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Abstract In this note, we study the Cauchy problem for the nonlinear wave
equation with damping and potential terms. The aim of this study is to generalize
the result in Georgiev et al. (J. Differ. Equ. 267(5):3271–3288, 2019) into two
directions. One is to relax the condition which characterizes the behavior of the
coefficient of the damping term at spatial infinity as in (6). The other is to treat
the slowly decreasing initial data. The decaying rate of the data affects the global
behavior of the solutions even if the nonlinear exponent lies in the super-critical
regime (see Theorem 5 below).

1 Introduction

This paper is concerned with the Cauchy problem for the nonlinear wave equation
with damping and potential:

.

{
(∂2

t + 2w(r)∂t − � + V (r))U = |U |p in (0, T ) × R
3,

U(0, x) = εf0(r), (∂tU)(0, x) = εf1(r) for x ∈ R
3,

(1)

where .r = |x| and .p > 1. In the earlier work [8], the coefficients of damping and
potential terms are supposed to satisfy the relation:

.V (r) = −w′(r) + w(r)2 for r > 0, (2)
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where

.w(r) = 1/r for r ≥ 1.

Keeping such a relation between the coefficients of damping and potential terms, we
relax the assumption on the initial data at spatial infinity. Actually, we obtain upper
bound of the lifespan for slowly decreasing initial data in Theorems 1 and 5 below.
Moreover, we are able to broaden the choice of the damping coefficient, essentially,
as .w(r) = µ/(2r) for .µ ≥ 0 and .r ≥ 1. The number .µ affects on the shift of the
critical exponent of the Strauss type, as we shall see below.

Before going into further details, we recall some known results. The case without
any damping term, i.e. the case when .w = V = 0, has been intensively studied for
few decades (see [4, 6, 9, 11, 14, 17, 20], or references in [5]) and in this case there
is a critical nonlinear exponent known as Strauss critical exponent that separates
the global existence and blow-up of the small data solutions. This critical exponent
.p0(n) is given by the positive root of

.γ (p, n) := 2 + (n + 1)p − (n − 1)p2 = 0.

For the semilinear wave equation with potential

.(∂2
t − � + V (x))U = |U |p in (0, T ) × R

3,

one can find blow up result in [18] or global existence part in [7].
In the case where the coefficient of the damping term is a function of time

variable, D’Abbicco et al. [3] derived the critical exponent for the Cauchy problem
to

.

(
∂2
t + 2

1 + t
∂t − �

)
U = |U |p in (0, T ) × R

3, (3)

by assuming the radial symmetry. Indeed, they proved that the problem admits a
global solution for sufficiently small initial data if .p > p0(5), and that the solution
blows up in finite time if .1 < p < p0(5). This result can be interpreted as an effect
of the damping term in (3) that shifts the critical exponent for small data solutions
from .p0(3) to .p0(5). The assumption about the radial symmetry posed in [3] was
removed by Ikeda and Sobajima [10] for the blow-up part (actually, they treated
more general damping term .µ(1 + t)−1∂tu with .µ > 0), and by Kato and Sakuraba
[12] and Lai [16] for the existence part, independently.

In the next section, we formulate our problem and describe the statements to the
problem.
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2 Formulation of the Problem and Results

Since we are interested in spherically symmetric solutions to the problem (1), we
set

.u(t, r) = rU(t, rω) with r = |x|, ω = x/|x|.

Then, by the relation (2) we obtain

.

⎧⎨
⎩

(∂t − ∂r + w(r))(∂t + ∂r + w(r))u = |u|p/rp−1 in (0, T ) × (0,∞),

u(0, r) = εϕ(r), (∂tu)(0, r) = εψ(r) for r > 0,

u(t, 0) = 0 for t ∈ (0, T ),

(4)

where .ϕ(r) = rf0(r) and .ψ(r) = rf1(r).

In order to express the solution of (4), we set .W(r) =
∫ r

0
w(τ)dτ for .r ≥ 0 and

define

.E−(t, r, y) = e−W(r)e2W(2−1(y−t+r))e−W(y) for t, r ≥ 0, y ≥ t − r. (5)

We suppose that .w(r) is a function in .C([0,∞)) ∩ C1(0,∞) satisfying

.w(r) = µ

2r
+ w̃(r), |w̃(r)| � r−1−δ for r ≥ r0 (6)

with some positive number .r0, .µ ≥ 0, and .δ > 0. This assumption implies

.eW(r) ∼ 〈r〉µ/2, r > 0.

Then the definition (5) of .E− implies

.E−(t, r, y) ∼ 〈r − t + y〉µ
〈r〉µ/2〈y〉µ/2

. (7)

Following the argument in [8], we see that the problem (4) can be written in the
integral form

.u(t, r) = εuL(t, r) + 1

2

∫∫
�−(t,r)

E−(t − σ, r, y)
|u(σ, y)|p

yp−1 dydσ (8)

for .t > 0, .r > 0, where we have set

.�−(t, r) = {(σ, y) ∈ (0,∞) × (0,∞); |t − r| < σ + y < t + r, σ − y < t − r}.
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Besides, we put

.uL(t, r) =1

2

∫ t+r

|t−r |
E−(t, r, y)

(
ψ(y) + ϕ′(y) + w(y)ϕ(y)

)
dy (9)

+ χ(r − t)E−(t, r, r − t)ϕ(r − t),

where .χ(s) = 1 for .s ≥ 0, and .χ(s) = 0 for .s < 0.
Then, the blow-up result in [8] where the case of .µ = 2 is handled can be

extended as follows.

Theorem 1 Suppose that (6) holds. Let .ϕ, .ψ ∈ C([0,∞)) satisfy

.ϕ(r) ≡ 0, ψ(r) ≥ 0, ψ(r) �≡ 0 for r ≥ 0. (10)

If .1 < p ≤ p0(3 + µ), then

.T (ε) ≤
{

exp(Cε−p(p−1)) if p = p0(3 + µ),

Cε−2p(p−1)/γ (p,3+µ) if 1 < p < p0(3 + µ).

Here .T (ε) denotes the lifespan of the problem (4).

On the other hand, when .p > p0(3 + µ), we expect that the solution exists
globally. Actually, when the initial data decays rapid enough, one can show the
following result analogously to [8]. But the pointwise estimate (12) is improved in
the region away from the light cone, due to the factor .〈t + r〉−1.

Theorem 2 Suppose that (6) holds. Assume .p > p0(3+µ) and .κ ≥ (µ/2+1)p−1.
Let .ϕ ∈ C1([0,∞)), .ψ ∈ C([0,∞)) satisfy

.|ϕ(r)| ≤ r〈r〉−κ , |ϕ′(r)| + |ψ(r)| ≤ r〈r〉−κ−1 for r ≥ 0. (11)

Then there exists .ε0 > 0 so that the corresponding integral Eq. (8) to the problem (4)
has a unique global solution satisfying

.|u(t, r)| �εr 〈r〉−µ/2〈t + r〉−1〈t − r〉−η, η := (µ/2 + 1)(p − 1) − 1 (12)

for .t > 0, .r > 0 and any .ε ∈ (0, ε0].
This theorem leads us to one natural question, that is, what will happen when

the initial data decays more slowly. In view of the work of Asakura [1], the self-
similarity comes into play (see also [2, 13, 15, 19]). Namely, the global behavior
would be different between the cases .κ ≥ 2/(p − 1) and .κ < 2/(p − 1). Indeed,
we are able to show the global existence result in the former case.
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Theorem 3 Let .κ > µ/2. Suppose that (6) holds. Assume .p > p0(3 + µ) and
.κ ≥ 2/(p − 1). Let .ϕ ∈ C1([0,∞)), .ψ ∈ C([0,∞)) satisfy (11). Then there exists
.ε0 > 0 so that the integral Eq. (8) has a unique global solution for .ε ∈ (0, ε0].

The proof of Theorem 3 is based on the contraction mapping principle in a
suitable weighted .L∞-space, similarly to the proof of Theorem 2. But we need to
replace the weight function according to the size of .κ as

.w(r, t) = r

〈r〉µ/2

×

⎧⎪⎪⎨
⎪⎪⎩

〈t + r〉−(κ−µ/2) (µ/2 < κ < µ/2 + 1),

〈t + r〉−1
(

1 + log
1 + t + r

1 + |t − r|
)

(κ = µ/2 + 1),

〈t + r〉−1〈t − r〉−(κ−µ/2−1) (µ/2 + 1 < κ ≤ (µ/2 + 1)p − 1).

for .t > 0, .r > 0. Note that .w(r, t) coincides with the upper bound appeared in (12)
when .κ = (µ/2 + 1)p − 1.

When either .p > p0(3 + µ) and .κ < 2/(p − 1) or .1 < p ≤ p0(3 + µ), we
obtain the following lower bounds of the lifespan.

Theorem 4 Let .κ > µ/2 and set .κ1 := µ/2 + 1 + 1/p. Suppose that (6) holds. Let
.ϕ ∈ C1([0,∞)), .ψ ∈ C([0,∞)) satisfy (11). Then there exist .C > 0 and .ε0 > 0
such that for any .ε ∈ (0, ε0]

.T (ε) ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp(Cε−p(p−1)) (p = p0(3 + µ) and κ > κ1),

Cε−2p(p−1)/γ (p,3+µ) (1 < p < p0(3 + µ) and κ > κ1),

exp(Cε−(p−1)) (p = 1 + 2/κ = p0(3 + µ)),

Cb(ε) (1 < p < 1 + 2/κ and κ = κ1),

Cε−(p−1)/(2−(p−1)κ) (1 < p < 1 + 2/κ and κ < κ1).

Here .b(ε) is defined by

.εp(p−1)bγ (p,3+µ)/2(log(1 + b))p−1 = 1.

In order to prove Theorem 4, we reformulate the integral Eq. (8) to the following
one:

.v(t, r) = 1

2

∫∫
�−(t,r)

E−(t − σ, r, y)
|εuL(σ, y) + v(σ, y)|p

yp−1 dydσ (13)

for .t > 0, .r > 0, by introducing the new unknown function .v = u − εuL,
as in the proof of Theorem 2.3 in [14]. It is rather easy to treat the integral
Eq. (13) than the original one. Indeed, the solution v can be presumably assumed
to satisfy the essentially same upper bound as in (12), although the solution .uL

to the homogeneous equation does not satisfy such an estimate if the size of .κ is
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small. Moreover, since .uL exists globally in time, the maximal existence time of the
solution u of (8) is the same as that of the solution v of (13), so that the desired
conclusion follows from the study of (13).

To conclude the optimality of those lower bounds in Theorem 4 with respect to
.ε, the upper bounds given in Theorem 1 are not enough for the last three cases.
However, the following result enable us to conclude the optimality in these cases.

Theorem 5 Suppose that (6) holds. Let .ϕ, .ψ ∈ C([0,∞)) satisfy

.ϕ(r) ≡ 0, ψ(r) ≥ (1 + r)−κ for r ≥ 0 (14)

for some .0 < κ ≤ κ1. Then there exist .C > 0, .ε0 > 0 such that for any .ε ∈ (0, ε0]

.T (ε) ≤
⎧⎨
⎩

exp(Cε−(p−1)) (p = 1 + 2/κ = p0(3 + µ)),

Cb(ε) (1 < p < 1 + 2/κ and κ = κ1),

Cε−(p−1)/(2−(p−1)κ) (1 < p < 1 + 2/κ and κ < κ1).

Thanks to the assumption (14), if the solution of (8) exists globally in time, then
we can prove that for any .(t, r) satisfying .0 < t ≤ 2r and .t − r ≥ b with a positive
number b, and for any natural number n, the following type of lower bound of the
solution:

.u(t, r) ≥ (t − r)µ/2+1

rµ/2(t − r − b)2/(p−1)
exp(pn log J (t, r)), . (15)

J (t, r) = εE (t − r − b)2/(p−1)+µ/2+1(t − r)−κ−(µ/2)−1 (16)

holds, when .1 < p < 1 + 2/κ , for instance. Here E is a positive constant
independent of t , r , n, and .ε. By choosing .(t, r) far away from the origin on the
line .t = 2r so that .log J (t, r) is strictly positive, we find that the value of .u(t, r)

becomes unbounded as .n → ∞. This gives a contradiction together with the upper
bound of the lifespan.

This paper is organized as follows. We shall prove only Theorems 1 and 2 in
this note, because the proofs of other theorems are rather technical and will appear
elsewhere. In the Sect. 3, we give preliminary facts. The Sect. 4 is devoted to the
proof of a blow-up result given in Theorem 1. In the Sect. 5, we derive a priori
upper bounds and complete the proof of Theorem 2.

3 Preliminaries

In this section we prepare a couple of lemmas which will be used in the proofs of
Theorems 1 and 2. For the proofs of Lemmas 1 and 2, see [14], Lemma 2.2 and
Lemma 2.3.
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Lemma 1 Let .0 < a < b and .µ, .ν ≥ 0. Then there exists .C = C(µ, ν) > 0 such
that

.

∫ b

a

(ρ − a)ν

ρµ
dρ ≥ C

aµ−ν−1

(
1 − a

b

)ν+1
.

Lemma 2 Let .C1, .C2 > 0, .α, .β ≥ 0, .θ ≤ 1, .ε ∈ (0, 1], and .p > 1. Suppose that
.f (y) satisfies

.f (y) ≥ C1ε
α, f (y) ≥ C2ε

β

∫ y

1

(
1 − η

y

)
f (η)p

ηθ
dη, y ≥ 1.

Then, .f (y) blows up in a finite time .T∗(ε). Moreover, there exists a constant .C∗ =
C∗(C1, C2, p, θ) > 0 such that

.T∗(ε) ≤
{

exp(C∗ε−{(p−1)α+β}) if θ = 1,

C∗ε−{(p−1)α+β}/(1−θ) if θ < 1.

Lemma 3 Let .0 ≤ a ≤ b and .k ∈ R. Then we have

.

∫ b

a

〈x〉−kdx � (b − a) ×
⎧⎨
⎩

〈b〉−k (k < 1),

〈b〉−1〈a〉−k+1 (k > 1),

〈b〉−1�(a, b) (k = 1).

(17)

Here, for .0 ≤ a ≤ b, we put

.�(a, b) := 2 + log
1 + b

1 + a
. (18)

Proof

(i) When .k > 1, we have

.

∫ b

a

〈x〉−kdx � 1

k − 1

{
1

(1 + a)k−1 − 1

(1 + b)k−1

}

� 1

(1 + a)k−1

{
1 −

(
1 + a

1 + b

)k−1
}

.

Note that

.1 − sl ≤ max{1, l}(1 − s) for l ≥ 0, 0 ≤ s ≤ 1. (19)

Hence we obtain (17) for .k > 1.
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(ii) When .k < 1, we have in the similar manner

.

∫ b

a

〈x〉−kdx � 1

1 − k

{
1

(1 + b)k−1 − 1

(1 + a)k−1

}

� 1

(1 + b)k−1

{
1 −

(
1 + a

1 + b

)1−k
}

� (b − a)〈b〉−k.

(iii) When .k = 1, It follows that

.

∫ b

a

〈x〉−1dx � log

(
1 + b

1 + a

)
. (20)

If .a ≥ b/2, since .log(1 + s) ≤ s .(s ≥ 0), we find that

.

∫ b

a

〈x〉−1dx � log

(
1 + b − a

1 + a

)
� b − a

1 + a
� (b − a)〈b〉−1.

If .a ≤ b/2 and .b ≥ 1, we find that .b − a ≥ b/2. Hence we have from (20)

.

∫ b

a

〈x〉−1dx � b − a

b
log

(
1 + b

1 + a

)
� (b − a)〈b〉−1 log

(
1 + b

1 + a

)
.

If .0 < b ≤ 1, we obtain

.

∫ b

a

〈x〉−1dx � b − a ∼ (b − a)〈b〉−1.

Therefore we get (17). This completes the proof. ��
Lemma 4 Let .k1, k2, k3 ≥ 0 and .α ≥ 0. Then we have

.

∫ α

−α

〈α + β〉−k1−k2〈β〉−k1−k3dβ � 〈α〉−k1 ×
⎧⎨
⎩

〈α〉1−(k1+k2+k3) (k1+k2 + k3 < 1),

1 (k1+k2 + k3 > 1),

log(2 + α) (k1+k2 + k3 = 1),

Proof First of all, we prove for .a, b ≥ 0 and .α ≥ 0

.

∫ α

−α

〈α + β〉−a〈β〉−bdβ �

⎧⎨
⎩

〈α〉1−(a+b) (a + b < 1),

1 (a + b > 1),

log(2 + α) (a + b = 1).

(21)
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We note that for .−α < β < −α/2, we have .|β| > α+β and that for .−α/2 < β < α,
we have .|β| < α + β. Then we see that the .β-integral is bounded by the sum of

.

∫ −α/2

−α

〈α + β〉−(a+b)dβ ≤
∫ 0

−α

〈α + β〉−(a+b)dβ,

∫ α

−α/2
〈β〉−(a+b)dβ ≤ 2

∫ α

0
〈β〉−(a+b)dβ.

Then we get (21) by a direct computation.
We now divide the .β-integral into .I1 and .I2:

.I1 :=
∫ −α/2

−α

〈α + β〉−k1−k2〈β〉−k1−k3dβ,

I2 :=
∫ α

−α/2
〈α + β〉−k1−k2〈β〉−k1−k3dβ.

Then we get from (21)

.I1 � 〈α/2〉−k1

∫ α

−α

〈α + β〉−k1−k2〈β〉−k3 dβ

� 〈α〉−k1 ×
⎧⎨
⎩

〈α〉1−(k1+k2+k3) (k1 + k2 + k3 < 1),

1 (k1 + k2 + k3 > 1),

log(2 + α) (k1 + k2 + k3 = 1).

As to .I1, we have

.I2 � 〈α/2〉−k1

∫ α

−α

〈α + β〉−k2〈β〉−k1−k3dβ,

which implies the desired estimate by (21). This completes the proof. ��

4 Proof of Theorem 1

Let u denote the solution of the problem (4) in what follows. When .ϕ ≡ 0, it follows
from (8), (9) and (7) that

.u(t, r) � εuL(t, r) + Ĩ−(|u|p/yp−1)(t, r), . (22)

uL(t, r) � J̃−(ψ)(t, r) (23)
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holds for t , .r > 0, where we put

.Ĩ−(F )(t, r) =
∫∫

�−(t,r)

〈−t + σ + r + y〉µ
〈r〉µ/2〈y〉µ/2 F(σ, y)dydσ, . (24)

J̃−(ψ)(t, r) =
∫ t+r

|t−r |
〈r − t + y〉µ
〈r〉µ/2〈y〉µ/2

ψ(y)dy. (25)

Our first step is to obtain basic lower bounds of the solution to the problem (4).
By (10), we may assume that .ψ is strictly positive in an interval .[a, b].
Lemma 5 We assume (10) holds. Then we have

.uL(t, r) � c0

〈r〉µ/2 , c0 := min
a≤r≤b

ψ(r) (26)

for

.t < r < t + a, t + r > b. (27)

Moreover, if u is the solution to (4), then we have

.u(t, r) � εp

〈r〉µ/2(t − r)η
, η = (µ/2 + 1)(p − 1) − 1 (28)

for .0 < t < 2r and .t − r > b.

Proof First, we show (26). Let .(t, r) satisfy (27). Then, from (23) we have

.uL(t, r) �
∫ t+r

r−t

〈r − t + y〉µ
〈r〉µ/2〈y〉µ/2 ψ(y)dy

� c0

∫ b

a

1

〈r〉µ/2〈y〉µ/2 dy,

which implies (26).
Next we show (28). Let .0 < t < 2r and .t − r > b. If we set

.�̃(t, r) = {(σ, y) ∈ (0,∞) × (0,∞); 0 ≤ y − σ ≤ a, t − r < σ + y < t + r},

then .�̃(t, r) ⊂ �−(t, r). In addition, we see from (22) and (26) that .u(σ, y) �
ε〈y〉−µ/2 for .(σ, y) ∈ �̃(t, r). Therefore, from (22) we get

.u(t, r) � εp

∫∫
�̃(t,r)

〈−t + σ + r + y〉µ
〈r〉µ/2〈y〉µ/2

1

〈y〉(µ/2+1)p−1
dydσ.
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Now, introducing the coordinates .α = σ + y, .β = σ − y, we obtain

.u(t, r) � εp

∫ t+r

t−r

dα

∫ 0

−a

〈α − t + r〉µ
〈r〉µ/2〈α − β〉(µ/2+1)p+µ/2−1

dβ

� εp

∫ t+r

t−r

〈α − t + r〉µ
〈r〉µ/2〈α〉(µ/2+1)p+µ/2−1

dα.

Since .t < 2r , we have .t + r > 3(t − r), so that

.〈r〉µ/2u(t, r) � εp

∫ 3(t−r)

t−r

(α − t + r)µ

〈α〉(µ/2+1)p+µ/2−1
dα

� εp〈t − r〉−((µ/2+1)p+µ/2−1)

∫ 3(t−r)

t−r

(α − t + r)µdα

� εp(t − r)−η

for .t − r > b. This completes the proof. ��
For .ρ > 0, we introduce the following quantity:

.〈u〉(ρ) = inf{〈y〉µ/2(σ − y)η|u(σ, y)|; (σ, y) ∈ �(ρ)},

where we set

.�(ρ) = {(σ, y); 0 ≤ σ ≤ 2y, σ − y ≥ ρ}.

For simplicity, we assume .0 < b ≤ 1. Then, (28) yields

.〈u〉(y) ≥ C1ε
p for y ≥ 1. (29)

Let .ξ ≥ 1 and .(t, r) ∈ �(ξ), so that .t − r ≥ 1. For .ρ > 0 we set

.�̃(ρ, t − r) = {(σ, y); y ≥ t − r, σ + y ≤ 3(t − r), σ − y ≥ ρ}.

It is easy to see that .�̃(ρ, t − r) ⊂ �−(t, r) for any .η > 0 and .(t, r) ∈ �(ξ) and
that .(σ, y) ∈ �̃(1, t − r) implies .(σ, y) ∈ �(σ − y). Therefore, from (22) we have

.u(t, r)

�
∫∫

�̃(1,t−r)

(−t + σ + r + y)µ

〈r〉µ/2〈y〉µ/2

[〈u〉(σ − y)]p

〈y〉(µ/2+1)p−1(σ − y)pη
dy dσ

� (t − r)µ

〈r〉µ/2

∫∫
�̃(1,t−r)

[〈u〉(σ − y)]p

〈y〉(µ/2+1)p+µ/2−1(σ − y)pη
dy dσ,
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because .−t+σ +r+y = −t+r+(σ −y)+2y ≥ 1+(t−r) for .(σ, y) ∈ �̃(1, t−r).
Changing the variables by .β = σ − y, .z = y, we have

.u(t, r) � (t − r)µ

〈r〉µ/2

∫ t−r

1
dβ

∫ (3(t−r)−β)/2

t−r

[〈u〉(β)]p

〈z〉(µ/2+1)p+(µ/2−1)βpη
dz

� 1

〈r〉µ/2(t − r)(µ/2+1)(p−1)

∫ t−r

1

t − r − β

2

[〈u〉(β)]p
βpη

dβ

� 1

〈r〉µ/2(t − r)(µ/2+1)p−(µ/2+2)

∫ t−r

1

(
1 − β

t − r

) [〈u〉(β)]p
βpη

dβ.

Since the function

.y �→
∫ y

1

(
1 − β

y

) [〈u〉(β)]p
βpη

dβ

is non-decreasing, for any .(t, r) ∈ �(ξ), we have

.〈r〉µ/2(t − r)(µ/2+1)p−(µ/2+2)u(t, r) ≥ C2

∫ ξ

1

(
1 − β

ξ

) [〈u〉(β)]p
βpη

dβ.

Thus, recalling .η = (µ/2 + 1)p − (µ/2 + 2) from (28), we obtain

.〈u〉(ξ) ≥ C2

∫ ξ

1

(
1 − β

ξ

) [〈u〉(β)]p
ηpη

dβ, ξ ≥ 1 (30)

Proof of Theorem 1 By (29) and (30), we can apply Lemma 2 as .α = p, .β = 0,
and .θ = pη. Since .1 < p ≤ p0(3 + µ) implies .θ ≤ 1, the maximal existence time
.T∗(ε) of .〈u〉(ξ) satisfies the following estimates:

.T∗(ε) ≤
{

exp(Cε−p(p−1)) if θ = 1,

Cε−p(p−1)/(1−θ) if θ < 1.

Since .θ = 1 and .θ < 1 correspond to .p = p0(3 + µ) and .1 < p < p0(3 + µ),
respectively, we obtain the desired conclusion. ��

5 Proof of Theorem 2

Our first step is to obtain the following estimates for the homogeneous part of the
solution to the problem (8).
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Lemma 6 Assume that (6) holds and .ϕ ∈ C1([0,∞)), .ψ ∈ C0([0,∞)) sat-
isfy (11), so that

.|ϕ(r)| � r 〈r〉−κ , |ψ(r) + ϕ′(r) + w(r)ϕ(r)| � 〈r〉−κ for r ≥ 0 (31)

holds with some positive constant .κ . We put

.ν := κ − µ/2 − 1. (32)

Then we have

.

∣∣∣∣
∫ t+r

|t−r |
E−(t, r, y)

(
ψ(y) + ϕ′(y) + w(y)ϕ(y)

)
dy

∣∣∣∣

� r

〈r〉µ/2
×

⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0),

〈t + r〉−1�(|t − r|, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0)

(33)

for .t > 0, .r > 0, where .�(a, b) is defined in (18). Moreover, for .0 < t ≤ r we have

. |E−(t, r, r − t)ϕ(r − t)| � r

〈r〉µ/2 ×
⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0), .

〈t + r〉−1�(r − t, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0).

(34)

Proof We begin with the proof of (33). In the following, let .t > 0, .r > 0. Since
.0 ≤ r − t + y ≤ 2y for .y ≥ |t − r|, from (7) we have

.|E−(t, r, y)| � 〈y〉µ/2/〈r〉µ/2 for y ≥ |t − r|. (35)

Therefore, by using the assumptions on the data, the left hand side of (33) is
estimated by

.〈r〉−µ/2
∫ t+r

|r−t |
〈y〉µ/2

∣∣ψ(y) + ϕ′(y)+w(y)ϕ(y)
∣∣ dy � 〈r〉−µ/2

∫ t+r

|r−t |
〈y〉−κ+µ/2dy.

From (32) and Lemma 3, the last integral is estimated as follows:

.

∫ t+r

|r−t |
〈y〉−κ+µ/2dy � r ×

⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0),

〈t + r〉−1�(|t − r|, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0).

Therefore we obtain (33).
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Next we prove (34), by assuming .0 < t ≤ r . From (31) and (35) we have

.|E−(t, r, y)ϕ(y)| � y

〈r〉µ/2〈y〉κ−µ/2 for y ≥ |t − r|. (36)

Let .r ≥ 1. It follows from (32) and (36) that

. |E−(t, r, r − t)ϕ(r − t)| � r − t

〈r〉µ/2〈r − t〉κ−µ/2

� r

〈r〉µ/2+1〈r − t〉κ−µ/2−1

� r

〈r〉µ/2
×

{ 〈r + t〉−κ+µ/2 (ν ≤ 0),

〈r + t〉−1〈r − t〉−ν (ν > 0).

Let .0 < r ≤ 1. We obtain from (36)

. |E−(t, r, r − t)ϕ(r − t)| � r

〈r〉µ/2〈r − t〉κ−µ/2

� r

〈r〉µ/2 ×
{ 〈r + t〉−κ+µ/2 (ν ≤ 0),

〈r + t〉−1〈r − t〉−κ+µ/2 (ν > 0).

Hence, we obtain the desired estimate (34). This completes the proof. ��
For .t > 0, .r > 0, it follows from (9) and Lemma 6 that

.|uL(t, r)| ≤ C̃0r 〈r〉−µ/2 ×
⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0),

〈t + r〉−1�(|t − r|, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0)

(37)

with some positive constant .C̃0, provided (6) and (11) hold.
Our next step is to consider the integral operator appeared in (8):

.I−(F )(t, r) := 1

2

∫∫
�−(t,r)

E−(t − σ, r, y)F (σ, y)dydσ.

For .(σ, y) ∈ �−(t, r) we have .y ≥ |t − r − σ |, so that (35) yields

.E−(t − σ, r, y) � 〈r〉−µ/2〈y〉µ/2 for (σ, y) ∈ �−(t, r).

Hence we get

.|I−(F )(t, r)| � 〈r〉−µ/2
∫∫

�−(t,r)

〈y〉µ/2|F(σ, y)|dydσ. (38)
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In order to derive an apriori estimate, we introduce the following weighted .L∞-
norm:

.‖u‖1 = sup
(t,r)∈[0,∞)×[0,∞)

{w1(t, r)
−1|u(t, r)|}, (39)

where we put

.w1(t, r) := r 〈r〉−µ/2〈t + r〉−1〈t − r〉−η. (40)

Here we choose

.η = (µ/2 + 1)(p − 1) − 1

as in (28), so that .η > 1/p, by the assumption .p > p0(3 + µ).

Lemma 7 Let .η > 0 be as above. Then, there exists a positive constant .C̃1 such
that

.‖I−(F )‖1 ≤ C̃1‖u‖p

1 (41)

with .F(t, r) = |u(t, r)|p/rp−1.

Proof From (39) and (40), we obtain

.〈r〉µp/2〈t + r〉p〈t − r〉ηp|F(t, r)| ≤ r‖u‖p

1 .

It follows from (38) that

.|I−(F )(t, r)| � 〈r〉−µ/2‖u‖p

1 I (t, r),

where we put

.I (t, r) :=
∫∫

�−(t,r)

y

〈y〉µ(p−1)/2〈σ + y〉p〈σ − y〉ηp dydσ. (42)

In order to show (41), it is enough to prove

.I (t, r) � r

〈t + r〉〈t − r〉η .

To evaluate the integral (42), we pass to the coordinates

.α = σ + y, β = y − σ
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and deduce

.I (t, r) �
∫ t−r

|r−t |

∫ α

r−t

1

〈α〉p〈α + β〉µ(p−1)/2−1〈β〉ηp dβdα. (43)

First, suppose .r ≥ t . Then we get

.I (t, r) �
∫ t−r

r−t

dα

〈α〉η+1

∫ α

r−t

1

〈β〉ηp dβ.

Since .pη > 1, we have from Lemma 3

.I (t, r) �
∫ t+r

r−t

1

〈α〉η+1 dα � r

〈t + r〉〈t − r〉η .

Next, suppose .r < t . Since .pη > 1, we have from (43), Lemma 3, and Lemma 4
with .k1 = η, .k2 = 0, and .k3 = η(p − 1)

.I (t, r) �
∫ t+r

t−r

dα

〈α〉
∫ α

−α

1

〈α + β〉η〈β〉ηp dβ

�
∫ t+r

t−r

1

〈α〉η+1 dα � r

〈t + r〉〈t − r〉η .

This completes the proof. ��
Proof of Theorem 2 Let X be the linear space defined by

.X = {u(t, r) ∈ C([0,∞) × [0,∞)) ; ‖u‖1 < ∞} .

We can verify easily that X is complete with respect the norm .‖ · ‖1. We define the
sequence of functions .{un} by

.u0 = εuL, un+1 = εuL + I−(|un|p/rp−1) (n = 0, 1, 2, · · · ).

Since .κ ≥ (µ/2 + 1)p − 1 and .ν = κ − µ/2 − 1, we have .ν ≥ η. Therefore, it
follows from (37), (39) and (40) that .‖u0‖1 ≤ εC̃0. Hence .u0 ∈ X.

Now, by choosing .ε is sufficiently small, we find from Lemma 7 that .{un} ∈ X

for all n. Moreover, we can prove that .{un} is a Cauchy sequence in X. Since X is
complete, there exists .u ∈ X such that .un converges uniformly to u as .n → ∞.
Clearly, u satisfies (8). This completes the proof. ��

Acknowledgments The authors are grateful to the referee for useful comments which make the
original manuscript be improved. The first author was partially supported by Grant-in-Aid for
Science Research (No.19H01795), JSPS. The second author was partially supported by Grant-in-
Aid for Science Research (No.16H06339 and No.19H01795), JSPS.



On the Cauchy Problem for the Nonlinear Wave Equation with Damping and Potential 61

References

1. Asakura, F.: Existence of a global solution to a semilinear wave equation with slowly
decreasing initial data in three space dimensions. Commun. Partial Differ. Equ. 11(13), 1459–
1487 (1986)

2. Agemi, R., Takamura, H.: The lifespan of classical solutions to nonlinear wave equations in
two space dimensions. Hokkaido Math. J. 21(3), 517–542 (1992)

3. D’Abbicco, M., Lucente, S., Reissig, M.: A shift in the Strauss exponent for semilinear wave
equations with a not effective damping. J. Differ. Equ. 259(10), 5040–5073 (2015)

4. D’Ancona, P., Georgiev, V., Kubo, H.: Weighted decay estimates for the wave equation. J.
Differ. Equ. 177(1), 146–208 (2001)

5. Georgiev, V.: Semilinear hyperbolic equations, with a preface by Y. Shibata. MSJ Memoirs,
vol. 7, 2nd edn. Mathematical Society of Japan, Tokyo (2005)

6. Georgiev, V., Lindblad, H., Sogge, C.: Weighted Strichartz estimates and global existence for
semilinear wave equations. Am. J. Math. 119(6), 1291–1319 (1997)

7. Georgiev, V., Heiming, C., Kubo, H.: Supercritical semilinear wave equation with non-negative
potential. Commun. Partial Differ. Equ. 26(11–12), 2267–2303 (2001)

8. Georgiev, V., Kubo, H., Wakasa, K.: Critical exponent for nonlinear damped wave equations
with non-negative potential in 3D. J. Differ. Equ. 267(5), 3271–3288 (2019)

9. Glassey, R.T.: Finite-time blow-up for solutions of nonlinear wave equations. Math. Z. 177(3),
323–340 (1981)

10. Ikeda, M., Sobajima, M.: Life-span of solutions to semilinear wave equation with time-
dependent critical damping for specially localized initial data. Math. Ann. 372(3–4), 1017–
1040 (2018)

11. John, F.: Blow-up of solutions of nonlinear wave equations in three space dimensions.
Manuscripta Math. 28(1–3), 235–268 (1979)

12. Kato, M., Sakuraba, M.: Global existence and blow-up for semilinear damped wave equations
in three space dimensions. Nonlinear Anal. 182, 209–225 (2019)

13. Kubo, H.: Slowly decaying solutions for semilinear wave equations in odd space dimensions.
Nonlinear Anal. 28(2), 327–357 (1997)

14. Kubo, H., Ohta, M.: On the global behavior of classical solutions to coupled systems
of semilinear wave equations. In: New Trends in the Theory of Hyperbolic Equations.
Operator Theory: Advances and Applications, vol. 159, pp. 113–211. Birkhäuser, Basel (2005).
Advanced Partial Differential Equations

15. Kubota, K.: Existence of a global solution to a semi-linear wave equation with initial data of
noncompact support in low space dimensions. Hokkaido Math. J. 22(2), 123–180 (1993)

16. Lai, N.A.: Weighted L2-L2 estimate for wave equation in R3 and its applications. In: The
role of metrics in the theory of partial differential equations. Advanced Studies in Pure
Mathematics, vol. 85, pp. 269–279. Mathematical Society of Japan, Tokyo (2020)

17. Strauss, W.A.: Nonlinear wave equations. In: CBMS Regional Conference Series in Mathe-
matics, vol. 73. American Mathematical Society, Providence (1989)

18. Strauss, W.A., Tsutaya, K.: Existence and blow up of small amplitude nonlinear waves with a
negative potential. Discrete Contin. Dyn. Syst. 3(2), 175–188 (1997)

19. Tsutaya, K.: Global existence and the life span of solutions of semilinear wave equations with
data of noncompact support in three space dimensions. Funkcial. Ekvac. 37(1), 1–18 (1994)

20. Yordanov, B., Zhang, Q.: Finite-time blowup for wave equations with a potential. SIAM J.
Math. Anal. 36(5), 1426–1433 (2005)


	On the Cauchy Problem for the Nonlinear Wave Equation with Damping and Potential
	1 Introduction
	2 Formulation of the Problem and Results
	3 Preliminaries
	4 Proof of Theorem 1
	5 Proof of Theorem 2
	References




