
Chapter 3 
Quantization of Energy 

3.1 Introduction 

Until the discovery of the photoelectric effect in 1902 [1], everything seemed to be 
falling in place and physics moved forward with no qualms. The behavior of light 
and matter, the two facets of nature, could be accurately described by the wave 
theory and Newtonian mechanics, respectively. The discovery of the photoelectric 
effect, which unequivocally established the dual nature of light, viz., its ability to 
manifest both as a particle and wave, turned things around forever. It was not long 
before the dual nature of waves led to the realization of the dual nature of particles as 
well. This revolutionary insight into the behavior of particles, although it fetched a 
1924 Nobel Prize in Physics to Louis de Broglie, dragged physics into rough 
weather. It is common knowledge that waves, when bounded by a constraint, can 
exist only at discrete frequencies or wavelengths. For example, in the case of a rope, 
rigidly clamped at the two ends, only waves, half of whose wavelength times an 
integer equals the rope’s length, can be impressed upon it. Alternatively, an optical 
cavity can contain only that light whose wavelength also bears a similar relationship 
to the length of the cavity. Ascription of the wave nature to a particle, therefore, 
means that if the particle is confined within a region in space, the wavelengths that fit 
into this space will only be allowed. This restriction on wavelength, in turn, restricts 
the values of energy [17] that the particle can possess. While quantization of matter 
into lumps of atoms, molecules, and the like was well known, the very concept of 
discretization of its energy states seemed to have flummoxed the physics community 
in the early part of twentieth century. After all, quantization of energy of a particle 
would be analogous to having only certain specific speeds at which a car can travel, a 
soccer ball can be kicked, or a baseball can be struck! Fortunately, matter does not 
behave this way in our world despite its wavy nature. Where lies the catch then? This 
chapter has been planned to strike a sense of understanding, albeit qualitatively, to 
the mind of the readers on the implication of quantization of the energy states in the
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macroscopic world we are familiar with. The chapter also mirrors the manifestation 
of the wave nature of a bound microscopic particle into the spectral emission from 
atoms and molecules that, in turn, would eventually lead to the realization of lasers.
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Fig. 3.1 Discretization of 
the de Broglie wavelengths 
of a particle trapped in a box 

3.2 A Bound Particle and Discretization of Its Energy 

To gain deeper insight into the wavy matter, it is imperative that we consider a 
particle of mass m that is trapped inside a box and bouncing back and forth between 
its two walls spaced by a distance of L. We further assume that these two walls are 
infinitely rigid and the particle, therefore, cannot lose any energy on the walls every 
time it hits them. The situation is schematically illustrated in the traces of Fig. 3.1. 
Considering the wave picture, the wave length λ of this particle, which is analogous 
to the particle nature of light, called the de Broglie wave length, can be shown to 
be [18]. 

λ= h=m£ ð3:1Þ 

where h is Planck’s constant and £ is the velocity of the particle. Drawing an analogy 
to the waves set in a rope with its two ends rigidly clamped, we surmise that here too 
an infinite number of waves can be associated with the particle all of which will be 
characterized by zero displacements at the two rigid walls. It thus readily follows that 
the de Broglie wavelengths are intricately linked to the spacing L between the walls 
and the longest of them λ1, which also happens to be the fundamental of all these 
possible waves, will be obviously given by



ð

ð
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λ1 = 2L 

And the next one will be λ2 = L, and the next λ3 = 2L 3 , the next λ4 = L=2, and so on. 
Upon generalizing all these into a single formula of permitted wavelengths, we 

obtain. 

λn = 
2L 
n 

where n is an integerð Þ 3:2Þ 

The kinetic energy of the particle can be expressed as 

KE= 
m£2 

2 
= 

ðm£Þ2 
2m 

= 
h2 

2mλ2 
ðSubstituting m£ from 3:1Þ 3:3Þ 

As the particle has no potential energy, its total energy, upon combining Eqs. 3.2 
and 3.3, can be expressed as 

En = 
ðnhÞ2 
8mL2 

n= 1, 2, 3, 4, ð3:4Þ 

Obviously, therefore, the restriction on its wavelength also restricts the energy 
that the particle can possess. Each permitted energy is identified as an energy level, 
and the corresponding n is called its quantum number. An important inference that 
can be drawn from this equation is that Planck’s constant being so small 
(h = 6.64 × 10-34 joule-sec) energy quantization becomes relevant only when 
m and L are also sufficiently small, a signature of the microscopic world comprising 
of electrons, atoms, molecules, and the likes. 

To drive this point home, let us consider the typical case of a football of mass 
0.1 kg moving between the two walls of a room spaced by 10 m. Upon plugging 
these values into Eq. 3.4, we obtain the minimum energy of the ball, which 
corresponds to n = 1, to be ~5 × 10-69 J. A 0.1 kg football possessing this KE 
will move with a velocity of ~3 × 10-33 m/s, which is vanishingly small and is 
practically indistinguishable from the one that is at rest! If this ball has to travel at a 
modest speed of 1 m/s, the corresponding energy level will have a quantum number 
on the order of 1033 . In the limit of such enormously high quantum numbers, the 
successive energy levels are positioned relatively so close, resulting practically in an 
energy continuum.1 Thus, in the macroscopic world quantization of energy becomes 
inconsequential and Newtonian mechanics prevails.

1 A continuous sequence in which the adjacent energy levels are not perceptibly different from each 
other 
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Fig. 3.2 The emission of 
the fluorescent light after 
dispersion through a prism 
is scanned by a detector. The 
intensity recorded by the 
detector as a function of the 
wavelength of emission is 
also shown here for a narrow 
spectral range. In reality, the 
spectrum will obviously be 
much richer containing 
many more emission lines 

3.3 Spectral Emission from an Atomic Source 

The fluorescent light sources are now in extensive use for illuminating our household 
and eye-catching displays at night throughout the world. The emission from such a 
source holds a wealth of science, the gradual decoding of which allowed physics to 
turn the sharp corner, stemming largely from the discovery of the photoelectric effect 
and a host of other great advances that soon followed. It is imperative at this point to 
delve a little into the emission of this source. To this end, we perform a simple 
experiment schematically described in Fig. 3.2.  In  fluorescent light (elaborated 
in Sect. 4.2, Chap. 4), an electric discharge is impressed upon a rarefied atomic 
gas contained in a glass tube. This causes the tube to emit light spontaneously all 
around it. By placing an opaque barrier with a central hole to one side of the tube, we 
select a narrow beam of light and allow it to disperse through an appropriately 
located prism. The intensity of this spatially dispersed light is then monitored by 
placing a detector on the other side of the prism and scanning it across the length d of 
the spatial spread. Based on the knowledge that we acquired on prismatic dispersion 
in the previous chapter, it is apparent that the spatial splitting of the beam is basically 
a spread of all the wavelengths it is made up of in space. It is therefore equivalent to 
saying that the distance d through which the detector is scanned can be directly 
translated to the wavelength λ. This exercise thus presents a record of the intensity of 
light emitted by the source as a function of its wavelength, known as the “emission 
spectrum” in the common parlance. 

An oversimplified emission spectrum over a narrow range of wavelengths is also 
shown in Fig. 3.2 for clarity as well as palatability. A closer look at this spectrum 
readily points to the fact that the fluorescent source, under study here, basically emits 
light of three primary wavelengths over the displayed spectral range. Distinct also is 
the fact that the emission never occurs sharply on any of these wavelengths but rather 
spread into multiple wavelengths distributed around them. However, the feature that 
makes the emission of light by an atomic source most remarkable is the fact that it
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does not emit light of continuous wavelength, and, on the contrary, an element of 
discreteness is strikingly intrinsic to its emission spectrum. The atomic spectrum was 
first observed in 1853 by a Swedish physicist, Anders Angstrom (1814–1874), 
regarded as the founder of spectroscopy, for the hydrogen atom that would later 
play a pivotal role in providing the first insight into the structure of an atom. 
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Fig. 3.3 Line center (λ0) 
and the full width at half 
maximum (FWHM, Δλ) of  
the emission 

The wavelength at which the intensity attains a peak I0 is called the line center λ0, 
and the spread around it is called the emission width Δλ and is usually defined as the 
width of the emission at half of its peak value, abbreviated as FWHM. The same has 
been pictorially illustrated in Fig. 3.3 for one of the emission wavelengths of the 
atomic source. The emission width is a direct measure of the monochromaticity or 
purity of the color of the corresponding emission. It is thus at once obvious that of 
the three different wavelengths of Fig. 3.2, the emission at the longest wavelength is 
least monochromatic and that at the smallest wavelength is the most. While the key 
features of the emissions remain invariant with different atomic sources, the number 
of emitted wavelengths and their corresponding emission widths vary from one 
atomic gas to the other. Gaining insight into the seemingly intricate physics 
underscoring the atomic spectra, which swayed some of the finest scientific minds 
over the years, is considered a major milestone in the evolution of science. 

3.4 Bohr’s Atom and Beyond: A Unique Handshake 
Between Matter and Radiation, the Two Faces 
of Nature 

The classical physics pictures an electrically neutral atom as a tiny but enormously 
massive positively charged nucleus surrounded by electrons, at a great distance 
away, in numbers to exactly match the central positive charge. This notion, which 
emerged primarily from Rutherford’s famed α-ray scattering experiment, however, 
suffers from an inherent limitation of rendering the atom unstable. An electron 
cannot be stationary as it would then be pulled by the positively charged nucleus 
into it so rapidly that the stable atom would collapse in just a flitting second. The 
atomic stability demands that the electron must orbit around the nucleus, akin to the



rotation of planets around the Sun, and the attractive Coulomb force between the 
nucleus and electron provides the required centripetal force.2 The mere rotation, 
however, cannot provide stability to the atom. According to classical electrodynam-
ics, a rotating electron would lose its energy by emitting electromagnetic waves 
[19]. As a result of this energy loss, the orbiting radius of the electron reduces, and, 
in turn, it spirals inward colliding with the nucleus almost instantaneously (Fig. 3.4). 
Moreover, during the process of this atomic collapse, the electron must emit 
electromagnetic waves of continuously ascending frequency as its speed of rotation 
progressively increases. These are in stark contrast to the fact that atoms are indeed 
stable and, as we have seen, the atomic emission is discrete in frequency or 
wavelength and not continuous. In an attempt to resolve this impasse, Niels Bohr, 
having realized the inaptness of classical physics to describe the behavior of 
microscopic particles such as atoms, put a bold step forward in 1913 [4]. His 
courageous assertion that the energy levels of an atomic electron are quantized, 
and it can reside only in these levels, termed stationary states, without any dissipa-
tion of energy, confers stability to the atom. It is of interest to note here that the 
quantization of energy levels is a direct consequence of the wave nature of matter, a 
fact conceptualized by de Broglie, a decade later, in 1924. Example of waves 
impressed in a wire loop as illustrated in the traces of Fig. 3.5 will help you capture 
the underlying physics here. A wave, unless it joins itself as it travels around the loop 
(Fig. 3.5a), cannot be sustained as the destructive interference, the occurrence of 
which is inevitable here, will cause the vibration to die out. Consequently, the given 
wire loop is forbidden for the wave of this wavelength. It becomes obvious that only 
those waves can survive in the wire loop whose wavelength times an integer fits 
exactly into its circumference (Fig. 3.5b and c). Drawing an analogy, it becomes
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Fig. 3.4 Schematic 
illustration of an encircling 
electron, which, upon 
radiating energy, will spiral 
inward to impact the nucleus 
in a split second

2 Centripetal force acts on a body that performs a curved motion and is directed toward the center of 
rotation. In case of planetary motion, the gravitational attraction between the Sun and the planet 
provides the centripetal force. If you tie an object to one end of a rope and rotate it by holding the 
other end, the tension developed in the taut rope supplies the centripetal force necessary to keep it 
moving. Centripetal force in case of a particle of mass m rotating at a velocity £ in a circular path of 
radius r is given by m£

2 

r . 



readily apparent that an electron can also circle around the nucleus without any 
dissipation of energy only in those orbits that contain an integral number of its de 
Broglie wavelengths. Little surprise then that this notion of a wavy particle allowed 
tying up all the loose ends and physics quickly fell into place. The wave nature of a 
particle nevertheless gives the atom both its stability and size. Taking a cue from the 
analogy of the waves in a wire loop, the radius of the possible orbits of the electron 
could now be readily linked to its de Broglie wavelength λ mathematically as.
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Fig. 3.5 Illustration of waves of different wavelengths vibrating in a circular loop of wire. (a) The 
vibration will die out due to destructive interference if the wave does not join on itself in the loop. 
(b) and (c) Only the waves whose wavelength fits an integer number of times within the loop will 
survive. Clearly, the values of the integer are 4 and 3 for (b) and (c), respectively 

Fig. 3.6 Schematic of a 
hydrogen atom where the 
electron is revolving around 
the proton with a velocity £ 
in the nth stable orbit of 
radius rn 

2πrn = nλ ð3:5Þ 

where n is an integer, called the quantum number, and rn is the radius of the n
th stable 

orbit of the electron (Fig. 3.6). To simplify the analysis, we consider the case of a 
hydrogen atom, wherein a lone electron revolves around a proton. Upon substituting 
λ from Eq. (3.1), we obtain. 

rn = 
nh 

2πm£
ð3:6Þ 

where m and £ are the mass and velocity of the electron, respectively. The centripetal 
force Fc required to hold the electron in its orbit is provided by the electrical 
attraction Fe between the proton and the electron each containing a charge of 
magnitude e. It therefore readily follows that



!
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m£2 

rn 
= 

e2 

4πE0r2 n 

i:e: £= 
e 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

4πE0mrn 
p ð3:7Þ 

Eliminating “£” between (3.6) and (3.7), rn, the orbital radii, can be expressed as. 

rn = 
n2h2E0 
πme2

ð3:8Þ 

The corresponding energy “En” of the electron will be the sum total of its kinetic 
and potential energy,3 i.e., 

En =KE þ PE = 
m£2 

2
-

e2 

4πE0rn 

Substituting “£” and “rn,” respectively, from Eqs. (3.7) and (3.8), we find that. 

En = -
e2 

8πE0rn 
= -

me4 

8πE2 0n2h
2 =

-
E1 

n2 
where E1 = 

me4 

8πE2 0h
2 is the energy in the first orbit

 

ð3:9Þ 

Obviously, therefore, each stable orbit of the electron has a discrete energy 
associated with it. This fact has been illustrated in Fig. 3.7 for the first three stable 
orbits of the electron. The negative energy of the electron implies that the electron is 
bound by Coulomb attraction and work needs to be expended to make it free. For 
instance, the electron revolving in the first orbit has a negative energy of magnitude 
E1, and, therefore, to make it free exactly E1 energy must be supplied from outside. A 
free electron is no longer bound by the attraction of the proton and thus will possess 
zero energy that, as evident from Eq. 3.9, corresponds to a quantum number of 
infinity. All the remaining energy levels lying between n = 3 and n = / would pack 
to the capacity this slender energy space. This fact has also been highlighted in 
Fig. 3.7 by providing an enlarged view of this otherwise narrow energy space. As 
seen, with increasing n, the energy levels approach each other so closely that they 
eventually merge practically into a continuum. This is understandable; as the 
electron tends to be free, its de Broglie wavelength is no longer constrained with 
the so-called boundary conditions, and quantization of energy becomes practically 
irrelevant.

3 Potential energy of the electron here is negative as it is being electrically attracted by the proton 
and equals the work required to be imparted in order to move the electron through a distance 
between rn to infinity. 
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Fig. 3.7 First three electronic orbits in the hydrogen atom drawn to the scale of proportionality to 
n2 . The corresponding energy levels are shown alongside and is drawn to the scale of inverse 
proportionality to n2 . The zero-energy state of the electron obviously corresponds to a quantum 
number of infinity. An enlarged view here shows the stuffing of the energy space between n = 3 to  

with increasingly closely spaced energy levels leading eventually to a continuum 

The very conceptualization of quantization of energy by Bohr, coming at a time 
when de Broglie was yet to enlighten the scientific world on the wavy behavior of the 
matter, was indeed a masterstroke and left an indelible mark in the evolution of 
knowledge. The perception of the energy quantization laid the groundwork for the 
interpretation of the atomic spectra that had eluded the scientific community for well 
over half a century. Bohr’s exposition that the atomic spectra originate from a unique 
handshake between the wavy particle and corpuscular wave, the two most guarded 
secrets of nature until the beginning of the twentieth century, startled the scientific 
community. Many expressed their disbelief, and Einstein was no exception. A few 
such as Otto Stern (1888–1969) and Max von Laue (1879–1960), both German by 
birth and Nobel Laureates in Physics, offered to quit physics if Bohr were correct. 
That they had to retract the offer later is of course another story. Bohr’s interpretation 
of atomic spectra in conjunction with de Broglie’s formulation of matter waves 
provided the initial impetus for quantum mechanics to navigate the challenges of the 
microscopic world. 

As we know now, the wavy electron in the hydrogen atom, under the influence of 
the proton’s electric field, is able to reside without dissipation only in certain orbits, 
each labeled by a different integer called the orbital quantum number. As the electron 
is bound here, its total energy is always negative. An electron in the innermost orbit, 
identified as the orbit with quantum number n = 1, possesses the least energy and 
can be determined from Eq. (3.9) to be-13.6 eV.4 The energy of the electron rapidly

4 eV is normally the unit used to express the energy of atomic particles and 1 eV is equivalent to 
1.6 × 10-19 J. 



increases with increasing n and attains a value of zero as n tends to infinity. A few 
low-lying energy levels of a hydrogen atom and the corresponding energies are 
shown in Fig. 3.8. The electron under normal circumstances occupies the level with 
the lowest energy called the ground state. When energized by an extraneous source, 
the electron is excited and climbs up the energy ladder. Upon receiving an energy of 
13.6 eV or more, the ground state electron will become free and no longer remain 
bound to the proton to form the hydrogen atom. This is equivalent to saying that the 
hydrogen atom has been ionized as the electron is stripped off. However, the plot 
thickens if the ground state electron acquires energy not sufficient to tear off the 
proton’s attraction and escape, but just enough for it to jump into another low-lying 
energy level instead. For instance, what happens if the electron has climbed to the 
second orbit from the first: a gripping point that seemingly intrigued Neil Bohr’s 
mind. His surmise of the electron spontaneously dropping down to the ground state 
releasing its energy of excitation as a photon of light is regarded as a brilliant piece of 
work as it finally cracked the physics behind the discreteness of atomic spectra. 
Digging a little deeper, we can readily conclude that this interpretation points to an 
exceptional hand clasp of particle and wave; it’s like the wavy atom has created 
energy steps, akin to a ladder, for the photonic wave to climb down to the ground. If 
the electron makes a quantum leap from the second orbit (n=2, and energy = –E2) to
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Fig. 3.8 All the stable atomic orbits of the electrons are characterized by negative energy. A few 
low-lying energy levels of a hydrogen atom are illustrated here along with their negative values of 
energy. Origin of spectral lines as the excited electron makes a transition to an energy level with 
lower energy is also schematically depicted



ð

the first (n=1, and energy = –E1), the energy of the photon emerging from this 
transition will equal the difference of energy between these two levels. This can be 
mathematically expressed as

3.5 Boltzmann Distribution 69

hν= -E2 - -E1ð Þ  

ν= 
1 
h 

E1-E2ð Þ 3:10Þ 

where ν and h are the frequency of the emitted photon and the Planck’s constant, 
respectively. If the electron, on the other hand, is excited to the next higher orbit of 
quantum number 3, it can return to the ground state by following two different 
routes, either making a direct transition from 3 to 1 or via level 2. This would thus 
result in the emission of three different photons. Clearly, the higher the level of 
excitation, the more numerous the pathways for the electron to return to its ground 
state. Every transition that the electron makes over its ground state-bound journey 
gives rise to the emission of a photon of different wavelength. The discreteness of the 
wavelength of light is thus intrinsic to the atomic spectra. Bohr’s theory, however, 
neither sheds any light on how long the electron can reside in an excited state before 
making the spontaneous downward leap, nor does it say if some transitions are more 
probable than others or on the forbiddenness of any transition. The answers to these 
questions not only are central to understanding the other aspects of the atomic 
spectra, such as its varying richness from atom to atom, or as to why the width of 
one transition differs from another, but also have a strong bearing on the operation of 
a laser. These will be addressed at another place in the book. 

3.5 Boltzmann Distribution 

We now know that quantization of energy is a rule of nature that the inhabitants of 
the microscopic world very compliantly obey. Not that it doesn’t exist in the 
macroscopic world, but we are unable to realize this as its effect becomes vanish-
ingly small for the conventional objects. In addition to providing physical insight 
into the origin of quantization, the preceding sections also offered a quantitative 
formulation of this in the case of a hydrogen atom, the simplest of all the atoms. 
Although the theoretical approach to be followed in this context for atoms with 
higher atomic numbers will be qualitatively similar, the presence of multiple elec-
trons and their associated de Broglie wavelengths will make the analysis under-
standably more complex. Notwithstanding this, the fact remains that no atom, small 
or large, can disobey the rule of energy discretization. The same will also apply to 
atoms from which one or more electrons have been stripped off. A molecule is an 
amalgamation of multiple atoms bonded together and will, nevertheless, have its 
own quantized electronic energy levels similar to that of an atom. As will be shown 
in a latter section of the book dealing with molecular lasers, a molecule, unlike an



atom, can also vibrate and rotate at the same time. Similar to its electronic energy 
levels, the molecule’s vibrational and rotational levels are also quantized. An 
ensemble of atomic or molecular systems will comprise countless number of 
atoms or molecules. The obvious question that arises here is how these numerous 
species will be distributed among the discrete electronic energy levels in the case of 
atoms and the electronic, vibrational, and rotational energy levels in the case of 
molecules? To simplify the matter, let us stick at this point only to the case of 
distribution of species, atomic or molecular, among one set of discrete energy levels. 
(The specific cases of distribution of atoms and molecules into their respective 
energy levels will be addressed in a latter chapter dealing with atomic and molecular 
lasers.) Let us consider a situation wherein a total of N species are to be distributed 
within two energy levels as illustrated in Fig. 3.9. One of the energy levels is the 
ground level that for convenience has been scaled to a zero-energy state and the other 
is located at an energy of E1 above it. It is a well-known fact that nature always acts 
in a manner so as to establish a situation with the lowest possible energy. In this 
example, the minimum energy condition will obviously be the one where all the 
N species settle into the ground energy state. There is a catch though! For any 
nonzero temperature, the system will contain a finite amount of thermal energy that 
essentially manifests by raising a fraction of the species to the levels with higher 
energy. In 1877, Ludwig Boltzmann5 (1844–1906), an Austrian physicist, succeeded 
in theoretically predicting the relation of the equilibrium population N1 of any energy 
level to the ground level population N0 as a function of the temperature, as 
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Fig. 3.9 Distribution of 
total population “N” 
between two energy levels 
satisfying Boltzmann’s law 

N1 =N0e
-E1 
kT where k is the Boltzmann’ s constant and T is the temperature 

In reality, however, there would be an infinite number of energy levels, and 
consequently, the above formula can be generalized as

5 Boltzmann chose to die by his own hand on September 5, 1906, when he was holidaying with his 
wife and daughter at a place close to the Italian town of Trieste. His suicide is blamed to a severe 
depression, he was suffering from, that stemmed basically from the strong opposition to his work on 
theorizing the population distribution. The irony is only a few weeks following this tragedy, his 
theory was experimentally verified. The suicide most certainly also drew a curtain on his getting a 
Nobel Prize that, incidentally, is not awarded posthumously. 
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Nj =N0e
-Ej 
kT ð3:11Þ 

where Nj is the population of the j
th energy level whose energy relative to the 

ground state is Ej. 
In equilibrium, the population will be distributed among all these levels satisfying 

this equation termed Boltzmann’s distribution law. It may be possible to disturb this 
state of thermal equilibrium by some extraneous means, but the condition of 
nonequilibrium will be short-lived as the system rapidly readjusts itself to return to 
its original equilibrium state. It becomes readily apparent from Eq. 3.11 that for any 
finite temperature T, population of an energy level exponentially reduces with the 
increase in its energy relative to the ground state. It is equivalent to saying that it is 
impossible to have an energy level with population exceeding that of any level 
beneath it. This is a valid statement for any highest conceivable temperature. Even in 
the limit of temperature tending to infinity, its population can at most match that of 
the level lying beneath and can never exceed it. In fact, in that limit, the population of 
all the levels will match that of the ground state. On the other hand, if the temperature 
starts falling, the low-lying levels will begin becoming increasingly populated at the 
expense of those in the upper levels. If the temperature goes all the way down to 
absolute zero, the entire population of the system will be realized in the ground state. 
The bearing of these facts in the realization of population inversion and, in turn, 
operation of a laser will be addressed in the next chapter.
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