transformers in Automatic Speech Recognition 129

3 Transformers for ASR

3.1 Attention for Speech

Attention in Neural Machine Translation. There is still an issue with end-
to-end sequence-to-sentence models. As Raymond Mooney stated during the
opening of his invited talk at the ACL-2014 Workshop on Semantic Parsing:
You can’t cram the meaning of a whole %&!$# sentence into a single $&!#%
vector!.

The main aim of attention is thus to provide a solution to this sequence-to-
sequence bottleneck problem2. The core idea of attention is that on each step of
the decoder, a direct connection encoder is provided to focus on a particular part
of the source sequence. Decoders allow looking directly at the source, bypassing
this bottleneck. It thus significantly decreases the vanishing gradient problem by
providing shortcuts to distant states.

Attention also allows for some interpretability since one can inspect what
the decoder was focusing on through its soft alignment values. At last, this soft
alignment allows learning a structure without the need for an explicit loss.

Attention in General. In lecture 7 of his cs224n class at Stanford, Christopher
Manning proposes this intuitive general definition of attention:3

A technique to compute a weighted sum of vector values, depending on a
vector query. The query attends to the values. For example, in the sequence-to-
sequence and attention Model, the query vector serves as a hidden state decoder,
and the values vector encodes the hidden states.

The attention-weighted sum could be thought of as a selective summary
of the information contained in the values, with the query determining which
values to highlight. It is a way to obtain a fixed-size representation of a set of
representations (the values) depending on some other representation (the query)
(see Footnote 2).

Attention in Speech: Listen, Attend and Spell. To the best of our knowl-
edge, the paper “Listen, Attend and Spell” [5] is the first work to implement
attention in speech processing. It consists of an ASR system based on a neural
network architecture NN that learns to transcribe speech utterances to charac-
ters. Unlike traditional DNN-HMM-based models, it learns all components of a
speech recognizer jointly.

It is based on two main parts: the listener and the speller. The listener
consists of an RNN, which serves as an encoder. More precisely, it is based on a

2 For more information on the use of attention for language modeling, see François
Yvon, Transformers in Natural Language Processing, Advanced course on Human-
Centered AI, Editors Mohamed Chetouani, Virginia Dignum, Paul Lukowicz, and
Carles Sierra, Springer Lecture Notes in Artificial Intelligence (LNAI), 2022.

3 http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf (Stan-
ford cs224n Lecture 7, 2021).

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf
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pyramidal bidirectional LSTM (BLSTM) structure. It takes as input sequence
the speech expressed as filterbank spectrum (FB) x and encodes it into the
hidden layer h. The speller is an attention-based BLSTM decoder that generates
the characters y from the hidden layer h.

The attention method is based on a probability distribution. For each out-
put step, the speller LSTM produces a probability distribution over the next
character, conditioned on all previous characters, through a softmax layer.

3.2 Attention in Speech

Transformers: Why Not Use only Attention? Recurrent sequence-to-
sequence models using encoder-decoder architecture yield good performance in
speech recognition, but their recurrence process limits the training paralleliza-
tion, which makes them slow. A solution to improve speed would be to compute
speech representation through self-attention instead of recurrent networks, such
as LSTM or Gated recurrent unit (GRU). Transformers implement two types of
attention: self-attention for representation and encoder-decoder attention [44].

3.3 Transformer-Based ASR Models

Speech-Transformer. An early adaptation of the Transformer architecture for
a speech recognition system is the Speech-Transformer [9]. It presents minimal
changes in the architecture when compared to the original Transformer model.
As expressed in the title of the paper, it is thus a sequence-to-sequence model
without recursion. It takes as input of the encoder the spectral representation
of the speech and produces words as outputs of the decoder.

Two adaptations were necessary to accommodate for speech.

(1) The input embeddings were produced using a CNN layer. This approach
notably facilitates the alignment of the speech frames given as input and
the output sequence of words, which typically are of different lengths.

(2) The attention mechanism was modified to accommodate the characteristics
of the spectral input features. A novel 2D-Attention mechanism is proposed
to attend jointly for the time and the frequency axes. As shown in Fig. 4, it
still resorts to multi-head attention as in the original model.

Three CNNs are first applied to the spectrograms to build the queries, keys, and
values representations independently. Two types of attention are then performed
to attend to both temporal and spectral dependencies. The outputs of the 2D-
Attention module are finally concatenated and fed into the last CNN layer. The
rest of the architecture is similar to the original Transformer model.

The system exhibits slightly lower performance than traditional state-of-the-
art models, it seemed to be proposed rather as a proof of concept than as a new
architecture with a strongly competitive contribution.

The authors report their evaluation on the Wall Street Journal (WSJ) speech
recognition dataset: 10.92% word error rate (WER) for their best model (WSJ,
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eval92 [35]). The state-of-the-art character-based results without LM and using
a conventional sequence-to-sequence model were given by the Very deep convo-
lutional networks model [49] with 10.53%.

Moreover, the training time reported by the authors was of 1.2 days on a
single GPU (NVIDIA Tesla K80), while a training time of 5 days on 10 GPUs
was reported for the same corpus by Zhang and colleagues [49] (the GPU models
were not reported), which seems an impressive improvement. Though, a system
based on a combination of CNN and pyramidal BLSTM layers with attention,
provided in the ESPnet toolkit and published the same year (2018) [46], reached
a WER of 10.1% in just 5 h of training on the same corpus on a single GPU as
well.

Fig. 4. 2D-Attention mechanism. Circled T’s represent transposition operations (Fig.
inspired by [9]).

CTC Loss and Transformers. To try to improve the Speech-Transformer
model, Karita and colleagues [23] proposed to integrate the CTC loss into the
speech transformer architecture.

According to the authors, CTC addresses two problems with transformer-
based ASR architectures.

(1) Slower convergence. Recent advances in RNN-based ASR systems [19,46]
allow for a faster increase in validation accuracy over wall clock time when
compared to the Speech-Transformer implementation. If the latter tends to
take less time per iteration, it needs many more epochs to converge.
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(2) The complex integration of the LM in joint beam search decoding. They
reported drastically different behaviors between the Speech-Transformer sys-
tem and the LM component, which made them difficult to combine. CTC
joint training and decoding applied to transformer-based ASR architecture
made the convergence of the model faster since CTC allows for learning the
alignment of speech features and transcription explicitly [13]. A performance
increase in terms of WER was also reported: 10.2% on the WSJ without LM
(and 4.5% using an LM).

Conformer. So far, we have seen that transformer-based models, as well as
mixtures of CNN-RNN models, can be fast while offering state-of-the-art perfor-
mance. Though, in principle, transformer models are designed to capture global
information effectively. However, CNN layers are more capable of extracting
fine-grained local patterns. The Conformer model [15] aims to find a parameter-
efficient way of combining CNN and transformers to model both local and global
dependencies of audio sequences. Conformer stands for convolution-augmented
transformer for speech recognition.

One limitation of CNN is that many layers are required to capture the global
context. Bello and colleagues propose to combine convolution and self-attention
to learn both local and global features [4].

The Conformer architecture was inspired by an architecture targeting
machine translation tasks on mobile applications [47], using a multi-branch
architecture that splits and then concatenates self-attention and convolution
branches. Gulati and colleagues propose a combination of self-attention to cap-
ture the global interaction and convolution to capture the relative-offset-based
local correlations. These self-attention and convolution are sandwiched between
a pair of feed-forward modules (see Fig. 5).

The authors report state-of-the-art accuracies on the LibriSpeech bench-
mark [34]: 2.1% WER (4.3% without using an LM). Moreover, they report a
competitive performance of 2.7% (6.3% without using an LM) with a constrained
model to 10M parameters.

Unfortunately, no results are reported using the WSJ corpus, although Lee
and colleagues [27] report 9.9% WER on the WSJ eval92 test set with a modified
version of the Conformer, on which they applied a CTC loss.

4 Transformers as Representations of Speech

In order to obtain state-of-the-art results, ASR models require large tran-
scribed audio corpora. In natural language processing, the BERT model [8] and
its clones4 provide several extended context representations trained on large
4 For more information on Transformers as representations in natural language pro-

cessing, see François Yvon, Transformers in Natural Language Processing, Advanced
course on Human-Centered AI, Editors Mohamed Chetouani, Virginia Dignum, Paul
Lukowicz, and Carles Sierra, Springer Lecture Notes in Artificial Intelligence (LNAI),
2022.
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Fig. 5. Conformer encoder model architecture: two feed-forward layers with residual
connections (Fig. inspired by [15]).

unlabeled data. These representations can then be used with or without resort-
ing to fine-tuning to perform downstream tasks with usually substantial perfor-
mance improvements.

The question is: can SSL be effectively applied to speech?

4.1 Self-attention in Speech

The textual representation is a discrete, symbolic form of information. The
speech signal is continuous. It thus needs to be discretized to obtain a spoken
element dictionary and a tractable representation problem. It could be argued
that, since speech is sampled and quantized to be stored and processed within
a computer, it is in practice discrete rather than continuous. Though, the large
number of samples and possible values on, e.g., a 16 bits-scale at 16 kHz, makes
the modeling of a given frame impractical.

Different options are proposed to discretize the speech features. Liu and
colleagues [29] use a simple reshape approach as a downsampling technique.
Dong and colleagues, on their Speech-Transformer [9], use CNN layers with a
particular stride. On vq-wav2vec [2] and wav2vec 2.0 [3], a vector quantization
approach was proposed.
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In this section, we will focus on the wav2vec architecture and its evolution
since it is the SSL model that has had the most impact in the field of speech
processing so far.

4.2 Wav2vec

First Version. Since 2017, various works have tackled speech SSL [6,7,22] and,
more recently, Wav2vec [3], which focused primarily on improving the supervised
speech recognition downstream task. It consists of a fully convolutional archi-
tecture that takes raw audio as input to generate a contextual representation. It
can thus be easily parallelized.

Similarly to the word2vec model [33]—in natural language processing appli-
cations, it resorts to a contrastive loss to predict future samples from a given
context. Predicting raw samples would require the fine modeling of the data
distribution, which is not tractable. The raw signal is thus first encoded into a
downsampled feature representation.

The model resorts to two CNNs, the encoder and the aggregator. The encoder
produces a representation of each time step, which consists in a frame of 80 log-
Mel filterbank coefficients extracted through a 25 ms sliding window every 10 ms
(100 Hz). At the same rate and for each time step, the aggregator then combines
multiple time steps in an aggregated representation. At last, given an aggregated
representation, the model is trained to discriminate a sampled representation
positioned k steps ahead, from uniformly sampled distractors, by minimizing
the contrastive loss.

A low-resource setup is simulated to illustrate the ASR improvement in terms
of WER when using the pretrained wav2vec model. The wav2vec model is pre-
trained on WSJ (81 h) and LibriSpeech (960 h) datasets. The acoustic model
performing the ASR task is based on the wav2letter++ [36] system. The base-
line is given by using log-Mel filterbanks features. To simulate the low-resources
setup, the training set is limited to 8 h out of the 81 h of the WSJ training set
(si284). When wav2letter++ is trained on features extracted from the wav2vec
pretrained model, the authors report a WER of 9.7%, compared to 15.2% for
the baseline (36% increase) on the WSJ eval92 test set. It should be noted that
wav2letter++ includes an LM, so the result should not be compared to the
results of the models presented in previous sections.

Vector Quantization. The original wav2vec model was purely convolutional.
The next version, named vq-wav2vec [2], aimed at taking advantage of SSL
transformer-based architecture such as BERT. As explained in Sect. 4.1, speech
needs to be discretized to obtain a tractable representation to create speech units
that correspond to some sort of spoken element dictionary. Hence, vq-wav2vec
includes an algorithm that can identify these speech units and learn them on
the fly by quantizing the data.

First, as in the original wav2vec model, the 25 ms raw audio chunks are fed
into a CNN layer, the encoder, which outputs a speech representation. This rep-
resentation is then assigned to a fixed inventory of discrete representations that
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act as labels. These quantized representations are fed in another CNN layer, the
aggregator, similarly to the original wav2vec model, to obtain the larger con-
textual units. Two techniques were investigated to choose the discrete variables:
the Gumbel-Softmax approach [21] and the online k-means clustering [10,43].

The quantized representations are treated by the model as if they were word
vectors, just like in natural language processing applications. The BERT model
is then trained on the representations, and the process becomes identical to the
one in a sequence-to-sequence model.

The WER results are reported using vq-wav2vec Gumbel-Softmax and
BERT-base model on the WSJ eval92 test set, without resorting to an LM:
9.39%. Using the 4-gram character-based LM [16]: 3.62%. With the convolu-
tional character-based LM (CharConvLM) [28]: 2.34%.

Wav2vec 2.0. The current iteration of the model is named Wav2vec 2.0 [3].
Instead of resorting to the BERT model after the quantization of the represen-
tation, Wav2vec 2.0 incorporates its own transformer network. Its architecture
allows the model to jointly learn the inventory—using similar techniques as in
the vq-wav2vec model—and the context representations through the transformer
architecture. It looks at the entire sequence at every 25 ms raw audio frame
encoded with the CNN layer.

This version of wav2vec is bidirectional. It still resorts to contrastive losses,
but contrary to the vq-wav2vec model, it is not causal. Masked frames are
obtained by randomly sampling starting frame positions and expanding the spans
to 10 frames in total to obtain large enough chunks of audio (span lengths are
250 ms or larger since span overlaps may occur). The aim is to ensure that
the prediction task is not too trivial. The redundancy of speech signals makes
the prediction of small chunks too simple. At last, to prevent the collapse case
when the model always predicts the same speech unit, a diversity penalty is
introduced, using an entropy prior.

To fine-tune the model, a single linear projection is applied to the output
of the model and trained using a CTC loss. As in the vq-wav2vec model, the
decoder is the wav2letter model using the 4-gram LM, as well as the Transformer
LM.

Unfortunately, no results have been reported on the WSJ in Wav2vec 2.0’s
paper; they instead used the LibriSpeech dev/test sets. The model reaches
1.8/3.3 WER on the clean/other test sets, using all available labeled data of
LibriSpeech. In the low-resource condition, it achieves 4.8/8.2 WER with a limit
of 10 min of labeled data and 53k hours of pretraining on unlabeled data (Fig. 6).
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Fig. 6. LibriSpeech benchmark with performance in WER on the test-other dataset
(Fig. inspired by [1])

5 Conclusion

After a brief overview of the historical evolution of ASR, a selection of recent
transformer-based architectures was presented. Few modifications were necessary
to apply the transformer architecture to speech signals. Mainly the segmentation
and quantization of the signal, usually through the use of CNN layers and the
application of a two-dimensional attention mechanism to attend to both the time
and frequency domains.

After several iterations from the earlier implementations, significant improve-
ments are observed for tasks involving a language model, as well as those without
any language knowledge input.

Solutions based on self-supervised pretraining exhibit impressive results.
However, few experiments have been published yet to reproduce these results
on other datasets. One such attempt, LeBenchmark [11], trained their own SSL
models for French and evaluated them for different speech tasks, including ASR.
If they found that their learned SSL models were particularly beneficial for most
low-resource tasks, they reported similar results for end-to-end ASR when com-
pared to more classical approaches based on spectral inputs (Mel Filterbanks).

We are still at the beginning of the study of these architectures; more
work is required to understand them better and improve their performances.
It is also possible that the research trends are about to turn back to more
classical neural networks. In the computer vision field, for instance, several
recent works challenge transformer-based to more classical convolutional net-
work approaches [30,38,42].
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Abstract. How do people teach robots tasks? Here, we focus on main
methods and models enabling humans to teach embodied social agents
such as social robots, using natural interaction. Humans guide the
learning process of such agents by providing various teaching signals,
which could take the form of feedback, demonstrations and instructions.
This overview describes how human teaching strategies are incorporated
within machine learning models. We detail the approaches by provid-
ing definitions, technical descriptions, examples and discussions on lim-
itations. We also address natural human biases during teaching. We
then present applications such as interactive task learning, robot behav-
ior learning and socially assistive robotics. Finally, we discuss research
opportunities and challenges of interactive robot learning.

Keywords: Robot learning · Interactive machine learning ·
Reinforcement learning · Learning from feedback · Learning from
demonstrations · Learning from instructions · Human teaching
strategies

1 Introduction

Robot learning deals with algorithms, methods and methodologies allowing a
robot to master a new task such as navigation, manipulation and classification
of objects. At the intersection of machine learning and robotics, robot learning
addresses the challenge of task learning, which is defined by a goal (e.g. grasping
an object). The aim is to identify a sequence of actions to achieve this goal.
Multi-task learning, transfer learning or life-long learning are also considered for
this purpose.

Several trends of robot learning take inspiration from human learning
by studying developmental mechanisms [61]. In particular, several of such
trends focus social learning since human learning often occurs in a social
context. The computational approaches of social learning are formulated

This work has received funding from European Union’s Horizon 2020 ICT-48 research
and innovation actions under grant agreement No 952026 (HumanE-AI-Net) and from
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 765955 (ANIMATAS).

c© Springer Nature Switzerland AG 2023
M. Chetouani et al. (Eds.): ACAI 2021, LNAI 13500, pp. 140–172, 2023.
https://doi.org/10.1007/978-3-031-24349-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24349-3_9&domain=pdf
http://orcid.org/0000-0002-2920-4539
https://doi.org/10.1007/978-3-031-24349-3_9


Interactive Robot Learning: An Overview 141

as an interaction between a tutor/teacher/demonstrator and an artificial
learner/student/observer. The aim of the teacher is to influence the behavior of
the learning agent by providing various cues such as feedback, demonstrations or
instructions. Interactive task learning [56] aims at translating such interactions
into efficient and robust machine learning frameworks. Interactive task learning
is usually considered to be an alternative to autonomous learning. The latter
requires an evaluation function that defines the objective of the task. The robot
autonomously learns the task by continuously evaluating its actions using this
function. Interactive learning assumes that a human will be able to assist the
robot in the evaluation by providing feedback, guidance and/or showing opti-
mal actions. In this chapter, we describe the fundamental concepts of interactive
robot learning with the aim of allowing students, engineers and researchers to
get familiar with main definitions, principles, methodologies, applications and
challenges.

The chapter is structured as follows. Section 2 presents learning objectives,
notations, abbreviations and relevant readings. Section 3 provides a background
on reinforcement learning and robot learning. Section 4 describes the types
of human interventions in both traditional supervised machine learning and
interactive machine learning. Section 5 discusses human teaching strategies in
interactive robot learning. In Sects. 6 to 8, we provide definitions, describe
learning methods and examples as well as limitations of each strategy: feed-
back (Sect. 6), demonstrations (Sect. 7) and instructions (Sect. 8). Section 9 gives
deeper insights about modeling approaches to take into account natural human
biases during teaching. Section 10 presents several applications of interactive
robot learning: interactive task learning, learning robot behaviors from human
demonstrations or instructions, and socially assistive robotics. Finally, in Sect. 11
sums up main observations and describes several opportunities and challenges
of interactive robot learning.

2 Tutorial Scope and Resources

2.1 Learning Objectives

– Awareness of the human interventions in standard machine learning and inter-
active machine learning.

– Understand human teaching strategies
– Gain knowledge about learning from feedback, demonstrations and instruc-

tions.
– Explore ongoing works on how human teaching biases could be modeled.
– Discover applications of interactive robot learning.

2.2 Notations

– s, a: state and action, s ∈ S and a ∈ A.
– a∗: optimal action.
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– H(s, a): Human Feedback at state s for robot action a.
– D = {(st, a

∗
t ), (st+1, a

∗
t+1)....}: Human Demonstrations, a state-action

sequence.
– I(s): Human Instruction at state s, Prt(a|i).
– Pr(s′|s, a): the probability of going from state s to state s′ after executing

action a.
– <S,A, T,R, γ>: State & Action spaces, State-Transition probability function

(Pr(s′|s, a)), Reward function, and the discount factor ([0, 1]).
– r(s, a): reward at state s for action a.
– π: agent/robot policy.
– V π(s): state-value function.
– Qπ(s, a): action-value function.

2.3 Acronyms

– AI: Artificial Intelligence
– HRI: Human Robot Interaction
– IML: Interactive Machine Learning
– IRL: Inverse Reinforcement Learning
– ITL: Interactive Task Learning
– LfD: Learning from Demonstrations
– MDP: Markov Decision Process
– ML: Machine Learning
– RL: Reinforcement Learning

2.4 Selected Relevant Readings

– Robot learning from human teachers, Chernova & Thomaz (2014) [21]
– Interactive task learning, Laird et al. (2017) [56]
– Recent advances in leveraging human guidance for sequential decision-making

tasks, Zhang et al. (2021) [100]
– Reinforcement Learning With Human Advice: A Survey, Najar & Chetouani

(2020) [67]
– Survey of Robot Learning from Demonstration, Argall et al. (2009) [6]
– Recent advances in robot learning from demonstration, Ravichandar et al.

(2020) [80]
– A survey on interactive reinforcement learning: Design principles and open

challenges, Cruz et al. (2020) [24]
– On studying human teaching behavior with robots: A review, Vollmer &

Schillingmann (2018) [96]
– Cognitive science as a source of forward and inverse models of human decisions

for robotics and control, Ho & Griffiths (2022) [40]
– Towards teachable autonomous agents, Sigaud et al. (2022) [85].
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3 Background

3.1 Fundamentals of Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning concerned with
how an autonomous agent learns sequential decisions in an uncertain environ-
ment by maximizing a cumulative reward [87]. This category of problems is
modeled as a Markov Decision Process (MDP), which is defined by a tuple
<S,A, T,R, γ> with S the state space, A the action space, T : S × A →
Pr(s′|s, a) state-transition probability function, where Pr(s′|s, a) is the proba-
bility of going from state s to state s′ after executing action a and R : S×A → R
the reward function, which represents the reward r(s, a) that the agent gets for
performing action a in state s. The reward function R defines the objective of
the task. A discount factor γ ([0, 1]) controls of the trade-off between immedi-
ate reward and delayed reward. In the reinforcement learning framework, the
dynamics of the autonomous agent is captured by the transition function T : at
time t, the agent performs an action at from state st, it receives a reward rt and
transitions to state st+1.

Example: Figure 1 illustrates the concept of RL in robotics in which the state
space describes the environment: position of boxes; action space the possible
robot actions: arm motion. After each action, the robot receives a binary reward.

Fig. 1. RL learning framework used to model the environment (state space S), robot
actions (action space A) and the task that should be achieved formulated by an MDP
(Markov Decision Process). The robot receives a reward R after each action (adapted
from [66])

The aim of RL is to find a policy π : S → A which maps from the state s to
a distribution on the action A, this is the decision function. An agent endowed
with a policy π will behave in a certain manner to achieve a task. The policy
could be either deterministic or stochastic [87]. The optimal policy π∗ maximizes
agent’s long-term rewards. Learning is performed with a trial-and-error strategy.
The long-term view is defined by the state-value function V π(s), which specifies
the expected gain for an agent to be in a particular state s with a policy π.
Similarly, the action-value function Qπ(s, a) defines the expected gain for policy
π starting from state s taking action a.
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Several algorithms of RL have been proposed (see [87] for an overview). A fun-
damental problem faced by some of the RL algorithms, is the dilemma between
the exploration and exploitation. Exploration allows the autonomous agent to
gather new information that may improve future reward and consequently the
policy (eg., ε−greedy approach). The exploitation refers to making the best deci-
sion given the current model. Several modern RL algorithms have been proposed
to tackle this critical dilemma of exploration and exploitation.

3.2 Robot Learning

RL and Robotics. In [52], the authors discuss the challenges, problems and
opportunities of reinforcement learning in the context of robotics. In particular,
the physical embodied nature of robots, the nature of tasks and the limited per-
ception of the environment often result in problems that should be represented
with high-dimensional continuous states and actions. In addition, these states
are not always completely observable. Exploration of actions is costly, difficult
to reproduce and sometimes unsafe. The specification of a “good” reward func-
tion is not always straightforward and requires a significant amount of domain
knowledge.

Human Interventions in the Robot Learning Process. In the context of
human-robot interaction, reinforcement learning could be employed for several
purposes:

– Interactive Task Learning. The aim is to learn to perform tasks with a human
involved in the learning process by evaluating and guiding the learning process
[92].

– Learning Communicative Behaviors. The aim is to learn to generate multi-
modal robot behaviors such as legible motion (transparency) [16] or select
appropriate behaviors during interaction in order to adapt to the human
partner [64].

The focus of this chapter is Interactive Task Learning. We consider tasks that
are performed by embodied agents in the physical world or in a simulation of it.
Such agents could use their sensors and effectors to both perform the task and
communicate with the human: manipulating an object, pointing to indicate an
object. This chapter discusses the role of interaction in the agent/robot learning
process.

Communication in the Robot Learning Process. Human interventions
could enrich task learning in the form of teaching signals to guide the learning
process such as gaze at objects or spoken language for feedback. Demonstration
of a task is an interesting paradigm since it gathers action and communication
about it at the same time. Similarly, robot communication using transparency
and explainability mechanisms of robots could include both task and commu-
nicative goals directed actions. For example, generation of legible motions [28,98]
facilitates human interpretation of the robot task.



Interactive Robot Learning: An Overview 145

The objective of a task could be to communicate. For example to address
the symbol grounding problem [88], both physical and social symbol grounding,
there is a need for agent to connect sensory and symbolic representations in
order to be able to process them, reason about them, generate new concepts and
communicate with humans in particular.

The distinction between task achievement and communication is not always
easy and sometimes not relevant at all. However, being able to qualify the goal
of learning is important for interactive and autonomous agents. For this pur-
pose, interactive learning is conceptualized as a mutual exchange process using
two main communication channels, the social channel and the task channel with
valuable interpretations of several learning strategies from: observation, demon-
stration, instruction or feedback [85].

4 Interactive Machine Learning vs. Machine Learning

The purpose of this section is to introduce the main concepts of interactive
machine learning. Reviewing all the mechanisms of interactive machine learning
is beyond the scope of this chapter. However, understanding the impact of human
interventions during the learning process is important for the content of this
chapter. For this purpose and for a sake of clarity, we only discuss the human
interventions on both the traditional and interactive machine learning processes.

4.1 Human Interventions in the Supervised Machine Learning
Process

Human interventions are already present in the traditional machine learning
process (Fig. 2). The obvious case is human machine interaction: the objective
is to support end-users interaction. However, in most of the machine learning
approaches, humans are present at different stages. They could provide data,
annotations, design the algorithms, evaluate the model, design the interaction
and interact with it (Fig. 2). These interventions are made by different profiles:
users, domain expert, machine learning expert, human-machine expert and end-
users and at different steps corresponding to different time scales in the process:
data collection, annotation, data analysis, algorithm design, interaction design,
model training and evaluation and final end-user model interaction. The impacts
of such interventions are of different natures.

Example: Human emotion recognition systems require data and annotations
to build robust and efficient systems. Data collection is a key phase and usual
approaches rely either on acted or real-life scenarios. In addition, various method-
ologies have been proposed to annotate emotions with different representations
(discrete vs. dimensional). Self-assessment (e.g., asking the data provider for
annotation) or assessment from an external observer [1]. All these methodologi-
cal and experimental choices impact the design, performance and robustness of
the emotion recognition system.
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Fig. 2. Humans in the Machine Learning Process. Data Providers, Domain, Machine
Learning and Human-Machine Interaction Experts as well as End-Users play a key role
in the machine learning process.

4.2 Human Interventions in the Interactive Machine Learning
Process

Interaction with humans is at the core of the Interactive Machine Learning (IML)
process [4]: from the design to the usage (Fig. 3). There is a growing interest for
IML for several applications: web recommendation, e-mail processing, chatbots
or rehabilitation. Interactive Machine Learning is at the intersection of Machine
Learning and Human-Computer/Machine Interaction.

Human interventions are of different nature. While in traditional ML (Fig. 2),
it is usual to collect and process very large datasets with multiple users, inter-
active ML relies on the interaction with the end-user to collect data. The train-
ing, evaluation and usage phases are intrinsically linked, which requires specific
approaches for the design of both algorithms and interactions.

Interestingly, interactive ML opens new ways of lifelong learning, adapta-
tion and personalization of models, which could improve usage and trust. How-
ever, having humans at the center of the process also raises several ethical ques-
tions [56,84] that should be addressed including the definition of requirements
to develop human-centric AI that minimizes negative unintended consequences
on individuals and on the society as a whole [30,57].

Interactive Robot Learning approaches are grounded in Interactive ML [21].
The embodied nature of robots make the researchers to also take inspiration
from human social learning [92] or even modeling its key mechanisms of child
development as done in developmental robotics [61,85]. In the following sections,
we will describe human’s teaching strategies and how they are represented and
modeled to fit interactive machine learning frameworks.

5 Overview of Human Strategies

In this section, we give an overview of the main strategies employed by humans
to teach robots. We consider the situation in which a human provides teaching
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Fig. 3. Humans in the Interactive Machine Learning Process. End-users are both data
providers and model evaluators. Designing the interaction is as important as designing
the models. The Expert becomes an Interactive Machine Learning Expert.

signals to a learning agent (Fig. 4). Teaching signals could take different forms
(e.g., demonstration, instruction) and are at the core of the human teaching
strategy. Most of these strategies assume that humans are rational intentional
agents, optimal with respect to their decisions, actions and behaviors. The con-
cept of intention is used to characterize both the human’s actions and mental
states [13]. In case of interactive robot learning, this means that humans provide
teaching signals with an intention, which is translated into a sequence of actions
aiming at influencing the robot learning.

In Table 1, we describe the main teaching signals considered in human-
robot interaction: feedback, demonstration and instruction. They are respec-
tively used to communicate specific intentions: evaluating/correcting, showing
and telling. Social and task channels are employed to communicate intentions
(Fig. 4). Instructions, gaze or pointing are considered as being conveyed by the
social channel. Manipulation of objects to demonstrate a task exploit the task
channel. These channels could be combined and exploited by both the human
and the robot during the learning process.

The learning agent needs to infer human’s intention from the teaching signals.
However, intentions are not explicit. Ambiguities could occur during communi-
cation. Humans could also intentionally deviate from optimality and apparently
behave as non-rational agents (Sect. 9). The most common strategies are cer-
tainly to learn new tasks by providing feedback, demonstration or instructions
(Table 1). In the following sections, we propose definitions, mathematical formu-
lations and discuss interpretations and teaching/learning costs of such strategies.

6 Feedback

6.1 Representation

Human feedback H(s, a) is considered as an observation about the reward r(s, a).
Binary and Real-valued quantities have been considered in interactive reinforce-
ment learning.
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Fig. 4. Interactive Robot Learning Paradigm: The Human Teacher provides Teaching
signals using Social and/or Task Channels. Teaching signals are performed with an
intention. The Learning Agent/Robot infers the intention from the teaching signal and
exploits them to learn a task. Learning agents could improve learning by increasing
transparency and/or asking for additional information (e.g., labels, features).

Table 1. Description of main Human Teaching Strategies. Robot action is performed
at time-step t. A teaching signal is the physical support of the strategy using social
and/or task channels.

Teaching signals Feedback Demonstration Instruction

Nature Notation H(s, a) D = {(st, a∗
t ), (st+1, a∗

t+1)....} Iπ(s) = a∗
t

Value Binary/Scalar State-Action pairs Probability

of an action

Time-step t − 1 � �
t �
t + 1 �

Human Intention Evaluating/Correcting Showing Telling

Teaching cost Low High Medium

Robot Interpretation State-Action evaluation

Reward-/Value-like

Optimal actions

Policy-like

Optimal action

Policy-like

Learning cost High Low High

6.2 Definition

Human feedback H is produced at t + 1, after the evaluation of the robot’s
action (Table 1). Human feedback is provided with the intention of evaluating
the robot’s action (critique). Human Feedback is considered to communicate
about the performance of a robot’s action. Human feedback is usually termed as
evaluative feedback : the human observes the states st and st+1 and the last robot
action a and then gives a reward signal. The value of the evaluative feedback
depends on the last action performed by the robot.

Teaching with evaluative feedback is a low cost strategy (Table 1). The
actions are performed by the robot using exploration algorithms. The human
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only delivers feedback on the observed actions. However, intervention at each
time-step is not realistic and imposes a significant burden on the human teacher.
This calls for new algorithms able to efficiently integrate human feedback during
learning.

6.3 Learning from Evaluative Feedback

An intuitive way is to remove the reward function R from the reinforcement
approach for task specification (Sect. 3). This results in an MDP\R, an MDP
without a reward function. The reward is then replaced by the human feedback.
Understanding human’s feedback strategy has been the focus of several works
[42,47,68,90]. They all highlight the importance of understanding human’s inten-
tions and the design of adequate algorithms for the exploitation of teaching sig-
nals. To efficiently learn from human feedback, there is a need to go beyond just
considering the human feedback as a reward and eventually combining it with
the reward of the environment.

The usual approach is to design models of human feedback that are able to
capture specific properties of human strategies. This leads to various integration
strategies of Human feedback H into RL systems. There is no clear agreement
on the many ways of achieving this integration but the main approaches rely on
shaping such as:

– Human feedback H as a reward r: reward shaping
– Human feedback H as a value V or Q: value shaping
– Human feedback H as a policy π: policy shaping

We detail the approaches that result from three different interpretations of
human feedback. They all consider shaping as a method to influence the agent
behavior towards a desired behavior [49,68,69].

6.4 Reward Shaping

Human feedback is interpreted as a reward (Table 1). When the agent interacts
with its environment, modeled as a Markov Decision Process (MDP), it receives
a reward r(s, a) and an additional reward shaping reward H(s, a):

r′(s, a) = r(s, a) + β ∗ Ĥ(s, a). (1)

where β, a decaying weight factor, controls the contribution of human feedback
H(s, a) over the environment reward r(s, a).

The reward r(s, a) is first augmented by the human feedback Ĥ(s, a). Then,
the augmented reward r′(s, a) is used to shape the agent. This is usually consid-
ered as an indirect shaping approach [68,77].
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6.5 Value Shaping

Human feedback is interpreted as a human value function (Table 1). The human
evaluates the action by providing a rating of the current agent’s action with
respect to some forecast of future behavior [23,43,48,68,100]. This rating is
employed to augment the action-value function Q(s, a). Shaping method have
been considered in the literature [68]:

Q′(s, a) = Q(s, a) + β ∗ Ĥ(s, a), (2)

where β is a decaying weight factor (see also Eq. 1).
Other approaches consider an estimation of the human value function as done

in TAMER [49] (Sect. 6.7).

6.6 Policy Shaping

Human feedback is still interpreted as a value (Table 1) but employed to directly
influence the agent’s policy [68,77,100]. Two main methods have been considered
so far [50]:

– Action biasing: The shaping is only performed during the decision-making
step. The value function is not directly perturbed by the human feedback
augmentation:

a∗ = arg max[Q(s, a) + β ∗ Ĥ(s, a)], (3)

– Control sharing: This method arbitrates between the MDP policy and human
value function. The human policy derived from feedback is used for action
selection given the probability β:

Pr
[
a = arg max

(
Ĥ(s, a)

)]
= min(β, 1) (4)

Other approaches have been proposed in the literature such as combination
of policies using multiplication of probability distributions [36,69,78]. COACH
(Convergent Actor-Critic by Humans) algorithm [62] is motivated by the obser-
vation that human policy is influenced by learner’s current policy. The authors
argue that the advantage function [87] is a good model of human feedback. They
use actor-critic algorithms to compute an unbiased estimate of the advantage
function.

6.7 Example: The TAMER Architecture

The TAMER architecture (Training an Agent Manually via Evaluative Rein-
forcement) [49] assumes that the human has an internal function H that maps
observed agent action in a feedback (negative, neutral or positive). The human
has in mind a desired policy πH and wants to communicate it to the agent
through feedback. In other words, TAMER estimates human’s intention (Table 1)
from the observation of feedback. The internal function H is called the “Human
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Reinforcement Function”. TAMER approximates the human internal function by
a regression model Ĥ∗ trough minimizing a standard squared error loss between
H(st, at) and Ĥ(st, at). TAMER is formulated as an MPD without a reward
(MDP\R). The agent uses this function to perform action selection:

π(s) = arg max
a

Ĥ∗(s, a) (5)

TAMER interprets Human feedback as a value. In [51], the authors address
delays in human evaluation (human’s feedback) through credit assignment, which
includes creation of labels from delayed reward signals. TAMER has been suc-
cessfully combined with Reinforcement learning (TAMER+RL) [50] and recently
Deep Learning (Deep TAMER) in order to deal with high-dimensional state
spaces [99].

6.8 Limitations

Understanding human feedback strategies is essential in the design and devel-
opment of learning from evaluative feedback algorithms. Previous works have
identified numerous issues such as:

– Credit assignment problem: humans provide feedback with a delay by consid-
ering actions happened in the past [24].

– Policy dependent : humans’ feedback strategy is influenced by learner’s current
policy [62].

– Positively biased feedback : positive and negative feedback are not employed
in the same way by humans [43,89]. Whether providing both positive and
negative rewards is necessary is an open question [77].

– Reward hacking : this describes situations in which non anticipated actions
are introduced by the agent in order to obtain a positive human feedback.
Several works show that is difficult to anticipate failure behaviors aroused
from reward functions [24,77].

– Autonomous/self agent exploration vs social interaction: relying only on
human feedback is not efficient and imposes a significant burden on the human
teacher. Current trends combine agent exploration and human feedback in
order to improve robustness to sparse and/or erroneous teaching signals.

Current and future works of the domain are addressing such issues by both
conducting human studies as well as developing new machine learning algorithms
and human-machine interaction designs.

7 Demonstrations

7.1 Representation

Human demonstrations D are usually represented by a state-action sequence
(Table 1): {(st, a

∗
t ).}. Where a∗

t is the optimal human action at time-step t given
a state st.
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7.2 Definition

A demonstration D is produced by the human demonstrator with the intention
of showing a state-action sequence to the robot (Table 1). The paradigm assumes
that the human expert shows the optimal actions a∗

t for each state. The state-
action sequence is then reproduced by the robot.

The identification of a mapping between the human teacher and robot learner
actions, which allows the transfer of information from one to the other, is called
the correspondence problem [6]. Contrary to evaluative feedback, demonstrations
could be provided before (time-step t−1) or simultaneously (time-step t) to robot
actions (Table 1).

7.3 Methods

Teaching with a demonstration strategy imposes a significant burden on the
human teacher. The assumption is that the human teacher is being able to
perform the task in order to communicate optimal actions a∗

t through the task
channel (see Fig. 4). The set of demonstrations are interpreted as a human policy
of the task (πh) (Table 1). For such reasons, Interaction Design plays an impor-
tant role in learning from demonstrations (see Fig. 3). Three general methods
are usually considered in the literature [80]: kinesthetic, teleoperation and obser-
vation.

Kinesthetic demonstration is an example of simultaneous teacher-learner
interactions through demonstrations, in which the teacher directly manipulates
the robot. This approach eliminates the correspondence problem and simplifies
the machine learning process. Several industrial robots are now proposing this
approach to facilitate task learning (Sect. 10). Kinesthetic demonstration facil-
itates the mapping and it facilitates the production of human demonstrations.
However, the quality of demonstrations is known to be low as it depends on
the dexterity and smoothness of the human demonstrator during the manipu-
lation of the robot [80]. With teleoperation, the human demonstrator can pro-
vide demonstrations of robots with high degrees-of-freedom (HOF) as well as
facilitating mapping. However, teleoperation requires the development of spe-
cific interfaces (including virtual/augmented reality) [80]. Observation of human
demonstrations offers a natural interaction mode to the users. However, learn-
ing from demonstrations by observation of human actions using a camera or
a motion capture is not sufficient to compute the mapping. Several challenges
of machine perception are faced including motion tracking, occlusion or high
degrees-of-freedom of human motion.

7.4 Learning from Demonstrations

Demonstration facilitates engagement of non-expert users in robot programming.
They can teach new tasks by showing examples rather than programming them
(see Sect. 10). Interest in learning from demonstrations is shown by the number
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of publications in recent years (see [80] for an overview), resulting also in vari-
ous terminologies: imitation learning, programming by demonstration, behavioral
cloning and Learning from Demonstrations (LfD).

The challenge of learning from demonstrations in robotics has been addressed
by methods and models of supervised, unsupervised and reinforcement learning.
In [6], the authors argue that LfD could be seen as a subset of Supervised
Learning. The robot is presented with human demonstrations (labeled training
data) and learns an approximation to the function which produced the data.
In the following, we discuss two different perspectives: (i) behavioral cloning
(supervised learning) and sequential decision-making (reinforcement learning).
Inverse Reinforcement Learning (IRL) is presented as an example in Sect. 7.7.

7.5 Behavioral Cloning

Behavioral cloning employs supervised learning methods to determine a robot
policy that imitates the human expert policy. This is performed by minimiz-
ing the difference between the learned policy and expert demonstrations (state-
action pairs) with respect to some metric (see Algorithm 1).

Algorithm 1. Behavioral Cloning
1: procedure Behavioral Cloning
2: Collect a set of expert demonstrations D = {(st, a

∗
t ), (st+1, a

∗
t+1)...}

3: Select an agent policy representation πθ

4: Select a loss function L
5: Optimize L using supervised learning: L (a∗, πθ(s, a))
6: Return πθ

A series of recommendations are made in [75] regarding nature of demon-
strations (trajectory, action-state space), choice of Loss Functions (quadratic,
l1, log, hinge and Kullback-Leibler divergence) and supervised learning methods
(regression, model-free and model-based).

7.6 Imitation Learning as a Sequential Decision-Making Problem

In [81], the authors argue that imitation learning could not be addressed as
a standard supervised learning problem, where it is assumed the training and
testing data are independent and identically distributed (i.i.d). They show that
imitation learning is a sequential decision-making problem. For this reason, rein-
forcement learning techniques and interactive supervision techniques have been
considered to address imitation learning.
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7.7 Example: Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) [70] is a popular approach in imitation
learning. IRL aims to recover an unknown reward function given a set of demon-
strations and then to find the optimal policy (conditioned by the learned reward
function) using reinforcement learning (see Fig. 5).

IRL methods consider the set of expert’s demonstrations as observations
of the optimal policy π∗. Interpretation of demonstrations follows a policy-like
vision (Table 1). From a set of demonstrations, the goal of IRL is to estimate
the unknown reward function parameters of a policy π̂∗ that imitates expert’s
policy π∗. The reward function is then analyzed to understand and/or to explain
the expert’s policy. Standard IRL algorithms consider the reward function as a
linear combination (ψT ) of features f(s, a) of the environment:

rψ(s, a) = ψT f(s, a) (6)

This approach assumes that the expert is acting accordingly in the environment.
Modern approaches consider non-linear combinations using neural network based
estimators of rψ(s, a). IRL is an ill-posed problem since there are infinitely many
reward functions consistent with the human expert’s demonstrations.

Fig. 5. Inverse Reinforcement Learning (IRL): Human expert provides demonstrations
(state-action pairs). Demonstrations are interpreted as a policy. The goal of IRL is to
compute the underlying reward function from the demonstrations.

7.8 Limitations

LfD methods assume that the demonstrations, state-action pairs (st, a
∗
t ), are

the only teaching signals available to the learner (Table 1). After human demon-
strations recording, the learner attempts to learn the task using these teaching
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signals. This approach has been formulated as an MDP without a reward func-
tion (MDP\R). As previously mentioned, demonstrations could be interpreted
as a human policy πh (Table 1). Similarly to learning from evaluative feedback, a
current challenge of LfD is to include other forms of rewards in the learning, in
particular those computed from environment and/or intrinsic motivations [85].

As discussed in [80], the choice of learning methods is compelling: (i) the
optimal behavior cannot be scripted, (ii) the optimal behavior is not always eas-
ily defined in the form of a reward function, and (iii) the optimal behavior is
only available through human teacher demonstrations. This leads to several chal-
lenges at the intersection of machine learning (e.g. learning methods), robotics
(e.g. control of physical robots) and human-robot interaction (e.g., human fac-
tors, interaction design). In [75], a series of questions summarizes the current
challenges of imitation learning:

– Why and when should imitation learning be used?
– Who should demonstrate?
– How should we record data of the expert demonstrations?
– What should we imitate?
– How should we represent the policy?
– How should we learn the policy?

Answering these questions is required for the design of imitation learning based
systems (more details are available in [75]).

8 Instructions

8.1 Representation

Human instructions are usually represented as a probability distribution over
actions: Prt(a|i) and a ∈ A.

8.2 Definition

An instruction is produced by the human with the intention of communicat-
ing the action to be performed in a given task state (Table 1). This could be
formulated as telling, which is a language based perspective of the interaction.
Examples of instructions could be turn left, pick up the object or go forward.

Telling offers other opportunities to the teacher compared to evaluating (feed-
back) and showing (demonstration). A recent work of [86] studies how humans
teach concepts using either demonstrations or language. The results suggest that
language communicates more complex concepts by directly transmitting abstract
rules (e.g., shapes and colors), while demonstrations transmit positive examples
(e.g. manipulation of objects) and feedback evaluates actions. Inferring rules
from demonstrations or feedback is supposed to be more complex.

Instructions are of different nature and are produced with different intentions
grouped in the notion of advice [68]: guidance, critique, action advice. In [54],
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two different methods are compared: critique and action advice. In the critique
based teaching method, the learning agent is trained using positive and negative
verbal critiques, such as good job, and don’t do that. As described in Sect. 6,
such verbal critiques are binary feedback. In the action advice based teaching
method, the learner is trained using action advice such as move right and go left.
The authors show that action advice creates a better user experience compared
to an agent that learns from binary critique in terms of frustration, perceived
performance, transparency, immediacy, and perceived intelligence.

8.3 Learning from Instructions

Learning from instructions is formulated as mapping instructions (often in natu-
ral language) to a sequence of executable actions [12,60]. Mutual understanding
(human/learning agent) of the meaning of instructions is usually assumed, which
obviously facilitates the instruction-to-action mapping. The usual approach is to
pre-define the mapping, which raises with several issues such as engineering
and calibration phases [37,68], adaptation and flexibility [37,68], intermediate
semantic representation [2,63,88], and reward inference from language [58].

We could distinguish between methods that focus on simple commands and
the ones addressing sequence of instructions. The latter are employed to compose
complex robot/agent behaviors with the interventions of a human teacher [27,
76,82]. In [27], the authors describe a Spoken Language Programming (SLP)
approach that allows the user to guide the robot through an arbitrary, task
relevant, motor sequence via spoken commands, and to store this sequence as a
re-usable macro. Most of these approaches model the task through a graph [88].

Learning from instructions has been combined with learning from demon-
strations [72,82] and evaluative feedback (critique) [54]. In [25], the authors
combine reinforcement learning, inverse reinforcement learning and instruction
based learning using policy shaping through action selection guidance. During
training, an external teacher is able to formulate verbal instructions that will
change a selected action to be performed in the environment. The results indicate
that interaction helps to increase the learning speed, even with an impoverished
Automatic Speech Recognition system.

8.4 Example: The TICS Architecture

The TICS architecture (Task-Instruction-Contingency-Shaping) [69] combines
different information sources: a predefined reward function, human evaluative
feedback and unlabeled instructions. Dealing with unlabeled instructions denotes
that the meaning of the teaching signal is unknown to the robot. There is a lack
of mutual understanding. TICS focuses on grounding the meaning of teaching
signals (instructions).

TICS architecture enables a human teacher to shape a robot behavior by
interactively providing it with unlabeled instructions. Grounding is performed
during the task-learning process, and used simultaneously for guiding the latter
(see Fig. 6).
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Fig. 6. The TICS architecture includes four main components: a Task Model learns the
task, a Contingency Model associates task states with instruction signals, an Instruction
Model interprets instructions, and a Shaping Component combines the outputs of the
Task Model and the Instruction Model for decision-making (adapted from [69]).

Finally, TICS combines:

– standard RL with a predefined reward function (MDP rewards),
– learning from evaluative feedback based on policy shaping approach,
– learning from instructions, which are represented as a policy.

The Contingency Model plays a key role in grounding and it is defined for a
given state as a probability distribution over detected teaching signals. In [69], a
co-occurrence matrix is employed to estimate this probability distribution. TICS
enables human teachers to employ unlabeled instructions as well as evaluative
feedback during the interactive learning process. The robot is also learning from
its own experience using the predefined reward function. The results show that
in addition to the acceleration of learning, TICS offers more adaptability to the
preferences of the teacher.

8.5 Limitations

Learning from instructions suffers from similar limitations as learning from eval-
uative feedback and demonstrations. Here, we report some specific limitations:

– Speech recognition: Instructions are usually provided through natural spoken
language. Speech recognition is challenging in human-robot interaction con-
texts. Most of the approaches are impacted by the performance of speech
recognition systems [25,27,76].

– Instruction-to-action mapping : Learning from instructions is mainly formu-
lated as an instruction-to-action mapping. Going beyond engineering based
approaches requires to address the Symbol Grounding problem [39], which
facilitates the correspondence between natural language instructions and
agent actions [2,69]

– Descriptions and Explanation: Instructions explicitly communicate about
robot/agent actions by either advise or critique. Language allows other forms
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of teaching such as explanations [74,93] and descriptions [22,71]. Counter-
factual explanations evaluate what would happen if an alternative action is
performed. There is a less restrictive nature in a description.

– Pragmatics: Natural language conveys more than the literal interpretation of
words [35]. There is an increasing interest in the introduction of pragmatics
in interactive learning, often inspired by research in linguistics and cognitive
science [18,34,38,41].

– Emotions: Spoken language is also employed to communicate emotions, which
have to be taken into account for interpretation of instructions [53].

Most of these limitations call for methods able to handle uncertainty of spo-
ken natural language in order to build efficient interactive robot/agent learning
methods.

9 Modeling Human Teaching Strategies

Interactive robot learning is a joint activity allowing robots to learn a task by
exploiting observable human behaviors (Fig. 3). Most of the methods assume the
observation of overt teaching signals such as feedback, demonstrations and/or
instructions. The decoding phase, i.e. interpretation of teaching signals (Table 1),
is usually pre-specified by designers and engineers. This approach does not con-
sider covert communication such as intentions, beliefs, goals, emotions or atti-
tudes. Humans change their behavior in response to the actions of the robot
they are interacting with. Several works have shown that people modify their
tutoring behavior in robot-directed interaction [14,47,90,91,95]. When humans
demonstrate a task to another human or agent, the demonstrations are directed
not just towards the objects that are manipulated (instrumental action), but
they are also accompanied by ostensive communicative cues such as eye gaze
and/or modulations of the demonstrations in the space-time dimensions (belief-
directed action). This modulation results in behaviors that might appear to
be sub-optimal, such as pause, repetition and exaggeration, while they are the
result of simultaneous instrumental and belief-directed actions, i.e. performing
the action and communicating about it.

To address such limitations, several research directions have been pro-
posed. For example, computer vision and signal processing techniques are largely
employed in human-robot interaction for the analysis and modeling non-verbal
cues (e.g. tone of the voice, gesture, facial expressions, gaze) in order to infer
human’s mental states, intentions, engagement, emotions and attitudes [5,94].
Another research direction focuses on human-decision making by studying for-
ward models of human decision-making and inverse models of how humans
think about others decision-making [40]. The approaches draw inspiration from
research on how humans interpret observed behaviors as goal-directed actions
and address the challenge of communication in action [40]: actor intends to not
just perform the ordinary action, but also to convey something about it. In [40], a
general mathematical framework of probabilistic inference and decision-making
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has been proposed to characterize the underlying beliefs, intentions and goals of
communicative demonstrations. The framework is largely inspired by language in
which literal interpretation and pragmatic inference of linguistic and paralinguis-
tic content are performed. These approaches exploit models and methodologies
of computational cognitive science and behavioral economics making them rele-
vant for interactive machine learning. How humans make decisions reveal their
beliefs, intentions and goals. In the following, we describe some examples of
natural human teaching biases (Sect. 9.1) and a Bayesian approach of modeling
human decisions (Sect. 9.2).

9.1 Natural Human Teaching Biases

Human teaching biases have been observed in several situations. In Sect. 6.8,
we described several natural biases of human feedback strategies, which include
delay in feedback delivery [24], influence of robot actions [62] and a tendency to
generate more positive feedback than negative ones [89]. Natural deviations to
optimal behaviors also occur during communicative demonstrations. In [42], the
authors showed the differences in behavior when a human trainer is intentionally
teaching (showing) versus merely doing the task. All these studies call for new
methods that go beyond naive and literal interpretations of teaching signals
(Table 1) such as evaluating/correcting, showing and telling.

Learning situations with children have inspired robotics researchers for the
study of natural human biases during teaching others. We describe two dimen-
sions of interest in human-robot interaction: (i) modulation of non-verbal teacher
behaviors in the space-time dimensions (ii) teacher training strategy.

Non-verbal Teacher Behaviors Modulation. Human teaching situations
are characterized by significant changes in various adult behaviors such as
prosody (motherese [83]) or motion (motionese). In [95], the authors compared
Adult-Child/Adult-Adult/Adult-Robot Interactions. They identified significant
differences in hand movement velocity, motion pauses, range of motion, and eye
gaze in an Adult-Child Interaction, opposed to an Adult-Adult Interaction. This
decrease is even higher in the Adult-Robot Interaction.

There is a large body of research in cognitive science showing that humans
are specifically efficient in the communication of generic knowledge to other
individuals. This ability has been described in [26] as a communication system
called the ‘Natural Pedagogy’. This work and others show that humans seem
inherently sensitive to ostensive communicative signals such as eye gaze, gesture
as well as tone of the voice. In particular, these works show that contingency
of ostensive signals is a natural characteristic of social interaction in humans,
which has inspired several studies of human teaching behavior [96].

Teacher Training Strategy. Interactive learning requires that human teach-
ers organize the way they provide training examples to the robot. They select
which examples to present and in which order to present them to the robot in the
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form of instructions, demonstrations and/or feedback. Organization of a train-
ing strategy is termed curriculum learning [8], which is a key element in human
teaching. Several human curriculum learning strategies have been observed and
often result in gradually increasing the level of task complexity, i.e. presentation
of simple examples then more complex examples. AI and Machine learning tech-
niques have been derived from this notion of curriculum learning with the idea
that guiding training will significantly increase the learning speed of artificial
agents. Several works are focusing on the question of how to effectively teach
agents with the emergence of computational machine teaching as an inverse
problem of machine learning [101].

Example: In [46], the authors conduct a study in which participants are asked
to teach a robot the concept of “graspability”, i.e. if an object can be grasped
or not with one hand. To teach the binary task (graspable vs. not graspable),
the participants are provided several cards with photos of common objects (e.g.,
food, furniture, and animals). They have to pick up the cards from the table and
show them to the robot while teaching them the concept of “graspability”. The
authors observed three different human teaching strategies [46]: (1) the extreme
strategy, which starts with objects with extreme ratings and gradually moves
toward the decision boundary; (2) the linear strategy, which follows a prominent
left-to-right or right-to-left sequence; and (3) the positive-only strategy, which
involves only positively labeled examples. Building up on such observations, they
propose a computational framework as a potential explanation for the teaching
strategy that follows a curriculum learning principle.

In [91], observation of various human teaching strategies raised the following
question: can we influence humans to teach optimally? The authors developed
Teaching Guidance algorithms that allow robots to generate instructions for the
human teacher in order to improve their input. They performed experiments to
compare human teaching with and without teaching guidance and show that
Teaching Guidance substantially improves the data provided by teachers. The
experiments demonstrate that humans are not spontaneously as good as com-
putational teachers.

9.2 A Noisily-Rational Decision Model

A more accurate model of human behavior would help in interpreting, anticipat-
ing and predicting behaviors, in particular when they are not optimal. A common
approach is to formalize human intent via a reward function, and assume that
the human will act rationally with regard to the reward function [45,55]. The
Boltzmann noisily-rational decision model [59] is often employed for this pur-
pose. This model assumes that people choose trajectories in proportion to their
exponentiated reward.

The Boltzmann noisily-rational decision model quantifies the likelihood that
a human will select any particular option o ∈ O (e.g. any teaching signal or
example). If each option o has an underlying reward R(o), the Boltzmann model
computes the desirability of an option as:
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P (o) =
eR(o)

∑
i∈O eR(i)

(7)

Interactive robot learning usually considers a sequence of human states and
actions, called a trajectory τ = (s1, a1, ..., sT , aT ). Boltzmann noisily-rational
decision model is usually approximated to estimate the probability the human
will take a trajectory is proportional to exponentiated return times a “rationality
coefficient” β (“inverse temperature”):

P (τ) ≈ exp

{
β

T∑
t=1

γtR(st, at)

}
(8)

The rationality coefficient β captures how good an optimizer the human is.
The following values are usually considered:

– β = 0 would yield the uniform distribution capturing a random human type;
– β → ∞ would yield a perfectly rational human type.

The goal of a noisily-rational decision mode is to draw inference from the
observation of human actions. In [45], the authors introduce a formalism exploit-
ing such a framework to interpret different types of human behaviors called the
reward-rational choice. Within this framework, the robot is able to interpret
a large range of teaching signals such as demonstrations, reward/punishment
and instructions. However, several works have demonstrated the limits of the
Boltzmann based modeling approach (see for example [9]): needs to identify
alternatives of an option (Eq. 7), suited for trajectories but not policies [55], and
only one parameter β is employed to model rationality. In addition, the approach
does not take into account human reactions to machine actions (i.e. continuous
adaption of human partner to the robot). As described in [40], there is a need
to build better Human Models of Machines to address such issues by exploiting
recent research in cognitive science.

10 Applications

In this section, we illustrate how Interactive Robot Learning Algorithms have
been applied to several domains such as Interactive Task Learning, Behavior
Generation/Composition, and Socially Assistive Robotics. In all these applica-
tions, it is necessary to define the role of the human, the agent and their inter-
actions during the learning and use phases.

10.1 Interactive Task Learning

Interactive Task Learning (ITL) [56] is one of the main areas of applications of
methods and algorithms presented in this chapter. The aim of ITL is to develop
agents able to learn a task through natural interaction with a human instructor.
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Numerous applications have been considered and some of them transferred to
industry.

A use-case, object sorting task, is presented in Fig. 7. The robot has to learn
to sort two types of objects: Plain (left) and Pattern (right), with two differ-
ent sizes and three colors. In [69], the TICS architecture (Sect. 8.4) has been
employed to achieve this learning with a human teacher. The results show that
the interactive learning perspective facilitates programming by including real-
time interaction with humans, and improves flexibility and adaptability of com-
munication.

Fig. 7. Teaching object sorting (adapted from [66]).

10.2 Learning Robot Behaviors from Human Demonstrations

Figure 8 describes how Inverse Reinforcement Learning (IRL) is employed to
learn robot behaviors: how a mobile robot approaches a moving human?. As
described in Sect. 7.7, IRL starts with the recording of human demonstrations.
In [79], demonstrations collection is performed off-line: humans were asked to
teleoperate a mobile robot with the aim of approaching humans (Fig. 8a). Based
on such demonstration, IRL is then used to learn a reward function that could
replicate navigation behaviors. This work contributes to the challenge of generat-
ing legible robot motion [28] that should be addressed with a human-in-the-loop
perspective [97].

10.3 Learning Robot Behaviors from Human Instructions

Spoken language based programming of robots has been described in Sect. 8.3.
Humans simply describe actions and behaviors through natural language, which
take the form of instructions. The ambition is to go beyond simple commands
and enable end-users to create new personalized behaviors through natural inter-
actions. In [76], a cognitive architecture has been developed for this purpose
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Fig. 8. Learning how to approach humans using Inverse Reinforcement Learning
(adapted from [79]).

(Fig. 9). This approach has been successfully transferred to industry and imple-
mented in a Pepper robot with SoftBank Robotics. The cognitive architecture
has been evaluated within the Pepper@Home program. The results demonstrate
that end-users were able to create their own behaviors and share them with other
end-users.

Fig. 9. Teaching new robot behaviors using natural language (adapted from [76]).

10.4 Socially Assistive Robotics

There is a substantial body of work in the design and development of socially
assistive robotics where interactive robot learning plays an important role. The
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research works explore whether a robot could facilitate reciprocal social inter-
action in cases in which the robot was more predictable, attractive and simple
[11,29,32]. In Fig. 10, imitation learning has been employed with children with
Autism Spectrum Disorders. The children are asked to teach robots new pos-
tures, which is unusual in rehabilitation. Having the children teaching the robot
has been shown to be relevant in rehabilitation and education (protégé effect)
(see [33] for a use-case on dysgraphia). Contrary to the usual assumption of
interactive robot learning, the challenge is to learn with children who do not
fully master the task. The impact of the human teacher has been analyzed and
exploited to capture individual social signatures [10] (Fig. 10). Using different
imitation experiments (posture, facial expressions, avatar-robot), we were able
to assess the impact of individual partners in the learning.

Fig. 10. Exploitation of Imitation Learning in Psychiatry, Developmental and Cogni-
tive Sciences (adapted from [10]).

11 Conclusions, Challenges and Perspectives

In this chapter, we introduced the main concepts of Interactive Robot Learning,
which were illustrated by several examples and applications. The chapter shows
that the design of human interventions is as important as the design of algorithms
in the efficiency of interactive robot learning. There is a substantial body of
literature documenting interactive robot/machine learning methods and models
(see also relevant readings in Sect. 2.4).

In the following, we report some relevant challenges of the domain shared by
all human intervention strategies.

Autonomous - Interactive Learning. Collecting human teaching signals is expen-
sive and a limited number of teaching signals could be collected. This issue refers
to sample efficiency of algorithms and most of the interactive approaches are



Interactive Robot Learning: An Overview 165

sample inefficient since they require a large number of human interventions. In
addition, introducing human interventions in algorithms not designed for such
purpose raises new issues not always expected (e.g., credit assignment, reward
hacking, non-optimal human behaviors, implicit feedback or emotion). There has
been several attempts aiming at combining rewards from multiple sources such
as from the human and the environment.

This leads to challenges at the core of Human Centered AI, in particular
how to build hybrid teams that are more efficient than each team member. In
addition, following a Human Centered AI perspective, the aim is to augment
the human and not to replace it. In [85], we discuss a range of reinforcement
learning agents equipped with different skills that could handle such situations
(including intrinsic motivations [77] and curriculum learning).

Evaluation and Replicability. Comparing, selecting and adapting models is essen-
tial in Interactive Robot Learning. Machine Learning and Robotics have set-up
evaluation metrics that could be employed there. Similar to Human-Robot Inter-
action (HRI) methodology, there is a need to complement the evaluation by
human oriented metrics, which could include questionnaires (see for example
engagement evaluation in HRI [73]) as well as assessment of interaction load
(e.g., number of interactions [69]).

Another important factor allowing to obtain consistent results is replica-
bility (repeatability + reproducibility). Compared to standard machine learn-
ing, the data are collected during training through interaction with humans. In
Interactive Robot Learning, data collection is about collecting data from both
humans & robots. As mentioned in Sect. 7, recording of teaching signals is part
of the interaction design and exploit various modalities: speech signals, gesture,
robot motion... Consequently standardization of data collection is challenging.
In addition, as mentioned in Sect. 6.8, reciprocal (human-robot) interdependence
is observed during interactive robot learning scenarios, which impacts repeata-
bility of experiments. This calls for new ways of collecting and sharing data for
improving reproducibility of works.

Multiple and Multimodal Human Interventions. The most common strategies are
certainly to learn new tasks by providing feedback, demonstration or instructions
(Table 1). However, many other interventions have been considered in the liter-
ature such as human preference given in regards to pairwise agent behaviors
[77,100], (joint) attention to states and/or actions during learning [31,100] and
expressing hierarchy of a task [100].

Humans are per definition multimodal and should be enabled to produce mul-
timodal teaching signals. Most of the current works consider only one modality
such as facial expressions [10,15], gesture [69], social signals [65], or physiological
signals [3].

Grounding multiple and multimodal teaching signals into actions is required
to facilitate interpretation and learning. How to design interactions, interfaces,
methods and models able to handle multimodal teaching signals is still an open
question.
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Mutual Understanding. The ability of agents to predict others and to be pre-
dicted by others is usually referred to as mutual understanding, which plays an
important role in collaborative human-robot settings [44]. This could be achieved
by transparency/explainability of robots [19,98] through the generation of verbal
and non-verbal cues including gaze [7], legible motion [28], emotional expressions
[16], queries/questions and dialog [17,20].

Being able to understand humans is also required and this will result in better
Computational Human Models of Machines. In such direction, several recent con-
tributions deal with inferential social learning to understand how humans think,
plan, and act during interactive robot/agent learning [18,40,45,58,97]. This calls
for new interdisciplinary research grounded in Cognitive Science, Machine Learn-
ing and Robotics [40,85].
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Abstract. Black-box Artificial Intelligence (AI) systems for automated
decision making are often based on over (big) human data, map a user’s
features into a class or a score without exposing why. This is problem-
atic for the lack of transparency and possible biases inherited by the
algorithms from human prejudices and collection artefacts hidden in the
training data, leading to unfair or wrong decisions. The future of AI
lies in enabling people to collaborate with machines to solve complex
problems. This requires good communication, trust, clarity, and under-
standing, like any efficient collaboration. Explainable AI (XAI) addresses
such challenges, and for years different AI communities have studied such
topics, leading to different definitions, evaluation protocols, motivations,
and results. This chapter provides a reasoned introduction to the work of
Explainable AI to date and surveys the literature focusing on symbolic
AI-related approaches. We motivate the needs of XAI in real-world and
large-scale applications while presenting state-of-the-art techniques and
best practices and discussing the many open challenges.

Keywords: Explainable AI · Trustworthy AI · Transparent by design

1 Introduction

Artificial Intelligence (AI) systems have witnessed increasing popularity during
the past few years due to their excellent results. Unfortunately, for many years
the primary goal of AI systems has been to solve a particular task in the best
possible way, both in terms of time consumption and performance metrics. Due
to these goals, the transparency of the model has been sacrificed for its perfor-
mance. However, recent use cases have raised questions about such AI systems’
fidelity and precision. In particular, one of these is the COMPAS: an AI sys-
tem able to predict the risk of recidivism to support judges in such decisions.
A few years ago, ProPublica1 published an article in which they highlighted
a racial bias in the COMPAS model employed by the judges in the USA to
1 https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-

and-analysis.
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predict recidivism. The problem with this algorithm was that it predicted a
higher recidivism risk for black people since the dataset used for training con-
tained a bias. This fact highlighted the need for an in-depth analysis for under-
standing the reasoning of the models. Here lies the eXplainable AI (XAI), whose
goal is to make these systems more understandable to humans. Explainability
is at the heart of Trustworthy AI and must be guaranteed for developing AI
systems that empower and engage people across multiple scientific disciplines
and industry sectors. Essentially, the explanation problem for a decision sup-
port system can be understood as “where” to place a boundary between what
algorithmic details the decision-maker can safely ignore and what meaningful
information the decision-maker should absolutely know to make an informed
decision. Therefore, the explanation is intertwined with trustworthiness (what
to ignore safely), comprehensibility (meaningfulness of the explanations), and
accountability (humans keeping the ultimate responsibility for the decision).

In this chapter, we present the topics analyzed during our tutorial at the
ACAI school, held in Berlin, October 2021. The purpose of the tutorial was to
provide a reasoned introduction to the work of Explainable AI (XAI) to date and
surveys the literature with a focus on machine learning and symbolic AI related
approaches. Then, the challenges and current achievements of the ERC project
“XAI: Science and technology for the eXplanation of AI decision making”2 will
also be presented. We will motivate the needs of XAI in a real-world and large-
scale application while presenting state-of-the-art techniques and best practices,
as well as discussing the many open challenges. In Sect. 2 it is described what
Explainable AI means and the different areas of research, and the open points in
the state-of-the-art. Several real-case scenarios were presented to the students,
in which it is of utmost importance to understand the behaviour of the machine
learning model: criminal justice, financial credit scoring and loan approval or
health care applications. Section 2.2 introduces the various types of explanations
currently proposed in the literature, the desired properties and the metrics for
evaluating its goodness. In particular, we present the metrics for evaluating
the goodness of an explanation, both from a quantitative point of view and
a qualitative one. Then, Sect. 3 presents the available methods in the literature,
by dividing them into the two primary approaches of XAI, namely post-hoc
explanation methods (Sect. 3.1) and Transparent by-design methods (Sect. 3.5).
Firstly, we analyze the tabular data, then the images and the text data. Lastly,
Sect. 4 concludes the presentation by collecting ideas and opinions of the school’s
students.

2 Explainable AI

Artificial Intelligence (AI) is becoming an integral part of our lives in many
sectors. It is used in various fields: suggesting what to buy on Amazon, rec-
ommending the songs on Spotify, to detect face mask violations in the recent
pandemic. However, other fields are involved in this AI revolution, such as health-
care, banking, retail, and many more. However, many AI systems trained (ML)
2 https://xai-project.eu/.
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models are also called black-boxes: they perform well from a technical point of
view, but they do not explain their predictions so that humans can understand
the internal reasoning of the model. Predictive models’ lack of transparency and
accountability has had severe consequences, especially in high-stack scenarios.
As mentioned in the Introduction, with the case of COMPAS, we discover unfair
behaviour of the ML model used to determine recidivism. However, this is not the
only case: there are several concerns about the novel ML-aided apps in health-
care, such as those that help you lose weight. Many doctors stated that these
apps do not work and are not based on the same doctors’ knowledge3. Another
alarming situation is presented in this article: an AI model incorrectly concluded
that people with pneumonia were less likely to die if they had asthma. This error
could have led doctors to deprive asthma patients of extra care. Lastly, there is
also the simplest case, such as the one presented in LIME [41], in which an ML
model is making mistakes in detecting wolves or husky dogs because it is only
focusing on the background of the training data (snow for wolves and grassland
for husky). There have been cases of people incorrectly denied loans, ML-based
pollution models stating that highly polluted air was safe to breathe and gener-
ally poor use of limited valuable resources in criminal justice, medicine, energy
reliability, finance, and other domains. As we start using AI, we need to under-
stand why the algorithm made certain decisions and why not others. The higher
transparency we can get into the AI black-box, the easier it would be to believe
and use it. This exact thought gave rise to the field of eXplainable AI (XAI).

As we start using AI more and more for decision making, there could be
several reasons why we will look for an explanation of the decision:

– To Build Trust : If the systems are transparent, it is easier for people to trust
them and use them.

– To enable auditing : This will help systems comply with government regula-
tions.

– To improve the model : Looking at the explanations, Data Scientists will be
able to fine-tune the models and draw better results.

However, this is just the tip of the iceberg: many researchers and companies
provide XAI algorithms, and the list is increasing every day.

2.1 Types of Explanations

An XAI method can produce different types of explanations, and they are tied
with the type of data to explain. Since the type of data we face is very different,
the explanation returned are also different. There are three principal data types
recognized in the literature: tabular data, images and text. For each of them,
we can have different types of explanations, as illustrated in Table 1. We list
the most common ones, and in the following sections, we present the specific
definitions depending on the type of data considered:
3 https://www.scientificamerican.com/article/artificial-intelligence-is-rushing-into-

patient-care-and-could-raise-risks/.
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Table 1. Types of different explanations

– Feature Importance (FI) methods assign a score for every input feature
based on their importance to predict the output. The more the features will
be responsible for predicting the output, the bigger their score will be.

– Rule-Based (RB) methods are methods that output a set of premises that
the record must satisfy in order to meet the rule’s consequence.

– Prototypes (PR) are a kind of explanation where the user is provided with
a series of examples that characterize a class of the black-box.

– Counterfactuals (CF) are a type of explanation in which the user is given
either a set of rules to change the prediction or a counter-example of the
opposite class.
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2.2 Desiderata of an Explanation

The study of XAI is still in its infancy, so there are many different concepts to
deal with and many different opinions regarding the desiderata for an explana-
tion. First of all, the literature agrees that there is no universal type of expla-
nation that is good for everyone and for all purposes: in some contexts, a more
high-level explanation is needed; in others, a more technical one, depending
on who is receiving the explanation and why the explanation is required. This
section proposes some of the most popular desiderata of an explanation, referring
to the state-of-the-art literature.

The goodness of an explanation should be evaluated considering its validity
and utility. In the literature, these desiderata are evaluated in terms of goodness,
usefulness, and satisfaction of explanations. The state-of-the-art provides both
qualitative and quantitative methodologies for evaluating explanations.

Regarding the qualitative evaluation, it values the actual usability of expla-
nations from the point of view of the end-user, such as if they satisfy human
curiosity and trust. A large body of research has identified that one of the criti-
cal variables that may influence decisions about automation use is a user’s trust
in the automation. Users tend to use AI that they trust while rejecting the one
they do not. For appropriate use to occur, users’ trust must match the true
capabilities of the AI system. The appropriateness of trust can be evaluated in
terms of its calibration [31], or “the correspondence between a person’s trust
in the automation and the automation’s capabilities”. Trust is often seen as a
‘single-direction road,’ i.e. something that needs to be increased. However, ‘trust’
in AI technologies needs to be reduced to boost transparency based models. In
this context, an interesting work of Doshi-Velez [16] proposes a systematization
of evaluation criteria into three categories:

1. Functionally-grounded metrics aim to evaluate the interpretability by
exploiting some formal definitions that are used as proxies, and they do not
require humans for validation.

2. Application-grounded evaluation methods require human experts able to
validate the specific task and explanation under analysis [45,49].

3. Human-grounded metrics evaluate the explanations through humans who
are not experts. The goal is to measure the overall understandability of the
explanation in simplified tasks [26,29].

Regarding quantitative evaluation, in this case the evaluation focuses on the
performance of the explainer and how close the explanation method f is to the
black-box model b. There are two different criteria: (i) Completeness w.r.t.
the black-box model, in which the metrics aim at evaluating how closely
f approximates b; (ii) Completeness w.r.t. to specific task, in which the
evaluation criteria are tailored for a particular task.

Regarding the first criterion, one of the metrics most used in this setting
is the fidelity that aims to evaluate how good is f at mimicking the black-box
decisions. There may be different specializations of fidelity, depending on the type
of explanator under analysis [20]. For example, in methods where a surrogate
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Fig. 1. Example of Insertion (on the left) and Deletion (on the right) metric compu-
tation performed on LIME and a hockey player image.

model g to mimic b, fidelity compares the prediction of b and g on the instances
Z used to train g.

Another measure of completeness w.r.t. b is the stability, which aims at vali-
dating how stable the explanations are for similar records. Stability can be eval-
uated by exploiting the Lipschitz constant [2] as Lx = max‖ex−ex′ ‖

‖x−x′‖ ,∀x′ ∈ Nx

where x is the explained instance, ex the explanation and Nx is a neighborhood
of instances x′ similar to x. Another kind of metric available is called dele-
tion and insertion [38] (Fig. 1). The intuition behind deletion is that removing
the “cause” will force the black-box to change its decision. Among the deletion
methods, there is the faithfulness [2] which is tailored for FI explainers. The
idea is that, by deleting a feature at the time, starting from the most impor-
tant, the model’s performance should decrease. The insertion metric, instead,
takes a complementary approach. Monotonicity is an implementation of an inser-
tion method: it evaluates the effect of b by incrementally adding each attribute
in order of increasing importance. In this case, we expect that the black-box
performance increases by adding more and more features, thereby resulting in
monotonically increasing model performance. Finally, other standard metrics
are considered to evaluate the performance of the explanation method, such as
accuracy, precision, recall and running time.

3 XAI Methods

There are different ways of categorizing explanatory methods in the literature,
but a common taxonomy has emerged in recent years. The first distinction is
made according to the type of explanatory method that is considered, i.e. meth-
ods that can be explained by design or black-box explanation methods:

– Transparent by design methods are Intrinsically explainable methods
that returns a decision, and the reasons for the decision are directly accessible
because the model is transparent.

– Black-box explanation are Post-Hoc explanation methods that provides
explanations for a black-box model that takes decisions.



Explainable for Trustworthy AI 181

The second differentiation distinguishes post-hoc explanation methods in
global and local:

– Global explanation methods aim at explaining the overall logic of a black-box
model. Therefore the explanation returned is a global, complete explanation
valid for any instance;

– Local explainers aim at explaining the reasons for the decision of a black-box
model for a specific instance.

The third distinction categorizes the methods into model-agnostic and model-
specific:

– Model-Agnostic explanation methods can be used to interpret any type of
black-box model;

– Model-Specific explanation methods can be used to interpret only a specific
type of black-box model.

This section presents some of the available XAI methods in the state-of-the-
art. We will first analyze the post-hoc explanation methods in Sect. 3.1. Then,
we present the available transparent methods in Sect. 3.5

There are various industry companies where research is happening on XAI
techniques. The leading cloud providers such as Google, Amazon, and Microsoft
have products in the Automated (AutoML) domain. XAI efforts from significant
industry leaders include:

– What-If: a tool from Google that provides a visual way to understand the
prediction of a model by allowing the user to change the feature in real-time4

– A custom Framework made by H2O where the user can choose which expla-
nation best fits for him5

– An Open Source Model Interpretability Library, which includes most state-
of-the-art interpretability algorithms6

– Interpretability with Azure by Microsoft7

3.1 Post-hoc Explanations Methods

This section provides an overview of the methods presented in the tutorial. In
particular, we present post-hoc explanation methods, i.e. methods to explain
black-box models already created. We start presenting the post-hoc XAI algo-
rithms tailored for tabular data (3.1), then for images (3.1), text (3.2) and time
series (3.3). We conclude this section by presenting the methods employed during
the hands-on session at the XAI Tutorial, in 3.4.

4 https://cloud.google.com/explainable-ai/.
5 https://www.h2o.ai/products-dai-mli/.
6 https://captum.ai/.
7 https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-

learning-interpretability.

https://cloud.google.com/explainable-ai/
https://www.h2o.ai/products-dai-mli/
https://captum.ai/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability
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Fig. 2. TOP : Example of LIME application for different black-boxes. All the models
correctly predicted the output class. BOTTOM : Force plot returned by SHAP explain-
ing two records: the first one labeled as class 1 and the latter labeled as class 0. Only
the features that contributed more (i.e. higher values) to the classification are reported.

Tabular Data

Feature Importance. For tabular data, feature importance is a kind of expla-
nation that provides an importance value for each feature the model considers.
The importance value represents how important the feature under analysis was
for the prediction. There may be a global feature importance explanation. The
importance considers how the overall model behaves, depending on the class
under analysis or local feature importance. The importance is computed for
only one particular record at a time. Formally, given a record x, an explainer
f(·) models a feature importance explanation as a vector e = {e1, e2, . . . , em},
in which the value ei ∈ e is the importance of the ith feature for the decision
made by the black-box model b(x). To understand each feature’s contribution,
the sign and the magnitude of each value ei are considered. W.r.t. the sign, if
ei < 0, it means that feature contributes negatively for the outcome y; otherwise,
if ei > 0, the feature contributes positively. The magnitude, instead, represents
how significant the contribution of the feature is to the final prediction y. In par-
ticular, the greater the value of |ei|, the greater its contribution. In the context of
feature importance explanations, there are some popular explanation methods,
such as LIME [41], SHAP [34] and DALEX [5]. Many methods also provided
an updated Python library, making them available for general use and improve-
ments. In Fig. 2 is reported an example of explanation returned by LIME and
SHAP.

Rules. Another interesting explanation method is the rule, also called decision
rules, factual or logic rules. A rule aims at explaining the reasons that lead the
model to the final prediction. It has the form p → y, in which p is a premise
composed of a Boolean condition on feature values, while y is the consequence
of the rule. In particular, p is a conjunction of split conditions of the form
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xi∈[v(l)
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values in the domain of xi extended with ±∞. Rules may provide both a global
and a local explanation. Regarding global explanations, usually, a set of rules
is defined to represent the decisions of a particular class. Instead, rules explain
the conditions that lead a particular record to its prediction for the local expla-
nations. In particular, an instance x satisfies r, or r covers x, if every Boolean
conditions of p evaluate to true for x. One of the most important strong points
about rules is that they are considered human-readable, thanks to their logical
structure. Hence, they are preferred in contexts where a non-expert end-user
is considered. Several methods have been proposed during the past few years
regarding the available methods. Rule explanations are one of the oldest kinds
of explanation, and the first algorithm, TREPAN [14] was published in 1996.
Then there is also MSFT [13] and DecText [8]. To the best of our knowledge,
two post-hoc local explanation methods provide rules and also have a Python
library implementation: ANCHOR [42] and LORE [20].

Prototypes. Another popular form of explanation is the prototype. It is an
object representing a set of similar records. It can be (i) a record from the train-
ing dataset close to the input data x; (ii) a centroid of a cluster to which the
input x belongs. Alternatively, (iii) even a synthetic record, generating follow-
ing some ad-hoc process. Prototypes serve as examples: the user understands
the model’s reasoning by looking at records similar to his/hers. Several defini-
tions and requirements for the prototype explanations are available in the lit-
erature, depending on the different kinds of prototypes considered. Among the
explanation methods available in this context, there are Prototype Selection [6],
ProtoDash [21] and MMD-Critic [27].

Counterfactual. An interesting approach that has received much attention
lately is the counterfactual explanation. Counterfactual focuses on the differ-
ences w.r.t. the record in input to obtain the opposite prediction w.r.t. b(x) = y.
Moreover, they are often addressed as the prototypes’ opposite. They describe
a dependency on external facts that led to a particular decision made by the
black-box model. Since it is quite a novel explanation approach, counterfactuals
have several definitions. In this chapter, we consider the one presented in [48]. It
is a general formalization of a counterfactual explanation. An explanation tells
us that b(x) = y was returned because variables of x has values x1, x2, ..., xn.
Instead, a counterfactual reasons about the opposite prediction: if x had values
x1
1, x

1
2, ..., x

1
n and all the other variables has remained constant, b(x) = ¬y would

have been returned, where x is the record x with the suggested changes. An
ideal counterfactual should alter the values of the variables as little as possible
to find the closest setting under which y is returned instead of ¬y. There are
many desiderata of a counterfactual in this context, such as efficiency, robust-
ness, diversity, actionability, and plausibility. There are several methods in the
context of counterfactual explanations, even if the majority are only defined
from a theoretical point of view and do not have code available. Regarding the
methods available, the most popular are: C-CHVAE [37], FACE [40], CEM [15]
and MAPLE [39].
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Image Data

Saliency Maps. For image data, one of the most popular type of explanation is
called Saliency Maps (Fig. 3). A Saliency Map (SM) is an image where a pixel’s
brightness represents how salient the pixel is. Formally, a SM is modelled as a
matrix S, in which dimensions are the sizes of the image we want to explain, and
the values sij are the saliency values of the pixels ij. The greater the value of sij ,
the bigger is the saliency of that pixel. To visualize SM, we can use a divergent
colour map, for example, ranging from red to blue. A positive value (red) means
that the pixel ij has contributed positively to the classification, while a negative
one (blue) means that it has contributed negatively. There are two methods for
creating SMs. The first one assigns to every pixel a saliency value. The second
one segments the image into different pixel groups using a segmentation method,
assigning a saliency value for each segmented group.

Fig. 3. Example of saliency maps, the red pixel highlight the pixel most important to
the predicted class while blue pixel are most important for other classes. (Color figure
online)

The majority of the methods presented in the literature are pixel-based
saliency maps. The pioneering technique in this type of explanation is Layer-wise
Relevance Propagation. Layer-wise Relevance Propagation (LRP) [3] a model-
specific method which produce post-hoc local explanations for any type of data.
LRP explains the classifier’s decisions by decomposition. It redistributes the
prediction y backwards using local redistribution rules until it assigns a rele-
vance score Ri to each pixel value. This idea of “back-propagating” the relevance
back to the input has become more popular over the years leading to a multi-
tude of variations of LRP [30,32,35]. The other common technique for creating
pixel-based saliency maps is using the black-box’s gradients. This technique is
widespread since most black-boxes in the image domain are differentiable Neu-
ral Networks. Integrated Gradient [46] utilizes the gradients of a black-box along
with the sensitivity techniques like LRP. Formally, given b and x, let x′ be the
baseline input. The baseline x′ is generally a black or a white image. INTGRAD
constructs a path from x′ to x and computes the gradients of points along the
path. The points are taken by overlapping x on x′ and gradually modifying
the opacity of x. Integrated gradients are obtained by cumulating the gradients
of these points. The most known method for creating segmented based SMs is
LIME [41]. More in detail, LIME divides the input image into segments called
super-pixels. Then it creates the neighbourhood by randomly substituting the
super-pixels with a uniform, possibly neutral, colour. This neighbourhood is then
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fed into the black-box, and a sparse linear model is learned. However, LIME is
an old approach, and several works have outperformed it. XRAI [25] is based
on INTGRAD and inherits its properties, but it adds segmentation to the app-
roach. The algorithm is divided into three steps: segmentation, get attribution,
and selecting regions. The image segmentation is repeated several times with dif-
ferent segments to reduce the dependency on the image segmentation algorithm.
For attribution, XRAI uses INTGRAD while, for select regions, it leverages the
fact that, given two regions, the one that sums to the more positive value should
be more important to the classifier. From this observation, XRAI starts with
an empty mask and then selectively adds the regions that yield the maximum
gain in the total attributions per area. Other methods for creating saliency maps
involve the use of the gradients of the feature maps created in the last layer of
a convolutional network [9,36,44] or masking several parts of the image [38].

Concept Attribution. Most ML models operate on low-level features like edges
and lines in a picture that does not correspond to high-level concepts that
humans can easily understand. In [1,52], they pointed out that feature-based
explanations applied to state-of-the-art complex black-box models can yield non-
sensible explanations. Concept-based explainability constructs the explanation
based on human-defined concepts rather than representing the inputs based on
features and internal model (activation) states. This idea of high-level features
is more familiar to humans, that are more likely to accept it.

TCAV, Testing with Concept Activation Vectors [28] provides a quantitative
explanation of how important is a concept for the prediction. Every concept
is represented by a particular vector called Concept Activation Vectors (CAVs)
created by interpreting an internal state of a neural network in terms of human-
friendly concepts. TCAV uses directional derivatives to quantify the degree to
which a user-defined concept is vital to a classification result. For example,
TCAV can understand how sensitive a prediction of “zebra” is to the pres-
ence of “stripes”. The problem with this algorithm is that the user defines the
concepts, which is challenging and time-consuming. ACE, Automated Concept-
based Explanation [17], is the evolution of TCAV, and it does not need any
concept example. It can automatically discover them. It takes training images
and segments them using a segmentation method. These super-pixels are fed
into the black-box model, as they were input images clustered in the activation
space. Then we can obtain, like in TCAV, how much these clusters contributed
to the prediction of a class.

Prototypes. Another possible explanation for images is to produce prototyp-
ical images that best represent a particular class. Human reasoning is often
prototype-based, using representative examples as a basis for categorization
and decision-making. Similarly, prototype explanation models use representative
examples to explain and cluster data. For images, there is MMD-CRITIC [27]
which selects prototypes by measuring the difference between the distribution of
the instances and the instances in the whole dataset. Prototypes are the set of
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instances nearer to the data distribution, and the farthest are called criticisms.
PROTOPNET [10] has a different approach: it figures out some prototypical
parts of images (named prototypes) and then uses them to classify, making the
classification process interpretable. A special architecture is needed to produce
prototypes. The model identifies several parts on the test image that look like
some training image prototypical parts. Then, it predicts based on a weighted
combination of the similarity scores between parts of the image and the learned
prototypes. The performance is comparable to the actual state of the art but
with more interpretability.

Counterfactuals. As output, counterfactual methods for images produce
images similar to the original one but with altered predictions. For this reason,
they are usually called counter-exemplars. Some methods output only the pixel
variation, others the whole altered image. Interpretable Counterfactual Expla-
nations Guided by Prototypes [47], perturbs the input image to find the closest
image to the original one but with a different classification by using an objec-
tive loss function L = cLpred + βL1 + L2 optimized using gradient descent. The
first term, cLpred, encourages the perturbed instance to predict another class
then x while the others are regularisation terms. CEM, Contrastive Explanation
Method [15], creates counterfactual explanations in terms of Pertinent Positives
(PP) or Pertinent Negatives (PN). PP’s or PN’s are the pixels that lead to the
same or a different class, w.r.t. the original instance. To create PP’s and PN’s,
feature-wise perturbation is done by keeping the perturbations sparse and close
to the original instance through an objective function that contains an elastic
net βL1 + L2 regularizer. ABELE, Adversarial black-box Explainer generating
Latent Exemplars) [18], is a local, model-agnostic explainer that produces expla-
nations composed of: (i) a set of exemplar and counter-exemplar images, and
(ii) a saliency map. The end-user can understand the classification by looking
at images similar to those under analysis that received the same prediction or
a different one. Moreover, by exploiting the SM, it is possible to understand
the areas of the images that cannot be changed and varied without impacting
the outcome. ABELE exploits an adversarial autoencoder (AAE) to generate
the record’s local neighbourhood to explain x. It builds the neighbourhood on
a latent local decision tree, which mimics the behaviour of b. Finally, exemplars
and counter-exemplars are selected, exploiting the rules extracted from the deci-
sion tree. The SM is obtained by a pixel-by-pixel difference between x and the
exemplars.

3.2 Text Data

For text data, we can distinguish the following types of explanations: Sentence
Highlighting (SH), and Attention-Based methods (AB).

Sentence Highlighting is a saliency map applied to text and consists of assign-
ing to every word a score based on the importance that word had in the final
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prediction. Several methods can produce this type of explanation. LIME [41]
can be applied to text with a modification to the perturbation of the original
input. Given an input sentence x, LIME creates a neighbourhood of sentences
by replacing multiple words with spaces. Another possible variation is to insert a
similar word instead of removing them. INTGRAD [46] can also be exploited to
explain text classifiers. Indeed, gradient-based methods are challenging to apply
to NLP models because the vector representing every word is usually averaged
into a single sentence vector. Since a mean operation gradient does not exist,
the explainer cannot redistribute the signal to the original vectors. On the other
hand, INTGRAD is immune to this problem because the saliency values are com-
puted as a difference with a baseline value. INTGRAD computes the saliency
value of a single word as a difference from the sentence without it.

Attention was proposed in [51] to improve the model performance. Through
an attention layer, the authors managed to show which parts of the images
contributed most to realizing the caption. Attention is a layer to put on top of
the model that, for each word, ij of the sentence x generates a positive weight
αij , i.e., the attention weight. This value can be interpreted as the probability
that a word ij is in the right place to focus on producing the next word in the
caption. Attention mechanisms allow models to look over all the information the
original sentence holds and learn the context [4,50]. Therefore, it has caught the
interest of XAI researchers, who started using these weights as an explanation.
The explanation e of the instance x is composed of the attention values (α), one
for each feature xi. Attention is nowadays a delicate argument, and while it is
clear that it augments the performance of models, it is less clear if it helps gain
interpretability and the relationship with model outputs [24].

3.3 Time Series

Tabular data, images, and texts are the most popular data types used when
developing a black-box model. Time series is a type of data representing any
variable that varies over time. There are areas such as the medical field where
temporal data is critical. The majority of the algorithms in this field are com-
posed of very deep black-boxes, which means that eXplainable Artificial Intelli-
gence is crucial for time series data. The most important difference with the other
types of data relies on the explanation produced. Shapelet is the most charac-
teristic explanation for time series data. They are time series subsequences that
are maximally representative of a class. Saliency maps adopt a similar approach,
and it consists of highlighting which part of the series has contributed the most
to the classification. Finally, since also text can be interpreted as a time series,
the attention methods explained before can also be applied to time series data.
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Fig. 4. Example of explanation for time series data given by LASTS [19]. On the
left a representation of time series similar to the original one, while on the right are
represented the counterfactual ones.

3.4 Post-hoc Explanations: Hands-on the Code

In the Tutorial at ACAI 2021, we show the majority of the methods present in
this Section8. For the hand-on code on post-hoc explanations we started with a
general view of tabular data using two very well known datasets in the literature
Adult9 and German10. We used LIME, LORE and SHAP to show different types
of explanations for a Random Forest classifier trained on these two datasets. For
images, we used the MNIST dataset11 and showed different types of explanations
using INTGRAD, LIME, RISE, LORE and ABELE. There was no time for text.
However, in the Github, we provided an example of a LIME application.

3.5 Transparent by Design Methods

There has been a recent explosion of work on ‘explainable ML’, where a sec-
ond (post-hoc) model is created to explain the first black-box model. This is
because it is easy to create a black-box model with reasonable accuracy. In this
setting, it only matters the quantity and the quality of the data. Often, com-
panies and researchers throw all the data into the model, and something will
come up. The prediction explanation only comes in second after a model with
acceptable accuracy has been obtained. However, this is problematic since post-
hoc explanations are often not reliable and often misleading. The problem with
Post-Hoc explanations is that they must be wrong. They cannot have perfect
fidelity with respect to the original model. If the explanation were completely
faithful to what the original model computes, the explanation would equal the
original model. One would not need the original model in the first place, only the
explanation. This leads to the danger that any explanation method for a black-
box model can accurately represent the original model in parts of the feature
space. An inaccurate explanation model limits trust in the explanation and, by
extension, trust in the black-box it is trying to explain. An explainable model
that has a 90% agreement with the original model indeed explains the original
model most of the time. However, an explanatory model that is correct 90% of
the time is wrong 10% of the time. If a tenth of the explanations is incorrect, one
8 Code available here https://github.com/rinziv/XAI lib HAI-net Tutorial.
9 https://archive.ics.uci.edu/ml/datasets/Adult.

10 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).
11 http://yann.lecun.com/exdb/mnist/.

https://github.com/rinziv/XAI_lib_HAI-net_Tutorial
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
http://yann.lecun.com/exdb/mnist/
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cannot trust the explanations, and thus one cannot trust the original black-box.
If we cannot know whether our explanation is correct, we cannot trust either
the explanation or the original model. Transparent by design methods come to
solve this problem. Due to the intrinsic transparency nature, the decision pro-
cess about predictions is known by construction. However, the accuracy of the
prediction would suffer from this design. Usually, transparent by design models
are weaker in terms of accuracy than black-box models. Also, they are usually
difficult to build since they require considerable knowledge of the data used.

In most cases, it is a matter of a trade-off between accuracy and transparency,
and the use depends on the case. In high-stack decision-making problems, like
healthcare, it is usually preferable to use a transparent method since there is the
need to justify the action. However, even in this case, if there is an algorithm
that can save lives with a 10% improvement against the transparent model, why
would you not use it? The following section will review the recent advances in
transparent design methods concerning their data type.

3.6 Tabular Data

Decision Trees have been the primary type of interpretable algorithm by design
models for quite a while. Due to their high interpretability, they are the go-to
algorithm for real-world business applications. They can be explained as a series
of questions of the type if-else statements that are very human-friendly. Also, the
time required for the learning algorithm to make predictions is very low, and no
missing value imputation is required since the algorithm can adapt accordingly.
However, they are unstable, relatively inaccurate, and prone to overfitting. A
small change in data can lead to a vastly different decision tree. This can be rec-
tified by replacing a single decision tree with a random forest of decision trees.
By doing this, we increase the complexity of the model and, therefore, lower its
transparency. Tools like Xgboost [11], which relies on Boosting Tree, have imple-
mented some Feature Relevance in years to explain their prediction, but they
remain a black-box for all intents. A ruled-based classifier is a similar approach
to Decision trees [22], always based on rule explanation. It provides an output set
of rules, requiring no further explanations. Nevertheless, the comprehensibility
of rule models is also not without caveats. For example, while individual rules
may be well understood, the complete rule model may lose its explainability if
there are too many rules. Interpretable Decision Sets (IDS) [29] is a rule learning
algorithm that provides means for balancing the model size and also other facets
of interpretability with prediction performance through user-set weights.

Furthermore, ruled-based methods are not the only methods to make trans-
parent by design models. InterpretML12 is a package from Microsoft which offers
a new interpretability algorithm called Explainable Boosting Machine (EBM),
which is based on Generalized Additive Models (GAMs). Generalized addi-
tive models were initially invented by Trevor Hastie and Robert Tibshirani in
1986 [23]. Although GAM does not receive sufficient popularity yet as a random

12 https://interpret.ml/.

https://interpret.ml/
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Fig. 5. Explanations given by EBM. TOP : Overall global explanation (left), example
of a global explanation (right). BOTTOM : Local explanations: left, a record classified
as 1; right a record classified as 0.

forest or gradient boosting in the data science community, it is undoubtedly a
powerful yet simple technique. The idea of GAM is that the relationships between
the individual predictors and the dependent variable follow smooth functions
that can be linear or nonlinear. These relationships can be estimated simultane-
ously then added up. y = f1(x1) + f2(x2) + ... This allows computing the exact
contribution of each feature to the final prediction y. Although a GAM is easy
to interpret, its accuracy is significantly less than more complex models that
permit interactions. For this reason Lou et al. [33] also added interaction terms
in the sum of the contributions and called it GA2M: y =

∑
fi(xi)+

∑
fij(xi, xj)

As a result, GA2M significantly increases the prediction accuracy but still pre-
serves its nice interpretability. Although the pairwise interaction terms in GA2M
increase accuracy, it is highly time-consuming and CPU-hungry. EBM solves
the computational problem by learning each smooth function f() using bagging
and gradient boosting techniques. The functions are modelled as straightforward
decision trees, and the resulting adding function of the prediction is a stepwise
function. This results in a better computational cost without losing accuracy or
interpretability. An example for the adult dataset is shown in Fig. 5

3.7 Image Data

For years Deep Neural Networks have been predominant in the image domain
world. Due to the data’s complexity, transparent design methods suffer in per-
formance more than when dealing with tabular data. New techniques are arising
that promise to enhance the transparency of Deep Neural Networks, but we are
far from creating a fully transparent by design method.

The most promising approach to transparency in the image domain is by
using Concepts. As for Post-Hoc methods, high-level concepts could be used to
design a transparent model for images. During training, each layer of a deep
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learning model encodes the features of the training images into a set of numer-
ical values and stores them in its parameters. This is called the latent space of
the AI model. The lower layers of a multilayered convolutional neural network
will generally learn basic features such as corners and edges. The higher layers
of the neural network will detect more complex features such as faces, objects,
and entire scenes. Ideally, a neural network’s latent space would represent con-
cepts relevant to the classes of images it is meant to detect. Nevertheless, we
do not know that, and deep learning models are prone to learning the most dis-
criminative features, even if they are the wrong ones. Here comes the Concept
Whitening approach [12]. The main logic behind “Concept Whitening” is the
development of neural networks such that their Latent Space is aligned with the
relevant concepts to what it has been trained. This will reduce the errors by neu-
ral networks, and their internal working can be explained much easier. However,
the user still defines these concepts manually, which is challenging. There are
several concepts for a single class image, and usually, in the image classification
task, the classes are of the order of a thousand.

3.8 Text Data

For text data, the complexity of models is even higher than for images. Here the
best model architecture is a even deeper Neural Network called Transformers.
Transformers rely upon a mechanism called self-attention, which relates differ-
ent positions of a single sequence to compute a representation of the sequence.
There are no transparent by design methods capable of reproducing this type of
architecture transparently.

3.9 Interpretable by Design Explanations: Hands-on the Code

In the Tutorial at ACAI 2021, we showed the majority of the methods present
in this Section13. For the hand-on code on interpretable by design explanations,
we show the explanations returned by EBM on the German dataset already used
for post-hoc explanations.

4 Conclusion and Open Challenges

This chapter presented an overview of the tutorial conducted during the sum-
mer school ACAI 2021 in Berlin. We first presented what is Explainable AI,
describing the different kinds of explanations available, such as feature impor-
tance, rules, prototypes and counterfactuals. Then, we proposed an overview of
the desiderata of an explanation. We then moved to the presentation of post-
hoc explanations and transparent by design methods. For these approaches, we
presented the methods from a technical point of view, dividing the analysis into

13 Code available here https://github.com/rinziv/XAI lib HAI-net Tutorial/blob/
main/EBM example.ipynb.

https://github.com/rinziv/XAI_lib_HAI-net_Tutorial/blob/main/EBM_example.ipynb
https://github.com/rinziv/XAI_lib_HAI-net_Tutorial/blob/main/EBM_example.ipynb
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the type of input data, such as tabular, images and text data. We also pre-
sented the hands-on code session that we conducted by exploiting a Python
library developed by our research group. This is just a short description of this
area of research. For the interested user, we suggest reading [7], an in-depth
survey about these topics from our KDD Lab. Moreover, we did not consider
other data types in this chapter, such as graphs or time series. Hence we sug-
gest [43,53]. The topics covered in this tutorial proved to be very interesting for
the participants, who raised an interesting debate on the challenges and open
points in the literature. Most of the participants pointed out problems in the
current XAI algorithms, such as slow execution and many assumptions to be
made to obtain an explanation, like the number of synthetic neighbours to be
generated, the type of surrogate and the granularity of the explanation. As an
example, SHAP allows masks to speed up the computation, thus selecting fewer
features to compute the SHAP values. However, this process requires setting a
different granularity of the explanation that is not straightforward to select and
may require expert knowledge of the kind of data. Moreover, one of the most
interesting arguments pointed out regards the metrics: at the moment, we have
several explanation algorithms, but few ways to compare them and validate at a
theoretical and technical level the goodness of the obtained explanations. This is
an alarming situation for many researchers since we may propose explanations
that are not faithful to the black-box model we aim to explain. Lastly, most
explanation algorithms are for tabular data and images, while text, time series
and graphs are less considered.
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Abstract. Why should we explain opaque algorithms? Here four papers
are discussed that argue that, in fact, we don’t have to. Explainability,
according to them, isn’t needed for trust in algorithms, nor is it needed for
other goals we might have. I give a critical overview of these arguments,
showing that there is still room to think that explainability is required for
responsible AI. With that in mind, the second part of the paper looks at
how we might achieve this end goal. I proceed not from technical tools in
explainability, but rather highlight accounts of explanation in philosophy
that might inform what those technical tools should ultimately deliver.
While there is disagreement here on what constitutes an explanation, the
three accounts surveyed offer a good overview of the current theoretical
landscape in philosophy and of what information might constitute an
explanation. As such, they can hopefully inspire improvements to the
technical explainability tools.

Keywords: Explainability · Trust · AI ethics

1 Introduction

Artificial intelligence, and in particular machine learning methods, is fast gaining
ground. Algorithms trained on large datasets and comprising numerous hidden
layers, with up to a trillion parameters, are becoming common. Such models
are difficult to explain to lay users with little understanding of the basis of
machine learning, but they are also hard to interpret for those who designed and
programmed them. The calculations that are carried out by the algorithm are
not assigned an easily understandable meaning, aside from there being far too
many of these calculations to actually follow. The outputs of algorithms are, as a
result, hard to predict and to explain. Why did the algorithm output that there
is a cat on this picture? We don’t really know, certainly not without additional
help in the form of explainability tools.

Reducing this vast range of calculations to an explanation that is accessible
and helpful is a huge challenge, and one that is laid out in more technical detail in
chapter [8]. Instead, I focus on the question: is it a problem that machine learning
models are hard to interpret? This links closer to the tutorials on Ethics in AI,
such as the chapters [2,15,20]. For there is a philosophical question at the very
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start of any attempt to make machine learning models more explainable: why
do we need explainability? And, furthermore, if we decide that explainability is
important, what is it exactly that the tools we aim to develop should provide?
What information is needed to constitute an explanation? When is a machine
learning model interpretable?

These are big questions, and require far more discussion to be fully answered
than I can provide here. So, to narrow the scope I primarily look at the recent
increase in arguments against the need for explainable machine learning meth-
ods. I discuss the philosophical angles taken here, using four recent publications
on the topic. I leave aside most technical work on explainability methods, for the
interested readers see chapter [8] or the literature overviews in [1,4,10]. Instead
I focus on philosophical accounts of explanations in the second part, presenting
three different accounts of what explanations are and thus what information
we should aim to provide in our explainability methods. As such, this chapter
should give a more conceptual overview of reasons we have for wanting to explain
machine learning/AI algorithms and what that might entail.

1.1 Learning Objectives

At the end of this chapter readers will have:

– Awareness of the recent arguments against the need for explanations of
machine learning algorithms

– Ability to discuss the merits of these arguments
– Knowledge of the main accounts of explanation in the philosophical literature

2 Why Should We Explain Algorithms?

With the growing use of machine learning algorithms, and the benefits they may
deliver, there has also been an increase in discussions about the conditions in
which we can use these algorithms. Do we require algorithms to be explainable
or is it acceptable to use algorithms even when we can’t say why they pro-
duce the outputs they do? I discuss four different (sets of) arguments that aim
to establish that explainability is not necessary to trust, or acceptably use, an
algorithm. They help set up a discussion of the aims of explainable AI (XAI)
tools and cover the philosophical literature up to 2021. While this leaves out
some discussions from computer science [18] in the same period, it gives a good
overview of the arguments that circulate against a requirement of explainability.
Do we need explanations for trust in AI? [7] What about other goals we might
have for such tools? Are they such that all, or most, machine learning algo-
rithms require XAI support? The four papers have been chosen to reflect these
questions: from arguments against needing explainability for trust (2.1 – 2.3) to
arguments considering the wider range of goals explainability might serve (2.4).
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2.1 Robbins: The Impacts of AI and a Catch-22

Robbins [17] would certainly answer this last question with a resounding ‘no’.
He presents two arguments for this conclusion, but starts with the idea that
any requirement on explainability wouldn’t attach to the algorithm as such, but
rather to the decisions that are made with/by the algorithm. For example, we
don’t require people to be generally explainable; it’s fine if some actions (e.g.
a sudden urge to dance by a child) are left unexplained. Likewise, I don’t need
to explain why I crave Chinese food for dinner, though I do need to offer an
explanation were I to hit someone. It’s the impact, presumably, of these different
decisions on other people that makes all the difference. If the impacts are, or
can be, high, then we require explanations. If they are low and nobody would
be affected by my decisions, then I can make them however I like. So Robbins
[17] argues, and so I’ll assume here to trace out the argument.

For it is what happens in the different cases where it gets interesting. The
low-risk situation, where an algorithm’s outputs aren’t really capable of leading
to harms, are supposed to be ones where we don’t need explanations. As with
people, where decisions of little import to others can be made without needing
a good reason for them, so algorithms too shouldn’t have to be explainable.
Robbins [17] uses the example of AlphaGo, the choices of which cannot be readily
explained. The lack of any risks associated with AlphaGo’s outputs means that
nobody considered this problematic, though perhaps we would find it valuable
additional information. The point is rather that the lack of potential harms
means that there is no requirement of explainability. If the algorithm fulfills its
function well enough, it should be acceptable to use it.

So far the argument is uncontroversial. Proponents of a requirement of
explainability typically point to high-stakes cases such as algorithms making
medical diagnoses, as it is in these situations that we would expect explana-
tions from people. Here Robbins [17] discusses a ‘Catch-22’ argument to show
that requiring machine learning algorithms to be explainable would make them
redundant. The idea is that “in order for the explanation given by explainable
AI to be useful we must have a human capable of knowing which considerations
are acceptable and which are not. If we already know which considerations are
acceptable, then there is no reason to use ML in the first place. We could simply
hard-code the considerations into an algorithm - giving us an automated deci-
sion using pre-approved, transparent, reasoning.” [17, p.510] Explanations can
only be used to calibrate trust if we know what good reasons for a decision are,
and Robbins claims that if we have that knowledge then we could just as well
program a transparent, rules-based, algorithm.

It’s this last claim that I consider problematic, as we often do seem to be
capable of evaluating decisions even if we can’t write down the exact steps needed
for making or even evaluating the decision. The sheer amount of work by cog-
nitive scientists to figure out how e.g. our visual processing functions, is a good
example of this. We are very good at identifying objects and telling whether
someone has correctly done so and on the correct basis, but formulating general
rules that capture all this (e.g. defining when an object is a cat) turns out to
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be very difficult. We’re bad at giving necessary and sufficient conditions, and
at providing dictionary definitions even though we know perfectly well what
our words mean and which objects are cats. The same holds for less conceptual
tasks such as driving, where we can tell whether someone is a good driver, and
whether decisions were made for appropriate reasons, but have a hard time giv-
ing a full functional description of how we drive. The very reason we started with
machine learning was this observation that it is extremely difficult to formulate
exact rules that capture our cognitive abilities. So the claim that the ability to
evaluate explanations is sufficient to formulate transparent GOFAI (Good Old-
Fashioned AI) algorithms seems blatantly false. As a result, the argument for
the redundancy of explainable machine learning algorithms fails. For even if we
can evaluate explanations (tell whether the algorithm looks at the right things
to decide whether something is a cat), that doesn’t imply that we could specify
a rules-based algorithm instead. Explainability can still be a reasonable require-
ment on machine learning algorithms, at least in situations where the potential
impact is serious enough.

2.2 London: A Lack of Explanations Elsewhere

If the reason that we get out of the Catch-22 in [17] is that we often can’t provide
the detailed descriptions needed for a transparent algorithm, then isn’t that lack
of transparency on our side a reason to question a requirement of explainability?
Aren’t we requiring something of algorithms that people wouldn’t be able to
supply, when we claim that they should be interpretable? This is the direction
of critique in London [14], who claims that “The opacity, independence from an
explicit domain model, and lack of causal insight associated with some powerful
machine learning approaches are not radically different from routine aspects of
medical decision-making.” [14, p.17] The examples that London uses to make
this point are important for the evaluation of the argument. For he points out
that:

[M]odern clinicians prescribed aspirin as an analgesic for nearly a century
without understanding the mechanism through which it works. Lithium
has been used as a mood stabilizer for half a century, yet why it works
remains uncertain. Large parts of medical practice frequently reflect a mix-
ture of empirical findings and inherited clinical culture. In these cases, even
efficacious recommendations of experts can be atheoretic in this sense: they
reflect experience of benefit without enough knowledge of the underlying
causal system to explain how the benefits are brought about. [14, p.17]

In other words, we might not always be able to explain why a certain treat-
ment is effective, even if it is the responsible decision to prescribe that treatment.
London reinforces that point with an example of treatments that were chosen
based on theoretical reasoning, which was later disproved (and showed that the
chosen treatments in fact harmed patients). “In medicine, the overreliance on
theories that explain why something might be the case has sometimes made
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it more difficult to validate the empirical claims derived from such theories,
with disastrous effects.” [14, p.18] It is the efficacy of the treatments, verified
in randomized clinical trials (RCT) that offers the best basis for deciding which
treatment to offer. And so, London argues by analogy, we should decide which
algorithms to trust/use based on their efficacy and not based on whether we
have a thorough understanding of them.

The question is whether this comparison to our (in)ability to explain why
treatments work is a good one. For despite the fact that we may not know
the underlying causal mechanisms, doctors are clearly able to explain why they
choose to prescribe a certain treatment: it is, for example, the experience that
it has worked for patients with similar symptoms, ideally backed up by RCTs.
Similarly, they will have reasons available (that can be evaluated by other medi-
cal professionals) to support their diagnosis. It is therefore important to consider
the role that machine learning algorithms are supposed to play. They are not a
type of treatment about which decisions are made, but a tool to aid or replace
decision making, much closer to the diagnostic tools such as MRI machines that
are used and whose functioning we can explain in detail. In the case of decision
making we can, and frequently do, receive explanations.

Now, this doesn’t quite settle the matter, as we can also ask whether we trust
our doctor and machinery (and consider a diagnosis and treatment decision a
good one) based on an ability to explain a decision, or based on a track record
of previous good decisions. Perhaps here there is a similar case to be made that
what we value is their reliability, rather than their ability to give reasons for
decisions. The point to make regarding London’s argument, however, is that
the lack of understanding of causal processes that explain the efficacy of treat-
ments is largely besides the point. These treatments don’t constitute decisions
or diagnoses. There is no rational deliberation here, nor is there a question of
what a decision was based on. Instead, the cases he highlights show that making
decisions for the wrong reasons (theoretical ones rather than evaluated efficacy)
can be damaging, and so that having these reasons can be an important part
of figuring out how good a decision is. Perhaps, without meaning to, this gives
us precisely a reason to prefer or require explainable AI so that there too (auto-
mated) decisions can be shown to be based on the relevant features, considered
in an appropriate manner.

2.3 Durán and Jongsma: Reliabilism and Explainability

Still, I consider the question whether there is a requirement of explainability
on machine learning algorithms to be far from settled. London’s examples may
not give as strong an argument against such a requirement as he hoped, there
are more perspectives from which to proceed. A more principled one is that
of reliabilism, a philosophical position in epistemology that (in a very simple,
process reliabilism formulation) analyses our justification to believe a proposition
to be true in terms of the reliability of the process that led to this belief [9]. If
the process is reliable (enough), then the belief is justified. If it isn’t reliable,
then there is no justification. How much of this we are aware of, or the internal
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reasons we have, is of little matter: the only thing that counts is the (externally
determined) reliability of the process.

It is with this account in mind, though with a somewhat more involved
notion of reliability than standard in the epistemological literature, that Durán
and Jongsma [6] argue against a requirement of explainability on machine learn-
ing algorithms. While their main point is that (computational) reliabilism can
offer an account of when to trust machine learning algorithms, they also give
an argument against explainability. “transparency is a methodology that does
not offer sufficient reasons to believe that we can reliably trust black box algo-
rithms. At best, transparency contributes to building trust in the algorithms
and their outcomes, but it would be a mistake to consider it as a solution to
overcome opacity altogether.” [6, p.2] The underlying issue, as they see it, is one
of infinite regress: our explainability tools will never succeed in making machine
learning algorithms transparent, because of the need for transparency in the
tools themselves. In their words:

To see this, consider P again, the interpretable predictor that shows the
inner workings of A, the black box algorithm. The partisan of transparency,
S, claims that P consists of a sequence of procedures of which a given pi
entails A (or some of its outputs). But what reasons does S have to believe
this? All that S holds is a very appealing visual output produced by P,
like heatmaps or decision trees, and the - still unjustified - belief that such
an output represents the inner workings of A. For all S knows, P is as
opaque as A (eg, it can misleadingly create clusters which are biased, it
can ignore relevant variables and functions that compromise the integrity
of the results, etc). It follows that all we can say is that P induces on S the
belief that S knows the output of A (ie, the idea that A is transparent), but
at no point P is offering genuine reasons to believe that S has interpreted A.
For this to happen, for S to be justified in believing that A is transparent, P
must be sanctioned as transparent too. The problem has now been shifted
to showing that P is transparent. [6, p.2]

There are two related concerns here that one might have about explainability
tools. First, the tool itself might not be transparent, so e.g. the way in which a
particular heatmap is output may not be explained. Why does the tool provide
is with this explanation of the output rather than with another explanation?
In other words, tool P may be a black box algorithm that in itself requires
additional tools for its workings to be explained. Second, it might not be the
tool itself that is opaque, but rather the fidelity of its explanations. We may
know perfectly well how P generates explanations, but be unsure whether the
explanations by P are indeed correct descriptions of why algorithm A reached
that output. Linear approximations, for example, might be transparent in the
first sense, but evaluating whether the explanations offered by them are a good
representation of the reasons the machine learning model made its decisions is
far more difficult. I think that Durán and Jongsma [6] aim to point to the second
worry, about the fidelity of P, rather than the first, also since explainability tools
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often do not involve machine learning and so are generally not opaque in the
first sense.

Would a regress occur here? Clearly it would if the first case was true: if all
explainability tools are themselves black boxes, we wouldn’t manage to get rid
of black boxes by using XAI tools. That isn’t the case, so they need a regress on
determining the fidelity of these explainability tools. Is there some way to deter-
mine the fidelity of an explainability tool where we are sure that the answers are
correct, or at least don’t need yet another method to determine their correctness?

This will depend on the explainability methods we look at. Indeed, decision
trees and linear approximations have this question of their fidelity to the model.
And it is difficult to interpret heatmaps correctly, as there is a tendency to
conceptualize the highlighted areas (e.g. a shovel) in terms of the concepts we
typically use, whereas the algorithm might use the colour, shape, or some more
complex combination of factors to make its decisions. While heatmaps high-
light which areas are important for the algorithm’s output, they do not explain
why these areas are important. Yet the fidelity of these explainability tools is
not directly in question: heatmaps, and feature importance methods in general,
correctly represent part of the algorithm’s behaviour. Similarly, counterfactual
explanations correctly identify which minimal changes (under a chosen distance
function, which is transparent – or can be transparent) lead to a change in out-
put. Granted, these methods do not manage to make the algorithm transparent,
but it is not their lack of fidelity that leads to this issue. I see, therefore, no rea-
son to suspect a principled regress here on the question whether explainability
tool P correctly describes the behaviour of algorithm A. Yes, we haven’t found
tools yet that manage to truly explain black-box algorithms (and probably this
is why there are so many attempts to argue that algorithms can still be used
even if they aren’t explainable), but that alone is insufficient reason to think
that it is impossible to achieve transparency.

Of course, Durán and Jongsma [6] offer a more constructive account of when
people are justified to trust a machine learning algorithm, using reliabilism. It is
not my intention to evaluate this account, on which explanations aren’t needed
for trustworthy algorithms, here (primarily for reasons of space). Rather, I aim
to consider whether the arguments against a requirement of explainability hold
up. Is it possible to hold that explainability is needed for trust? So far it seems
that the answer is yes, as the arguments against such a requirement seem to fall
short. It may still turn out that computational reliabilism, which they defend, is
the correct account, but there is more room to argue for transparency than they
suggest. In the case of an argument for explainability as a pre-requisite for trust,
but also for an explainability requirement due to other reasons. It is this broader
view that I explore in the next subsection, with the arguments of Krishnan [12]
who goes through a range of possible ends to which explainability is a means.

2.4 Krishnan: Reasons to Explain

There are various reasons we might have to require, or strive for, explainability of
machine learning algorithms. There is, as she terms it, the ‘justification problem’,
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closely related to questions about trust in algorithms. Explainability is often seen
as a way to improve trust, and the above attacks on explainability have tended
to focus on this aspect of the question (though Robbins actually focuses on
control in his text). Her response here, as that of Durán and Jongsma, is to
point to reliabilist accounts in epistemology. There are well-respected theories
on which justification isn’t linked to interpretability or some kind of awareness
of reasons, and only links to reliability. So, putting forward a strong requirement
of explainability motivated by trust is neglecting such alternatives, and might
be wrong if reliabilist epistemologies are correct.

Trust/justification in general might then be in place without transparency.
But a closely related reason to strive for explainability, or perhaps even require
it in high stakes contexts, is often overlooked in these discussions. Yes, the algo-
rithm might be trustworthy in general, because it gets it right often enough.
But how about our trust in individual outputs? We might be justified to believe
these, but surely we’d prefer to have a way to tell whether the algorithm makes
good decisions in individual cases. For example, algorithms will perform worse
in outlier cases, even when they are generally accurate. Understanding why the
algorithm presents a certain output may help to gain a more fine-grained jus-
tification, and avoid mistakes that would arise if the algorithm is given blanket
trust.

Krishnan would probably respond to this that there are other methods to
detect such situations, such as outlier detection methods, which do not require
the algorithm to be explainable. At least, that is the argument structure she uses
for the other goals that explainability might serve. I can only agree here, such
tools are available, and we have a fairly good idea of which conditions impact the
reliability of our algorithms. But here, too, we can’t make distinctions between
outliers where the algorithm makes decisions in a way that seems reasonable, and
ones where the algorithm makes decisions in an outlandish manner. For which
outliers did the model generalize correctly, and for which will it make gross mis-
takes? Outlier detection won’t be able to tell us. More insight into the processing
of the algorithm might, however, provided that we have enough domain knowl-
edge to evaluate its functioning. So there might actually be epistemic reasons to
prefer explainability which cannot be readily replaced by accuracy measures. I’ll
leave this question aside though – I suspect that it’s in part an empirical matter
whether people actually are better at spotting mistakes if they understand why
the algorithm gives a certain output – to move on to the other reasons one might
have to demand explainability.

The second such reason that Krishnan discusses is that of fairness, or anti-
discrimination in her terms. She naturally agrees that we should tackle this
problem, but argues that explainability might not be a necessary ingredient to do
so effectively. Fairness measures, possibly supported by synthetic datasets, might
do most of the work here. Further investigations into biases of the training data
can also help diagnose the source of discrimination by algorithms. Identifying
and solving this issue, she argues, is something we can do largely by examining
outcomes and training data. The algorithms needn’t be transparent for that. I
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think that’s a fair conclusion to draw, though as some of the participants in
the workshop pointed out it doesn’t mean that explainability methods will not
help. Nor is there a guarantee that fairness measures, synthetic datasets, and so
on will in practice spot all problems. Perhaps we can do this more effectively if
algorithms are transparent than if they are not. For practical reasons, then, we
still might prefer explainable algorithms over black boxes for this reason. Time
will tell whether it is needed or not, but as she says “Interpretability is more
plausibly construed as one tool among many which may prove useful against
discrimination.” [12, p.497]

The third reason that Krishnan puts forward is that one might want explain-
ability to help weigh the output of the algorithm against other sources of infor-
mation, or to solve disagreements. Generally speaking, it is the question of “how
to synthesize the outputs of different sources into an overall decision and corre-
sponding level of confidence in that decision” [12, p.497]. This is fairly close to
the point made above, about the question whether we can trust individual deci-
sions and the role that explainability may have to play there. Krishnan, however,
focuses specifically on disagreements and balancing the output of an algorithm
with other sources of evidence. It’s a related case, but one that focuses primarily
on disagreements. Her take on such disagreements is that here, too, we can do
without detailed knowledge of why the algorithm reaches a certain output:

When human processes and ML processes track different indicators, they
are independent sources whose coincidence should strengthen confidence in
the accuracy of a shared conclusion, whereas tracking the same indicators
(and especially using the same indicators in a different way) can strengthen
confidence in the aptness of the way that human reasoners are processing
a given data set, without providing fully independent evidence in favor of
the accuracy of that conclusion. Both scrutiny of the content of training
data sets and ways of testing classifiers to see what features they actually
track are viable ways of extracting this information without scrutiny of
the steps that the algorithm performs in arriving at categorizations. [12,
p.498]

Having this knowledge of features will certainly help, though I worry that
resolving disagreements will not be as straightforward as this. When the same
indicators are used, but different conclusions are reached, we surely want to know
which way of considering the indicators is better. When people are given the same
case, but disagree, we ask them why they reach their respective conclusions, to
evaluate which arguments make the most sense. Similarly in the case with the
AI, we would want to know whether the disagreement implies that we should
trust the algorithm less, or the human judgement. Is one of the two clearly
mistaken, or are there good reasons to put forward for both sides, which leads to
suspension of judgement in this case of disagreement? Having this information
about indicators is useful, but it alone doesn’t tell us which confidence levels
need to be adjusted downwards in cases of disagreement. Other measures, such
as whether the case is dissimilar to the training data of the algorithm, might
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help here but won’t give as much clarity as when the reasons for the output can
be evaluated.

Similar issues arise if the algorithm has considered the same indicators, but
agrees with us. Should this raise our confidence in the aptness of people’s rea-
soning? Surely this depends, for example on whether the algorithms output
is biased (we wouldn’t want to say that the person’s biased reasoning is apt
because it coincides with a similarly biased AI output) or based on spurious
correlations. Granted, the question of bias was tackled earlier, but here too we
see that whether we raise our confidence or not depends on the type of process
that led to the AI output. Krishnan nicely points out that we might learn a
lot about this proces without it being transparent, and without explainability
tools. Can we really learn all that we need to handle disagreements and reconcile
evidence from different sources though? If we look at disagreements with peo-
ple, then they do seem to resort to answers to why-questions in order to settle
disputes. We ask people for their reasons to hold something true or false. Merely
resorting to which factors were considered does not seem a sufficient substitute
for that, though we might get further than we originally thought should it prove
too difficult to make black box algorithms interpretable.

Furthermore, there might be other reasons to require interpretability of
(some) algorithms. Krishnan lists two at the end of her paper [12, §3.4]. First,
using machine learning in scientific contexts, to generate causal explanations and
make scientific discoveries. Second, interpretability might be needed for pub-
lic trust in these systems, even if it isn’t necessary to be justified in believing
the outputs. Perhaps, she reasons, society simply won’t accept opaque machine
learning models in some contexts, partly due to experts who favour explainabil-
ity requirements. I, and the attendants at the workshop, think we can readily
add a number of other goals to which explainability might contribute. Contesta-
bility is one, and is part of the reason that counterfactual explanations were
introduced [21]. Explanations might also help with accountability, control and
model debugging, to name a few.

I should stress, however, that this does not mean that I have now given a
positive argument to require explainability in certain contexts. All I have room
to add here is that the arguments surveyed aim to show that a common practice
among people – giving reasons for actions – can be replaced in the AI setting
by input features and outcome measures. I’m skeptical that we’ll be able to do
everything with these substitutes that we can with reasons. Evaluations of the
merits of individual decisions, for example, are harder to do even if we can get
quite a lot out of knowing what features were used and how reliable the algo-
rithm is. Likewise, figuring out what to do in disagreements between algorithms
or between algorithms and people is harder without reasons. One may argue
that what we can do without reasons is good enough, and that explainability
methods would be a great addition but not a necessary one. An answer to such
an argument should depend on more specific cases, with the stakes laid out and
our tolerance for mistakes, alongside the capability to detect and handle such
mistakes with and without explainability methods. In setting medical diagnoses,
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for example, we might point to the serious impacts of mistakes and thus the
desire for accountability mechanisms and a way to improve after a mistake has
been made. Explainability can be important as a result, although it is to be care-
fully weighed against potentially reduced accuracy. Credit scoring algorithms will
present outcomes that are still very impactful, but less so than the life-and-death
situations of some medical decisions. Consequently the balance may shift there.
In addition, Krishnan and others show that explainability is not a silver bullet:
factors such as reliability, bias detection and the interaction between humans
and the system all matter for responsible use of AI. Explainability might help,
but likely will not solve everything.

In fact, it might turn out that current explainability methods don’t deliver
understanding of AI outputs, and that we also don’t want to accept the use
of black box algorithms. The conclusion, then, would be that we should work
on developing interpretable algorithms instead of black box algorithms. For an
argument to that effect, I refer the reader to [18]. It’s an interesting argument
about what we should give most priority to in current development practices,
but one I’ll leave aside here. As in the workshop, I want to focus on explainability
methods for black box algorithms, and the question of how we should explain
algorithms, if we agree that there are good reasons to strive for such explanations.
I turn to that in the next section.

3 What Constitutes an Explanation?

The question posed here, ‘what constitutes an explanation?’ is deliberately
abstract. For it is not my goal to offer concrete guidelines on how existing
explainability tools are to be improved. Instead, I want to offer some theoretical
perspectives that may be unfamiliar to those working in the field of explainable
AI, yet may prove fruitful. Philosophers, namely, have thought about the nature
of explanation (primarily in the context of the natural sciences) for at least a
century. They have tried to unravel the structure that explanations follow, and
theorized what it is about those bits of information that provides us with insight.
As we strive for similar insight into the workings of machine learning algorithms,
it may be that these different views of what information makes up an explanation
offer a goal on the horizon to work towards.

One place to start is that in philosophical discussions there is a fairly wide-
spread agreements that whatever explanations are exactly, they are answers to
contrastive why-questions. The idea is that when we ask for explanations, we
typically do so by asking ‘why?’. When scientists want an explanation for a
phenomenon, they ask why it occurred. When we want an explanation for an
action, we ask why that person did it. However, the idea is that these questions
have a more specific focus than just the phenomenon or action; they seek an
explanation for a specific aspect of it. As Peter Lipton puts it in his influential
book on inference to the best explanation:

We do not explain the eclipse tout court, but only why it lasted as long as
it did, or why it was partial, or why it was not visible from a certain place.
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Which aspect we ask about depends on our interests, and reduces the
number of causal factors we need consider for any particular phenomenon,
since there will be many causes of the eclipse that are not, for example,
causes of its duration. More recently, it has been argued that the interest
relativity of explanation can be accounted for with a contrastive analysis of
the phenomenon to be explained. What gets explained is not simply ‘Why
this?’, but ‘Why this rather than that?’ (Garfinkel1981:28–41; vanFraassen
1980:126–9). A contrastive phenomenon consists of a fact and a foil, and
the same fact may have several different foils. We may not explain why
the leaves turn yellow in November simpliciter, but only for example why
they turn yellow in November rather than in January, or why they turn
yellow in November rather than turn blue. [13, p.33]

That in itself doesn’t tell us what the answers to contrastive why-questions
look like, but it does point to something that might be missing from current
explainability methods. Those do not offer a mechanisms for interest relativity,
nor is there an option to consider explanations as operating with both a fact
to be explained and a foil for which this explanation should operate. As a final
example from Lipton to drive home the relevance of such contrasts: “When I
asked my, then, 3-year old son why he threw his food on the floor, he told me
that he was full. This may explain why he threw it on the floor rather than
eating it, but I wanted to know why he threw it rather than leaving it on his
plate.” [13, p.33]

Granting that such contrasts are relevant, and that explanations might be
construed as answers to contrastive why-questions, the natural follow-up ques-
tion is: what do such answers look like? Here opinions differ among philoso-
phers, and as a result I discuss three different accounts of what explanations
are. I start with the kind of causal account that Lipton hints at, and has become
more prominent since under the label of interventionism (and sometimes also
manipulationism). Second, I discuss the unificationist framework of scientific
explanation, and finally the mechanist framework of such explanations. I stick
to brief overviews of these, and won’t be arguing for any of the three frameworks
over and above the other. Instead, I hope that this section can act as inspiration
to further explore these rich discussions of explanations.

3.1 Causal/Interventionist

One possible answer to contrastive why-questions is to offer relevant causes.
Why do leaves turn yellow in November rather than in January? Well, we can
say something about the causal process that makes them turn yellow, and how
this depends on the temperature drops that we already see in November. Not
only is that a kind of answer we give routinely, it also matches nicely with the
idea that explanations are asymmetrical: we can e.g. explain the length of a
shadow based on the length of the object that casts the shadow. It would strike
us as strange, however, to explain the length of an object by talking about how
long the shadow it casts is, and what the position of the sun is at that time.
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Causes can help account for this asymmetry, as it is the object that causes the
shadow to be there, and not the other way around.

And so philosophers, such as Woodward [22] have tried to fill in the details
of how causes might act as explanations. He starts out defining causation (or
rather, a way to determine whether something is a cause, as the definition relies
on a previous understanding of cause) on the basis of interventions. The idea
is, basically, that X is a cause of Y iff an intervention on X that changes the
value from x1 to x2 leads to a corresponding change in the value of Y, from y1
to y2. The important part here is how we understand interventions, where I is
an intervention-variable on X with respect to Y if and only if:

I1. I causes X.
I2. I acts as a switch for all the other variables that cause X. That is,
certain values of I are such that when I attains those values, X ceases to
depend on the values of other variables that cause X and instead depends
only on the value taken by I.
I3. Any directed path from I to Y goes through X. That is, I does not
directly cause Y and is not a cause of any causes of Y that are distinct
from X except, of course, for those causes of Y, if any, that are built into
the I-X-Y connection itself; that is, except for (a) any causes of Y that
are effects of X (i.e., variables that are causally between X and Y) and
(b) any causes of Y that are between I and X and have no effect on Y
independently of X.
I4. I is (statistically) independent of any variable Z that causes Y and that
is on a directed path that does not go through X. [22, p.98]

Using this understanding of causes, it is possible to define minimal conditions
on when a cause acts as an explanation E for explanandum M. The basic idea
behind this definition is that causal explanations should give us information on
the value that variable Y actually takes (e.g. the actual output of the algorithm)
and inform us how this value changes should the value of X change. Which
changes we’re interested in depends on the contrast we focus on in our why-
question. That then leads to the following more formal definition:

Suppose that M is an explanandum consisting in the statement that some
variable Y takes the particular value y. Then an explanans E for M will
consist of
(a) a generalization G relating changes in the value(s) of a variable X
(where X may itself be a vector or n-tuple of variables Xi) and changes in
Y, and
(b) a statement (of initial or boundary conditions) that the variable X
takes the particular value x.
A necessary and sufficient condition for E to be (minimally) explanatory
with respect to M is that (i) E and M be true or approximately so; (ii)
according to G, Y takes the value y under an intervention in which X takes
the value x; (iii) there is some intervention that changes the value of X
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from x to x′ where x �= x′, with G correctly describing the value y′ that
Y would assume under this intervention, where y′ �= y. [22, p.203]

While this definition really is rather minimal – a single counterfactual case
will do – it showcases the underlying idea of causal explanations. The role of
pointing to causes is so that you can determine what would happen if the situ-
ation (e.g. the inputs) had been different. Causes are simply those things that
affect the outcome/output, and therefore the relevant factors to present. The
goal of explanations, on this interventionist account, is thus to be able to tell
how changes in the input result in changes to the output. Note that this is thus
rather different from the explainability tools that are known as ‘counterfactual’,
as those focus on presenting a single case in which the outcome is different.
They do not give us a generalization that covers the actual case and a range of
counterfactual cases.

If there’s one thing to take away from this account of explanations, then it is
the focus on the question: what happens if things are different? Good explana-
tions should answer a wide range of such questions, on this account, and doing
so with higher accuracy is naturally better. Furthermore, the range shouldn’t be
restricted to cases where the outcome is the same (as currently often happens for
rule-based local explanations in XAI), but should cover how the outcome/output
changes too. In a way this is quite similar to the other two accounts, as the unifi-
cationist for example focuses on deriving as many outcomes as possible with the
same explanation, though the focus on causes is specific to the interventionist.
With that, I leave causes aside, and move to the next account where derivations
are the central element of explanations.

3.2 Unificationist

The basic idea behind this second account of explanation, unificationism
(defended e.g. by Kitcher in [11]) is that the main role of explanations is to
unify a range of different phenomena/observations. For example, Newton’s laws
of motion gave us a far better understanding of the physical world not because
they point to causes, but because they presented us with formulas that showed
how a range of different phenomena (e.g. different forces) all behave in the same
way. They give a unified way to derive motions on Earth and in the heavens
(stars, planets), something which was until that point unavailable. Gravity was
derivable as simply another force, of which falling motions on Earth were but
one example. It is such an ideal of unification, where a theory manages to give a
single set of rules that bring together a wide range of phenomena, that Kitcher
holds as the paradigmatic example of succesful explanations.

Yet, what does it mean to unify different phenomena (in the AI case that
would be different outputs)? To make this more precise, Kitcher appeals to the
notion of argument patterns that can be filled in different ways. The idea is
that we start with sentences that have variables in them, that can take different
values. Such sentences are schematic:
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A schematic sentence is an expression obtained by replacing some, but
not necessarily all, the nonlogical expressions occurring in a sentence with
dummy letters. Thus, starting with the sentence “Organisms homozygous
for the sickling allele develop sickle-cell anemia,” we can generate a number
of schematic sentences: for example, “Organisms homozygous for A develop
P” and “For all x, if x is O and A then xis P” [11, p.432]

To turn a schematic sentence back into a ‘normal’ sentence, you need to
add filling instructions, which specify what values the variables in the schematic
sentence take. For example, A can be specified as taking the value ‘allele’ in the
above schematic sentence. Once there are filling instructions for all variables in
the schematic sentence, it is no longer schematic and simply a sentence. This
functioning of schematic sentences allows for the construction of more abstract
argument patterns, which form the basis of the unificationist account. With a
little more setup, the basic idea is that we can go through the same procedure
for arguments:

A schematic argument is a sequence of schematic sentences. A classification
for a schematic argument is a set of statements describing the inferential
characteristics of the schematic argument: it tells us which terms of the
sequence are to be regarded as premises, which are inferred from which,
what rules of inference are used, and so forth. Finally, a general argument
pattern is a triple consisting of a schematic argument, a set of sets of
filling instructions, one for each term of the schematic argument, and a
classification for the schematic argument. [11, p.432]

If we can find a single argument pattern (like Newton’s laws of motion) that
allows for a very broad set of derivations, then we’ve succeeded in the goal of
unifying phenomena. In Kitcher’s words: “Science advances our understanding
of nature by showing us how to derive descriptions of many phenomena, using
the same pattern of derivation again and again, and in demonstrating this, it
teaches us how to reduce the number of facts we have to accept as ultimate” [11,
p.432]. Unificationists, then, care about the number of outcomes/outputs that
can be correctly derived from the explanation (argument pattern) that is offered.
There is no particular focus on cases where the outcome is different, as with the
interventionist framework of explanation. Nor do the argument patterns have
to involve causes. Of course, it might turn out that general argument patterns
often appeal to causes, but the unificationist can be rather more flexible here in
what can figure in an explanation.

As a result, the unificationist framework might be closer to the current
explainability methods. Of course, local explanations using decision rules/trees
don’t manage to unify very many outcomes, and aren’t always correct in their
predictions of model behaviour. But the basic direction is one that a unification-
ist, looking for patterns from which different outcomes can be derived, might
endorse. There are more ways to go, however, as one might look not just at uni-
fying different outputs of the same algorithm, but strive for argument patterns
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that work across algorithms or for connecting the outputs of one algorithm with
theories in that domain of application. At least in the case of healthcare, Durán
has made an argument for precisely such a connection with scientific theories in
the explanations of algorithms [5]. Drawing more of these connections may be
a way to push explanations forward. Although it may also help to, instead of
unifying with parts outside of the algorithm, look at the inner mechanism more.
That, at least, is the idea behind the last account I discuss.

3.3 Mechanists

Finally, there is a third account that again looks at causes to some extent. It
differs from interventionism, however, in that the real focus here is on models
that capture the mechanisms of a system. Those models are what do the explain-
ing, and it is the representation of mechanisms in virtue of which these models
explain. These accounts have changed somewhat compared to when it was first
presented by Salmon [19], as they now look at constitutive explanations rather
than etiological ones:

Etiological explanations reveal the antecedent events that cause the
explanandum phenomenon. Constitutive explanations, in contrast, reveal
the organized activities of and interactions among parts that under-
lie, or constitute, the explanandum phenomenon. More specifically, they
describe features of the mechanism for a phenomenon, where the mecha-
nism includes the set of all and only the entities, activities and organiza-
tional features relevant to that phenomenon. [3, p.297]

This is a view of explanation that seems to work quite naturally in, for
example, biology where if we want to understand the human body we’re inter-
ested in a model that captures the functioning of the different parts and their
causal role in the whole. The difficulty in applying this conception to AI is that
machine learning models are far too complex for a complete model of their work-
ings (which we have, after all) to offer much insight. And it’s not just machine
learning where this is the case, as we can wonder for the human body too how
detailed these mechanistic models should be. Do they have to include absolutely
everything that is relevant? Are more details automatically better? The point
of [3] is to argue that this isn’t the case, and that only those factors that are
causally relevant matter. This is reflected in why they think that mechanistic
models explain:

A constitutive mechanistic model has explanatory force for phenomenon
P versus P’ if and only if (a) at least some of its variables refer to internal
details relevant to P versus P’, and (b) the dependencies posited among
the variables refer causal dependencies among those variables (and between
them and the inputs and outputs definitive of the phenomenon) relevant
to P versus P’. [3, p.401]
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Note again the focus on a contrast between P, which we want to explain, and
P’ from which it needs to be distinguished. Such contrasts can limit which parts
of the mechanism are relevant. Furthermore, not every detail matters: only those
that are causally relevant do. The question is where this leaves us with machine
learning models, as here every parameter might have some causal relevance for
the output of the algorithm. Can we really restrict the model to a manageable
set of factors, then, in the case of machine learning algorithms? Perhaps not if
we look at explanations of the internal mechanism for the algorithm itself, but if
we take a slightly broader view of the system at play there is room for applying
the account to AI. The training set, hyperparameters, number of layers, etc. all
influence the outcomes, namely. They are causally relevant, and there aren’t so
overwhelmingly many of them that a complete mechanistic model would fail to
generate real insights. An option, then, to apply the mechanistic account to AI
is to take the factors not on the level of individual parameters (of which there
are millions to trillions), but on a slightly more abstract level. It still makes
sense to speak of a mechanistic model, and all the different factors are causally
relevant for the outcome. So, an explanation in this sense looks at that interplay
of factors, and as such offers a somewhat different way of considering causation
in the explanation of AI outputs.

3.4 Bringing Theory into Practice

The types of explanations found in the philosophical literature are far from
what current XAI tools provide. So, what can developers of (X)AI tools do
about this discrepancy? First of all, as can be seen explicitly in most accounts,
explanations are ideally presented in a contrastive format. That is, they answer
questions of the form ‘why P rather than Q?’ instead of plainly ‘why P?’. As
pointed out elsewhere [16] this is a common feature of how humans explain, yet
is not found in current XAI tools. Incorporating contrasts, and using these to
direct the explanation, can be a first step towards XAI that more squarely fits
the philosophical definitions of explanation.

Second, while current XAI tools might not conform to the definitions of expla-
nation, that does not entail that they can serve none of the goals of explainability.
Feature importance maps and counterfactuals can hint that the model looks at
features that we think are irrelevant, even if they generally do not enlighten us
as to why the model looks at those features. Similarly, bias detection can be
aided by current XAI tools if part of the features the model uses are protected.
In practice, therefore, XAI tools can still be useful even if they do not provide
explanations proper.

Finally, I hope that the definitions provided here can help in the development
of new explainability tools that do get closer to explanations as conceptualized
in philosophy. A focus on generalizations that include counterfactuals (a com-
bination that is rare in current XAI methods) is suggested by both causal and
mechanistic accounts of explanation. In addition, Tools or explanations that
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consider what happens if training data or hyperparameters are changed, that to
my knowledge do not yet exist, are also suggested by these accounts and might
help us understand how we can improve AI systems. Most of all, the challenge
is to design tools that can highlight the patterns used by AI models, as the
unificationist account also points out. That is easier said than done, given both
the non-linearity of machine learning models and their complexity. Still, clear
definitions of explanation have been lacking in the literature on XAI and here
philosophy can be helpful.

4 Conclusion

I have given a brief overview here of the reasons put forward against a require-
ment of explainability, and of accounts that might help us fill in what this end
goal of explainability might mean. I’ve argued that providing such explanations
doesn’t make opaque machine learning methods redundant, as we typically can
evaluate reasons without being able to replicate our thinking in decision rules. It
also doesn’t have to be unfair to ask for explanations in this case, as the exam-
ples pushed by London aren’t of decision making processes, but rather focus on
the treatments about which we decide. That brought us to reliabilism, and the
question of whether there isn’t some kind of regress in asking for explainabil-
ity. While I think that such a regress is unlikely, there is a question of whether
explainability is truly a requirement for trust/justification. Perhaps reliabilism
offers an account on which we can do without explainability, and perhaps we
can do more with input/output measures than we thought – as Krishnan points
out. Still, there seem to remain good reasons to develop explainability methods,
even if we don’t end up requiring algorithms to be transparent.

Because of those reasons I went on a brief tour through accounts of expla-
nation in the philosophical literature. For if we aim to make machine learning
explainable, it might help to have a better sense of what explanations would ide-
ally look like. Views differ here, but there is a surprising amount of agreement
about the contrastive nature of explanations. One that, surprisingly, we do not
yet see in technical explainability tools. Proceeding from there we see a range of
options: interventionists who focus on causal dependencies and the ability to say
what the output would be if the input were different. Unificationists who look at
argument patterns that are as general as possible, allowing us to derive a wide
range of outcomes. And finally mechanistic accounts, who focus on models that
describe the inner workings of a system with as many causally relevant details as
possible. Hopefully these can inspire improvements to explainability methods.

5 Suggested Readings

– Rudin, Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead [18]

– Miller, Explanation in artificial intelligence: Insights from the social sciences
[16]
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– Woodward, Making things happen: A theory of causal explanation [22]
– Kitcher, Explanatory unification and the causal structure of the world [11]
– Craver and Kaplan, Are more details better? On the norms of completeness

for mechanistic explanations [3]
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Abstract. We address computational cognitive vision and perception
at the interface of language, logic, cognition, and artificial intelligence.
The chapter presents general methods for the processing and semantic
interpretation of dynamic visuospatial imagery with a particular empha-
sis on the ability to abstract, learn, and reason with cognitively rooted
structured characterisations of commonsense knowledge pertaining to
space and motion. The presented work constitutes a systematic model
and methodology integrating diverse, multi-faceted AI methods pertain-
ing Knowledge Representation and Reasoning, Computer Vision, and
Machine Learning towards realising practical, human-centred artificial
visual intelligence.

Keywords: Cognitive vision · Knowledge representation and
reasoning · Commonsense reasoning · Deep semantics · Declarative
spatial reasoning · Computer vision · Computational models of
narrative · Human-centred computing and design · Spatial cognition
and AI · Visual perception · Multimodal interaction · Autonomous
driving · HRI · Media · Visual art

Chapter Objectives. We present a conceptual overview of computational cog-
nitive vision together with practical demonstrations as follows:

� human-centred, explainable model of computational visuospatial intelligence
primarily at the interface of symbolic and neural techniques is presented; a
systematic integration of techniques in AI and Vision is emphasised;

� we introduce deep semantics, entailing systematically formalised declarative
(neurosymbolic) reasoning and learning with aspects pertaining to space,
space-time, motion, actions & events, and spatio-linguistic conceptual knowl-
edge;
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� we present general foundational commonsense abstractions of space, time,
and motion needed for representation mediated reasoning and learning with
dynamic visuospatial stimuli in human-centred cognitive technologies;

� applied case-studies of socio-technological significance in domains such as
autonomous driving, cognitive robotics, media studies are demonstrated; and

� we make a case for an interdisciplinary method for realising computational
visual intelligence, and also indicate avenues for further research.

1 Introduction

We characterise artificial visual intelligence as:

the computational capability to semantically process, interpret, and
explain diverse forms of visual stimuli (typically) emanating from sensing
embodied multimodal interaction of/amongst humans and other artefacts
in diverse naturalistic situations of everyday life and profession.

Through semantic processing, interpretation, and explanation, alluded here
are a wide-spectrum of high-level human-centred sensemaking capabilities. These
capabilities encompass functions such as visuospatial conception formation, com-
monsense/qualitative generalisation, hypothetical reasoning, analogical infer-
ence, argumentation, event based episodic maintenance & retrieval for percep-
tual narrativisation, counterfactual reasoning and explanation etc. In essence,
in scope are all high-level commonsense visuospatial sensemaking capabilities
–be it mundane, analytical, or creative in nature– that humans acquire develop-
mentally or through specialised training, and are routinely adept at performing
seamlessly in their everyday life and work.

(Artificial) Visual Intelligence: A Multi-faceted Approach

We posit that building general artificial visual intelligence systems –in the
manner characterised herein– requires the integration of diverse, multi-faceted
methods from multiple sub-fields in Artificial Intelligence, Cognitive Science,
and Visual Perception. Furthermore, the incorporation and realisation of
human-centred considerations in the design and engineering of computational
visual intelligence particularly requires interdisciplinary input from behavioural
research areas concerning cognitive human factors relevant to:

1. the structure and function of natural vision and visual perception (e.g.,
(in)attention, search, change blindness, event perception) from the viewpoint
of cognitive neuroscience and psychology; and

2. embodied multimodal interaction under ecologically valid (application-
centred) naturalistic conditions inherent to particular everyday social and
professional contexts.
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In essence, building human-centred visual intelligence systems will require a
systematic study and exploration of synergies between both the artificial and
human aspects of visual intelligence. Given the objectives and scope of this
chapter, of primary focus here are Knowledge Representation and Reasoning,
Declarative Spatial Reasoning, Computer Vision, Machine Learning, and (from
an applied viewpoint) Visual Perception.

Cognitive Vision and Perception

In the backdrop of the aforestated functional perspective on artificial visual intel-
ligence, the central focus of this chapter is to present recent developments in that
regard in the backdrop of our research in (computational) cognitive vision and
perception. These developments have been driven by bringing together a novel
combination of methodologies from Artificial Intelligence, Vision and Machine
Learning, Cognitive Science and Psychology, Visual Perception, and Spatial Cog-
nition and Computation towards realising and demonstrating a much-needed
functional model of human-centred computational or artificial visual intelligence.

From a methodological viewpoint, our research (in cognitive vision and per-
ception) explicitly addresses visual, visuospatial and visuo-locomotive perception
and interaction from the viewpoints of (spatial) language, (spatial logics), and
(spatial) cognition (e.g., [9]). To reiterate, the principal technical focus is on a
systematic integration of methods in knowledge representation & reasoning and
commonsense spatial reasoning with visual computing techniques in computer
vision. This systematic integration –bridging “AI and Vision”– is pursued from
the viewpoint of applied functional (perceptual sensemaking) challenges such as:

1. Commonsense scene understanding
2. Explainable visual interpretation
3. Semantic question-answering
4. Concept learning & analogical inference
5. Visuospatial (concept) representation learning
6. Image-schematic generalisation
7. Multimodal event perception

In this backdrop, the central aim of this chapter is two-fold :

– to highlight research in cognitive vision and perception as a model for artificial
visual intelligence, thereby also providing a roadmap for the development of
human-centred visuospatial sensemaking solutions.

– to conceptually illustrate systematically formalised, general methods based
on an integration of (relational) AI and (deep learning based) computer
vision, and showcase their applications in multidisciplinary areas of socio-
technological impact.

Secondarily, we also present concrete working examples pertaining diverse appli-
cation domains such that functional capabilities of general methods for cognitive
vision and perception are operationally visible (at least to some extent).

The rest of the chapter is structured as follows:
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Table 1. Visuospatial commonsense reasoning and learning (select examples; Sect. 4)

Examples Scope Page

Ex. 1 Semantic Q/A with Video and Eye-Tracking Pg. 226

Ex. 2 Declarative Grounding of Embodied Interactions Pg. 228

Ex. 3 Joint Abduction of Scene Dynamics and Object Motion Pg. 230

Ex. 4 Declarative Explainability – Case of Human-Centred Symmetry Pg. 233

Ex. 5 Learning Relational Space-Time Structure Pg. 235

� Section 2 motivates with key applications that presently inspire the devel-
opment of computational cognitive vision; we aim to indicate key technical
considerations that are identifiable in view of application needs.
� Section 3 introduces the crucial notion of deep semantics, essentially
characterising the domain-neutral or foundational crux of commonsense rea-
soning and learning about space and motion.
� Section 4 builds on Sects. 2–3 by providing a practical or operational
view of visuospatial commonsense reasoning and learning through five com-
plementary examples (Table 1); here, Examples 1–5 illustrate capabilities for
visuospatial question-answering, abductive inference, and relational learning.
We reflect upon the overall line of this research in Sect. 5, also pointing out
select open as well as long-range challenges.
Appendices A–B provide supplementary information intended to guide
readers seeking go deeper into the presented material.

2 Application: Human-Centred Cognitive Technologies

From an applied viewpoint, foundational computational capabilities pertaining
to deep (visuospatial) semantics (are intended to) translate to:

(human-centred) techniques and methods for modelling, interpreting and
anticipating human-behaviour (e.g., from data pertaining to physical inter-
actions) encompassing (interactive, real-time, or even offline) derivation of
knowledge, desires, preferences, attitude, and sentiments in a variety of
joint man-machine cognitive systems.

Cognitive vision research, and particularly the articulation of deep (visuospa-
tial) semantics (Sect. 3) and the design of corresponding computational models, is
inspired –if not fully driven– by real-world application demands encountered in a
range of human-centred cognitive technologies involving the offline and online/re-
altime interpretation of embodied multimodal interaction. Naturally, application
potentials are aplenty and perhaps non-exhaustive; case-studies that we focus
on –at least in so far as this chapter is concerned– include autonomous driv-
ing, commonsense cognitive robotics, (eye-tracking driven) visual media recep-
tion, computational aesthetics, and behavioural research in embodied visual and
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Fig. 1. Application scenarios: autonomous systems, minds and media studies,
behavioural research in multimodality interaction.

visuo-locomotive interaction (both in real as well as virtual environments) vis-a-
vis their relevance for the design of products/experiences (e.g., for architecture
design) (Fig. 1):

� Autonomous Systems/Self-Driving Vehicles. Cognitive Robotics. Here,
opportunities range from active visual sensemaking (e.g., through grounded
visual abduction and mental simulation) to post-hoc analysis of quantitative
archives, natural human-machine interaction, and standardisation from the view-
point of licensing and validation [44,45]. Within cognitive robotics in particular,
the role of semantically grounded low-level motion control, and significance of
representation in semantic behavioural policy learning, dialog based social inter-
action is also crucial.

� Minds and Media Studies/Visuoauditory Media. Visual Perception. Com-

putational Aesthetics. Cognitive media studies—encompassing film, news,
animation, virtual reality etc.—has emerged as an area of research at the inter-
face of disciplines as diverse as AI, psychology, neuroscience, film theory, aesthet-
ics, and cognitive science. Here, opportunities for computational cognitive vision
range from technological capabilities aimed at investigating attention & recipi-
ent effects vis-a-vis visuoauditory media, e.g., encompassing high-level analysis of
subject’s visual fixation patterns and correlating this explainable semantic anal-
ysis of the digital media under consideration. Computational cognitive vision
can been seen as a general AI-based assistive technology platform for cognitive
media studies in particular, and the computational explainable interpretation,
analysis, archiving (etc.) of visuoauditory art in general.
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� Behavioural Research in Embodied Multimodal Interaction. Here, we
allude to behavioural multimodality research in cognitive science and psychol-
ogy aimed at the study of embodied multimodal interaction of humans under
real world, naturalistic conditions, i.e., “in-the-wild”. The multimodality that
is alluded to here stems from an inherent synergistic value in the integrated
processing and interpretation of a range of data sources such as vision, gesture,
speech, language, visual attention, facial expressions, tactile interactions, olfac-
tion [6].

Irrespective of a specific application domain, the general underlying impetus and
functional requirement is to cognitively assist and empower in planning, decision-
making, design situations requiring an interplay of commonsense, creative, and
specialist (visuospatial) intelligence.

3 Deep Semantics: On Neurosymbolic Explainability

Computational visual intelligence requires a systematically developed general
and modular integration of high-level techniques concerned with “commonsense
and semantics” with low-level methods –neural or otherwise– capable of com-
puting primitive features of interest in visual data. In view of this notion of neu-
rosymbolism, we demonstrate the significance of semantically-driven methods
rooted in knowledge representation and reasoning (KR) in addressing research
questions pertaining to explainability and human-centred AI particularly from
the viewpoint of (perceptual) sensemaking of dynamic visual imagery (Sect. 3.1).
For demonstration purposes, this is done in the backdrop of diverse application
areas where embodied multimodal interaction in naturalistic everyday settings
is of the essence (Sect. 2).

3.1 What is Deep Semantics?

The development of domain-independent computational models of perceptual
sensemaking—e.g., encompassing visuospatial Q/A, learning, abduction—with
multimodal human behavioural stimuli such as RGB(D), video, audio, eye-
tracking requires the representational and inferential mediation of commonsense
and spatio-linguistically rooted abstractions of space, motion, actions, events
and interaction.

We characterise deep (visuospatial) semantics as:

� the existence of declarative models –e.g., pertaining to space, space-time,
motion, actions & events, spatio-linguistic conceptual knowledge– and cor-
responding formalisation supporting (domain-neutral) commonsense cog-
nitive reasoning capabilities –such as visuospatial question-answering and
learning, non-monotonic visuospatial abduction– with quantitatively sensed
dynamic visual imagery. Here, it is of the essence that an expressive ontology
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consisting of, for instance, space, time, space-time motion primitives as first-
class objects is accessible within the (declarative) programming paradigm
under consideration

Deep semantics therefore emphasises generality, modularity, and elaboration
tolerance in the processing and semantic interpretation of dynamic visuospa-
tial imagery with an emphasis, in so far as the present chapter is concerned,
on the ability to abstract, learn, and reason with cognitively rooted struc-
tured characterisations of commonsense knowledge about space and motion.
Formal semantics and computational models of deep semantics manifest them-
selves in declarative AI settings such as Constraint Logic Programming (CLP)
[26], Inductive Logic Programming (ILP) [30], and Answer Set Programming
(ASP) [12]. Naturally, a practical illustration of the integrated “AI and Vision”
method requires a tight but modular integration of the (declarative) common-
sense spatio-temporal abstraction and reasoning (Sect. 3.2) with robust low-level
visual computing foundations (primarily) driven by state of the art visual com-
puting techniques (e.g., for visual feature detection, tracking, Appendix B).

At a higher level of abstraction, deep semantics entails inherent support for
tackling a range of challenges concerning epistemological and phenomenological
aspects relevant to a wide range of dynamic spatial systems [4,5,8]:

– interpolation and projection of missing information, e.g., what could be
hypothesised about missing information (e.g., moments of occlusion); how
can this hypothesis support planning an immediate next step?

– object identity maintenance at a semantic level, e.g., in the presence of
occlusions, missing and noisy quantitative data, error in detection and track-
ing

– ability to make default assumptions, e.g., pertaining to persistence objects
and/or object attributes

– maintaining consistent beliefs respecting (domain-neutral) commonsense
criteria, e.g., related to compositionality & indirect effects, space-time conti-
nuity, positional changes resulting from motion

– inferring/computing counterfactuals, in a manner akin to human cognitive
ability to perform mental simulation for purposes of introspection, performing
“what-if” reasoning tasks etc.

Addressing such challenges—be it realtime or post-hoc—in view of human-
centred AI concerns pertaining to representations rooted to natural language,
explainability, ethics and regulation requires a systematic (neurosymbolic) inte-
gration of Semantics and Vision, i.e., robust commonsense representation &
inference about spacetime dynamics (Sect. 3.2) on the one hand, and powerful
low-level visual computing capabilities, e.g., pertaining to object detection and
tracking on the other (Appendix B). Furthermore, of at least equal importance
are the modularity and elaboration tolerance of the framework, enabling seam-
less integration and experimentation with advances in fast evolving computer
vision methods, as well as experimenting with different forms of formal methods
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Table 2. Commonsense abstractions of space and motion

SPACE-TIME DOMAIN Spatial, Time, Motion Relations (R) Entities (E)
Mereotopology disconnected (dc), external contact (ec), partial

overlap (po), tangential proper part (tpp), non-
tangential proper part (ntpp), proper part (pp),
part of (p), discrete (dr), overlap (o), contact (c)

arbitrary rectangles, circles,
polygons, cuboids, spheres

Incidence interior, on boundary, exterior, discrete, intersects 2D point with rectangles,
circles, polygons; 3D point
with cuboids, spheres

Orientation left, right, collinear, front, back, on, facing
towards, facing away, same direction, opposite
direction

2D point, circle, polygon
with 2D line

Distance, Size adjacent, near, far, smaller, equi-sized, larger rectangles, circles, polygons,
cuboids, spheres

Motion moving: towards, away, parallel; growing / shrink-
ing: vertically, horizontally; splitting / merging;
rotation: left, right, up, down, clockwise, couter-
clockwise

rectangles, circles, polygons,
cuboids, spheres

Time before, after, meets, overlaps, starts, during, fin-
ishes, equals

time-points, time intervals

for reasoning about space, actions, and change [4,8] that could either be embed-
ded directly within specialised commonsense reasoning frameworks, or possibly
be utilised independently as part of other general declarative frameworks for
knowledge representation and reasoning.

3.2 Commonsense, Space, Change

Commonsense spatio-temporal relations and patterns (e.g., left, touching, part
of, during, collision; Table 2) offer a human-centered and cognitively ade-
quate formalism for semantic grounding and automated reasoning for everyday
(embodied) multimodal interactions [9,29]. Qualitative, multi-domain1 repre-
sentations of spatial, temporal, and spatio-temporal relations and motion pat-
terns (e.g., Figs. 2–3), and their mutual transitions can provide a mapping
between high-level semantic models of actions and events on one hand, and
low-level/quantitative trajectory data emanating from visual computing algo-
rithms (Appendix B) on the other. For instance, by spatio-linguistically ground-
ing complex trajectory data –e.g., pertaining to on-road moving objects– to a
formal framework of space and motion, generalized (activity-based) common-
sense reasoning about dynamic scenes, spatial relations, and motion trajectories
denoting single and multi-object path & motion predicates can be supported. For
1 Multi-domain refers to more than one aspect of space, e.g., topology, orientation,

direction, distance, shape; this requires a mixed domain ontology involving points,
line-segments, polygons, and regions of space, time, and space-time [21,35,48].
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Fig. 2. Space-time histories in context: motion tracks under conditions of occlusion
and partial overlap

instance, such predicates can be abstracted within a region-based ‘space-time’
framework [35] (Fig. 2–3), object interactions [15,16], or even spatio-temporal
narrative knowledge. An adequate commonsense spatio-temporal representation
can, therefore, connect with low-level quantitative data, and also help to ground
symbolic descriptions of actions and objects to be queried, reasoned about, or
even manipulated in the real world.

4 Visuospatial Commonsense: On Neurosymbolic
Reasoning and Learning

Cognitive vision research is driven by (but not limited to) applications where,
for instance, the processing and semantic interpretation of (potentially large vol-
umes of) highly dynamic visuo-spatial imagery is central: autonomous systems,
human-machine interaction in cognitive robotics, visuoauditory media technol-
ogy, and psychology & behavioural research domains where data-centred ana-
lytical methods are gaining momentum. For this chapter, we position mutually
related/complementary works that are representative of the crux of deep seman-
tics (Fig. 4):

– human-centred representation & relational explainability,
– declarative reasoning enabled by systematic formalisation, and
– domain-independence vis-a-vis commonsense spatio-linguistic abstractions

supported for modelling space, events, actions, motion, and (inter)action.

What follows is a practical or operational view of visuospatial commonsense
reasoning and learning through a series of complementary illustrations in Exam-
ples 1–5 showcasing capabilities for visuospatial question-answering, abductive
inference, and relational learning:2

2 Select publications relevant to these chosen examples include: visuospatial questions-
answering [37,39–41], visuospatial abduction [43,45,47,49], and integration of learn-
ing and reasoning [42,46].
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Fig. 3. Commonsense spatial reasoning with spatio-temporal entities. Illustrated are:
space-time histories for spatio-temporal patterns and events

I. Visuospatial Question-Answering

Focus is on a computational framework for semantic-question answering with
video and eye-tracking data founded in constraint logic programming is devel-
oped; we also demonstrate an application in cognitive film & media studies,
where human perception of films vis-a-via cinematographic devices [39] is of
interest.

� Example 1 applies deep semantics for query answering and semantic sense-
making of spectators eye-tracking behaviour vis-a-vis the moving image.

� Example 2 presents declarative space and motion for embodied grounding
of everyday activities in a cognitive robotics setting.

II. Visuospatial Abduction

Focus is on a hybrid architecture for systematically computing robust visual
explanation(s) encompassing hypothesis formation, belief revision, and default
reasoning with video data (for active vision for autonomous driving, as well as for
offline processing). The architecture supports visual abduction with space-time
histories as native entities, and founded in (functional) answer set programming
based spatial reasoning [47,48].

� Example 3 showcases visual abduction for jointly abducing object tracks
together with high-level explanations in the context of autonomous driving.

III. Relational Visuospatial Learning

Focus is on a general framework and pipeline for: relational spatio-temporal
(inductive) learning with an elaborate ontology supporting a range of space-
time features; and generating semantic, (declaratively) explainable interpreta-
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Fig. 4. Cognitive vision and perception: deep semantics for space, action
and motion – integrated vision and AI foundations for human behavioural research
in embodied multimodal interaction; E.g., “multimodal visuoauditory computing in con-
text for the case of media studies, and everyday activity analysis from the viewpoint of
cognitive robotics”.

tion models in a neurosymbolic pipeline (demonstrated for the case of analysing
visuospatial symmetry in (visual) art);

� Example 4 presents declarative explainability in the context of a multi-level
characterisation of (reflectional) symmetry.

� Example 5 uses inductive logic programming (ILP) for learning rules about
symmetrical spatial structure.

Other works closely related to the development and application of the deep
semantics methodology address relational inductive-abductive inference with
video [19], and modelling and interpretation of embodied multimodal interac-
tion in cognitive robotics [37,41].

Example 1. Semantic Q/A with Video and Eye-Tracking

Semantic interpretation and question-answering is applied in the context of
empirical research concerned with the human reception of films, where visual
question-answering is demonstrated in support of visual perception research in
Cognitive Film Studies.

To facilitate this analysis, relational characterisations of visual perception are
developed and declaratively grounded with respect to primitive spatio-temporal
entities and motion patterns, pertaining to the structure of the scene and the
dynamics of spectators gaze, i.e., obtained from a computational pipeline for
visual processing and gaze analysis. In particular we extract geometric entities
representing the following scene elements and perceptual artefacts:
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Fig. 5. Semantic scene structure and attention: people movement and fixation
clusters.

– Structural elements of the scene, e.g., object/character identity and place-
ment, shots and shot types, categories of camera movement.

– Perceptual artefacts, e.g., visual fixation, saccadic movements, gaze patterns,
pertaining to the perception and reception of the moving image.

Scene dynamics are represented using space-time histories of people tracks and
spectators eye-tracking data aggregated to Areas of Attention (AOA).

For the sample movie scene depicted in Fig. 5 one could, for instance, formu-
late a query to determine what happened when the AOA following Jack and
Francis merged?

Here we query the corresponding space-time histories of characters Jack
and Francis, and the aggregated AOAs, using the sth predicate. The predicates
occurs in and occurs at are used to query the motion pattern of the sths, i.e.,
the AOAs following the characters and the merging of the AOAs. Further we
use the occurs in predicate to query the motion pattern that occurs in the time
interval when the AOAs are merging.
?- Int = interval(_, _), TP = timepoint(_),

sth(jack, STH_jack), sth(francis, STH_francis),
sth(attention(AOA_1), STH_AOA_1), sth(attention(AOA_2), STH_AOA_2),
occurs_in(attn_following(STH_AOA_1, STH_jack), _),
occurs_in(attn_following(STH_AOA_2, STH_francis), _),
occurs_at(merge([STH_AOA_1, STH_AOA_2], _), TP),
occurs_in(Obs, Int), time(TP, Int, during).
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Fig. 6. Relational grounding of everyday activity: “making a cup of tea” (ego-
centric view from a head-mounted RGB-D capture device)

As a result we get that Francis is approaching Jack when the respective AOA
merge.
Obs = approaching(francis, jack),
Int = interval(25, 30),
TP = 28;
...

Such question answering provides a basis for analysing the correlation between
scene structure and eye-movements, and serve as an intermediate semantic
abstraction layer for summarising and externalising the dynamics of visual atten-
tion vis-a-vis the moving image.

Example 2. Declarative Grounding of Embodied Interactions

Embodied grounding refers to the ability to link high-level conceptual knowl-
edge, e.g., pertaining to vision, touch, and bodily motion, to (spatio-temporal)
experiences in everyday life [20]. In this context qualitative space and motion
provide an intermediate (image schematic) abstraction layer for representing and
reasoning about everyday activities.

For instance, consider Fig. 6 consisting of a sample human activity—“making
a cup of tea”—as captured from an egocentric viewpoint with a head-mounted
RGB-D capture device. From a commonsense viewpoint, this activity may be
represented as a sequence of dynamic visuospatial interactions, such as the fol-
lowing:
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Fig. 7. RGB-D data of human activities with corresponding skeleton data

opening the tea-box, removing a tea-bag from the box and putting the tea-bag inside

a tea-cup filled with water while holding the tea-cup.

Such interactions correspond to high-level spatial and temporal relationships
between the agent and other involved objects, constituting an embodied ground-
ing, e.g., involving conceptual representations of contact and containment that hold
across specific time-intervals. In this context, manipulation and control actions
(Θ1(�θ), ...Θn(�θ)) cause state transitions in the world, modelled as changes in the
spatio-temporal relations amongst involved domain entities. Similarly the activ-
ity of making a sandwich (depicted in Fig. 7) may be characterised with respect
to the interactions between a human and its environment as follows:

Person1 reaches for the bread, picks up a slice of bread, andmoves the hand together

with the bread back to the chopping board.

The scene is captured using an RGB-D sensor providing 3D positions of skeleton
joints and tabletop objects for each time-point.
at(joint(id(0), person(id(1))),

tracking_status(2), pos_3d(point(0.230083,-0.0138919,2.05633)), time_point(2168577589)).
at(joint(id(1), person(id(1))),

tracking_status(2), pos_3d(point(0.228348,0.275798,1.98048)), time_point(2168577589)).
...
at(object(id(0)), type(bread),

pos_3d(point(0.223528,0.500194,1.92038)), time_point(2168577589)).
...

Using declarative characterisations of these interactions defined based on spatio-
temporal relations this data can be used to query the sequence of interactions
identified in the example sequence and their respective grounding with respect
to the spatio-temporal dynamics constituting the interaction, i.e., the following
query searches for an interactions and its grounding based on the above sensor
data:
?- grounded_interaction(occurs_in(Interaction, Interval), Grounding).
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Fig. 8. Out of sight but not out of mind: the case of hidden entities: e.g., an
occluded cyclist.

These groundings describe the spatio-temporal dynamics underlying the inter-
actions. In particular, the interaction reach for(person(id(1)), object(bread))
occurring between time-point t1 and t3 is composed of the spatio-temporal pat-
tern of approaching, stating that the right hand of person 1 is approaching
the bread during time-interval t1 to t2, and the pattern touching, stating that
the right hand of person 1 is touching the bread during time-interval t2 to t3.
Similarly the interaction pick up(person(id(1)), object(bread)) is composed of
grasping, attachment and upwards movement, with the difference, that grasp-
ing itself is an interaction, that can be further grounded in movement dynamics.

Interaction = reach_for(person(id(1)), object(bread)),
Interval = interval(t1, t3),
Grounding = [

holds_in(approaching(body_part(right_hand, person(id(1))), object(bread)), interval(t1,t2)),
holds_in(touching(body_part(right_hand, person(id(1))), object(bread)), interval(t2,t3)];

Interaction = pick_up(person(id(1)), object(bread)),
Interval = interval(t4, t6),
Grounding = [

occurs_at(grasp(body_part(right_hand, person(id(1))), object(bread)), timepoint(t4),
holds_in(attached(body_part(right_hand, person(id(1))), object(bread)), interval(t5,t8)),
holds_in(move_up(body_part(right_hand, person(id(1)))), interval(t5,t6))];
...

Example 3. Joint Abduction of Scene Dynamics and Object Motion

Consider the situation depicted in Fig. 8, where a cyclist riding on the road
gets occluded by a car turning right. This situation may be described in natural
language as follows:
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Car (c) is in-front, and indicating to turn-right; during this time, person (p) is on

a bicycle (b) and positioned front-right of c and moving-forward. Car c turns-right,

during which the bicyclist < p, b > is not visible. Subsequently, bicyclist < p, b >

reappears.

Visual abduction aims at explaining the perceived spatio-temporal changes in
terms of high-level object dynamics, i.e., finding a set of events that explain
the sudden disappearance of the cyclist together with the corresponding motion
tracks. For the example situation we can hypothesise that the cyclist got occluded
by the car in-front, based on the relational spatio-temporal structure of the scene.

To support this, we implement a general and online capable visual abduction
method driven by ASP, that facilitates joint abduction and motion tracking. For
generating the motion tracks, we define actions that control how observations
are assigned to tracks, i.e., for the purpose of this example we only consider the
case that an observation is assigned to a track, and the case where no observation
can be assigned to the track and the track is halted.

Here we define two choice rules stating that for each track Trk there is either
a detection Det that gets assigned to the track, or the track gets halted if there
is no detection to assign to the track.
1{

assign(Trk, Det): det(Det, _, _);
halt(Trk);
...

}1 :- trk(Trk, _).

1{
assign(Trk, Det): trk(Trk, _);
...

}1 :- det(Det, _, _).

Further, we define a set of choice rules explaining these assignments, i.e., for
this example we define the event hides behind stating that a track Trk can get
halted if the track hides behind another track Trk2. The corresponding choice
rule states that a track can only get halted when there is an event explaining
this, i.e. in this case the event hides behind.
1{

occurs_at(hides_behind(Trk, Trk2), curr_time): trk(Trk2,_);
...

}1 :- halt(Trk).

Events and corresponding event dynamics may be defined in standard KR based
languages for reasoning about action and change. For instance, here the event
hides behind is defined using event calculus [27] by stating the conditions under
which the event may occur (by defining the poss predicate for the event). In this
case we define that a track Trk1 may hide behind another track Trk2 if the two
tracks are overlapping and are not not visible, i.e., both tracks need to be at
least partially visible.
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Fig. 9. Abducing occlusion to anticipate reappearance

poss(hides_behind(Trk1, Trk2)) :-
trk(Trk1, _), trk(Trk2, _),
position(overlapping, Trk1, Trk2),
not holds_at(visibility(Trk1), not_visible, curr_time),
not holds_at(visibility(Trk2), not_visible, curr_time).

Based on these rules we can jointly abduce scene dynamics and object motion,
resulting in associations of detections to motion tracks and corresponding event
sequences explaining these associations.

Lets now look at the situation depicted in Fig. 9 where a car gets occluded by
another car turning left and reappears in front of the autonomous vehicle. Here
we can hypothesize that the car got occluded and anticipate its reappearance
based on the perceived scene dynamics. Towards this, each track is given by the
predicted bounding box, the state in which the track currently is, and the type
of the tracked object:
trk(trk_3, car). trk_state(trk_3, active).
...
trk(trk_41, car). trk_state(trk_41, active).
...

box2d(trk_3, 660, 460, 134, 102).
...
box2d(trk_41, 631, 471, 40, 47).
...

Based on this problem specification the event hides behind(trk 41, trk 3) is
abduced, as there is no detection that could be associated with trk 41 and trk 3
is partially overlapping with trk 41:
... occurs_at(hides_behind(trk_41,trk_3),179) ...

The abduced explanation together with the object dynamics may then be used
to anticipate the reappearance of the car. Towards this we define a rule for
anticipating the event unhides from behind(Trk1, T rk2) stating that a hidden
object may unhide from behind the object it is hidden by and anticipate the time
point t based on the object movement as follows:
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anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

We can then interpolate the objects movement to predict when the object may
reappear, i.e., for the occluded car in our example we get the following prediction:
anticipate(unhides_from_behind(trk_41, trk_2), 202)

Such predictions may then be used in decision-making to reason about appro-
priate control actions, i.e., in this case slowing down to give space to the car in
front.

Example 4. Declarative Explainability – Case of Human-Centred
Symmetry

Subjective perception of symmetrical image structure serves as a testbed for
developing explainability driven visuospatial characterisations where high-level
semantic concepts are directly grounded within low-level (neural) visual features,
e.g. extracted from deep neural networks. In this context, and as one example,
we develop a multi-level characterisation for analysing (reflectional) symmetry,
encompassing three layers (L1–L3, as defined in [46] and illustrated in Fig. 10):

L1. Symmetrical (spatial) composition: Spatial arrangement of objects in the
scene with respect to a structural representation of position, size, orientation,
etc.;
L2. Perceptual similarity : Perceptual similarity of features in symmetrical
image patches, based on the low-level feature based appearance of objects,
e.g., color, shape, patterns, etc.;
L3. Semantic similarity : Similarity of semantic categories of the objects in
symmetrical image patches, e.g., people, object types, and properties of these
objects, such as peoples gazing direction, foreground/background etc.

This characterisation may serve as the foundation for analysing and interpreting
symmetrical structures in visual imagery; in particular it can be used to identify
the elements of the image supporting the symmetrical structure, and those not
in line with the symmetry, e.g., elements breaking the symmetry.

For instance, consider the image depicted in Fig. 11, here the symmetry model
can be used to query symmetrical (and non-symmetrical) elements of the image
using the following rules, stating that an element is considered symmetrical, if
it is symmetric in it self or if it is part of a pair of symmetrical elements.
symmetrical_element(E) :- symmetrical(E).
symmetrical_element(E) :- symmetrical(E, _); symmetrical(_, E).

Aggregating results for the symmetrical element(E) predicate for the example
image results in a list of all symmetrical image elements:
SYMETRICAL = [0, 2, 8, 10, 11, 12, 14, 15, 17|...]
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Fig. 10. A computational model of multi-level semantic symmetry.

Fig. 11. Analysing symmetry: (a) symmetrical, and (b) non-symmetrical elements
of an image.

Similarly we can query for non symmetrical elements of the image using the
following rule, stating that every element that is not part of a symmetrical
structure is considered non symmetrical.
non_symmetrical_element(E) :- image_element(E), not(symetrical_element(E)).

NON_SYMETRICAL = [1, 3, 4, 5, 6, 7, 9, 13, 16|...].

Further, the model supports querying of divergence of a image elements from
the optimal symmetrical configuration and perceptual and semantic similarity
of pairs of image elements as follows:

The predicate divergence is used to obtain reassures on how much an image
element or a pair of image elements differ from a fully symmetrical configuration
in terms of size, aspectratio, and position.
?- divergence(symmetrical(id(E1), id(E2)), Div_Size, Div_Aspect_Ratio, Div_Pos).

...
E1 = 170, E2 = 200,
Div_Size = div_size(9.0, 18.0),
Div_Aspect_Ratio = div_aspect_ratio(0.0595206914614983),
Div_Pos = div_pos(3.905124837953327);
...
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Fig. 12. Symmetrical spatial configuration: examples for object level symmetry.

The predicate similarity is used to query how similar two image elements are
in terms of perceptual symmetry, i.e., based on visual features, and semantic
similarity, i.e., based on object categories.
?- similarity(pair(id(E1), id(E2)), Percept_Sim, Semantic_Sim).

...
E1 = 170, E2 = 200,
Percept_Sim = 0.70728711298,
Semantic_Sim = 0.6666666666666666;
...

These measures provide the basis for the semantic analysis of symmetry struc-
tures in the image and can for instance be used to create statistics on the sym-
metrical features of an image, e.g., to train a classifier based on the semantic
characterisations of symmetry. Additionally, the relational spatio-temporal char-
acterisations may be used in the context of inductive learning to learn spatio-
temporal structures defining symmetry, as described in Sect. 5.

Example 5. Learning Relational Space-Time Structure

Symmetrical spatial structure, both in space and time, may be inductively
learned by finding spatio-temporal relations holding between basic spatial enti-
ties representing the image elements. For simplicity, consider the task of learning
when a spatial structure is considered to be symmetrical (e.g., as depicted in
Fig. 12) vis-a-via relative placement/arrangement of the objects in the scene.
To solve this and a similar class of visuospatial learning problems, we build
on foundations in inductive logic programming [30] with the aim to learn the
general relational structure of a domain through inductive generalisation based
on available positive and negative examples; practically, the method is realised
using the ILP system Aleph [38]. Within Aleph, the predicate modeh is used to
specify the head of the rule that is to be learned, and the predicate modeb is
used to specify the predicates that can be used in the body of the rule. We use
symmetric(+img) as the head (i.e., modeh) and further specify the predicates
to be used in the body of the learned rule (i.e., modeb) constituting the basic
spatial entities and the spatial relations (e.g., topology, orientation, distance,
and size) among the involved spatial entities:
:- modeh(1,symmetric(+img)). :- modeb(*,entity(#ent,-obj,+img)).
:- modeb(*,topology(rcc8(#rel),+obj,+obj)). :- modeb(*,distance(#rel,+obj,+obj)).
:- modeb(*,orientation(#rel,+obj,+obj)). :- modeb(*,size(#rel,+obj,+obj)).

Rules about symmetrical spatial configuration are then learned based on positive
and negative examples directly obtained from the images. For instance, when
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trained on examples where the object level symmetry is determined by two
people being equally far away from the symmetry axis, the system learns the
following spatial structure:
sym(A) :-

entity(center(person(0)),B,A), entity(center(person(1)),C,A),
entity(symmetry_object(center_axis),D,A), distance(equidistant,D,C,B).

In this way, inductive generalisation may be used to learn structural regularities
in the underlying visuospatial imagery and provide the means to learn common-
sense rules about the domain of interest.

5 Reflection and Outlook

The research reported in this chapter is being pursued as part of what we artic-
ulate as “Cognitive Vision and Perception”, where one of the key technical goal
is to develop general methods for the processing and semantic interpretation
of dynamic visuospatial imagery with a particular emphasis on the ability to
abstract, learn, and reason with cognitively rooted structured characterisations
of commonsense knowledge pertaining to space and motion3. The vision that
drives this line of work is:

to shape the nature and character of (machine-based) artificial visual
intelligence with respect to human-centred cognitive considerations, and
actively create an exemplar for developing , applying, and disseminat-
ing such methods in socio-technologically relevant application areas where
embodied (multimodal) human-system interaction is of the essence.

In the conceptual overview and practical illustrations of this chapter, we have
centralised select basic research and developmental challenges categorically
focussing on:4

explainable interpretation –by integrated reasoning and learning– of
human-scale motion and multimodal interaction from the viewpoint of
integrating neural and symbolic methods, and vis-a-vis the impact of
explainable neurosymbolism on the design and development of AI tech-
nologies concerned with human-in-the-loop decision-making, planning, and
analysis.

The reported development of formally characterised, modular, and general visu-
ospatial sensemaking methodologies opens up several immediate technical pos-
sibilities as well as long-range challenges for investigation.

3 A summary is available in [10].
4 Select readings are indicated in Appendix A.
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Immediate Technical Extensions

Immediate possibilities for technical developments/extensions to the presented
model of deep visuospatial semantics worth alluding to include development
of specialised (but domain independent) visuospatial commonsense capabilities,
and the development of datasets and benchmarks that centralise human-centred
performance benchmarks:

– Specialised commonsense theories about multi-sensory integration, and multi-
agent (spatio-temporal) belief merging would constitute a foundational exten-
sion to the existing capabilities for reasoning about space and motion.

– Multimodal stimuli datasets together with fine-grained, expert-guided, event-
based annotations would be needed for community driven benchmarking
of high-level visuospatial commonsense; here, the emphasis should on the
nuances of high-level visual sensemaking and explainability capabilities of
humans, and not on low-level performance metrics (alone) as is typical in
computer vision research.

Long-Range Questions

Concerning behavioural research themes in visual perception and spatial cog-
nition that have not been directly addressed in the chapter, the overarching
motivations and the interdisciplinarity that Cognitive Vision and Perception
research addresses are multi-faceted:

(a) how can a vision for the development of next generation of AI methods for
visual cognition be driven by and intricately interwoven with empirically
established human-centred characteristics;

(b) how can the cognitive & developmental psychology and cognitive neuro-
science based views of human visual intelligence –even if in highly focussed
interactional contexts– influence in systematically articulating the essential
crux –e.g., design challenges, functional capabilities– of human-centred arti-
ficial visual intelligence;

(c) what can human-centred artificial visual intelligence do for fundamentally
impacting the social and life sciences, e.g., through the power of semanti-
cally driven explainable sensemaking of large-scale, experimental multimodal
human behavioural data.

These long-range research challenges call for continuing bottom-up interdisci-
plinarity for the study of human visual perception in naturalistic settings on
the one hand, and the development of computational models of distinct visual
sensemaking capabilities of humans –both in seemingly mundane tasks or even
in specialist work related contexts– on the other. Such interdisciplinary stud-
ies –e.g., at the confluence of Cognition, AI, Interaction, and Design Science–
are needed to better appreciate the complexity and spectrum of varied human-
centred challenges for the design and (usable) implementation of artificial visual
intelligence solutions in diverse human-system interaction contexts.
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Appendices

A Select Further Readings

Select readings pertaining to cognitive vision and perception are as follows:

� Visuospatial Question-Answering [40] [39] [41] [37]
� Visuospatial Abduction [43,45] [47] [49]
� Relational Visuospatial Learning [42] [46] [19]

Select readings pertaining to foundational aspects of commonsense spatial rea-
soning (within a KR setting) are as follows:

� Theory (Space, Action, Change) [4,5,8,9]
� Declarative Spatial Reasoning (CLP, ASP, ILP) [7,35,42,48]

B Visual Computing Foundations

A robust low-level visual computing foundation driven by the state of the art in
computer vision techniques (e.g., for visual feature detection, tracking) is nec-
essary towards realising explainable visual intelligence in the manner described
in this chapter. The examples of this chapter (in Sect. 4), for instance, require
extracting and analysing scene elements (i.e., people, body-structure, and objects
in the scene) and motion (i.e., object motion and scene motion), encompassing
methods for:

– Image Classification and Feature Learning – based on Big Data, (e.g., ImageNet
[17,34]), using neural network architectures such as AlexNets [28], VGG [36],
or ResNet [23].

– Detection, i.e., of people and objects [11,31–33], and faces [18,24].
– Pose Estimation, i.e., of body pose [13] (including fine grained hand pose), face

and gaze analysis [1].
– Segmentation, i.e., semantic segmentation [14] and instance segmentation [22].
– Motion Analysis, i.e., optical flow based motion estimation [25] and movement

tracking [2,3].
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Abstract. In this paper we discuss the relationship between Ethics and AI. First,
we present a non-exhaustive panorama of ethical issues raised by AI, with a focus
on the fact that not all problems can be solved by technological advancements.
Second, we introduce what is Ethics and how AI may need changing it. Finally,
we will consider how AI can impact current ethical theories.
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1 Introduction

This tutorial has as learning objectives:

– Having a glimpse about what is Ethics.
– Understanding that Ethics evolves over time, also as a result of the emergence of new
technologies.

– Acquiring the width of the impact of AI on Ethics.

The following readings are suggested to deepen the arguments of this paper:

– Kate Crawford, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial
Intelligence. Yale University Press, 2021.

– Mark Coeckelbergh, AI Ethics. MIT Press, 2021.
– Shoshana Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future
at the New Frontier of Power. Public Affairs, 2019.

– Anthony Elliott, The Culture of AI Everyday Life and the Digital Revolution.
Routledge, 2019.

– David Weinberger, Everyday Chaos. Harvard Business Review Press, 2019.
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2 Ethics of AI (by Guido Boella)

In this section, we discuss some ethical aspects of AI. We are talking here about Ethics
of AI, which addresses the ethical issues raised by AI, while in the next chapters we
discuss about Ethics AND AI: how AI will affect Ethics itself. We will not consider
instead another large field connecting the two topics, i.e., “machine ethics”: how to
developmachines that are able (or could be able) tomake ethical reasoningwhenmaking
decisions, such as an autonomous car that by explicitly considering ethical principles
has to decide whether to endanger the safety of the occupants or the one of a pedestrian
unexpectedly crossing the road in front of the car.

First of all, we should ask ourselves if there is an ethical problem with AI. Does AI
create risks? If yes, which are those risks, and how and why do they emerge? how can
they be addressed? Are these risks different from those created by other technologies,
such as biotechnology or nanotechnology? Do they need different solutions?

We must also be aware that these are not simple problems and cannot be solved
easily. As Algorithm Watch, an activist organization on Ethics and ICT, observes, there
are more than 160 guidelines1 on Ethics and AI, but they are “paper tigers”2: ineffective.
This happens as they are not enough specific, they cannot be implemented in practice,
and there are rarely enforcements mechanisms. Moreover, they are mostly from EU and
US. They put together principles, such as the four principles of Bio-medical Ethics, and,
sometimes, they end up being tools to make “Ethics washing” for companies, and even
researchers: “the question arises whether guidelines that can neither be applied nor
enforced are not more harmful than having no ethical guidelines at all”.

In the following, we will provide a panorama of the open ethical issues, briefly
addressing a variety of them.

2.1 The Bias Problem

Bias in Computer Science is nowadays a main problem of Machine Learning (ML)
algorithms: you want to learn from the data something that is not in the data. As Ruha
Benjamin3 recently said, “feeding AI system on the word’s beauty, ugliness and cruelty
but expecting it to reflect only the beauty is a fantasy”. We pretend to get only what we
deem right and fair from the results of algorithms, even if we train them using the existing
huge datasets representing not the ideal, but the actual world with all its unfairness and
horrors. There are several consequences caused by a biased ML system:

– Quality of results: obviously results are not as we pretend them to be according to our
ideal world.

– Negative effects on people: e.g., automated hiring systems; you could not be hired
because you are a woman or from a minority, and, thus, you are discriminated.

1 https://inventory.algorithmwatch.org/.
2 https://algorithmwatch.org/en/ai-ethics-guidelines-inventory-upgrade-2020/.
3 Ruha Benjamin. 2019. Race After Technology: Abolitionist Tools for the New JimCode. Polity
Press, Cambridge, UK.

https://inventory.algorithmwatch.org/
https://algorithmwatch.org/en/ai-ethics-guidelines-inventory-upgrade-2020/
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– Psychological effects on users: besides the damage of being discriminated, you are
harmed by feeling discriminated by the algorithms. Moreover, a biased AI may not
only make discriminatory decisions, but it could also produce discriminatory content
or hate speech on the Web against you on social networks: you end up being more
discriminated, not only by people but also by machines.

– Proselytism of users convinced by what is produced by biased AI systems, e.g., hate
speech posts on a social network. Or mislead by the autocomplete feature of a search
engine, suggesting, e.g., “black shirt” (in the sense of fascist uniform) when typing
“shirt” in the search bar, as recently happened to one of the authors.

– Feedback loops reinforcing the bias in the data due to further bias generated by biased
AI systems and added to the learning corpus. This phenomenon has been widely
discussed by Cathy O’Neil in her famous book “Weapons of math destruction”: for
example, if a “predpol” AI system sends more police patrols in a high-density crime
district populated by minorities, more crimes will be found and added to the dataset
fed to the AI, making the district even more risky next time in the judgement of the
AI system: more and more police patrols will be send there and the minorities living
there more and more discriminated.

Related to the bias problem a widely debated news appeared beginning of this year:
two major scientists at Google, part of the ethical team, have been fired. The public
debate focused on the fact that two women (one immigrated in the US) have been fired,
and did not highlight enough why they were fired. The reason is that in their paper
“On the Dangers of Stochastic Parrots. Can Language Models be too Big?” they made
very strong criticisms against the use of AI their employer does. There is a section
in the pape dedicated to the “Unfathomable training data” - where the uncommon
word “unfathomable” means “incapable of being fully explored or understood”. There,
concerning machine learning based on huge datasets of text from the web – a technology
at the base ofmanyof themost known services byGoogle - they highlight these problems:

– Encoded biases: for example, because English text on the web has been produced in
a big percentage by white Anglo-Saxon males.

– Curation, documentation, accountability: there is not enough budget to curate,
document and to analyze the collected dataset to identify biases.

– The size of training datasets does not guarantee diversity: data are taken from main-
stream discussions on social media, while minority issues are often discussed on niche
blogs not covered by the web spiders harvesting data.

– Data are static, the society changes: AI is trained on the past (data) and reflects the
past reality (as represented in the data). E.g., movements like #MeToo or #Black-
LivesMatter are new, and they are not reflected enough in the datasets. The state of
the art of innovation seems to be conservative by design.

Moreover, the researchers say that “Any product development that involves opera-
tionalizing definitions around such shifting topics into algorithms is necessarily political
(whether or not developers choose the path of maintaining the status quo ante)”.

But there is more. They say that Google is morally bankrupt because their natural
language processing engines are cheating and misleading users. Such systems are just
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manipulating strings of text and thanks to being able to deal with huge amounts of data
they seem to users to be able to give meaningful replies. But the two authors notice that
these systems are just exploiting our inner automatic tendency, as humans, to attribute
intentions and beliefs to people talking with us, while there are no such mental states
inside these machines: they are just manipulating text. Hence, the phrase in the title
of the paper “Stochastic parrots”. This is a very strong point of view. They also say
that main AI players (like Google) are even deviating and corrupting public research on
natural language processing as most researchers are trying to follow this approach, to
test, improve and evaluate their systems, but going in a wrong research direction. And
spending a lot of money for running deep learning algorithms (another topic in the paper
is the energetic cost of machine learning systems). Amazingly, we are back in the ‘60s
when the MIT AI Lab scientist Joseph Weizenbaum coded the ELIZA provocation, a
sort of chatbot applying a simple pattern matching on the sentences of the users and
producing a conversation that gives the impression to be at a Rogerian psychotherapist
session. We should be aware that the same problem will be found in humanoid robotics:
we are just misled by the facial expressions of emotions of robots, deluding us that
they have some mental states. Emotion expression could be helpful, e.g., for therapeutic
robots for elderly or autistic people, but in the general case this raises the question about
the meaning of affection of humans towards machines that mislead them.4

But themainmessagewewant to convey concerning bias is that bias is not a technical
problem. We cannot solve the problem of bias by improving algorithms. The term bias
has different meanings in different disciplines and contexts:5

– In law, bias refers to a preconceived notion or opinion, a judgment based on prejudices,
as opposed to a decision from the impartial evaluation of the facts of a case.

– In psychology, Amos Tversky and Daniel Kahneman study “cognitive biases”,
or the ways in which human judgments deviate systematically from probabilistic
expectations.

– Implicit biases emphasize the ways that unconscious attitudes and stereotypes
“produce behaviors that diverge from a person’s avowed or endorsed beliefs or
principles”.

– A systematic classification error that the system exhibits when presented with new
examples.

Bias is not simply a type of technical error: it concerns human beliefs, stereotypes, or
forms of discrimination. Liming discussion to the statistical meaning of the term makes
us forget that the term has to do with equality and justice. Who is in charge of deciding
what are the equality and justice principles that should correct the bias of an AI system?
As suggested byGebru andMitchell above, this is a political question and not a technical
one.

4 A reading suggestion on this topic is the Nobel prize winner Kazuo Ishiguro’s new novel: Clara
and the Sun.

5 Kate Crawford: Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence,
Yale University Press 2021.
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Moreover,KateCrawford argues thatwe cannot save ourselves from the bias problem
by improving algorithms, because the AI systems we are talking about essentially make
classification. Classification is an act of power: classifications are created to justify the
order, the status quo of who is in power. The people who classify can decide which
differences make a difference. They are political interventions hidden to us and become
taken for granted, but still they play an active role and shape the social and material
world. To contrast them we must actively resist.

Connected to this, Kate Crawford reminds us that AI in image recognition is going
to create a so-called “digital epidermalization”. The only data the machine can have,
our images, do not contain all the information machines tend to take out of images:
gender, cultural and political views. These categories are not biological traits that emerge
from our face images, but are politically, culturally, and socially constructed relational
concepts. Leaving image recognitionAI systems taking information fromus is alienating
our right to define our true identity: they do not consider what are our subjective claims.

Furthermore, real datasets are used beyond their original purpose. For example, take
one of the biggest: ImageNet. The underlying labelling of images was imported from
WordNet, a database of word classifications first developed at Princeton for different
purposes. Its nine top-level categories show plant, geological formation, natural objects,
sport, artifact, fungus, person, animal and miscellaneous. If we go into detail and take,
e.g., “human body”, we see it is distinguished in male body, person, juvenile body, adult
body, female body. It is a binary classification. Despite this, ImageNet is the most used
dataset for training image recognition systems.

ImageNet is an open-source dataset and we can examine it; but what are Facebook
and other companies doing? They use proprietary systems and don’t allow us to probe
or audit how images are classified: we cannot know which order they impose on us.

The world is full of meanings, irresolvable questions and contradictions. When you
make a dataset, youmake choices and simplifications. Kate Crawford reminds us that we
have to know who makes choices and on what bases. We risk perpetuating asymmetries
of power becauseAI developers–AI is producedmostly by big companies – are imposing
and perpetuating classifications for their own business purposes.

A problem related to image recognition is emotion recognition. There is a huge prob-
lem on how this technology is applied. Consider the risks in China where the government
wants to promote positive energy by monitoring people’s expression of happiness, ban-
ning anger and sadness. But there are also technical problems as most of the systems on
emotion recognition are based on the work of Paul Ekman6, for its convenience in terms
of formalization, but his theory is not anymore recognized in the psychology community
as entirely correct and scientifically grounded.

A suggestion to deepen these issues is the movie Coded Bias. At its beginning, the
MIT media lab afro-american researcher Joy Boulamwini recognizes that the image
recognition system she is using is not working well on her face. It starts working only
when she puts by chance a white mask on her face. Ironically the movie is distributed
by Netflix that is one of the biggest developers of recommendation systems based on
AI, clustering people in dozens of buckets and proposing to them different trailers.

6 Paul Ekman. “Facial Expression and Emotion”. American Psychologist. 48 (4): 384–92, 1993.
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Another suggested reading is “Automating Inequality” from Virginia Eubanks that
examines case studies on the effect of using AI in social assistance settings.

2.2 Explainability

Another widely discussed issue in the Ethics of AI is the explainability of the decisions of
ML systems. A large part of the machine learning community is trying to create systems
that are not entirely black boxes, but that are able to justify the classifications they make.
This concept is so widespread in the community that it even ended up in the General
Data Protection Regulation of EU (GDPR) of 2016. In recital 71, it is said that people
have the right to obtain an explanation of the decision reached after assessment made
by AI and to challenge the decision. Also consider the latter right: we are not allowed
to discuss and negotiate the decision with the AI system that made it as we can do with
human decision makers.

An anecdote on the obscurity of the reasoning happening within deep learning algo-
rithm comes from the AlphaGo system defeating the (human) world champions: some
of them said that it looked like playing against an alien.

Before rushing to say that achieving explainability of ML decisions would save AI,
we have to understand what an explanation is. Do we really know? Can humans give
explanations? Different disciplines have different points of view on the matter:

– Law is often advocated as an example, since judges motivate their judgements. How-
ever, Amedeo Santosuosso7 reminds us that in law, motivations of judgements are just
a recent social construct. In some legal systems, writing the motivations can be even
delegated to assistants.

– The psychological point of view on explanations: as the economist Michael Polanyi
discovered, explicit knowledge (the part that can be expressed linguistically and can be
represented in a logical way) is only a part of our knowledge. There is another bigger
part of knowledge which is the “tacit knowledge”, concerning how to do things, for
example how to ride a bicycle or how to be able to speak or even to reason. This
knowledge is not accessible to our conscience and not expressible linguistically (and
you cannot learn it from reading a book).

Then there are technical problems. How to explore the dependencies among tens of
trillions of nodes constituting a deep neural network to reconstruct its reasonings?

Furthermore, do you trust machine or people giving explanations? Can we ask
machines to do something that we are not able to do ourselves? How can we know
if an HR AI system is actually not hiring someone for a racial reason while it explains
its decision in another way?

Finally, as discussed in Everyday Chaos by David Weinberger8, deep neural net-
work systems could be literally unexplainable since, given their computational power,
they are able to reason without resorting to the traditional conceptual models made by

7 Amedeo Santosuosso. Intelligenza artificiale e diritto. Perché le tecnologie di IA sono una
grande opportunità per il diritto. Mondadori, 2021.

8 David Weinberger. Everyday Chaos. Harvard Business Review Press, 2019.
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humans to decide and at the same time explain their decisions. These models are always
simplifications of a complex reality due to our cognitive limitations.

2.3 Control and Accountability of Autonomous Systems

Self driving cars and autonomous drones pose many ethical problems. We can focus
here on a couple of examples only. Philosophers devised the so-called trolley problem:
an evil terrorist has tied 5 people on the track of a runaway trolley and one person
on another track following a railway exchange, and you got in the horrible position of
deciding whether to let the trolley go straight on its route and kill 5 people or to turn
the switch and make the trolley kill just one. However, let to their devices, engineers
have found their own solutions to this dilemma. Consider the report of the US National
Transportation Safety Board about the famous accident in Arizona where an Uber self-
driving car killed a poor woman who was crossing a large street while pushing her
bicycle. The autonomous vehicle was able to recognize the obstacle of the pedestrian,
but emergency breakers were not enabled when the car is on computer drive in order not
to shake passengers.

Concerning autonomy, there is the huge debate about eventual deadly autonomous
weapons like military drones. However, already now, when the drones are remotely
piloted by humans AI creates ethical problems. The information pilots get on their
monitors for taking their decisions is probably the result of AI algorithms (recognizing
possible targets from camera imagines, tracking them, surveilling them on the social
networks, etc.): the ethical problems of the role of AI in deciding to kill are already here.

2.4 Power and the Rhetoric Behind AI

In this paper we are not discussing only about technical issues, but also about power
relationships and the struggle tomaintain them.Abig share of research onAI is nowadays
made by companies. In “Atlas of AI” Kate Crawford (See footnote 5) warns us that AI is,
first of all, connected to power. You can look at how power is distributed in our current
world by looking at all the articulations of AI. She claims AI is not artificial, as it is
embodied, it is material, it requires natural resources, human work and so on. It is not
autonomous as it depends on datasets and people tagging them. It is capital intensive:
deep learning computations cost hundred thousand dollars. She reminds us that when
we talk about AI, we don’t talk about a technology, but about the massive industrial
formation that includes politics, labor, culture, and capital. When we talk about the
Ethical aspects of AI we have to consider also these dimensions: we have to consider
both the effect of AI tools on the society and of the corporations that are changing the
economy using AI.

To gain and maintain their power positions, rhetoric is often used by the big AI
players. This rhetoric is often mixed with technochauvinism and inevitabilism: the evo-
lution of technology is considered to be always positive and not stoppable, since it is
presented not as the result of the choice of someone, but a sort of natural evolutionary
force. To bring an example, Larry Page, cofounder of Google, asked “What is Google”
by a journalist replied: “if we did have a category it would be personal information. The
places you have seen. Communication… sensors are really cheap… storage is cheap.
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Cameras are cheap. People will generate enormous amounts of data… everything you
have ever heard or seen or experienced will become searchable. Your whole life will be
searchable”. In this interview Page was manipulating us by providing something that is
in the pure advantage of Google as something that is useful for everyone and presents
it as something inevitable. Storage is cheap, then it is searchable. It is not like that. It is
searchable because someone wants it to be searchable.

2.5 AI and Economics

Concerning the interplay between AI and economics we have space here only for listing
some issues. The first one is the future of work. Since the beginning of past century
newspapers had been warning us that machines would have made all us unemployed.
One century after we are still here at work. Some show optimism: the Economist titled
recently: “Robots threaten jobs less than fearmongers claim”9. But the Harvard Business
School scholar ShoshanaZuboff in her “The age of surveillance capitalism”10 argues that
the usual argument that a new technology produces new kinds of work while destroying
old ones may not be true anymore, since the very structure of our capitalist world is
changing. In 1908 when the T-model car was produced by Henry Ford we were in a
world where the employees of Ford after some years could afford buying that car. In the
current economic world, we are not the customers of the enterprises that extract value
from us. The positive feedback loop between production, income, consume of goods of
the past century that produced new jobs is not anymore here. The customers of big ICT
players are brands buying advertising space, while we are the unemployed source of data
of the extraction capitalism. The future of work is not only a quantitative issue but also
a qualitative one. Already Karl Marx saw automation technology as an unprecedented
challenge for the individual and society. The workman “becomes an appendage of the
machine, and it is only the most simple, most monotonous, and most easily acquired
knack, that is required of him”. AI is also becoming a means of control on the worker,
as the extreme condition of work in Amazon warehouses show.

Another issue is to consider the effect of industrial revolutions on the functioning
of the society itself. The French sociologist Emile Durkheim11, examining the social
transformation already gathering around him, observed that the specialization of work
created by the division of labour was going outside the factories and gaining influence
in politics, administration, the judiciary science and the arts. He sees specialization
as something positive as it created interdependency and reciprocity among people by
increasing respect and mutual trust, thus reinforcing the fabric of society. Whatever the
effect of AI on work we must be aware that it could diminish the dependency among
people thus affecting the moral force keeping society together. The industrial revolution
from this point of view had positive effects but at the same time increased inequality,
a great danger that leads to make conflicts to reclaim power and justice within society
impossible. It seems that one of the risks of AI is a further increase in inequality.

9 https://www.economist.com/special-report/2021/04/08/robots-threaten-jobs-less-than-fearmo
ngers-claim.

10 Zuboff, Shoshana. The age of surveillance capitalism: the fight for a human future at the new
frontier of power. First edition, Public Affairs, 2019.

11 Emile Durkheim, The Division of Labor in Society, 1893.

https://www.economist.com/special-report/2021/04/08/robots-threaten-jobs-less-than-fearmongers-claim
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Finally, Shoshana Zuboff argues that there has been in the last 20 years a new
appropriation of our data that are not used to improve services such as search engines,
but are extracted and refined to sell predictions about our behavior to advertisers. This
expropriation process can be seen as a further step in the development of commodity
fictions, to use the term of the economist Karl Polanyi. Karl Marx had described the
taking of lands and natural resources as the original “big bang” that ignited modern
capital formation, calling it “primitive accumulation”. For Polanyi this was only one
step of the process. The first step was that human life could be subordinated to market
dynamics and reborn as “labor” to be bought and sold. The second was that nature
could be translated into the market and reborn as “land” or “real estate”. The third was
that exchange could be reborn as “money”. The philosopher Hannah Arendt predicted
that capitalism is made of such recurring phases in a repetitive cycle. Marx’s original
sin of simple robbery had eventually to be repeated or otherwise the motor of capital
accumulation suddenly die down. Now we are attending another cycle of appropriation
subordinating not only the natural world but also the social one to the market dimension.

3 How AI is Influencing Morality and Ethics (by Maurizio Mori)

I try to combine the little I know on AI and its impact on ethics. AI is a very complicated
field which grew up in the last few decades and it now got a sense of maturity. AI is going
to influence deeply out lifestyle and existence. On the one hand, for instance, robots are
used for surgery and sometimes are even better than humans. This may be a problem.
On the other hand, AI is influencing morality and ethics, this is the main topic of my
talk. I try to clarify and to give ideas of what ethics and morality is. From my point of
view, ethics and morality are synonymous. My talk is partly philosophical and partly
empirical and sociological.

What ismorality?My perspective is the one of an analytic philosopher. In philosophy
there is a big distinction between the continental and analytical perspective. Every word
must be examined and justified.

My talk is philosophical, and by philosophy here I mean analysis of concepts. I don’t
think that philosophy has a proper object but I think that philosophy is the analysis of
any other field so we can have philosophy of AI, philosophy of morality.

What is amorality? Ethics or morality is a peculiar social institution. An institution is
a social construct. An example of institution is law. Law is a solid institution as there are
places in which this institution is exercised. It exists in time and space. There are other
institutions that are not as solid as law. For instance, there are semi-solid institutions like
politics. Politics is in part solid like law (there are parliaments, parties, political acts,
etc.) but it is also fluid: when you talk to a friend in a bar, your talk could be a political
act. Elections are a solid part of politics, but when you suggest to your neighbor to vote
someone this is a very fluid. Having distinguished two different sorts of institutions, I
can introduce another great institution: language. This is a prototype of fluid institution.
The meaning of words and the structure of language is not invented by me or by anyone
of us, but it is given. Yet certainly it is not solid (there is no such a thing as the “house
of language”). Language is spread among people. Language does not depend on anyone
and yet it exists. Morality is a kind of institution like language. It is spread in society
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and it is similar to language. No one owns morality. Morality is like a wind: you can
feel but you cannot capture. It has an influence on you, but it is difficult to grasp as it
is pervasive and has no definite point. The analogy between language and morality is
classical and appears to be adequate so far, i.e., up to our time or a few decades ago.

In the last few years new problems have arisen connected with the new technologies.
In the past, language grew up from the people and there was no way to control language.
Some institutions could influence language more than normal native speakers. But now
we have television or mass media that can influence language in a more profound way
than it was possible in the past. So, in the essence, as a very recent phenomenon, we
could say that we have a sort of “house of language”. In a similar way we can say that
advertisements are the products of a new “house of morality”: ethics is not depending
any longer on the individuals’ contributions but can be deeply influenced by a new ad.
We have to study the morality of this new situation, which is affected by the instruments
that we have: television, social media, etc. These new problems are connected to AI,
which appears to be one of themost powerful instruments that could facilitate a structural
control of language as well as of morality. Up to now morality used to be spread among
people as one’s own mother tongue was: as no one could control the language so no
one could control morality. Everyone could use and participate to the moral game like
everyone could contribute to the language game without controlling it. Language is
something more powerful than any of us. We don’t invent the meaning of terms, but we
can modify a little their meaning and use them in an extended or analogical sense, we
can create new words and sometimes even new syntactical forms, contributing to the
language. Our contributions to the language may be successful or not: nobody knows it
in advance. Something similar occurs with moral values.

Morality is a special institution, and its peculiarity depends on its content and on
the way it is uphold as well as on the ground it is based on. Content: there are moral
duties which are at the core of any ethics, like the prohibition of killing or of stealing,
etc. Of course, there are different interpretations of what it means “to kill” or “to steal”,
as well as about the subject not to-be killed and the object not-to-be stolen. There are
other duties at the margin, that are discretional, in the sense that we can choose either
a solution or the other and there is a margin of freedom in the choice. An example is
clothing: one has to be dressed, and there are strict rules concerning the kind of clothing,
but it is permitted to choose among different styles (of course even this example would
require qualifications, but I hope it that is different from the former). In any case moral
values and norms are followed spontaneously and for intimate conviction, because they
are reckoned to be just. Instead, legal norms are followed in order to avoid penalty.

Which is the ground of morality? There are two different great basic answers to the
question: on the one hand there is the idea that morality is a social institution which is
given and founded in God and it is depended on religion. This is a very crucial point as
we know that for many people morality is a special institution because it is not human.
The most influential moral code are the Ten commandments. As you all know they have
been given by God himself to Moses on the Mount Sinai. Is morality simply human or
does it depend on religion?

Many people still think that either morality is connected to God, or it would collapse
and vanish. This is not true, but it is true that the fact thatmorality is dependent onGod (or



An Introduction to Ethics and AI 255

not) has practical effects. At least for two aspects. First of all, if it is dependent on God,
then morality will have absolute norms and prohibitions. Absolute means not dependent
on conditions. This means that it is always valid and eternal, with no exception. Religion
cannot be modified, cannot change. This is the first important consequence coming from
the belief that morality is dependent on God. The shadow of such an absoluteness is
flawing in morality. An example of this is the prohibition of divorce or of abortion, that
was never allowed. Of course, in practice then such prohibitions are interpreted, because
it is difficult to state what exactly God said. This is a difficult topic into which I do
not want to enter. I can only say that we have different perspectives in Christianity as
well as in other religions, and that even within a religion some moral precepts evolve.
For instance, loan at interest (usury) was forbidden by the Roman Catholic church up
to mid-XVIII century, and then permitted: something similar occurs in our days with
divorce, which was absolutely prohibited up to the Amoris Laetitia (2016) and now it
appears to be “in practice” permitted (at least in some cases).

The second point is formal, and it is about the reasons we have to comply with
what morality requires. If morality is dependent on God, one should follow morality
because God commanded, and the agent has to obey: obedience is what justifies moral
compliance. I think that this is a poor and inadequate reason, because what is morally
good or bad is dependent on rational justification and reason. This is the hallmark or the
seal of morality as a human institution.

For this reason, my view is that morality is secular. Morality is a social institution
that we follow because it has norms that are rationally justified. The goal of morality
is to allow people to get an adequate level of social coordination that is required to
reach personal self-realization. When the circumstances change, social coordination
may modify as well and therefore some norms require to be qualified and changed. To
have a rough idea, think of dressing: in winter, when it is cold, we wear heavy coats
and hats in order to be warm, but in summer, when it is hot, we dismiss them and we
wear linen. In our time the historical circumstances changed radically, and in fact we
have different moralities because people try to adequate norms and values to the new
conditions.

At this point one may legitimately ask how is it possible to talk about different
moralities. How can they coexist? Shouldn’t we say that there is just one universal
morality? These are important questions that require an articulate answer with some
premises. In abstract morality is universal and one, but this model has to be applied in
our historical circumstances where the universal precepts have to be contextualized and
the acquire some differences. As amatter of fact, we see that we have differentmoralities.
Sometimes they can coexist peacefully, and sometimes they clash. In recent times things
changed so quickly that people could hardly cope with such transformations and the
result is that we speak of “culture wars”, “cancel culture” etc., which is a different way
to say that different ethics are in conflicts.

We can try to explain why there are ethical wars. One powerful reason is that in a
few decades western societies had a rapid process of secularization as disenchantment
of the world. As I said, up to half a century ago it was “normal” and taken for granted
that morality was dependent on God. God sees everything in your heart and can see your
intentions and actions. Therefore, if you copy an idea, you steal something and this is
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wrong because God does not want it. The God-eye perspective of ethics was dominant
and undisputed.

Now this is still true for a fraction of people and they are scared that the world will be
horrible if God won’t continue to be the ruler. In this sense we have a clash of values. Do
not forget that morality is rooted in the emotional part, and that emotion has a big role in
ethics. Ideas move quickly and are light, but emotions are heavy and slow, and it takes
time before they change. In this sense, we have a lot of people who are simply terrified
at the idea that God is not prominent in morality, and they still adhere to traditional
precepts and are proud to live according to the old customs. This is one of the main
sources of the current moral war.

But the question is not only theoretical and abstract. It has quite practical effects
that fuel the ethics war. Consider the issue of assisted reproduction. Should we limit
the number of humans? Or should we get to infinite numbers? How many people are to
enter in the world? Who and how should decide? These are only some of the questions
that we can raise in the field and that morality has to face. In general, the approach is
that if the moral norms are God-given, then we should leave the choice to the natural
lottery. If the moral norms depend on human responsibility, then humans have to decide
and articulate some criteria to the point. In our age we are encountering a big problem:
are we allowed to control human reproduction? In the future reproduction will be totally
assisted? How can different moralities coexist on the issue?

However, AI will fuel extra controversy, because there is a sense in which AI will
substitute God’s eye. Think. In the past, God could see all your actions. Now all our
actions will be recorded by computers. For instance, I don’t remember what I did in
August 1st 1980 or 2 years ago. But I have a daughter who lives in London and she
tells me that when she get the tube she pays with her mobile. Through her payments in
the past, she is able to tell what she did in the past in a specific day. People have a full
recording of everything. This will change our moral rules concerning privacy and our
past life, and even our identity.

The possibility of recording everything and to keep any sort of data is going tomodify
our sense of history: letmeexplain. For thousands of years humans livedwithout scripture
and recording the facts. Thatwas pre-history. Then5 thousandyears agohumans invented
writing in order to record what is happening. In this sense, we all have birth certificate,
pictures of graduations, of weddings etc. This is history: History is a time in which we
have some written documents recording of some events. “Pre-history”, a time in which
there were no written recording, while history is characterized by the recording of the
most important events: actions, treatises, etc. Now the situation is quickly changing. Let’s
take an example: As an Italian, I went to Venice. Tourists used to take few pictures of
Venice in the past. Now, tourists in Venice record everything. This is a dramatic change.
We are entering what I propose to call “post-history”. This empowerment will change
deeply the historical condition and for this reason our morality will be modified. This
is the main point of my thesis. In post-history we have recordings of everything. An
important aspect is that all this information can be examined and analyzed. They can be
used for good purposes, like to detect in advance medical problems. But even for bad
purposes. This will deeply change our lives. We are entering in post-history in which
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everything is recorded, duplicated, and it will be hard to get what is relevant. For this
reason, Big Data, data mining are aspects of the future.

We are in a stage in which we start something new because history will cease to
exist. Of course, this is a remark concerning our description or representation of the
matter. In reality, the flow of human events will continue as always. But our way of
looking at the matter has to change. In a sense, my proposal is about technical language
used to represent reality. Let me explain: we still have what we can call “the flow of
human events”, i.e., occurrence of things. In a sense, they represent the background
of everything. The flow of human events started long ago and will continue up to the
extinction of the human species. Of course, human events will continue but will include
technological events. And this is a real problem because in essence technology enhances
humans. We are already enhanced humans. We are no longer mere humans. We are
supermen/wonder-women!

This is a problem for ethics because not to be enhanced is normal or is a lack of
something? Everyone has a mobile. If someone has no mobile is like having something
less than the others? Is it a kind of deficiency or defect?

Let’s take another example. Nowadays everything is recorded and even the lecture
this paper derives from is now recorded and can be shown in the future, 20 years from
now. While there is no recording of Kant’s lectures or of Verdi playing la Traviata. It is
not the case to continue, but it is clear that this is a new feature of our new world: what
will be the effect that my lecture will remain in the future? This is a permanent change
in our conditions and therefore it will influence morality. This is a great problem. Algo-
rithms will change our real life because life will be strongly conditioned by technology,
peculiarly AI. This new technology will be pervasive, and it will induce a moral change.
It is too early to predict the lines of the change, but it will occur.

This aspect raises new problems concerning the current behavior that people for
example on Youtube. Algorithms decide when people can present their content or not,
and maybe in the future even the content is conditioned. This could be interpreted as one
sign among others of a sort ofMachine-God, i.e., something trying to substitute the God-
eye perspective. I think that such a hypothesis can be a risk as well as an opportunity!
Think for instancewhat is going to happen in education. Nowgathering together students
in a class is done by chance. In the future, machines could choose how to match people
in a class. Maybe weddings will be decided by algorithms. These are problems. For
instance, in Sweden years ago there was a school very efficient in assisted reproduction
that tried to select embryos. That was something seen under the microscope. Now all
these processes of selection are processed by robots. What is better? Will we decide
future life through robots? Which are the rational criteria to select someone rather than
someone else?

Since we are open to enlarge our horizon to new perspectives, some fewwords can be
said concerning another controversial issue, i.e., whether it is possible or even desirable
that some Artificial Intelligence constructs will become “moral agent” or autonomous
centers of action. Thiswouldmean that someAI artifactswill be able not only to calculate
things, but also to feel them. I think this is a hypothesis that we should take seriously. We
have already testified an enlargement of morality to non-humans (any sentient beings).
If computers will become sentient as well as responsible of their actions, I think that we
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have to enlarge morality to include them. We have to be ready to modify our categories
and enlarge them.

What is morality?Morality grants an adequate level of self-realization of every being
capable of realizing themselves. Even non-human animals are able to get a kind of self-
realization. So, they can be included in the moral game. If a robot will be able to consider
a kind of self-realization, then even robots could be moral actors. This will depend on
the future. But this is my view. This will be like an atomic bomb in morality. This will
be a problem in the religious conception of morality. One should assume that God had
the idea that humans can create computer. What will happen if computers could be able
to replicate itself? (Should we use he or she?) These are fascinating issues.

More precisely, let’s think what will happen if we had to program a new self-
responsible robot.An issuewill emerge immediately:moral bias.Moral bias is something
that is not rational because it does not comply with equality and brings about a sort of
discrimination. A bias is something unjust in the sense that it does not respect equality.
But equality is not easy to understand in this way. To be equal is not to be identical (to
have all similar properties). “Equal” in a moral sense means to be similar in some respect
and not in others, but to deserve equal treatment because both have dignity. For instance,
I am equal to Peter even though we have different faces. We are equal in dignity. We
are not equal in other respects. To find out the similarities that create “equality” is a
real problem. But we have to find it out, because bias is something unequal. In the next
section, we will discuss if bias in machine learning has to do with rationality and how
bias in morality is connected to the one in computer science.

4 AI and Ethics (by Guido Boella)

If AI impacts onwhat is Ethics, it will be not the first time that technology brings changes
in Ethics. In the ‘70s there has been a revolution within Ethics as a consequence of the
advances on bio-technology. We now think of AI as a tool, as other technologies. The
historian Yuval Noah Harari12 reminds us that the success of Sapiens with respect to the
other human species is not due to the invention of tools. The real explosion of Sapiens
happened with the cognitive revolution 70,000 years ago, a change that allowed us to
talk not only about the reality, but also about fictional entities such as myths and gods.
6,000 years ago, in themiddle east, artificial fictions such as temples, gods and then laws,
allowed the Sumer to coordinate their society. Temples were employing people, owning
lands, collecting taxes, etc., like they were real persons. Harari notices that these fictions
are not so far from themodern concept of corporations, legal entities who own properties
and employ people: they have a legal personhood (now detached from religion). Thanks
to the possibility of coordinating people using such fictions, in a couple of millennia
empires of over one million people became possible.

The American philosopher John Searle explains that we can coordinate in such away
our society thanks to the fact that we all share norms and costumes that create a socially
constructed reality in which we are embedded in a seamless way: money, citizenship,
laws are all fictional entities that work as long as we all agree upon them.

12 Yuval Noah Harari, Sapiens, a brief history of humankind. Random House, 2014.
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Technologies up to now had impact on our lives and only indirectly affected the
socially constructed reality. Probably AI will have an impact on this dimension. So,
the greatest impact of AI may not be autonomous weapons but how it will change
these structures surrounding all of us. Consider, as an example, the notion of “Public
sphere” by the German philosopher Jürgen Habermas, the realm of social life where
public opinion is formed by public discussion: the social sites or arenas where meanings
are articulated, distributed, and negotiated, as well as the collective body constituted
by, and in this process, “the public”. These mechanisms are increasingly substituted
by personalization algorithms of social networks, deciding which different content to
provide to each of us. How this change in the functioning of “Public sphere” will change
our socially constructed reality?

Such deep changes will possibly need a change in Ethics itself. Up to now, many
scholars, such as Floridi and Cowls, proposed to adopt for AI the same principles devel-
oped by Bio-medical Ethics: beneficence, non-maleficence, autonomy and justice. Take
for example the beneficence principle: “Beneficence: promoting well-being, preserving
dignity, and sustaining the planet”13. At some point some AI system will be used to
provide information and judgements for the decision maker that must ethically evaluate
another AI system according to this principle. So, we will use AI to evaluate AI itself
from the ethical point of view. We have here a circular argument in applying current
ethical principles to AI, invalidating the use of these principles. So, it is not possible to
simply import them from the field of Bio-medical Ethics in the AI field without further
considerations.

Moreover, we should not take for granted that a list of principles is the right approach
to AI Ethics. As we noticed in Sect. 2, the generality of AI ethical guidelines makes them
ineffective paper tigers. But also, as the authors of the Principles of Biomedical Ethics,
Beauchamp and Childress14, write:

Principlism, then, is not a mere list and analysis of four abstract principles. It
is a theory about how principles link to and guide practice. We will be show-
ing how these principles are connected to an array of transactions, practices,
understandings, and forms of respect in health care settings, research institutions…

Beauchamp and Childress ground the principles in the common morality: “norms
about right and wrong human conduct that are so widely shared that they form a stable
social compact”. The identification of very broad principles is only part of the contribu-
tion of Beauchamp and Childress: the other part is to use specification, balancing and
(deductive) application to create a bridge between the moral situation and the relevant
principles. In the Ethics of AI field, we are still lacking the array of transactions, prac-
tices, understandings, and forms of respect, that make concrete these principles. Hence,
importing principles, as many authors do, is not the right way to proceed. We should
learn from the history of Bio-medical Ethics in creating a new Ethics of AI tailored to
the new risks created by technology.

13 Luciano Floridi and Josh Cowls, A Unified Framework of Five Principles for AI in Society,
Harvard Data Science Review, 1.1, 2019.

14 Beauchamp, Tom L., and James F. Childress. Principles of Biomedical Ethics (5th ed.). New
York: Oxford University Press, 1979.
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5 Conclusion

As Ivana Bartoletti15 says, “if AI is both power and oppression, we should claim the first,
and resist the second”.We cannot just hope to rely on technical solutions and on existing
ethical frameworks. Besides the work of researchers, we need the action of legislators,
public opinion and the many activists and advocacy groups emerged in the last years,
such as Electronic Frontier Foundation, Algorithm Watch, Algorithmic Justice League,
and many others, among which the Italian Association for the Ethics of AI, SIpEIA that
the authors recently co-founded.

15 Ivana Bartoletti, An Artificial Revolution: On Power, Politics and AI. Indigo Press, 2020.
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Abstract. In this tutorial, we provide insights on what law does, how it operates
and why it matters. We will more specifically dive into what law has to do with
computer science or AI. In the second part we will zoom in on a set of texts that are
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1 Introduction

1.1 Learning Objectives

• Provide a better understanding of the inner workings of the law.
• Identify nonsensical headlines about the law as such (similar to tech headlines)
• Offer a taste of EU legislation that co-defines the global marketplace for AI systems
(Brussels Effect: EU exporting rules and standards)

• Enable reasoning about the content of the law (the interpretation of legal conditions
when deciding on legal effect)

1.2 Law and Computing Architectures

When we ask a room of computer scientists what law is, we often receive answers about
constraints and about rules. This is, however, not what law is about [1].

In the end, law is about power relationships. The question should be askedwhether the
development of computing architectures is not also about power relationships. Indeed,
many design decisions frame the choices we get to make. The difference with law, is that
law is enacted by a democratic legislature by way of written legal norms, for everyone to
read and to contest, whereas computing systems are often created behind closed doors
and the relevant code is not accessible for those it affects. Another difference between
law and computing systems, is that the latter’s ‘impact’ is not limited to one jurisdiction.

Spelling out some of the differences between legal norms and computational rules,
does not yet tell us what law is, what it does and how it does this. These questions are
discussed in the next sections.
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2 How Law Works

2.1 What Law is (Not)

Law is too often portrayed as the things it is not. For example, it is often described as a
bag of rules. But law is different from a bag of rules, because there is a hierarchy between
those rules, which is important in case those rules conflict. It is a complex system of
rules and decisions.

Law is also not a set of orders, backed by threats, as is often claimed. Orders imply
an external perspective, whereas a viable and legitimate legal system requires that norms
have an internal aspect. Also, the law contains many types of rules. As such, there are
prescriptions (telling what one should do), prohibitions (telling what one is not allowed
to do) and permissions (telling what one is allowed but not prescribed). Other rules
explain when someone may be punished (criminal law) or when compensation has to be
paid (private & administrative law).

An important concept in understanding what law is and how it works, is the ‘rule
of law’ [2]. The rule of law is about checks and balances and countervailing powers. It
first of all means that the person enacting the rule is itself subject to the rule (nobody is
above the law), based on the fundamental legal principle that the law is applied equally
to equal cases. Rule of law also means that the institution that enacts the rule does not get
to decide on how to interpret and apply that rule, whichMontesquieu referred to as iudex
lex loquens (the court is the mouth of the law). This wasMontesquieu’s opposition to rex
lex loquens, where it was the king who decides the meaning of a rule. Iudex lex loquens
means that even though the judge speaks the law in the name of the king, that king could
no longer overrule the judge (who could not be fired by the king and thus became part
of an independent judiciary, thus preventing the arbitrary rule of an absolute king) [3].
The rule of law thus ensures the contestability of the application and interpretation of
enacted law.When we refer to the notion of Legal Protection by Design (LPbD) we refer
to the idea of building contestability into computing architectures.

2.2 What Law Does (Not)

Law does things with words. It creates ‘institutional facts’ by way of written (e.g. deed)
and spoken (e.g. contract) legal speech acts. It attributes ‘legal effect’ to events, actions,
states of affair when the conditions of the relevant legal norm are satisfied. A legal effect
is not caused or logically derived; it is attributed by the rules of positive law. Positive
law is the law that is in force in a specific jurisdiction.

For example, killing somebody may have the effect of punishability, not of punish-
ment. The latter depends on a court imposing punishment after a criminal offence has
been charged and a number of procedural rules have been met, notably that the fact has
been proven and found not to be justified (as in the case of self-defence) and found not to
be excused (as in the case of force majeure). As another example, agreeing on the sale of
a computer creates a legal obligation for the seller to provide property, and another legal
obligation for the buyer to pay a price, but it does not have the legal effect of a transfer
of property, which depends on another type of legal rule that is based on property law
instead of the law of obligations. Though this may seem cumbersome, it makes a lot of
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sense, because property rules concern the relationship between a person and everyone
else, whereas the law of obligations concerns relationships between two or more parties.
Property can be enforced against everybody (so everybody needs to know about it), a
contract can only be enforced against the party with which one concluded the contract
(no need for recording every contract in a public registry).

2.3 Legal Norms

Legal norms are rules with binding force within a specific jurisdiction. This binding
force is derived from the sources of law, which are respectively: international treaties,
supranational legislation, statutory law, case law, fundamental principles of law and
customary law. The lawmaker has to develop legal norms at the right level of abstraction,
such that they are neither over- nor underinclusive. A relevant illustration of this is the
definition of AI systems under the proposed Artificial Intelligence Act (AI Act) of the
European Union, defining the object of regulation as ‘AI systems’ (not ‘AI’ in general).
The AI Act does this in a pragmatic manner that is focused on protection against adverse
impact on safety, health and fundamental rights.

Next to legislation, case law is a crucial source of law that allows courts to decide the
‘ratio decidendi’, that is the reasoning that justifies the decision of the court and – due
to the principle of equality – requires that the legal effect will be decided similarly in
subsequent cases that are similar in a relevant way.

Rules in law are different from logic (IFTTT) or causation (IFTT). Rules in law
concern obligations and powers, they create a complex system of legitimate expecta-
tions – upheld by the state. Not all obligations are, however, legal obligations.We should
distinguish them from deolontogical (moral) or social (prevalent common sense) norms.
The difference between legal and other norms is their performative effect: legal norms
create legal effect.

Under the rule of law, legal normsmust be legitimate, lawful and instrumental. Legit-
imacy concerns justice. Lawfulness concerns legal certainty. Instrumentality concerns
the fact that law serves goals decided by the government. In a constitutional democracy
that is built on the rule of law, the government decides the goals based on democratic
participation. Key to the combination of the rule of law and democratic rule is that gov-
ernments must treat each and every citizen with equal respect and concern: this explains
‘one person one vote’, but it also explains that even a democratic majority must rule
such that each and every person is respected. That is why democracy does not stand for
tyranny of the majority.

2.4 Legal Rights

Legal rights are relational. They play out between legal subjects. As we have seen above,
some rights are erga omnes, meaning they can be exercised against everyone (e.g. prop-
erty). Other rights are ad personam, meaning they can only be exercised against specific
parties (e.g. contract). Some rights have a correlating duty (e.g. right to obtain payment
comes with an obligation to pay for the other party). Other rights have a correlating
restriction (e.g. right to privacy).
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Rights, which have effect between private parties, should also be distinguished from
competences of public authorities based on public law, such as the competence to enact
binding rules (constitution) or make decisions about individuals (administrative law).

2.5 Legal Reasoning

Legal reasoning results in the articulation of a syllogism: the application of major to
a minor leads to a conclusion [4]. The major is the legal norm, the minor concerns
the facts of the case, the conclusion concerns the attribution of legal effect. If certain
legal conditions (articulated in a legal norm) apply (depending on the facts of the case),
then the legal effect (articulated in the legal norm) is attributed. Note that the syllogism
is not the method to achieve a conclusion. The syllogism itself is the end-result that
justifies the attribution of legal effect. Legal reasoning is not just about finding the right
answer, but about the right justification of a legal decision. The available legal norms thus
constrain the decision space of the court, in order to rule out arbitrary decisions. As such,
legal reasoning is not defined by logic, though it involves logic. The decision requires
qualifying facts as relevant in light of a certain set of legal norms, while simultaneously
interpreting a set of legal norms in light of the facts.

3 Data Protection

3.1 GDPR

This section elaborates on the General Data Protection Regulation (GDPR) [5], a highly
relevant piece of legislation for the processing of personal data in the context of data-
driven AI systems. We will mostly quote the precise wording of the text of the GDPR,
because it is this text that has binding force, paraphrasing has no legal effort.

3.2 Objectives

According to art. 1, the GDPR has two objectives: (1) ‘the protection of fundamental
rights of natural persons’ (i.e. not legal persons, such as corporations) ‘with regard to
the processing of personal data’ and (2) ‘the free movement of personal data’ within the
internal market of the EU. By harmonizing the legal norms that apply to the processing
of personal data amongst the member states of the EU, the GDPR prevents obstacles
within the internal market (the same rules apply everywhere) and simultaneously sets
a threshold of legal protection. Note that the GDPR targets protection of fundamental
rights andmentions specifically the right to data protection, without however mentioning
privacy. It is a misunderstanding that the GDPR is focused on privacy. A whole range
of other fundamental rights are at stake, notably non-discrimination and freedom of
expression, right to a fair trial and the presumption of innocence.
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3.3 The Object of Regulation

The GDPR regulates the processing of personal data. Personal data is understood as
‘any information’ (whether audio, written, video or under any other conceivable form)
‘relating to an identified or identifiable individual (the ‘data subject’)’. Identifiability
can be either direct or indirect. The latter significantly broadens the scope of the GDPR,
because this means that even without an identified data subject, data that can be linked
to an identifier constitutes personal data.

Processing under the GDPR is much broader than what is understood as the ‘pro-
cessing’ stage in computer science. It is defined as ‘any operation or set of operations
performed on personal data, whether or not by automated means’. Any operation means
any operation, including for example the collection, consultation, storage or destruction
of data. The GDPR, much like the proposed AI act, thus starts with a broad scope, to
offer broad protection.

3.4 Addressees: Controller and Processor

Accountability and liability for the processing of personal data is attributed to what
the GDPR calls the data controller. This is not necessarily the entity carrying out the
processing. The controller is the party that (co-)determines the purposes and means
of the processing of personal data. Note that an entity without any technical expertise
can nevertheless be a controller if it determines the purpose (while e.g. outsourcing the
means).

The GDPR also defines the role of the so-called data processor, which is the party
processing personal data ‘on behalf of the controller’. This implies that as soon as a
processor processes personal data for an own purpose, they become a controller with
regard to that processing.

3.5 Principles

The GDPR in article 5 sets out the principles applicable to the processing. The use of the
term ‘principles’ does not imply we are dealing with niceties or with ethical guidelines.
The principles are rules that have to be followed. Article 5 prescribes that personal data
shall be:

1. processed lawfully, fairly and in a transparent manner in relation to the data subject
(‘lawfulness, fairness and transparency’);

Lawfulness and fairness refer to the need to secure a legal basis (we will return
to this when discussing art. 6) and the need to ensure the quality of the processing
in light of potential infringements of fundamental rights.

2. collected for specified, explicit and legitimate purposes and not further processed in
a manner that is incompatible with those purposes; further processing for archiving
purposes in the public interest, scientific or historical research purposes or statistical
purposes shall […] not be considered to be incompatible with the initial purposes
(‘purpose limitation’);
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This is about honouring the legitimate expectations of data subjects. The purpose
should be explicit and clearly defined, meaning that a purpose abstractly defined as
‘collection of data for the creation of a dataset’ will not be sufficient.

Note that under specific circumstances (for example in the context of scien-
tific research) the GDPR allows for some flexibility when specifying the purpose,
requiring that a more concrete finality crystallises in the course of the research.

3. adequate, relevant and limited to what is necessary in relation to the purposes for
which they are processed (‘data minimisation’);

This principle stipulates that the controller must consider various alterna-
tives before engaging in the processing of personal data. Data hoarding is not
allowed. Under the previous legislation the threshold was less stringent, requiring
appropriateness instead of necessity.

To the extent that it is difficult to establish what data will be necessary, the
concrete purpose of processing may be to determine what data is needed. This may
be especially relevant in a research context. Even in that case, however, the necessity
cannot be taken for granted. For example, when patient treatment data is reused for
scientific research, it may be the case that such data is incorrect and incomplete,
because doctors may routinely change the diagnosis to ensure that the treatment is
ensured. This raises questions about whether such data can possibly be necessary,
noting it will easily result in incorrect output.

4. accurate and, where necessary, kept up to date; every reasonable step must be taken
to ensure that personal data that are inaccurate, having regard to the purposes for
which they are processed, are erased or rectified without delay (‘accuracy’);

This principle is very relevant for machine learning, where for example much
behavioural data is highly likely to be irrelevant, as human behaviour is forever in
flux (notably anticipating being targeted based on behavioural targeting, known as
the so-called Goodhart effect in economics).

5. kept in a form which permits identification of data subjects for no longer than is
necessary for the purposes for which the personal data are processed; personal data
may be stored for longer periods insofar as the personal data will be processed
solely for archiving purposes in the public interest, scientific or historical research
purposes or statistical purposes […] subject to implementation of the appropriate
technical and organisational measures […] in order to safeguard the rights and
freedoms of the data subject (‘storage limitation’);

Note that in the context of scientific research, data will often have to be stored
for a long time in order to allow for e.g. reproducibility testing. This is considered
a valid reason for storage (noting that storage is defined as processing of personal
data).

As to deletion and so-called subject access requests (SARs, based on GDPR
transparency requirements), some companies are selling software systems under the
heading of GDPR compliance tools. These tools are capable of detecting personal
data in both structured and unstructured datasets, in order to delete or access them.
These are obviously very invasive tools with a high potential formisuse. This demon-
strates that compliance tools should not take singular legal rules out of context, as
such an invasive tool easily presents likely high risks for fundamental rights and
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freedoms of natural persons (something data controllers need to check for, avoid if
possible or mitigate, based on art. 35 GDPR).

6. processed in a manner that ensures appropriate security of the personal data, includ-
ing protection against unauthorised or unlawful processing and against accidental
loss, destruction or damage, using appropriate technical or organisational measures
(‘integrity and confidentiality’).

This concerns robust security requirements, that result in liability in case of a data
breach (see art. 33 GDPR), more details about appropriate technical and organizational
measures can be found in art. 32 GDPR).

3.6 Legal Basis

In order for any processing to be lawful, the processing must be based on one of six legal
grounds. Though those not familiar with the GDPR often think that processing is only
allowed based on consent, this is not at all the case. Actually, consent is a weak legal
ground, for instance because it can be withdrawn any time.

1. the data subject has given consent to the processing of his or her personal data for
one or more specific purposes;

Consent can only be provided for an explicit, specific and legitimate purpose.
This links consent to purpose limitation, but also to necessity (aswe have seen above).
Even in the case of consent, the processing is only allowed when it is necessary for
the purpose as explicitly specified and only if that purpose is legitimate.

Also note that consent may also be required under the E-PrivacyDirective, which
regulates confidentiality in the case of telecommunication. In the latter case the
consent requirement does not depend on whether or not data is personal data.

2. processing is necessary for the performance of a contract to which the data subject
is party or in order to take steps at the request of the data subject prior to entering
into a contract;

Contract should not be confused with consent. Note that as soon as the contract
has been performed, the legal basis may be exhausted.

3. processing is necessary for compliance with a legal obligation to which the controller
is subject;

Examples of such legal obligations are tax law and the GDPR itself (e.g. to
comply with transparency requirements).

4. processing is necessary in order to protect the vital interests of the data subject or
of another natural person;

This means that you will for example not need to ask for consent to process data
on the blood type of someone who is bleeding to death.

5. processing is necessary for the performance of a task carried out in the public interest
or in the exercise of official authority vested in the controller;

This normally concerns tasks carried out by public administration, but it can be
argued that scientific research is processing in the public interest. The GDPR spells
out that private companies can also do scientific research, provided that they adhere
to the relevant methodological standards, which implies that research behind closed
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doors (due to intellectual property rights or trade secrets) may not count as research
in the public interest.

6. processing is necessary for the purposes of the legitimate interests pursued by the
controller or by a third party, except where such interests are overridden by the inter-
ests or fundamental rights and freedoms of the data subject which require protection
of personal data, in particular where the data subject is a child.

The legitimate interest is one of the most contentious grounds for the processing
of personal data. Important is that the legitimate interest rhymes with a right to
object from the data subject, which has to be explicitly communicated to the data
subject, separately from any other information. In case of objection the processing
can only continue if the controller demonstrates compelling legitimate grounds for
the processing that override the interests, rights and freedoms of the data subject or
for the establishment, exercise or defense of legal claims. In case of processing for
direct marketing purposes, the objection by the subject is final and must be complied
with.

3.7 Data Protection Impact Assessment

Whenever intended processing, according to an initial assessment, is ‘likely to result
in a high risk for fundamental rights and freedoms of natural persons’ (note that this is
much broader than a risk to ‘privacy’, and includes all rights, such as for example the
right to non-discrimination or the right to a fair trial), the controller has to perform a
Data Processing Impact Assessment (DPIA). As a likely high risk are considered in any
case:

1. systematic and extensive evaluation of personal aspects relating to natural persons
which is based on automated processing, including profiling, and on which decisions
are based that produce legal effects concerning the natural person or similarly
significantly affect the natural person;

For example, automated decisions on insurance premiums or eligibility, based on a
web application or similar decision of student grants.

2. processing on a large scale of special categories of data referred to in Article 9(1), or
of personal data relating to criminal convictions and offences referred to in Article
10; or

This concerns the processing of sensitive data, such as health data, data on ethnicity,
political views, sexual preferences, etc.

3. a systematic monitoring of a publicly accessible area on a large scale.

For example in a shopping mall, or football stadion.
A data protection impact assessment contains at least:



Law for Computer Scientists 269

1. a systematic description of the envisaged processing operations and the purposes of
the processing, including, where applicable, the legitimate interest pursued by the
controller;

2. an assessment of the necessity and proportionality of the processing operations in
relation to the purposes;

3. an assessment of the risks to the rights and freedoms of data subjects referred to in
paragraph 1; and

4. the measures envisaged to address the risks, including safeguards, security measures
and mechanisms to ensure the protection of personal data and to demonstrate com-
pliance with this Regulation taking into account the rights and legitimate interests
of data subjects and other persons concerned.

Themeasures mentioned in the last point should aim to prevent, or at least to mitigate
the potential impact of the processing on the fundamental rights and freedoms of the data
subjects. The processing will also need to be followed-up. The controller must verify
whether the described measures are effectively deployed in practice.

In a sense, the DPIA is similar to the impact assessment under the AI Act, the so-
called conformity assessment that includes a dedicated assessment of risk to fundamental
rights, brought about by high risk AI systems, both when used for their intended purpose
and when used for reasonably foreseeable other purposes. On top of that, the AIA
requires that providers of high risk AI systems make sure that claims on functionality
are accurate, which only regards usage for their intended purpose. Note that the AI
Act’s impact assessment is not restricted the processing of personal data and not only
concerns fundamental rights infringements, but also safety and health risks (think of
robotics, Internet of Things).

3.8 Data Protection by Design and by Default

Article 25 prescribes data protection by design and by default [6]. The first paragraph
describes data protection by design:

Taking into account the state of the art, the cost of implementation and the nature,
scope, context and purposes of processing as well as the risks of varying likelihood
and severity for rights and freedoms of natural persons posed by the processing,
the controller shall, both at the time of the determination of the means for pro-
cessing and at the time of the processing itself, implement appropriate technical
and organisational measures, such as pseudonymization,

An example of technical and organizational measures would be Chinese walls that
keep data separate from the relevant identifier (pseudonymization). Keep in mind that
pseudonymised data, as defined by the GDPR, are personal data and not considered
anonymised (as they can reasonably likely be linked with the identifiers).

Such technical and organization measures should be

(…) designed to implement data-protection principles, such as data minimisation,
in an effective manner and to integrate the necessary safeguards into the processing
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in order to meet the requirements of this Regulation and protect the rights of data
subjects.

The next paragraph addresses data protection by default:

The controller shall implement appropriate technical and organisational measures
for ensuring that, by default, only personal data which are necessary for each
specific purpose of the processing are processed.

This highlights again that it is the purpose that determines what is necessary data, in
terms of type, but also in terms of volume and precision:

That obligation applies to the amount of personal data collected, the extent of
their processing, the period of their storage and their accessibility.

Polymorphous encryption could be such a technique addressing the accessibility:

In particular, such measures shall ensure that by default personal data are not
made accessible without the individual’s intervention to an indefinite number of
natural persons.

4 Artificial Intelligence Act

4.1 The Proposal

As opposed to the GDPR, the AI Act is not yet a binding legal text but currently a
proposal by theEuropeanCommission. It is thus still subject to change, due to negotiation
between the Council and the Parliament of the EU; we expect the final version to come
into force within the coming two or three years. The AI Act is part of administrative law,
which is focused on the public interest and enforced by oversight bodies competent to
conduct investigations and to impose administrative fines. Most of the responsibilities
are attributed to the providers of high-risk AI systems. TheAct does not settle private law
liability issues (an update of the liability framework is expected in 2022). Neither does
the AI Act attribute new individual rights to natural persons. The GDPR does impose
private law liability and, as indicated above, it does provide specified individual rights
to natural persons.

4.2 Defining AI Systems

As mentioned before, the AI Act is not concerned with the metaphysical discussion on
what is or what isn’t considered ‘Artificial Intelligence’. The text adopts a pragmatic
approach, listing out in its annex what falls within the scope of the regulation.

The scope as laid out is remarkably broad, just like is the case with the GDPR,
offering by default a broad protection. The ‘Annex I’ lists out three types of approaches
that must apply for software to qualify as an ‘AI system’:

(a) Machine learning approaches, including supervised, unsupervised and reinforce-
ment learning, using a wide variety of methods including deep learnin;
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(b) Logic- and knowledge-based approaches, including knowledge representation,
inductive (logic) programming, knowledge bases, inference and deductive engines,
(symbolic) reasoning and expert system;

This category in particular highlights the broad scope of the regulation, where it
could be argued that for example an excel sheet when used for taking certain decisions
(e.g. on social benefits), may be qualified as an AI system, provided the other elements
of the definition apply (see below). In one of the draft versions of the Council (that
co-determines the final version of the Regulation), an attempt was made to exclude what
is called ‘traditional software’ from the application of the AI Act. However, (b) is left
without changes, so in the end it would still be up to the Court of Justice of the European
Union to decide what kind of systems falls within the scope of the Act.

(c) Statistical approaches, Bayesian estimation, search and optimization methods.

For a software system to fall within the scope of theAct, it does not suffice to establish
that it deploys one of the above approaches. Art. 3(1) stipulates:

‘artificial intelligence system’ (AI system) means software that is developed with
one or more of the techniques and approaches listed in Annex I and can, for a given
set of human-defined objectives, generate outputs such as content, predictions,
recommendations, or decisions influencing the environments they interact with;

This implies three legal conditions for the legal effect of ‘qualifying as an AI system’
to apply: (1) the system consists of software, whether or not embedded, (2) its objectives
have been defined by human beings and (3) it generates specific kinds of output that
influence the environments they interact with. The latter clarifies the focus on impact,
the second point highlights that providers are held accountable for the way the system
targets the intended purpose (and its reasonably foreseeable misuse). The more general
the objectives of an AI system, the larger the scope of the impact assessment, as its
reasonably foreseeable misuse will also expand.

4.3 Architecture of the Act

The Act is applicable to ‘AI systems’ as broadly defined, and more specifically to (1)
prohibited ‘AI practices’, which are more narrowly defined, (2) high risk systems (see
below) and (3) four additional types of systems that involve dedicated transparency
requirements.

The main addressees of the act are the providers (and distributors and importers):
whoever is making the system available on the market or putting it into service (under
their own name or brand). This is the triggering event for the applicability of the Act.
Note that making available on the market only qualifies as such if done ‘in the course
of a commercial activity’, meaning that posting code on github or publishing prototypes
outside a commercial context does not make developers or computer scientists liable as
providers.
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Other addressees of the act are the so-called users. They are not to be confused with
end-users. The user is the party putting into service an AI system, deploying it under
their own authority. Users would for example be governments, web shops, etc.

4.4 Qualification of AI Systems

The AI Act regulates mostly what are considered ‘high risk’ systems. Depending on
how they are used, such systems may also fall within the scope of one of the prohibited
practices, which are however very narrowly defined. High risk systems are summed up in
Annexes II (mostly safety and health risks) and III (mostly fundamental rights risks). The
European Commission can update the listing if new systems with similar risks emerge.

When an AI system qualifies as a high risk system, a set of requirements is triggered
(Title III, chapters 2 and 3). These requirements form the core of the Act. They entail
risk management, quality management, data and data governance requirements, human
oversight, technical documentation, record keeping, transparency for users (note that
this not about end-users), accuracy, robustness and cybersecurity requirements. The
violation of these requirements can lead to fines up to 30 million euros, or 6% of the
global turnover.

Risk Management. In case of high riskAI systems, a RiskManagement System (RMS)
must be set up for iterant, continuous impact assessment during the entire life cycle of
the system. This includes the identification of known and foreseeable risks concerning
use for both the intended purpose as well as reasonably foreseeable misuse (defined
as use for other purposes). The risk management includes testing against predefined
metrics and post-market monitoring (including some requirements regarding automated
logging). The RMS also includes suitable measures for the prevention and mitigation of
risks, taking into account post-market interactions with other systems. Finally, providers
must provide clear instructions to users (again not to be confused with end-users).

Data Governance. The Act prescribes that training, validation and test data are subject
to a series of governance andmanagement practices that concern relevant design choices,
data preparation, formulation of relevant assumptions and notably a prior assessment of
the ‘availability, quantity and suitability of data sets that are needed’. Potential bias, gaps
and shortcomings must be addressed. This kind of assessment is core to the method-
ological integrity of data-driven AI systems; as such they should be welcomed by the AI
community, since today many applications are experimental crapware built with low-
hanging fruit. We may therefor expect higher quality next to the risk reduction that is
core to the Act.

Human Oversight. This is not to be confused with the right to an explanation and the
right not to be subject to automated decisions of the GDPR. The AI Act stipulates that
the development of high risk AI systems is such that meaningful human oversight at the
site of the user is built into the system or guaranteed by way of instructions to the user.
It should allow the prevention or mitigation of risks to health, safety and fundamental
rights, both when used for the intended purposes and in case of reasonably foresee-
able other purposes. Those tasked with human oversight must enable understanding of
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both the capacities and the limitations of the system, resisting automation bias, proper
interpretation of the behaviour and decisions of the system, and it must enable those
tasked with human oversight to disregard, override or even interrupt or stop the system
if needed.

Accuracy. High risk AI systems should be designed in a way that ensures persis-
tent performance based on relevant accuracy metrics, resilience against errors, faults
and inconsistencies. The design should also ensure robustness through for example
redundancy solutions. It should prevent feedback loops (e.g. reinforcing bias, but also
echo-chambers) and it should provide resilience against manipulation (e.g. against data
poisoning and adversarial examples).

Quality Management Systems. This concerns a documented series of integrated tech-
nical and organizational measures to be taken by the provider to ensure compliance with
the Act.

4.5 Final Note on Actionable Protection in the AI Act

To ensure the practical and effective protection the Act aims to offer, we would argue
that it should include the following individual and collective rights:

A. The right not to be subject to prohibited AI practices
B. The right to object to decisions made by high-risk AI systems
C. The right to file an injunction in a court of law, and to mandate that right to an NGO

in case one is subjected to prohibited AI practices or to decisions made by high risk
AI systems

D. The right of dedicated NGO’s to file an injunction in their own name with respect
to the rights under A and B.

We assume that the upcoming liability framework will provide some forms of strict
liability. This will most probably take the form of an update of e.g. the product liability
directive [7], making sure that the relevant EU legislation applies to AI systems.

Recommendations for Further Readings (See Also the References)
Hildebrandt, M.: Law for Computer Scientists and Other Folk. Oxford University
Press, Oxford (2020), available in Open Access at OUP: https://academic.oup.com/
book/33735.

GDPR: Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation), https://eur-lex.europa.eu/eli/reg/2016/679/oj.

AI Act (proposal): Proposal for a Regulation of the European Parliament and of
the Council laying down harmonised rules on artificial intelligence (Artificial Intel-
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Abstract. To have ethical AI two questions need to be answered: i)
what is the ethical impact that an AI system can have, and, ii) what
does it mean for an AI system to behave ethically. The lack of answers
to both of these questions hinder the identification of what are the values
or principles that we want upheld by AI and for AI. Identifying these
principles is not enough, we also want to define them so that they can be
operational, or at least understand what operational means here. There
is a gap between moral philosophy and ethically behaving AI. The tuto-
rial contributes towards closing this gap, by motivating researchers to
interpret an abstract principle from moral philosophy into an algorithmic
property that can be formally specified and measured or computationally
implemented. The tutorial uses recent articles in AI ethics that attempt
to define and identify pertinent ethical principles, as well as ethically
motivated desirable algorithmic properties.

1 About This Tutorial

This tutorial is primarily intended for students of computer science and artificial
intelligence (AI) who are interested in how to establish what ethical impact the
research and products they develop have on individuals and society. The tutorial
is also aimed for graduate students interested in doing research in AI ethics.

Intended Learning Outcomes

– Knowledge
– Familiarity with ethical principles of interest to AI problems.
– Familiarity with the definitions and main areas problems studied in:

Accountability, Transparency, Explainability, Interpretability, Fairness,
and Privacy.

– Skills
– Ability to discern between ethically motivated computation properties of

an AI system and the extent to which an AI system satisfies an ethical
principle

– Ability to appraise the ethical aspects of AI problems.
– Familiarity with the some of the core literature in the computer science

aspects of the AI Ethics research field
c© Springer Nature Switzerland AG 2023
M. Chetouani et al. (Eds.): ACAI 2021, LNAI 13500, pp. 275–303, 2023.
https://doi.org/10.1007/978-3-031-24349-3_15
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2 Introduction

Artificial intelligence ethics is a sub-field of artificial intelligence (AI). The sub-
field emerged in response to how computation and artificial intelligence are
researched, developed, deployed, and used today in different societies. It is con-
cerned with ensuring a non-negative ethical impact on people and societies while
researching, developing, deploying and using artificial intelligence. The focus on
the ethical impact of AI is motivated by the way AI and computation are used
today changed, in contrast to how they were used up to one decade ago.

Both computation in general and artificial intelligence specifically, since their
inception, have been used to automate tasks that require intelligence [16]. It is
difficult to precisely discern between AI and ‘just’ computation. Today, tasks
that require intelligence are automated in separation. For example, one algo-
rithm is used for learning, another for scheduling tasks. This is not the aspect
of computation that has changed a lot – what has changed is who develops and
uses computation and artificial intelligence today.

Due to the development of computation technology and the wast connectiv-
ity enabled by the Internet, computation is now available to all, for all kinds of
purposes. This is a positive development, but one that disables past methods of
controlling for ethical impact of computation. For example, bias in the informa-
tion that a decision making computer program uses could be controlled, against
trade offs, by adequate training of knowledge engineers1 and users [69]. This
was possible in the past because it was known who the knowledge engineers and
users were. Furthermore, if anything, ethical concerns regarding computation
are exasperated because computation is used to supplement or replace humans
in tasks where ethical considerations are necessary. Examples include medical
decisions and digital first government services.

Ethics or moral philosophy is a sub-field of philosophy concerned with the
development of concepts of right and wrong behavior. Although artificial intelli-
gence is sometimes defined as “the field that studies the synthesis and analysis of
computational agents that act intelligently.” [63], computer programs do not, as
of today, have agency in the standard philosophical sense [3]. Therefore it is per-
haps wrong to consider the moral2 behaviour of artificial intelligence. Instead we
can consider the extent to which the research, development, deployment and use
of artificial intelligence aligns with the moral values that a person, or a society,
want to uphold.

Ethical values can also be defined in relation to ethical principles. Ethical
principles are part of a normative theory that justifies or defends moral rules
and/or moral decisions and reflect objective positions of right and wrong or what
“ought” to be [38]. Most common ethical principles that are considered in moral
philosophy are: beneficence, non-maleficence, fidelity, autonomy, freedom, and
justice.

1 Knowledge engineers are experts who identify information and represented into data
that can be used by computers.

2 Moral and ethical are used as synonyms throughout this text.
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In AI ethics however, one does not measure to which extent does an algo-
rithm’s behaviour or impact of use align with moral principles. This is not sur-
prising. On one hand, it is fairly clear that satisfying a moral principle is not a
yes-or-no thing. For example we recognise that one behaviour brings about more
beneficence to the world than another, while both bringing beneficence. On the
other hand, the quantification of the level of compliance with a moral principle
is very hard. Instead, in AI ethics one defines properties of algorithms that can
be ascertained. These include: algorithmic accountability, fairness, transparency,
explainability, interpretability and privacy. One also considers the properties of
people who play a significant role in the ethical impact of AI. These properties
include responsibility and trustworthiness.

Despite a direct measurement of satisfaction of a moral principle being out of
reach, it is important to keep moral principles connected with the properties of
algorithms. This means, keeping track of which algorithmic property advances
or hinders which principles. Without this connection, we risk considering algo-
rithmic properties that are easy to satisfy but do not in fact promote ethical
values, or properties defined because they sound or appear ethical, while in fact
not promoting ethical values. Both of these such practices effectively amounts to
ethics washing [39,78]. What is particularly challenging to accomplish are well
defined ethical algorithmic properties. For example, number of iterations of a
loop, or an amount of memory an algorithm uses are well defined algorithmic
properties. Accountability, transparency and fairness in particular are not well
defined, neither as algorithmic properties nor as ethical principles.

[40] identify five core principles for ethical AI: beneficence, non-maleficence,
autonomy, justice and explicability. The first four occur in bioethics, while the
fifth they define as a moral principle that explicitly applies to AI. We here will
consider these five principles and how they are impacted by the six algorithmic
properties commonly considered desirable in AI ethics: algorithmic accountabil-
ity, fairness, transparency, explainability, interpretability and privacy.

3 Ethical Principles

We begin by defining and discussing the five moral principles that [40] identify
the most relevant to AI. It is important to note that these principles, with the
exception of the one that [40] themselves define, have long be discussed in moral
philosophy. As such, there exists not one simple, exact, and uniformly adopted
definition of beneficence, non-maleficence, autonomy, or justice.

Moral principles are the “product” or “tool” of normative ethics. Norma-
tive ethics is a branch of moral philosophy that is concerned with prescribing
ways in which moral behaviour or state can be achieved [38]. While numerous
moral principles have been proposed in normative ethics, some, like beneficence,
non-maleficence, autonomy and justice, have been included in short-lists more
frequently than others.

Each of the moral principles that are of concern to AI, and to which an AI
system should be aligned, require a thorough consideration. To a large extent
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the principles can be made more specific in the context of AI, in general, and
particular methods and applications of an AI system, in particular. This is done,
for example, for the principle of justice [12], but not to the same extent with the
others.

Beneficence. The idea that our actions and behaviour should benefit not only
ourselves but also others, perhaps even at a cost to ourselves, is the essence of
morality. In ethical theories the concept of beneficence effectively includes “all
norms, dispositions, and actions with the goal of benefiting or promoting the
good of other persons.” [14].

Aligning the research, development, deployment, and use of AI with the moral
principle of beneficence, clearly can be interpreted in many different ways. AI
systems always are developed to further the interest of someone. Is that sufficient
to declare that system aligned with the principle of beneficence? Numerous, so
called “AI for good” initiatives3 4 5 6 seek precisely the alignment with benefi-
cence.

In the simplest and most broad sense, alignment with beneficence entails the
obligation to engage in AI work that benefits humanity as a whole or to put it
another way “to improve people’s lives”. In a more precise interpretation, the
evaluation of the alignment of an AI system with beneficence necessarily involves
the stakeholders affected by, or involved in, that AI system’s development and
operation. This, in turn is also not a trivial task [13].

It is perhaps most essential that the benefits of an AI systems are made
explicit particularly when considering the possible harms that system can, or
does incur.

Non-maleficence. Another core concept of morality is the principle of non-
maleficence, or avoiding to incur harm. Non-maleficence is a cornerstone of med-
ical bioethics, being enshrined by the The Hippocratic Oath’s maxim of “first do
no harm”. In many ways, when we think about ethical AI we consider the same
aim of an AI that does not do harm. This is perhaps also motivated by the first
Asimov law of robotics “A robot may not injure a human being or, through
inaction, allow a human being to come to harm. Second Law” [3].

In moral philosophy the principle of non-maleficence is one of the prima facie
duties championed by [80]. He makes an effort to clearly distinguish that benef-
icence and non-maleficence are two separate duties, and puts non-maleficence
as a duty that should be followed before all others [70]. The concept of harm is
what introduces ambiguity when estimating to which extent has the principle of
non-maleficence been uphold. To cause death is clearly to cause harm, but is a
one-off verbal insult a harm? The line is virtually impossible to draw and it is
very context dependent. A further point of “built-in imprecision” is brought by
the realisation that harm can also be subjective: what is perceived as harm by
one person is not perceived as harm by another.
3 https://aiforgood.itu.int/.
4 https://ai4good.org/.
5 https://www.microsoft.com/en-us/ai/ai-for-good.
6 https://ai.google/social-good/.

https://aiforgood.itu.int/
https://ai4good.org/
https://www.microsoft.com/en-us/ai/ai-for-good
https://ai.google/social-good/
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The deliberate development of AI systems that cause harm or break laws is
the concern of responsible and legal AI [37]. AI ethics is concerned with unin-
tentional harm. When considering autonomous vehicles, assisting devices, and
robots it is clear to see that those can cause bodily harm. Psychological harms
and other non-bodily harms, in contrast, are much more difficult to establish or
even agree upon. As with beneficence, to evaluate what is the potential of an
AI system to cause harm entails identifying the stakeholders affected by the AI
system in question.

It is perhaps important to emphasise that both beneficence and non-
maleficence extend not only to people but to animal welfare and overall sus-
tainability. Sustainability is described as “development that meets the needs of
the present without compromising the ability of future generations to meet their
own needs.” [20]. AI systems can have both a direct and indirect impact on
sustainability [75].

Justice. The moral principle of justice embodies the duty to be concerned with
how people are treated in the interest of treating individuals and groups justly
[53]. Rawls [64] attempts to conceptualise justice by developing two principles:
the principle of liberty and the principle of equality. The principle of liberty
advances the idea that everyone has an equal right to basic liberties. The laws
and liberties that Rawls lists as basic are not necessarily what one wants to
always consider as such [50], but most constitutions do define what is considered
to be basic human rights, mostly following the UN7. The principle of equality
is then given in two sub-principles, one requiring fair equality of opportunity
and the other permitting only those inequalities that are incurred to benefit the
worst-of individuals in society.

Basl et al. [12] give a thorough consideration of the moral principle of justice,
in its many values and forms, when applied to AI directly:

“The foundational value that underlies justice is the equal worth and polit-
ical standing of people. The domain of justice concerns how to organize
social, political, economic, and other systems and structures in accordance
with these values. A law, institution, process, or algorithm is unjust when
it fails to embody these values. So, the most general principle of justice is
that all people should be equally respected and valued in social, economic,
and political systems and processes”. [12]

Basl et al. [12] also are careful to distinguish between fairness and justice,
although recognising that the two terms are used interchangeably in AI ethics:

“In institutional contexts, ‘fairness’ is often used to refer to treatment in
a particular context, whereas ‘justice’ refers to the institutional features
that structure the context – a process (e.g., lending or criminal justice)
can be unfair because the system is unjust (e.g., organized in a way that
advantages some groups and disadvantages others).” [12]

7 https://www.un.org/en/global-issues/human-rights.

https://www.un.org/en/global-issues/human-rights
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Basl et al. [12] argue that set of more specific justice-oriented principles is
needed, and gives the examples in Table 18.

Table 1. Justice oriented principles

Procedural Distributive Recognition

Non-discrimination
A system or
decision-making process
should not be biased
against certain groups

Equality of Access

Everyone should be
provided the
same/similar access to
benefits and services

Same Treatment
Everyone should be
treated the same
regardless of the groups
to which they belong

Equality of Opportunity

Everyone should have
equal/similar chanced of
success (e.g. educational,
social, or economic)

Benefit Sharing

Everyone who contributes
to a collective endeavor
should share in its
benefits

Representational Accu-
racy

People or groups of
people should not be
mischaracterized

Equality of Participation

People should be
similarly empowered in
social and political
decision-making contexts
and processes

Decent Outcome
Everyone should have
good enough (or
minimally decent) social
and economic outcomes

Inclusion
People or groups of
people (and their
interests) should not be
marginalized or excluded

Just Deserts
People’s social and
economic outcomes
should reflect their efforts
and contributions

Prioritizing Worst-Off

Practices and policies
should prioritize those
who are most vulnerable,
dependent, or in need

Reparative Justice

Past wrongful harms
should be made up for
and addressed so as not
to create further harms or
future disadvantages

It is clear from the example specifications of the justice principle in Table 1
that the ethical principles do overlap and it is often not possible to talk about one
without talking about another. Equality of participation, for example, considers
the empowerment of people in decision-making contexts. The idea that a person
should have the power to make their own decisions is related to the principle we
consider next, that of autonomy.

Autonomy. Floridi et al. [40] express a concern that “artificial autonomy may
undermine the flourishing of human autonomy”. The concept of autonomy is
applied to both humans and machines and it both cases it means “self gover-
nance”, however the expression of that self governance is necessarily defined by
the abilities of the machine in question. Before we discuss the moral principle of
autonomy, let us briefly outline autonomy of systems.

8 Verbatim https://www.atlanticcouncil.org/in-depth-research-reports/report/specify
ing-normative-content/#table-3.

https://www.atlanticcouncil.org/in-depth-research-reports/report/specifying-normative-content/#table-3
https://www.atlanticcouncil.org/in-depth-research-reports/report/specifying-normative-content/#table-3
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When applied to machines (software and devices alike) the term autonomous
refers to their capacity for independent operation without direct supervision or
control by a human operator. Typically, with respect to their ability for inde-
pendent operation, machines are divided into four categories: controlled, super-
vised, automatic and autonomous. Controlled machines have no ability of inde-
pendent operation. Supervised machines can do some tasks independently but
require regular intervention. For example, a washing machine, or a calculator
need input from people and people to process the outcomes of their respec-
tive operations. Automatic machines can operate fully without supervision or
intervention if placed in a specific working environment in which all interactions
with the machine are fully predicted. Autonomous machines can operate in some
unpredictable context, react to the environment, and learn from it to improve
their executions of tasks. With the autonomous machines a separate hierarchy
exists as to how much abilities of autonomy the machine has [60]. The lines are
not easy to draw, but it is well understood that the machine autonomy is far
bellow the capabilities for self governance of humans and complex animals.

Autonomy as a moral principle expresses protection for the ability of one to
be their own person and “live one’s life according to reasons and motives that are
taken as one’s own and not the product of manipulative or distorting external
forces, to be in this way independent.” [30]. Autonomy closely relates to the
moral principle of freedom and we need to contrast them to better understand
them both. Freedom concerns the ability of one individual to act without external
or internal constraints and with sufficient resources and power to make one’s
desires effective [30]. The moral principle of freedom is to strive to ensure those
abilities. Autonomy, in contrast, concerns the independence and authenticity of
the desires that motivate the individual’s actions.

The concern that artificial autonomy may undermine the autonomy of people
and not their freedoms comes from numerous observations that we are influenced
by technology, AI supported or otherwise [21,22]. AI systems can’t, as of present,
constrain us directly, which is perhaps why the freedom moral principle takes a
backseat. We directly communicate with computer programs, not only acquiring
information from them, but also supplying them with information. On one hand,
the interfaces through which this interaction is executed can be deliberately
designed to change our choices [58]. On the other hand, our behaviour and
personality traits can be modeled with machine learning methods [46], leading
to opportunities for taking advantage of people’s vulnerabilities.

The principle of autonomy is perhaps least directly visible in AI ethics com-
pared to those of justice and non-maleficence. However, issues of unethical impact
that do violate this principle are called under many different names and are fre-
quently brought forward in context of discussing the AI-boosted-power of social
media9.

Explicability is the moral principle that is particular for AI systems in contrast
to the other four that are used in guiding human moral behaviour as well. Floridi
et al. [40] define explicability, as “incorporating both the epistemological sense
9 https://medium.com/@francois.chollet/what-worries-me-about-ai-ed9df072b704.

https://medium.com/@francois.chollet/what-worries-me-about-ai-ed9df072b704
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of intelligibility (as an answer to the question ‘how does it work?’) and in the
ethical sense of accountability (as an answer to the question: ‘who is responsible
for the way it works?’).”

We (people) share the same means by which we perceive the world – our
bodies. Despite variations in bodies and environments, we each understand on a
deep intuitive level what it means to be human. This shared experience brings
about an understanding of the motivations and constraints that might govern
one towards particular choices, abilities and acts. Furthermore, we have trained
our entire lives how to be in a society of people. We use all these experiences
to find out information that is meaningful to us. We also use these experiences
to build systems of accountability that identify those that in a given situation
can change a decision on one hand, and incentivize decisions-makers towards a
particular behaviour, on the other hand.

We do not necessarily understand how a machine works. This is true today
for virtually all complex machinery, including that which does not use artifi-
cial intelligence, like for example a microwave oven. AI, however, is used in
automated decision-making and decision-aiding processes. The nature of this
application drives the importance of how the decision-making system works. To
use a microwave, as long as it has been certified as safe, you do not need to
understand how it work. You only need to remember one rule: not to use metal
in it. Understanding how a decision is reached and for which reasons directly
impacts our abilities and available options in the larger context. If I know why I
have been refused an opportunity, I can work on those reasons that have caused
the refusal and ensure acceptance the next time.

The principle of explicability seeks to also ensure that a person affected by
a decision or action made by an AI system, is somewhat empowered to influ-
ence that decision or action by ensuring that they can identify a human who is
responsible for the way that AI system works.

Article 22 of the EU GDPR [61] can be seen as working towards protecting
this principle of explicability, but does not directly refer to it as such:

“The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal
effects concerning him or her or similarly significantly affects him or her.”

Accountability occurs not only as an ethical principle in AI but also directly
as a property of an algorithm. Next we will discuss this and other algorithmic
“properties” considered in AI ethics, what they mean and how each can advance
the ethical principles we just outlined.

4 Algorithmic Accountability

First we will give a very brief overview of what algorithmic accountability is.
Specifically, we discuss which properties an algorithm has when it is accountable.
Next we will discuss how accomplishing algorithmic accountability aligns the
behaviour of an AI system with the relevant ethical principles.



Mythical Ethical Principles for AI and How to Attain Them 283

4.1 What is It?

Accountability can be defined as [19, p.447]:

“a relationship between an actor and a forum, in which the actor has an
obligation to explain and to justify his or her conduct, the forum can pose
questions and pass judgement, and the actor may face consequences.”

To develop a systematic review of what work is done under algorithmic account-
ability, Wieringa [81] collected 242 English articles published from the period
starting with 2008 up to and including 2018. She observes that:

“What is denoted with algorithmic accountability is this kind of account-
ability relationship where the topic of explanation and/or justification is
an algorithmic system.”

Both the actor and the forum in these definitions are concepts that can take
on multiple meanings, also simultaneously. An actor is a person, or an organisa-
tion that has participated or conducted fully the development and deployment of
the algorithmic system. The forum is the audience that “receives the account”,
but this concept of forum is more complex.

Bovens [19] considers five types of fora: political, legal, administrative (e.g.
auditors inspecting a system), professional (e.g. insight by peers), and social
(e.g. civil society). A parallel can be drawn between the concept of forum in the
accountability relationship and the concept of stakeholder [13,27].

One notable difference is that the concept of stakeholder more clearly recog-
nises the impact an algorithm’s operation can have on a user, whereas in the
forum concept individual users are ensconced in “civil society”. On the other
hand, a forum allows us to clearly distinguish that the legal accountability rela-
tionship, where the account justifies the alignment of the algorithm’s operations
with laws and regulations, has different requirements than the social account-
ability relationship.

Many aspects of the algorithmic accountability relationship are accomplished
by accomplishing some of the other properties of algorithms (AI or otherwise)
which we will discuss in the sections that follow. Algorithmic accountability can
be challenging to consider as a property of algorithms, among else, because of
two points of confusion. The first point is confusing the concept of accountability
with that of liability and auditability. The second point is the assumption that
algorithmic accountability is a property of AI algorithms only, at the exclusion
of simple algorithms or devices. We clarify these points in turn.

To establish liability for an algorithm means to establish who is legally at
fault for the violations of existing laws and regulations that algorithm commits.
For example, if an unmanned vehicle causes physical damage to a building,
the establishing of liability means to establish who is legally responsible for
the damage. The concept of responsibility generalises the concepts of liability
from strictly legal violations to violations of other, including moral, norms. Both
liability and responsibility seek to identify an actor to punish. Punishment in
law and society plays an important role in establishing incentives that deter the
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offending actor and other actors from repeating the violation. The concern about
establishing algorithmic liability is not that of maintaining a relationship, but
rather cancelling an affordance. An affordance is what the environment offers
the individual. In this case the concern is that no liability is afforded to the
actors due to the lack of legal and societal frameworks that identify clearly who
is at fault together with a complex system in which it is not clear with whom
the agency that guides the offending behaviour lies.

Auditability is the property of an operation (an algorithm, an organisation)
to be inspected towards establishing compliance with given norms, laws, and
guidelines. Numerous properties of algorithms make them uneasy to inspect by
a third party. Algorithms can be developed in one country, executed from cloud
servers in a second country and impact the lives of people in a third country.
Proprietary rights to software, as well as security concerns, limit access to algo-
rithms yet in an other way. However, the concern about establishing algorithmic
auditability also is a concern of cancelling an affordance not one of maintaining a
relationship. The same context that creates the lack of algorithmic liability affor-
dance also creates the lack of auditability affordance. Unlike liability, auditability
also comes with engineering challenges. For example, the question of how should
one test or benchmark for the ethical impact of an AI algorithm is challenging
in its own right.

To understand the algorithmic accountability relationship, consider the fol-
lowing example of a service and how it changes with the use of an AI algorithm.
We will consider the reimbursement of expenses within an organisation. This ser-
vice has two actors. One actor is the service user, which typically is an employee
of the organisation. The second actor is the service provider, which typically is
an economy department comprising of several employees. The user submits a
claim supported by receipts. A member of the provider department evaluates
whether the claim matches the supplied receipts, as well as the rights of the
employee, and decides to approve the claim, reject it, or return it to the user.

No-automation Scenario. Assume that the claim is supported with a receipt that
is handwritten and unclear. The person who is evaluating the claim would get in
touch with the user (enacting the option to return the claim to the user), explain
the situation and propose options: such as, for example, a bank statement that
shows the same expense as the unclear receipt.

Automation Scenario. Object character recognition (OCR) is a technology (soft-
ware and hardware device) that extracts a character of written or printed text
from an image. OCR can, and is, used by organisations to automatically check
whether the figure and text of a receipt matches those in a claim, thus estab-
lishing that a claim is supported by the adequate receipts. What happens when
OCR is used to automate part of the role of the economy department? In the
same situation of the unclear handwritten receipt, the OCR system will notify
the claimant, the user, that one count of the claim does not have a receipt to
support it. The OCR will not generate an explanation of why.

While in the no-automation scenario it was the task of the service provider
to resolve the return of the claim, in the automation scenario it is the responsi-
bility of the user to rectify the situation. The question is: is the user sufficiently
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empowered to do so? The same affordances do not exist for the user between
the two scenarios. In the automation scenario the user needs to be given the
information of which specific receipt is not recognised and also how to address
the fail. An OCR system would need to be extended with additional features
to give explanations. But even with that extension, the user would need to get
in touch with the economy department to discuss possible substitutions for the
receipt. To do so, the user needs to be provided with a contact person. Failure
to adequately empower the user is a failure in the algorithmic accountability
relationship.

To summarise and simplify, algorithmic accountability is a balance of powers:
that of the actors who develop, implement, deploy and maintain an algorithm,
with that of the forum that is concerned with managing the impact of the algo-
rithm’s operation. For that balance of powers to occur first the forum needs to
be adequately empowered to demand it. Assuming the empowered forum, in the
practical sense, the property of algorithmic accountability is established when it
is clear for that algorithm:

– Which are the individual(s) that have the power to change the operation
parameters of the algorithm resulting in a change of behaviour;

– Who are the individuals that can answer questions about the way the algo-
rithm works;

– How can these individual(s) be reached by the forum;
– How can the forum ascertain that the required changes have been received,

evaluated and implemented (or justifiably rejected) by the algorithm actor(s).

All of these activities, ensuring the right people are identified, do not read as
properties of algorithms but properties of a society. However, ensuring that the
interface between the algorithm and society contains necessary and usable com-
munication information is a property of the algorithm. Further, building the
algorithms in such a way that adequate changes to them are dynamically possi-
ble, is also a feature of the algorithm.

Failure to establish a contact with a specific person that can handle algo-
rithmic issues is the easiest way to disrupt the algorithmic accountability rela-
tionship. This failure does not require that the algorithm is capable of any level
of autonomy or intelligence. A simple web form that does not clarify where the
entered data goes, how it is used, or who can modify it after it has been sent,
already fails algorithmic accountability. Partial automation changes power rela-
tionships and this directly causes the algorithmic accountability relationship to
also be disrupted. What does the balanced algorithmic accountability relation-
ship contribute to the ethical impact of the algorithm?

4.2 Alignment with Ethical Principles

Algorithmic accountability as a property serves the purpose of balancing out the
efficiency of the algorithm with the impact it has over individuals and society.
Algorithmic accountability is thus the foundation of having a control over the
ethical impact of an algorithm.
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Beneficence & Non-maleficence. Computation is always used because it
benefits someone. The concern with algorithms and AI is that they tip the power
balance against the interests of society or vulnerable individuals in it. The power
between actors in a relationships is balanced when neither of the actors can make
the other act against their interests or will.

Algorithmic accountability as a property, when present, can demonstrate that
computation is used to improve lives. When algorithms are used in such a way
that they do not change or erode the balance of power between the agents in
society, a service provider and service receiver, then the algorithms are aligned
with the non-maleficence ethical principle.

Justice. Computation only takes into consideration inputs that are declared
to the algorithm. A person, in contrast, can decide to pay attention to more
information or less information when performing a task. This can be a feature,
when handling unexpected situations, or it can be a hindrance, when needing
to withhold personal and implicit bias in decision-making. Any algorithm that
contributes to making decisions about people can increase the injustice in the
world. Injustice is particularly directly incurred by:

– an algorithm whose behaviour you cannot impact, even when it has made a
mistake;

– an algorithm which makes or aids decisions that impact your life without
revealing the information and rules on which those decisions are based.

The disruption of power in society that algorithms can introduce, can heavily
impact the state of justice. The forum, in an accountability relationship, has as
a primary role to ensure that justice is observed. A well balanced accountability
relationship, with a clear accountability properties for the algorithms, supports
the ethical principle of justice.

Autonomy. The principle of autonomy is directly violated by:

– an algorithm that pre-selects options that are presented to a user without
revealing which criteria are used to make the sub-selection or even that a
sub-selection is being made;

– an algorithm which removes communication channels between a user and
service provider;

– computation which has a direct and measurable impact on a person’s life but
of which the person in not aware is happening.

Autonomy is about having the power to choose for one self. This power is stripped
directly when some available options of interest are hidden or removed. Consider
a web based content platform where content is pre-selected for you based on your
previous engagement. This pre-selection can save you a lot of time and increase
your satisfaction, but at the same time it can also push you towards options that
you would not choose were you to choose for yourself10.

An adequately empowered forum can enforce a user’s ability to access infor-
mation about the decisions that an algorithm makes for them, and alter or
10 https://www.wsj.com/articles/tiktok-algorithm-video-investigation-11626877477.
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impact that algorithm. However, it is not sufficient that information is made
available, but that it is made available in a meaningful way that does not addi-
tionally increase the cognitive burden on the user. The use of dark patterns, user
interface design elements that manipulate the user towards making particular
choices, can have a drastic impact on eroding the principle of autonomy. Even
when a forum mandates that particular options and information is made avail-
able to users so that they can make an informed and autonomous choice, dark
patterns can be used to erode autonomy [72].

Explicability. Accountability is an explicit part of the new ethical principle of
explicability. Accountability enables explicability. On one hand it is the forum
that demands the creation of an account on which are the operation domain,
impact, effect etc. of an algorithm. On the other hand the accountability rela-
tionship enforces, not only the account, but also the possibility for a channel of
communication that guarantees that additional information about the operation
of the algorithm is made available when needed.

5 Transparency, Explainability, Interpretability

Transparency, explainability and interpretability are all properties of algorithms
that are related to the creation and availability of the account in the algorithmic
accountability relationship. There is not a great precision and rigour in the use
of these terms in the literature. We cannot hope to establish a clear distinction
once and for all in this tutorial, but he can offer the definitions of those who
have attempted this task.

5.1 Transparency

When discussing the transparency of algorithms, one often contrasts algorithms
that are a black box and those that are a glass box. In engineering and computing,
a black box is a “fiction representing a set of concrete systems into which stimuli
S impinge and out of which reactions R emerge. The constitution and structure
of the box are altogether irrelevant to the approach under consideration, which
is purely external or phenomenological.” [23]. In other words, a black box is a
system that is viewed only in terms of its inputs and outputs without knowledge
of its internal workings. A glass box in contrast is a system whose inner workings
are completely accessible. The existence of black box systems is not in its self
unethical or problematic [26]. What is of concern is when a system participates
as a black box in the accountability relationship.

In the context of AI ethics, transparency is a property of algorithms that are
subject to algorithmic accountability. Namely transparency is the property of
availability of information about an algorithm allowing the forum to monitor the
workings or performance of the algorithm [32,52]. In this context it becomes more
clear that whether an algorithm will be “transparent” or not depends not only on
access but also on who it is that is doing the accessing. This in consequence means
that making an algorithm transparent does not necessarily make its behaviour
and impact ethical [36]. Let us consider an illustrative example.
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Consider for example a calculator. We input two numbers separated by the
‘+’ sign and obtain their sum on output. We do not have access to the inner-
workings of the calculator, thus this is a “black box”. The assembly code for the
calculation operations, as well as full schematics of the electronic circuits used,
would make this calculator a “glass box”. We do not need the calculator to
be a “glass box” because we can verify the correctness of calculation impartially
without an understanding of its inner working. We can also verify that the device
is not connected to the internet and it does not communicate or manipulate any
information other than the input numbers. The glass box information is only
meaningful to those wishing to recreate the calculator or use it in a different
manner.

The amount and type of information which make an algorithm transparent
for a forum will depend on the algorithm and the forum. Both [32] and [82]
observe that transparency is not a dichotomous property but one that comes in
degrees and depends on the intentions, needs and composition of the forum. For
example, a programmer may be able to identify a while-loop and consider it a
transparent implementation of a function that identifies the length of sentence,
but a user with different skills would not be able to “see” the same thing. Win-
field et al. [82] give a definition of transparency, obtained after a comprehensive
literature review on the topic:

“the transfer of information from an autonomous system or its designers
to a stakeholder, which is honest, contains information relevant to the
causes of some action, decision or behavior and is presented at a level of
abstraction and in a form meaningful to the stakeholder.”

The standard that Winfield et al. [82] developed, IEEE P7001 recognises five
distinct groups of stakeholders split into two groups: non-expert end users (and
wider society), experts including safety certification engineers or agencies, acci-
dent investigators, and lawyers or expert witnesses. For each of these stakehold-
ers levels 0 to 5 of increasing measurable transparency properties are identified.
Each of the levels defines how much and which kind of information should be
made available to the stakeholder. If we then try to define a fully transparent
algorithm, it would be that algorithm for which the forum has the information
it needs in the algorithmic accountability relationship.

The availability of information on the algorithm is not only a question of
willingness to divulge that information (by the actors that have created and
deployed it). The inner workings of an algorithm can be inaccessible because
of many reasons. One reason is the level of complexity involved. The number
of lines of code, interactions of different algorithm and systems and the way
an algorithm adjusts to different users can have a net emergent behaviour that
would not be easy to trace to a specific line of code. In the words of Lazer [48]:

“You might imagine that they could just go into the next building and look
directly at the code. However, looking at the algorithms will not yield much
insight, because the interplay of social algorithms and behaviors yields
patterns that are fundamentally emergent.”
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Another reason for a lack of transparency, and this is particularly of interest
in AI, is due to the way a task is computed by the algorithm, namely, by not
following the operations that a person takes when solving the same task. Neural
networks are considered non-transparent because of this reason. To extract or
create the information that is required to understand the workings of the com-
plex computation process, additional steps need to be taken: explainability and
interpretability.

The [42] considers transparency to be one of the seven requirements for
accomplishing a trustworthy AI system11. Here transparency is defined as a
combination of three elements: traceability, explainability, and communication.
Traceability is the ability to maintain a complete account of the provenance
of data, processes, and artefacts involved in the production of an AI deci-
sions/action [57]. The [42] defines communications in the following way [pg.18]:
“ AI systems should not represent themselves as humans to users; humans have
the right to be informed that they are interacting with an AI system. This entails
that AI systems must be identifiable as such. In addition, the option to decide
against this interaction in favour of human interaction should be provided where
needed to ensure compliance with fundamental rights. Beyond this, the AI sys-
tem’s capabilities and limitations should be communicated to AI practitioners or
end-users in a manner appropriate to the use case at hand. This could encompass
communication of the AI system’s level of accuracy, as well as its limitations. ”

Explainability and interpretability, which is partly included in communi-
cation, are two separate fields in AI ethics, both concerned specifically with
identifying, creating and making available information on the operation of an
algorithm.

5.2 Explainability and Interpretability

Explainable AI (XAI) as a field in AI is concerned with the problem of gener-
ating the account in the algorithmic accountability relationship. Typically XAI
is associated with AI involved in making and aiding decisions. Specifically, XAI
is concerned with the problem of identifying the justifications for algorithmic
generated decisions.

The inception of the term XAI was a DARPA12 program started in 2017.
The field, however pre-dates this program, with works such as [65] doing XAI
without naming it as such. DAPRA explained the aims as follow:

“The Explainable AI (XAI) program aims to create a suite of machine
learning techniques that:

11 The seven key requirements for Trustworthy AI per the [42] are: (1) human agency
and oversight, (2) technical robustness and safety, (3) privacy and data governance,
(4) transparency, (5) diversity, non-discrimination and fairness, (6) environmental
and societal well-being and (7) accountability.

12 “The Defense Advanced Research Projects Agency (DARPA) is an agency of the
United States Department of Defense responsible for the development of emerging
technologies for use by the military.”https://en.wikipedia.org/wiki/DARPA.
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– Produce more explainable models, while maintaining a high level of
learning performance (prediction accuracy); and

– Enable human users to understand, appropriately trust, and effectively
manage the emerging generation of artificially intelligent partners”
[74].

The field has since grown outside of the DARPA initiative and has expanded its
field of interest beyond machine learning to other AI methods as well [41].

As an engineering problem, XAI is concerned with the issue of automatically
generating a justification of why a specific output of an algorithm has been given
instead of another, which specific data the algorithm has used, and/or its trace
(history of past decisions and conditions under which they had been taken).
The terms explanation and interpretation are sometimes used interchangeably
in the literature. To explain typically refers to the process of tracing back the
output’s origin in the code, whereas to interpret means to assign corresponding
meaning to a particular code segment or action. In contrast to the problem of
generating explanations, interpretability is concerned with ensuring a sufficiently
high degree of an understanding of that explanation by a specific stakeholder (or
forum) [54,56]. Counter-intuitively thus, the product of explanability is informa-
tion, whereas the product of interpretability are explanations.

Explainability, beyond the engineering challenges, seeks understanding of
what it means to explain or interpret an algorithm, typically using methods
from humanities and social sciences [55]. Understanding how to construct expla-
nations [5] is primarily studied in computer science and artificial intelligence,
but it is also an interdisciplinary problem.

In XAI we distinguish between the following approaches to generating expla-
nation relevant information [5,17]:

– Static vs interactive. A static explanation is one-turn feedback that cannot
respond to feedback from the user, while an interactive explanation is an
explanation that is given in an interactive process with the user.

– Local vs global. When a specific decision is explained, we speak of a local
explanation. For example, the answer to “why did my loan not get approved”
is a local explanation. In contrast, if we want to know how a model classifies
examples in general, we refer to global explanations. For example, the answer
to “what are the properties of people whose loans were approved” requires a
global explanation.

– Direct vs post-hoc. A direct explanation is a direct insight into an algorithm
that is intrinsically transparent. A post-hoc explanation is the process of using
other indirect means to interpret the operations of the algorithm which is not
by nature transparent.

– Model-agnostic vs. model-specific. A model specific approach is one that is
tailored and only works for a particular type of an algorithm (particularly in
machine learning). In contract a model-agnostic approach does not depend
on the inner workings of a specific algorithm, but can generate explanations
for any algorithm that satisfies particular properties of input and output.
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– Surrogate and visualization. These are not types of explanations but rather
types of auxiliary algorithms that are built to interpret an algorithm that is
too complex to be directly explained. A surrogate algorithm is a directly inter-
pretive algorithm that approximates the original algorithm. A visualisation
algorithm is one that visualizes parts of the original algorithm.

As to how the decision is being justified, we distinguish between [31]:

– Attributive explanations aim to answer the question: for what reasons, because
of which problem attributes, has a particular decision been made. Examples
of approaches for producing attributive explanations include logical inferences
that support the decision and feature importance association with decisions.

– Contrastive explanations aim to answer the questions: why this decision or
not another. For example, what was the decisive difference between the case
that was decided as A and the case that was decided as B.

– Counterfactual explanations aim to answer the question of how a given differ-
ence in the case impacts a difference in the decision. Stepin et al. [73] offer a
survey of methods for generating contrastive and counterfactual explanations.

– Actionable explanations aim to answer the question of what change in the case
would lead to a desired decisions. For example, given the features of a person’s
loan application who has been rejected, an actionable explanation provides
the information of which features need to be changed, least drastically or
minimal number of features, to bring about the desired decision.

Numerous algorithms have been proposed that generate explanations partic-
ularly from deep neural networks and numerous surveys detail them, such as for
example [4,11,24,33,43,77]. It has to be emphasised that explainable and inter-
pretable AI as fields are not very precise, nor do they offer a taxonomy of terms
and concepts so the algorithms will not always we situated within a taxonomy
of approaches and types of applications.

None of the explanation generating algorithms that have been proposed
“solves” the XAI problem. Each algorithm has strengths in addressing certain
problems and weaknesses in others. Unlike a human explaining and interpreting
“why I did that”, no one algorithmic approach offers all the explanation types
listed above. For example, one of the most well known algorithms is the LIME
algorithm [65]. LIME stands for Local Interpretable Model-agnostic Explana-
tions. This algorithm creates surrogates to generate attributive explanations of
decisions reached by machine learning classification. Thus, while LIME can offer
some information on which of your features had your loan application denied
(being local), it cannot offer information on which feaures do the denied appli-
cans have in common.

5.3 Information Availability and Ethical Principles

It is hard to measure the performance of algorithms in terms of how transparent,
explainable or interpretable they are because transparency, explainability and
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interpretability are not simple to quantify. Furthermore, transparency, explain-
ability and interpretability are subjective measures - it is the forum who needs to
express satisfaction with the level of information it receives. The field of trans-
parency has been focused on developing goals to direct algorithm developers
towards algorithms that would be considered transparent by some forums in
certain situations. Transparency answers the question: which information is the
forum likely to need. Explainability and interpretability algorithms answer the
challenge of how to extract the information that transparency has identified.

How does progress in transparency, explainability and interpretability
advance the ethical principles of interest in AI? To answer this question, one
needs to answer how being informed impacts the state of ethics in a society.
This is clearly not a simple question to answer and goes beyond the scope of this
tutorial. We sketch out some discussion points.

Explicability is directly advanced by transparency which in turn is enabled by
efforts in explainability and interpretability of algorithms. An algorithm that is
adequately transparent to a particular stakeholder advances the understanding
of that stakeholder regarding how decisions are made, for which reasons, and
how those decisions can be changed.

Autonomy is furthered particularly by providing counterfactual and action-
able explanations. This information empowers people to efficiently find ways to
address aspects of their life towards accomplishing their goals in ways that works
for them. The same information also can elucidate when autonomy is violated,
by showing which algorithmic decisions a user has no power to affect.

Beneficence, Non-maleficence, Justice. Asymmetry of information can
cause harm by creating conditions in which the more informed party can take
advantage of the less informed party. In the algorithmic accountability rela-
tionship, the account is generated to remove the informational asymmetry that
exists, ensuring protection of the rights of the society and individuals that the
forum represents. The availability of adequately selected and represented infor-
mation promotes beneficence by enabling errors to be caught and promotes jus-
tice by elucidating what is the information used to make decisions.

6 Fairness

Algorithmic fairness is concerned with defining, evaluating and improving the
fairness in decision making by AI algorithms. Clearly this necessarily involves
defining what a fair algorithm is, in the first place. The field was recently moti-
vated by the use of machine learning in the context of decision-making [62],
however concerns for fairness extend to all algorithms and devices that are part
of systems that ethically impact individuals and society. For example, a route
finder that diverts traffic through a residential street in which there is less cars
parked can increase unfairness by making that street no longer available for
children to play in. An automated soap dispenser calibrated to respond only to
white skinned hands, neither does decision-making nor uses machine learning,
yet has a negative impact in a multi-cultural society.
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Algorithmic fairness sounds as closest to being the ethical principle of justice
expressed as a property of an algorithm. In reality an algorithm can easily be
algorithmically fair and violate the ethical principle of justice at the same time.
Kearns and Roth [45] in Chap. 2 give an example of how fairness definitions can
be satisfied while still having unfair algorithmic decisions.

6.1 Algorithmic Fairness, Bias and Discrimination Definitions

Algorithmic fairness as of today is defined using a collection of statistic based
measures for algorithms that make decisions [9,66]. The field of algorithmic
fairness includes the study of fairness definitions and also methods for remov-
ing algorithmic bias from the decisions and algorithmic process. Tool-kits, like
Aequitas [67] and AI(F)airness 360 (AIF360) [15], have become available to
facilitate bias mitigation in machine learning specifically. Both tool-kites are
open-source aim to serve not only software developers, but also researchers and
students to better understand unfairness and how it is introduced. Aequitas was
developed by the University of Chicago and offers an estimate of algorithmic
fairness across several measures. Fairness 360 (AIF360) was developed by IBM
and in offers pre-processing, in-processing and post-processing mitigation mech-
anisms for some machine learning methods. Other developed tool-kits include
FairML [2] and Silva [83].

The concept of algorithmic bias, build on the concept of statistical bias,
describes the situation where there is a discrepancy between the expected deci-
sions that should be assigned and the decisions assigned by the algorithm. For
example, if two groups of students are expected to be assigned the same grades,
because they have similar performances in the course, a decision-making algo-
rithm that awards high grades to one group and low to the other is considered
to be biased.

The bias of an algorithm can be caused by using input that has some kind
of skew in the data, or by having it built in its operation and use. These two
causes are not clearly separated and often build into each-other. Algorithmic
bias typically refers to the second type of cause: “Algorithmic bias is added by
the algorithm itself and not present in the input data.” [8]. Real world examples
of the occurrences of data bias are listed in, for example [45,51].

The input-introduced bias is referred to as data bias. In machine learning,
data bias refers to the existence of a skew in the training data. Data bias is
particularly of concern in machine learning because data sets are not always
purposefully build for training a particular prediction model for a particular
task. Rather, data is collected and traded without a particular application lined
up. This means that there is no possibility to model the data for the purpose,
but also that data collected from some people, when applied to draw inferences
about others can produce spurious and dangerous results, particularly in sen-
sitive contexts such as medicine [25]. Mehrabi et al. [51] identify twenty three
different types of bias in the literature, which of course can overlap.

Algorithmic discrimination describes algorithmic bias that occurs because a
feature that should not have impact on a decisions, is somehow used by the
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algorithm and contributes to that decision. Typically these are by law protected
features that are of interest such as for example, race, sexual orientation etc.
A protected feature defines a protected group of people, or class. In the legal
domain there are two main definitions of discrimination: disparate treatment
and disparate impact [10,62]. Disparate treatment happens when an individual
is intentionally treated differently than others based on their membership to a
protected class. Disparate impact happens when members of a protected class are
more frequently negatively affected by some phenomena than their counterparts
outside of the protected class.

In algorithmic fairness studies we distinguish between group fairness and
individual fairness. Group fairness takes the approach of identifying protected
groups and requiring that (approximate) parity of some statistical measure
across all of these groups is maintained [29]. Individual fairness is focused on indi-
viduals rather than groups requiring that “similar individuals should be treated
similarly”. Similarity is a task-specific metric determined on a case by case basis
[34]. Individual fairness requires that there exists a commonly agreed measure
of similarity among individuals.

Algorithmic fairness can be evaluated using measures of fairness. Algorithmic
fairness in supervised machine learning is mainly concerned with ensuring equity
in resource distribution. Specifically, if there exists a desirable label, such as for
example “yes” for a loan approval or “unlikely to reoffend” in a parole evaluation,
the concern is that the algorithm does not discriminate in its classification. Of
course, data bias too can be a source of discrimination.

Pessach et al. [62] identify seventeen different measures of algorithmic fair-
ness in the machine learning literature. Verma et al. [76] consider twenty, most
prominent in their view, and attempt to explain the rationale behind them offer-
ing an intuitive analysis of why in some cases an algorithm can be considered
fair according to some definitions and unfair according to others.

Quantifying fairness in machine learning is challenging to achieve for a vari-
ety of reasons [47]. Regardless the problem, there sometimes does not exists a
solution which is universally fair, equitable and just. The additional requirement
of fairness can come at a cost of efficiency - an algorithm can only be made more
fair if it is made less correct. It has been shown that certain fairness types can-
not be simultaneously achieved in machine learning [28]. In such situations, a
trade-off would be necessary, meaning that we need to have a ways to resolve
such conflicts fairly.

6.2 Fairness and Ethical Principles

The ethical principle that intuitively should be most aligned with algorithmic
fairness is justice. An unfair algorithm has a direct impact on justice and equity.
When there is bias in the decisions made by the algorithm, by definition there is
a violation of the principle of justice. However satisfying a fairness property does
not on its own guarantee an alignment with the justice ethical principle. For one,
one may be forced to choose which fairness property to satisfy, or to sacrifice
fairness in the interest of accuracy [44]. Chouldechova and Roth [29] argue that



Mythical Ethical Principles for AI and How to Attain Them 295

“statistical definitions of fairness do not on their own give meaningful guarantees
to individuals or structured subgroups of the protected demographic groups.
Instead they give guarantees to ‘average’ members of the protected groups.”
Justice for individuals is poorly reflected in group fairness definitions.

Algorithmic fairness contributes towards promoting the principle of non-
maleficence. Bias in algorithms has been identified to cause representational
harms and allocation harms.13. Representation harms can be caused by the way
in which “individuals are represented differently in a feature space even before
training a model” [1]. Allocation harm can occur when an individual is unjustly
denied a desirable decision by an algorithm.

Representation harms are more difficult to assess than allocation harms. A
representation harm occurs when data used to for decision making supports or
exalts a past or existing undesirable phenomena in society. For example, in nat-
ural language processing, an algorithm can learn to associate certain professions
with gender propagating sexism [18]. A search algorithm causes representational
harm when returns a particular stereotypical image upon a search request. For
example, searching for “gamer” return images of dark rooms and young men in
front of a monitor, thus propagating the idea that a gamer is a socially unde-
sirable activity and one that does not involve women or older people. A public
perception such as this can directly harm both the gaming industry and indi-
vidual image.

It is not clear when, how and who should decide to correct representation
in data because this process can cause new representation harms while remov-
ing old ones. Representation harm can also cause allocation harm. For example,
an algorithm that works off of historical data to predict who will make a good
employee, can identify that being male is a strong indicator of good work perfor-
mance because in the past all employees have been male. Thus a female candidate
will be rejected because of her gender, causing allocation harm and the sexism
will be propagated, causing representational harm. An algorithm that causes
representational harm can also negatively impact persons and society auton-
omy.

Both the algorithmic bias and algorithmic fairness measures evaluate a par-
ticular given machine learning problem. However, local decisions, particularly
when repeated over time, can lead to emerging global effects. Namely, by allow-
ing a particular bias to go undetected or by invisibly, but consistently, preferring
one type of behaviour and properties over another we may change our society.
This can cause emergent harm. The risk of emerging effects from automated
decision making are difficult to localise, measure and mitigate. More work in
algorithmic fairness is needed to prevent this type of harm.

However, despite the shortcomings of the algorithmic fairness research, this
field can also actively contribute to promoting beneficence. Discrimination
and stereotypes can remain hidden in large volumes of text or wast amounts
of data. Algorithmic fairness and bias measures can illuminate these historical

13 K. Crawford. The trouble with bias. https://www.youtube.com/watch?v=fMym
BKWQzk, December 2017.
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and entrenched injustices and bring attention to them. Even if it is not the job
of an algorithm to correct for the wrong that exists in society, it can facilitate
its removal.

7 Privacy

Privacy is often invoked when discussing AI ethics, however from an engineering
and computer science aspect this field is, when compared to fairness for example,
considerably under-explored outside of the scope of cybersecurity. It is very
difficult to establish privacy as a property of an algorithm and quantify it when
there is a very poor understanding in computer science what this concept means.
Aligning privacy with the ethical principles of interest for AI also requires this
understanding.

7.1 Definitions and Concerns

Matzner and Ochs [49] give a detailed account on the concept of privacy across
disciplines and history. Privacy is a person’s right rather than a moral principle
or a norm. Originally privacy has been considered the right to be left alone [79].
The right has been developed to specify that privacy is about having the right
to a space (both physical and metaphorical) where one can act or exist without
undesired public scrutiny because under involuntary public scrutiny one cannot
act freely and in the absence of others, infringements are likewise likely to also
be absent [49].

One can distinguish between different types of privacy in the sense of absence
of unwanted scrutiny in action or behaviour. Thus we can talk about bodily and
psychological privacy as a right to not expose one’s body or thoughts, intellectual
privacy as the right to be able to make up ones mind or ideas without interfer-
ence, communications privacy as the right to have conversations that are limited
to the participants, associations privacy as the privacy to have relationships that
are not scrutinized by people outside of them, behaviour privacy, informational
privacy, decision privacy etc.

Only in understanding that privacy is the right to certain activities without
an audience, we understand why privacy is often brought out as a concern in the
digital age. As Matzner and Ochs [49] summarize, information before digitaliza-
tion was characterized by clear ownership and access control: “Information was
only accessible by third parties if actively passed along, or when third parties
were granted physical access.” Passing on written information included non-
negligible effort, but also so did broadcast of information through television and
radio. Passing on information without the knowledge of the person who owns it
was extremely difficult. Digital technology facilitates digital data which is easy
and cheap to story. Beyond mere holding information, data is very easy to create
and a lot of the activities that have been private are no longer so because they
leave digital traces, a process that is virtually inescapable [6]. In addition digital
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data can be very efficiently searched. The AI algorithms are increasingly more
powerful in finding patterns in big data that could not be found by people.

There are at least two types of privacy concerns when working with data,
both of which require different algorithmic considerations. One is the access to
and ownership control of specific data. Specific data is any information
that is specific, if not unique to one person and identifies that person such as
their social security number or even their address of residence.

A big concern when it comes to specific data is anonymization. Here one
is concerned that information about a specific individual can be identified in
a collection of data that should not contain identifying information. The main
algorithmic approach to handling this concern is k-anonymity [68] and differen-
tial privacy [35]. Both are collections of methods that measure how identifiable
an individual is in a collection of data sets and offer methods for collecting,
removing, or introducing noise in data to recover anonymity.

Another concern of specific data is that of its “fluidity”. Specific data, as all
data, is easy to share and can be shared without the knowledge of the person
described by it. As Matzner and Ochs [49] summarized: “Information which may
be voluntarily disclosed in one context and with a particular audience in mind,
is now easily transported to other contexts where this might entail harm”. For
example data about ones sexual preferences would be completely in place to share
in a dating app but not perhaps in a job search app. However, a person who has
disclosed information to one application, has very little power to prevent it from
being shared or sold to another. The main approach to counteract the problems
of “fluidity” is the legal approach with regulation, such as the [61], being adopted
to protect the right of individuals to control for what their specific information
is used. However, legal solutions, not supported with technical means to allow
direct control to users over their data, might not be sufficient [59].

A second privacy concern when working with data is the access to and
ownership control of applicable data patterns. For example, a data pattern
can identify a group of people that all have the same personality trait or mental
health issue [46]. An individual’s data belonging to a data pattern to which
individuals of group X belong to, identifies a correlation with people from group
X, rather than identifying that person as being a member of group X.

At first glance, compared to the dangers of sharing specific information,
belonging to a group pattern may seem inconsequential. However, being identi-
fied with a data pattern of group X can lead to being given only the affordances
of the group X members regardless of whether or not one belongs to group X. For
example, you can be identified to have the similar browser history of people who
are female and suffer from depression. Societal prejudice does not require proof
and being suspected of a characteristic can be enough to be denied opportunities
also in real life not only online.

It is particularly machine learning that allows for patterns to be found in
big data. The numerous issues of being associated with different data patterns,
as well as the difficulties in addressing this issue with technological and legal
actions, are discussed in [71].
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7.2 Privacy and Ethics

Privacy is perhaps the least quantifiable property of algorithms and it can be
seen as wrong to consider it an algorithmic property. Even the very measurable
K-anonymity [68] and differential privacy [35] evaluate data sets rather than
algorithms. Privacy as a right is perhaps easiest to align with the ethical princi-
ples of interest. The two ethical principles that are perhaps most advanced when
affording privacy are: autonomy and non-maleficence.

Protecting the right to make certain decisions or perform certain tasks with-
out an undesirable audience and scrutiny directly protects autonomy. Privacy
is even seen as a precondition for democratic institutions [49]: if a person
is not allowed to make a decision in private, then that decision may not be
autonomously made thus making collective decisions not democratic.

Protecting the anonymity of specific information outside of given contexts
and the use of pattern affiliation in some contexts directly avoids doing harm to
the individuals whose anonymity is protected. Harms from violations of privacy
are not easy to measure or identify: we do change our behaviour when we are
observed and it is not easy to determine whether that change benefits us and
society or not until it has happened. It is also difficult to establish what we
would have been like in the absence of a technology or computation after those
changes have become fully integrated in society.

Protecting pattern affiliation anonymity also promotes the ethical principle
of justice. AI is heralded as the ultimate “crystal ball” for use in predicting
future behaviour and addressing issues before they arise. The ethical issues arise
not from predicting the behaviour of people, but using those predictions to judge
them and make decisions about them. Imagine a country T, 99% of whose popu-
lation are compulsive thieves. We would find it unjust to detain a person carrying
a passport from T at the border and put them in jail to prevent the thievery
they are likely to commit. If a student is predicted to get a fail grade in a sub-
ject, it is unjust to treat that student as if they have already failed. Psychology
recognises that people do live up or down to what is expected from them [7]. If
we allow people to be judged by the estimates of their abilities, we risk limiting
their liberty to choose to surpass them. We may be creatures of habit, but we
are nonetheless fully autonomous agents.

Lastly we should mention that privacy is an ambivalent right. The protection
of the right to privacy of one person can come at the expense of the rights of
another. Protecting the right of privacy can cause the hindrance of ethical rather
than their promotion.

In summary privacy as a property of algorithms and input to algorithms is
a complex technical challenge, but one that needs to be addressed given how
much direct impact the right of privacy has in advancing the ethical values we
are interested in protecting.
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8 Summary

This tutorial and lecture notes aim to highlights the distinction between: i)
computation properties of algorithms and data; ii) ethical values promoted or
suppressed by the existence and use of an algorithm. In AI ethics, the distinction
between these two aspects of algorithms are too often blurred.

To improve the computer science student’s understanding of ethical principles
of interest to AI Ethics we give an overview of the five principles that Floridi et
al. [40] identify as key. Clearly, theirs is only one opinion on what matters to AI
from ethical principles and this list of key principles needs to be continuously
re-assessed.

Computational algorithmic properties denote collection of approaches rather
than well defined parameters that can be measured. We give an integral overview
of the main groups of approaches, also discussing how they relate with each other.

By making the distinctions between ethical principles and algorithmic prop-
erties clear, we hope to contribute towards a better alignment between the two
in research and the practice of AI Ethics.

9 Recommended Further Reading

Numerous references have been used throughout the tutorial and these all can
be used to further ones knowledge in the topics touched upon in this tutorial.
The following are particularly recommended.

Floridi et al. [40] give an analysis of existing AI ethics guidelines and refine
those into the five proposed ethical principles we discussed here.

Wieringa [81] gives a thoughtful systematic review on the somewhat elusive
topic of algorithmic accountability. It is a unique work on this topic.

Winfield et al. [82] give a very exhaustive overview of the topic of trans-
parency that also goes into relating transparency with the topics of explainability
and interpretability.

Chouldechova and Roth [29] give a very susinct overview of the state of the
art and on-going challenges in the field of machine learnig fairness. An excellent
chapter on bias and fairness in machine learning, particularly for people new to
AI, is Rodolfa et al. [66]. The book as a whole deserves a read.

Matzner and Ochs [49] give a unique account on what is privacy and how
digitalisation affects it.

Lastly, Parasuraman et al. [60] is a good starting point to better understand
machine autonomy in relation to human autonomy.
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33. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a sur-

vey. In: 2018 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215 (2018)

34. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. CoRR, abs/1104.3913 (2011)

35. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. J. Priv. Confidentiality 7(3), 17–51 (2017)

36. Etzioni, A.: Is transparency the best disinfectant? J. Political Philos. 18(4), 389–
404 (2010)

37. European Commission. Proposal for a regulation of the european parliament
and of the council laying down harmonised rules on artificial intelligence (artifi-
cial intelligence act) and amending certain union legislative acts com/2021/206
finalthat. Technical report (2021). https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX%3A52021PC0206

38. Fieser, J.: Ethics. In: Boylan, M. (ed.), Internet Encyclopedia of Philosophy. ISSN
2161-0002 (2021)

39. Floridi, L.: Translating principles into practices of digital ethics: five risks of being
unethical. Philos. Technol. 32(2), 185–193 (2019)

40. Floridi, L., Cowls, J.: A unified framework of five principles for AI in society. Harv.
Data Sci. Rev. 1(1), 7 (2019). https://hdsr.mitpress.mit.edu/pub/l0jsh9d1

41. Gunning, D., Aha, D.: Darpa’s explainable artificial intelligence (XAI) program.
AI Mag. 40(2), 44–58 (2019)

42. High-Level Expert Group on Artificial Intelligence. Ethics guidelines for trustwor-
thy AI. Technical report, The Euruopean Comission (2019). https://ec.europa.eu/
futurium/en/ai-alliance-consultation.1.html

43. Islam, S.R., Eberle, W., Ghafoor, S.K., Ahmed, M.: Explainable artificial intelli-
gence approaches: a survey (2021)

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://hdsr.mitpress.mit.edu/pub/l0jsh9d1
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html


302 M. Slavkovik

44. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering:
auditing and learning for subgroup fairness. In: Dy, J., Krause, A. (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 2564–2572. PMLR, 10–15 July
2018

45. Kearns, M., Roth, A.: The Ethical Algorithm: The Science of Socially Aware Algo-
rithm Design. Oxford University Press, Oxford (2019)

46. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable
from digital records of human behavior. Proc. Natl. Acad. Sci. U. S. A. 110(15),
5802–5 (2013)

47. Kusner, M.J., Loftus, J.R.: The long road to fairer algorithms. Nature 34–36 (2020)
48. Lazer, D.: The rise of the social algorithm. Science 348(6239), 1090–1091 (2015)
49. Matzner, T., Ochs, C.: Privacy. Internet Policy Rev. 8(4) (2019)
50. McLeod, S.K., Tanyi, A.: The basic liberties: an essay on analytical specification.

Eur. J. Political Theory 14748851211041702 (2021)
51. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on

bias and fairness in machine learning (2019)
52. Meijer, A.: Transparency. In: Bovens, M., Goodin, R.E., Schillemans, T. (eds.),

The Oxford Handbook of Public Accountability. Oxford Handbooks Online (2014)
53. Miller, D.: Justice. In: Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy.

Metaphysics Research Lab, Stanford University, Fall 2021 edition (2021)
54. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.

Artif. Intell. 267, 1–38 (2019)
55. Miller, T.: “But why?” Understanding explainable artificial intelligence. XRDS

25(3), 20–25 (2019)
56. Molnar, C.: Interpretable machine learning. Lulu.com (2020)
57. Mora-Cantallops, M., Sánchez-Alonso, S., Garćıa-Barriocanal, E., Sicilia, M.-A.:

Traceability for trustworthy AI: a review of models and tools. Big Data Cogn.
Comput. 5(2) (2021)

58. Narayanan, A., Mathur, A., Chetty, M., Kshirsagar, M.: Dark patterns: past,
present, and future. Queue 18(2), 67–92 (2020)

59. Nouwens, M., Liccardi, I., Veale, M., Karger, D., Kagal, L.: Dark patterns after
the GDPR: scraping consent pop-ups and demonstrating their influence. CoRR,
abs/2001.02479 (2020)

60. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of
human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A Syst.
Humans 30(3), 286–297 (2000)

61. European Parlament and Council. Regulation (eu) 2016/679 of the european par-
liament and of the council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/ec (general data protection regulation) (2016)

62. Pessach, D., Shmueli, E.: Algorithmic fairness (2020)
63. Poole, D., Mackworth, A.: Artificial Intelligence: Foundations of Computational

Agents, 2nd edn. Cambridge University Press, Cambridge, UK (2017)
64. Rawls, J.: Justice as fairness: political not metaphysical. Philos. Public Affairs 14,

223–251 (1985)
65. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the

predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD 2016, pp.
1135–1144, New York, NY, USA. Association for Computing Machinery (2016)



Mythical Ethical Principles for AI and How to Attain Them 303

66. Rodolfa, K.T., Saleiro, P., Ghani, R.: Bias and fairness. In: Big Data and Social
Science, pp. 281–312. Chapman and Hall/CRC, Boca Raton (2020)

67. Saleiro, P., et al.: Aequitas: a bias and fairness audit toolkit. CoRR, abs/1811.05577
(2018)

68. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Tech-
nical report, SRI International (1998). https://dataprivacylab.org/dataprivacy/
projects/kanonymity/paper3.pdf

69. Shore, B.: Bias in the development and use of an expert system: implications for
life cycle costs. Ind. Manag. Data Syst. 96(4), 18–26 (1996). 2021/12/12

70. Skelton, A.: William David Ross. In: Zalta, E.N. (ed.), The Stanford Encyclope-
dia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2012
edition (2012)

71. Slavkovik, M., Stachl, C., Pitman, C., Askonas, J.: Digital voodoo dolls. In: Four-
cade, M., Kuipers, B., Lazar, S., Mulligan, D.K. (eds.), AIES 2021: AAAI/ACM
Conference on AI, Ethics, and Society, Virtual Event, USA, 19–21 May 2021, pp.
967–977. ACM (2021)

72. Htut Soe, T., Nordberg, O.E., Guribye, F., Slavkovik, M.: Circumvention by design
- dark patterns in cookie consents for online news outlets. In: Proceedings of the
11th Nordic Conference on Human-Computer Interaction, 25–29 October 2020,
Tallinn, Estonia. ACM (2020). https://arxiv.org/abs/2006.13985

73. Stepin, I., Alonso, J.M., Catala, A., Pereira-Fariña, M.: A survey of contrastive
and counterfactual explanation generation methods for explainable artificial intel-
ligence. IEEE Access 9, 11974–12001 (2021)

74. Turek, M.: Explainable artificial intelligence (XAI) (2017). https://www.darpa.
mil/program/explainable-artificial-intelligence. Accessed 10 June 2020

75. van Wynsberghe, A.: Sustainable AI: AI for sustainability and the sustainability
of AI. AI Ethics 1(3), 213–218 (2021)

76. Verma, S., Rubin, J.: Fairness definitions explained. In: Proceedings of the Inter-
national Workshop on Software Fairness, FairWare 2018, pp. 1–7, New York, NY,
USA, 2018. Association for Computing Machinery (2018)

77. Vilone, G., Longo, L.: Explainable artificial intelligence: a systematic review (2020)
78. Wagner, B.: Ethics As An Escape From Regulation. From Ethics-Washing To

Ethics-Shopping?, pp. 84–89. Amsterdam University Press, Amsterdam (2019)
79. Warren, S.D., Brandeis, L.D.: The right to privacy. Harv. Law Rev. 4(5), 193–220

(1890)
80. Ross, W.D.: The Right and the Good. Oxford University Press, Oxford (2007).

Reprint edited by Philip Stratton-Lake. https://spot.colorado.edu/∼heathwoo/
readings/ross.pdf

81. Wieringa, M.: What to account for when accounting for algorithms: a systematic
literature review on algorithmic accountability. In: Proceedings of the 2020 Con-
ference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 1–18, New
York, NY, USA. Association for Computing Machinery (2020)

82. Winfield, A.F., et al.: IEEE P7001: a proposed standard on transparency. Front.
Robot. AI 8, 225 (2021)

83. Yan, J.N., Gu, Z., Lin, H., Rzeszotarski, J.M.: Silva: Interactively assessing machine
learning fairness using causality. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI 2020, pp. 1–13, New York, NY, USA.
Association for Computing Machinery (2020)

https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper3.pdf
https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper3.pdf
https://arxiv.org/abs/2006.13985
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://spot.colorado.edu/~heathwoo/readings/ross.pdf
https://spot.colorado.edu/~heathwoo/readings/ross.pdf


Operationalising AI Ethics: Conducting
Socio-technical Assessment

Leila Methnani(B) , Mattias Brännström , and Andreas Theodorou(B)

Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{leila.methnani,mattias.brannstrom,andreas.theodorou}@umu.se

Abstract. Several high profile incidents that involve Artificial Intelli-
gence (AI) have captured public attention and increased demand for
regulation. Low public trust and attitudes towards AI reinforce the need
for concrete policy around its development and use. However, current
guidelines and standards rolled out by institutions globally are consid-
ered by many as high-level and open to interpretation, making them
difficult to put into practice. This paper presents ongoing research in
the field of Responsible AI and explores numerous methods of opera-
tionalising AI ethics. If AI is to be effectively regulated, it must not
be considered as a technology alone—AI is embedded in the fabric of
our societies and should thus be treated as a socio-technical system,
requiring multi-stakeholder involvement and employment of continuous
value-based methods of assessment. When putting guidelines and stan-
dards into practice, context is of critical importance. The methods and
frameworks presented in this paper emphasise this need and pave the
way towards operational AI ethics.

Keywords: AI ethics · Responsible AI · Socio-technical assessment

1 Introduction

The use of Artificial Intelligence (AI) is increasing ubiquity in our societies and
implies that it is reaching and impacting people in all corners of their daily lives.
We can turn to several incidents that involve the deployment of AI technology in
our societies that have resulted in harm to end users, e.g. minority groups who
continue to face obstacles in the job market as a result of the bias perpetuated by
AI-powered hiring algorithms [38], as well as involuntary bystanders, e.g. pedes-
trian deaths as a consequence of failed vision systems in automated vehicles [56].
Headlines like “Microsoft’s AI chatbot gets a crash course in racism from Twit-
ter” [26] or “Alexa, Can I Trust You?” [10] strike fear into their readers. These
reported incidents lead to lack of trust, which in turn results in the formulation
of a technological imaginary that influences the spread and acceptance of the
technology [41].

Narratives promoting fear and mistrust reinforce the need for concrete poli-
cies around AI; effective governance, which puts socio-ethical values at the centre
of any policy, is required to foster trust [55]. Yet, as regulatory bodies are trying
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to push for governance—including the Commission’s own “AI Act” [18]—there
is a constant debate on what AI actually is [44]. There is not even a consensus
on what constitutes ‘true’ AI or ‘dumb’ software. Drawn-out arguments on what
constitutes AI and what does not only incentivises complexity or lack of gov-
ernance and enables organisations to escape oversight [6]. While there is often
a mysticism that is associated with it, AI is no ‘magic abstraction’ [7]. It is a
technology researched, developed, and used by us for our own benefit. AI sys-
tems require code written by us, data produced by us, and machines designed
by us. An AI system is more than a technology alone; due to its embedding
and influence within societies, it needs to be understood as a socio-technical
ecosystem [16]. Establishing and maintaining human control over AI is always
a socio-technical problem. Technical solutions, in turn, can help keep track of
compliance with socio-ethical solutions.

A universal definition of AI is not even required for operationalising AI ethics,
but a common understanding of terms used in any policy amongst key stakehold-
ers certainly is. Yet, an abstraction gap exists between the high-level require-
ments offered by numerous ethics guidelines rolled out by institutions globally,
and the contexts for which they are to be applied [44]. The context is of critical
importance; consideration of the stakeholders, projects, and societies that the
system will be deployed into must be made throughout the design and develop-
ment process. Furthermore, how socio-ethical legal values are interpreted must
be clear and must be documented for reference. The process of operationalising
AI ethics is necessarily elaborate and continuous. As Dignum [15] describes, it
involves:

1. Ethics in Design; where development is influenced by socio-ethical issues.
2. Ethics by Design; where integration of ethical abilities as part of the behaviour

of artificial intelligent systems occurs.
3. Ethics for Design; where codes of conduct, standards, and certification pro-

cesses that ensure the integrity of developers and users are produced [15].

Responsible AI is not an afterthought; it should not be presented or promoted
as a checklist: ticked once and henceforth forgotten [44]. Issues of bias, discrim-
ination, and safety require overarching commitments and structured arrange-
ments from institutions. Trust in AI should be derived from the trust in the
entire socio-technical system that surrounds it. While there are various under-
standings of what constitutes AI, this paper aims to demonstrate to the reader
that progress towards adequate AI governance through socio-technical assess-
ment is achievable despite this, and paves the way towards the responsible use
of AI. This will be presented through the lens of an ACAI 2021 tutorial, which
shares the same title as this paper and was led by the authors. The Expected
Learning Outcomes (ELOs) of the tutorial were:

1. Understand core concepts and misconceptions related to Responsible AI
(RAI).

2. Gain knowledge about ongoing policy initiatives around AI.
3. Develop a practical grasp of why and how RAI is applied.
4. Explore ongoing research in the area of RAI.
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This paper follows the same flow as the tutorial: first, to achieve ELO 1, a
review of relevant background covering important terms and their definitions is
presented in Sect. 2.1, along with some issues of misaligned conceptions. Then,
to fulfill ELO 2, ideas of how to put ethics into practice are presented in Sect. 2.2
and Sect. 2.4. ELO 3 is targeted next, and illustrates these issues through the
introduction and discussion of the role-playing serious game of Protostrategos
in Sect. 3. Finally, to address ELO 4, we present additional tools for conduct-
ing continuous socio-technical assessment in Sect. 4; namely, the Responsible
Artificial INtelligence (RAIN) framework, and other methods that take similar
value-based approaches to operationalising AI ethics.

2 Background

2.1 What Is Responsible AI?

Before discussing what is meant by the term responsible AI, let us first consider
what is meant by AI. John McCarthy—who was part of the Dartmouth Confer-
ence where the term was coined in the 1950s—described Artificial Intelligence
as “the science and engineering of making intelligent machines”. Here, intelli-
gence is defined as “the computational part of the ability to achieve goals in
the world” [33]. Per McCarthy’s definition, a human, an advance robot such as
R2D21, and even a thermostat all possess some level of intelligence: they can all
be considered goal-seeking. This practical definition implies that intelligence is
judged by behaviour [13]. It is the ability to perform the appropriate action at
the appropriate time.

McCarthy highlights, however, that the relationship between the observer
and the system also plays a role. In particular, the level of intelligence of a system
is a function of how it is perceived, understood, or controlled by the observer.
For instance, Weizenbaum’s ELIZA programme—an early chatbot that simu-
lated conversation through pattern matching—was still perceived as human-like
and intelligent even after it was disclosed to users that they were interacting
with a computer programme. This was simply a result of their perception and
interpretation of the responses that ELIZA had offered. The users were said to
“contribute much to clothe ELIZA’s responses in vestments of plausibility.” [51].
These illusions are misrepresentations of the systems they are interacting with,
and can lead to mistrust, misuse, and/or disuse [45]. This extends to a mis-
representation of physical agents, onto which we often assign anthropomorphic
attributes, including gender-based stereotypes [19,39].

These misrepresentations are often sculpted by the depiction of AI in popular
media and science fiction, as social representation theory would suggest [25].
Most media are both responsible for and reinforced by the problematic term
‘an AI’, which is also worryingly used by scholars transitioning into the field.
AI is never an entity that is entirely separate from the human [14]. Presenting
the term in this way promotes the dystopian notion of ‘superintelligence’, i.e.

1 A fictional robot from the popular Star Wars franchise.
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that an AI system will become ‘smart enough’ to overthrow humanity, and runs
the risk of misleading the public into thinking it cannot be effectively regulated
or controlled, and that there is even an ‘ultimate’ algorithm to be discovered,
further fuelling the ‘AI Race’ narrative [46].

Such a race would be difficult to win with an evolving definition of AI.
McCarthy observed and described this phenomenon by simply stating: “as soon
as it works, no one calls it AI any more” [35]. The association of mysticism and
expectations with the ‘briefcase word’ intelligence results in us only classifying
opaque complex techniques as ‘intelligent’. Otherwise, like a magician whose
tricks have been revealed, an AI system that is simple enough to be understood
appears uninteresting, if not, unintelligent [58].

AI is always a product made by humans; an artefact designed by us and
deployed in our societies to serve a purpose. Humans, the designers of these AI
systems, are the moral agents; we cannot—and, arguably, should not—assign
this type of agency to the machine [5,43]. It is through this lens that we discuss
AI Ethics. While the term AI Ethics, like AI, has become an umbrella term for
many things–including existential crisis, robot rights, governance, and others—
we do not consider AI Ethics a new philosophical discipline. To clarify, we do
not deny that AI provides opportunities to discuss and test existing frameworks.
Instead, within the scope of this paper and its associated workshop, we consider
the field to focus on application and observation of existing ethical frameworks
within the socio-technical system that the AI system is a part of.

This implementation and assessment of ethical frameworks in AI requires
ethics in, by, and for design [15]. Ethics in design says that development is
influenced by socio-ethical legal issues. These are all specifications and values
that should be protected. Ethics by design advises the integration of ethical
abilities as part of behaviour of AI systems. Ethics for design promotes the code
of conducts, standards, and certification processes that ensure the integrity of
developers and users. Even without consensus on the definitions, interpretations
can be assessed as to whether they comply with social norms and with the law.
Ultimately, it is about the process, about the discourse and about maintaining
control.

It is worth noting that ethics does not equate to law, nor does each equate
to social norms [23]. While the latter two carry consequences when violated,
ethics imposes no sanctions; and while norms often carry social repercussions,
they do not result in legal liability. However, social accountability may lead to
boycotting and other indirect measures against someone’s actions if they are
deemed as unethical or to be violating social norms [3].

Responsible AI is about understanding and making explicit the tension
between the law, ethics, and social norms while also ensuring that our socio-
technical systems adhere to concrete requirements firmly established in those
three sources. As a Russian proverb suggests, “trust, but verify”. In respon-
sible AI, any compliance to socio-ethical legal values is audited and verified.
Most importantly, responsible AI is about how the different actors who interact,
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affect, and are affected by the AI system acknowledge their responsibility and,
if needed, accountability to any given outcome [16].

2.2 AI Governance

Building trust around AI systems is a necessity if the use of AI is to prosper
within societies. Developers, investors, users, and bystanders should be able to
trust that these systems perform as expected. Furthermore, the implications of
the technology, from development to deployment and beyond, falls within socio-
ethical legal specifications and values that should be protected. As a step in
this direction, legislative bodies such as the European Commission have drafted
and published strategies, policies and guidelines around AI and its trustworthy
development [12]. This global movement to govern AI systems stems from the
understanding that AI systems do not operate in isolation—they are embedded
in the societies within which they are developed and deployed, forming socio-
technical systems where the society, technology and organisation influence one
another [47].

To best understand the current landscape of ethical governance, one needs to
first comprehend the thread connecting ethical guidelines to regulation [55]. Eth-
ical guidelines are what we refer to as soft governance; i.e. non-binding rules that
are nonetheless provide some benefit to those following them. Guidelines, such
as codes of conduct, provide means for organisations to demonstrate their due
diligence and train personnel for their responsibilities. Standards, another type
of soft governance, offer specifications or methodological guidelines that have
been collectively agreed upon by a group of experts [42,55]. Following standards
also enables organisations to demonstrate due diligence, provide features to their
products, or better market their product or services. For example, specification
standards, e.g. IEEE 802.11 (WiFi) [21], allow cross-compatibility between prod-
ucts. Another example are safety specifications standards, e.g. ISO 13482:2014
for robots [28], which explicitly dictate safety related performance requirements
and help organisations to demonstrate the robustness of their solutions. Hard
governance is a legally enforceable policy, i.e. legislation.

At the time of the tutorial, there was no legislation specifically for AI, only
ongoing discussions related to the upcoming “AI Act” by the European Com-
mission [22]. On the other hand, there has been a growing number of standard-
isation efforts related to AI [11,53], e.g. the “IEEE Standard for Transparency
of Autonomous Systems” [27,54]. Still, the majority of existing policies related
to AI are ethical guidelines and high-level investment strategies by intergovern-
mental and governmental institutions—over 700 of such policies are tracked by
the OECD AI Observatory [37].

In a study conducted to compare and contrast various ethics guidelines and
principles published across the globe [29], a convergence around 5 principles was
identified: transparency, justice and fairness, non-maleficence, responsibility, and
privacy. Moreover, significant divergence was identified with regards to how these
principles are interpreted, what relevant issues, domains or actors are involved,
and how they should be operationalised [44]. Indeed, values are not static; they
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are interpreted differently across communities, cultures, and contexts. It is not
uncommon to observe different social circles endorsing the same values while
coupling them with different behaviours [31]. Consider, for instance, the value of
fairness: it can be perceived through the lens of equal opportunity (i.e. equity)
or through the lens of equal outcome (i.e. equality).

While no universal morality exists, it is not needed in order to make good
progress in the domain of AI ethics or in order to operationalise the principles
therein and to govern effectively [1]. What is more important is the development
of concrete methodologies for organisations to explicitly define and state their
values transparently for both their internal and external users. These interpreta-
tions can subsequently be assessed as to whether they comply with social norms
and with the law. Ultimately, it is about the process, about the discourse and
about maintaining control.

2.3 Transparency and Control

In order to validate system compliance with a set relevant values, a sensible
implementation of transparency is required. Properties like explainability are
often linked—or even complimentary—to transparent systems. To be considered
transparent, a system should expose its decision-making mechanism on-demand.
A transparent system should present accurate interpretations of its goals, pro-
cesses towards achieving goals, sensory inputs, and any unexpected behaviour
[45].

Certainly, such information offered by the system supports the principle of
human agency and oversight, the first of 7 requirements in the Ethics Guideline
for Trustworthy AI [24]. Human-in-the-loop is one mechanism used to promote
human oversight. It requires a human’s involvement at every step of the system’s
decision cycle. Human-on-the-loop, on the other hand, allows autonomous deci-
sion actions by the system, but requires a human to consistently monitor such
that manual intervention can be made at any step in the decision cycle. Human-
out-of-the-loop requires no human involvement, and the system is expected to
evaluate and execute decisions with full autonomy.

While these oversight mechanisms offer some level of human control, they
are insufficient for what is known as meaningful human control. In the discourse
around autonomous weapons and the ethical implications of their development,
the principle of meaningful human control is presented [34]. It is argued that
humans, not any computer or algorithm, must maintain control—and thus moral
responsibility—of any such decision making process. For human control to be
considered meaningful, the requirement of tracking and tracing must be fulfilled.
The tracking condition requires that the decision-making system can demon-
strate and respond to the human moral reasons relevant to the circumstance.
The tracing condition requires that the system’s actions and states can be traced
back to at least one human’s coherent moral understanding. That is, there is at
least one identifiable human along the chain of responsibility, from the design,
to programming, to operation, and finally system deployment, who is in the
position of understanding the system’s capabilities, the potential impacts, and
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legitimate moral responses to the system’s role within the context within which
it is deployed.

Both tracking and tracing offer transparency into the decision making pro-
cess. For systems with variable autonomy (VA), where autonomy can be adjusted
between fully manual to fully autonomous, this kind of transparency is not a perk
but rather a requirement for effective transfer of control. VA systems, by design,
promote meaningful human control [34]. For effective and responsible VA sys-
tems, roles and responsibilities must first be explicitly defined: who is responsible
for transferring control? Of what? To whom? And when? VA both requires and
ensures accountability, responsibility, and transparency. Overall, VA improves
the performance of human-machine teaming.

For human users, interaction with complex intelligent artefacts involves the
construction of mental models in attempts to understand and predict their
behaviour. For instance, equipping a reactive planning robot with transparency
into their action selection mechanism has been shown to aid users in their for-
mulation of more accurate mental models and thus their understanding of the
robot’s behaviour [59].

In another study conducted using virtual reality (VR) to simulate a version
of the trolley problem called “Slam the Brakes”, perceptions of moral decisions
in automated vehicles (AVs) was measured [52]. Participants were categorised
into three groups each corresponding to different conditions. In the first, partic-
ipants were informed that they will be driven in an AV and given no post-crash
explanation. The second condition involved a transparent AV; the participants
were given a post-crash explanation from the perspective of the vehicle as the
decision-maker. That is, explanations were formulated as “the self-driving car
made the decision on the basis that ... ”. In the final condition, participants are
told that they will be driven in a vehicle controlled by a human. However, there
was no “real human” driver at all—the vehicle was automated in all conditions
but this remained undisclosed to participants until the end of the study.

Interestingly, the key findings of this VR study showed that participants
put the least blame on the ‘human’ driver, which was qualified as the least
machine-like, medium blame to the opaque AV, which was qualified as “medium”
machine-like, and the most blame on the transparent AV, qualified as the most
machine-like. The increased attribution of moral responsibility is hypothesised
to be due to realisation that the action was determined based on social values.
What is suggested in the literature is that utilitarian action is more permissible—
expected even—when a robot is to take a decision [32].

One outcome of transparency is that it offers an opportunity for the users to
formulate a more accurate mental model of the AI artefact. Misunderstandings
may lead to anxiety, mistrust, fear, misuse, and disuse. It can also lead to user
self-doubt, questioning their own actions and competency with operating the
system as opposed to the system being flawed itself. With sufficient transparency
into the decision making mechanisms of the system, users can calibrate their trust
in it, and as a result make better decisions about how to operate it—or whether
they would like to operate it at all.
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2.4 The End Game: Accountability

While it is key, transparency is not the end goal; it is merely a tool to guide
control over the system. Instead, striving for responsibility and accountability is
the desired destination [8].

When we refer to responsibility we are concerned with the role of the humans
in the decision cycle of an AI system. Moreover, responsibility concerns itself with
the system’s ability to trace back to the human(s) who can be held responsible
and to account for any decision, error, or unexpected result; i.e. there exists a
chain of responsibility for any AI system [16].

Accountability is not only about punishment; it is about being answerable to
actions, whether that is good or bad. When it concerns system issues, however,
they must be addressed and action must be taken; the “threat” of legal liability
does indeed motivate organisations (and individuals) to demonstrate due dili-
gence. The Protostrategos case study, discussed next, demonstrates the need to
thoroughly consider policies, decisions, and systems together in order to exercise
due diligence.

3 Protostrategos

Protostrategos is a student-led Problem-Based Learning (PBL) activity. PBL is
a type of learning that encourages the critical analysis of real-world problems by
using student-led activities such as group discussions [57]. The use of problem-
based learning in STEM courses not only enhances the students’ knowledge, but
it also increases their motivation for continuing education and long-term learning
[30].

PBL activities do not focus on solutions themselves, but on the process of
coming up with them. In the case of Protostrategos, we use a purpose-made
case study of a fictional company called Protostrategos. The case study itself
us based on Princeton’s “Hiring by Machine” that explores the potential social,
ethical, and legal implications of deploying AI systems into the real world [50].
The Protostrategos case is not just a localisation of Princeton’s use case; it
adds various game mechanics to ensure that students are active learners. Most
specifically, Protostrategos can be seen as a serious game, i.e. a game developed
for educational purposes [36].

The use of a serious game makes the activity enjoyable while also empowering
the students to achieve their learning outcomes. Participants must thoroughly
analyse and discuss the presented fictional scenario from various stakeholder
viewpoints as they undertake a role (e.g. CTO, system developer, and others)
throughout the exercise. In our tutorial, the role-playing mechanics of Protostrat-
egos enable students to understand the contextualised nature of ethical socio-
legal values as they represent different perspectives during the discussions. Fur-
thermore, by adopting different stakeholder roles and considering their respective
values, participants are encouraged to explore the complexities of—and most
importantly the need for—AI assessment. In addition, various ‘self-reflection’
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and ‘discussion’ points are distributed throughout the exercise; serving as check-
points between the key tasks and offering opportunities for explicit knowledge
transfer.

3.1 Scenario Overview

The scene is set in Sweden, where a group of army veterans aim to extend their
civic duty and establish a non-profit technology company called Protostrategos.
This company specialises in providing software products for Non-Governmental
Organisations (NGOs) across the EU.

Protostrategos has a very homogeneous pool of employees: ex-military per-
sonnel. However, as it begins to attract more business, military experience is no
longer a pre-requisite for working there. To aid them in their search for new tal-
ent, the developers at Protostrategos built an automated hiring system named
THEMIS. The system passed internal testing for its candidacy to become a fully-
fledged product offered by the company. In light of ongoing narratives related
to AI system failures and to preserve their image as a trustworthy company,
Protostrategos have decided to extend this process with an added ‘ethics check’
stage. A dedicated task force was assembled to investigate the system behaviour
and draft a policy to guide the development and deployment for clients.

Participants are invited to select a role to play on this task force, and assume
their position throughout discussion. The roles assigned in this exercise include
both internal and external stakeholders. The Chief Technical Officer (CTO) is
one example of an internal stakeholder role. The CTO is one of the most senior
individuals in the company with both managerial and technical expertise. This
role must align the company’s technology resources with the organisation’s short
and long-term goals and may be held criminally responsible for actions taken
by the company. The Citizen activist(s) advocating for underrepresented groups
is an example of an external stakeholder. This role cares for the requirements
directly related to the rights of underrepresented and marginalised groups. The
activist does not use or otherwise benefit from the system, but represents a group
of people that may be positively or negatively impacted by the system.

As a first task, the internal and external stakeholders must familiarise them-
selves with the “Ethics Guidelines for Trustworthy AI,” which serves as a spring-
board into the discussion. Together, the stakeholders must consider which of the
7 requirements are relevant to the case and rank them in order of importance.
This should be complimented with an explanation for the presented structure
as well as the common vocabulary this ranking relies on. The vocabulary forms
the foundation upon which the agreed structure can be built.

Next, the task force is to perform a preliminary assessment of the system
with the help of either the “Assessment List for Trustworthy AI” released by the
Commission’s High-level Expert Group in AI [24] or the “Abbreviated Assess-
ment List” released by AI4EU [17]. Each has its strengths and weaknesses. The
European Commission presents a thorough list of more than one hundred ques-
tions, but includes a binary assessment that may be perceived as offering too
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little value. The abbreviated list offers a perhaps more useful assessment mea-
sure of ‘maturity levels’ to demonstrate varying compliance levels to the values
in focus, but may still be perceived as too short to cover all risks. Regardless of
the assessment checklist the group selects, the potential for adverse effects will
remain, and the development of this fictional scenario is intended to demonstrate
exactly this.

The scenario unfolds to reveal a concerning incident: one female applicant,
Helena, was quickly rejected after applying for a well-suited position at Proto-
strategos. Upon her request for feedback, human resources manually reviewed her
application and could not find any clear or reasonable explanation for the auto-
mated rejection. Upon face value, this application should have made it through
to the next stage of the hiring process.

A call for further investigation was made over concerns that the system dis-
criminated against Helena due to her physical disability. Helena was a wheel-
chair user, as were many veterans employed by the company. In fact, the devel-
opers designed the system with the intention of avoiding discrimination against
protected groups; the team ensured any text relating to disabilities was excluded
from the machine learning algorithm’s input. The internal review revealed that
it was Helena’s lack of sports interest that resulted in her early rejection. As it
turned out, THEMIS had learned to associate a history of sports with a ‘good
fit’ for the company. Since Helena did not explicitly express the same interest in
sports that the veterans at Protostrategos had expressed, she was subjected to
a rejection by the automated system.

3.2 Students’ Reflections

Helena’s scenario demonstrates how emerging behaviours of an AI system can
be difficult to predict. Is THEMIS discriminating against people with physical
disabilities? Some participants brought forward arguments against this claim,
emphasising that the system is not capable of discriminating; it is not sentient
(nor intelligent, by some points of view). Here, the understanding of the term
‘discriminatory’ is in the deliberate act of unjustly distinguishing between groups
of people and not in the technical sense of learning a decision boundary between
classes in a machine learning model. The system has no interest in discriminating
in this sense; it has simply learned a strong correlation based upon the data that
it was fed during training. From this perspective, the discrimination is dealt by
the employees of Protostrategos, for they have designed the system in a way that
puts certain groups at a disadvantage.

Another argument that was brought forward is in support of Protostrate-
gos’ desire to preserve the status quo when it comes to company culture—they
have remained transparent about seeking a certain demographic of employees
for homogeneity. Does the company have any moral obligation or duty to build
a more diverse workforce? Anti-discrimination laws in Europe require organisa-
tions to provide equal opportunities by not considering specific protected char-
acteristics as a disadvantage. In Sweden, physical disabilities is one such char-
acteristic protected by law. Indeed, if there was direct consideration of Helena’s
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disability status in the system’s decision-making process, Protostrategos would
have violated Swedish law. THEMIS, however, used ‘redundant encodings’ in
the training data that inferred such attributes. This is a typical example of how
simply ‘removing’ a feature that is fed into a model is an insufficient way of
avoiding discrimination. The model may very well learn to discriminate through
proxy variables.

This stance argues that the model merely extends the human biases that
already exist at Protostrategos. One might question whether the outcome would
have differed at all if the process were not automated. It is certainly plausible that
a hiring officer could relate to select applicants and feel compelled to favour their
resumes over others. Human minds are black boxes too; one cannot simply peer
into the mind of a Protostrategos employee and trace every step of the decision
making process. Still, disinterest in sports is not a protected characteristic under
Swedish law, and this is the stance that the company lawyers are ready to defend.
Recall that ethics does not equate to law; while Protostrategos may be within
legal compliance, this does not guarantee ethical compliance, nor would the
reverse be true.

Participants were encouraged to consider further how one might address hid-
den biases using both technical (e.g. sanitising data) and socio-legal solutions.
The task force is granted even more control in light of this controversy. As a
group, they are to discuss what should be done about future developments.
Should system deployment be rolled back? Should the system remain online but
be used only for internal hires? Should it rather be sold to an external customer?
To conclude the exercise, participants were asked to consider whether the rank-
ing of their requirements and their interpretations of the various terms have
shifted after learning about Helena’s incident. After all, these definitions and
interpretations are flexible and are likely to change in light of new information.
This is as it should be. Moreover, the assessment conducted prior to the incident
provides no guarantee of ‘catching’ every issue that might occur when the sys-
tem is deployed into society. While it has performed well on an internal training
data set, this set does not necessarily reflect the real world and cannot capture
all its complexities. Countermeasures must be in place to account for incidents
like this. From each stakeholder’s point of view, the group was further prompted
to discuss how trust in THEMIS can be rebuilt. Again, this requires discussion,
agreement, and subsequent action as a continuous and iterative process.

The emphasis that was made throughout this exercise is the need for struc-
tured discourse and contextualising the problem at hand. The relevant stakehold-
ers as well as the details of the application domain will influence which values
are of prioritised and discussed. The definitions are of particular importance;
they offer a foundation upon which more concrete design requirements can be
constructed. In this exercise, the HLEG’s 7 requirements for Trustworthy AI
were suggested as a starting point, but any relevant and clearly defined princi-
ple or value can be brought to the discussion. Furthermore, the Commission’s
assessment list or AI4EU abbreviated assessment list were offered as tools to
help guide the task force towards an agreed solution.
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However, such checklists are often not enough to operationalise AI ethics.
There is a glaring gap between the high-level values presented across various
guidelines and the concrete contexts to which they might apply. This makes it
particularly difficult to select a level of abstraction. For some it is too specific
for others too vague, too generalised and may encompass any software, not just
AI. Responsible AI Norms (RAIN) framework and tool, which is discussed next,
presents a value-driven solution to fill this gap through socio-technical assess-
ment.

4 Socio-ethical Values in Design and Development

RAIN is a structured framework established to enable organisations to move from
high-level abstract values towards requirements that can be operationalised [9].
RAIN is more than just a methodology. Beyond this, it offers a concrete multi-
stakeholder assessment framework, together with relevant tools to enable the
audit and compliance validation of existing and upcoming AI systems. Both
the methodology and assessment frameworks are being field tested by industrial
partners and key stakeholders in the Nordic countries.

RAIN derives its theoretical basis from Value-Sensitive Design (VSD) [20],
a methodology applied to the design of technical systems with an emphasis on
value integration. VSD is an iterative process that begins with the articulation of
high-level values and stakeholder perspectives, which are then intersected with
technological contexts. To map values onto more tangible design requirements, a
hierarchy of values can be constructed, where an intermediate layer of sub-norms
are embedded and hold the structure together with the specification and for the
sake of relation [40]. VSD also supports the identification of value conflicts.
As a continuous process, it aims to be thorough and manual to foster fruitful
discussion.

4.1 The Glass-Box Approach

An analysis that derives from VSD is employed in the glass-box approach [1],
a versatile governance solution for ensuring an opaque system adheres to socio-
ethical legal values. While opacity via the ‘black box’ can sometimes be unavoid-
able for technical, economic, or social reasons [2], adequate governance remains
a necessity. This two-stage approach places a ‘glass box’ around the black box
by mapping moral values onto explicit and verifiable norms that constrain and
direct inputs and outputs of the systems. Adhering to the value in a specified con-
text corresponds to these inputs and outputs remaining within the boundaries
of the glass box. The interpretation stage is a structured process that trans-
lates abstract values into explicit norms and system design requirements. The
observation stage involves observing the outputs produced by various inputs and
approximating compliance with the list of requirements produced in the inter-
pretation stage. These two stages are tethered in that they inform each other’s
values and result in system tuning. Overall, a link is established between testable
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requirements and high-level values. Still, this approach is intentionally manual
in the interpretation step to reap the benefits of thorough discussion.

4.2 Interrogating the Black Box

Another approach is to interrogate the black box [49]. This process involves infor-
mation seeking dialogues with a system to promote transparency. The auditing
system—the ‘investigator’—asks the AI system—the ‘suspect’—a series of ques-
tions. Using argumentation semantics, the auditor can validate the consistency in
these queries. Recall that we are not only concerned with auditing the intelligent
system itself, but rather the larger socio-technical system as a whole. The glass-
box approach and interrogating the black box do exactly this; these continuous
processes validate a system’s adherence to norms.

4.3 RAIN

RAIN, as a continuous and broad assessment tool, takes into consideration the
wider socio-technical process that shapes the development, deployment and use
of the system as a whole. It employs a reusable hierarchy of values that can
be applied across organisations, where one might find different high-level values,
different technical contexts, and a different suite of stakeholders. This hierarchy is
derived from existing regulatory frameworks, standards, and policies by breaking
them down by context features (Fig. 1). As a software, RAIN visualises, manages
and tracks ethical and legal requirements for the development of responsible AI
software with regards to this constructed hierarchy.

To integrate, monitor and evaluate AI software from an ethical and policy-
compliance perspective, RAIN uses three operational layers. The setup layer
involves the identification of the socio-technical context, which includes roles
and responsibilities of the organisation, intention and function of the software,
and known use-case risks. Using this information, the RAIN hierarchy finds the
intersections between values, stakeholder perspectives, and identified context
features. These intersections, RAI Norms, put focus on specific challenges and
risks a given context feature presents given the policy values and stakeholder
perspectives. The assessment layer assesses how well these risks are handled and
produces scores on each RAI Norm on multiple levels of maturity ranging from
1 to 5. The assessment requirements also act as a guide for particular design fea-
tures which can help resolve identified problems. The final results layer combine
these partial maturity rating results on to any high-level value or stakeholder.
Results can also be directly mapped back to the parts of external policies from
which the hierarchy was derived, allowing RAIN to serve as a context-aware
interface to more abstract policies or assessments.

The RAIN tool is intended to support companies like Protostrategos in their
due diligence around AI projects. The focus is on contextualising values and
translating them into tangible design requirements, guided by assessment scores.
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Fig. 1. Example value breakdown in the Protostrategos case by interpreting fairness
from the perspective of the job applicant, and further decompose it into requirements

5 Conclusion

While Protostrategos presents a fictional case, it is inspired by many real-world
examples of similar incidents. These examples illuminate the influence AI sys-
tems can have on our society. AI systems are always a socio-technical system
that reach people in all corners of their lives. This is why we need AI ethics.

Various understandings of what the term ‘AI’ means can result in miscon-
ceptions about what it means to practice AI ethics. It is therefore imperative to
agree that we cannot assign any moral agency to an AI system. Rather, it is the
human designers, developers and users who are the moral agents and who are to
operationalise ethics. Ensuring system compliance to various ethical principles
is a challenge when system limitations are not always clear, neither to the users
nor the developers. In response to increasing public demand for trustworthy AI,
various guidelines and standards have been produced to help inform the devel-
opment AI systems, within which the principle of transparency plays a pivotal
role. Transparency is the vector towards accountability and responsibility, where
the human’s role is of focus in the assessment of system behaviour.

Certainly, ethics is not an afterthought and ethical compliance should be
assessed. Assessment, however, should not be reduced down to a checklist based
on high-level guidelines that are completed once and then forgotten. When
putting guidelines and standards into practice, context is of critical importance.
Throughout the design and development process, the stakeholders, projects, and
societies that the system will be deployed into must be carefully considered. How
any socio-ethical legal value is interpreted must be clear and must be documented
for reference. The methods and frameworks presented in this paper emphasise
this need and pave the way towards operational AI ethics—a lengthy and often
complex process about ethics in, by, and for design.

6 Further Reading

For further reading on Responsible AI, we recommend the book entitled
“Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible
Way” by Dignum [16].
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The following are recommended articles around putting governance into prac-
tice:

– IEEE P7001: A Proposed Standard on Transparency [54]
– Governance by Glass-Box [1]
– Translating Values into Design Requirements [40]
– Contestable Black Boxes [48]

Relevant readings also include the following whitepapers or analyses of the
global governance landscape:

– Let Me Take Over: Variable Autonomy for Meaningful Human Control [34]
– Reflections on the EU’s AI Act and How We Could Make It Even Better [22]
– Standards for AI Governance: International Standards to Enable Global

Coordination in AI Research & Development [11]
– Ethical Governance is Essential to Building Trust in Robotics [55]
– Standardizing Ethical Design for Artificial Intelligence and Autonomous Sys-

tems [4]

In addition, the reader is advised to review the references for this article.
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Abstract. In this chapter we look at science fiction from a perspective
that goes beyond pure entertainment. Such literary gender can play an
important role in bringing science closer to society by helping to popu-
larize scientific knowledge and discoveries while engaging the public in
debates which, in turn, can help direct scientific development towards
building a better future for all. Written based on a tutorial given by the
first author at ACAI 2021, this chapter addresses, in its first part, how
science and science fiction can inspire each other and, in its second part,
how science fiction can be used as an educational tool in teaching ethics
of AI and robotics. Each of the two parts is supplemented with sections
containing the questions asked by the audience during the tutorial as
well as the provided answers.
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1 Learning Objectives

– Familiarize the audience with cases of mutual inspiration between science and
fiction, as well as initiatives to promote joint work in multidisciplinary teams.

– Increase awareness of new ethics issues raised by digital technologies, in par-
ticular Artificial Intelligence and Robotics.

– Learn about ways in which techno-ethics has been incorporated in engineering
and computer science university degrees.

– Get to know recent science fiction literary works that have been used (or can
be used) to teach techno-ethics and trigger debate.
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– Providing the attendants with a hands-on experience of the teacher’s guide
and presentation accompanying the novel The Vestigial Heart, so as to enable
them to teach a course, some sessions or just trigger debate on “Ethics in AI
and Robotics” using these free-of-charge ancillary materials [1].

2 Science and Fiction: Mutual Inspiration

The mutual inspiration between science and fiction is now more apparent than
ever, perhaps due to the acceleration of scientific progress in recent decades and
the emergence of digital technologies, which seem to have installed us in a fantasy
future. Although only a few of us, as William Gibson, the father of Cyberpunk,
said in an interview: “The future is here, but it is unevenly distributed.” Fiction
can also be inspiring in this regard, both by promoting the critical thinking
needed to avoid dystopian risks and by guiding scientific research with an ethical
perspective that leads us to a more equitable and sustainable future.

Just take a look at today’s series, movies and narrative to see the growing
presence of science fiction, and how recent scientific discoveries and technological
innovations are the seed of most plots. There is no doubt that science is now a
great source of inspiration for fiction. Every time science makes a discovery that
revolutionizes our view of things, science fiction takes the idea and expresses it
to the last detail. The splendid Black Mirror series is a good example of this:
each chapter takes a digital technology, such as virtual reality, brain implants,
social media, learning avatars or online games, and develops it often to the most
dramatic extreme. The series is a true masterpiece, with a great ability to raise
awareness and generate excellent debate.

And vice versa, there are many examples of science fiction inspiring science,
from Jules Verne’s “Twenty Thousand Leagues Under the Sea” to “Star Trek”
with gadgets like the communicator, the forerunner of the mobile phone, not to
mention robots of all kinds that have filled the imagination of past generations
and have now become a reality even in the most complex cases such as robots
with humanoid physiognomy. The list goes on and on, but perhaps it is worth
noting how much space exploration owes to dreamers who imagined what might
be on the neighboring planets.

The more we discover about our universe, the more fiction we write; the
more fiction we write, the more inspiration there is for scientists. This is the
fruitful feedback loop that we would like everyone to share, as adding the ethi-
cal ingredient would lead research, technology deployment and innovation to a
deeper knowledge not only of what surrounds us, but also of our place in this
uncertain future, in which we would like to make utopias possible such as ‘evenly
distributing’ technological resources as suggested by Gibson.

3 Fostering the Confluence of Technoscientists
and Writers/Artists

Many initiatives to put in contact SF writers and filmmakers with scientists
and technology developers have emerged in recent years to foster the aforemen-
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tioned feedback loop between science and fiction. Besides joint workshops, inter-
disciplinary research projects, exhibitions and performances, even top scientific
journals have edited special issues devoted to SF inspiration.

A pioneer was the prestigious journal Nature, which to commemorate the
fiftieth anniversary of the hypothesis of Hugh Everett III about parallel uni-
verses, published a volume entitled Many Worlds [2] containing articles from
both researchers in quantum mechanics and SF writers. Its introduction states
very clearly what role SF can play in anticipating the benefits and risks of sci-
entific development: “Serious science fiction takes science seriously. [...] Science
fiction does not tell us what the future will bring, but at its best it helps us
understand what the future will feel like, and how we might feel when one way
of looking at the world is overtaken by another.”

Among other similar initiatives, MIT Technology Review publishes annually
a volume entitled Twelve Tomorrows consisting of science fiction stories about
different technologies, and Intel promoted The Tomorrow Project compiling four
short stories about their products projected into the future. Even MIT Press is
recently publishing science fiction stories to teach economics, artificial intelli-
gence, robotics and roboethics.

We can thus conclude that science is also beginning to take science fiction
seriously.

Let us mention another bridge that has been established between science,
technology and science fiction. Neal Stephenson, a renowned science fiction
writer, gave a talk entitled “Innovation starvation” [3], where he claimed that
scientists had lost imagination after the big challenges of the microprocessor and
the space exploration missions, and that they desperately needed imagination
from science fiction writers. He said so in front of the Chair of Arizona State
University, who took the challenge and created the Center for Science and the
Imagination [4], which hosts interdisciplinary teams of artists and scientists to
tackle very bold ideas, projects that may not seem feasible today, but they give
them a try.

4 New Ethics Issues Raised by Artificial Intelligence

Working on assistive robotics [5], which entails a lot of AI-based human-robot
interaction, has made us reflect about ethics and the social implications of the
work we do. Many of the issues to be addressed concern programs that learn. As
a simple example, some years ago Microsoft placed the Tay chatbot in Twitter to
have regular conversations with people and, after only 16 h, it had to be removed
because it had turned nasty, racist, sexist and it insulted everyone. This tells us
that our interactions in the Internet can be learned by this type of programs
that learn, and we should be very careful, so the responsibility is no longer only
at the programmer side, it is also at the users side.

You may also have heard that this type of learning programs are prone to
biases. Nowadays deep learning is trained with big data, which may have the
biases inherent to historical records. There is a famous case of the judicial system
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in the United States that used a program to determine the probability of recidi-
vism of prisoners and, since it was trained with historical data, it predicted that
Afro Americans would recidive more than white people. This is what statistically
happened in the past. Biases are in the data, in the history, in our prejudices, not
in the learning algorithms themselves. Therefore, it is very important to clean
up big data before training the algorithms.

Many of these issues are new, emerging now due to the spreading of AI appli-
cations. Another one is related to webs that offer to remove all our interventions
in Internet, such as the web called Suicide Machine [6]. You know this cannot
be entirely done: some posts can be at least hidden in platforms like Facebook
or Twitter, but all the things that were downloaded by particular users to their
computers cannot be removed, thus we should be very careful of what we put
in these social networks and webs. And there is also the opposite: webs that
offer virtual immortality. How? By compiling all our interventions in the net; for
instance, all the likes we place, the things we buy, the movies, the photographs,
who we interact with, our opinions, etc. are there and configure an avatar of
us. They offer this avatar, first when you are alive just to answer mail for you,
but for people that die, they offer it also to their families, saying that they can
continue interacting with the dead relative. This is also plotted in an episode of
the series we were mentioning at the beginning, Black Mirror. But it happens
also in reality, there are many, up to four at least, webs that offer this virtual
immortality [7–10]. Things are changing quickly and we must be aware of all
this.

Some other issues raised by AI and social robotics were shared with other
technologies in the past. For instance, the incidence on the job market is not new,
since in the industrial revolution some tasks or jobs were automated and this
had implications for people. Likewise, legal liability, privacy and social divides
are not new issues. What is new about AI and all these new digital technolo-
gies? That these programs enter domains that were thought to be just human,
like communication, feelings and relationships, and decision making. Some of
these programs, for instance in the medical area, may make decisions for us and
this should be regulated. Moreover, they may intervene in our feelings and rela-
tionships; we get attached to these devices that help us so much and may even
have a human or quasi-human appearance. Implants and human enhancement
through technology raise also many questions, and people are debating a lot
about bioconservatism, transhumans and posthumans.

In sum, the field of techno-ethics appeared already some years ago because
the AI community and the robotics community are really very worried about all
these issues, not to mention military applications. Techno-ethics is a subfield of
applied ethics studying both the positive and negative implications of robotics
and AI for individuals and society. And it has two branches: one is human
ethics applied to robotics and AI, where the history of philosophical thinking
about ethics can be applied and some conclusions be drawn for these new issues
that are appearing. And a second, new branch is that some codes of ethics are
being embedded in the robots and programs themselves, what is termed machine



326 C. Torras and L. G. Ludescher

ethics. There are many research groups working on values to be introduced in
the programs so that there are some red lines that these programs cannot cross.

Let us talk just a bit about organisms, institutions and professional societies
that are putting in place regulations and standards for these new issues that are
appearing. For instance, the European Parliament launched the “Civil law rules
on robotics”1 four years ago already, which are very general principles derived
from human rights. All regulations we will mention are available on the Internet.
Specifically for AI, the high-level expert group on AI issued a draft on “Ethics
guidelines for trustworthy AI”2. It is very informative, much more detailed than
the aforementioned rules for robotics, and very handy for people working in this
area of artificial intelligence.

There are also several networks and AI projects that have also issued some
ethics guidelines. The Standards Association within the IEEE, the Institute
of Electrical and Electronics Engineers, has released the document “Ethically
Aligned Design”3 that covers 12 areas in which robots and intelligent systems
are being applied, for instance at schools, in the workplaces, the military also,
etc. This is a well developed and very informative document, whose reading for
specific issues we recommend very much.

5 Introducing Techno-Ethics in the Curricula

Complementary to regulation is ethics education at all levels, from primary
school, to high-school, university and the general citizenship. Here we will focus
on introducing techno-ethics in the curricula of technological degrees, and espe-
cially teaching it through science fiction narrative. Since several years ago, one
of the 18 knowledge areas in the IEEE ACM Computer Science curriculum4 is
“social issues and professional practice”, that includes courses on professional
ethics, technology and society, and the like.

Barbara Grosz, a professor in computer science at Harvard University, says
that “by making ethical reasoning a central element in the curriculum, students
can learn to think not only about what technology they could create, but also
whether they should create that technology” [11], thus making students aware
of the implications of creating specific technologies. And this type of courses
is taught now not just in the US, but also in Europe and in several universi-
ties worldwide. They were usually taught using philosophical textbooks, which
proved to be a bit too abstract for technology students, so more and more pro-
fessors and teachers are using classical science fiction readings in these courses.

1 https://www.europarl.europa.eu/RegData/etudes/STUD/2016/571379/IPOL STU
(2016)571379 EN.pdf.

2 https://data.europa.eu/doi/10.2759/346720.
3 https://standards.ieee.org/wp-content/uploads/import/documents/other/ead v2.
pdf.

4 https://www.acm.org/binaries/content/assets/education/curricula-recommendatio
ns/cc2020.pdf.

https://www.europarl.europa.eu/RegData/etudes/STUD/2016/571379/IPOL_STU(2016)571379_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2016/571379/IPOL_STU(2016)571379_EN.pdf
https://data.europa.eu/doi/10.2759/346720
https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_v2.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_v2.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
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6 Science Fiction Narrative Engages Technology Students

Neal Stephenson, whom we mentioned earlier, advocates for the use of science
fiction to anticipate future scenarios with ethics implications, and he says that
“what science fiction stories can do better than almost anything else is to provide
not just an idea for some specific technical innovation, but also to supply a coher-
ent picture of that innovation being integrated into a society, into an economy,
and into people’s lives” [3], therefore drawing scenarios that permit imagining
and discussing about the good and bad aspects of these new technologies.

Judy Goldsmith, who is a professor of computer science at Kentucky Uni-
versity, has been teaching a techno-ethics course using science fiction for seven
years already, and she collected her experiences in a very nice paper [12]. One of
her conclusions is that “using science fiction to teach ethics allows students to
safely discuss and reason about difficult and emotionally charged issues without
making the discussion personal”.

Then, what type of classic science fiction stories is she and other profes-
sors using? Basically, classical works by Isaac Asimov, that anticipated robot
nannies, by Philip K. Dick and Mary Shelley, anticipating androids, humanoid
robots, and E.T.A. Hoffman, anticipating robot companions, robot nannies, and
so on. But these are works from the last century, and nowadays teachers are pro-
gressively using more up-to-date, recent science fiction novels and short stories
to exemplify future situations, since those depicted in last-century narrative are
almost present, if not already past.

Next we mention some novels that we like and recommend, which raise a lot
of questions that can foster debate on techno-ethics (Fig. 1). One is The Windup
Girl by Paolo Bacigalupi, in which a robot that has been designed to serve, when
she (because it’s a female robot) is worn out and discarded, becomes aware of
her having been designed specifically for this purpose and reflects on the issues
this raises for and around her.

Ian McEwan, a very renowned writer, recently wrote the novel Machines
Like Me. Observe the ambiguity of the title, it can be that machines like the
person or that machines are like the person. This book raises some issues that
are very up to date; for example, who is allowed to initially configure a robot
or a learning application for their own purposes, in this case at home. There
are several members in the family and each has their own goals and preferences,
some of which might be conflicting. Another question is who is entitled to shut
the robot or program down when it does something that the current user or
someone else doesn’t like.

The short-story writer Ted Chiang has become very famous after publishing
just two compilations of stories, namely The Story of Your Life and Exhalation.
One of the stories included in the latter is The Life Cycle of Software Objects,
that deals with software pets, their evolution and the relationship between these
pets and their users. Without going into details for each of the books in Fig. 1,
we suggest that you have a look at them because their stories deal also with this
type of topics.
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Fig. 1. Examples of fiction narrative that can be used to trigger debate on techno-
ethics.

As mentioned earlier, MIT press is becoming very interested in publishing
science fiction narrative that helps teach courses on techno-ethics, because there
is a shortage of that type of materials. For instance, not long ago they published
Robot Futures by Illah Nourbakhsh, who is a professor in computer science at
Carnegie-Mellon University, and he teaches a course based on these short stories.
Along this line, MIT Press offered to translate my novel, originally written in
Catalan and entitled La Mutació Sentimental (whose literal English translation
would be “The Sentimental Mutation”) and published it with the title The
Vestigial Heart, together with ancillary materials to teach a course on “Ethics
in social robotics and AI.

This course and materials will be described in the second part of the tutorial,
but before let us open for questions, comments and a bit of debate.

7 Question Answering - First Round

Question from Audience: I have the feeling that sometimes series like ‘Black
Mirror’, for example, instead of making people think about some issues, in some
way they normalize some dystopian future, and I don’t know if you have some
thoughts on this or some hints.
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Carme’s Answer: This is a very nice and relevant question, since it is true that
most science fiction narratives are dystopias, not precisely utopias. But I would
say that authors who write these dystopias do it because they are optimistic.
Why are they optimistic? Because they raise these issues to make people aware
of what may happen, and they are optimistic in the sense that they think people
can manage to change the course of history towards more utopian futures, so
that they can somehow take measures to avoid bad uses of technology and head
towards good futures instead. You may say this is turning things upside down
somehow, but not, I really believe this, I myself wrote this book, The Vestigial
Heart, which you can interpret that is a dystopia.

I will say a bit about the plot because it will come out in the second part of
the tutorial. It’s about a 13 years old girl, from our times, who has a terminal
illness and her parents decide to ‘cryogenize’ her, meaning to frozen her somehow.
She wakes up 100 years from now and is adopted by a mother of that future,
where each person has a personal assistant, that is a robot, and where several
things in the minds of people have changed, have evolved, for instance some
feelings, some emotions have dried out, have disappeared, and other capacities
have emerged. This girl of course remembers very well her biological parents,
her teachers, everyone in her past life, and it’s a big contrast for her in face of
the new society, with her new mother and teachers, and so on. So, you can think
that this is a dystopia, and it is, because she has a bad time at the beginning
in this future society until other things happen as the plot develops. But I
wrote it precisely because I’m optimistic, and I think we can orient our research
towards what can be more beneficial to society. I think in general the research
community is oriented to try to increase the well-being of people, to remove or
avoid discrimination, to try to close digital gaps, and so on, but sometimes they
are not aware of the implications.

Thus, I wrote that novel, about 13 years ago, and also other novels afterwards,
first to reflect myself on what type of research I would like to pursue with my
group. We have group discussions regularly, once a month, about what type of
projects we would like to develop. And I hope that science fiction and these
dystopias can be useful in this way of picturing and making people aware that
the technology they are devising will shape humanity, will shape the way we
will become, and in this sense I think dystopias are written by optimists, as
I mentioned. But it’s very important to accompany, not just leave students or
general public watch and greet these dystopias without reflecting together with
them about the consequences. I really like to use science fiction narrative to
raise awareness, not just as an entertainment and to give scary views of what
the future may look like.

I hope to have answered your question, which is very pertinent, since it is
true that this type of dystopias attracts people, readers and movie watchers
more than happy utopias, which are perhaps less exciting, but this is something
we have to go with, that we cannot remedy, and the media sometimes amplify
these dangerous futures to get larger audiences.
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Question from Audience: I just read the ‘I, Robot’ series and a lot of these
stories that take place in those far away space stations or something that’s clearly
not possible today, so do you think it is more complicated to read those as an
ethical exercise and then transfer them to the world as it is today? Does the fact
that the setting is so far in the future make it more complicated to actually use
it as a useful exercise rather than just some story in the future, especially in
teaching, if you’re using it as teaching material?

Carme’s Answer: Well, I like better the type of science fiction that amplifies
the problems we have in the current society, in the current world. Not so much
these space operas that do not have much contact with our reality. I’m more
in favor of social science fiction, like this Black Mirror series I was mentioning,
which takes a technology that is available today and maybe enhances it a lot to
extremes, but that amplifies essentially problems that are now embryonic, that
are really in a seed nowadays. Anyway, I will later explain an experience I had
recently in which several writers were contacted by a publisher to write some
short stories based on Mars. Well, now there are people that go to the space for
tourism and things like that, and we were writing stories based on Mars, but
stories that could happen in a new settlement today and deal with the needs
these people would have. For instance, I wrote about robot companions in Mars,
and this is not space opera, it is another type of amplification, as I mentioned,
of things that happen here on Earth, but in another society that is starting
from scratch, so with new politics, new social organization, new everything.
This permits imagining other worlds, another type of relations with technology.
I’m in favor of this, it is not many years into the future, but just now going
to the Moon and setting up a new society. I like very much these simulation
strategies within groups to hypothesize futures that could happen, those that
we would like to happen and others that we would like to avoid. But I agree
that some of these stories in the very distant future are not really very relevant
to the problems ethics today wants to address and tackle. So, we have to choose
somehow.

Question from Audience: my question is about user acceptance, how do you
implement that? Based on your research on assistive robotics and the way science
fiction has amplified possible risks, how do you consider user acceptance in this
context?

Carme’s Answer: Well, this is one of the topics of the materials I have devel-
oped, acceptance of robots by people, and it is very important for the type
of research we are doing. As you saw, we do a lot of human-robot interaction
and sometimes with people with disabilities. For instance, this experience I told
before about a robot supplying cognitive training to people with mild cognitive
disabilities, that we performed during the pandemic, taught us a lot about this
acceptance. We were a bit hesitant that our robots could scare these people, or
that they would just refuse to interact with them because they were strange or
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things that they were not used to interact with. And they were elderly people,
more than 70 years old with mild disability. So, it was something we thought
could be difficult, and it was just the other way around. Actually, we really
struggled to make those robots very friendly, they have a face with cartoon-like
traits and have a repertoire of expressions of consent, engagement, happiness,
and so on. We tried to make them as engaging as possible and it was a suc-
cess in the sense that the patients wanted to interact more and they were not
scared at all. Maybe this was favored because they had been confined for several
months, not interacting, and this was an activity that attracted them a lot when
they could get out and go to the Alzheimer Foundation and interact with these
robots. Thus, we think that if we struggle to make these robots friendly and
very respectful to people, the acceptance would be high. But, as I said, it is an
important topic many studies have been touching upon, as will appear in the
next section.

8 Plotting, Writing and Teaching with The Vestigial
Heart

Now let’s come to the second part of the tutorial, in which we will explain
how to teach ethics using science fiction, and in particular with the book The
Vestigial Heart, as well as some lessons we have learned and suggestions for
future initiatives.

The Catalan version of the book appeared 13 years ago, then it was trans-
lated into Spanish, and finally, three years ago, it was translated into English by
MIT Press, as already mentioned. The leitmotif of this novel is “it is the rela-
tionships that we have constructed which in turn shape us”. This was said by
the philosopher Robert Solomon in his book The Passions. He said so in relation
to people, namely our relationships with our parents, with our friends, with our
teachers, with our children, with everyone, shape the way we are. We would be
different if we had interacted with other people, different persons. Then, since
we have so much interaction with technology nowadays, it is very important that
we think very deeply what technology we would like to develop, because it will
shape the way we will be and especially future generations. Therefore, we have
a tremendous responsibility in the type of technology we are developing.

So, what is the techno-ethics course based on The Vestigial Heart about?
The book includes the novel, an appendix with 24 ethics questions raised by
scenes in the novel, and some hints for a debate. These are all contained in the
physical book, the paper book. And then there are online ancillary materials: a
guide for teaching 8 sessions on ethics in social robotics and AI, following the
chapters in the novel and including references for further reading; and there is
also a hundred-slide presentation that teachers can adapt, extend and use as they
wish (Fig. 2). These materials are being used in several universities in the USA,
in Europe and also in Australia. They can be downloaded from this address [1]
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free of charge, by just filling up a form with some data on the envisaged usage.
These materials have also been translated into Catalan and Spanish, as well as
adapted to high-school by Pagès Editors [13].

Fig. 2. Techno-ethics course materials.

There are six main chapters in these materials: Designing the ‘perfect’ assis-
tant; Robot appearance and emotion; Robots in the workplace; Robots in educa-
tion; Human-robot interaction and human dignity; and Social responsibility and
robot morality; and they are wrapped up with an introductory and a concluding
chapter.

Starting with the introductory one, first there is a quick overview of several
ethical theories from the history of human ethics that can be applied to robotics.
There are many quite diverse theories, like utilitarianism, deontologism, virtue
ethics, social justice, common goods, religious ethics, information ethics, and
many of them are somehow contradictory. Since no single theory is appropri-
ate for addressing all the issues (specially the new ones), along the materials, a
pragmatic option is taken, which has been termed ‘hybrid ethics’ and is advo-
cated by Wallach and Allen in their book [14]. It entails combining top-down
theories, those applying rational principles to derive norms, like virtue ethics for
instance, with bottom-up theories, which infer general guidelines from a specific
situation. This pragmatic option is very common nowadays and, along this line,
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since there are different cultures, countries and values for each of them, the gen-
eral theories need to be applied and instantiated for different cultures, values
and circumstances.

We will give a glimpse of the chapters and the issues addressed in each of
them. More details can be found in the tutorial slides [15]. All chapters have the
same structure (Fig. 3). They start with some highlights from the novel, then
some ethical background is provided and 4 questions are posed to students. Next,
hints for a discussion are provided mainly for the teacher to foster a debate on
each question. In later chapters, there are revisited issues that reappear from
different viewpoints, and finally many scholarly references for further reading
and for suggesting projects to students are provided.

Fig. 3. Chapters and structure.

Before entering the six main chapters, let us summarize the plot of the novel.
Celia, a-thirteen-year-old girl cryogenically frozen because of her terminal ill-
ness, is cured and brought back to life 100 years later in order to be adopted.
Aside from her memories, she brings something else from the past: feelings and
emotions that are no longer in existence. These are what most attract Silvana, a
middle-aged woman who works as an emotional masseuse trying to recover the
sensations humans have lost. Celia’s feelings are also precious research material
for Leo, a bioengineer who is designing a creativity prosthesis for the mysterious
Doctor Craft, owner of the leading robotics company, CraftER.

8.1 Designing the ‘Perfect’ Assistant

Doctor Craft at the beginning of the book is very obsessed in getting the prosthe-
sis because he is getting old, he was very creative in the past, and now he wants
his creativity to be stimulated. He makes this reflection: “... A good choice of
stimuli, that’s the secret to wellbeing. [. . .] we can’t change man or turn his brain
upside down, we can’t modify even the smallest reaction. The only option is to
control his surroundings, control what he feels through the stimuli he receives. A
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key idea, but when he presented it as the leitmotif of the new line of robots, no
one gave it a bit’s worth of notice”. Note that he is the owner of the company and
the main chief that provides ideas. “Too simple, they said. How short-sighted!
[. . .] they couldn’t tailor-make a ROB for everyone; they had to come up with
a generic ROB that was highly adaptable and, most important of all, one that
could achieve a very fast adaptation. If it took one week for a ROB to work out
how to wake up its PROP”, its PROP is its user, “or how much sugar to put
in his coffee, the whole idea would go down the drain”. Thus, he is advocating
for having very personalized robots that adapt to the user immediately. And, as
mentioned, he is obsessed with having a creativity prosthesis for him. And the
quotation continues: “what he [Doctor Craft] wants is a creativity prosthesis. Or
an assistant [. . .]; something that would stimulate him to think differently, that
would warn him when he started down well-worn paths and would show him the
promising forks in the road, those susceptible to innovation”.

These quotations try to make the distinction: what he wants for himself is
something that stimulates him, while what he wants to sell are robots that adapt
to people, and give them what they want, without having to think or do much.
This exemplifies a double moral, which we discuss and leads to a debate on
what is a perfect assistant, giving rise to several questions for debate. The four
questions posed in this chapter are:

1. Should public trust and confidence in robots be enforced? If so, how? This
is one of the questions asked and discussed in the first round of question
answering above.

2. Is it admissible that robots/applications be designed to generate addiction?
Because you know that apps are sometimes designed to generate addiction,
especially from young people.

3. Should the possibility of deception be actively excluded at design time?
4. Could robots be used to control people?

When giving a course, these questions are raised and then, as already said, in
the teacher’s guide there are some hints for a debate, but here we will continue
to other chapters. We cannot go over the eight sessions in just one hour!

8.2 Robot Appearance and Emotion

In the second chapter, which is about robot appearance and simulating emotions,
some highlights are as follows: “as a birthday present, Lu [who is the adoptive
mother] gave me [Celia] a robot. [. . .] it has a kind of head with no nose, mouth
or ears, it just has two cameras, and a screen embedded in its chest. It’s called
ROBbie.” In another scene: “Celia, touched by the words, looks for his eyes: no
friend had ever sworn their loyalty so convincingly, but two black holes bring
her back down to earth. Though not entirely, [. . .] she watches the robot out
of the corner of her eye and it pleases her to see his dignified posture, gently
swinging his strong, shiny arms. It feels good to walk along beside him, she feels
protected, she can trust him. What does it matter that he doesn’t have eyes,
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people don’t look at each other anymore anyway.” This is about trust generation
by robots, and also the contrast with the society of the times, 100 years from
now, in which people don’t look at each other, they are so little empathetic that
they don’t really relate. This topic usually provokes strong debates.

The questions triggered by these and other highlights (Fig. 4) are:

1. How does robot appearance influence public acceptance?
2. What are the advantages and dangers of robot simulating emotions? This is

another big topic: robots simulating emotions and people getting cheated or
getting deceived because of this; ethics regulations and education should try
to avoid this confusion in grown-ups and, especially, in children.

3. Have you heard of/experienced the “uncanny valley” effect? This effect is
that people get more attached to robots, or to artificial creatures, the more
anthropomorphic they are. For instance, the robot in the movie Wall-E has a
kind of head with eyes and two things similar to arms, wheels that resemble
legs, so it has a kind of anthropomorphic cartoon-like appearance. As robots
get more and more anthropomorphic, both physically and also cognitively,
people get more attached to them because we empathize more somehow. The
empathy and the attachment increases up to a point in which an extreme
similarity to people, but with an strange look, provokes repulsion. The grow-
ing acceptance curve suddenly goes down abruptly, this is the uncanny valley
effect. This has to be taken into account by robot designers, and it is the
reason why robots often have a cartoon-like face, because this engages people
without cheating.

4. Should emotional attachment to robots be encouraged? Well, this depends
on the situation, so it is discussed at length in the materials.

8.3 Robots in the Workplace

Here we will just highlight one passage from the novel. In the materials, more
quotations are included for each chapter, and everything is well specified for
instructors to be comfortable and ease their teaching. The high says “Leo looks
up at the ever-watching electronic eyes [in his workplace] and thinks how lucky
he is that they can’t read his mind.” This is anticipating that if, in the future,
we wear implants, our boss may be able to read what we are thinking. And this
poses questions of privacy, and also of property rights. “ROBco [which is Leo’s
robot] is waiting expectantly next to him, ready to act as his assistant.” And
Leo says: “I can’t turn off and back on again and pick up where I left off, like
you do [because robots are very quick at changing the context], see if you can
finally build that into your model”. They are cooperating at work and, of course,
robots have to have a model of their user in order to be useful, so this raises
many questions also of human-robot cooperation and these are discussed.

A theme to debate is how to define the boundaries between human and robot
labor in a shared task, so that not only throughput is maximized, which is what
the owner of the company wants, but, more importantly, the rights and dignity of
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Fig. 4. Highlights to discuss about robot appearance and emotion.

professionals are preserved. This relates to some passages in which Leo struggles
on two fronts: his privacy and intellectual property rights may be violated by
the device they have that can somehow read his mind; and he struggles also
to make his robot “understand” that they have different skills and, to optimize
collaboration, they need to do what each does best and communicate on common
grounds. This is trying to get to the utopia that robots and people collaborate
using the best of themselves. The questions for this chapter are as follows.

1. Would robots primarily create or destroy jobs? This is the million-Euro ques-
tion, that since the industrial revolution the media raises constantly, now
concerning robots and AI, so this is discussed at length in the materials.

2. How should work be organized to optimize human-robot collaboration?
3. Do experiments on human-robot interaction require specific oversight? This

is so, there are specific rules and guidelines to perform experiments with
humans, in particular in EU projects. All these ethics issues need to be taken
into account and, for example, consent forms and information sheets must be
supplied to participants in experiments.

4. Do intellectual property laws need to be adapted to human-robot collabora-
tions? Of course, yes, so these are discussed.

Just a glimpse on some data provided in the materials. In a wide survey
performed by Frey and Osborne already in 2013 [16], about 47% of the total US
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employment was then at risk of being automated. And high wages and educa-
tional attainment have negative correlation with such risk, since the tasks that
are being mechanized or automated are usually those that have low quality value.
Three features that preserve jobs for humans are: (i) requiring negotiation, since
humans are very good at this and the required capacities are difficult to be auto-
mated; (ii) needing creative solutions in front of unknown problems, unexpected
situations, for instance doing maintenance of facilities that have broken down;
and (iii) entailing empathizing with the situation of other people. Thus, jobs
related to community and social services have the lowest percentage chances of
being automated, whereas telemarketing has the highest percentage, this is the
conclusion of that survey.

In another study, McKinsey & Company [17] plotted several jobs and, after
interviewing many people, came up with an ordered list of jobs from the easiest
to the hardest to be automated (Fig. 5). Among the hardest is education because
teachers need to empathize with the students, motivate them, and transmit the
life experience they have and their passion for knowledge.

Fig. 5. Adapted from [17].

It is worth pointing out that what is susceptible of being automated are tasks,
rather than entire jobs. A job description consists of several tasks, those most
repetitive and predictable can be automated easily, but jobs often also entail
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other tasks that require intuition, creativity and empathy, the three human traits
that were highlighted as the most difficult to be automated. This is well aligned
with what happens in the novel, thus providing good examples and favoring the
discussion of these issues.

Another conclusion from a related study is that “the best solutions are always
going to come from minds and machines working together”, thus taking the best
of both type of agents. And the challenge is, of course, not to fall into complete
technological dependency. There is a big risk of being so dependent on machines
that if there were a blowout we could not recover, so it’s important to retain
human autonomy and avoid this dependency.

8.4 Robots in Education

Celia goes to a school in which teachers do not know anything, they just search
and help students to search because the net, called EDUsys, which is more
sophisticated than ours, has all the knowledge, so that students do not have
to learn to think, they just learn to search. In a passage from the novel, we
are told that the teacher has labeled Celia a rebel because, ignoring his advice,
she insists on competing with machines. Why? Because apparently she has not
understood the net’s search mechanisms and, faced with a question, she stops
and thinks about it, trying to make up an answer. Therefore, Celia gets very bad
grades and is questioned all the time, just because, when faced with a problem,
she tries to solve it by herself, not through search mechanisms. Since she does
badly at school, her mother puts her a home teacher, Silvana, who is another
big character in the novel. Silvana will have to work hand in hand with ROBbie,
Celia’s robot, because everyone knows that if the child turns out to be a rule-
breaker, like Celia, the robot must learn to restrain them, to counteract their
impulses to break rules. Robots are customizable for a reason, they have to
complement their PROPs to make a good team user-robot, but that is the last
thing Silvana expected to hear, that she will have to train a robot, because she
is against technology.

In the novel there are the “pro-techno’s”, who are pro-technology, like Leo,
Doctor Craft and all the people that work devising robots and technology in gen-
eral, and the “anti-techno’s”, like Silvana, who form a community called “the
ComU”, in which they refuse to be assisted by robots, they want to be just
fully autonomous humans. The confrontation between them permits exemplify-
ing many of the ethical issues that are raised by digital technologies nowadays.
The questions raised in this chapter are as follows:

1. Are there limits to what a robot can teach?
2. Where is the boundary between helping and creating dependency?
3. Who should define the values robot teachers would transmit and encourage?
4. What should the relationship be between robot teachers and human teachers?
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8.5 Human-Robot Interaction and Human Dignity

The confrontation between pro and anti-technology perspectives can be observed
in some dialogues between Silvana and Leo, who often get into this fight. In a
passage from the novel Silvana says: “machines that augment human capabili-
ties seem like a great idea to me: without remote manipulators surgeons couldn’t
operate on a microscopic scale and, without INFerrers, we’d take too long over-
thinking the consequences of our decisions . . . it’s ROBs that I reject, and the
personal link that is established between them and their PROPs [their users]
that ends up hogging people’s most intimate time and space. You said it your-
self [Leo]: you don’t need anything else . . . and, in the end, you become wooden
like them.”

In another passage Leo is discussing with her and he says: “I don’t understand
[what you say]. All ROBs are developed to serve people.”, and Silvana answers:
“Exactly. It’s just that the service is often poisoned. Why do you think we
are against those mechanical contraptions? [...] Because we’re snobs? Well, no.
[...] Overprotective robots produce spoiled people, slaves produced despots, and
entertainers brainwash their own PROPs. And worst of all you people don’t care
what happens to the rest of us as long as they [the robots] sell”.

The questions for this chapter are as follows:

1. Could robot decision-making undermine human freedom and dignity? Of
course, this is a big risk and we, who are working in this field of human-
robot interaction, especially in the assistive context, are very aware of it and
discuss it often.

2. Is it acceptable for robots to behave as emotional surrogates? If so, in what
cases? It could be cases in which faking emotions can be helpful, for instance,
as we said, to engage people, as long as people are aware that they are inter-
acting just with a machine. Machines showing happiness or sadness in par-
ticular circumstances can facilitate a friendly interaction. In some cases, like
in emergency situations, a robot showing emotions can be more convincing
to warn or guide people than an expressionless robot. But these are very spe-
cific circumstances, in general faking emotions, we think, should be avoided
or used very cautiously.

3. Could robots be used as therapists for the mentally disabled? It depends on
the circumstances and, of course, it has to be under human therapist control.

4. How adaptive/tunable should robots be? Are there limits to human enhance-
ment by technological means? This will be briefly addressed in the Conclusion
section.

8.6 Social Responsibility and Robot Morality

This is the subject of the last chapters in the novel, but we did not include any
highlights from them to avoid making spoilers in case some readers want to read
the novel with some intrigue. The questions for this chapter are as follows:
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1. Can reliability/safety be guaranteed? This is a main issue. How can hack-
ing/vandalism be prevented? Think of autonomous vehicles, for example.

2. Who is responsible for the actions of robots, of vehicles, of programs, of every-
thing? Should moral behavior be modifiable in robots, machines, programs?

3. When should a society’s well-being prevail over the privacy of personal data?
4. What digital divides may robotics, artificial intelligence, etc., cause?

9 Concluding Remarks and Other Writing Initiatives

We would like to end this chapter by proposing and showing two experiences
in collective writing. One of them was already mentioned, and we will explain
another one that is related to a question we posed in Sect. 8.5: are there limits
to human enhancement by technological means? Actually, this is a question
in posthumanism which now is raising a lot of discussion in the media, and
there is a debate between bioconservatists, transhumanists and posthumanists
on whether this human enhancement is ethical, in what circumstances, and what
social implications it would have.

Thus, there was an experiment during the pandemic in which nine writers,
Carme among them, were asked to picture the Barcelona of 2059. In particular,
we did a lot of worldbuilding by virtually getting together and trying to imagine
what would happen in Barcelona in that year, and we pictured a dystopian
Barcelona city that had degenerated a lot in all fronts (sustainability, poverty,
discriminations). But there was an island in the seafront, on a platform, that we
called Neo Icària, in which there was a utopian society whose members had to
sign a contract with a company that ruled the island. The contract guaranteed
them free heatlhcare, jobs that they liked and everything else they needed, but
they had to give up their privacy, accepting to take an implant (chosen among
three options) yearly, which was used for the company to monitor their behavior
all the time, physically and psychically. Some people signed, whereas others chose
not to. And some of the problems this entails are explored in the book, which
has been very successful and has been generating many discussions. It was a
very nice experience of writing together with other authors and getting into this
discussion on bioconservatism, transhumanism, and posthumanism (Fig. 6).

One of the issues that were raised in the plot is related to people with disabil-
ities, who wanted to enter the island even if they were monitored. But implants
can not only palliate disabilities, but also provide new capacities, like more
strength, exoskeletons, night vision, etc., which could, for instance, be used for
military purposes. Another distinction worth making is whether this technology
is invasive, i.e. connected to the nervous system, or not. But even when it is not
connected to the nervous system, it has implications in our brain, because our
brain is plastic. For instance, there was a real experiment of putting a sixth fin-
ger in a hand, which could be handy for playing guitar or for doing some works
at home. The extra finger was activated by the muscles in the forearm but not
connected to the nervous system. In the motor-cortex we have a mirror of our
five fingers, but the brain is so plastic that after continuous usage of that sixth
finger, it was also mirrored in the motor-cortex. This tells us that we should be
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Fig. 6. Some distinctions on technology-based human enhancement.

very careful of what technology we are using, because it is really shaping not
just our way of behaving, but also our brain and nervous system.

Another collective experience was the one we mentioned earlier of imagining
that now it was possible to travel to Mars and establish a new society. This was
open to utopia, to make a society that was more egalitarian, guaranteeing well-
being to everyone, without discrimination, without any of the issues we handle
here on Earth nowadays. We got together for worldbuilding and it was a very
nice experience again. While some authors wrote about politics in Mars, the
health system, etc., Carme wrote a short story about a moral robot, which has
some embedded values, is adaptable to the user, reconfigurable, and particularly
handy in Mars, with all its peculiarities. Actually, the story is very optimistic
and robots are very helpful to the first inhabitants of Mars, which concludes this
chapter in a positive way by suggesting that, although technology poses many
challenges, it can also be very helpful and lead us to a better, more egalitarian
future. So, the question we leave open is “what role should the human being and
the machine play in this pas de deux in which we are irrevocably engaged?”

9.1 Further Reading

As supplementary materials and readings, some suggestions follow. On the topic
of the role of science fiction, we recommend Stephenson’s Innovation Starvation
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[3] and Torras’ Science fiction: A mirror for the future of humankind [18]. On
ethics education initiatives in the digital age, we recommend the aforementioned
articles [12] and [5] as well as a lesson plan for robot ethics from the website
Teach with Movies [19] based on the film Robot and Frank. And finally, as already
indicated, the novel The Vestigial Heart and its associated teaching materials
can be found on the MIT Press website [1].

10 Question Answering - Second Round

Question from Audience: hi, thank you for your talk. I was wondering if you
think there is an issue with the fact that most people actually get their infor-
mation from social media, from newspapers, from these books, but not directly
from actual science articles about the development of robots or AI that is cur-
rently going on. Especially considering that we have a bit of an iffy time with
people’s trust in science, more so lately with the pandemic when there has also
been a misinformation time going on at the same time. So, just as a scientist,
what is our responsibility in this case? How do we make sure that the informa-
tion that people actually get is consistent with what is going on in science? And
also, because of this disconnection between science and science fiction, how do
we make sure that science fiction doesn’t villainize science in a way that we are
somehow endorsing these dystopic futures that are presented in novels? Even if
they are only a science personal inspiration or most of the time, as you men-
tioned, they are rather what not to do than what to do. Yeah, this was quite a
lengthy question, but I hope I was clear in my concerns about it.

Carme’s Answer: yes, you were very clear and these are very important con-
cerns, especially for us working on AI, robotics, and this type of human-machine
interaction that is growing fast, especially because we interact with mobiles every
day. I have many answers to your questions. One is that we have a responsibil-
ity, as scientists, to disseminate correct views of what are the benefits and risks
of technology. Because sometimes there is a lot of hype going on saying that
technology can do a lot more than it can, both in the positive way and in the
negative way. For instance, the idea that machines will get conscious, more intel-
ligent than humans, so they will take over and humans will be extinguished. I
don’t think machines will get conscious, at least not in the next 50 years, as some
are foreseeing. Thus, we should be very rigorous in the information we supply to
the media not to hype in any of the two directions. Another answer is that we
should promote techno-ethics education at all levels. I was advocating especially
for the designers of this technology: engineers, computer scientists, university
students in technological degrees, and so on. But also I would like to enforce
such education in high school, as I did, and in primary school, because from the
very beginning children need to know about how to use technology for their own
benefit, not for the benefit of companies and not to get addicted and fall in the
traps that these big corporations are setting, which make us click constantly and
be dependent on technology.
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Therefore, I am enforcing in my local context that primary schools have
also this type of courses and education in ethics in technology. But sometimes
the main barrier are teachers that are not very familiar with technology, and
they themselves are somehow afraid that children will know more about apps
than them. There are some experiences in which children teach teachers how to
manage these apps, how to deal with technology, because they know better. And
teachers give them clear criteria on how to use this technology for their benefit
and advise them about the risks also. In this way, there is a mutual interchange
of information and values, which I think is very positive. And the same for the
general public, I am constantly accepting to participate in all types of forums
and outreach activities to disseminate this need for ethics and to accompany all
this science fiction narrative and all this science and technology dissemination
with these values and these ethics guidelines.

Finally, I am also enforcing a lot the confluence of technology and humanities,
this being why I am organizing forums on this confluence at conferences and also
in all types of contexts. My university, the Technical University of Catalonia, only
has technology degrees, so there are no humanities, no medical degrees being
taught there. Thus, for students to take humanities subjects, an agreement has
been made with another university that teaches humanities, so that students in
engineering can take credits in humanities for their degrees. In sum, I think it is
important to enforce this confluence at all education levels.
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1 Learning Objectives

In this chapter, we focus on abstract argumentation and probabilistic abstract
argumentation. In particular, we aim at providing the reader with a proper
knowledge of how dialogues and disputes are modeled as abstract argumen-
tation graphs and how analysts reason over them. We illustrate the concepts
of arguments and attacks, and the most popular semantics, that are proper-
ties defined over graphs. We discuss the fundamental problems arising when
reasoning over argumentation graphs and some probabilistic ways of encoding
uncertainty about the occurrence of arguments and/or attacks.

2 Introduction

The classical definition of argumentation is that it is a verbal, social, and ratio-
nal activity aimed at convincing a reasonable critic of the acceptability of a
standpoint. In fact, argumentation it is related to philosophy and law, but it has
become very popular in AI due to its capability of dealing with uncertainty and
providing explanations.

Argumentation-based techniques model disputes and dialogues as graphs of
arguments (nodes) and attacks (edges). The nodes of the graph encode the argu-
ments, that are what is said by the agents participating the disputes, while the
edges of the graph encode the contradictions/contrasts between arguments. To
show this, we will use the following example, taken from [6].

Example 1. Assume we have two people talking about weather forecasts, with
different points of view, that generate the following dispute with the two con-
flicting arguments a and b:

a = ‘Tomorrow it will rain because the national weather forecast says so.’
b = ‘Tomorrow it will not rain because the regional weather forecast says so.’

How can we model this dispute? We have two possibilities. In the case that
we have some reason to believe that one forecast is more reliable than the other,
for example if we believe that the regional forecast might be more reliable than
c© Springer Nature Switzerland AG 2023
M. Chetouani et al. (Eds.): ACAI 2021, LNAI 13500, pp. 347–362, 2023.
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the national one, we can model the dispute by putting an attack from b to a,
that can be depicted as follows:

a b

However, if we do not believe that the regional forecast is more reliable than
the national one, we can model the situation as a mutual attack:

a b

We will also consider a second example, also taken from [6].

Example 2. Assume we have a suspect for some crime, and an eyewitness, leading
to a dispute with the following arguments:

a = ‘The suspect is guilty because an eyewitness, Mr. Smith, says so’
b = ‘Mr. Smith is notoriously alcohol-addicted and it is proven that he was

completely drunk the night of the crime, therefore his testimony should
not be taken into account’

In this case, a and b are not incompatible with one another, since the fact that
Mr. Smith was drunk is not in contrast with the fact that the suspect is guilty.
However, the fact that Mr. Smith was drunk affects the reason why the suspect
should be believe to be guilty, and therefore we can model this situation as b
attacks a (and not vice-versa). This means we get the following graph:

a b

What is important to note from these examples is that the attack relations
do not always correspond to conflicts in a strict logical sense. Instead, the attack
relations are defined based on what is “reasonable”. This is done by the analyst
modelling the dispute based on their perspective of the situation and the strength
of the arguments.

The general framework that we will be discussing in this tutorial is abstract
argumentation.

3 Abstract Argumentation

The abstract argumentation framework was first proposed by [13]. The frame-
work is called abstract, since the construction of the arguments and the reasons
why arguments attack each other and the motivation that led to the graph at
hand are completely ignored, and all the focus is on reasoning over the graph.
The definition of an abstract argumentation framework is as follows:

Definition 1. An abstract argumentation framework (AAF) is a pair AF =
〈A,D〉 consisting of a set A of arguments, and a binary relation D ⊆ A × A,
called the defeat (or, equivalently, attack) relation.
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Here the relationship D indicates which arguments attack other arguments,
so if (a, b) ∈ D, then we say that argument a attacks b. The arguments themselves
represent abstract entities that can be attacked and/or be attacked by other
arguments. The abstract argumentation frameworks are drawn as graphs, with
the direction of the arrows indicating the direction of the attack. This is the
same style as we used in Example 1 and Example 2.

Since there are attacks between the arguments of an AAF, it is clear that the
arguments cannot all be considered reasonable at the same time. This means that
their status is subject to evaluation, and we are particularly interested in the
justification state of the arguments. Intuitively, we can think that an argument
is justified if it has some way to survive the attacks that it receives, and as
not justified otherwise. The process of determining the justification state of an
argument based on an AAF is called argument evaluation.

There are multiple ways to do argument evaluation, which are called argu-
mentation semantics [6,8,13,14]. These semantics tell us how to derive a set
of extensions from an argumentation framework F , where an extension E is a
subset of A, which intuitively represents that the arguments in E can “survive
together”, or in other words, are “collectively acceptable”. The different seman-
tics basically define different properties on the set E, for different notions of
surviving together and being collectively acceptable.

Different semantics for abstract argumentation have been defined over the
years, but we will focus on the most popular ones, which are admissible, com-
plete, grounded, preferred, and stable. All of these semantics are based on the
concept of conflict-freeness. An overview of how these semantics relate can be
seen in Fig. 1.

Fig. 1. An overview of how the different types of semantics relate. An arrow between
two semantics means that the semantics on the right side is at least as restrictive as
the one on the left. So every set that is admissible is also conflict-free, etc.

We now will see the definitions of the most popular semantics and some
examples to better understand their meaning.

The idea behind conflict-freeness is that this property holds in a set of argu-
ments that can “stand together”. This means that the arguments cannot attack
each other in any way.

Definition 2 (Conflict-free). Given an abstract argumentation framework
AF = 〈A,D〉, a set S ⊆ A is conflict-free if and only if there is no pair of
arguments a, b ∈ S such that a attacks b, i.e., there is no pair a, b ∈ S s.t.
(a, b) ∈ D.
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A further requirement corresponds to the idea that an extension is a set of
arguments which can stand on its own, namely is able to withstand the attacks
it receives from other arguments by ‘replying’ with other attacks: a set is an
admissible extension iff defends itself against attacks and is conflict free. Before
formalizing the concept of admissible extension, we need to introduce the concept
of acceptable argument: an argument a is acceptable w.r.t. (or, equivalently,
defended by) a set S if S “counterattacks” all the attackers of a.

Definition 3 (Admissible). Given an abstract argumentation framework
AF = 〈A,D〉, a set S ⊆ A is an admissible extension if and only if S is conflict-
free and, ∀a ∈ S, a is acceptable w.r.t. S.

The empty set is always admissible and conflict free.

Example 3. Consider the following argumentation framework AF = 〈A,D〉,
where A = {a, b, c, d, e} and D = {(a, b), (b, c), (b, d), (d, e)}, depicted in the
figure below. It is easy to see that S1 = {a, b, d} is not conflict-free, set
S2 = {a, d} is both conflict-free and admissible, set S3 = {c, d} is conflict-free
but not admissible as no argument in it defends c and d from their attacks, and
set S4 = {a, c, d} is both conflict-free and admissible.

a b c

d e

Now, we will recall the notion of complete extension.

Definition 4 (Complete). Given an abstract argumentation framework AF =
〈A,D〉, a set S ⊆ A is a complete extension if and only if S is admissible and,
∀a ∈ A s.t. a is acceptable w.r.t. S, it must hold that a ∈ S.

Basically, a set is a complete extension if the set is admissible and it contains
every argument which is acceptable with respect to itself.

Example 4. Consider the following argumentation framework AF = 〈A,D〉,
where A = {a, b} and D = {(b, a)}. In this case, we have only one complete
extension: {b}. The empty set is admissible, but not complete.

Consider now AF1 = 〈A1,D1〉, where A1 = {a, b} and D1 = {(a, b), (b, a)}.
In this case, we have three complete extensions: {a}, {b} and ∅.

We denote as IN(AF ) the set of initial arguments of an argumentation
framework AF , that are arguments that have no incoming attacks. It is easy
to see that when there are no initial arguments, the empty set is complete. A
complete extension must contain all the initial arguments, and the arguments
defended by them, and so on. If there are multiple unconnected components in a
graph, then we need to include all the initial arguments in a set to be complete,
as show in the following example.
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Example 5. Consider again the argumentation framework AF = 〈A,D〉, where
A = {a, b, c, d, e} and D = {(a, b), (b, c), (b, d), (b.e)}, shown in Example 3. It is
easy to see that S5 = {a, c} is not complete, while S4 = {a, c, d} is complete.

Consider now the argumentation framework AF2 = 〈A2,D2〉, where A2 =
{a, b, c, d, e, f, g, h} and D2 = {(a, b), (b, c), (b, d), (d, e), (f, g), (g, f), (g, h)},
shown in the figure below. In this case, we have that S1 = {a, c, d} is complete,
set S2 = {f, h} is not complete and set S3 = {a, c, d, f, h} is also complete. In
fact, we have that a is acceptable w.r.t. S2, but f is not acceptable w.r.t. S1.

a b c

d e

f g h

Consider now the argumentation framework AF3 = 〈A3,D3〉, where A3 = A2 =
{a, b, c, d, e, f, g, h} and D3 = {(a, b), (b, c), (b, d), (d, e), (f, g), (g, h)}, depicted in
the figure below. In this case, we have that S3 = {a, c, d, f, h} is the unique
complete extension.

a b c

d e

f g h

Finally, consider the argumentation framework AF4 = 〈A4,D4〉, where A4 =
A3 = {a, b, c, d, e, f, g, h} and D4 = {(a, b), (b, a), (b, c), (b, d), (d, e), (f, g), (g, f),
(g, h)}, depicted in the figure below. In this case, we have four complete exten-
sions: {a, c, d}, {f, h}, {g} and the empty set.

a b c

d e

f g h

Let’s now recall the definition of the grounded semantics.

Definition 5 (Grounded). Given an abstract argumentation framework AF =
〈A,D〉, a set S ⊆ A is a grounded extension if and only if S a is minimal (wrt
⊆) complete set of arguments.

Every argumentation framework admits only one grounded extension.
Another way of defining the grounded extension is based on the characteris-
tic function F : given a set S ⊆ A, F : 2A → 2A returns the set of the acceptable
arguments w.r.t. S. The grounded extension of an argumentation framework
AF , denoted as GE(AF ), is the least fixed point of its characteristic function F
initially applied to the empty set. The basic idea is that the (unique) grounded
extension can be built incrementally starting from the initial (unattacked) argu-
ments (that are returned by the characteristic function applied to the empty
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set). Then a deletion step is performed: the arguments attacked by these ini-
tial arguments are suppressed, resulting in a modified argumentation framework
where, possibly, the set of initial arguments is larger. In turn the arguments
attacked by the ’new’ initial arguments are suppressed, and so on. The process
stops when no new initial arguments arise after a deletion step: the set of all
initial arguments identified so far is the grounded extension.

Example 6. Consider the argumentation framework AF = 〈A,D〉 (inspired by
an example appearing in [6]), where A = {a, b, c, d, e, f, g, h, i} and D = {(a, b),
(b, c), (c, d), (d, e), (e, f), (f, e), (g, h), (h, i)}, depicted in the figure below.

a b c d e f

g h i

At the first step of the process, the set of initial arguments IN(AF ) is {a, g},
and after the first deletion step the graph becomes:

a c d e f

g i

Then, now IN(AF ) = {a, c, g, i}. After the second deletion step, the graph
becomes:

a c e f

g i

Then, we have that no more initial arguments arise, thus IN(AF ) =
{a, c, g, i} is the grounded extension.

Example 7. Considering framework AF2 introduced in Example 5, it is easy to
see that set {a, c, d} is the grounded extension. In framework AF4, instead, the
empty set is the grounded extension.

Let’s now recall the preferred extension and the stable extension.

Definition 6 (Preferred). Given an abstract argumentation framework AF =
〈A,D〉, a set S ⊆ A is a preferred extension if and only if S is a maximal set
(wrt ⊆) complete set of arguments.

This means that a preferred extension may be a superset of multiple complete
extensions.

Example 8. Consider framework AF2: set {a, c, d, f, h} is a preferred extension.
Consider now the framework 〈{f, h}, {(f, h), (h, f)}〉: both {f} and {h} are pre-
ferred extensions.
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Definition 7 (Stable). Given an abstract argumentation framework AF =
〈A,D〉, a set S ⊆ A is a stable extension if and only if S is conflict-free and
S attacks all the arguments in A \ S

A set is a stable extension if it is conflict free and attacks all the arguments
not in the set.

Example 9. Consider again framework AF2. We have that set {a, c, d, f} is not
a stable extension, while set {a, c, d, g} is stable. Consider now the framework
〈{a, b, c}, {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}〉: we have the three stable exten-
sions: {a}, {b} and {c}.

According to the extension-based semantics the justification state of an argu-
ment is linked to the membership of the argument to an extension. We have two
forms of justification: the one based on the skeptical semantics and the one based
on the credulous semantics.

Definition 8 (Justification state). Given a semantics sem and an abstract
argumentation framework AF = 〈A,D〉, whose set of extensions according to
sem is EXT (AF )sem, an argument is:
skeptically justified under sem if and only if ∀E ∈ EXT (AF )sem it holds that
a ∈ E, while
it is credulously justified under sem if and only if ∃E ∈ EXT (AF )sem such that
a ∈ E.

Example 10. Consider again framework AF2 of above. We have that argument d
is skeptically justified under the complete semantics as it belongs to all the three
complete extensions {a, c, d}, {a, c, d, f, h}, and {a, c, d, g}, while argument h is
skeptically justified under the complete semantics.

Basically, evaluating the justification status of an argument a is a way of
verifying whether a can be considered reasonable and how much it can be con-
sidered reasonable. The membership of a to any (resp., all) extensions means
that a has a chance (resp., very good chances) of representing, collectively with
other arguments, is a good point of view in a dispute.

3.1 Complexity of Verifying Extensions

Now, let’s take a look at how much effort is needed for verifying that a set is
an extension, in terms of computational complexity. The characterization of the
complexity of the problem Versem(S) of verifying whether a set S is an extension
according to a semantics sem in an AAF has been mainly done in [10,17].

We can see in the table that Versem(S) is polynomial, except for the preferred
semantics.
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Table 1. Complexity for the verification of extensions for the various semantics

Semantics Versem(S)

Admissible P

Stable P

Grounded P

Complete P

Preferred coNP-complete

4 Uncertainty in Argumentation

In this section, we will deal with handling the uncertainty in abstract argumen-
tation. In fact, when constructing an argument graph from informal arguments
there is often uncertainty about whether some of the attacks hold, as shown in
the following.

Example 11. Assume some people broke into a bank and two suspects, John and
Peter, have been arrested based on the testimony of a witness, Harry. They make
the following arguments:

a = ‘John says he was not in town when the robbery took place, and therefore
denies being involved in the robbery.’
b = ‘Peter says he was at home watching TV when the robbery took place,
and therefore denies being involved in the robbery.’
c = ‘Harry says that he is certain that he saw John outside the bank just
before the robbery took place, and he also thinks that possibly he saw Peter
there too.’

In this case, it is clear that c attacks a, but there is uncertainty whether or
not c also attack b. This means that we can get two possible argumentation
frameworks out of this, depending on how much we trust Harry. If we do trust
him, we get:

a c b

However, if we do not think that we can believe Harry about seeing Peter,
we get the following:

a c b

Uncertainty can be also over arguments: when modelling a dispute, we could
be uncertain about the occurrence of some argument. In fact, it is not guaranteed
that an argument will be actually presented, or that an argument would be
accepted by the referee of the dispute.

Several state-of-the-art approaches for handling uncertainty in AAFs rely
on probability theory. Mainly, these approaches can be classified in two cate-
gories, based on the way they interpret the probabilities of the arguments: those
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adopting the classical constellations approach [11,12,15,18,19,21–25,27,30,32]
and those adopting the recent epistemic one [28,29,33]. We will focus on the
former, and will see two forms of probabilistic frameworks that we call IND and
EX.

4.1 Probabilistic Abstract Argumentation Framework of Form IND

One important framework proposed in [30] and further investigated in [21–24]
is that defined below. We call this framework of form IND to recall and high-
light the independence assumption that is the core of the approach. In fact,
IND requires probabilities to be specified over arguments and attacks, that are
assumed to the independent from one another.

Definition 9 (IND). A probabilistic abstract argumentation framework (PAF)
of form IND is a tuple (A,D,PA, PD) where A and D are as before and PA and
PD are probability functions assigning a non-zero probability to each argument
and defeat in D.

The meaning of a PAF is given in terms of possible worlds, each representing
a scenario that may occur in reality.

Given a PAF, a possible world w is an AAF such that its arguments and
defeats are subsets of A and D, respectively. More formally:

Definition 10 (Possible world). Given a PAF F = 〈A,D,PA, PD〉, a possible
world w of F is an AAF 〈A′,D′〉 such that A′ ⊆ A and D′ ⊆ D ∩ (A′ × A′).

The set of all the possible worlds of F will be denoted as PW (F ).
We point out that certain arguments (i.e., having probability 1) are always

included in every possible world.

Example 12. Consider the probabilistic argumentation framework AF =
〈A,D,PA, PD〉, where A = {a, b, c}, D = {(c, a), (c, b)}, PA(a) = 0.8, PA(b) = 1,
PA(c) = 0.8, PD((c, a)) = 0.6, and PD((c, b)) = 1, depicted in the figure below.

a

0.8

c

0.8

b

1

0.6 1

In this case, since PA(b) = 1, b is included in every possible world. Fur-
thermore, if c ∈ A′, then (c, b) ∈ D′, since PD((c, b)) = 1. However, if c is not
included, then (c, b) must also not be included. This means we get the following
five possible worlds:

W1 = 〈b, ∅〉
b

W2 = 〈{b, c}, {(c, b)}〉
c b

W3 = 〈{a, b, c}, {(c, b)}〉
a c b

W4 = 〈{a, b, c}, {(c, a), (c, b)}〉
a c b
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W5 = 〈{a, b}, ∅〉
a b

An interpretation for a PAF is a probability distribution function I over the
set PW(F). In the framework IND, the independence assumption holds (this
is the reason why we call the framework IND): arguments represent pairwise
independent events, and each defeat represents an event conditioned only by the
occurrence of its argument events but independent from any other event. Thus,
in the framework IND, we compute the probability of a possible world W as:

I(w) =
∏

a∈A′
PA(a) ·

∏

a∈A\A′
(1 − PA(a)) ·

∏

δ∈D′
PD(δ) ·

∏

δ∈(D∩(A′×A′))\D′
(1 − PD(δ))

Example 13. Continuing the previous example, we have that:
I(W1) = PA(b) × (1 − PA(a)) × (1 − PA(c)) = 1 × 0.2 × 0.2 = 0.04
I(W2) = PA(b) × PA(c) × (1 − PA(a)) × PD(c, b) = 1 × 0.8 × 0.2 × 1 = 0.16
I(W3) = PA(a) × PA(b) × PA(c) × PD(c, b) × (1 − PD(c, a)) = 0.8 × 0.8 ×
1 × 1 × 0.4 = 0.256
I(W4) = PA(a) × PA(b) × PA(c) × PD(c, b) × PD(c, a) = 0.8 × 0.8 × 1 × 1 ×
0.6 = 0.384
I(W5) = PA(a) × PA(b) × (1 − PA(c)) = 0.8 × 1 × 0.2 = 0.16

Basically, each possible world is assigned the probability of being the ’real’
one, that is the one that occurs in the reality, on the basis of the probabilities
of arguments and defeats. Note that the probabilities of all possible worlds sum
to one.

Now, let’s see what happens to the extensions. When considering the prob-
abilities, the problem of verifying whether a set is an extension makes no sense
as a set could be an extension over a possible world and could not be so over
another possible world. In fact, the problem now becomes: Given a semantics,
what is the probability that a set is an extension according to this semantics?.

To compute the probability for a set of being extension, we have to sum the
probabilities of all the possible worlds where the set is an extension over it.

Definition 11 (P sem(S)). Given a probabilistic abstract argumentation frame-
work F , a set S and a semantics sem, the probability that S is an extension
according to sem is given by:

P sem(S) =
∑

W∈PW (F )∧ext(W,sem,S)
I(W )

where ext(W, sem, S) evaluates to true iff S is extension according to sem over
W .

Example 14. Continuing the previous example, the probability P ad({a, b}), that
is the probability for the set {a, b} to be an admissible extension over F , is given
by I(W5) = 0.16, as {a, b} is admissible only in W5.
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Also we need to revisit the concepts of credulous and skeptical justification
by considering the probabilities: now an argument is justified with probability
P sem
cred/skep(a), obtained by summing the probabilities of all possible worlds where

a is cred/skep justified.

Definition 12. Given a probabilistic abstract argumentation framework F , an
argument a and a semantics sem, the probability that a is justified according to
sem is given by:

P sem
cred/skep(a) =

∑
W∈PW (F )∧acc(W,sem,a,cred/skep)

I(W )

where acc(W, sem, a, cred/skep) evaluates to true iff a is cred/skep justified
according to sem over W .

Example 15. Continuing the previous example, we have that the probability for a
of being credulously justified according to the admissible semantics is P ad

cred(a) =∑
W∈PW (F )∧acc(W,ad,a,cred) I(W ) = I(W3) + I(W5), as a is credulously justified

under the admissible semantics only in W3 and W5: in those possible worlds,
indeed, a belongs to at least one admissible extension.

4.2 Probabilistic Abstract Argumentation Framework of Form EX

Another important probabilistic framework is that proposed in [12,15,32]. We
call this framework of form EX to indicate that is ’extensive’, in the sense that
the probabilities must be specified for all the possible worlds. In fact, the prob-
abilities are assigned to the possible worlds and not to the arguments/defeats,
and there is no independence assumption.

Definition 13. A probabilistic abstract argumentation framework F of form
EX is a triple 〈A,D,P 〉, where A and D are as before and P is a probabil-
ity distribution function over the set of possible worlds PW (F ).

We can use the form EX to force some correlations between arguments by
making as ‘possible’ (i.e., by assigning a probability greater than zero) only the
scenarios where the correlation is satisfied.

Example 16. Consider framework F of form EX where the set of arguments is
A = {a, b, c} and the set of defeats is D = {(c, a), (c, b)}. If we want to force the
correlation between the occurrence of a and b, we could assign 0 to all the possible
worlds W where a and b do not appear together and a uniform probability to
all the others: I(〈{a, b}, ∅〉) = 0.2, I(〈{c}, ∅〉) = 0.2, I(〈{a, b, c}, {(c, a)}〉) = 0.2,
I(〈{a, b, c}, {(c, b)}〉) = 0.2, I(〈{a, b, c}, {(c, a), (c, b)}〉) = 0.2.

Probabilities of extensions and justification status of arguments are as before.
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4.3 Comparison Between IND and EX

The main difference between the two probabilistic frameworks are summarized
here: IND is compact, as we only need to specify probabilities for each argument
and attack, whose number is typically less than the number of scenarios, but it
relies on the independence assumption, thus no correlation can be enforced. EX
allows correlations to be expressed, but the analyst needs to specify a very large
number of probabilities: the number of scenarios is exponential w.r.t. the size of
set of arguments/defeats. In Table 2, we report the complexity of the problem of
computing the probability that a set is an extension under the various semantics.

Table 2. Complexity for the computation of the probability of extensions for the
various (probabilistic) semantics

Semantics Versem(S) Psem(S) – IND Psem(S) – EX

Admissible P FP FP

Stable P FP FP

Grounded P FP#P-complete FP

Complete P FP#P-complete FP

Preferred coNP-complete FP#P-complete FP||NP-complete

We recall that FP is the class of the function problems that can be solved by
a deterministic Turing machine in polynomial time (w.r.t. the size of the input
of the problem). FP#P is the class of functions computable by a polynomial-
time Turing machine with a #P oracle. #P is the complexity class of the func-
tions f such that f counts the number of accepting paths of a nondeterministic
polynomial-time Turing machine [34]. Analogously, FP ||NP is the class of func-
tions computable by a polynomial-time Turing machine with access to an NP
oracle, whose calls are non-adaptive (as explained above, this is equivalent to
saying that the oracle invocations take place in parallel).

Note that even if the complexity seems to be lower when dealing with EX, it
should be considered that the input of the two frameworks is different and, in the
case of EX, is it exponential w.r.t. the size of set of arguments/defeats. A detailed
characterization of the problem of computing the probabilities has been done in
[20], where also a new framework has been proposed, that is called GEN. In GEN,
the probability distribution function (pdf) over the possible scenarios is encoded
using the paradigm of world-set descriptors and this results in a framework that
is intermediate between EX and IND, as it has the same expressiveness as the
form EX (since it allows any pdf to be encoded, thus allowing any correlation to
be expressed), but is more compact, as its encoding does not require the explicit
enumeration of the scenarios with non-zero probability.
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4.4 Other Options for Handling Uncertainty

As mentioned before, another way of handling uncertainty in AAFs is the epis-
temic approach, that also relies on probability theory. In this approach, proba-
bilities and extensions have a different semantics, compared with the constella-
tions approach. Specifically, the probability of an argument represents the degree
of belief in the argument (the higher the probability, the more the argument
is believed), and a key concept is the ‘rational’ probability distribution, that
requires that if the belief in an argument is high, then the belief in the argu-
ments attacked by it is low. In this approach, epistemic extensions are considered
rather than Dung’s extensions, where an epistemic extension is the set of argu-
ments that are believed to be true to some degree. The interested reader can
find a more detailed comparative description of the two categories in [26].

Besides the approaches that model uncertainty in AAFs by relying on prob-
ability theory, many proposals have been made where uncertainty is represented
by exploiting weights or preferences on arguments and/or defeats [3,5,7,9,16,31].
Another interesting approach to represent uncertainty in argumentation is that
based on using possibility theory, as done in [1,2,4]. Although the approaches
based on weights, preferences, possibilities, or probabilities to model uncertainty
have been proved to be effective in different contexts, there is no common agree-
ment on what kind of approach should be used in general. In this regard, [25,26]
observed that the probability-based approaches may take advantage from relying
on a well-established and well-founded theory, whereas the approaches based on
weights or preferences do not conform to well-established theories yet.

5 Conclusion

In this tutorial, we have dealt with the basic notions of abstract argumentation,
and with some frameworks relying on probability theory for handling uncer-
tainty in abstract argumentation. This tutorial is naturally linked to the tutorial
Computational Argumentation and Cognitive AI of ACAI 2021, where dialectic
argumentation is addressed and argumentation-based explainable real-life AI
applications are presented.

The reader interested further in abstract argumentation and in probabilistic
abstract argumentation is encouraged to take a look at the articles [6,13,20,25,
30].
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Abstract. This tutorial examines the role of Computational Argumen-
tation at the theoretical and practical level of Human-centric AI. It rests
on the central role that argumentation has in human cognition render-
ing argumentation as a possible foundation for the two basic elements of
intelligence, namely learning and reasoning, in a way that is suitable for
human-centric AI. The tutorial examines argumentation as a basis for
cognitive technologies of Learning and Explainable Inference or Decision
Making and their application in today’s AI.
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1 Introduction

This tutorial follows a first tutorial, “Argumentation in AI” on Abstract Argu-
mentation in AI, given at the same ACAI 2021 school. The purpose of the current
tutorial is to connect argumentation with Human-centric AI by examining the
natural link of argumentation with human cognition and the two basic elements
of intelligence, learning and reasoning. The main learning objective of the
tutorial is for participants to appreciate the potential central role of argumen-
tation for Human-centric AI and how this can form the basis for developing
real-life applications. The tutorial is structured into four parts, as follows:

– Section 2: Structured Argumentation, presenting a general review of
structured argumentation as the underlying framework on which applications
of (explainable) Human-centric AI can be build. These general ideas are illus-
trated within the concrete structured argumentation framework of Gorgias
and its associated system, available at Cloud Gorgias.1

1 http://gorgiasb.tuc.gr/GorgiasCloud.html.
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– Section 3: Cognitive Argumentation, examining the natural link between
human reasoning and argumentation. The COGNICA system2 implements
such a Cognitive Argumentation framework. Also the link of argumentation
to existing Cognitive Architectures, such as ACT-R, is examined.

– Section 4: Argumentation for Learning, introducing the features of argu-
mentation that make it a fitting target language for learning and explanations.
It showcases this natural fit by presenting two protocols that learn and rep-
resent knowledge in the language of argumentation.

– Section 5: Real-life Applications of Argumentation, presenting an
argumentation-based software development methodology for acquiring the
knowledge required for building systems under a general “mind-like” architec-
ture. This methodology is illustrated through a series of real-life application
systems and the major challenges it poses.

In the tutorial repository3 one can find further details on all parts of the
tutorial, e.g., extended presentations of examples or other illustrative applica-
tions. Note also that for each section of this tutorial, a general bibliography is
listed separately at the end, without explicit citations in the text. For a more
complete bibliography the reader can consult the tutorial repository.

2 Structured Argumentation

In contrast to Abstract Argumentation, Structured Argumentation puts the
emphasis in providing argumentation frameworks that can be used to model
and develop applications of argumentation. They provide the necessary scaffold-
ing for dialectic argumentative reasoning (or inference) to be mapped into, and
applications to be build on top of this.

At a general and abstract level a structured argumentation framework con-
sists of a triple 〈Args,Att ,Def 〉 where Args is a set of arguments, Att an attack
relation between arguments and Def a defense relation between arguments. Typ-
ically, the defense relation Def is a subset of the attack relation Att and relates
to the relative strength between arguments.4 Informally, (a, b) ∈ Def means that
argument a is at least as strong as b, and can thus provide a defense against b.

In Structured Argumentation, like in abstract argumentation, we can give an
underlying dialectical semantics for the acceptability of arguments. For example,
a subset of arguments Δ is admissible iff (a) it is not self-attacking, i.e., there
are no arguments a, b in Δ such that (a, b) ∈ Att and (b) for any counter-
argument c against Δ, i.e., (c, a) ∈ Att holds for some argument a in Δ, Δ
defends against c, i.e., (d, c) ∈ Def for some d in Δ. This then maps directly
into a dialectic process of inference of recursively considering attacks against an
argument supporting a desired conclusion and defending against these attacks

2 http://cognica.cs.ucy.ac.cy/COGNICAb/index.php.
3 https://cognition.ouc.ac.cy/argument.
4 Alternatively, the notion or terminology of a defeating attack is used instead to
express that an attack is strong enough to defeat the argument that it is attacking.

http://cognica.cs.ucy.ac.cy/COGNICAb/index.php
https://cognition.ouc.ac.cy/argument
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with possibly the help of other arguments thus building an admissible Δ. We
call such an admissible set Δ a case for the inferred conclusion.

In practice, structured argumentation frameworks are realized in an applica-
tion domain via triples of 〈As, C,�〉 where As is a set of (parameterized) argu-
ment schemes, instances of which form arguments, C is a conflict relation between
the argument schemes and the arguments constructed from these schemes and �
is a priority or preference relation again between the argument schemes and their
arguments. Argument schemes are parameterized named statements of asso-
ciation AS = (Premises � Position) between some information called Premises
and another statement called the Position or Claim.

The conflict relation C is typically defined through the language of the appli-
cation domain, e.g., through some global notion of incompatibility between state-
ments in the language, possibly also augmented with a direct expression of con-
flict between two argument schemes and/or particular instances of these. Given
such a conflict relation we can build the attack relation between arguments by
identifying three different types of attacks, called rebuttal, undermining or
undercutting attacks. The first type results when the claim of the attacking
argument conflicts with the claim of the argument attacked, the second type
when it conflicts with a premise of the argument attacked and the third type
when the two arguments have been declared as conflicting — the conflict is on
the link of the argument that it is attacked.

Example 1. Consider argument arg1 :Arrival of Ambulance � Pick up Patient ,
i.e., the arrival of an ambulance supports the claim that it will pick up a patient
(from the place of arrival). A rebuttal attack against this is given by the argument
arg2 : No Ambulance Siren � Not Pick up Patient , i.e., the argument support-
ing the opposite claim when there is no ambulance (arriving) with its siren on,
whereas the argument arg3 : Broken Ambulance � Not Arrival of Ambulance
supporting the claim that an ambulance cannot arrive based on the premise
that it is broken is an undermining attack on arg1. Finally, the argument
arg4 : Arrival of Ambulance � Pick up Nurse is an undercutting attack against
arg1 as this goes against the actual link of the argument: arg1 claims that the
reason it has arrived is to pick up a patient whereas arg4 claims it is to pick up
a nurse.

The third component, the priority or strength relation � between arguments,
is used to build the defense relation of an application argumentation framework.
Informally, in most frameworks arg1 defends against arg2 iff arg1 conflicts with
arg2 and arg1 is not of lower priority than arg2, i.e., arg1 �≺ arg2. In contrast
to the conflict relation which is static the priority relation is not so, but can be
highly context-sensitive depending crucially on (how we perceive) the current
state of the application environment.

To illustrate the process of how an argumentation framework is built dynam-
ically through a changing current environment, let us consider the following
example from the domain of common-sense temporal reasoning.
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Example 2. Suppose we read the following piece of text: “Bob came home and
found the house in darkness. He turned on the light switch in the hall.” Consider
the question “Is the hall still in darkness?”. Can we explain5 how (most) people
reach the conclusion or explain why “the hall now is illuminated”?

One way to do this within an argumentation perspective is as follows.

– From the information Room in darkness at T using the general argument
schema that properties persist in time we have the argument
arg1 : {Room in darkness at T �Room in darkness at T+} supporting the
claim that the hall is still in darkness at some time T+ after T .

– From the information Turn on switch at T using the common sense knowl-
edge that turning on the light switch causes the light to come on, we have
the argument: arg2 : {Turn on switch at T �Room illuminated at T+} sup-
porting the claim that the hall is illuminated at T+.

These two arguments are counter-arguments of each other as their claims are
in conflict: in our common-sense language a room in darkness is the opposite of
a room illuminated and vice-versa. Furthermore, in our common sense temporal
reasoning we consider causal information stronger than the persistence of prop-
erties (when the causal action occurs at least as late as the time of the observed
property that we are persisting from into the future). This gives a priority or
strength to causal arguments over persistence arguments and hence to arg2 over
arg1, i.e., arg2 � arg1. This in turn means that arg2 can defend against arg1
but not vice versa.

Fig. 1. The argumentation arena for the two narratives of Example 2.

We thus have an argumentation arena depicted by the left part of Fig. 1.
In this figure, we have equated the defence relation with the attack relation so
that we only show the non-weak attacks. From this we can see that {arg2} is an
acceptable/admissible set of arguments forming a case supporting the conclusion
Room illuminated at T+ and that there is no case supporting the opposite con-
clusion as {arg1} is not acceptable/admissible. Hence we are “confident” about
deriving the inference that the room is not in darkness after Bob has turned on
the light switch.

5 We are not looking here for an explanation of the subconscious operation of the
brain to reach this conclusion, but for an explanation at a high cognitive level that
would also be helpful to some other process that would act on our conclusion.
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Example 3. Consider now a more complex case by changing slightly the narra-
tive: “The power cut had turned the house in darkness. Bob came home and
turned on the light switch in the hall.” Now some people may not feel confident
that the hall will be illuminated after turning on the light switch. This can be
attributed to two things: (1) the text now alerts us to the fact that electricity
is needed for the light to come on, and (2) it is not clear if the power cut has
ended before or after Bob came home. From an argumentation point of view new
arguments come into the arena:

– From the statement about a power cut we can build the following argument:
arg3 : {Power cut at T �No electricity at T} which conflicts with argument
arg2. This is an undercutting6 attack against arg2 and it is, according to our
common-sense knowledge, a stronger argument than arg2. Hence arg3 cannot
be defended back by arg2, or arg3 is a defeating attack against arg2. But
to enable arg3 we need to have an argument supporting its premise. We can
thus extend argument arg3 to: {hyp(Power cut at T ));Power cut at T �
No electricity at T} where hyp(Power cut at T ) is a hypothetical argument
supporting that the power cut holds at the time of turning on the switch.
This then means that now arg3 can be attacked by the opposite hypothetical
argument supporting that the power cut did not last until time T , i.e., we
have a fourth argument in the arena: arg4 : {hyp(No power cut at T )}. This
argument is in conflict with arg3 on its weak premise and thus forms an
(undermining) attack on it. Importantly, it is non-comparable in strength
with arg3. Hence arg3 and arg4 attack and defend against each other.

Given the above we now have a new argumentation arena depicted by the
right part of Fig. 1. From this we now have two acceptable/admissible subsets of
arguments: {arg2, arg4} forming a case supporting Room illuminated at T+ and
the case of {arg1, arg3} for the opposite conclusion of Room in darkness at T+.
We have a dilemma and hence we cannot be sure either way that the room is
in darkness or not after turning on the switch. This then reflects the variability
in answers given by different people (see more on this in Sect. 3).

There are several Structured Argumentation frameworks in the literature
and although these may appear different they share a very similar theoretical
underpinning. One of the earliest such frameworks is that of the GORGIAS frame-
work, named after the ancient Greek philosopher of dialectics, on which we will
concentrate.

2.1 The GORGIAS Argumentation Framework

GORGIAS is a structured argumentation framework where arguments are con-
structed using a basic (content independent) scheme of argument rules,

6 Indeed, this attacks the link of arg2 not its claim or premises. There is no general
conflict between No electricity at T and Room illuminated at T as the room can
be illuminated in other ways.
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denoted by Premises � Claim. The Premises and Claim are literals in the syn-
tax of Extended Logic Programming, but where negation as failure is excluded
from the language7. An important element of the GORGIAS framework is that
it allows a special class of argument rules, called priority argument rules
that are used to express a context-sensitive relative strength between (other)
argument rules. They have the same syntactic form as argument rules, but now
the Claim is of a special type, a1 > a2 , where a1 and a2 are (the names of)
any two other individual argument rules. When the claim of an argument rule
is not a priority statement, i.e., it is a literal in the language, this is called an
object-level argument rule.

The purpose of priority arguments, constructed from priority argument rules,
is to provide the defense relation between arguments. They are combined with
other (e.g., object-level) arguments to give them strength. A composite argu-
ment in the framework is then a (minimal and closed) set of (instantiated)
argument rules, Δ = (A1 ,AP ), where, A1 , is a subset of object level argu-
ment rules and AP is a subset of priority argument rules, referring to the other
arguments in Δ. Then, informally, a composite argument, Δ1, defends against
another composite argument, Δ2, whenever they are in conflict, and the argu-
ments in Δ1 are rendered by the priority arguments that it contains at least as
strong as the arguments contained in Δ2.

The GORGIAS System. The GORGIAS system allows us to code argumentation
theories of the form described above and subsequently query the system to find
out if there is an admissible (composite) argument that supports the query. GOR-
GIAS has been publicly available since 2003 and has been used by several research
groups to develop prototype real-life applications of argumentation in a variety
of application domains. Today the GORGIAS system is available as a service over
the internet in Cloud Gorgias at http://gorgiasb.tuc.gr/GorgiasCloud.html.

Let us illustrate the GORGIAS argumentation framework and the dialectic
computational model of the GORGIAS system through a simple example. This
is written below in the internal GORGIAS system language.8 This language is
build on top of Prolog where an argument rule has the form:

rule(arg name,Claim, defeasible premises]) : −non defeasible premises.

arg name is a Prolog term with which we name the arguments expressed
by this rule, non defeasible premises can be any conjunction of Prolog con-
ditions and are executed under ??? and defeasible premises are conjunc-
tions of literals executed under GORGIAS using argument rules relating to
them. Priority argument rules have exactly the same form, but now Claim is
prefer(arg name1, arg name2) where arg name1 and arg name2 name two other
different argument rules.

7 Initially, the framework of GORGIAS had the name LPwNF : Logic Programming
without Negation as failure.

8 As we will see in Sect. 5 of the tutorial, it is not necessary to work at this internal
level of GORGIAS when developing applications.

http://gorgiasb.tuc.gr/GorgiasCloud.html
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Example 4 (Commonsense Reasoning). The following argument rules express
a common sense knowledge about birds (b), in particular penguins (p), flying
(f ) or not. We assume that we have sensors that can recognize clearly objects
that are birds. They are unable to recognize directly penguins, but instead can
recognize if an object walks like a penguin, how tall it is, and how far away it is.

rule(r1(X), f (X), []) : −b(X).
rule(r3(X), p(X), []) : −walks like p(X).
rule(r2(X),neg(f (X)), [p(X)]).
rule(r4(X)neg(p(X)), []) : −over a meter(X).
rule(p1(X), prefer(r2(X), r1(X)), []).
rule(p2(X), prefer(r4(X), r3(X)), []) : −1m dist .

Suppose our sensors have given us the following trusted information
about a particular object with identifier obj 1: b(obj 1),walks like p(obj 1),
over a meter(obj 1). Can we infer that obj 1 (possibly) flies or not, i.e., can
f (obj 1) or neg(f (obj 1)) be supported by admissible arguments or not?

GORGIAS will try to build a (composite) argument Δ supporting f (obj 1)
starting with the argument rule r1(obj 1) which supports f (obj 1) based on the
premise of b(obj 1). This is attacked by the argument A = {r2(obj 1), r3(obj 1)} on
the claim of f (obj1) of Δ. Δ itself forms a defense against this as they are equally
strong. But this attacking argument can by strengthened by including in it the
priority argument p1(obj 1). Now Δ as it currently stands cannot defend against
this strengthened composite attacking argument. It therefore needs to look for
other arguments to help it do so, and so it adds in Δ the argument r4(obj 1). This
is in conflict with the attack A on the claim of p(obj 1) and (in the absence of any
information of how close we are to the object) these conflicting arguments of A
and r4(obj1) are of non-comparable (or equal) strength and so the latter can form
a defense against the former. Thus the extended Δ = {r1(obj1), r4(obj1)} forms
an admissible argument supporting f (obj 1). Note that A = {r2(obj 1), r3(obj 1)}
supporting neg(f (obj 1)) is also admissible.

Suppose now that we also have that 1m dist holds. When we are look-
ing for a defense against the counter-argument A, GORGIAS can now use a
stronger (than above) defense by including also the priority argument p2(obj 1)
resulting in a final Δ = {r1(obj 1), r4(obj 1), p2(obj 1)}. In addition, now we
cannot build an admissible argument supporting neg(f (obj 1)). Argument A =
{r2(obj 1), r3(obj 1)} is attacked strongly (i.e. it cannot defend back at this) by
{r4(obj 1), p2(obj 1)} and there is no other argument strong enough to defend
against this.

An important feature of the GORGIAS generated admissible composite argu-
ment Δ supporting a claim is that this serves as an explanation for the possible
adoption of the claim. This explanation at the internal level of the GORGIAS
framework can be naturally translated into an application level explanation
exhibiting the desired characteristics of being attributive, contrastive and
actionable as follows:.
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– Attributive: Extracted from the object-level argument rules in Δ.
– Contrastive: Extracted from the priority argument rules in Δ.
– Actionable: Extracted from the hypothetical9 arguments in Δ.

From the internal GORGIAS explanation of Δ = {r1(obj 1), r4(obj 1), p2(obj 1)} of
Example 4 we automatically generate the application level explanation:

– The statement “f (obj 1)” is supported by: — b(obj 1) and neg(p(obj 1)).
– This support is strengthened: — (against p(obj 1))) by: “1m dist .”

3 Cognitive Argumentation

In what follows, the natural link between human reasoning and argumentation
will be exposed. It will present how cognitive principles drawn from Cognitive
Psychology, Social Sciences and Philosophy can help develop an argumenta-
tion framework, called Cognitive Argumentation, as a case of structured argu-
mentation, 〈As, C,�〉, that is customized according to these cognitive princi-
ples. These principles would help us capture the context sensitive and adaptive
nature of human reasoning as well as other computational features such as the
“on demand” or “lazy process” of human reasoning. The framework of Cogni-
tive Argumentation will be illustrated by discussing in detail the particular case
of the suppression task as studied in Cognitive Psychology to understand the
nature of human reasoning.

3.1 The Suppression Task

In the psychological study of the suppression task three groups of participants
were asked to derive conclusions given variations of a set of premises. Group I
was given the following two premises: If she has an essay to finish, then she will
study late in the library. (e � �). She has an essay to finish. (e). The participants
were asked what necessarily follows from the above two premises. They could
choose between the following three answers: She will study late in the library. (�)
She will not study late in the library. (�) and She may or may not study late in
the library. (� or �) In group I, 96% of the participants concluded: She will study
late in the library.

In addition to the above two premises for Group I, Group II was given the
following premise: If she has a textbook to read, then she will study late in the
library. (t � �) Still, 96% of the participants concluded that She will study late
in the library. Finally, Group III received, together with the two premises of
Group I, additionally the following premise: If the library stays open, then she
will study late in the library. (o � �) In this group only 38% concluded that She
will study late in the library : The conclusion drawn in the previous groups was
suppressed in Group III.

9 These are arguments whose premises are empty but are generally weaker than any
conflicting argument grounded on some given premises.
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Cognitive Principles. Humans make assumptions while reasoning, many of
which are not necessarily valid under formal (classical) logic. Yet, humans are
pretty good in explaining plausibly why they make these assumptions. Let us
consider some such (typically) non-formal or extra-logical properties and formal-
ize them as cognitive principles.

According to Grice, human communicate according to the maxim of qual-
ity, implying that humans try to be truthful. Applied to the suppression task
this implies the following: When the experimenter states She has an essay to
finish, then participants believe this information to be true. To reflect this prin-
ciple, we establish (strong) factual argument schemes. Further, following Grice’s
maxim of relevance, mentioned information is assumed to be relevant. Even
though mentioned information is not necessarily factual (e.g., if the library stays
open), humans can still construct various context-dependent hypotheses sup-
porting statements concerning this information. For this purpose we establish
(weak) hypothesis argument schemes.

Consider again the conditional (e � �): She has an essay to finish is sufficient
support for She will study late in the library. Thus we say that e in (e � �) is
a sufficient condition. Similarly, t is a sufficient condition in (t � �) Yet, the
library stays open is not sufficient support for She will study late in the library
in conditional (o � �). However, the library is not open plausibly explains She
will not study late in the library. Here, o in (o � �) is a necessary condition.
Conditionals with sufficient condition and conditionals with necessary condition
will be denoted by s� and n�, respectively. Further, we establish two types of
argument schemes for both types of conditionals.

The following cognitively motivated relative strength relation among schemes
will apply for the dialectic argumentation process: Fact schemes are the strongest
schemes, whereas hypotheses schemes are the weakest schemes, and necessary
schemes are stronger than sufficient schemes.

The Suppression Task in Argumentation. Given the above principles we
can build an argumentation framework, 〈As, C,�〉, where As contains argument
schemes drawn from the cognitive principles. To do so we assume that we have
a cognitive state S = 〈F ,A〉 where F is the set of facts, and A is the set
of relevance, namely A includes all concepts that we are made aware of by the
external environment. Then the maxim of quality principle gives a fact scheme:
fact(L) = (∅ �L) ∈ As, applied for any statement L ∈ F of the current cognitive
state S = (F ,A). Similarly, the maxim of relevance principle gives a hypothesis
scheme: hyp(A) = (∅ � A) ∈ As and hyp(A) = (∅ � A) ∈ As, applied for any
proposition, A ∈ A of the current cognitive state S = (F ,A). The two different
types of a condition P in relation to a consequent Q, each give a conditional
argument schemes: When P is sufficient: suff(P � Q) = (P � Q) and when P
is necessary: necc(P � Q) = (P �Q). Finally, the conflict relation C is simply
that of negation, and the strength relation � among the argument schemes is
that given above in the cognitive principles.

We will then see that human reasoning in the suppression task can be
understood through the dialectic process of argumentation to build acceptable
(or admissible) arguments supporting the statement of the question and its
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Fig. 2. Argumentation process for � and � in Group I. Only � is acceptable.

negation. Figures 2 and 3 show this for Group I and Group III in terms of the
following dialectic argumentation process:

Step 1 construct a root argument supporting a conclusion of interest,
Step 2 consider a counterargument against the root argument,
Step 3 find a defense argument against the counterargument,
Step 4 check if this defense argument is not in conflict with the root argument,
Step 5 add this defense argument to the root argument,
Repeat from Step 2, with the extended root argument.

Carrying out the process until there are no other counterarguments in Step 2
that have not already being considered, clearly results in an extended root argu-
ment that is an acceptable argument supporting the conclusion of interest.

Figure 2 shows this process to build an argument for � (for Group I) starting
with the relatively strong argument of Δe

e
s��

= {fact(e), suff(e � �)} (Fig. 2.1, �).
This is attacked by the argument Δ

e,e
n��

= {hyp(e), necc(e � �)} supporting �

(Fig. 2.2) but this immediately defended against (or defeated) by Δe = {fact(e)}
(Fig. 2.3) which attacks Δ

e,e
n��

on the hypothesis part it contains. This strong
attack by Δe which cannot be defended against is the reason why we cannot
build an acceptable argument supporting �, as we see in the right part of Fig. 2.
Hence, on the one hand Δe

e
s��

acceptably supports � while there is no acceptable
support for �. Consequently, � is a definite conclusion. This conforms with the
empirical observation of an overwhelming majority of responses for She will study
late in the library in this first group (96%).

In contrast, for Group III, Fig. 3 shows how we can build acceptable argu-
ments for either � (left part of the figure) or � (right part of the figure) using the
new argument Δ

o,o
n��

= {hyp(o), necc(o � �)} that is enabled by the awareness,
in Group III, of the concept of open and conditional schemes involving this.
Hence in Group III both � and � are acceptably supported and hence are only
plausible (credulous) conclusions. This then accounts for the observed suppres-
sion effect, where only 38% responded that definitely She will study late in the
library. Those participants who considered the possibility of the library being not
open could support that she did not study in the library and so did not answer
that � definitely holds. All twelve cases of the suppression task, where empirical
data is collected, can similarly be accounted for in Cognitive Argumentation.
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Fig. 3. Argumentation process for � and � in Group III. Both � and � are acceptable.

3.2 The COGNICA System

COGNICA10 is a system, built on top of the GORGIAS system, that implements
the framework of Cognitive Argumentation with emphasis on conditional reason-
ing. It is based on the particular work of Johnson-Laird and Byrne, “Condition-
als: A Theory of Meaning, Pragmatics, and Inference” and the mental models
theory that underlies this work. It has a simple interface of a Controlled Nat-
ural Language for expressing different types of conditional sentences which are
automatically translated into the GORGIAS argumentation framework by adapt-
ing and extending the mental models interpretation from a theory on individual
conditionals to sets of conditionals and their interaction.

The controlled natural language of COGNICA allows one to enter conditionals
in these different types as foreground knowledge, i.e., particular knowledge that
the system would reason about. Any relevant background knowledge is entered
in the system, alongside the foreground knowledge, using exactly the same con-
ditional form of controlled natural language.

Example 5 (Foreground Knowledge). Consider the ethics example of “Hal vs
Carla” introduced in the tutorial on Argumentation and AI in this school.11 Its
specific foreground knowledge can be captured as:
If use someone’s resource then compensate.
If justified use of someone’s resource then not compensate.
If in life threatening situation then justified use of someone’s resource.
If have alternatives then not justified use of someone’s resource.

Then given a certain case where the following facts hold, “use of someone’s
resource”, “in life threatening situation” and “have alternatives”, the COGNICA
system will reply “Maybe” to the query of whether “compensate” holds or not.

COGNICA provides explanations in verbal and graphical form for its answers.
Figure 4 shows the graphical explanation for the above answer “Maybe”. These

10 http://cognica.cs.ucy.ac.cy/COGNICAb/login.php.
11 “Hal, a diabetic, loses his insulin in an accident through no fault of his own. Before

collapsing into a coma he rushes to the house of Carla, another diabetic. She is not
at home, but Hal enters her house and uses some of her insulin. Was Hal justified,
and does Carla have a right to compensation?”.

http://cognica.cs.ucy.ac.cy/COGNICAb/login.php
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graphical explanations present the argumentative dialectic nature of reasoning
by COGNICA as “reasoning pathways” of the “mind” of the COGNICA system.

Fig. 4. Visual explanation of COGNICA for the “Hal vs Carla” example.

A first evaluation experiment has been set up to evaluate both the “natu-
rality” of the system’s conclusions and the possible effect of the system’s expla-
nations on the human reasoning. The main part of the experiment consists of
each participant shown a short piece of text about a common everyday situation
and asked to answer questions on whether a statement holds. The human par-
ticipant is then shown the answer of COGNICA with its explanations and asked
to reconsider her/his answer after seeing these. The initial results of this exper-
iment have shown 70% agreement between human participants and COGNICA
on the answers which increases to 85% agreement after seeing the explanation of
COGNICA. The change of human’s answers occurred mainly when the COGNICA
answer was “maybe”, and there is a “drift” to more “careful or intense reason-
ing” by the human participants as they continue. The exercise is open to anyone
and can be found at http://cognica.cs.ucy.ac.cy/cognica evaluation/index.html.

3.3 Argumentation and Cognitive Architectures

The cognitive architecture ACT-R is a theory about how human cognition works.
Cognitive functions are represented by modules that communicate with others
through buffers. Simulations of these modules and their interactions aim at better
understanding processes in human cognition. One strength of ACT-R is that is
allows the representation of knowledge symbolically while including sub-symbolic
components. Here, we will sketch how cognitive argumentation can be guided by

http://cognica.cs.ucy.ac.cy/cognica_evaluation/index.html.
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some functionalities in ACT-R. In particular, we discuss the declarative memory,
the procedural module, and spreading activation.

Declarative Memory. Declarative memory stores knowledge as chunks, each
of them having a name (used for reference) and possibly containing a set of
named slots with single values. Consider the following two examples:

(ESSAY-SUF isa meaning word "essay" context SUFFICIENT)

(ARGUMENT-FOR-L isa argument fact "essay" position "library"

opposite-pos "not library" context SUFFICIENT)

The chunk named ESSAY-SUF is of type meaning and has two slots: word has
the (string) value "essay", whereas context has the value SUFFICIENT, which
is yet another chunk. The chunk ARGUMENT-FOR-L is of type argument and has
four slots: fact, position, and opposite-pos have the (string) value "essay",
"library" and "not library", respectively, whereas the slot context has as
value the chunk SUFFICIENT.

Fig. 5. Two simple examples of production rules in ACT-R.

Procedural Module. The procedural module synchronizes the different func-
tionalities in ACT-R and modifies the model’s state through the execution of
rules. Consider the production rule retrieve-word-semantics in Fig. 5 (left):
This production rule is only considered if the left hand side (everything before
the ==> sign) is true: there needs to be a slot called word in the imaginal buffer
with a certain value represented as the variable =word. Note that the imaginal
buffer can be understood as a place where context information is represented
internally. If this rule fires, then the right hand side applies (everything after
the ==> sign): the cognitive model requests a chunk from the retrieval buffer,
which needs to be of type meaning with the slot word and has the value =word,
as defined in the imaginal buffer. Assume that the cognitive model reads the
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string “essay” which then will be represented internally in its imaginal buffer. If
this rule is fired and ESSAY-SUF is in the declarative memory, then ESSAY-SUF
matches the request and might be retrieved.

The production rule retrieve-counter-argument in Fig. 5 (right) only
applies if the state of the goal buffer is retrieve-counter and the retrieval
buffer on the left hand side (everything before ==>) contains a chunk with slots
fact, position and opposite-pos. If this rule fires, a new retrieval request
will be made, i.e., a chunk is requested to the declarative memory constraint
by the following properties: The new retrieval needs to have (1) the same value
in the slot fact as the current chunk in the retrieval buffer, and (2) the same
value in the slot position as the current chunk in the retrieval buffer has in its
opposite-pos slot.

Argument Retrieval Guided by Chunk Activation. Recall the dialec-
tic argumentation process (Steps 1–5 on page 9) described in the previous
section: This procedure is computationally intensive because in all the main
steps, Steps 1–3, a choice is required and all counter arguments need to be
considered. Yet, exhaustively searching for arguments does not seem to be cog-
nitively plausible. It is more likely that humans consider only a few arguments,
possibly only the most ubiquitous ones. Yet, how to determine these arguments?
One possible assumption is that this choice is guided by the context, which in
ACT-R can be modeled through the activation of chunks: The activation of a
chunk in ACT-R is a numerical value based on the recency and frequency this
chunk was previously used, a noise parameter and the spreading activation, i.e.,
in how far the chunk is related to other chunks in the current context.12 The
chunk’s activation determines whether that chunk will be chosen upon retrieval.

In the current ACT-R implementation, the main arguments are represented
as whole chunks. The retrieval of arguments depends on their activation, which is
determined by whether the given contexts will rather activate the NECESSARY or
SUFFICIENT chunks. Consider the production rule retrieve-counter-argument
on page 13: The counter argument with the highest activation will be chosen,
and this activation in turn, is determined by the parameters above. For instance,
if the chunk SUFFICIENT has a higher activation than the chunk NECESSARY,
arguments with the value SUFFICIENT in their context slot (see argument
ARGUMENT-FOR-L on page 13) are more likely to be retrieved than arguments
with the same slot values for fact and position but where context has the
chunk value NECESSARY.

4 Argumentation for Learning

We now continue to discuss the fundamental role of argumentation in the back-
drop of the emergent need for Explainable ML, and how argumentation supports

12 For more information on the activation function see e.g., http://act-r.psy.cmu.edu/
wordpress/wp-content/themes/ACT-R/tutorials/unit5.htm.

http://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/tutorials/unit5.htm
http://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/tutorials/unit5.htm
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this role by: (i) acknowledging the need to deal with data that is uncertain,
incomplete, and inconsistent (with any classical logical theory); (ii) offering a
target language (syntax and semantics) for learned knowledge that is compatible
with human cognition; and (iii) supporting a flexible prediction and coverage
mechanism for learning that can feed back and guide the learning process.

4.1 What Should a Language of Learning Be Like?

Modern machine learning is typically viewed as a process of turning data into
a model that can accurately predict the labels of future data. Increasingly, this
focus on predictive accuracy is deemed insufficient as a metric of success, and
the ability to explain the reasons behind these predictions is also emphasized.

What counts as an acceptable explanation ultimately boils down to what the
purpose of learning is. Learning does not exist, nor carried out, in vacuum, but
always takes place in the context of facilitating the informed decision-making of
some agent. Learning is coupled with the eventual use of the learned model by
the agent, by having each of the two processes guiding and restricting the other.
Thus, for example, in situations where a learned model will be used to guide the
taking of actions, the coupling implies that learning cannot be done passively.

Learning a model is, thus, not an end but a means to its eventual use. Expla-
nations act as proxy translations of the model into a cognitively-compatible
form for the decision-making agent to: (i) understand, and adopt or contest, the
model’s predictions; (ii) use predictions and prior knowledge to reach a conclu-
sion; or (iii) assimilate the model with prior knowledge in a coherent way.

The importance of explanations as proxy translations becomes more apparent
in cases of a dilemma: (i) on competing predictions of the learned model; (ii)
on whether we can trust the prediction from a black box; or (iii) on how to best
utilize or go forward from the prediction. The learned model by itself can not help
the decision-making agent to resolve such types of dilemmas, and explanations,
then, in support or against the various choices at hand, can help to do so.

The desired characteristics for a language of explanations are none others
than those needed to support the role of learning as a facilitator of decision-
making: flexibility, adaptability, and ability to recognize and accommodate the
inadequacy of the learned model (and the learning process and data) to capture
fully the phenomena that produce the data; ability to place the learned model in
the cognitive sphere of the decision-making agent; and ability of linking back to
the learning process to guide it towards improving the learned model’s adequacy.

4.2 Argumentation as a Language of Learning

Below we demonstrate how argumentation can undertake the role for a language
of learning and explanations through Pierce’s “Beans from a Bag” scenario.

We draw beans from a given bag. Observing that all the drawn beans so far
are white, we learn the induced argument arg(W): “beans in this bag are white”.
If, however, we happen to draw a black bean b1 from the bag, our learned model
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Fig. 6. Representations of a model learned following the “Beans from a Bag” scenario
based on argumentation (ARG), decision trees (DT), or decision lists (DL). Underlined
nodes are choices made during learning despite lack of evidence in the training data.
The table shows the predictions of the three models on selected data points, where ‘?’
is a dilemma, ‘-’ is an abstention due to missing information in a data point, and pairs
of predictions show a dependence on the choices of underlined nodes in learned models.

does not collapse, but is gracefully extended with the observational argument
arg(b1): “this particular bean is black”. By its nature, an observational argument
is stronger than an induced one, naturally accommodating the specific exception
or anomaly, while maintaining that all other beans in the bag are white.

As we continue drawing beans from the bag, we might encounter additional
non-white beans and learn the induced arguments arg(B): “small beans in this
bag are black” and arg(G): “wrinkled beans in this bag are green”. Having more
specific conditions than arg(W), these two induced arguments are stronger than
the latter. So, if we draw again a small bean, then arg(B) will defeat arg(W),
and will explain its predictions by attributing it to the size of the bean.

The two induced arguments are incomparable, and produce a dilemma in
cases of a small wrinkled bean, suggesting that learning needs more such beans to
resolve the ambiguity. By drawing additional beans, we might end up learning the
priority argument arg(G) > arg(B) if light: “if light bean then green”, which does
not make a prediction per se, but resolves the dilemma by offering a contrastive
explanation of why a small wrinkled bean should be green rather than black.

One could posit that other typical white-box representations with some form
of prioritization could equally-well take on the role of a language of learning
or explanations. Figure 6 shows possible learned models for the scenario above,
using argumentation, decision trees, and decision lists, which we compare next.

First, in terms of the representation structure, the conflict resolution process
in argumentation is learnable and expressible in a layered fashion. This yields a
more compact representation, and avoids imposing a total order or mutual exclu-
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sion between conditions. Argumentation does not necessitate access to full infor-
mation, or even negative information in some cases, and is not over-committed
to always reach a prediction if not supported by the statistical evidence from the
data. Argumentation can still abstain if the information in any given data point
is insufficient, and it will cleanly distinguish an abstention from a dilemma.

Second, in terms of cognitive compatibility, argumentation does not confound
the attributive (object-level) explanations from the contrastive (meta-level) ones
that defeat conflicting decisions. Argumentation also supports actionable expla-
nations through the elaboration-tolerant amendment of the learned model.

Third, in terms of learning flexibility, argumentation supports the integration
of other models/new knowledge, its lack of insistence to firmly predict if not
supported by statistical evidence allows it to identify learning gaps for further
training, and its natural handling of missing information allows it to encode
knowledge and engage in conflict resolution from visible data only.

Despite the natural connection between argumentation and learning, and the
diverse ways in which past learning work has used argumentation, this connection
remains largely under-explored. This is particularly so in the context of neural-
symbolic systems, where conflicts between signals from multiple neural modules
could be resolved by an argumentation theory, offering a cognitively-compatible
decision-support layer on top of the opaque perception layer, which could help
guide the latter’s training in a modular and compositional fashion.

To further appreciate how argumentation and learning can fruitfully interact,
we will present two cases of learning with ex ante explainability in mind, where
arguments are used natively to represent the learned model and/or data.

4.3 Case Study 1: Autodidactic Learning of Arguments

The first case study that we consider is that of autodidactic (or self-supervised)
learning of arguments from partial data, treated as an appearance of some under-
lying reality, whose commonsense regularities one wishes to learn. These appear-
ances, or observations, are represented as sets of literals; cf. Fig. 8.

The learning mechanism that we consider is called NERD, standing for Never-
Ending Rule Discovery. NERD operates in an online/streaming fashion, and pas-
sively processes received observations, seeking to identify associations between
literals. Confidence in learned rules increases or decreases every time they are
satisfied or falsified by an observation. Rules start by being provisional, and
become active when their associated confidence exceeds a prescribed threshold.

To resolve conflicts between rules, NERD prioritizes rules based on the order
in which they became active, the intuition being that a rule with fewer exceptions
(e.g., that penguins cannot fly) will have stronger statistical support from the
data, and will become active earlier than a rule with more exceptions (e.g., that
birds can fly). Accordingly, when the former rule becomes active, it explains
away some of the counter-examples of the latter rule (e.g., observations where
birds are also penguins do not count as negative evidence for the latter rule),
supporting the latter rule further to gain confidence; see Fig. 7.
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Fig. 7. Updating of the confidence of two learned rules as observations are processed
by NERD. The horizontal line in each graph indicates the threshold above which rules
are considered active. The arrows show key points of the learning process.

Fig. 8. Observations (left) are iteratively processed by the NERD algorithm to pro-
duce the learned model (right). During the last iteration, “penguin” and “flying” are
observed (green filled ovals), “bird” and “-flying” are inferred (green and red glow-
ing ovals) by applying the corresponding active rules, and the confidence of the rules
“penguin implies not flying” and “bird implies flying” is, respectively, demoted and
promoted. The latter rule becomes active (having previously been deactivated from an
earlier active state), and is given lower priority than the currently active former rule.
(Color figure online)

The interaction between rules happens naturally by simply reasoning with
active rules — chaining them together to form arguments, whose strengths come
from rule priorities — before each observation is utilized for learning. This app-
roach fully aligns with the coupling of learning with the eventual use of knowl-
edge learned from partial data, as this knowledge is to be used to comprehend
observations by completing their missing parts. As NERD proceeds, the learned
model increases its coverage with additional (active) rules; see Fig. 8.

4.4 Case Study 2: eXplanations In, eXplanations Out

The second case study that we consider is that of learning by engaging with a
user who offers advice to the learner, and from which one wishes to learn a user-
specific policy. A learning algorithm processes the feedback coming from a user
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Fig. 9. Contexts and corresponding user reactions (left) are iteratively processed by
the Machine Coaching protocol to produce the learned model (right). During the last
iteration, “B”, “C”, and “not D” are observed (green and red filled circles), and “F” is
inferred (green glowing circle) by applying the corresponding rule. Following the user’s
reaction, a new rule r5 is added, and is given higher priority than the existing rule r4.
(Color figure online)

following the eXplanations In, eXplanations Out (XIXO) principle: if we expect
to learn a model able to offer explanations that are cognitively compatible with,
and acceptable to, a given user, then the same type of explanations should be
offered during the learning phase as training material to the learner.

The learning mechanism that we consider is called Machine Coaching, empha-
sizing the active interaction of the learner with a coach. Machine Coaching oper-
ates in an online/streaming fashion, and passively processes received observa-
tions. Unlike in the first case study, these observations are not meant to corre-
spond to experiences from which one learns, but rather statements that provide
the context within which learning takes place. Given such a context, Machine
Coaching proceeds to reason with its existing learned model — following the
approach of chaining rules to form arguments from the first case study, and
aligning with the coupling of learning — to draw an inference, which it presents
to the user along with the arguments in support of that inference.

The user reacts to the inference and the associated explanation of the learned
model by offering a counter-argument explaining why the learned model’s infer-
ence or explanation is not acceptable. Machine Coaching revises the learned
model by integrating the user’s explanation. This integration happens naturally
by virtue of the learned model being represented in the language of argumenta-
tion, so that the simple addition of the counter-argument with higher strength
than existing conflicting arguments suffices; see Fig. 9. This approach fully aligns
with the XIXO principle and the coupling of learning.

Unlike typical online learning, in Machine Coaching the supervision signal is
not the label of a data point, nor a reaction to whether the prediction of the
current learned model is correct, but rather a reaction to whether the explana-
tion of the learned model is acceptable to the user. On the other hand, the goal
of the learned model is not to anticipate what supervision signal it would have
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gotten on a future data point, but rather to make a prediction and an associ-
ated explanation that would lead to no reaction from the user. Finally, note that
each supervision signal offers information beyond the individual data point, as
it proactively provides information on the labels of multiple future data points
(those that satisfy the conditions of the counter-argument), making the pro-
cess more efficient than a typical supervised learning process. Despite ultimately
being a form of machine learning, Machine Coaching can be best understood as
lying between learning and programming, with the dialectical exchange of expla-
nations between the learner and the user leading to a better balance between
the user’s cognitive effort and the learner’s computational burden, compared to
what one would get at either of the extreme cases of learning and programming.

5 Applications of Argumentation

In this final section we will see how to develop real-life, large scale applications
of argumentation based on the theory and methods presented in the earlier
parts of the tutorial. We will examine a general methodology for developing
argumentation-based systems within a simple high-level architecture and illus-
trate this with several example applications from various domains. These AI
systems are designed with an emphasis on their (soft) embodiment within
an external dynamic environment with a two-way continual interaction with
the environment that includes the “human in the loop”. To realize such human-
centric AI systems we can follow a human, “mind-like” architecture, as in Fig. 10.

Fig. 10. High-level architecture for Cognitive AI Systems.

In this architecture there are two levels of knowledge that the system uti-
lizes. At the top we have the decision policy containing the specific application
knowledge of the requirements which regulate the decision making process.
This is expressed in terms of high-level concepts about the current state of affairs
under which a decision has to be taken and depends on the high-level understand-
ing of the current external environment based on the sensory information that
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the system has (just) received. Recognizing the information received through
the sensors and comprehending this in terms of the higher-level application lan-
guage is based on world knowledge. This knowledge associates the lower-level
information from the environment to increasingly higher-levels of generalization
or abstraction required by the top application knowledge.

The central task of developing these system rests in acquiring or learning
these two pieces of knowledge. This poses two major challenges:

– Acquisition of Application Knowledge What is an appropriate language
level that would facilitate capturing the application knowledge either from
the application expert and/or the application data? What is the appropriate
cognitive-level of this language?

– Middleware from Sensory Information to High-level Application
Concepts What are effective ways of comprehending the relevant part of the
current application environment? How do we recognize the current state of
affairs and the particular decision context in which the system finds itself?

5.1 SoDA: Software Development Through Argumentation

Motivated by the above challenges we can adopt a knowledge representation
approach where knowledge is captured in terms of a structure called Scenario-
Based Preference (SBP). This is a high-level structure that allows us to
represent knowledge directly at the application level in terms of the applica-
tion language. It can be translated automatically into an executable Gorgias
argumentation theory thus implementing the decision policy and comprehension
modules of our Cognitive AI system.

Scenario-based preferences are triplets, 〈Id ,Scenario,POptions〉 where Id is
a unique identifier of the triplet, Scenario is a set of conditions that partially
describe a possible subset of states or scenarios of the application environment
and POptions is a subset of decision options that are preferred in any state where
the Scenario conditions hold. As we will see below it is very useful to group
these scenarios in hierarchies of increasing specificity. Essentially, scenario-based
preferences are a formal structure that allows us to capture knowledge of the
general cognitive form:

“Generally, when [SITUATION] prefer Oi, but in the more particular
[CONTEXT], prefer Oj”

where Oi and Oj are subsets of options and SITUATION, CONTEXT are subsets
of scenario conditions with CONTEXT describing a more specific situation.

Let us illustrate, through a simple example, SBPs and a methodology, called
SoDA: Software Development through Argumentation, for acquiring and building
the application knowledge as a set of hierarchies of SBPs.

Example 6 (Study Assistant). Consider the problem of deciding where to study
with three possible options, study at the Library , Home or Cafe. Assume that
we are given or learned the decision guidelines:
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“When [Have Homework] prefer to study at Home,Cafe, but if [Late], prefer to
study at Home or when [Need Sources] prefer to study at Library .”

This is captured by following hierarchy of scenario-based preferences:

〈1, {Homework}, {Home,Cafe}〉 〈11, {Homework ,Late}, {Home}〉
〈12, {Homework ,Need Sources}, {Library}〉

Here each of 11 and 12 form refinements of the root scenario-based preference
1 resulting into two the hierarchies of (1,11) and (1,12).

Together with the operation of refinement, we have a second operation of
combination, where we consider the union of scenario conditions from two
SBPs. From Example 6 consider the combination of scenarios in 11 and 12
to generate the interim new SBP of: 〈11|12i,Homework ,Late,Need Sources},
{Home,Library}〉.

We can then return to the decision policy, e.g., ask or learn from the appli-
cation owner or user, for possible preferences in the combined scenario and gen-
erate SBPs refining the interim SBP. For example, we may learn a preference to
Library and so have: 〈11|12, {Homework ,Late,Need Sources}, {Library}〉.

The SoDA methodology provides guidelines for carrying out this process of
knowledge engineering of scenario-based preferences. An associated tool, called
Gorgias-B13, supports the methodology by providing a framework to build
contextual refinements of SBPs and to consider appropriate combinations of
these. This tool also carries out an automatic generation, from the SBPs, of an
argumentation theory in the Gorgias framework and an interface to execute this
under the GORGIAS system. This has now evolved into a professional platform
tool, called rAIson, developed by a new company, called Argument Theory14.

5.2 Application Language Levels: Example Applications

The language that we use to specify the decision policy of an application can vary
according to the nature of the application. Ideally, the level of the application
language should be as close as possible to natural language or some form of
structured natural language. Given a language level the task for translating a
decision policy into scenario-based preferences differs in the degree of manual
effort required. The following is a list of different application language levels
each together with a typical real-life application domain.

– Free Text in Structured Natural Language.
An example case is that where the policy is given in a Legal Document.
Such documents are highly structured and are already in a scenario-based
preference and argumentation form. The translation into a scenario-based
preference form is carried out manually but this is direct and it is easily

13 http://gorgiasb.tuc.gr/.
14 https://www.argument-theory.com/en/.

http://gorgiasb.tuc.gr/
https://www.argument-theory.com/en/
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carried out. We can then automate the task of compliance with the legal
requirements providing explanations of why an action is compliant or not
and if not how it can become compliant. An example of such application
is MEDICA15 a system for granting the appropriate level of access to the
electronic patient record, as specified by the European law.

– Controlled Natural Language in a Restricted Vocabulary
This language level is appropriate for Cognitive Assistant applications
where these systems provide services in a restricted domain of interest. Exam-
ples of such cognitive assistants are Call Assistant, Tourist Assistant, Care
Assistant, Calendar Assistant, Investor Assistant and Social Media Assistant.
These systems can start with a minimal vocabulary and gradually expand it
as the systems are starting to be deployed. The policy guidelines are given
in a controlled form of natural language customized to the vocabulary and
particular features of the domain of application.
Let us consider the example of a Social Media assistant. This is a system that
monitors the user’s social media feed and helps a user manage the information
overload by explainably “re-arranging”, according to the user’s liking, the
information pieces, e.g., posts, that she/he receives. For example, for each
post the assistant would decide amongst highlighting this at the top or even
notifying the user, demoting it to the bottom or hiding it completely and
other such actions. A user can express her/his personal policy guidelines at a
high level using controlled natural language. For example:

I like sports, particularly tennis and basketball. I love drama and com-
edy movies especially if produced in the UK. I like to know what my
closest friends are doing and to stay in touch with current popular
news. But I hate politics except when related to climate change.

Representing this in scenario-based preferences we take into consideration two
types of information conveyed in this type of policies: (1) the high-level con-
cepts that act as decision criteria, e.g., “sports”, “drama movies”, “produced
in the UK”, “closest friends”, “popular news”, ..., that form the scenario
conditions and (2) the implicit preferences conveyed by various keywords
used, e.g., “like”, “love”, “particularly” “stay in touch”, “hate”, “except”, ...,
used to fill in the preferred options in scenario-based preferences and to form
refinements of these. The sensory information received by the social media
assistant is the low-level data on each post that the user receives on a social
media platform, such as who posted it, its content, its popularity figures,
etc. We can then build middleware based on different technologies to decide
on the description of the post in terms of the high-level concepts referred
to in the decision policy. The output of the assistant is a presentation of the
user’s posts based on which classification and related action can be supported
acceptably by the underlying Gorgias argumentation theory. The classifica-
tion is shown next to the post together with its supporting explanation when
the user wishes to see it. A typical example explanation, that highlights their
contrasting nature is:

15 http://medica.cs.ucy.ac.cy/.

http://medica.cs.ucy.ac.cy/
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“Even though this post is not (very) interesting to you it was made
from a close friend.”

– Structured Tables of Scenario Hierarchies
For applications that are based on expert knowledge, e.g., Decision Sup-
port Assistants, we need a more structured language to capture large scale
amounts of expert knowledge. A suitable such structure is that of structured
tables where each row essentially corresponds to a scenario-based preference.
The first column of the table contains the scenario conditions and each of the
other columns corresponds to a single option which is marked or not in each
row as one of the preferred options in the scenario of the row.
In the medical domain, where this has been mostly applied, the doctors use
their familiar medical language for constructing/filling these tables. Also they
are already familiar, from Evidence Medicine, with the notions of support-
ing and differential evidence, which are directly used in the construction of
these tables. This method for knowledge acquisition has been applied to
two particular cases of medical decision support, in ophthalmology and in
the much larger domain of gynecology. The purpose of the first system of
OPHTALMOLOGICA, is to understand the level of severity of the possi-
ble disease(s) so that a scheduling appointment system (or the receptionist)
can give an appropriate priority to the patient. The second system of GAID:
Gynecological AI Diagnostic Assistant has its overall aim to:

“Support clinicians feel more confident in decision, helping to avoid
over-diagnosis of common diseases and to ensure that emergency
cases are not missed out.”

It covers fully the area of gynecology with over 140 diseases (i.e., options) and
over a thousand different parameters (current symptoms, patient record, clin-
ical examination findings and laboratory tests) that can affect the diagnosis.
The system generates a set of suspicious diseases every time some new infor-
mation about a patient is received (during a clinical visit to the doctor). All
suspicious diseases come with an explanation, generated automatically from
the Gorgias object-level and priority arguments that support the suspicion
of the disease. A typical example of an explanation is:

“Under the information Vaginal Burning it is recommended that
you investigate Vulva Candidiasis. This is also supported by Post-
Coital Bleeding and further strengthened by Vaginal Discharge. A
negative test for Vaginal Secretions would exclude this disease.”

The GAID system is under a pilot clinical trial to evaluate both the accuracy
of its suggested suspicious diseases as well as its guidance to (junior) clinicians
to collect relevant information that would help focus the diagnosis.

5.3 Machine Learning Assisted Policy Formation

Machine Learning offers the possibility to automatically acquire (at least partly)
the knowledge for Cognitive AI systems with the high-level architecture of
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Fig. 10. As presented in Sect. 4, treating learned associations as object-level argu-
ments we can continue the learning process to construct priority arguments over
these thus improving the predictive power of our learned theory and providing
more informed explanations. Importantly, by adopting this argumentation per-
spective on learning we can then integrate together with the machine learned
knowledge other knowledge that is already known by experts (e.g., medical or
clinical knowledge) and thus have a hybrid approach in generating and updat-
ing the knowledge of our application. Machine learning is thus integrated with
knowledge elicitation methods directly from the “policy source/owner” as we
saw above. Indeed in many expert application cases, but also in other applica-
tion domains, we can have domain expert knowledge, or a company’s business
policy or a legal requirement, that it would be futile to insist to learn again
through machine learning on a large data corpus of example cases.

Examples of applications where we have machine learning assisted knowledge
generation or acquisition have been developed in the area of medical decision
support area based on real-life data sets in the area of risk assessment of Stroke
and the area of deciding on the possible development of Alzheimer. These sys-
tems act as peer companions to the doctors to offer a second opinion on a new
case. This is done through “peer explanations” at the cognitive level of the
specialists, e.g., the radiologist or doctor, offered by the system. An example of
such a “peer explanation” for the domain of Stroke is:

“This patient is judged to be asymptotic because Log(GSM+40) is in the
range [4.28, 5.17] and has no history of contralateral TIAs or Stroke. Although
the patient has (Plaque Area)1/3 in the range [3.47, 6.78] and Discrete White
Areas in the plaque, suggesting a risk for stroke, the first symptoms are more

significant when the patient has (Plaque Area)1/3 less than 3.9.”

Finally, we mention the area of argument mining which in effect uses
machine learning to extract arguments (mostly from text) to construct knowl-
edge in the form of argument graphs. This is particularly appropriate for learning
the world knowledge on which we base the middle-ware of an application that
links sensory information to high-level cognitive concepts on which the decision
policy is formed. Argument mining is not covered in this tutorial but it is very
important and the reader is urged to consult the many references on this topic.
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Fabian Lorig1(B), Löıs Vanhée2, and Frank Dignum2

1 Department of Computer Science and Media Technology, Internet of Things
and People Research Center, Malmö University, Malmö, Sweden
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Abstract. In agent-based social simulations (ABSS), an artificial popu-
lation of intelligent agents that imitate human behavior is used to inves-
tigate complex phenomena within social systems. This is particularly
useful for decision makers, where ABSS can provide a sandpit for inves-
tigating the effects of policies prior to their implementation. During the
Covid-19 pandemic, for instance, sophisticated models of human behav-
ior enable the investigation of the effects different interventions can have
and even allow for analyzing why a certain situation occurred or why a
specific behavior can be observed. In contrast to other applications of
simulation, the use for policy making significantly alters the process of
model building and assessment, and requires the modelers to follow differ-
ent paradigms. In this chapter, we report on a tutorial that was organized
as part of the ACAI 2021 summer school on AI in Berlin, with the goal
of introducing agent-based social simulation as a method for facilitating
policy making. The tutorial pursued six Intended Learning Outcomes
(ILOs), which are accomplished by three sessions, each of which consists
of both a conceptual and a practical part. We observed that the PhD
students participating in this tutorial came from a variety of different
disciplines, where ABSS is mostly applied as a research method. Thus,
they do often not have the possibility to discuss their approaches with
ABSS experts. Tutorials like this one provide them with a valuable plat-
form to discuss their approaches, to get feedback on their models and
architectures, and to get impulses for further research.

Keywords: Agent-based modeling · Simulation for crisis situations ·
Sophisticated agent architectures · Analysis of simulation outputs ·
Interaction with stakeholders · NetLogo

1 Introduction

The ongoing Covid-19 pandemic has impressively shown the field of tensions
in which policy makers, e.g., politicians, public health agencies, and regional
authorities, find themselves. There are expectations from the society, that critical
c© Springer Nature Switzerland AG 2023
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decisions should be made based on clear facts and reliable data, such that they
are transparent for everyone. However, especially during pandemics and other
crisis situations, decision makers are often facing challenges related to incomplete
data, contradicting information, as well as rapid developments and changes of the
situation, which results in a high degree of uncertainty. This makes it difficult
to predict the effects of actions in advance and to identify the most suitable
policies for a new situation. To take uncertainty into consideration when making
decisions, different sources of data and evidence need to be taken into account
and weighed against each other, to make a sound decision that ultimately results
in the desired outcome.

A method that is particularly well-suited for assessing uncertainty is com-
puter simulation [14]. Simulations provide a testbed that allows for efficiently
conducing what-if analyses. It enables the observation of a system’s behavior
under different circumstances and the investigation of the effects of different
actions without actually interfering with the system that shall be analyzed. This
is achieved by developing and executing a model of the target system, which
allows for conducting more time- and cost-efficient experiments without the risk
of jeopardizing the target system itself. Especially with respect to the Covid-19
pandemic, simulations provide a valuable alternative to real-world experiments,
which might take too long time in critical situations or which might be unethi-
cal as humans might be harmed. An example is the investigation of the effects
different interventions might have on the spread of the virus, whose testing in
the real world could cost human lives [10].

When investigating the effects and success of different policies, a major fac-
tor that needs to be taken into consideration is the behavior of the individuals
that are affected by this policy. When, for instance, investigating the effects of
interventions for containing epidemics (e.g., lockdowns, social distancing, or face-
masks), it is crucial to consider that individuals (because of different reasons)
may not always comply with restrictions or recommendations, which might lead
to an undesired outcome. To this end, agent-based social simulations (ABSS)
are a promising tool for decision makers as they, among other things, allow for
investigating the effects different policies have on an artificial population consist-
ing of so called agents [5,15]. In ABSS, each agent is characterized by a number
of attributes, e.g., age, gender, or occupation, and reacts to its environment
by imitating human behavior using AI. This allows for investigating the effects
different policies might have before actually implementing them.

Discussing how ABSS can be used to facilitate policy making was the goal of
the “Social Simulation for Policy Making” tutorial that was part of the Advances
Course on AI on Human Centered AI (ACAI 2021), which took place in Berlin,
Germany on October 11–14, 2021. ACAI1 is the bi-yearly European summer
school on AI, that was first organized in 1985.

The tutorial aimed at introducing the concept of ABSS as well as to discuss
its applications to facilitate policy making by enabling the investigation of the

1 https://eurai.org/activities/ACAI courses (accessed Jun 2022).

https://eurai.org/activities/ACAI_courses
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potential effects of policies in advance. The Intended Learning Outcomes (ILO)
[3] of the tutorial include that the students are able:

ILO-1: to describe and relate the principles of ABSS, including fundamental
ABSS approaches and techniques as well as applications of ABSS to real-world
problems
ILO-2: to conduct and analyze experiments using an existing ABSS model and
a well-established ABSS simulator (NetLogo)
ILO-3: to identify and relate the key cognitive components in advanced ABSS
models, to explain the main reasons for using cognitive models, and to identify
the need for such models on a real-world problem
ILO-4: to explain and specify how an existing agent architecture in an ABSS
model can be extended for facilitating the investigation of new policies
ILO-5: to explain how using ABSS for policy making alters the ABSS-making
activities and to relate these activities to concrete deliverables
ILO-6: to analytically discover the origin of a complex emerging phenomena,
based on extensive raw multidimensional ABSS output

The ILOs are structured in pairs of theoretical knowledge (Bloom’s cognitive
levels) and practical skills using action verbs (e.g., apply, analyse, evaluate, cre-
ate) [1]. This enables the students to learn about the (intrinsically conceptual)
cutting-edge research while still developing concrete first-person experience of
practical skills through active learning [3].

The learning activities have been structured in three main sessions of around
90 min each, each session covering one conceptual and one practical ILO (Ses-
sion 1 covering ILO-1 and ILO-2; Session 2 covering ILO-3 and ILO-4; Session
3 covering ILO-5 and ILO-6). Each session is dedicated to a particular topic,
building upon and specifying the topics covered by the previous sessions. The
conceptual activity was covered as an open lecture (lecture with on-the-fly ques-
tions and discussions). The practical activities differ for every session but involve
student-centered tasks seeking to develop a core practical skill introduced by the
conceptual part and required for effective use of the skill in practice.

The first session provides an introduction to ABSS as well as to the ASSOCC
model for simulating interventions during the Covid-19 pandemic. The second
session picks up on this and introduces why more advanced agent architectures
are required to model more sophisticated policies. Finally, in the third session,
the focus lies more on the stakeholders, what challenges are associated with
using ABSS for policy making, and how simulation results can be analyzed and
interpreted to provide policy makers with the information and data they need for
making sound decisions. The tutorial was organized by Frank Dignum, Fabian
Lorig, and Löıs Vanhée.

Besides the sessions, the course material included the following reading list:

– Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist.
McGraw-Hill Education (UK).

– Dignum, F. (2021). Foundations of Social Simulations for Crisis Situations.
In Social Simulation for a Crisis (pp. 15–37). Springer, Cham.

– Edmonds, B., & Meyer, R. (2015). Simulating social complexity. Cham,
Switzerland: Springer.
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– Verhagen, H., Borit, M., Bravo, G., & Wijermans, N. (Eds.). (2020). Advances
in Social Simulation: Looking in the Mirror. Springer Nature.

– Lorig, F., Johansson, E., & Davidsson, P. (2021). Agent-based social sim-
ulation of the covid-19 pandemic: A systematic review. JASSS: Journal of
Artificial Societies and Social Simulation, 24(3).

2 Session 1: Agent-Based Social Simulation

We do not assume that the participants of this tutorial have previous expe-
riences with modeling and simulation, i.e., with using simulation frameworks,
parametrizing models, or executing experiments. Hence, we start the tutorial
with an introduction to the most central concepts of modeling and simulation.
In particular, this tutorial provides an introduction to agent-based simulations,
where the behavior of single individual is modeled, and how such simulations can
be applied to investigate social phenomena. This is to achieve the first learning
outcome:

ILO-1: Students are able to describe and relate the principles of ABSS, including
fundamental ABSS approaches and techniques as well as applications of ABSS
to real-world problems.

2.1 Foundations of Modeling and Simulation

When hearing about simulations, most people might intuitively first think of
flight simulators or crash tests, where realistic situations are re-created in an arti-
ficial and controlled environment, to educate pilots or to investigate the safety
of motor vehicles. It is obvious for us that emergency situations such as engine
failures should not be trained using a real airplane and that the consequences
of car accidents should not be investigated using human drivers and real pedes-
trians. However, it is of great importance for our safety that pilots have been
thoroughly trained for all potential emergency situations and that the safety of
cars in case of a crash has been proven in advance.

To this end, the use of simulators provides a variety of benefits compared to
real-world testing, e.g., not harming people, not jeopardizing expensive objects
such as airplanes, more time-efficient and economical, and the possibility to
generate situations or circumstances that might rarely occur in reality [9]. Imi-
tating the real world provides us with new possibilities to investigate different
phenomena or the behavior of a system under certain conditions. In case of
the flight simulator, pilots can repeatedly undergo the same emergency situa-
tion and experience how different responses but also how different circumstances
(e.g., bad weather) might affect the outcome of the situation. Simulations allow
us to conduct what-if analyses to help us gain a better understanding of how the
system we investigate works and to investigate the behavior in certain situations.

However, simulations are not only limited to practical applications. Also in
science, simulations are widely used to model and imitate real-world systems
and to gain new insights into how these systems work or how they behave under
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certain circumstances. This does not only include technical disciplines such as
computer science, engineering, and physics but also biology, economics, sociology,
medicine, and others [2].

“Simulation is the imitation of the operation of a real-world process or
system over time.”

(Banks, 2000, p. 9 [2])

The term simulation can be used in different contexts, which makes it dif-
ficult to provide a clear definition. Yet, the definition of Banks summarizes the
most important aspect, namely that a system’s operation (behavior) is explored
over time. For this purpose, a simplified simulation model is developed, which
approximates the underlying mechanisms of a target system in a logical way, to
imitate its behavior. The target system might be an existing system from the
real world but also a hypothetical system. Either way, the model represents a
state of the target system at a given point in time and is able to calculate the
next state at the following point in time, taking into consideration all relevant
influencing factors. This is achieved by a series of model inputs (parameters)
that define the circumstances or environment of the system, to observe a series
of model outputs, that describe the behavior.

Figure 1 shows the process of model building and simulation [7]. Instead of
conducting experiments with the target system itself, a model is developed, which
describes the relevant parts of the target system in an abstract and simplified
way. As not all mechanisms of the underlying system might be known, assump-
tions must be made to formalize the system’s behavior. In the next step, the
developed model can be executed to imitate the behavior of the target system.
Through this, an artificial system is created that can be used as a sandpit for
conducting experiments, e.g., to analyze what effects different changes in the
environment or in the assumptions of the model might affect the behavior of
the system. The observations made in simulations can then be used to draw
conclusions regarding mechanics of the target system.

Fig. 1. Relationship between target system and simulation model (based on [7]).
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2.2 Modeling Human Behavior

A major challenge in simulation studies is to develop a realistic model that
adequately represents the target system and that provides a sufficient level of
detail making it suitable for its intended purpose. In terms of the Covid-19
pandemic, for instance, decision makers might want to analyze and compare
the effects of different interventions against the spread of the virus. Obviously,
this requires the modelling of transmission and disease processes. However, the
success of different interventions also strongly depends on the compliance of the
individuals as well as on their personal routines and conditions. The effects of
school closures might depend on household structures, the fact whether or not
parents also work from home, and whether children decide to meet anyway.

Simpler epidemiological simulation models often consist of homogeneous indi-
viduals with identical behavior, whose policy obedience is assumed uncondition-
ally or based on a stochastic model. An example are SIR compartment models,
where individuals of a population are assigned to compartments according to
their disease state, e.g., susceptible, infectious, or recovered [8]. The progress
of the disease is modeled via transition probabilities between the states. Such
models allow for analyzing the dynamics of an entire population, however, more
in-depth analyses of infection routes or of more advanced interventions are not
possible. Instead, the effects and success of interventions is indirectly modelled
through changed transition probabilities.

The Covid-19 pandemic has shown that rules and recommendations do not
have the same effects in different countries and are violated due to different
reasons. Hence, simulating the effects of different interventions on the spread of
the virus also requires more sophisticated models that take into consideration
human behavior, individual actions, and personal characteristics. This includes
individual daily routines, e.g., working, leisure activities, or shopping, but also
personality traits and socio-demographic attributes, e.g., age, family, and house-
hold structures, or the degree of extroversion with respect to meeting other
people. To achieve this, a more sophisticated simulation paradigm is required.

Agent-based Social Simulation (ABSS) makes use of AI as well as of dif-
ferent theories from psychology and other behavioral sciences to model human
behavior [15]. Each individual is represented by an intelligent agent, that is char-
acterized by a number of attributes, e.g., age or occupation, and autonomously
makes decisions and performs actions based on its environment, personal situa-
tion, and individual attributes. For this purpose, ABSS models make use of, for
instance, needs models, socio-demographic attributes, and character attributes,
to model human behavior in a realistic way. This allows for investigating the
effects different policies might have before actually implementing them.

The use of ABSS is not limited to crisis scenarios. Instead, it can be applied
in different domains and application areas to investigate how a social system
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behaves in or reacts to specific situations. To this end, ABSS can be used to derive
or review theories, to verify assumptions, or to generate data on a particular
phenomena.

2.3 ASSOCC - A Simulation Model of the Covid-19 Pandemic

To goal of this tutorial is not only to provide the students with a theoretical
introduction to ABSS. With respect to their active learning process, we combine
theoretical lectures and practical exercises, such that the students can apply the
introduced methods and approaches to discover new details, to develop a deeper
understanding, and to transform theories into concrete skills.

We have chosen the ASSOCC 2 simulation model of the Covid-19 pandemic as
framework for the practical exercises [6]. The development of the ASSOCC model
has started in march 2020 and was driven by a group of about 15 researchers
from Sweden, Netherlands, and France. The ASSOCC model has been developed
using NetLogo, a simplistic yet powerful simulation framework that is free-to-use,
making it well suited for educational purposes. The behavior of the individuals
in the model is based on needs (inspired by Maslow’s hierarchy of needs) and
the satisfaction of these needs promotes certain values (Schwartz basic value
theory).

The model allows for specifying different countries, cultures, and household
structures, to adequately specify the region that shall be investigated. To model
daily routines more realistically, there are four different types of individuals,
i.e., children, students, adults, and pensioners, each of which behaves differently.
Children, for instance, live with their parents, who will go to work after bringing
them to school. Pensioners, in contrast, do live with other pensioners, and their
daily routines do not include going to schools or work.

To model disease progress, ASSOCC implements an epidemiological exten-
sion of an SIR compartment model, which is calibrated to the typical progress of
Covid-19. In contrast to solely using SIR models for the simulation of pandemics,
the SIR model is only one of many components of the ASSOCC model. There is
one instance of this epidemiological model for each individual, which allows for
reproducing when and where an infection occurred. Moreover, transition proba-
bilities depend on the type of agent and the infection probability is determined
based on the specific situation in which the agent meets other agents taking into
consideration crucial factors that potentially promote an infection, e.g., being
indoors or outdoors, the number of individuals one is meeting, or the individual
health condition. An overview of all modules and sub-models that are included
in the ASSOCC framework is shown in Fig. 2.

2 https://simassocc.org/ (accessed Jun 2022).

https://simassocc.org/
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Fig. 2. Overview of the components of the ASSOCC model and their interconnections.

2.4 Practical Exercise: Experimenting with the ASSOCC Model

ILO-2: Students are able to conduct and analyze experiments using an existing
ABSS model and a well-established ABSS simulator (NetLogo).

The purpose of the first practical exercise is to introduce the students to
the NetLogo simulator, which is particularly well-suited for both novice but also
more advanced ABSS modellers. Moreover, the first exercise aims to make the
students familiar with the ASSOCC model, which we will also use for the other
exercises. For this tutorial, we assume that all students have basic technical
understanding, however, we do not assume previous experiences with modeling
and simulation, i.e., with using simulation frameworks, parametrizing models,
or executing experiments.

As model building is a complex task, it is not uncommon that analysts make
use of existing models. Hence, the second ILO aims at gaining experience with
the use of existing simulation models, i.e., how to parametrize it in accordance
with the circumstances that shall be investigated as well as to generate and to
analyze the output data.

To get started, we invite the students prior to the tutorial to download and
install NetLogo3 version 6.1.1 or newer, which is required to open and execute
the ASSOCC model. To be optimally prepared, we recommend working with
the tutorials that are provided by the NetLogo developers as part of the official
documentation4, especially the first tutorial on models. The latest version of
3 https://ccl.northwestern.edu/netlogo/download.shtml (accessed Jun 2022).
4 https://ccl.northwestern.edu/netlogo/docs/ (accessed Jun 2022).

https://ccl.northwestern.edu/netlogo/download.shtml
https://ccl.northwestern.edu/netlogo/docs/
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the ASSOCC model can be downloaded via github5. After opening the model in
NetLogo, the interface of the model appears, which can be used for configuration,
execution, and analysis (see Fig. 3).

Fig. 3. NetLogo interface of the ASSOCC model.

As a first step towards using ABSS for policy making, we make use of the
standard scenarios that are already included in the ASSOCC model. To be able
to compare the effects of different measures, a baseline needs to be defined, which
can be used as a reference for all possible scenarios that are investigated. For
this exercise, the students initialize the model with the so called “scenario 1
zero action” settings, which contain the default configuration of the model, in
which no interventions are applied. Additionally, the household-profile is set to
“Sweden”, which, for instance, affects the composition of households and the
cultural properties of the population. To get an impression of the course of the
pandemic, the model then needs to be executed for at least 480 ticks, which
corresponds to four months. The number of individuals grouped by their health
state over time is shown in Fig. 4.

5 https://github.com/lvanhee/COVID-sim (accessed Jun 2022).

https://github.com/lvanhee/COVID-sim
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Fig. 4. Results from the simulation experiments.

With respect to the goals of this tutorial, we use the following guiding ques-
tions, that also contain tasks to facilitate the students’ first practical experiences
with using ABSS. This is to encourage active learning but also to increase stu-
dent participation.

– What can you observe when looking at the number of infected individuals
over time?

– What might cause the effects you can observe?
– How does changing the preset scenario to “scenario 1 closing schools and
univ” affect the results compared to the initial configuration?

– How do country settings affect the simulation outputs?
– What effects do different starting points and length of the lockdown and of

closures have on the dynamics of the pandemic?

2.5 Activity Outcome

To emphasize the interactive character of this tutorial and to benefit from the
smaller group size compared to classical lectures, we explicitly motivated the
students to ask questions at any time during the sessions. This is to promote
discussions, to be able to enlarge upon specific topics or questions that the
students find relevant, and to provide further examples, which can be beneficial
for the learning process of all participants.

Throughout all sessions, the students were actively participating, asking rel-
evant questions, and even discussed approaches and thoughts among each other.
Overall, the tutorial was remarkably interactive and already during this first
session, the curiosity and preparedness of the students was noticeable. Many
of them had thought of specific questions, most likely originating from their
individual PhD projects, which they wanted to discuss during the lecture. Due
to the flexibility that is associated with tutorial like this one, we were able to
respond to these questions and to expand the planned schedule. A take away
for future tutorials with a similar topic is, thus, to ask the participants already
when registering or prior to the event to submit their questions and expectations
regarding the subjects that are valuable for them and that they would like to
be covered. This allows us as organizers to prepare respective slides and to shift
the focus of the tutorial and to maximize the benefits the participants get from
the tutorial.



Agent-Based Social Simulation for Policy Making 401

3 Session 2: Advanced Agent Architectures for Modeling
Policies

During the first session, the participants were introduced to the concept of ABSS
and gained first experiences on how simulations can be used to support and facil-
itate decision making processes. Policies, however, can quickly become complex
and the question arises how complex simulation models need to be in order to
adequately cope with more sophisticated policies. To simulate curfews or lock-
downs, for instance, it might be sufficient to model spatiality on a location-based
level, i.e., to represent whether an individual is at home, at work, or at school.
When simulating social distancing, however, a more accurate and detailed repre-
sentation of the individuals’ locations is required to be able to measure distances
between them and to determine the probability of infecting one another. To
address this issue, and with respect to ILO 3, different approaches are discussed
in this session that enable the building of more sophisticated models of human
behavior, which ultimately also allows for simulating more complex policies.

ILO-3: Students are able to identify and relate the key cognitive components
in advanced ABSS models, to explain the main reasons for using cognitive models,
and to identify the need for such models on a real-world problem.

3.1 Human Behavior as Key for Simulation Policies

Developing simulation models that can be used for policy making can be com-
pared to sandpits, where decision makers can play with different ideas or sce-
narios. This allows them to get an impression of potential effects and interde-
pendencies, which one might not have thought of in the first place. This also
makes model building for policy making different from developing simulations
of a specific situation or use case. Simpler models are often limited with respect
to how they can be parametrized and, thus, to not provide the same variety of
scenarios that can be investigated. Policy makers, instead, rather need a “sce-
nario builder”, which enables them to instantiate the model in different ways.
To build a variety of scenarios, different concepts need to be integrated in the
model, which makes the model itself more complex.

Another challenge in building simulation models for policy making is the
fact that it is not sufficient to only show that certain effects happen in certain
scenarios. Instead, policy makers want to know why a certain situation occurred
or why a certain behavior can be observed. It is also more likely that findings
from simulation are used as part of the decision making process if they seem
logical and can be explained. This is also because policy decisions will affect
other people, which demands that decisions should be based on reliable and
transparent information.

Because of the same reason, political decision makers tend to consult epidemi-
ologist and not computer scientists for analyzing the effects of different interven-
tions in the current pandemic. They follow epidemiological models because they
trust these models. Yet, the effects and success of policies is always about the
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behavior of the people to who this policy applies rather than the transmission
dynamics itself, which of course still plays an important role. Hence, it is the
behavior of the individuals that needs to be in the center of the simulation.

With respect to the Covid-19 pandemic, there are three systems that need to
be considered: the economical system, the social system, and the epidemiological
system (see Fig. 5). Each of these three systems consists of its own feedback loop,
with the human in the center. This is because the behavior of each individual
influences society around the individual in these three aspects and reversely the
individual is influenced by all of these three systems. Hence, the feedback loops
are required in order to catch interdependencies between the three systems. The
economical system, for instance, drives people, as money is a crucial pillar of
our society. People need money for living and want to spend their money on
their well-being. Tourism is an example of a part of the economic system, which
affects people as they are incentivized to travel, to generate revenue. At the same
time, the risk-aversion of individuals might affect tourism, as tourists staying at
home will result in drawbacks for those working within this sector. Still, these
systems might need to be extended or exchanged for simulating other effects.
For investigating sustainability, as an example, a cycle for ecology might need to
be added.

Fig. 5. The human in the center of the economical, social, and epidemiological system.

Modeling human behavior based on different systems, e.g., economics, social-
ity, and health, is challenging. Usually, when modeling human behavior, histori-
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cal data is collected and projected into the future. This, however, does not cover
unexpected events such as the crisis in which we currently find ourselves. We
cannot use data from a different setting, i.e., the pre-pandemic situation, to
simulate how people will behave once the circumstances change so drastically.
For this purpose, advanced agent-based behavior models make use of common
factors that people share, to develop a motivational model of agent behavior in
different situations. These factors are of course different between different indi-
viduals or cultures, however, they are still structurally the same (contain the
same aspects).

3.2 Modeling Human Values, Motivations, and Needs

A main driver of peoples’ behavior are their values, which are more or less
stable over lifetime. Examples of basic human values are security (i.e., aspiration
after harmony and stable relationships) or achievement (i.e., in showing personal
competence and success). Yet, there are different steps that link different values
to specific actions of individuals. Mostly, these actions are highly dependent on
the environment or context the individuals are in, which is a result of personal
or social rules (e.g., norms, conventions, and practices). While it might be a sign
of politeness to talk in one setting, e.g., when meeting a good friend as a sign
of interest and attachment, it might be highly inappropriate to talk in another
context, e.g., when listing to a presentation, where talking would be considered
rude.

Schwartz’s Theory of Basic Human values defines 10 universal values that
are recognized in most cultures and which are the ultimate drivers of people
(see Fig. 6) [13]. The importance of different values varies across cultures and
how they lead to specific actions is strongly influenced by individual motives.
This includes achievements, affiliation, power, or avoidance, in accordance with
McClelland’s human motivation theory [12]. Yet, not all actions are feasible in
every situation, which is why affordances also play an important role, i.e., what
actions the current environment of an individual admits. This is the reason why
individuals sometimes go to specific environments for being able to do certain
actions, e.g., children go to school to learn, we go to shops to buy food, etc.

The resulting value system, where specific values guide behavior in different
ways depending on the context, can be used to model actions of individuals.
Based on the current situation, the agent’s impulse to act is the result of differ-
ent motivations, personal skills, and the importance of the action’s result. The
importance of an action is determined by a needs model (homeostatic model),
which is inspired by combining Maslow’s hierarchy of needs [11], the Schwartz
basic value system, and McClellands human motivation theory.

In the homeostatic needs model, each need is seen as an individual container,
from which fluid leaks with a certain rate. For each container, a personal thresh-
old exists that represents the importance of that particular need. The further the
fluid level falls under this threshold, the more important it gets for the individual
to “fill up” this need by taking respective actions. Through this, agents don’t
need to make advanced plans to determine their most suitable action. Instead,
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Fig. 6. Schwartz’s basic human values [13].

their behavior is determined by taking actions that meet their strongest needs
depending on the opportunities the current environment offers. Using this needs
model, the adaptation to changing environments is achieved as agents agent
get different opportunities to fulfill their needs. A list of needs we used in the
ASSOCC model is provided in Table 1.

With respect to the decision model of the agents, we define different loca-
tions, that represent different environments where agents can fulfill their needs.
For shops and leisure places, there exists two types of locations. In case of the
shops, the model distinguishes between non-essential shops, e.g., clothing stores
or building supplies store, that will be closed during a lockdown, and essential
shops, e.g., grocery stores or pharmacies, that will remain open in case of a
lockdown. Considering leisure places, there are private leisure places, i.e., where
people meet with friends or relatives, and public leisure places, i.e., where people
meet with strangers. An overview of the locations is provided in Table 2.

3.3 Opportunities of Social Simulations

Considering how locations are modeled and how agents decide where to go and
what to do, one major difference between traditional epistemological models
and agent-based models can be observed. In classical mathematical transmis-
sion models, the number of contacts with other individuals, and thus also the
number of occasions where infections can occur, is a parameter, which is often
identical for all individuals of the population or predetermined by static contact
networks. Accordingly, these models can not simulate the individuals’ adaptation
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Table 1. The needs of the agents in the ASSOCC model.

Need Description

autonomy The need for autonomy and self-direction. This freedom of choice
can be limited by government interventions

belonging The belonging need, i.e. meeting friends and relatives

compliance The need for complying with formal instructions, notably arising
from the government and contractual obligations (e.g. work)

conformity The need for conformity with regards to one’s social network. Or in
other words the social need of choosing an action that the majority
of agents in its network has previously chosen

fin stability Represents the need for financial stability, with an income
matching the expenses

fin survival The need of having enough money to buy food and other essentials
to survive

food safety The need of having enough food at home, with decreasing reward
as we narrow two weeks

health The need for being in good health. When agents believe that they
are infected, they want to either stay home or go to the hospital

leisure The need of agents to have leisure time and relaxing. Resting at
home is possible as well, but gives less satisfaction when compared
to relaxing at a different location

luxury The need for acquiring luxury goods

risk avoidance The need for avoiding taking risks. The satisfaction of this need
depends on the contagion status of the agent and the amount of
agents at a gathering point. Furthermore, social-distancing is taken
into account

sleep The need of an agent to sleep, which is satisfied every night by
sleeping. Furthermore, it is modelled that sleep when being sick is
not as restful as when being healthy

to new situations and differences in behavior between individuals. In agent-based
models, the number of contacts per agent is an output of the model, that depends
on many different personal factors, the individual circumstances, as well as on
the scenario that is simulated.

A detailed representation of each individual, its needs, and its behavior also
enables more in-depth analyses of the dynamics of the model. In particular, it
enables the analysis of why certain effects and phenomena occur. One example
is the reconstruction of infection networks, i.e., who has infected whom, when
the infection happened, and at which location the critical interaction occurred.
This might be particularly relevant for identifying how and when people might
become super-spreaders, individuals, that infect a great number of other indi-
viduals. Moreover, due to the strong connection between the different systems,
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Table 2. The locations of the agents.

Location type N Description

Essential shops∗ 10 This is the place where agents buy food, they
have to do this every once in a while

Homes∗ 391 The agents live in their homes, they are always
at home during the night to sleep. The homes
can be used as a workplace if the agent has to be
in quarantine

Hospitals∗ 4 The hospital has some workers and treats agents
who get severely infected, if they have enough
capacity (number of beds)

Non-essential shops∗ 10 With non-essential shopping agents can satisfy
the need for luxury

Private leisure places 60 These are places where agents can meet with
their friends

Public leisure places 20 The public leisure places represent places such as
parks where everyone can go to. The needs
Self-Esteem, compliance are satisfied by going
there. However risk-avoidance and safety depletes

Schools∗ 12 The youth go to school during working days.
Needs such as compliance and autonomy are
satisfied here

University faculties∗ 4 The students go to the university and can also
satisfy autonomy and compliance here

Workplaces∗ 25 Where most of the worker agents work. Many
needs can be satisfied through going to work

Station/airport (away) - This represents agents travelling outside of the
city

agent-based models allow for investigating dependencies between health, socio-
psychological, and economic aspects.

Sophisticated models of human decision-making can facilitate decision mak-
ing as they can be used to simulate different scenarios, to assess the potential
effects of policies. Starting from a principled agent-based approach is feasible,
however, agents require an internal state representation to be able to balance
different influences. Besides these advanced agent architectures, a series of tools
is required to make the models usable for decision makers. This includes tools to
design scenarios, to generate a realistic agent population (e.g., in terms of socio-
demographic attributes, needs, possible actions), and to analyze the results of
the simulation experiments.

Finally, the computational efforts required to execute more sophisticated
agent-based models are considerably higher than those of models with more
simple and homogeneous agents. To this end, the use of more “user friendly”
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frameworks like NetLogo is limited. To facilitate the scalability of such models,
more specialized simulation frameworks need to be used, which imply other
drawbacks.

3.4 Practical Exercise: Extending Models to Simulate Policies

ILO-4: Students are able to explain and specify how an existing agent architec-
ture in an ABSS model can be extended for facilitating the investigation of new
policies.

The level of detail of agent architectures is a result from the purpose of
the simulation model. The agents should be kept as simple as possible but as
complex as required for the questions and scenarios that shall be investigated.
Overloading the agents with too many aspects will make them impractical to
calibrate. Hence, the used agent architecture determines what policies and sce-
narios can be simulated and investigated. To this end, the fourth ILO addresses
the challenge of understanding the possibilities and limitations of specific agent
architectures and to identify how they need to be extended to conduct certain
investigations.

As part of this second practical exercise, the students will work with the
extension of an existing simulation model such that new policies can be simu-
lated. This includes the discussion of the limitations of the existing architecture,
an abstract and more formal description of the new policy, as well as the iden-
tification of requirements, in which regard the model needs to be extended and
adapted.

An intervention which can not yet be simulated using the ASSOCC model is
social distancing. The goal of this intervention is to urge people to keep a min-
imum distance to other people to reduce the likelihood of infecting each other.
Currently, the location of individuals in the model is defined by the building
where they stay. Yet, these locations do not have a sufficiently granularity to
determine the exact distance between the individuals. For simulating social dis-
tancing, an example of an aspect of the model that needs to be adapted is the
spatial representation of agents.

Guiding questions that can support the students in discussing how the model
needs to be extended include:

– How do we need to extend the model to simulate social distancing?
– What are the shortcomings of the current spatial representation of agents and

how does it have to be extended?
– Is the transmission model sufficient for this new intervention?
– How do other simulations model social distancing?

3.5 Activity Outcome

Very similar to the first session, the students were very actively participating in
the session, asking relevant and interesting questions, promoting the discussion
of different aspects related to the modeling of advanced human behavior. Yet,
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in contrast to the first sessions, the discussions were more focused on specific
applications of the presented theories and architectures as well as on specific
design decisions. Whereas agent deliberation and decision making models usually
tend to be rather abstract, it was positively pointed out by the participants that
providing specific examples such as the water tank model that was used in the
ASSOCC model was very insightful.

4 Session 3: Simulating for Policy Makers

4.1 Conceptual Activity

ILO-5: Students are able to explain how using ABSS for policy making alters
the ABSS-making activities and relate these activities to concrete deliverables.

The purpose of the activity is dedicated to have the learners sensitivized
about how designing ABSS for policy makers fundamentally affects the activity
as a model builder. The first part of this activity has been built around the
keyframes depicted in Fig. 7, which recalls the main concerns of scientific ABSS
design introduced in previous sessions and shows whether and how the impor-
tance of these concerns is turned over when working for policy making. The
rest of the presentation then reviewed the three major angles of approach for
covering the main policy-making-driven concerns (i.e., adequate models, imple-
mentations, and public relations management) and then, for each angle, a set
of key resources that was used during the ASSOCC project for collaborating
and supporting policy-makers. The model part insisted on the value of the key
modelling elements formerly introduced in Session 2 for interacting with stake-
holders; the implementation part focused on implementation features dedicated
to support trustworthy interaction with stakeholders, such as qualitative inter-
faces presented in Fig. 8a; the public relations reviewed of the actual slides used
to interact with policy makers and a review of their core structural elements.
The underlying conceptual message is as follows.

There are a variety of purposes for which simulations can be used. This
includes, simulations for education or training, where the purpose is to commu-
nicate knowledge or to represent information. An example would be when using
simulations to demonstrate phenomena to students or serious games, where stu-
dents can perform experiments to learn about the effects of different changes of
a system. Simulations can also be used for engineering purposes, i.e., to better
understand a system or to investigate the suitability of different system config-
urations. Finally, simulations can be used for discovering and predicting system
behavior.

Considering the requirements that are placed on the models, these purposes of
simulations differ strongly from doing simulations for decision makers. Scientific
simulation models are more technique-driven and there are high expectations
on developing an accurate model. When building models that have to facilitate
decision-making processes, the entire modeling process is more society-driven as
the goal is to engage with policy makers and to contribute to a social debate.
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Fig. 7. Keyframes stressing the influence of policy-making on the relative importance
of ABSS design concerns
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Hence, modellers need to follow different paradigms and put the focus of the
development process on other features of the model.

Scientific simulations have a strong focus on the formal model itself, i.e., how
mechanisms, inter-dependencies, and circumstances from the real world can be
represented in a realistic way. This is also closely connected to the validation of
the model, to ensure that the model adequately represents the target system,
whose behavior it tries to replicate. Often, the primary goal of developing such
models is to gain a better understanding of the modeled system and the insights
are usually published as scientific articles. Making the model usable by other
researchers or a broader public audience is usually not prioritized and interfaces
of the model, if they exist, are overloaded, making it impossible for non-experts
to configure and execute the model or to analyze the generated results.

In contrast to this, when models are developed for policy making, there
are other requirements that are of high importance. Whereas scientific models
tend to be very specialized, more generic models are required when supporting
decision-making processes as they allow for interactively investigating a greater
variety of scenarios. Additionally, having an intuitive and easy-to-use interface
is of utmost importance. This includes the calibration of the model, the spec-
ification of scenarios that shall be investigated, as well as the processing and
visualization of the generated results. In this regard, the validation of the model
is of secondary importance as it is not so much about generating perfectly accu-
rate results but instead to investigate potential effects for a greater variety of
scenarios.

There are different approaches for meeting these requirements. Firstly, there
is the possibility to adapt the model, e.g., to extend specialized models to make
them more generic. As example could be the implementation of a more advanced
model of human behavior that enables the investigation of individuals adapting
to new and unknown situations. This increases the flexibility of the model and
allows for simulating a greater variety of interventions. To this end, different
means of model adaptation were discussed in the second session (see Sect. 3).

Secondly, the implementation can be adapted such that users with limited
experience in modeling and simulation are also enabled to conduct simulation
experiments. This includes, for instance, putting more efforts in increasing the
usability of the model and by developing an interface that makes it easier for
decision makers to specify scenarios. Models often consist of a great number of
parameters, that are required to calibrate the model’s behavior. The NetLogo
version of the ASSOCC model, as an example, consist of more than 170 param-
eters for calibration such as the density of people at different locations or the
ratio of adults having a private car (see Fig. 8a). These parameters are highly
relevant for calibrating the model. However, calibration is done by the modeler,
not by the policy maker, and the settings do not usually need to be changed
once the model is calibrated. To this end, the ASSOCC model also has a Unity
interface, in which different scenarios can be defined with a limited number of
parameters and which provides a 3D visualization of the simulation, to facilitate
the understanding of the results (see Fig. 8b).
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Fig. 8. Interfaces of the ASSOCC model. The left interface (“backend”) is for develop-
ers only, with all parameters and code easily accessible but requiring expert-knowledge
for setup and result processing; the right interface (“frontend”) is for interaction with
stakeholders, with simplified and more friendly display that is suited for a novice
observer to understand the many concepts at play in the simulation and relate them
with real-world issues.

Finally, a greater emphasis can be placed on working on public relations, i.e.,
to raise awareness for the existence of simulations that can be used to generate
valuable insights for decision makers. One the one hand, this can be achieved by
increased personal and institutional visibility of the modelers such that policy
makers take notice of their existence. There is still a lack of information that
causes that policy makers often are not aware of both the existence and the
benefits of simulations. On the other hand, researchers also need to reach out to
practitioners and decision makers, to establish collaborations and to build models
that are more oriented towards practical needs. In general, the communication
between modelers and stakeholders is challenging with respect to expectations
and requirements.

Modellers often do not know how to work together with policy makers. Hence,
their approaches might not always be aligned with the requirements of the stake-
holders. Working together with decision makers also creates a new dynamics
for the development of the simulations. Early results might not be sufficiently
mature and should not be used to create policies whereas late results might be
too late to be of value.

4.2 Practical Activity: Data to Factors

ILO-6: Students are able to analytically discover the origin of a complex emerg-
ing phenomena, based on extensive raw multidimensional ABSS output.

ABSS for policy making is often used for putting forward what are the key
factors at play in the emergence of complex phenomena. However, determining
these factors involves a careful analysis of the output of the ABSS. In terms of
ASSOCC, the challenge was to get from extensive (150+) curves and 80 pages of
graphs, charts, and plots down to a few core explanations. With respect to the
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use of ABSS in policy making, it is of great importance to be able to discover
the origin of the observed effects from the generated output data, to establish a
solid argument, which is required for trusted interactions with stakeholders.

As a matter of making the exercise realistic and allowing us to have the best
expert knowledge to guide the students, the learning task is built on a task we
undertook ourselves during the pandemic: to determine why tracking and tracing
apps will likely fail to significantly contribute to reducing the spread of Covid-19.
As resource, students are provided with the multifactorial simulation output data
we relied on for building our own analysis (thus guaranteeing the feasibility of the
exercise and priming the search in a workable direction). Students are tasked to
analytically find the key factors at play based on the provided data. The students
are invited to work in small groups, which is eased as they can split the large
quantity of data they are offered to process and collaboratively provide elements
of answer to each other. At the end of the session, each subgroup is invited to
share its findings with the rest of the group and try to figure out an answer to
the question.

As means for ensuring an overall harmony of progression, an array of peda-
gogic strategies was available for bending the difficulty curve in both directions.
For easing the activity, indirect and then direct hints on some set of variables to
consider and on the factors to be found could be given; for increasing the chal-
lenge. Faster students could be given the additional task to 1) develop an argu-
ment for convincing the reviewers; 2) what additional data they would require
to gather out of the model; 3) what other questions stakeholder might have; thus
inviting the students to further engage with the public-relation materials intro-
duced during the related theoretical activity (i.e. ILO-5) and, for the fastest, into
the whole process of developing ABSS features for supporting policy-makers.

Besides the goal set by the ILO, i.e., acquiring a first-person experience and
expertise with multifactorial analytic skills, the task was set as to enable students
to develop a postformal thinking ability regarding analysis [4], through experi-
encing that different groups can have different explanations and, if so, to learn
to assess the relative insights, validity, and complementarity of various expla-
nations. Such postformal thinking ability is rare and highly valuable given how
conflicting can be short-sighted analytical interpretations of the many sources
of information of our world, being actually a critical skill for PhDs-in-training
to develop a comprehensive understanding of our world and of other fields of
research.

4.3 Activity Outcome

Due to time limitation, only a part of the lecturing activity could be under-
taken. This outcome was expected and actually desired as it shows the success
of the previous two sessions in instilling questions and discussions among the stu-
dent cohort. Despite the short amount of time for exposition and activity, infor-
mal discussions a posteriori suggest that the core of the message was received
(i.e., policy-making involves significantly different modelling, implementation,
and communication approaches).
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5 Conclusions

In this tutorial, we provided students with an introduction to using agent-based
social simulation to facilitate policy making. Based on 6 relevant ILOs, we struc-
tured the tutorial in three main sessions, each of which was dedicated to a specific
topic and consisted of a theoretical knowledge part (with focus on concepts) and
a practical skill part (with focus on the application of these concepts to real-
world problems). The outcome of the three sessions showed us that we were able
to achieve the ILOs and that the participants found the tutorial very insightful
and helpful with regard to their PhD projects.

Compared to the “traditional” application of simulation, it is important to
note that modelling and simulation for policy making dramatically alters the
purpose of the activity. Accordingly, this new purpose requires a very differ-
ent approach towards modeling and simulation. This includes more explain-
able, demonstrable, and relatable models, more solid implementation (combined
generic basis and ease for specification), as well as the ability for engaging with
stakeholders and offering complementary perspectives. To this end, this tutorial
helps the participants to gain an understanding of how ABSS can be applied to
facilitate policy making.

The PhD students that participated in the tutorial came from a variety of
different disciplines and cultures. Already at the beginning of the tutorial, it
became apparent that most participants have chosen to attend this tutorial to
gain more practical insights into the application of ABSS. Most of the partici-
pants use ABSS as method in their PhD studies, however, find that the (sparsely)
existing literature does not sufficiently provide guidelines on how to practically
apply ABSS and how to develop suitable models. To this end, the participants
appreciated the use of examples and best practices from the ASSOCC project
to illustrate the practical implementation of different theoretical concepts and
approaches. This also led to fruitful discussions on challenges that are associ-
ated with building ABSS models for policy making purposes as well as creative
solutions on how these challenges can be addressed.

To further improve the benefits the participants get from the tutorial, we
recommend asking them to submit their questions, expectations, and requests
regarding the structure and thematic focus of the workshop as part of their
registration or some weeks in advance to the tutorial taking place. This allows
organizers to plan the tutorial according to the participants’ needs and to prepare
respective material. It also enables the organizers to plan the schedule of the
tutorial according to the demand of the participants. In the case of this tutorial
on Social simulation for policy making, many participating PhD students were
not primarily working in research groups with strong focus on ABSS but instead
apply ABSS as a method for addressing and investigating research challenges in
a great variety of disciplines. Hence, tutorials like this one are crucial for PhD
students working with ABSS as it allows them to discuss their approaches with
others. This makes the tutorial to more than a series of lectures but also to a
platform for discussing ABSS approaches with other PhD students working with
the same method, to get feedback on own models and architectures from experts
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in the field, and to get impulses for further research. Facilitating and promoting
this exchange is, thus, also an important task of the organizers of the tutorial.
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Abstract. Artificial Intelligence can both empower individuals to face
complex societal challenges and exacerbate problems and vulnerabilities,
such as bias, inequalities, and polarization. For scientists, an open chal-
lenge is how to shape and regulate human-centered Artificial Intelligence
ecosystems that help mitigate harms and foster beneficial outcomes ori-
ented at the social good. In this tutorial, we discuss such an issue from
two sides. First, we explore the network effects of Artificial Intelligence
and their impact on society by investigating its role in social media,
mobility, and economic scenarios. We further provide different strategies
that can be used to model, characterize and mitigate the network effects
of particular Artificial Intelligence driven individual behavior. Secondly,
we promote the use of behavioral models as an addition to the data-
based approach to get a further grip on emerging phenomena in society
that depend on physical events for which no data are readily available.
An example of this is tracking extremist behavior in order to prevent
violent events. In the end, we illustrate some case studies in-depth and
provide the appropriate tools to get familiar with these concepts.

Keywords: Human-centered AI · Complex systems · Multi-agent
models · Social networks · Mobility networks · Financial networks

1 Introduction

Nowadays, given the ubiquity of increasingly complex socio-technical systems
- made of interacting people, algorithms, and machines, - the social dimension
of Artificial Intelligence (AI) started emerging in our everyday lives. Examples
range from urban mobility, with travellers helped by smart assistants, to the
public discourse and economic markets, where decisions on what to see or buy
are shaped by AI tools, like recommendation and filtering algorithms.

While at the individual level AI outputs could be beneficial, from a soci-
etal perspective they can lead to alarming phenomena such as traffic congestion
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[1], radicalisation of opinions [2,3], and oligopolistic markets [4]. The current
use of AI systems is often based on the hypothesis that a crowd of individuals
that make “intelligent” choices would result in an intelligent crowd. However,
this may be too optimistic. There are many examples of such systems giving
rise to alarming phenomena at the aggregate and societal level. This tendency
is well represented by the model of ethnic segregation theorized by Schelling
[5]. The American economist defined an agent-based model for ethnic segrega-
tion that shows that, even when individuals are relatively open-minded and do
not mind being surrounded by some people of a different ethnicity or economic
background, they will still end up in segregated communities in the long run.

Therefore, to reach the goal of a human-centred AI that supports society in a
positive way, there is a need to gain a better understanding of how AI can both
support and affect emerging social behaviours. If we can better understand how
AI interacts with social phenomena, we can employ it to help mitigate harms
and to foster beneficial outcomes, oriented to social goods.

In this tutorial - part of the social simulation chapter with [6] - we approach
this challenge from two sides. First, we discuss how complex human systems
may experience negative consequences due to their intrinsic nature and under
what circumstances Artificial Intelligence may positively or negatively impact
such systems. Then, we look at the use of behavioural models as an alternative
solution with respect to the data-based approach in scenarios where the human
behaviour plays a key role, in order to get a further grip on emerging phenomena
in society.

The learning objectives of this tutorial are i) understand and approach the
emergent properties of real networks as well as their possible harmful effects on
society; ii) leverage agent-based models to understand phenomena where human
behaviour play a key role; iii) familiarize with the previously illustrated concepts
through python libraries and tailored notebooks.

The rest of this tutorial is structured as follows. In Sect. 2, we start by intro-
ducing network effects on society and the impact of AI, providing various exam-
ples in the urban mobility, public discourse, and market domains. Then, in Sect. 3
we approach the problem of going beyond data-driven approaches – when these
are not a suitable solution – in favour of behavioural models to tackle complex
challenges like detecting radicalisation or predicting the overall effects of a pan-
demic. In Sect. 4, we describe a fully reproducible hands-on tutorial to familiarize
oneself with the concepts introduced in the tutorial. In Sect. 5 we conclude by
discussing limitations of the current approaches in the field of Social AI as well
as setting relevant research directions.

2 Network Effects of AI and Their Impact on Society

In the following section, we explore some examples of how Artificial Intelligence
may amplify intrinsic and alarming properties of real networks and worsen the
wellness of society as a whole. Further, we discuss how AI can be used to better
understand these phenomena and find possible solutions.
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To tackle this goal, we start by describing real networks and some of the
main emerging properties reported by network science literature, followed by
three concrete examples of this interconnection of AI and network science.

2.1 Emergent Properties of Real Networks

The earth’s climate, the human brain, an organism, a population, an economic
organization are all examples of complex systems. Complex systems can be made
of different constituents, but they display similar behavioural phenomena at
the aggregate level, which are normally called emergent behaviours. According
to complex systems theory, these emergent behaviours cannot be explained by
analysing the single constituents and need a new approach to understand how
they emerge.

Traditionally, social scientists tried to understand how groups of individuals
behave by focusing on simple attributes. Understanding emergent behaviours,
such as how a population reaches consensus around a specific topic or how a
language prevails within a territory, cannot be done by focusing on the individual
agents, but instead, the problem needs to be approached in terms of interaction
between them. In recent years, this change of approach happened both with the
advent of complex systems and network science theory, but also thanks to the
availability of a huge amount of data that allow studying individual and higher-
order properties of the system. Behind each complex system, there is - in fact - a
network that defines the interactions between the system’s components. Hence,
to understand complex systems, we need to map out and explore the networks
behind them. For example, in the field of disease spreading it is nearly impossible
to understand how a population reaches the epidemic state without considering
the very complex structure of connections between individuals.

In the remainder of this section, we are going to briefly describe some of
the emerging properties that characterize many real networks and have a direct
impact on real-world phenomena: connectedness, “small-world” property, hubs,
and high clustering.

Connectedness. A network is said to be connected if there exists a path
between any two pairs of nodes. This may not be surprising in some domains,
since connectedness is essential to the correct functioning of the service built on
top of the network. For example, if communication networks were not connected
we could not call any valid phone number or we would not be able to send an
email to any address. However, this property surprisingly emerges also in other
domains. For example, online social networks, despite being very large and very
sparse, present a giant connected component and any two users are very likely
to belong to this component.

According to Erdős-Rényi random network model [7], the necessary and suf-
ficient condition for the emergence of a giant connected component is that the
average degree of the network (the number of arcs going out of a node) 〈k〉 = 1.
This critical point separates a situation where there is not yet one giant com-
ponent from the situation where there is one. If the average degree 〈k〉 > 1 the
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giant component absorbs all nodes and components and the network becomes
connected.

Small-World. In real networks it holds not just that everybody is connected to
everybody else, but the length of the path to get from one person to a random
other person is on average very small. This property is known as “small-world
phenomenon”.

In the language of network science, the small world phenomenon implies
that the distance between two randomly chosen nodes in a network is short, i.e.
the average path length or the diameter depends logarithmically on the system
size. Hence, “small” means that the average distance is proportional to log N ,
rather than N or some power of N . In practice this means that in a town of
around 100.000 people any person is connected to any other person in 3 or 4
steps. While discovered in the context of social systems, the small-world property
applies beyond social networks.

Hubs. Another property that emerges in real networks is the presence of hubs.
According to the Erdős-Rényi random network model [7] every node has on
average the same number of links. In real-world networks, instead, the degree
distribution follows a power-law, i.e. it is scale-free, meaning that there will be
very few nodes that are order of magnitudes more connected than the remaining
part of the nodes, namely, the hubs. In the known Barabási-Albert model [8] two
factors are included to explain the presence of hubs: first, the number of nodes in
the network is not fixed, but networks grow; second, there is a so-called “prefer-
ential attachment”, i.e. the higher the degree of a node, the higher its attractive
power to the new nodes entering the network. This second phenomenon can
inevitably bring about inequalities in the distribution of resources in the system
and this holds for e.g. popularity in social media or for success in the market,
but also in protein-to-protein interaction networks. In socio-economical settings,
this may cause an excessive amount of inequalities, unsustainable for the social
outcomes that, as a society, we would like to pursue.

Clustering. The last emerging property discussed here is network clustering.
To measure the degree of clustering in a network we use the local clustering
coefficient C, which measures the density of links in a node’s immediate neigh-
bourhood. If C = 0 it means that there are no links between the node’s neigh-
bours, while if C = 1 each of the node’s neighbours link to each other, i.e. the
clustering coefficient is given by the number of triplets in the network that are
closed. In real networks there is a higher clustering coefficient than expected
according to the Erdős-Rényi random network model [7]. An extension of this
model, proposed by Watts and Strogatz [9], addresses the coexistence of a high
average clustering coefficient and the small-world property, reconciling the fact
that everybody is connected and close to everybody else with the presence of
segregation and communities. However, the model fails to predict the scale-free
degree distribution seen in real networks mentioned in the previous paragraph.
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2.2 AI Pitfalls on Real Networks

We have just seen in Sect. 2.1 that there exists an endogenous tendency of real
networks to polarize and segregate that is well represented by their peculiar
properties, such as the presence of hubs and the emergence of clustered commu-
nities.

In digital environments, such a tendency is further exacerbated by AI-
powered tools that, using big data as fuel, make personalized suggestions to every
user to make them feel comfortable and, in the end, maximize their engagement
[2]. Even if, at the individual level, this kind of suggestion can be beneficial for
a user, from a societal point of view it can lead to alarming phenomena in a
wide range of domains. Some examples are the polarization and radicalization of
public debate in social networks, congestion in mobility networks, or the “rich
get richer effect” in economic and financial networks.

In the following, we discuss in detail these three different types of AI pitfalls
on real networks, as concerns both their causes and effects.

Polarization, Echo Chamber and Filter Bubble on Social Networks.
The rise of online social media and social networking services has drastically
changed how people interact, communicate, and access information. In these
virtual realms, users have to juggle a continuous, instantaneous, and heteroge-
neous flow of information from a wide variety of platforms and sources.

From a user perspective, several psychological studies [10,11] have observed
that people, both in the online and offline world, feel discomfort when encoun-
tering opinions and ideas that contradict their existing beliefs (i.e., Cognitive
Dissonance [12]). To avoid such discomfort, as stated by Selective Exposure
theories, people tend to select and share contents that reinforce their opinion
avoiding conflicting ones [13]. This human tendency to mainly interact with
like-minded information and individuals is further strengthened by social media
services. Indeed, recommendation and filtering systems play a key role in lever-
aging users’ demographic information and past behaviors to provide personalized
news, services, products, and even friends. Despite their success in maximizing
user satisfaction, several studies [2,14,15] showed that such systems might lead
to a self-reinforcing loop giving rise to the alarming Filter Bubble and Echo
Chamber phenomena.

Even if the discussion about their definitions is still active, traditionally the
term Filter Bubble (coined by Parisier [2]) refers to the ecosystem of information
to which each online user is exposed, and that is driven by the recommendation
algorithms of digital platforms. Similarly, but at an aggregated level, the term
Echo Chamber refers to the phenomenon in which beliefs are amplified or rein-
forced by communication repetition inside a closed system and insulated from
rebuttal [3]. In recent years, there is strong concern that such phenomena might
prevent the dialectic process of “thesis-antithesis-synthesis” that stands at the
basis of a democratic flow of opinions, fostering several related alarming episodes
(e.g., hate speech, misinformation, and ethnic stigmatization). In this context,
there is both a need for data-driven approaches to identify and analyse real
situations where these phenomena take place, but also for tools to investigate



420 D. Pedreschi et al.

causes and effects of different factors on polarizing phenomena on online and
offline social networks, as well as mitigation strategies.

Congestion in Mobility Networks. Traffic congestion can cause undesired
effects on a transportation network such as waste of time, economic losses to
drivers, waste of energy and increasing air pollution, increased reaction time to
emergencies, and dissatisfaction of the well-being of people in the urban envi-
ronment [1]. To avoid such negative effects, congestion prevention is crucial to
improve the overall transportation system’s sustainability.

Congestion happens due to demand-supply imbalance in the road network,
which can be exacerbated by AI navigation systems’ advice. Indeed, while these
recommendations make sense at the individual level, they can lead to collective
dissatisfaction, when the same advice is given to many different drivers (e.g.,
the navigators suggest to all vehicles to travel across the same road to reach a
certain destination) because the road links will saturate and congestions emerge.

A naive solution for traffic congestion prevention, i.e. adding an extra road
to redistribute the traffic, can instead lead to the opposite effect, as stated in
Braess’s paradox [16]. The paradox occurs because each driver chooses whatever
route minimizes their personal travel time (selfish choice). When people share a
common public resource - like the road network - the lack of cooperation along
with selfish behavior might lead to a stable state with a social value that is far
from the social optimum, as claimed by John Nash.

In the problem of traffic congestion avoidance, there is a need for coordi-
nation, cooperation, and diversification of routes. In the very same way that
we need diversification of opinions to have democracy work in our societies, we
need diversification of behavior for having a better ability to travel in our cities.
Therefore, we need AI systems that can forecast where a traffic congestion will
occur to avoid its formation.

Disparity in Economic Networks. In just about a decade, a handful of com-
panies have contributed to an increasingly centralized World Wide Web, contra-
dicting the Internet’s original slogan of net neutrality [17]. This is the first time
in history that technology companies (e.g., Apple, Google, Microsoft, Amazon,
and Facebook) have dominated the stock market, being the most valuable public
businesses in the world by market capitalization [18].

However, dominance on the Internet is not limited to the digital realm, but
transcends the economy as a whole, such as digital advertising and e-commerce.

Economic and financial networks are deeply characterized by the so-called
winner-takes-all markets (WAT). This terminology refers to an economy in which
the best performers can capture a considerable share of the available rewards,
while the remaining competitors are left with very little [4]. Such a behavior,
also known as the “rich get richer effect”, is well reflected in the topology of real
networks with the presence of hubs due to the law of preferential attachment
that states that the growth rate is proportional to the size of the nodes [8].

As we can imagine, the prevalence of “winner-takes-all” phenomena in mar-
kets increases wealth inequalities because a selected few can capture increasing
amounts of income that would otherwise be more evenly distributed throughout
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the population of companies [19]. Accordingly, such kind of economic polariza-
tion strongly limits the possibility of small companies emerging.

2.3 Addressing AI Pitfalls

In literature, the AI drawbacks described in the previous section have been tack-
led from three main perspectives: i) designing models to capture their dynamics
and behaviors; ii) analyzing their emergence in real-world scenario via empir-
ical data; iii) mitigating their effect through ad-hoc prevention strategies. In
the following, we explore an exemplifying case study related to Polarization,
Congestion, and WAT phenomena for each of these approaches.

Modeling. How is it possible to model how opinions evolve within a popula-
tion as a result of peer-to-peer interactions among people? This kind of question
can be investigated through the tools of opinion dynamics. Opinion dynamics
models aim at understanding how opinions evolve within a population, simu-
lating interactions between agents of the population, in a process governed by
mathematical equations incorporating sociological rules of opinion formation.
The perks of opinion dynamics models - and agent-based models in general
- is that they allow for “what-if” scenarios analyses and to track the cause-
consequence link to understand the drivers of a certain state.

In the following, we describe an opinion dynamics model that incorporates
cognitive biases and explores the effects that a recommender system - creating
an algorithmic bias - may have on the resulting dynamics.

Algorithmic Bias Model. The so-called bounded confidence models constitute a
broad family of models where agents are influenced only by neighbours in the
social network having an opinion sufficiently close to theirs. Specifically, the
DW model [20] considers a population of N agents, where each agent i has a
continuous opinion xi ∈ [0, 1]. At every discrete time step the model randomly
selects a pair (i, j), and, if their opinion distance is lower than a threshold εDW ,
|xi − xj | ≤ εDW , then the two agents change their opinion taking the average.
The AB model [21], which extends the DW one, introduces a bias towards sim-
ilar individuals in the interaction partner’s choice adding another parameter to
model the algorithmic bias: γ ≥ 0. This parameter represents the filtering power
of a generic recommendation algorithm: if it is close to 0, the agent has the same
probability of interacting with all of its peers. As γ grows, so does the proba-
bility of interacting with agents holding similar opinions, while the probability
of interacting with those who hold distant opinions decreases. The introduction
of stronger bias causes more fragmentation, more polarization, and more insta-
bility. Fragmentation is interpreted as an increased number of clusters, while
polarization is interpreted as an increasing pairwise distance among opinions
and instability means a slowdown of time to convergence with a large number
of opinion clusters that coexist for a certain period.

Characterizing. How is it possible to detect and prevent congestion in mobil-
ity networks? The detection and prediction of traffic congestions across road



422 D. Pedreschi et al.

networks are crucial for several reasons, such as the reduction of air pollution,
reduction of the travel time for the drivers, and the increase of security along
roads. According to [22], the congestion detection problem requires data-driven
approaches. In fact, several works use empirical data to perform their study on
traffic congestion.

The pervasive presence of vehicles equipped with GPS localization systems
provides a precise way to sense their movements on the road; vehicles equipped
with GPS can act as mobile sensors that sense information regarding traffic
conditions as well as providing a characterization of drivers’ behavior that can
be an indicator of congestion happening.

With proper analysis, GPS trajectories can be used for detecting and/or
predicting traffic jam conditions [23] as it is possible to recognize some patterns
that indicate if a driver is stuck in a traffic jam, e.g. if their speed is significantly
lower than the speed allowed in that particular road and their trajectory is
characterized by sudden speed changes indicating close (both in time and space)
starts and braking. Vaqar et al. [23], propose a methodology that detects traffic
congestion using pattern recognition.

Recently, AI models were used in the traffic congestion detection/prediction
task. As an example, in [22] the authors use both Deep Learning as well as
conventional Machine Learning models, trained with real vehicular GPS data,
to predict the traffic congestion level. According to their results, Deep Learn-
ing models obtain higher accuracy in traffic congestion prediction compared to
conventional Machine Learning models.

Mitigating. How is it possible to mitigate the winner-takes-all effect on eco-
nomic networks? Traditionally, progressive taxes, antitrust laws, and similar
legislation are typical countermeasures against centralization. However, Lera and
colleagues [17] recently found that the mere limitation of the power of most dom-
inant agents may be ineffective because it addresses only the symptoms rather
than the underlying cause, i.e. an imbalanced system that catalyzes such domi-
nance.

Following such reasoning, they designed an early warning system and then
an optimal intervention policy to prevent and mitigate the rise of the WAT
effect in growing complex networks. First, they mathematically defined a system
of interacting agents, where the rate at which an agent establishes connections
to others is proportional to its already existing number of connections and its
intrinsic fitness (i.e., growth rate). Then, they found that by calibrating the
system’s parameters with maximum likelihood, they can monitor in real-time its
distance from a WAT state. Therefore, if the system is close to a WAT state,
they increase the fitness of the other economic actors of the networks.

In such a way, they have shown how to efficiently drive the system back into
a more stable state in terms of the fitness distribution of all the actors involved.
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3 Beyond Data-Driven Approaches: Behavioural Models
to Understand Societal Phenomena

There are phenomena depending on physical events for which not all data is
readily available that lead to real-world effects. One example comes from our
recent experience with the Covid-19 pandemics. For example, we may imagine
that after restrictions are lifted people will spend more in shops, but how can
we know how much or when will this happen? How can we answer very specific
questions like: will a souvenir shop survive? Surely, we need data to answer these
questions, but data themselves are not enough if they are not contextualised into
an underlying model. Hence, in this uncertain situation, we need models that
include human behaviour to support decisions, since data-based predictions are
insufficient if we want to predict human behaviour based on sociality, economics
and health.

In the remainder of this section, we describe some case studies in-depth and
discuss approaches to analyse them with appropriate tools to try to answer the
question of how data and models can be connected.

3.1 Tracking Online Extremism that Leads to Offline Extremist
Behaviours

The concept of radicalisation is by no means solid and clear, and also, when
it comes to radical behaviours like terrorism, there is no universally accepted
definition. Such a lack of definition inevitably makes it harder to understand the
process that brings people on the path towards radicalisation and how and if
people can be de-radicalised.

Theory of Radicalisation. According to Kruglanski et al. [24] the radicali-
sation process involves an individual moving toward believing and engaging in
activities that violate important social norms, mainly because radicalised indi-
viduals are focused on only one personal goal, undermining everything else that
may be important to other people, seeing radicalism as motivational imbalance.
The model developed by Kruglanski et al. [24] identifies three crucial compo-
nents - both personal and social - that lead to the extreme commitment to a
certain goal that we can find in radicalised individuals:

1. The need for significance: the motivational component that identifies the goal
to which the individual is highly committed

2. Ideology: the cultural component that defines the role of group ideologies in
identifying violent means as appropriate in goal pursuit

3. The social component identifies the group dynamics through which the indi-
vidual comes to endorse the group ideology. Commitment to ideology is fos-
tered through social connections and the considerable group pressure placed
on the individual when those surrounding him espouse his ideological views.

Having this (still very crude) model of extremism can support us in finding out
extremist behavior on social media. We can start looking for expressions on social
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media platforms where people make extreme remarks just to get attention. One
can also check whether people reinforce each other ideas and all these ideas can
be linked to the same ideology.

Extremism on Online Social Networks. A social media platform is a pow-
erful tool for the formation and maintenance of social groups. Crucially, social
media platforms let users actively participate in groups through several mecha-
nisms explicitly designed for the purpose. In the case of radicalisation outlined
above, active participation in groups plays a crucial role: people first identify
themselves as belonging to a group, and then through various types of active
participation, identify increasingly closely with that group, discriminate increas-
ingly strongly against out-groups, and eventually participate in practices that
isolate the group, and instil fear of external groups. Of course, the vast majority
of the time, these mechanisms help users create socially beneficial groups, and
help people find, join, and participate in these groups. Nonetheless, social media
systems also have minor effects in encouraging users to move along the pathway
towards radicalisation alongside these socially beneficial functions.

The goal is to capture the early signals of radicalisation (on social networks)
and understand the path towards such behaviour to prevent extremist behaviour
in real life. We need to bridge the gap between data and models to tackle this
goal.

Identify Extremism on Online Social Networks. Identifying extremist-
associated conversations on Online Social Networks (OSN) is an open problem.
Extremist groups have been leveraging OSN (1) to spread their message and
(2) gain recruits. To determine whether a particular user engages in extrem-
ist conversation, one can explore different metrics as proxies for misbehaviour,
including the sentiment of the user’s published posts, the polarity of the user’s
ego network, and user mentions. In [25] they find that - on a Twitter dataset -
combining all these features and then using different known classifiers leads to
the highest accuracy. However, the recent events of the Capitol Hill riot showed
how one cannot assume anything on extremist behaviours by only looking at one
social network data. In fact, after the start of the Capitol Hill riot, related posts
started to trend on social media. A study by Hitkul et al. [26] analysing trending
traffic from Twitter and Parler showed that a considerable proportion of Parler
activity was in support of undermining the validity of the 2020 US Presidential
elections, while the Twitter conversation disapproved of Trump. From this sim-
ple example, one can understand that while in one social media we may not see
pathways towards radicalisation, these may emerge by changing social media,
so the data we need to analyse the collective behaviour is scattered between
several platforms, and we need to look at the right one if we want to identify the
characteristics of the phenomena. So if we want to understand radicalisation, we
need to ask ourselves what is the right data for the task, whether this can be
retrieved and, eventually, what is the connection between the data and reality.

A Model of Radicalisation. In order to answer the question of how people
radicalise and if we can find pathways towards radicalisation, we need a model of
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human behaviour. The purpose of the model by Hurk and Dignum [27] - based
on the theoretical framework by Kruglanski et al. [24] - is to show that the com-
bination of a high need for significance, a radical ideology and a social group
acting according to that ideology can start the process of radicalisation. Agents
- connected in a social network - live in a world where the goal is to keep their
significance level as high as possible. They can gain significance by performing
actions and getting acknowledged by their social surrounding. How actions can
increase significance is defined in two different ideologies. Every agent belongs to
a group that acts according to an ideology. In extreme cases, the agent can switch
to the other group with the other ideology. In this context, radical behaviour
means agents that perform actions that give them a significant gain in signif-
icance, but others reject those actions. Furthermore, the population of agents
will split into groups, where agents will be surrounded mainly by other agents
belonging to the same group. The results show that groups of radical agents
emerge, where radicalising individuals form isolated social bubbles. It shows the
importance of social surroundings in order to start radicalising. Furthermore, the
agent’s circumstances seem to be important because not all agents with a low
level of significance can gain it back. These results support understanding the
radicalisation process, but they can also give insights into why de-radicalisation
is not straightforward as long as one cannot escape his social group.

3.2 Multi-agent Behavioural Models for Epidemic Spreading: From
Model to Data in the Covid-19 Crisis

During the Covid-19 crisis, policymakers had to make many difficult decisions
with the help of models for epidemic spreading. However, classical epidemiolog-
ical models do not directly translate into the interventions that can be taken to
limit the spread of the virus, neither these models include economic/social con-
sequences of these interventions. Policies may impact epidemics, economics and
societies differently, and a policy that can be beneficial from one perspective can
have negative consequences from another. In order to make good decisions, poli-
cymakers need to be aware of the combined consequences of the policies. There is
a need for tools to support this decision-making process that enable the design
and analysis of many what-if scenarios and potential outcomes. Tools should
thus facilitate the investigation of alternatives and highlight the fundamental
choices to be made rather than giving one solution.

Agent-Based Social Simulation for Covid-19 Crisis. The consequences of
a pandemic can be addressed from different points of view, that all have some
limitations when considered separately: (1) classical epidemiological models do
not consider human behaviour or consequences of interventions on actions of
people or - if they incorporate such things into the model parameters - they lose
the cause-effect links and causes cannot be easily identified and adjusted; (2)
also economic models fail to capture human behaviour always assuming perfect
rationality; (3) social network theory does not say anything on how the social
network will change and how people will react to a new policy. The proposed
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solution by Dignum et al. is to make human behaviour central and use it as a
link to connect epidemics, economics, and society. ASSOCC, a model by Dignum
et al. proposed in [28] is an agent-based social simulation tool that supports
decision-makers gain insights on the possible effects of policies by showing their
interdependencies, and as such, making clear which are the underlying dilemmas
that have to be addressed. Such understanding can lead to more acceptable solu-
tions, adapted to the situation of each country and its current socio-economic
state, and that is sustainable from a long-term perspective. In this model - imple-
mented in Netlogo - the main components are agents, places, global functions,
and policies. Agents take decisions based on the container model of needs: needs
are satisfied by activities and decay over time. The basic needs included in the
Covid-19 simulation model are safety, belonging, self-esteem, autonomy, and sur-
vival. These needs combine health, wealth, and social well-being in the same sim-
ulation model. Agents are organised along a grid and the environment can pose
constraints to physical actions and impose norms and regulations, while when
interacting, agents can take other agents’ characteristics (e.g., being infected).

One of the advantages of using such model is that instead of providing a
single prediction, it gives support to investigate the consequences of different
scenarios. Due to its agent based nature, it is also possible to explain where
results come from; it allows for more fine grained analysis on the impact of
interventions, and it can be used in combination with domain specific models.
Having a good insight into these dependencies can provide the domain-specific
models with better information to make specific optimisations or predictions for
that intervention’s effect. Thus, the strength of the different types of models can
be combined rather than seen as competing.

4 Hands-on Tutorial

In this lecture, we also provided a three-part tutorial1, explaining how to use
different tools to simulate the effects on networks treated within this manuscript.

For this practical part of the tutorial, we employed two Python libraries:
scikit-mobility [29] for the study and analysis of human mobility and NDlib
[30] for the simulation and study of spreading phenomena on networks.

The first part of the tutorial introduces the fundamental concepts of human
mobility and explains how to create a mobility network that describes the move-
ments of individuals. In the second part of the tutorial, diffusion phenomena are
simulated on a real network with different state-of-the-art algorithms. In the last
section, state-of-the-art opinion dynamics algorithms are simulated over a real
social network.

5 Conclusions

In this tutorial, we have discussed the social dimension of Artificial Intelligence
in terms of how AI technologies can support or affect emerging social challenges.
1 https://github.com/GiulianoCornacchia/ACAI SAI Tutorial.

https://github.com/GiulianoCornacchia/ACAI_SAI_Tutorial
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On the one hand, the goal of this tutorial was to consider the network effects
of AI and their impact on society. On the other hand, we wanted to introduce
strategies, both data-driven and not, to model, characterise and mitigate AI
societal pitfalls. Here we conclude by pointing out some limitations of the existing
approaches and the research directions that should be addressed in the future.

First, both empirical and modelling works consider AI drawbacks too sim-
plistically, often relying on unrealistic assumptions that do not reflect real-world
phenomena’ complexity. For such a reason, we claim the urgency of starting
cooperation with digital platforms to understand better whether AI-powered
tools exacerbate endogenous features of human beings. In this direction, ongo-
ing projects such as the Global Partnership of Artificial Intelligence (GPAI2)
are trying to collaborate with social media platforms in order to study, from the
inside, the effects of recommendation systems on users.

Secondly, we want to stress the importance of designing AI systems that
pursue goals both at the individual level and considering the whole popula-
tion involved. Indeed, most harmful phenomena analysed in this tutorial emerge
as group phenomena. For instance, congestion in mobility networks happens
because every individual is given the same suggestion, or echo chambers emerge
because recommendation systems cluster together like-minded individuals.

In conclusion, towards social AI ecosystems, we encourage readers to design
AI tools that foster collective interests rather than individual needs.
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