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Abstract. Data selection has proven its merit for improving Neural
Machine Translation (NMT), when applied to authentic data. But the
benefit of using synthetic data in NMT training, produced by the popu-
lar back-translation technique, raises the question if data selection could
also be useful for synthetic data?

In this work we use Infrequent n-gram Recovery (INR) and Feature
Decay Algorithms (FDA), two transductive data selection methods to
obtain subsets of sentences from synthetic data. These methods ensure
that selected sentences share n-grams with the test set so the NMT model
can be adapted to translate it.

Performing data selection on back-translated data creates new chal-
lenges as the source-side may contain noise originated by the model used
in the back-translation. Hence, finding n-grams present in the test set
become more difficult. Despite that, in our work we show that adapting
a model with a selection of synthetic data is an useful approach.

Keywords: Data selection · Back-translation · Synthetic data ·
Neural machine translation · Feature decay algorithms · Infrequent
n-gram recovery

1 Introduction

Neural Machine Translation (NMT) models tend to perform better with larger
amounts of data. However, a smaller model trained with data in the same domain
as the document to be translated (test set) may perform better than a bigger
general-domain model.

Data selection algorithms can be applied as a technique to obtain data of a
particular domain. Generally speaking, these methods start from a large set of
sentences, and from this set select a subset of sentences that are closer to the
domain of interest than other sentences in the large set. Among these methods,
Transductive Algorithms (TA) perform the selection by using the test set as seed
and retrieving those sentences that are relatively closer to this seed than others.
Models built using the output of TA also perform better than general-domain
models [1,2].
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Alternatively, a general-domain model can also be adapted to a certain
domain by applying the technique known as fine-tuning [3–5]. This consists of
training the last epochs of an NMT model (built with out-domain data) using a
smaller but in-domain set of sentences.

Unfortunately, additional data that are closer to the test set are not always
available. The work of [6] showed that the inclusion of back-translated data can
boost the performance of NMT models. Since then, adding synthetic data for
training Machine Translation (MT) models has become more popular.

In this work we want to investigate whether it is useful to apply TA to
synthetic data selection, in order to retrieve artificial sentences closer to the test
set. We study the performance of TA on the task of synthetic data selection,
applied in two different configurations (see Fig. 1):

1. Batch processing: The first approach involves back-translating a monolingual
set of sentences completely and then selecting sentences from synthetic paral-
lel set. The selection criteria of TA are based on the overlap of n-grams of the
test set (the seed) with those in the source-side of the parallel set. For this
reason, the performance of TA may be worse on back-translated data as the
n-grams, which have been artificially generated, may be unnatural in terms
of word-order.

2. Online processing: This involves selecting the necessary monolingual, target-
side, sentences and afterwards back-translating the selected set. The advan-
tage of the online process is that it is not necessary to back-translate the
complete data set before selecting data. Nevertheless, as the selection is per-
formed in monolingual target-language we cannot use the test set (which is in

Fig. 1. Pipeline of the batch (left) and online (right) processing to obtain TA-selected
synthetic data.
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the source-side language) as seed. To solve this, we can proceed as described
in the work of [7] and translate the test set using a generic-domain NMT
model. Then, this translated text can be used as seed.

2 Related Work

2.1 Transductive Data Selection Algorithms

In this section we describe the algorithms used in the paper, which belong to
the family of transductive [8] data selection methods. Such methods select the
most relevant sentences for the test set using the (source-side) test set itself.
The methods score each sentence s in the candidate data U (the set of sentences
that have not been yet selected), and then the sentence with the highest score
is added to selected pool L, which is initially empty. Note that this process is
done iteratively as the scores (which depend on U and L) are updated after a
sentence has been selected.

Infrequent n-gram Recovery (INR): In the work of [9,10] they propose extract-
ing sentences containing n-grams (present in the test set) that are considered
infrequent. Therefore, words such as stop words are ignored. The sentences in
the candidate data U are scored according to Eq. (1):

score(s, U) =
∑

ngr∈Stest

max(0, t − CSI+L(ngr)) (1)

where t is the threshold that indicates whether an n-gram is frequent or not.
If the count of the n-gram ngr (CSI+L(ngr)) in the selected pool L (and an
in-domain set SI used for initialization) exceeds the value of t then it will not
contribute to the score of the sentence.

Feature Decay Algorithms (FDA): Feature Decay Algorithms [11] selects data by
promoting sentences containing many n-grams from the test set, but penalizing
those n-grams that have been selected several times. Each n-gram ngr is assigned
an initial score, then each time a sentence containing ngr is selected the score
of ngr is decreased. The default scoring function is defined as in Eq. (2):

score(s, L) =

∑
ngr∈Stest

0.5CL(ngr)

length(s)
(2)

Observe that the more occurrences of ngr are in the selected pool L (CL(ngr))
the less it contributes towards the scoring of the sentence s.

2.2 Using Approximated Target Side

The methods presented in Sect. 2.1 use the test set as seed in order to retrieve
sentences. However, a similar approach can be executed by using an approxi-
mated translation of the test set (approximated target side) as seed [7]. This
seed can be generated by another MT model.
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The output of a TA, such as INR or FDA, can be represented as a sequence
of sentences TAsrc = (s(src)

1 , s
(src)
2 , s

(src)
3 , ...s

(src)
N ) of N sentences. We use the

subscript src to indicate that the seed is a text in the source language. However,
we can first translate the test set using a generic NMT model and execute the
TA using the translation as a seed. The output of this execution could also be
represented as a sequence of sentences TAtrg = (s(trg)

1 , s
(trg)
2 , s

(trg)
3 , ...s

(trg)
N )

The two outputs, TAsrc and TAtrg, can be combined as a new sequence of
N sentences as in Eq. (3)

TA = (s(src)
1 , ...s

(src)
N∗α , s

(trg)
1 , ...s

(trg)
N∗(1−α)) (3)

where the top sentences from each output are concatenated. The value of α ∈
[0, 1] represents the proportion of data that are selected from TAsrc and TAtrg.

Fig. 2. Pipeline of the traditional usage of FDA (left) and pipeline of our proposal,
using the target-side (right) [7].

Figure 2 (right) shows the pipeline that we followed to build the mixture of
the outputs using both seeds. Although the data obtained from TAtrg are not
always useful for adapting an MT model for the test set, mixing the data selected
using the test set and the approximated target side can lead to improvements
[7].
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3 Fine-Tuning Models with Synthetic Data

The work of [6] showed that NMT models can be improved by adding synthetic
training data. In their work they use monolingual sentences in the target lan-
guage and translate them into the source-language with an NMT model. This
creates a parallel corpus in which the source side has been artificially gener-
ated and the target side is human-produced data (and hence, the fluency of the
translation will not be affected). Models built with back-translated data alone
(or mixed with back-translated data) can have a performance comparable to
those built with real data [12].

In this work we want to explore the performance of NMT models when fine-
tuned with TA-selected synthetic data so they are adapted to a given test set.
We are interested in exploring three main Research Questions (RQ):

– RQ1: Does a model adapted with TA-selected back-translated data
achieve improvements over the non-adapted model?
The strength of performing the fine-tuning technique is to adapt a model
with data in the same domain as the document to be translated. Although
TA can retrieve relevant data, we do not know the performance when executed
using synthetic data. The artificially-generated sentences may contain unusual
n-grams, so the overlap with the test set is lower. This prevents TA from
retrieving relevant sentences.

– RQ2: Does a model adapted with TA-selected back-translated data
perform better than a model adapted with TA-selected authentic
data?
Suppose that using synthetic data for adaptation leads to improvements, we
also want to compare the performance to that of a model adapted with TA-
retrieved authentic data. The quality of the back-translated (source) data,
in terms of being an exact translation of the target, is expected to be lower
than that of the source-side in the corresponding authentic sentence pairs
(which were after all created by human translators). However, the authentic
data have already been used to build the model to be adapted, whereas the
selected artificial (source) sentences is a set of newly generated data, which
may add useful new information not present in the original authentic data set.
For this reason, the selected synthetic data might add more value to training
the model and may also improve generalization. Therefore, fine-tuning with
selected back-translated data may yield larger performance gains than fine-
tuning with (repeated) authentic sentences.

– RQ3: Is it preferable to follow the batch or the online processing?
As both processing (batch and online) retrieve different subsets of data, we
want to study the performance of the models when they are adapted with a
mixture of both outputs. The strategy we follow to combine the outputs is
to concatenate them in different proportion in a similar way (using different
sizes of α) as explained in Sect. 2.2.
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4 Experiments

4.1 Experimental Settings

We build German-to-English models with the parallel data provided in the WMT
2015 [13] (training data). All data sets are tokenized and truecased. We also apply
Byte Pair Encoding (BPE) [14] with 89500 merge operations. The synthetic
data are built by translating the target-side (English) into the source language
(German). We use an NMT model built with 1M randomly-selected sentences.

The NMT models are built using OpenNMT-py1 [15] with the default param-
eter values: 2-layer LSTM with 500 hidden units, vocabulary size of 50000 words
for each language.

All the models built are evaluated on two test sets using BLEU [16], TER
[17] and METEOR [18] evaluation metrics. These metrics provide an estimation
of the quality of the translation compared to a human-translated reference. The
two test sets used to evaluate the models are: (i) NEWS test set provided in
WMT 2015 News Translation Task; and (ii) BIO test set, the Cochrane2 dataset
from the WMT 2017 biomedical translation shared task [19].

In each table, we mark in bold the scores that are better than the baseline,
and if they constitute a statistically significant improvement (at level p = 0.01)
we mark them with an asterisk. This was computed with multeval [20] using
bootstrap resampling [21].

4.2 Model Adaptation with Subsets of Data

The general-domain model used in this work as baseline is an NMT model trained
with the complete training dataset for 13 epochs. The result of the model can
be seen in Table 1

Table 1. Results of the general-domain model evaluated in the NEWS test set and
BIO test set.

NEWS BIO

BLEU 0.2634 0.3314

TER 0.5441 0.4679

METEOR 0.3009 0.3457

The experiments carried out consist of using INR and FDA to select different
sizes of data: 100 K, 200 K and 500 K sentence pairs. In INR method, a low value
of t causes the method to be more strict and retrieve less sentences. We use the
larger value so the execution does not exceed 48 h (i.e. t = 80 for NEWS test

1 https://github.com/OpenNMT/OpenNMT-py.
2 http://www.himl.eu/test-sets.

https://github.com/OpenNMT/OpenNMT-py
http://www.himl.eu/test-sets
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Table 2. Results of the models built with different sizes of INRsrc and INRtrg using
authentic data.

Baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

100 K BLEU 0.2634 0.2649 0.2659 0.2664* 0.2655 0.2659*

TER 0.5441 0.5419 0.5408* 0.5417* 0.5413 0.5430*

METEOR 0.3009 0.3021* 0.3030* 0.3037* 0.3033* 0.3034*

200 K BLEU 0.2634 0.2644 0.2661* 0.2666* 0.2655 0.2649

TER 0.5441 0.5435 0.5410* 0.5406* 0.5413* 0.5437*

METEOR 0.3009 0.3012 0.3025* 0.3028* 0.3029* 0.3027*

BIO

100 K BLEU 0.3314 0.3352* 0.3346 0.3347 0.3370* 0.3339

TER 0.4679 0.4592* 0.4631 0.462 0.4591* 0.4605*

METEOR 0.3457 0.3477 0.3478 0.3463 0.3488* 0.3475

200 K BLEU 0.3314 0.3388* 0.3362* 0.3403* 0.3386* 0.3343

TER 0.4679 0.459* 0.4589* 0.457* 0.4563* 0.4590*

METEOR 0.3457 0.3494* 0.3477 0.3502* 0.3489* 0.3495*

set and t = 640 for BIO test set). However, the amount of sentences retrieved
are below 500 K, so in the experiments we only evaluate the models adapted
with 100 K and 200 K INR-selected sentences. The sentences retrieved are used
to adapt the general-domain model. In particular, we adapt the 12th epoch of
the model by fine-tuning it with the selected data.

In Table 2 and Table 3 we show the performance of the models when fine-
tuned with different sizes of selected authentic data. In the tables we also indicate
the proportions of data selected using the test set or the approximated target
side as seed.

As we can see, the performance of the adapted models are higher than that
of the general-domain model (Table 1). In addition, using a mixture of TAsrc

and TAtrg (columns α = 0.75, α = 0.50 and α = 0.25) can achieve a higher
performance than TAsrc or TAtrg alone.

In our experiments we follow the same procedure using synthetic data in order
to perform comparisons among the general-domain model, models adapted with
authentic data, and models adapted with synthetic data.

5 Results

The results of the models adapted with synthetic data are shown in Table 4 (INR
method) and Table 5 (FDA method). In order to answer RQ1, we include in the
first column, as baseline, the performance of the 13th epoch of the general-
domain model (Table 1). We mark in bold those scores that indicate a better
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Table 3. Results of the models built with different sizes of FDAsrc and FDAtrg using
authentic data.

Baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

100K BLEU 0.2634 0.2649 0.2665* 0.2642* 0.2643 0.2633

TER 0.5441 0.5421 0.5412* 0.5413* 0.5416* 0.5416*

METEOR 0.3009 0.3021* 0.3027* 0.3022* 0.3019 0.3020

200K BLEU 0.2634 0.2655 0.2665* 0.2651 0.2652 0.2654*

TER 0.5441 0.5417* 0.5412* 0.5413* 0.5421* 0.5404*

METEOR 0.3009 0.3024* 0.3027* 0.3025* 0.3025* 0.3027*

500K BLEU 0.2634 0.264* 0.2658* 0.2671* 0.2654 0.2650

TER 0.5441 0.5447 0.5414* 0.5412* 0.5415* 0.5404*

METEOR 0.3009 0.3010* 0.3028* 0.3028* 0.3024* 0.3028*

BIO

100K BLEU 0.3314 0.3368* 0.3377* 0.3391* 0.339* 0.3331

TER 0.4679 0.4597* 0.4611* 0.4599* 0.4597* 0.4649

METEOR 0.3457 0.3471 0.3473 0.3476 0.3485 0.3463

200K BLEU 0.3314 0.3396* 0.3414* 0.3375* 0.3391* 0.3370*

TER 0.4679 0.4564* 0.459* 0.4574* 0.4596* 0.4572*

METEOR 0.3457 0.3501* 0.3503* 0.3491* 0.3484* 0.3496*

500K BLEU 0.3314 0.3375* 0.3406* 0.3358* 0.3354* 0.3336

TER 0.4679 0.4592* 0.4552* 0.4593* 0.4574* 0.4617

METEOR 0.3457 0.3492* 0.3496* 0.3485 0.3494* 0.3485*

performance than the baseline and add an asterisk if they are statistically sig-
nificant at level p = 0.01.

In the tables we observe that adapted models with artificial data tend to
perform better on NEWS test set than BIO test set (e.g. BLEU scores are only
higher in the NEWS test set). This manifests that the domain of the model
used for back-translating plays an important role. In our experiments the above
model is closer to the news domain because it was built using a sample of the
authentic training data.

METEOR scores of adapted models are higher than those of the general-
domain model for both test sets, and in many cases the improvements are statis-
tical significant (with p = 0.001). In contrast, TER scores are lower than the base-
line. This may be caused by the synonym or conjugation chosen by the adapted
model. For example, the sentence “auch Schulen” is translated by the general-
domain model as “schools too” (the same as in the reference), but adapted model
produced “also schools”.
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Table 4. Results of the models built with different sizes of INRsrc and INRtrg using
back-translated data.

Baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

100 K BLEU 0.2634 0.2664 0.267 0.2671 0.2679* 0.2675*

TER 0.5441 0.5492 0.5496 0.55 0.5496 0.5513

METEOR 0.3009 0.3058* 0.3062* 0.3063* 0.3067* 0.3061*

200 K BLEU 0.2634 0.2666 0.2673* 0.2678* 0.2673* 0.2672*

TER 0.5441 0.5485 0.5486 0.5478 0.5481 0.5481

METEOR 0.3009 0.3064* 0.3061* 0.3068* 0.3066* 0.3068*

BIO

100 K BLEU 0.3314 0.324 0.327 0.3263 0.3269 0.3251

TER 0.4679 0.4762 0.4747 0.4753 0.4751 0.4764

METEOR 0.3457 0.3486 0.3490 0.3502* 0.351* 0.3489

200 K BLEU 0.3314 0.3241 0.3255 0.3255 0.3254 0.3251

TER 0.4679 0.4782 0.4755 0.4732 0.4742 0.4745

METEOR 0.3457 0.3487 0.3501* 0.3508* 0.3509* 0.3505*

5.1 Model Adaptation with Synthetic Data

In our experiments, the back-translated data used for the adaptation are new
data unseen by the model (the authentic data used to adapt the models presented
in Tables 2 and 3 are subsets of the same data used to build the general-domain
model). The outcomes observed in the experiments show that adapting the mod-
els with synthetic data does not achieve as good results as adapting them with
authentic data (which answers the RQ2). If we compare cell-wise (i.e. same value
of α and same size of selected sentences) Tables 2 and 4 or Tables 3 and 5 we
see slight improvements for the BLEU and METEOR scores for the news test
set (NEWS subtables). However, none of these are statistically significant at
p = 0.01.

As mentioned previously, the sentences produced by the model used for back-
translation may contain mistakes such as word-ordering, incorrect translations
etc. which reduces the potential sentences that TA can retrieve. For example, in
our experiments we find the following sentence in the NEWS test set “Auf der
Hüpfburg beim Burggartenfest war am Sonnabend einiges los.” (according to
the reference “Something is happening on the bouncy castle at the Burggarten-
fest.”) contains the word “Hüpfburg” (“bouncy castle”) which is used by TA
to retrieve sentences. There are 18 occurrences of this word in the authentic
data set. However, in the synthetic data there are no instances of this word.
Instead, the back-translated counterparts of sentences containing “Hüpfburg”
include words such as “bouncer” (copied from the English side) or “bounmit”
(a word that does not exist). Nevertheless, in some cases back-translated sen-
tences may be closer to literal translation than those found in the authentic
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Table 5. Results of the models built with different sizes of FDAsrc and FDAtrg using
back-translated data.

Baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

100K BLEU 0.2634 0.2639 0.2654 0.264 0.2655 0.2672*

TER 0.5441 0.5525 0.5509 0.5522 0.5511 0.5493

METEOR 0.3009 0.305* 0.3054* 0.3051* 0.3055* 0.3062*

200K BLEU 0.2634 0.2655 0.2658 0.2663 0.2666 0.2679*

TER 0.5441 0.5497 0.5512 0.5504 0.5493 0.5484

METEOR 0.3009 0.3051* 0.3053* 0.306* 0.3055* 0.3063*

500K BLEU 0.2634 0.2662 0.2674* 0.2668 0.2679* 0.2664

TER 0.5441 0.5483 0.5494 0.5501 0.5488 0.5489

METEOR 0.3009 0.3061* 0.3068* 0.3062* 0.3068* 0.3062*

BIO

100K BLEU 0.3314 0.3228 0.3248 0.3238 0.3254 0.3262

TER 0.4679 0.4755 0.475 0.4751 0.4742 0.4744

METEOR 0.3457 0.349 0.3488 0.3497* 0.3521* 0.3500*

200K BLEU 0.3314 0.3214 0.3245 0.3258 0.3255 0.3241

TER 0.4679 0.478 0.4743 0.4737 0.4751 0.4749

METEOR 0.3457 0.3487 0.3495 0.3501* 0.349 0.3482

500K BLEU 0.3314 0.3215 0.3223 0.3229 0.3241 0.3226

TER 0.4679 0.4842 0.4843 0.4817 0.4813 0.4811

METEOR 0.3457 0.3478 0.3488 0.3486 0.3491 0.349

set [7,22]. For example, in the authentic data set we find the sentence-pair 〈“er
ist verheiratet und hat zwei Kinder.”,“since then, he has had a long career on
stage, in film and on television. He has also established himself as a singer and
an author in recent years.”〉 which do not convey the same meaning. However,
the machine-produced source-side is “seitdem hat er eine lange Karriere auf der
Bühne, im Film und im Fernsehen absolviert und hat sich auch als Sängerin und
Autor in den letzten Jahren etabliert” which is closer in meaning to the target-
side sentence. Another example is the pair 〈“10 %!”,“one tenth!”〉. Although,
they have the same meaning, in the back-translated counterpart the source-side
sentence is “ein Zehntel!”, which is a literal translation.

5.2 Batch and Online Processing

In order to answer RQ3 we need to compare columns α = 1 (batch processing, i.e.
extract from back-translated data using the test set) and α = 0 (online process-
ing, i.e. extract from authentic data using the approximated set). In Table 4 and
Table 5 we see that in our experiments following the online process the results
tend to be better.
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Using an approximated target side as seed is risky, as it can be of low quality.
For example, the sentence “Das Buch wurde neu für 48$ verkauft.” (“The book
was selling for $48 new.”) is translated as “The book was sold for 48$.” by
the general-domain model. As we can see, the word “new” is omitted in the
translation. This means that the TA will not consider the word “new” when
selecting sentences.

Despite that, we find that the generated target-side seed may contain n-
grams that better represent the context of the input document. For example,
the sentence in the test set “Ich liebe es, in einem Probenraum zu sein.” is
translated, according to the reference, as “I love being in a rehearsal room.”.
The model adapted with 100 K sentences from FDAsrc (α = 1) generates the
translation “I love to be in a sample room.”, whereas the model adapted with
FDAtrg (α = 0) produces a sentence that conveys the same meaning to the
reference: “I love to be in a rehearsal room.”.

We observe that the occurrences of “Proben” (due to BPE, the word is split-
ted as “Proben@@ raum”) are translated as “sample” or “rehersal” depending
on the context. The fact that in the approximated target side the word has
been accurately translated as “rehearsal room” induces FDAtrg to select more
sentences that include the term “rehearsal”. In contrast, FDAsrc retrieves sen-
tences based on the word “Proben” in the seed (as it is present in the test set).
However, in the training data this word has been artificially produced and it
replaces words such as “Messwasser” (“water sample”) or “Musterproduktion”
(“sample production”).

6 Conclusion and Future Work

In this paper we have analyzed various use-cases of synthetic data for adapt-
ing a general-domain model. We have seen that using a TA it is possible to
obtain sentences from synthetic data that can improve the model, even if the
sentences used for adaptation are an artificial version of the same sentences used
to construct the general model.

In addition, we have seen that performing the adaptation online, extract-
ing just the necessary monolingual target-language sentences (using an approxi-
mated translation of the test set as seed) and back-translating them afterwards,
is a reasonable approach that can even perform better than selecting directly
from synthetic sentences.

In the future, we want to further extend this research and explore the effects
on the performance of combining both authentic and synthetic data or the use
of forward-translation [23]. In addition, we are interested in exploring whether
the results observed in this paper are the same when using other language pairs
or other configurations of INR and FDA [24,25].

Acknowledgements. This research has been supported by the ADAPT Centre for
Digital Content Technology which is funded under the SFI Research Centres Pro-
gramme (Grant 13/RC/2106) and is co-funded under the European Regional Develop-
ment Fund.



578 A. Poncelas et al.

This work has also received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk�lodowska-Curie grant
agreement No 713567.

References

1. Poncelas, A., de Buy Wenniger, G.M., Way, A.: Feature decay algorithms for neural
machine translation. In: Proceedings of the 21st Annual Conference of the Euro-
pean Association for Machine Translation, pp. 239–248. Alacant, Spain (2018)

2. Silva, C.C., Liu, C.H., Poncelas, A., Way, A.: Extracting in-domain training cor-
pora for neural machine translation using data selection methods. In: Proceedings
of the Third Conference on Machine Translation: Research Papers, pp. 224–231,
Brussels, Belgium (2018)

3. Luong, M.T., Manning, C.D.: Stanford neural machine translation systems for spo-
ken language domains. In: Proceedings of the International Workshop on Spoken
Language Translation, pp. 76–79. Da Nang, Vietnam (2015)

4. Freitag, M., Al-Onaizan, Y.: Fast domain adaptation for neural machine transla-
tion. arXiv preprint arXiv:1612.06897 (2016)

5. van der Wees, M., Bisazza, A., Monz, C.: Dynamic data selection for neural machine
translation. In: Proceedings of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 1400–1410. Copenhagen, Denmark (2017)

6. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models
with monolingual data. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, vol. 1, pp. 86–96. Berlin, Germany (2016)

7. Poncelas, A., de Buy Wenniger, G.M., Way, A.: Data selection with feature decay
algorithms using an approximated target side. In: 15th International Workshop on
Spoken Language Translation, pp. 173–180. Bruges, Belgium (2018)

8. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
9. Parcheta, Z., Sanchis-Trilles, G., Casacuberta, F.: Data selection for NMT using

infrequent n-gram recovery. In: Proceedings of the 21st Annual Conference of the
European Association for Machine Translation, pp. 219–227. Alacant, Spain (2018)
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