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Abstract. Language–brain encoding experiments evaluate the ability of
language models to predict brain responses elicited by language stimuli.
The evaluation scenarios for this task have not yet been standardized
which makes it difficult to compare and interpret results. We perform
a series of evaluation experiments with a consistent encoding setup and
compute the results for multiple fMRI datasets. In addition, we test the
sensitivity of the evaluation measures to randomized data and analyze
the effect of voxel selection methods. Our experimental framework is pub-
licly available to make modelling decisions more transparent and support
reproducibility for future comparisons.
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1 Introduction

Representing language in a computationally usable format has been a research
goal since the beginning of computational linguistics. In the last decade, dis-
tributional representations which interpret words, phrases, sentences, and even
full stories as a high-dimensional vector in semantic space have become the most
common standard. These representations are obtained by training language mod-
els on large corpora to optimally encode contextual information.

The quality of language representations is commonly evaluated on a set of
downstream tasks. These tasks are either driven by engineering adequacy (e.g.
the effect of the language representations on the performance of systems such
as machine translation) or by the ability to reproduce human decisions (e.g. the
performance of the representations on semantic similarity or entailment tasks).

The experiments were conducted in 2018 when all three authors were employed at the
Institute of Logic, Language and Computation at the University of Amsterdam. The
paper was presented in 2019. Since then, language modeling has progressed immensely.
Experimental standards for robust, comparable, and reproducible evaluation for inter-
preting language–brain encoding experiments with respect to reasonable random per-
mutation baselines need to be further developed and more widely adopted.
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Many language researchers, however, are driven by the urge to better understand
the underlying principles of human language processing.

With the increasing availability of brain imaging data, it has become popu-
lar to evaluate computational models by their ability to simulate brain signals
related to human language processing [18,19,27]. If we can develop models that
encode linguistic information in a way that is comparable to the activity in
human brains, we will get one step closer to cognitively plausible models of
human language understanding. While experimenting with human brains is evi-
dently strictly constrained and regulated due to ethical reasons, we can easily
query, adapt, constrain, degrade, and manipulate the computational model and
analyze the effect on its language processing capabilities.

Although working with brain imaging data is highly promising from a cog-
nitive perspective, it comes with many practical limitations. Brain datasets are
usually too small for powerful machine learning models, the imaging technol-
ogy produces noisy output that needs to be adjusted by statistical correction
methods, and most importantly, only very few datasets are publicly available.
Experiments in previous work are usually performed on a single dataset, so
that it is unclear whether the observed effects are generalizable. In addition, the
applied evaluation procedures have not yet been standardized. Understanding
the subtle differences in the experimental setup to interpret the results can be
particularly difficult because it has not yet become a common practice to publish
the experimental code along with the results.

To the best of our knowledge, this paper provides the first analysis of
language–brain encoding experiments which applies a consistent evaluation sce-
nario across multiple fMRI datasets. We examine whether different evaluation
measures provide different interpretations of the predictive power of the encod-
ing model. Our experimental framework is publicly available to make modelling
decisions more transparent and facilitate reproducibility for future comparisons.
Due to its modular architecture, the pipeline can easily be extended to experi-
ment with other datasets and language models.1

Table 1. 4 fMRI datasets for language–brain encoding. In Words and Stories, stimuli
have been isolated by averaging over the brain responses. The Alice and Harry
datasets contain continuous stimuli.

Name Stimuli Presentation mode Subj. Scans Voxel size Reference

Words 60 words Word + image 9 360 3x3x6 Mitchell et al. [24]

Stories 40 stories Read sentences 30 40 3x3x3 Dehghani et al. [13]

Alice 1 chapter Listen to audio book 27 362 3x3x3 Brennan et al. [10]

Harry 1 chapter Read word by word 8 1351 3x3x3 Wehbe et al. [32]

1 The code is available at https://github.com/beinborn/brain-lang.

https://github.com/beinborn/brain-lang
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2 Human-Centered Evaluation of Computational Models

As computational language models are trained on human-generated text, their
performance is inherently optimized to simulate human behavior. Although novel
architectural solutions attract notable interest in the research community, the
ultimate benchmark for a model is the ability to approximate human language
processing abilities. Models are supposed to reach a gold standard of human
annotation decisions [29] and the difficulty of a task is often estimated by the
inter-annotator agreement [5] or by error rates of human participants [8]. While
these product-oriented evaluations focus on a final outcome, procedural mea-
sures of response times [25] or eye movements [7] are analyzed to provide deeper
insights on sequential phenomena like attention or processing complexity. As
neural network models are inspired by neuronal activities in the human brain,
it is particularly interesting to analyze similarities and differences between dis-
tributed computational representations and low-level brain responses.

Electroencephalography (EEG) measures can be used to study specific
semantic or syntactic phenomena [15,18,31] and compare the processing com-
plexity of computational models to brain responses, for example, with respect
to the N400 and P600 effects [14]. Signals with higher spatial resolution like
magnetoencephalography (MEG) and functional magnetic resonance imaging
(fMRI) are often used for experiments which are known as brain decoding and
brain encoding. In the decoding setup, a computational model learns to identify
differences in the signal and to discriminate between the responses for abstract
and concrete words [4], for different syntactic classes [9,22], for levels of syntactic
complexity [10], and many other linguistic categories. Mitchell et al. [24] have
shown that it is not only possible to distinguish between semantic categories but
that a model can even learn to distinguish which word a participant is reading.
The reverse direction of predicting the brain response that would most likely
be observed for a novel linguistic stimulus is commonly called encoding. The
encoding task requires a strong computational representation of the stimulus
that reflects the shared properties of different stimuli and the relations between
stimuli. For the remainder of this paper, we will focus on the language–brain
encoding task and on fMRI datasets.

Many word representations have been tested on the Mitchell et al. [24] data
including information from lexical resources, distributional, and multimodal rep-
resentations [1,4,11,34]. It has also been proposed to directly feed the brain
signal into the language model as an additional source of information [6,16].
Recently, new approaches for encoding and decoding of datasets using longer
linguistic stimuli such as sentences [27] and even full stories [10,13,19,32] are
emerging. In some experiments, it has been shown that contextualized repre-
sentations obtained from recurrent neural networks [19,33] seem to represent
the continuous stimuli slightly better than models that represent sentences as
a conglomerate of context-independent word representations [13,27]. However,
these results are hard to generalize because they have been tested only on a sin-
gle dataset. Gauthier and Ivanova [17] raise doubts about the informativeness
of encoding results because differences between models are not reflected. Our
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robust evaluation experiments can serve as a comparative testbed for future
analyses.

3 Datasets

We use four fMRI datasets that have been collected by different researchers
(see Table 1). All datasets use English language stimuli and the participants are
native speakers. Standard fMRI preprocessing methods such as motion correc-
tion, slice timing correction and co-registration to an MNI template had already
been applied.

3.1 Isolated Stimuli

We use two datasets that work with isolated stimuli. The stimuli are not related
and can be presented in varying order to the participants. Each stimulus is
represented with only a single brain activation vector by averaging over several
scans obtained during the presentation of the stimulus.

Words. For the Words dataset, 9 participants were shown a word paired with
a line drawing of the object denoted by the word and were instructed to think
about the properties of the object [24]. Six scans were taken during the presen-
tation of each word. The scans were temporally detrended and smoothed. The
activation values were normalized by computing the percent signal change rela-
tive to the fixation condition. Scans and stimuli were aligned with an offset of
4 s to account for the haemodynamic delay. The brain activation for each word
is calculated by taking the mean over the six scans.

Stories. For the Stories dataset, 30 participants were reading 40 short per-
sonal stories that had been collected from weblogs [13]. The stories consisted
of 11 sentences on average and were presented in three consecutive batches on
a screen. The dataset also contains data for Farsi and Chinese stories but for
the sake of comparison, we focus on the English subset here. The scans were
preprocessed with detrending, temporal smoothing and spatial smoothing. The
activation values were normalized by calculating z-scores with respect to the fix-
ation condition. The authors then discretized the continuous story stimulus by
calculating the mean over all story scans. We exclude subject 30 from the data
because the voxel values are all zero.

3.2 Continuous Stimuli

Humans process language incrementally and in context. In order to simulate
a more naturalistic language setting, recent approaches to brain encoding use
continuous stimuli and analyze the fMRI scans as a sequence of responses.
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Harry. For the Harry dataset by Wehbe et al. [32], 8 participants read chapter 9
of Harry Potter and the Sorcerer’s stone [30]. The story was split into four blocks
and presented word by word on a screen. Each word was displayed for 0.5 s and
an fMRI scan was taken every 2 s. We follow their protocol and apply detrending
and temporal smoothing but do not smooth spatially because it did not have an
effect on the results in pilot experiments.

Alice. For the Alice dataset by Brennan et al. [10], 27 participants were listening
to an audio recording of the first chapter of Alice in Wonderland [12]. The
published data contains the preprocessed signal averaged for 6 regions of interests
defined using functional and anatomical criteria. The raw signal is not available.

4 Encoding Model

The fMRI data is obtained by measuring the so-called blood-oxygenation level
dependent (BOLD) response. This signal indicates the level of oxygen in the
blood (approximated by its magnetic susceptibility) and an increased BOLD
response in an area of the brain is interpreted as increased neuronal activity in
this region. In order to analyze the response, the brain is fragmented into stacked
voxels which are cubes of constant size (e.g. 3 × 3× 3 mm). The response thus
consists of a three-dimensional matrix with activation values for each voxel.
This matrix is flattened into a one-dimensional vector v. In the brain encoding
approach, the goal is to predict v given the stimulus s that was presented when
measuring the response.

Mapping Model. A multiple linear ridge regression model is usually applied as
encoding model to learn the response pattern vn∈Rm for stimulus sn∈Rd on
a training set V ∈Rm×n of responses to n other stimuli.2 It requires a strong
computational representation of the stimulus that reflects the relations between
stimuli. The predictive power of this mapping model is evaluated on a set of held-
out stimuli S∈Rd×n. The mapping model learns a separate regression equation
for every voxel vi which is fitted by learning a weight wd for each dimension sd
of the stimulus representations and the weights are regularized by the L2 norm.
The cost function f for learning the weight vector w for a voxel vector vi is:

f(vi) =
N∑

n=1

(vin −
D∑

d=1

wd · sdn
)2 + λ

D∑

d=1

wd
2

4.1 Language Model

The linguistic stimuli are represented using vectors obtained from a language
model. Previous work has compared the performance of different language mod-
els for brain encoding tasks showing that contextual models like long short-term
2 Whether a linear model is a plausible choice is debatable. We use it here for com-

parison with previous work.
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memory networks perform better than standard word-based representations [19].
For a more robust comparison, we keep the language model constant for all
datasets. We choose the language model ELMO because it produces contextu-
alized representations on the sentence level and performs very well on semantic
tasks [28]. ELMO is based on a bi-directional long short-term memory network
and it uses character-based representations of the input which makes it perform
very well on out-of-vocabulary words. This is an important property for model-
ing fictional texts. We use a pre-trained pytorch version of ELMO available on
github.3

For Words, we use the representations from the token layer. For all other
datasets, we obtain contextualized representations from the first layer. We
restrict the representation to the forward language model to simulate incremen-
tal processing and obtain a 512-dimensional vector. We take the representation
of the last token of each sentence and average over all sentences for each story
in Stories. For the continuous stimuli, we feed the language model the whole
chapter and extract the representation of the last token of the sequence which
had been presented between the previous and the current scan.

Haemodynamic Delay. The fMRI signal measures a brain response to a stim-
ulus with a delay of up to ten seconds [23]. This delay needs to be considered
when aligning stimuli with responses. Similarly to Mitchell et al. [24], we align
scans to stimuli with a fixed offset of 4 s. The haemodynamic response decays
slowly over a duration of several seconds. For continuous stimuli, this means
that the response to previous stimuli will have an influence on the current signal.
Wehbe et al. [32] use a feature-based representation and learn different weights
for stimuli occurring at previous time steps. In this approach, the number of
features increases linearly with the number of time steps considered. In contex-
tual language models, a representation is build up incrementally using recurrent
connections. The representation of a word thus implicitly contains information
from the previous context. As ELMO processes language sentence by sentence,
our context window comprises the current sentence up to the current word but
the number of dimensions remains constant.

4.2 Voxel Selection

The number of voxels in a brain varies with respect to the voxel size and the shape
of the subject’s brain. In the datasets used here, the number of voxels ranges from
20,000 to more than 40,000. The activity measured in many of these voxels is
most likely not related to language processing but might change due to physical
processes like the noise perception in the scanner. In these cases, learning a
mapping model from the stimulus representation to the voxel activation will not
succeed because the stimulus has no influence on the variance of the voxel signal.
Whole-brain evaluations of mapping models thus only have limited informative
value. In previous work, different voxel selection models have been applied to

3 https://github.com/allenai/allennlp/blob/master/tutorials/how to/elmo.md.

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
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analyze only a subset of interesting voxels. Wehbe et al. [32] and Brennan et al.
[10] reduced the voxels by using previous knowledge about regions of interests.
Restricting the brain response to voxels that fall within a pre-selected set of
regions of interests can be considered as a theory-driven analysis.

Information-Driven Voxel Selection. In contrast to the theory-driven region of
interest analysis, Kriegeskorte et al. [20] propose a more information-driven app-
roach. So-called searchlight analyses move a sphere through the brain to select
voxels (comparable to sliding a context window over text) and analyze the pre-
dictive power of the voxel signal within the sphere. Dehghani et al. [13] and
Wehbe et al. [32] use this searchlight approach for the decoding task. In brain
encoding, the predictive direction is reversed. The ability to predict voxel activa-
tion based on the stimulus is carefully interpreted as an indicator that processing
the stimulus influences the activity in this particular voxel. For Words, Mitchell
et al. [24] analyze all six brain responses for the same stimulus and select 500
voxels that exhibit a consistent variation in activity across all stimuli. Jain and
Huth [19] calculate the model performance for a single voxel as the Pearson cor-
relation between real and predicted responses on the test set and analyze voxels
with a correlation above a threshold. Gauthier and Ivanova [17] recommend to
evaluate voxels based on explained variance. We select the 500 most predic-
tive voxels on the training set for Words by four selection methods: stability,
Pearson correlation, explained variance, and random.

Table 2. The effect of voxel selection on the pairwise accuracy on Words. Accuracy
and stable voxels are calculated as described in [24].

Metric None Stable by EV by R Random

Cosine .57 .65 .67 .56 .57

Euclidean .57 .66 .67 .56 .57

Pearson .58 .67 .68 .57 .58

Results of Voxel Selection. Table 2 shows the results for different voxel selection
methods. It can be seen that voxel selection by explained variance performs on
par with the selection of stable voxels. We had speculated that simply reducing
the number of voxels might already lead to improvements because similarity
measures tend to perform better in lower-dimensional spaces [2] but a random
selection of voxels has no effect. For the remainder of the paper, we report
results on the 500 voxels that obtained the highest explained variance results on
the training set unless indicated otherwise because the option of selecting stable
voxels is not available for the other datasets.
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5 Evaluation Experiments

The voxel selection results show that a small experimental parameter can have a
strong effect. We thus perform three experiments using different evaluation pro-
cedures: pairwise accuracy, voxel-wise evaluation, and representational similarity
analysis. We repeat each experiment with a language model that assigns a ran-
dom (but fixed) vector to each word to analyze the sensitivity of the evaluation
metric. Random story representations are obtained by averaging over words.

5.1 Pairwise Evaluation

As the fMRI datasets are very small for machine learning purposes, Mitchell et
al. [24] introduced an evaluation procedure that maximizes the training data.
Given a set of n samples, a mapping model is trained on n−2 samples and tested
on the two remaining samples. Mitchell et al. [24] call this procedure leave-two-
out cross-validation but it differs from standard cross-validation setups because
each sample occurs n times in the test set leading to

(
n
2

)
different models. The

performance is evaluated by calculating the pairwise accuracy over all models.
A pair of two test samples (s1, s2) is considered to be classified correctly if

the model prediction p1 is more similar to the true target s1 than to s2, and p2 is
more similar to s2. This general idea of pairwise accuracy has been implemented
in different ways. The applied similarity metrics f are cosine similarity [24],
euclidean similarity [32], and Pearson correlation [11,27]. The prediction for a
pair can be considered to be correct by comparing the summed similarity of the
correct alignments with the false alignments [11,13,24]. Wehbe et al. [32] and
Wehbe et al. [33] calculate the accuracy by comparing the predictions only for
the first sample. A stricter interpretation of the pairwise accuracy would only
consider the prediction to be correct, if both samples are correctly matched to
their prediction. We refer to the different interpretations as sum match (1), single
match (2), and strict match (3):

f(s1, p1) + f(s2, p2) > f(s1, p2) + f(s2, p1) (1)
f(s1, p1) > f(s1, p2) (2)
f(s1, p1) > f(s1, p2) ∧ f(s2, p2) > f(s2, p1) (3)

Experimental Setup. We calculate the pairwise accuracy for all four datasets,
for the two similarity metrics cosine and euclidean and for the three match
definitions sum, single, and strict. The leave-two-out evaluation only works well
for isolated stimuli as in Words and Stories. For the continuous stimuli, we
perform standard cross-validation. The Harry data can be split into four folds
according to the experimental blocks. For the Alice data, we determined six
folds. The predictions for each fold are then paired with a randomly selected
sample. We set a distance constraint between the two samples of at least 20
time steps to avoid overlapping response patterns. For each sample, we average
the result over 1,000 random pairs as in Wehbe et al. [32].
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Table 3. Pairwise accuracy results measured with cosine similarity, Euclidean similar-
ity, and Pearson correlation and different match definitions averaged over all subjects.
The results for the random language model are indicated in parentheses.

Encoding Model (Random LM)

Match Words Stories Alice Harry

Cosine

Sum .67 (.54) .57 (.53) .54 (.53) .50 (.49)

Single .60 (.53) .53 (.53) .53 (.51) .49 (.49)

Strict .26 (.13) .14 (.02) .28 (.27) .25 (.24)

Euclidean

Sum .67 (.53) .56 (.53) .53 (.53) .50 (.49)

Single .59 (.50) .51 (.50) .52 (.51) .50 (.49)

Strict .24 (.08) .11 (.02) .17 (.11) .12 (.07)

Pearson’s R

Sum .68 (.53) .56 (.54) .53 (.53) .50 (.50)

Single .61 (.53) .52 (.52) .52 (.52) .50 (.49)

Strict .26 (.10) .11 (.02) .27 (.27) .25 (.24)

Fig. 1. Violin plot for the pairwise accuracy results for all subjects in Stories for each
evaluation metric.

Results. The results in Table 3 are averaged over all subjects. It can be seen that
the differences between the three similarity metrics and the sum and the single
match are very small. The strict match is consistently more rigorous than the
other match types. This indicates that both predictions would often be matched
to the same stimulus when ignoring the pairwise exclusivity constraint. We con-
clude that the other two match types tend to slightly overestimate the discrim-
inability of the stimulus. We also note that the difference to the random language



Robust Evaluation of Language–Brain Encoding Experiments 53

model is more pronounced for the strict match for Words and Stories. For
these two datasets, the results vary strongly across subjects. Subjects 1,3 and
4 in Words yield high accuracy results (0.87, 0.87, 0.76 for the cosine sum
match) whereas the prediction for subject 6 is below chance level. We provide
violin plots in Fig. 1 for a better impression of the variance across subjects in
Stories. Although the results are worse than for Words, the accuracy is quite
high for some subjects (0.80, 0.78, 0.7). The results obtained for the isolated
stimuli are comparable to those reported previously by Mitchell et al. [24] and
Dehghani et al. [13]. For the continuous stimuli, the encoding model is not able
to learn a robust signal. Wehbe et al. [32] reported better results for the Harry
data but they performed the decoding task. Brennan et al. [10] did not report
encoding or decoding results but focused on correlating the fMRI signal with
computational models for surprisal.

5.2 Voxel-Wise Evaluation

The pair-wise distance measures are an abstraction over all voxels. A model that
mostly predicts constant values and only varies a few indicative voxels could
perform well. As the mapping model independently predicts each voxel, we can
take a closer look at the predictability of each voxel. This procedure accounts
for the assumption that not every voxel in our brain will be influenced by the
stimulus. In previous work, prediction results have often been reported only over
significant voxels.

Table 4. Voxel-wise results for cross-validation when taking the average over voxels.
The results are averaged over all folds and all subjects. The results for the random
language model are given in parentheses.

Average

Voxels Dataset EV R2 r2simple

Whole brain

Words -.21 (-.09) -.41 (-.35) .01 (.01)

Stories -.05 ( .00) -.26 (-.20) .02 (.01)

Harry -.34 (-.05) -.27 (-.05) .00 (.00)

Top 500 on train

Words -.14 (-.08) -.33 (-.26) .07 (.11)

Stories -.07 ( .00) -.27 (-.19) .04 (.02)

Harry -.43 ( .01) -.44 (-.07) .00 (.00)

Top 500 on test

Words .42 ( .21) .34 ( .05) .51 (.37)

Stories .41 ( .11) .34 ( .08) .68 (.67)

Harry -.12 ( .01) -.12 ( .01) .02 (.02)
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Experimental Setup. The explained variance (EV ) and the coefficient of determi-
nation (R2) are the most common metrics for evaluating linear regression. They
measure the proportion of the variance in the dependent variable that is pre-
dictable by the model. The two metrics are closely related but explained variance
also accounts for the mean error. We use the implementation of these scores in the
python library scikit-learn [26]. Jain and Huth [19] calculate a different r2 value:
they multiply the Pearson correlation between the predictions and the observed
activations for voxel vi with the absolute correlation (r2(vi) = rvi

×|rvi
|). We

refer to this measure as r2simple. We calculate all three metrics and compare
the results for the whole brain with a selection of the 500 best-performing voxels
on the training and on the testing set respectively. Selection on the test set is
not recommended but added to compare previous work.

Results. Tables 4 shows the results for the voxel-wise evaluation averaged over all
subjects and over all voxels. It can be seen that the models are highly overfitted
as we get much better results when voxels are directly selected on the test results
than when they are pre-selected on the training data. In the conditions which
control for overfitting, the explained variance and the R2 are always negative.
A value of zero for explained variance is obtained for a model that constantly
predicts the mean. It is almost impossible to identify which one of two very
negative models performs less bad based on this value alone. The prediction
quality should generally be interpreted with caution as the number is averaged
over all voxels, all folds and all subjects. Both, the inter-subject variance and
the variance in voxel predictability are very high, so that positive and negative
results cancel each other out. The r2simple metric almost always returns a pos-
itive score. This might be a more satisfying result when evaluating the encoding
quality; however, the metric also returns high positive scores for the random
language model in some cases.

Accumulation Method. Instead of averaging the encoding quality over voxels,
Jain and Huth [19] report the sum. For comparison, the summed results are
provided in the appendix in Table 6. Sum metrics depend on the number of
voxels over which they are calculated. For the whole brain analysis, averaged
sum metrics are thus not interpretable in absolute terms because the number of
voxels in the brain varies between subjects (see Fig. 2 for an illustration). When
accumulating the sum over a fixed set of selected voxel, we see that the results
for the r2simple metric are consistently better (3) but the extreme change on
the x-axis in the two figures indicates that sum scores should be interpreted with
caution.

Model-Driven Voxel Selection. We additionally determine the voxels with the
highest explained variance on the test set when training on 80% of the data. We
set a threshold (0.3 for Stories and Words, 0 for Alice) and plot predictive
voxels for the subjects for which we obtained highest accuracy in the pairwise
comparison in Fig. 4. The results are rather inconclusive. There is almost no
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Fig. 2. Violin plots of the voxel-wise results (summed over all voxels) for all subjects in
Stories. It can be seen that the sum score conceals very high inter-subject variance.

Fig. 3. Violin plots of the voxel-wise results (summed over all voxels) for all subjects
in Stories for all voxels. Note the extreme change in the scale of the y-axis compared
to Fig. 2 due to the number of voxels. If the number of voxels over which the sum is
calculated is unknown, the result cannot be interpreted.

overlap in the voxels and they are spread over several brain regions. This indi-
cates that model-driven voxel information should only be interpreted on larger
datasets.
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Fig. 4. Predictive voxels for Words in blue, Stories in red and Harry in yellow.

5.3 Representational Similarity Analysis

The previous methods indicate that the continuous stimuli cannot be well
encoded. In order to be able to attribute this flaw more directly to the lan-
guage model, we perform representational similarity analysis [21] to compare
the relations between brain activation vectors to the relations between stimulus
representations without the intermediate mapping model. The approach assumes
that similar brain activation patterns are caused by strongly related stimuli. The
quality of the computational representation of the stimuli can then be assessed
by its ability to model these relations [3,11,34]. As commonly performed in pre-
vious work, we measure the relations between vectors by the cosine distance and
compare brain scans and representations by Spearman correlation and Pearson
correlation.

Results. At first glance, the results in Table 5 seem to confirm the impression that
the encoding model performs better for the isolated stimuli. However, the same
results can be obtained with the random language model. The random model
could capture word identity (recall that the same random vector is assigned to
different occurrences of the same word) which might serve as a relevant signal for
the story stimuli but this would not explain the results for the Words dataset
with 60 different words. It can be seen that generally the more conservative
rank-based Spearman correlation is much lower than the Pearson correlation.
For the current setup, the representational similarity analysis results are unsat-
isfactory. However, the methodology largely reduces the number of parameters
and facilitates the comparison of different computational models. We thus think
that it could be a promising analysis method for future experiments.

6 Discussion

The setup of encoding experiments requires many modelling decisions for the
stimulus representation, the stimulus–response alignment, the mapping model
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Table 5. Results for representational similarity analysis calculated for the whole brain
using pearson correlation and spearman correlation. The results for the random lan-
guage model are indicated in parentheses.

Metric Words Stories Alice Harry

Spearman 0.09 (0.05) 0.08 (0.09) 0.03 (0.01) 0.00 (0.01)

Pearson 0.41 (0.44) 0.19 (0.22) 0.06 (0.02) 0.06 (0.03)

and its learning parameters, the noise reduction techniques for the brain
responses, the voxel selection, and the evaluation metric. Experimenting with
a single dataset bears the danger of overfitting the experimental setup. We have
seen that different evaluation metrics can interpret the predictive power of an
encoding model very differently. Encoding results should thus always be com-
pared to a reasonable baseline and hypotheses should be tested over several
datasets. In this comparison, we intentionally restricted the experimental setup
by choosing the same language model for all datasets. At this point, it remains
unclear, whether the close to random results in many settings result from an
unfortunate choice of the language model parameters or from a noisy signal.
Our experimental pipeline is modular and provides a useful testbed for future
experiments with alternative stimuli representations.

More sophisticated context models might increase the number of dimensions.
From a machine learning perspective, most encoding experiments are problem-
atic because the number of features is often higher than the number of samples. In
addition, similarity metrics are known to sometimes behave unexpectedly when
applied on high-dimensional data [2]. One could apply dimensionality reduction
on the language representations but these methods change the structure of the
representation and make it difficult to derive cognitive insights for the original
model. For future data collections, it would be important to obtain more data
points from fewer subjects to facilitate more powerful pattern analyses.

FMRI encoding is an intriguing but also very challenging task because of
the noisy signal. Within the current state of the art, even a tiny signal that
is significantly different from chance, can be seen as a success. The pairwise
estimation measures can present the results in a more pronounced way. However,
as our analysis with the strict match have shown, the other match definitions
tend to give an overly optimistic impression of the discriminability of the stimuli.
A similar problem occurs, when summing the r2simple value only over predictive
voxels. We are convinced that in the long run, the field benefits from a more
conservative estimate of the predictive power of the developed models.

7 Conclusions

We have performed a robust comparison for language–brain encoding experi-
ments and receive very diverse results for different evaluation metrics. It is our
hope that our experimental framework can pave the way for future experiments
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to gradually determine the optimal encoding parameters. We plan to extend our
experiments to the datasets by Pereira et al. [27] and to other languages. We
can already provide a set of practical recommendations for evaluation: 1. For the
pairwise evaluation, it is helpful to additionally report the strict match to put
the results in perspective. 2. Averaging over subjects is not very informative,
violin plots can give a better impression of the variance. 3. For sum metrics, it
is important to clearly specify the number of voxels that are taken into consid-
eration. 4. Voxel selection methods should only be performed on the training set
and should be transparently documented because they have a strong effect on
the results.
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Organisation for Scientific Research (NWO), through a Gravitation Grant 024.001.006
to the Language in Interaction Consortium.

Appendix

Table 6. Voxel-wise results for cross-validation when taking the sum over voxels. The
results are averaged over all folds and all subjects. The results for the random language
model are given in parentheses. The results in this table are hard to interpret. We
discourage the use of the sum method as accumulation method.

Sum

Voxels Data EV R2 r2simple

Whole

Words -4,3k ( -1,9k) -8,4k ( -5,6k) 250.37 (184.33)

Stories -10,2k (-47.56) -54,6k (-42,2k) 4,9k ( 2,8k)

Harry -10,7k ( -1,5k) -10,8k ( -1,4k) -6.29 ( -3.10)

500 train

Words -68.82 (-39.84) -164.67 (-129.35) 33.34 ( -0.38)

Stories 0.00 ( -0.55) -134.31 ( -96.88) 21.36 ( 9.43)

Harry -215.45 (-37.28) -218.14 ( -37.63) 0.11 ( -0.09)

500 test

Words 209.98 (104.76) 253.98 ( 25.66) 171.56 (187.20)

Stories 204.90 ( 56.30) 339.33 ( 39.52) 171.08 (334.99)

Harry -58.66 ( 7.40) -59.70 ( 7.23) 10.41 ( 9.86)
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