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Abstract. Tokenization or segmentation is a wide concept that covers simple
processes such as separating punctuation from words, or more sophisticated pro-
cesses such as applying morphological knowledge. Neural Machine Translation
(NMT) requires a limited-size vocabulary for computational cost and enough
examples to estimate word embeddings. Separating punctuation and splitting
tokens into words or subwords has proven to be helpful to reduce vocabulary
and increase the number of examples of each word, improving the translation
quality. Tokenization is more challenging when dealing with languages with no
separator between words. In order to assess the impact of the tokenization in the
quality of the final translation on NMT, we experimented on five tokenizers over
ten language pairs. We reached the conclusion that the tokenization significantly
affects the final translation quality and that the best tokenizer differs for different
language pairs.
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1 Introduction

Segmentation is an essential process that has been extensively studied in literature
[3,4,13,14]. It covers simple processes such as separating punctuation from words (tok-
enization), splitting words in subparts based on their frequency or more sophisticated
processes such as applying morphological knowledge. In this work, we use tokenization
referring to separating punctuation and splitting tokens into words or subwords.

Tokenizing words has proven to be helpful to reduce vocabulary and increase the
number of examples of each word. It is extremely important for languages in which
there is no separation between words and, therefore, a single token corresponds to more
than one word. The way in which tokens are split can greatly change the meaning of the
sentence. For example, the Japanese word警 means admonish, and察 means observe.
However, together they form the word police (警察) . Therefore, a correct tokenization
can help to improve translation quality.

In this study, we aim to find the impact of tokenization on the quality of the final
translation. To do so, we experimented with five tokenizers over ten language pairs.
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To the best of our knowledge, this is the first work in which an exhaustive comparison
between tokenizers has been run for NMT. We include tokenizers based on morphology
that could guide the splitting of the words [17].

Some previous works include studying the effect of word-level preprocessing for
Arabic on Statistical Machine Translation (SMT). A comparison of several segmenters
for Chinese on SMT was done by Zhao et al. [24]. Huck et al. [6] compared morpho-
logical segmenters for German in NMT. Finally, Kudo [11] compared their statistical
word segmenter with other well-known Japanese morphological segmenters, reaching
the conclusions that statistical segmenters worked better than morphological ones.

Our main contributions are as follows:

– First study of tokenizers for neural machine translation.
– Experimentation with five different tokenizers over ten language pairs.

The rest of this document is structured as follows: Sect. 2 introduces the neural
machine translation system used in this work. After that, in Sect. 3, we present the tok-
enizers applied for comparison purposes. Then, in Sect. 4, we describe the experimental
framework, whose results are presented and discussed in Sect. 5. Section 6 shows some
translation examples of the results. Finally, in Sect. 7, conclusions are drawn.

2 Neural Machine Translation

Given a source sentence xJ
1 = x1, . . . , xJ of length J , NMT aims to find the best

translated sentence ŷÎ1 = ŷ1, . . . , ŷÎ of length Î:

ŷÎ1 = argmax
I,yI

1

Pr(yI1 | xJ
1 ) (1)

where the conditional translation probability is modelled as:

Pr(yI1 | xJ
1 ) =

I∏

i=1

Pr(yi | yi−1
1 , xJ

1 ) (2)

NMT frequently relies on a Recurrent Neural Network (RNN) encoder-decoder
framework. The source sentence is projected into a distributed representation at the
encoding step. Then, the decoder generates, at the decoding step, its translation word
by word [21].

The input of the system is a word sequence in the source language. Each word
is projected linearly to a fixed-size real-valued vector through an embedding matrix.
Then, these word embeddings are fed into a bidirectional [18] Long Short-Term Mem-
ory (LSTM) [5] network. As a result, a sequence of annotations is produced by con-
catenating the hidden states from the forward and backward layers.

An attention mechanism [1] allows the decoder to focus on parts of the input
sequence, computing a weighted mean of annotated sequences. A soft alignment model
computes these weights, weighting each annotation with the previous decoding state.

Another LSTM network is used for the decoder. This network is conditioned by the
representation computed by the attention model and the last generated word. Finally, a
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distribution over the target language vocabulary is computed by the deep output layer
[16].

The model is trained by applying stochastic gradient descent jointly to maximize
the log-likelihood over a bilingual parallel corpus. At decoding time, the model approx-
imates the most likely target sentence with beam-search [21].

3 Tokenizers

In this section, we present the tokenizers we employed in order to assess their impact
on the quality of the final translation.

SentencePiece1: an unsupervised text tokenizer and detokenizer mainly for Neural
Network-based text generation systems where the vocabulary size is predetermined
prior to the neural model training. It can be used for any language, but its models
need to be trained for each of them. To do so, we used the unigram [12] mode and a
vocabulary size of 32000 over each corpora’s training partition. Figure 1a shows an
example of tokenizing a sentence using SentencePiece.

Mecab2: an open source morphological analysis engine for Japanese, based on con-
ditional random fields. It extracts morphological and syntactical information from
sentences and splits tokens into words. Figure 1b shows an example of tokenizing a
sentence using Mecab.

Stanford Word Segmenter [22]: a Chinese word segmenter based on conditional ran-
dom fields. Using a set of morphological and character reduplication features, it
is able to split Chinese tokens into words. In this work, we use the toolkit’s CTB
scheme. Figure 1c shows an example of tokenizing a sentence using Stanford Word
Segmenter.

OpenNMT tokenizer [8]: the tokenizer included with the OpenNMT toolkit. It nor-
malizes characters (e.g., quotes Unicode variants) and separates punctuation from
words. It can be used with any language. Figure 1d shows an example of tokenizing
a sentence using OpenNMT tokenizer.

Moses tokenizer [10]: the tokenizer included with theMoses toolkit. It separates punc-
tuation from word—preserving special tokens such as URL or dates—and normal-
izes characters (e.g., quotes Unicode variants). It can be used with any language.
Figure 1e shows an example of tokenizing a sentence using Moses tokenizer.

4 Experimental Framework

In this section, we describe the corpora, systems and metrics used in order to asses our
proposal.

1 https://github.com/google/sentencepiece.
2 http://taku910.github.io/mecab/.

https://github.com/google/sentencepiece
http://taku910.github.io/mecab/
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Fig. 1. Examples of segmenting sentences with each word segmenter.
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4.1 Corpora

The corpora selected for our experimental session was extracted from translation mem-
ories from the translation industry. The files are the result of professional translation
tasks demanded by real clients. The general domain is technical (see Table 1 for the
specific content of each language pair), which is harder for NMT than other general
domains such as news. Unlike in other domains, in technical domains certain words
correspond to specific terms and have a different translation to their most frequent
one: e.g., rear arm translates into German as hinterer Arm. However, in this domain, it
should be translated as hinterer Querlenker. In order to increase language diversity, we
selected the following language-pairs: Japanese–English, Russian–English, Chinese–
English, German–English, and Arabic–English. Table 2 shows the corpora statistics.

Table 1. Specific domains for each language pair. Ja stands for Japanese, En for English, Ru for
Russian, Zh for Chinese, De for German and Ar for Arabic.

Specific domain Language

Ja–En Ru–En Zh–En De–En Ar–En

Computer software - instructions for use X X

Medical equipment and supplies X X X X X

Consumer electronics X X X X

Industrial electronics X X

Stores and retail distribution X X X

Healthcare X

The training dataset is composed of around three million sentences in the German–
English language pair and around half a million sentences in the rest of the language
pairs. Development and test datasets are composed of two thousand sentences for all
the language pairs.

4.2 Systems

NMT systems were trained with OpenNMT [8]. We used LSTM units taking into
account the findings in [2]. The size of the LSTM units and word embeddings were
set to 1024. We used Adam [7] with a learning rate of 0.0002 [23], a beam size of 6 and
a batch size of 20. We reduced the vocabulary using Byte Pair Encoding (BPE) [19],
training the models with a joint vocabulary of 32000 BPE units. Finally, the corpora
were lowercased and, later, recased using OpenNMT’s tools.

4.3 Evaluation Metrics

We made use of the following well-known metrics to assess our proposal:
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Table 2. Corpora statistics. Ja stands for Japanese, En for English, Ru for Russian, Zh for Chinese,
De for German and Ar for Arabic. TokensBPE and VocabularyBPE are the number of tokens and size
of the vocabulary after applying BPE to the corpora. K stands for thousand and M for millions.

Partition Type Language

Ja–En Ru–En Zh–En De–En Ar–En

Train Sentences 532.0K 496.0K 460.8K 2.9M 557.0K

Tokens 10.0/7.3M 7.6/7.4M 6.7/6.4M 35.9/39.4M 7.3/7.8M

Vocabulary 41.5/111.6K 180.9/133.3K 82.8/102.6K 1.1M/615.7K 115.5/61.8K

TokensBPE 10.5/8.3M 9.8/9.5M 7.5/7.4M 49.8/49.0M 8.4/8.7M

VocabularyBPE 16.0/17.1K 24.8/11.6K 22.0/16.6K 25.6/22.3K 21.6/10.7K

Development Sentences 2000 2000 2000 2000 2000

Tokens 39.0/27.6K 34.0/32.2K 27.8/27.8K 42.4/45.4K 21.1/21.7K

Vocabulary 2.3/3.4K 7.6/5.4K 2.7/3.8K 6.2/4.4K 3.6/2.9K

TokensBPE 42.1/31.3K 41.2/38.5K 29.5/31.2K 53.7/51.0K 23.3/24.2K

VocabularyBPE 1.9/2.5K 6.5/3.7K 2.5/2.9K 4.9/3.6K 3.4/2.1K

Test Sentences 2000 2000 2000 2000 2740

Tokens 18.4/26.8K 28.6/28.3K 48.7/30.5K 41.7/44.6K 22.1/23.3K

Vocabulary 3.5/3.9K 7.3/5.1K 9.2/3.8K 6.0/4.3K 3.2/2.6K

TokensBPE 39.5/30.2K 98.7/94.4K 32.9/35.6K 83.9/82.8K 34.4/32.9K

VocabularyBPE 1.8/2.7K 8.0/5.4K 2.7/3.0K 8.3/6.8K 4.1/2.3K

BiLingual Evaluation Understudy (BLEU) [15]: corresponds to the geometric aver-
age of the modified n-gram precision. It is multiplied by a brevity factor to penalize
short sentences.

Translation Error Rate (TER) [20]: number of word edit operations (insertion, sub-
stitution, deletion, and swapping), normalized by the number of words in the final
translation.

Confidence intervals (p = 0.05) are computed for all metrics by means of bootstrap
resampling [9].

5 Results

In this section, we present the results of the experiments conducted in order to assess
the impact of the tokenizer on the translation quality. Table 3 shows the experimental
results.

For the Ja–En experiment, the best results were yielded by Moses tokenizer and
Mecab. It must be taken into account that in both experiments, the English side of the
corpus was segmented with Moses tokenizer, this means that the segmentation of the
target side has a greater impact on the translation quality. Overall, there is a quality
improvement of around 4 points in terms of BLEU and 3 points in terms of TER with
respect to the tokenizer which yielded the second best results.

For En–Ja, the best results were yielded by Mecab, representing a significant
improvement (around 12 points in terms of BLEU and 15 points in terms of TER)
with respect to the tokenizer which yielded the second best results. Most likely, this is
due toMecab being developed specifically to segment Japanese.



How Much Does Tokenization Affect Neural Machine Translation? 551

Table 3. Experimental results comparing the translation quality produced by using the differ-
ent tokenizers. In the columns Mecab and Stanford, Moses tokenizer was used for segmenting
the English part of the corpora since both Mecab and Stanford Word Segmenter only work for
Japanese and Chinese respectively. Best results are denoted in bold.

Language SentencePiece OpenNMT tokenizer Moses tokenizer Mecab Stanford

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Ja–En 32.0± 1.3 51.1± 1.5 29.1± 1.4 54.7± 1.4 36.3± 1.4 47.5± 1.3 36.0± 1.5 48.6± 1.4 – –

En–Ja 26.5± 1.4 62.5± 1.9 25.0± 4.4 89.9± 4.1 33.6± 2.3 61.0± 2.5 45.8± 1.3 43.7± 1.3 – –

Ru–En 12.9± 0.9 72.7± 1.1 11.9± 0.9 74.9± 1.3 15.3± 1.0 68.6± 1.2 – – – –

En–Ru 12.2± 0.8 75.0± 1.0 11.3± 0.9 77.3± 1.1 16.3± 1.2 70.4± 1.6 – – – –

Zh–En 20.5± 1.1 64.8± 1.2 23.1± 1.3 64.8± 1.3 27.5± 1.3 59.8± 1.2 – – 26.0± 1.3 59.3± 1.2

En–Zh 17.1± 1.2 71.2± 1.2 10.4± 3.9 101.1± 3.1 21.4± 2.0 65.8± 1.7 – – 29.9± 1.2 55.6± 1.2

De–En 21.4± 0.8 67.8± 2.1 29.6± 0.9 54.2± 0.9 30.3± 0.9 52.8± 0.9 – – – –

En–De 16.1± 0.7 76.4± 2.3 22.5± 0.9 65.0± 1.5 23.6± 0.9 62.9± 1.0 – – – –

Ar–En 17.9± 0.8 66.9± 1.3 14.8± 0.8 71.3± 1.1 19.1± 0.9 65.4± 1.9 – – – –

En–Ar 10.1± 0.6 75.3± 1.3 9.2± 0.6 77.2± 0.9 12.4± 0.7 69.8± 0.9 – – – –

For Ru–En and En–Ru, Moses tokenizer yielded the best results (with improve-
ments of around 2 to 4 points in terms of BLEU and 5 points in terms of TER). It is
worth noting that, in both cases, SentencePiece andOpenNMT tokenizer yielded similar
results.

The Chinese experiments behaved similarly to the Japanese experiments: Moses
tokenizer and Stanford Word Segmenter (the specific Chinese word tokenizer, which
included usingMoses tokenizer for segmenting the English part of the corpus) achieved
the best results when translating to English (yielding an improvement of around 7 points
in terms of BLEU and 5 points in terms of TER), and Stanford Word Segmenter achieved
the best results when translating to Chinese (yielding an improvement of around 8
points in terms of BLEU and 20 points in terms of TER).

For the German experiments, the best results were yielded by both OpenNMT tok-
enizer and Moses tokenizer, representing an improvement of around 7 to 9 points in
terms of BLEU and 14 to 17 points in terms of TER. It is worth noting how, despite
being the largest corpora, SentencePiece—which learns how to segment from the cor-
pora’s training data—yielded the worst results. As a future study, we should evaluate
the relation between the size of the corpora and the quality yielded by SentencePiece.

Finally, Arabic behaved similarly to Russian, withMoses tokenizer yielding the best
results for both Ar–En and En–Ar (representing improvements of around 2 to 4 points in
terms of BLEU and 4 to 6 points in terms of TER). However, SentencePiece performed
similar to Moses tokenizer when translating to English. When translating to Arabic,
both SentencePiece and OpenNMT tokenizer yielded similar results.

Overall, Moses tokenizer yielded the best results for German, Russian and Arabic
experiments. When using specialized morphologically oriented tokenizers, the system
using Mecab obtained the best results for Japanese experiments; and Stanford Word
Segmenter for Chinese experiments. Additionally, OpenNMT tokenizer and Sentence-
Piece yielded the worst translation quality in all experiments. An explanation for these
poor results is that OpenNMT tokenizer is fairly simple: it only separates punctuation
symbols from words. However, this is not the case for SentencePiece. We think that
using SentencePiece in a bigger training dataset in order to better learn the segmenta-
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tion could help to improve their results. Nonetheless, as mentioned before, we have to
corroborate this in a future work.

Table 4. English to German translation examples comparing SentencePiece, OpenNMT tokenizer
and Moses tokenizer. First line corresponds to the source sentence in English, second line to
the German reference and third, forth and fifth lines to the translations generated using Senten-
cePiece, OpenNMT tokenizer and Moses tokenizer respectively to segment the corpora. Correct
translations hypothesis are denoted in bold, and incorrect translations are denoted in italic.

Example 1

Source Revalidation of single-pilot single-engine class ratings

Reference Verlängerung von klassenberechtigungen für einmotorige flugzeuge mit einem piloten

SentencePiece verlängerung der einzelantriebsklasse einmotorischer motorklasse

OpenNMT tokenizer zur validierung der einmotorik-einzelmaschine mit einzelantrieb

Moses tokenizer verlängerung von klassenberechtigungen für einmotorige flugzeuge mit einem piloten

Example 2

Source Cold drawing of wire

Reference Herstellung von kaltgezogenem draht

SentencePiece kalt zeichnung des drahtes

OpenNMT tokenizer kaltbildzeichnung

Moses tokenizer herstellung von kaltgezogenem draht

6 Qualitative Analysis

We obtained a better performance usingMoses tokenizer than OpenNMT tokenizer and
SentencePiece. In order to qualitatively analyze this performance, Table 4 shows a cou-
ple of examples of translation outputs generated using SentencePiece, OpenNMT tok-
enizer and Moses tokenizer for segmenting the corpora.

The first example clearly shows a better performance when using Moses tokenizer
rather than SentencePiece. The translation output from the system trained using Moses
tokenizer for segmenting matches the reference. However, the output translations of
the systems using OpenNMT tokenizer and SentencePiece are wrong. Translation seg-
mented with OpenNMT tokenizer contains many repetitions and lacks sense. Addition-
ally, translation segmented by SentencePiece has problems repeating some words in
the translation (e.g., motor) and missing some translation words (e.g., the translation of
pilot).

The system’s behavior using Moses tokenizer in the second example is similar: its
translation matches the reference. By contrast, the systems using SentencePiece and
OpenNMT tokenizer translated wrongly. The system using SentencePiece translated all
the words from the source but its translation is not grammatically correct. A correct
translation could be kalte Zeichnung des Drahtes. Lastly, OpenNMT tokenizer’s perfor-
mance is the worst in this case: the translation of its system ignored the word wire.

Therefore, we observed that, despite sharing the same data and model architecture,
the behavior of the systems’ translation changed as a result of using a different tok-
enizer.
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7 Conclusions

In this study, we tested different tokenizers to evaluate their impact on the quality of the
final translation. We experimented using 10 language pairs and arrived to the conclusion
that tokenization has a great impact on the translation quality, achieving gains of up to
12 points of BLEU and 15 points of TER.

Additionally, we observed that there was not a single best tokenizer. Each one pro-
duced the best results for certain language pairs. Although, in some cases, those best
results overlapped with the ones yielded by other tokenizers. Moreover, we have seen
different behaviors depending on the language pair direction. The system using Senten-
cePiece obtained the best results for Ar–En, but not for En–Ar translation.

As a future work, we would like to evaluate the relation between the size of the cor-
pora and the quality yielded by SentencePiece—which uses each language’s training
corpora to learn how to segment. It would also be interesting to compare more segmen-
tation strategies such as separating by characters or fixed n-grams. Finally, we would
like to confirm that repeating these experiments on some of the general domain training
data used for these languages achieves similar effects.
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