
Reconstruction from Boundary
Measurements: Complex Conductivities

Ivan Pombo

Abstract In this paper we show that following Nachman’s method we can still
reconstruct complex conductivities in .C1,1 from its Dirichlet-to-Neumann map in
three and higher dimensions. For such, we analyze all of his results and pinpoint
what really needs to be shown for complex conductivities. Moreover, we show the
existence of non-exceptional points for low frequency and .C1,1-domains. As far as
we are aware, this is the first reconstruction procedure for complex conductivities,
even though the proof follows easily by extending some of the theorems obtained
by Nachman to the complex case.

1 Introduction

In Electrical Impedance Tomography (EIT) we determine the interior impedance
inside a bounded domain .� by applying alternating electrical currents and measur-
ing the corresponding voltages at the boundary .∂�, or vice-versa. Impedance is the
inverse of admittance which is defined through .γ = σ + iωε, where .ω is the angular
frequency, .σ, ε are the electrical conductivity and permittivity of materials inside .�,
respectively.

Our working assumptions are

.γ ∈ C1,1(�̄) and isotropic, σ ≥ c > 0, ε ≥ 0, ω ∈ R
+, . (1)

� is a bounded domain with C 1,1 boundary in R
n, n ≥ 3 (2)

In applications, most data acquisition systems and respective algorithms focus
on computing the conductivity .σ . However, in certain applications it is highly
valuable to also obtain permittivity from boundary measurements. It brings extra
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knowledge to the table and allows us to distinguish more clinical conditions than
is possible with the conductivity alone. An example is the ability to distinguish
between pneumothorax and hyperinflation. Both scenarios correspond to regions
of low resistivity, which implies high conductivity, but the pneumothorax has zero
permittivity while the hyperinflation corresponds to low yet positive permittivity.
Other possible application is in multi-frequency EIT since the properties .σ and .ε

vary with the applied angular frequency .ω, while in the real case the frequency is
somewhat discarded.

Mathematically, the direct problem concerns the unique determination of the
electrical potential .u ∈ H 1(�) given a voltage .f ∈ H 1/2(∂�) set at the boundary,
modelled by

.

{
∇ · (γ∇u) = 0, in �

u|∂� = f
(3)

Uniqueness in .H 1(�) holds from the assumption .Re γ > 0, which implies by
the weak formulation that 0 is not a Dirichlet eigenvalue of the operator .∇ · (γ∇u)

in .�.
Formally, from each voltage .f ∈ H 1/2(∂�) and each corresponding electrical

potential .u ∈ H 1(�) we can determine the electrical current measured at the
boundary given by .γ ∂u

∂ν
. In essence, we can define for .γ ∈ L∞(�) the Dirichlet-to-

Neumann map .	γ f = γ ∂u
∂ν

, which holds weakly by

.	γ : H 1/2(∂�) → H−1/2(∂�), (4)

f �→ 〈	γ f, g〉 =
∫

�

γ∇u · ∇v dx,

where .v ∈ H 1(�) has trace .g ∈ H 1/2(∂�).
In 1980 A.P. Calderón [11] was the first to pose the mathematical problem

whether the conductivity .σ ∈ L∞(�) can be uniquely determined by boundary
measurements, .	γ , and if so how to reconstruct it. He showed that the linearized
problem at constant conductivities has a unique solution. In mathematical literature,
this is designated as Calderón’s problem or inverse conductivity problem. In medical
imaging the problem is know by Electrical Impedance Tomography (EIT).

After the initial work of Calderón there were many extensions to global unique-
ness results. In [34], Sylvester and Uhlmann used ideas of scattering theory, namely
the exponential growing solutions of Faddeev [15] to obtain global uniqueness in
dimensions .n ≥ 3 for smooth conductivities. Using this foundations the uniqueness
for lesser regular conductivities was further generalized for dimensions .n ≥ 3 in the
works of [1, 7, 8, 12, 13, 19, 26, 29, 32]. Currently, the best know result is due to
Haberman [18] for conductivities .γ ∈ W 1,3(�). The reconstruction procedure for
.n ≥ 3 was obtained in both [26] and [30] independently. As far as we are aware,
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there seems to be no literature concerning reconstruction for conductivities with less
than two derivatives.

In two dimensions the problem seems to be of a different nature and tools
of complex analysis were used to establish uniqueness. Nachman [27] obtained
uniqueness and a reconstruction method for conductivities with two derivatives. The
uniqueness result was soon extend for once-differentiable conductivities in [9] and
a corresponding reconstruction method was obtained in [22]. In 2006, Astala and
Päivärinta [2] gave a positive answer Calderón’s problem for .σ ∈ L∞(�), σ ≥ c >

0, by providing the uniqueness proof through the reconstruction process.
The first extension to admittances, and here forward also designated by complex-

conductivities, was in two-dimensions in [16]. Francini extended the work of Brown
and Uhlmann [9] in two-dimensions by proving uniqueness for small angular
frequencies and .γ ∈ W 2,∞. Afterwards, Bukgheim influential paper [10] proved the
general result in two-dimensions for complex-conductivities in .W 2,∞. He reduced
the (3) to a Schrödinger equation and shows uniqueness through the stationary
phase method (based on is work many extensions followed [3, 5, 31]). Recently,
by mixing techniques of [9] and [10], Lakshtanov et al. obtained in [24] uniqueness
for Lipschitz complex-conductivities in .R2. In [33], the author followed up their
work to show that it is possible to reconstruct complex-conductivity with a jump at
least in a certain set of points.

As far as we are aware, in dimensions higher than 2 there is no explicit literature
for complex-conductivities. As stated in [6], it is possible to obtain uniqueness for
twice differentiable complex-conductivities by the approach obtained in [34] and
[29]. Furthermore, there is reference of a theoretical work for direct reconstruction
method in the case of complex conductivities, since most works restrict themselves
to the real scenario.

However, in [20] Nachman’s reconstruction method is used to find complex
conductivities from boundary measurements. This is a promising result that requires
a theoretical background to support it, even if for some researchers it seems folklore.

Hence, in this paper, we show that Nachman’s reconstruction method holds for
complex conductivities. To be precise, the main result of this paper is the following:

Theorem 1 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3. Let .γ1, γ2 ∈ C1,1(�)

be complex-valued conductivities, such that .Re γj ≥ c > 0 for .j = 1, 2. Further,
let .	1, 	2 be their corresponding Dirichlet-to-Neumann maps.

If .	1 = 	2, then .γ1 = γ2 in .�.

Under careful examination of [26], we highlight here that the only requirement
for the reconstruction method to hold concerns the uniqueness of boundary value
problems with complex coefficient for .f ∈ H 3/2(∂�). For convenience of the
reader, we present here the most essential results of Nachman’s magnificent work,
taking a sequential tour through the pieces needed to make this work. Hence, in
essence this paper works as a review of Nachman’s procedure highlighting the
requirements for it to work for complex-conductivities.
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Furthermore, following the work of [14] we show that the complex-conductivity
can also be obtained from low-frequency asymptotics through the exponential
growing solutions.

2 Uniqueness of Schrödinger Inverse Problem

The recurring idea on Calderón’s problem is to convert our equation into one
that has the coefficient in the lowest order terms. Here, we transform into the
Schrödinger equation with complex-potential. We start by following the uniqueness
result presented in [29], under the assumption of complex-valued potentials in
.L∞(�̄). In their work, there is no mention and need of the potential to be real,
therefore we present their proof in its entirety.

Let .u ∈ H 1(�) be the unique solution of (3) with trace .f ∈ H 1/2(∂�) at the

boundary. Then the substitution .u = γ −1/2w yields with .q = 
γ 1/2

γ 1/2 ,

.

{
−
w + qw = 0, in �,

w|∂� = γ 1/2f.
(5)

Notice that if .γ ∈ C1,1(�) and .σ ≥ c > 0 then .γ 1/2 is well-defined and twice
weakly differentiable. Therefore, q is well-defined and in .L∞(�). As previously
stated, the assumptions on .γ lead to 0 not being a Dirichlet eigenvalue of .∇ ·(γ∇u).
The relation above implies a bijection between solutions of the (3) and of (5).
Therefore, 0 is also not a Dirichlet eigenvalue of the Schrödinger problem.

In general, if 0 is not a Dirichlet eigenvalue of the Schrödinger operator in .�, then
the Dirichlet-to-Neumann map, .	q , is well-defined from .H 1/2(∂�) to .H−1/2(∂�)

and formally is given by

.	qf = ∂w

∂ν

∣∣∣∣
∂�

for w being the unique solution of .(−
 + q)w = 0, in � and .w|∂� = f .
Hence, here the corresponding inverse problem is to determine q from the boundary
measurements .	q uniquely.

In this manner, we can cast our focus into the Schrödinger equation. First, we
can extend q to zero outside the domain and study solutions of

. − 
w + qw = 0, in R
n (6)

which behave like

.w = eix·ζ (1 + ψ(x, ζ )) , for ζ ∈ C
n, ζ · ζ = 0.
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In Calderón’s paper [11] he already uses the family of exponential harmonic
functions, .eix·ζ in its proof, but it was Sylvester and Uhlmann [34] that first used this
type of solutions to dispense the requirement of .σ be close to a constant. Substituting
into (6), it follows that .ψ must satisfy

. − 
ψ − 2iζ · ∇ψ + qψ = −q (7)

From scattering theory, we inherited the Faddeev-Green’s function (see [15])
which takes a principal role in the study of the above Eq. (7). For .ζ ∈ C

n with
.ζ · ζ = 0 it is given by .Gζ (x) = eix·ζ gζ (x), where .gζ is the fundamental solution
of operator .(−
 − 2iζ · ∇) and is defined as:

.gζ (x) = 1

(2π)n

∫
R

n

eix·ξ

|ξ |2 + 2ζ · ξ
dξ, (8)

Recall, that as a fundamental solution .Gζ differs from the classical one .G0 by an
harmonic function .Hζ .

From this, solutions of (6) with the desired asymptotics can be obtained by
solving the integral equation

.w(x, ζ ) = eix·ζ −
∫

Gζ (x − y)q(y)w(y, ζ ) dy (9)

with .ψ solving

.ψ + gζ ∗ (qψ) = −gζ ∗ q. (10)

The study of these integral equations follows by a weighted .L2 estimate for
.gζ obtained in [34], which guarantees unique solvability of (9) for .|ζ | large, even
for complex conductivities. This estimate is one of the most important elements
in scattering works, since it allows the existence and uniqueness of solutions and
already puts into light their behavior in terms of .ζ .

Let .〈x〉 = (1 + |x|2)1/2. We define the weighted .L2-space for .δ ∈ R as

.L2
δ (R

n) := {
f : ‖f ‖δ := ‖〈x〉δf ‖L2(Rn) < ∞ }

.

Then the convolution operators with .gζ and .Gζ satisfy the following estimates

Proposition 1 For all .ζ ∈ C
n with .ζ ·ζ = 0 and .|ζ | ≥ a the operator of convolution

with .gζ satisfies

.
∥∥gζ ∗ f

∥∥
δ−1 ≤ c(δ, a)

|ζ | ‖f ‖δ, for 0 < δ < 1 (11)
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Moreover, let .H 2
δ (�) := {

f : Dαf ∈ L2−δ(R
n), 0 ≤ |α| ≤ 2

}
be the weighted

Sobolev space with norm

.‖f ‖2,δ =
⎛
⎝ ∑

|α|≤2

‖Dαf ‖2
δ

⎞
⎠

1/2

.

Then, for any .ζ ∈ C
n with .ζ · ζ = 0 it holds for .δ ∈ (1/2, 1) that

.‖gζ ∗ w‖2,−δ ≤ c(δ, ζ )‖w‖2,δ.

Furthermore, under the definition

.Gζw(x) =
∫

�

Gζ (x − y)w(y) dy

it holds that

.‖Gζw‖H 2(�) ≤ c(ζ,�)‖w‖L2(�).

Proof The first estimate can be found in [34, Corollary 2.2], while the rest is in [26,
Lemma 2.11]. �

For the uniqueness proof our interest resides in studying the exponential growing
solutions given through Eq. (9)

Corollary 1 Let .0 < δ < 1 and .q ∈ L∞(�) be complex-valued and extended to
zero outside .�. Then there exists an .R > 0 such that for all .ζ ∈ C

n with .ζ · ζ = 0
and .|ζ | > R the integral equation (9) is uniquely solvable with .e−ix·ζw(x, ζ )− 1 ∈
L2

δ−1(R
n). Furthermore, it holds

.‖e−ix·ζw(x, ζ ) − 1‖δ−1 ≤ c̃(R, δ)

|ζ | ‖q‖δ. (12)

Proof Let .Mqφ = qφ, i.e., the operator of multiplication with q . We show that
for .q ∈ L∞(Rn) with compact support, .Mq : L2

δ−1(R
n) → L2

δ (R
n) is a bounded

operator.
Let .f ∈ L2

δ−1(R
n). Then

.‖Mqf ‖δ =
[∫

R
n
(1 + |x|2)δ|q(x)f (x)|2 dx

]1/2

=
[∫

R
n

(
1 + |x|2

)
|q(x)|2

(
1 + |x|2

)δ−1 |f (x)|2 dx

]1/2

≤ ‖〈x〉q‖∞‖f ‖δ−1.
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We define the operator .Aζ = Cζ Mq , where .Cζ is the convolution with .gζ , that is

.Aζf (x) =
∫
R

n
gζ (x − y)q(y)f (y) dy = Cζ Mqf (13)

By Proposition 1 for .|ζ | ≥ R we obtain

.‖Aζ f ‖δ−1 = ‖Cζ Mqf ‖δ−1 ≤ c(δ, R)

|ζ | ‖Mqf ‖δ ≤ c(δ, R)

|ζ | ‖〈x〉q‖∞ ‖f ‖δ−1

Therefore, .Aζ is bounded in .L2
δ−1(R

n). Furthermore, if we consider

.|ζ | > R := c(δ, R) ‖〈x〉q‖∞

then .Aζ is a contraction and .I + Aζ is invertible.
Since .q ∈ L∞ and as compact support then it is in .L2

δ and therefore the right-
hand side of (10) is in .L2

δ−1. Hence, the unique solution to (7) is given by

.ψ(x, ζ ) = − [
I + Aζ

]−1 (
gζ ∗ q

)
.

From here, we already know that

.w = eix·ζ (
1 − [

I + Aζ

]−1 (
gζ ∗ q

))
solves the integral equation (9). Furthermore, the estimate (12) easily follows from
.[I + Aζ ]−1 being bounded in .L2

δ−1, Proposition 1 and .gζ ∗ q ∈ L2
δ−1.

Now, let us suppose that there exist two solutions .w1, w2 of (9) such that

.φj = e−ix·ζwj − 1 ∈ L2
δ−1.

Then, their difference is also in .L2
δ−1 and both fulfill the equation

.[I + Aζ ]φj = −gζ ∗ q.

This implies .[I +Aζ ]
(
e−ix·ζ (w1 − w2)

) = 0 and thus .w1 ≡ w2 by the invertibility
of .I + Aζ in .L2

δ−1. Hence, uniqueness of the integral equation (9) for exponential
growing solutions follows. �

We designate the values .ζ for which this solution does not exist or is not unique
as exceptional points.

Definition 1 Let .q ∈ L∞(�) complex-valued and extended to zero outside .�.
Let .ζ ∈ V := {ζ ∈ C

n \ {0}ζ · ζ = 0}. Then we call .ζ ∈ V an exceptional point
for q if there is no unique exponential growing solution of .(−
 + q)w = 0 in .Rn,
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that is, there is no unique solution of the type

.w(x, ζ ) := eix·ζ (1 + μ(x, ζ )) , with μ ∈ L2
δ−1(R

n), 0 < δ < 1.

The uniqueness proof of this section given by Nachman et al. [29] and Nachman’s
reconstruction method [26], only require large non-exceptional points .ζ . However,
in this sense the reconstruction process is very unstable. Hence, one of our desires
is to mimic the theory in two-dimensions, where we are able to reconstruct .γ from
small values of non-exceptional points .ζ by the D-bar method. We will see in a
further section how under circumstances one can still apply a version of it.

Now a first step in the uniqueness proof is to show that the exponential growing
solutions outside .� are uniquely identified by the Dirichlet-to-Neumann map.

Lemma 1 Let .q1, q2 ∈ L∞(�) and extended to zero outside .�, such that 0 is not
a Dirichlet eigenvalue of .−
 + qj in .� for .j = 1, 2. Further, let .ζ ∈ V a non-
exceptional point for .q1, q2. Suppose that .	q1 = 	q2 and .w1, w2 are the unique
solutions of .(−
 + qj )wj = 0 in .Rn of the form .eix·ζ (

1 + μj

)
. Then

.w1 = w2, in R
n \ �.

Proof Let .v ∈ H 1(�) be the unique solution of

. − 
v + q2 v = 0, in �

v|∂� = w1|∂� .

Then we define

.h =
{

v, in �

w1, in R
n \ �

Since, .	q1 = 	q2 it holds that .	q1 w1|∂� = 	q2 w1|∂� and thus .
∂w1
∂ν

= ∂v
∂ν

. This
implies that h is continuous over .∂�, as well as, .

∂h
∂ν

. Therefore, h solves .−
h +
q2 h = 0 in .Rn and has the appropriate asymptotics since .w1 has them. By the
uniqueness theorem it follows that .h = w2 and thus .w1 = w2 in .Rn \ �. �

Now the uniqueness theorem obtained in [29] follows also for complex-
conductivities directly.

Theorem 2 Let .q1, q2 ∈ L∞(�) extended to zero outside .�. Suppose that 0 is not
a Dirichlet eigenvalue of .−
 + qj , .j = 1, 2 on .�. If .	q1 = 	q2 , then .q1 = q2.

Proof Let .k ∈ R
n be fixed and for .m, s ∈ R

n we set

.ζ = 1

2
((k + s) + im) and ζ̃ = 1

2
((k − s) − im)
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with .k · s = k · m = s · m = 0 and .|k|2 + |s|2 = |m|2. The .ζ, ζ̃ are in .C
n and fulfill

the condition .ζ · ζ = 0. Hence, taking .s, m large enough we obtain solutions .wj of
the integral equation (9) for their respective potentials for .ζ̃ . By Green’s identity it
holds that

.

∫
�

eix·ζ qj (x)wj (x) dx =
∫

�

eix·ζ
wj (x) − wj
eix·ζ dx

=
∫

∂�

eix·ζ ∂wj

∂ν
− wj (ν · iζ ) eix·ζ dσ (x).

By hypothesis and the previous lemma .	q1 = 	q2 and thus .w1|∂� = w2|∂�.
Therefore, it also holds that

.
∂w1

∂ν

∣∣∣∣
∂�

= ∂w2

∂ν

∣∣∣∣
∂�

as .wj solve the interior problem .(−
 + qj )wj = 0. Hence, the right-hand side of
the integral above is equal for both .qj and assuming the asymptotics of .wj w.r.t. .ζ̃

it follows

.

∫
�

eix·ζ (q1w1 − q2w2) dx = 0

which is equivalent to

.

∫
�

eix·(ζ+ζ̃ ) (q1 − q2) dx =
∫

�

eix·(ζ+ζ̃ ) (q1ψ1 − q2ψ2) dx

Using .ζ + ζ̃ = k and taking modulus we obtain by Cauchy-Schwarz inequality and
Corollary 1

.

∣∣∣∣
∫

�

eix·k (q1 − q2) dx

∣∣∣∣ ≤
2∑

j=1

∫
�

∣∣qjψj

∣∣ ≤
2∑

j=1

‖qj‖1−δ‖ψj‖δ−1

≤
2∑

j=1

C

|ζ̃ | ‖qj‖1−δ‖qj‖δ.

Since .ζ̃ was arbitrarily depending on s, we can take the limit as .|s| → ∞. This
implies that the left-hand side equals to zero for each fixed .k ∈ R

n. Given that the
proof holds for all k we have

.

∫
�

eix·k(q1 − q2) dx = 0, ∀k ∈ R
n

Therefore, by Fourier inversion theorem we obtain .q1 = q2 in .�. �
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Note We do not require more assumptions for q being complex; second the
following uniqueness proof only works for .n ≥ 3 due to the required choice of
.ζ, ζ̃ .

Hence, uniqueness is extended for complex-potentials in .L∞(�) with 0 not
a Dirichlet eigenvalue of .(−
 + q), directly from the work of [29]. To extend
uniqueness for admittivities .γ ∈ C1,1(�̄) it is still necessary to establish a relation
between .	γ and .	q . We will present this in a later section. Now, we proceed
to explain how Nachman’s reconstruction method equally holds for complex-
conductivities.

3 Preliminaries for Reconstruction

In the following section, we present the necessary results to follow Nachman’s
approach [26]. The two main pinpoints in our extension to complex-conductivities
are the Lemma 4 and Proposition 3.

The first result concerns an estimate for the single layer operator which will
help us prove that there are no-exceptional points close to zero for complex-
conductivities. The estimate was obtained in [14].

The second result concerns the uniqueness of the interior Schrödinger problem.
In essence, this is were Nachman’s work needs to be extended, since is version
of this proposition was proven by estimates for real-coefficients. Even though, the
machinery to prove a complex-coefficient version does not require anything novel it
seems essential to provide a clear statement into why Nachman’s method still works.

Analogously to the classical single and double layer potentials we define the
respective operators for .Gζ . The single layer operator is defined as

.Sζ f (x) =
∫

∂�

Gζ (x − y)f (y) ds(y)

and the double layer as

.Dζ f (x) =
∫

∂�

∂Gζ

∂ν
(x − y)f (y) ds(y).

Moreover, taking the trace of double layer potential it holds

.Bζ f (x) := p.v.
∫

∂�

∂Gζ

∂ν
(x − y)f (y) ds(y), for x ∈ ∂�.

Since the singularity of .Gζ for x near y is the same as .G0, it is locally integrable on
.∂� and the trace of .Sζ is still “itself”.

We state here the properties that Nachman established and are essential for the
later proofs.
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Proposition 2 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3.

(i) For .0 ≤ s ≤ 1

.
∥∥Sζ f

∥∥
Hs+1(∂�)

≤ c(ζ, s)‖f ‖Hs(∂�). (14)

(ii) For .0 ≤ s ≤ 3
2 we have that .Bζ is bounded in .Hs(∂�).

Let .ρ0 be a number large enough so that .�̄ ⊂ {x : |x| < ρ0}. For any .ρ > ρ0 we
define .�′

ρ = {x : x �∈ �̄, |x| < ρ}.
Lemma 2 If .f ∈ H 1/2(∂�), the function .φ = Sζ f has the following properties

(i) .
φ = 0 in .R
n \ ∂�.

(ii) .φ ∈ H 2(�) and .φ ∈ H 2(�′
ρ) for any .ρ > ρ0.

(iii) .φ satisfies an analogue to the Sommerfeld radiation condition. For almost
every x it holds

. lim
ρ→∞

∫
|y|=ρ

[
Gζ (x − y)

∂φ

∂ν(y)
− φ(y)

∂Gζ

∂ν(y)
(x − y)

]
ds(y) = 0. (15)

In fact, for .ρ > ρ0 the above identity holds for .|x| < ρ even without taking
the limit.

(iv) Let .B†
ζ denote the operator on the boundary

.B
†
ζ f (x) = p.v.

∫
∂�

∂Gζ

∂ν(x)
(x − y)f (y) ds(y). (16)

It follows that the (nontangential) limits .∂φ/∂ν+, ∂φ/∂ν− of the normal
derivative of .φ as the boundary is approached from the outside and inside .�,
respectively, are given by

.
∂φ

∂ν±
= ∓1

2
f (x) + B

†
ζ f (x), for almost every x ∈ ∂�. (17)

(v) The boundary values .φ+, φ− of .φ from outside and inside of .�, respectively,
are identical as elements of .H 3/2(∂�) and agree with the trace of the single
layer potential .Sζ f .

Lemma 3 If .f ∈ H 3/2(∂�) the function .ψ = Dζ f defined in .R
n \ ∂� has the

properties (i), (ii) and (iii) of the Lemma 2.
Moreover, the non-tangential limits .ψ+, ψ− of .ψ as we approach the boundary

from outside and inside of .�, respectively, exist and satisfy

.ψ±(x) = ±1

2
f (x) + Bζ f (x), for almost every x ∈ ∂�. (18)
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Lemma 4 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3. The Faddeev fundamen-

tal solution .Gζ can be given through the decomposition

.Gζ (x) = G0(x) + Hζ (x),

where .G0 is the classical fundamental solution and .Hζ is an harmonic function.
Moreover, the single and double layer operators have a similar decomposition

and, for our own convenience, we present here the case for the single layer. For
.f ∈ H 1/2(∂�) we have

.Sζ f (x) = S0f (x) +
∫

∂�

Hζ (x − y)f (y) ds(y) =: S0f (x) + Hζ f (x).

Further, it holds

.‖Hζ ‖L(H 1/2(∂�),H 3/2(∂�) ≤ C|ζ |n−2,

where the constant C only depends on the domain.

Proof See [14] for further details. �
Now we provide the proof for uniqueness of the interior problem with a complex-

potential. This is the only “new” and required statement to bring forth the proof of
Nachman’s reconstruction to complex-admittivities.

Proposition 3 Let .� be a bounded .C1,1−domain in .R
n, n ≥ 3. Suppose that .q ∈

L∞(�̄) is complex-valued and that 0 is not a Dirichlet eigenvalue of .(−
 + q) in
.�. Then for every .f ∈ H 3/2(∂�) there is a unique .w ∈ H 2(�) such that

.

{
(−
 + q) w = 0 in �

w|∂� = f.
(19)

The solution operator is defined by .Pqf := w and has the mapping property

.Pq : H 3/2(∂�) → H 2(�).

Moreover, the Dirichlet-to-Neumann map operator has the mapping property

.	q : H 3/2(∂�) → H 1/2(∂�).

Proof The proof follows by studying first the Laplacian and showing that multipli-
cation by q is a compact operator from .H 2(�) to .L2(�).

Thus, let

.P0 : H 2(�) → L2(�) × H 3/2(∂�), u �→ ( −
u, tr u) .
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By the definition of .H 2(�) and the trace properties on this space and .C1,1−domains
the operator .P0 is linear and bounded. By Theorem 9.15. of [17] and under our
conditions on the domain, there always exists a unique solution in .H 2(�) of

.

{
−
u = f,

u|∂� = g.

Therefore, the operator .P0 is bijective and invertible. In particular is Fredholm of
index zero.

Analogously, we define the operator

.Pq : H 2(�) → L2(∂�) × H 3/2(∂�), u �→ ( [−
 + q] u, tr u) .

Then, the difference of the operators .Pq − P0 maps u to .(qu, 0) between the same
spaces. Since, the embedding .H 2(�) ↪→ L2(�) is compact, it immediately follows
that multiplication by .q ∈ L∞(�) is a compact operator. Hence, by definition .Pq −
P0 is a compact and since .Pq = P0 +(Pq −P0) is the sum of a Fredholm operator of
index zero and a compact operator, it still is Fredholm of index zero. Thus, to show
invertibility we prove that .ker Pq = {0}. Let .w ∈ ker Pq . By definition this implies
w is a solution in .H 2(�) of

.

{
−
w + qw = 0,

w|∂� = 0,

but due to the assumption of 0 not being a Dirichlet eigenvalue of .(−
 + q) in .� it
follows that .w ≡ 0. �

Our main assumption is that .γ ∈ C1,1(�̄), thus it is in .H 2(�). Therefore, for
potentials q given by the complex-conductivity the following statement holds.

Corollary 2 Let .� be a bounded .C1,1−domain in .R
n, n ≥ 3. For .γ ∈ C1,1(�̄)

such that .Re γ ≥ c > 0.
Then .q ∈ L∞(�) given by .q = 
(γ 1/2)/γ 1/2 is well-defined and 0 is not a

Dirichlet eigenvalue of .(−
 + q). Then the unique solution .w ∈ H 2(�) of

.

{
−
w + qw = 0

w|∂� = γ 1/2
(20)

is .w ≡ γ 1/2.

This corollary brings to light that if we know the boundary values of the
conductivity and the potential q in .�, we can find .γ by solving the above boundary
value problem.
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4 Boundary Integral Equation

The properties of the previous section allows us to establish a one-to-one correspon-
dence between the solution of a boundary integral equation and of the following
exterior problem

.(i) 
ψ = 0, in �′ := R
n \ �̄, (21)

(ii) ψ ∈ H 2(�′
ρ), for any ρ > ρ0,

(iii) ψ(x, ζ ) − eix·ζ satisfies (15),

(iv)
∂ψ

∂ν+
= 	qψ on ∂�.

In this section, we assume that .� is a bounded .C1,1-domain in .Rn, .n ≥ 3 and
.q ∈ L∞(�) is a complex-potential for which 0 is not a Dirichlet eigenvalue. Further,
most proofs follow directly from Nachman’s work [26], but we provide them here
for convenience of the reader. We will highlight the new pieces needed to put the
puzzle together.

Lemma 5 Let .ζ ∈ V.

(a) Suppose .ψ solves the exterior problem (21). Then its trace .fζ = ψ+ = ψ|∂�

solves the boundary integral equation

.fζ = eix·ζ −
[
Sζ 	q − Bζ − 1

2
I

]
fζ . (22)

(b) Conversely, suppose .fζ ∈ H 3/2(∂�) solves (22). Then the function .ψ(x, ζ )

defined for .x ∈ �′ by

.ψ(x, ζ ) = eix·ζ − (
Sζ 	q − Dζ

)
fζ (x) (23)

solves the above exterior problem under all conditions. Furthermore, .ψ|∂� =
fζ .

Proof

(a) Assume .ψ solves (21). We apply Green’s identity to .Gζ and .ψ in .�′
ρ , .ρ > ρ0.

It holds

.

(∫
|y|=ρ

−
∫

∂�

) [
Gζ (x − y)

∂ψ

∂ν+
− ψ+(y, ζ )

∂Gζ

∂ν+(y)
(x − y)

]
ds(y)

(24)

=
∫

�′
ρ

[
Gζ (x − y)
ψ(y, ζ ) − ψ(y, ζ )
yGζ (x − y)

]
dy.
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Since, .ψ is harmonic on .�′
ρ and .Gζ is the fundamental solution of .−
 we

obtain for arbitrary .x ∈ �′
ρ

.ψ(x, ζ ) =
∫

|y|=ρ

[
Gζ (x − y)

∂
(
ψ − eiy·ζ )

∂ν

−
(
ψ − eiy·ζ) ∂Gζ

∂ν+(y)
(x − y)

]
ds(y) (25)

+
∫

|y|=ρ

[
Gζ (x − y)

∂eiy·ζ

∂ν
− eiy·ζ ∂Gζ

∂ν(y)
(x − y)

]
ds(y)

−
∫

∂�

[
Gζ (x−y)

∂ψ

∂ν+
ds(y) −

∫
∂�

ψ+(y, ζ )
∂Gζ

∂ν(y)
(x−y)

]
ds(y)

By hypothesis (21-iii), the first integral vanishes. The function .eiy·ζ is harmonic
and a re-application of Green’s identity to the second integral on .|y| < ρ

equals .eix·ζ . Finally, due to (21-iv) the last integral is .
[
Sζ 	q − Dζ

]
ψ . Thus,

the function .ψ fulfills for .x ∈ �′ the identity

.ψ(x, ζ ) = eix·ζ − [
Sζ 	q − Dζ

]
fζ .

Taking the non-tangential limit to the boundary from the outside we obtain
by Lemmas 2 and 3

.fζ (x) = eix·ζ −
[
Sζ 	q − Bζ − 1

2
I

]
fζ (x).

(b) Conversely, suppose .fζ ∈ H 3/2(∂�) solves the boundary integral equa-
tion (22). Define a function .ψ in .�′ by

.ψ(x, ζ ) = eix·ζ − [
Sζ 	q − Dζ

]
fζ (x). (26)

We show that this .ψ solves the exterior problem (21) from properties of the
single and double layer (Lemmas 2 and 3).

It is immediate to see that .ψ fulfills the property (i) of (21), since for .ζ ·ζ = 0 the
exponential .eix·ζ is harmonic, and .Sζ 	qfζ , .Dζ fζ are harmonic in .�′ by the above
mentioned lemmas. Moreover, it holds that .Sζ 	qfζ , Dζ fζ ∈ H 2(�′

ρ), ρ > ρ0 and
further the identity (15) also holds. Hence, the property (ii) and (iii) of the exterior
problem follow.
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To show the last property, we approach the boundary .∂� non-tangentially from
the outside and we obtain, as in part (a),

. ψ|∂� = eix·ζ −
[
Sζ 	q − Bζ − 1

2
I

]
fζ .

By virtue of .fζ fulfilling the boundary integral equation the right-hand side equals
.fζ and therefore .ψ|∂� = fζ . From this and the first three properties of (21), that
we already showed .ψ fulfills, we can obtain analogously to part (a)

.ψ(x, ζ ) = eix·ζ − Sζ

(
∂ψ

∂ν+

)
+ Dζ fζ , for x ∈ �′. (27)

Subtracting both formulations of .ψ , (27) and (26), the following equality holds
throughout .�′

.Sζ

[
	qfζ − ∂ψ

∂ν+

]
= 0. (28)

By taking traces from the outside, it actually holds on the boundary .∂�. We are

reminded that .Sζ

[
	qfζ − ∂ψ

∂ν+

]
is harmonic in .Rn \ ∂� and since the trace is 0 on

.∂� uniqueness of the interior problem for .q ≡ 0 implies that the equality (28) holds
everywhere. Then, its normal derivatives will be zero and subtracting them on .∂�

with the help of (17) we obtain

.
[
	q − ∂ψ/∂ν+

] = ∂Sζ

[
	q − ∂ψ/∂ν+

]
∂ν−

− ∂Sζ

[
	q − ∂ψ/∂ν+

]
∂ν+

= 0. (29)

Thus the last property of the exterior problem follows. �
Furthermore, we are able to obtain a relation between the exterior problem and

the solutions of integral equation (9).

Lemma 6 Let .ζ ∈ V.

(a) Suppose .ψ ∈ L2
loc(R

n) is a solution of

.ψ(x, ζ ) = eix·ζ −
∫
R

n
Gζ (x − y)q(y)ψ(y, ζ ).

Then the restriction of .ψ to .�′ solves the exterior problem (21) and fulfills the
respective properties (i)–(iv).

(b) Conversely, if .ψ solves the exterior problem (21), there is a unique solution
.ψ̃ ∈ L2

loc(R
n) of the integral equation (9), such that .ψ̃ = ψ in .�′.



Reconstruction from Boundary Measurements: Complex Conductivities 225

Proof

(a) From the Proposition 1 it follows .ψ ∈ H 2
loc(R

n), which immediately implies
property (ii) of the exterior problem. Moreover, in .R

n it holds .(−
 + q)ψ = 0,
thus due to .q ≡ 0 on .�′ the property (i) holds, i.e., .−
ψ = 0 in .�′.

Applying Green identity on .|y| < ρ yields

.

∫
|y|=ρ

[
Gζ (x − y)

∂ψ

∂ν(y)
− ψ(y, ζ )

∂Gζ

∂ν(y)
(x − y)

]
ds(y)

=
∫

|y|<ρ

Gζ (x − y)q(y)ψ(y, ζ ) dy + ψ(x, ζ ), for a.e. x with |x| < ρ.

Now, we can choose .ρ large in order to contain the supp of q . Since .ψ solves
integral equation this means that the right-hand side equals .eix·ζ . Moreover, we
already showed that

.eix·ζ =
∫

|y|=ρ

[
Gζ (x−y)

∂eiy·ζ

∂ν(y)
− eiy·ζ ∂Gζ

∂ν(y)
(x − y)

]
ds(y).

Then passing the exponential to the right-hand side, we obtain

.

∫
|y|=ρ

[
Gζ (x − y)

∂
(
ψ − eiy·ζ )
∂ν(y)

−
(
ψ(y, ζ ) − eiy·ζ) ∂Gζ

∂ν(y)
(x − y)

]

× ds(y) = 0

for all .ρ > ρ0 Thus property iii) follows by taking the limit as .ρ → ∞.
Immediately, we can see that .	qψ− = ∂ψ

∂ν− and since .ψ ∈ H 2 in a two-

sided neighborhood of .∂� it holds that .ψ− = ψ+ and .
∂ψ
∂ν− = ∂ψ

∂ν+ . This leads
to .ψ fulfilling the iv) property. Therefore, the restriction of .ψ to .�′ solves the
exterior problem (21).

(b) Suppose .ψ defined in .�′ solves the exterior problem (21). Set .ψ̃ by .ψ̃ = Pqψ+
in .� and .ψ̃ = ψ in .�′. Then on .∂�,

.ψ̃− = (Pqψ+) = ψ+ = ψ̃+

and

.
∂ψ̃

∂ν−
= 	qψ+ = ∂ψ

∂ν+
= ∂ψ̃

∂ν+
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due to (iv). Thus .ψ̃ solves .(−
 + q)ψ̃ = 0 on .R
n. Applying Green’s formula

in .|y| < ρ yields

.

∫
|y|=ρ

[
Gζ (x − y)

∂ψ

∂ν(y)
− ψ(y, ζ )

∂Gζ

∂ν(y)
(x − y)

]
ds(y)

=
∫

|y|<ρ

Gζ (x − y)q(y)ψ̃(y, ζ ) dy + ψ̃(x, ζ )

for almost every x with .|x| < ρ. Thus by letting .ρ → ∞ the radiation condition
(iii) implies that the left-hand side is .eix·ζ . Hence .ψ̃ verifies the desired integral
equation in .R

n.

To finalize we prove that this extension is unique. Suppose that we have two
extensions .ψ̃1, ψ̃2 ∈ L2

loc(R
n) of .ψ which agree in .�′ and solve the integral

equation everywhere. As in part (a), we see that .ψ̃1, ψ̃2 ∈ H 2
loc(R

n) and .(−
 +
q)ψ̃j = 0 in .Rn for .j = 1, 2. Hence, they are in .H 2 on a two-sided neighborhood
of .∂�. This implies that .ψ̃j

+ = ψ̃
j
−, for .j = 1, 2, which promptly leads to .ψ̃1− = ψ̃2−

since they agree on .�′. Now, from the uniqueness of the interior problem it follows
that .ψ̃1 = ψ̃2. �
Remark The two previous lemmas establish that a solution of the boundary integral
equation is equivalent to a exponential growing solution of the Schrödinger equation
in .R

n. The interesting remark is that there was no explicit requirement of .ζ being
large. Hence, by showing that the boundary integral equation is uniquely solvable
for small values of .ζ we guarantee the existence of exponential growing solutions
for these .ζ .

Moreover, on all the proves above there is no explicit difference of q being real
or complex.

Keeping this in mind, we focus now on solvability of the boundary integral
equation. The following proposition glues together the papers [26] and [14] and
applies them to the complex potential by making use of the uniqueness of the interior
problem in this scenario obtained in Proposition 3.

Proposition 4 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3. Let q be a complex-

valued potential in .L∞(�) and suppose that 0 is not Dirichlet eigenvalue of .−
+q

in .�. We define .Kζ = Sζ 	q − Bζ − 1
2 I and for any .ζ ∈ V it holds

(a) The operators .K0, Kζ are compact on .H 3/2(∂�).
(b) If .Re q ≥ 0, then .I + K0 is invertible in .H 3/2(∂�).
(c) If .Re q ≥ 0 there exists an .ε > 0 with .|ζ | < ε for which the operator .I + Kζ is

invertible in .H 3/2(�).
(d) There exists an .R > 0 such that for all .|ζ | > R the operator .I +Kζ is invertible

in .H 3/2(∂�).
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Proof Part (a) follows by a compactness embedding. Let .f ∈ H 3/2(∂�) and set
.w = Pqf as the solution of interior Dirichlet problem (19). Let .x ∈ � we use the
Green’s formula to obtain

.

∫
�

Gζ (x − y)
w(y) dy + w(x) = [
Sζ 	q − Dζ

]
f (x)

which is equivalent to

.

∫
�

Gζ (x − y)q(y)Pqf (y) dy + w(x) = [
Sζ	q − Dζ

]
f (x)

By letting x approach the boundary non-tangentially from the inside we thus obtain

.tr
(
Gζ ∗ (qPqf )

) + f (x) = Sζ 	qf (x) −
[
−1

2
f (x) + Bζ f (x)

]

and therefore

.

[
Sζ 	q − Bζ − 1

2
I

]
f = tr

(
Gζ ∗ (qPqf )

)
.

Hence, our desired operator satisfies this factorization, where the following mapping
properties hold

.Pq : H 3/2(∂�) → H 2(�);

.ı : H 2(�) → L2(�) is a compact embedding;

.Mq : L2(�) → L2(�);

.Gζ : L2(�) → H 2(�) convolution with .Gζ , which we prove up next;

.tr : H 2(�) → H 3/2(∂�).

And the compactness of the embedding implies compactness of the desired operator.
(b) Let .ζ = 0. In this case .G0 is the classical fundamental solution and the

corresponding operators are the classical ones. By part (a), we already know that

.S0	q − B0 − 1
2 I is compact on .H 3/2(∂�). Then .I + K0 =

[
1
2I + S0	q − B0

]
is

Fredholm of index zero on .H 3/2(∂�). Therefore, it is enough to show injectivity.

Let .h ∈ H 3/2(∂�) such that .

[
1
2 I + S0	q − B0

]
h = 0. Define .w = −S0	qh +

D0h. Then w is harmonic in .R
n, .w ∈ H 2(�) and .w ∈ H 2(�′

ρ) by Lemmas 2 and 3.
Moreover, approaching the boundary non-tangentially by the inside we obtain

.w− = −S0	qh +
(

−1

2
h + B0h

)
= −

[
1

2
I + S0	q − B0

]
h = 0.

Since, the problem .−
w = 0, w|∂� = 0 is uniquely solvable in .H 2(�) it follows
that .w ≡ 0 in .� and thus .

∂w
∂ν− = 0 on .∂�.
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By noticing the jump relations for the single and double layer operator (see [25]),
we can deduce that

.[w] = w+ − w− = w+ = [D0h] = h

and

.

[
∂w

∂ν

]
= ∂w

∂ν+
= −

[
∂

∂ν
S0	qh

]
= 	qh.

Now, by Proposition 3 there is a unique solution .u ∈ H 2(�) of

.

{
(−
 + q) u = 0,

u|∂� = h,

such that .	qh = ∂u
∂ν−

∣∣∣
∂�

. We set

.v =
{

u, in �

w, in R
n \ �

and see that .u− = w+ = h and .
∂u
∂ν− = ∂w

∂ν+ = 	q , thus it holds that v and .
∂v
∂ν

are

continuous over the boundary .∂�. Therefore .v ∈ H 2(Bρ(0)), ρ > 0 and it solves
.−
v + qv = 0 in .R

n, since .q ≡ 0, in .R
n \ �.

Let .χρ ∈ C∞
c (Rn) such that .χ ≡ 1 in .Bρ−ε(0) and .χ ≡ 0 in .ρ − ε < |x| < ρ,

for .ε > 0 small enough.
Then for .φ ∈ H 1(Rn) it follows by Green’s identity

.

∫
|x|<ρ

(−
v + qv) (χφ) dx = 0,

which is equivalent to

.

∫
|x|<ρ

∇v · ∇(χφ) + qv(χφ) dx = 0,

as well as

.

∫
�

∇v · ∇φ + qvφ dx +
∫

Bρ(0)\�
∇w · ∇(χφ) dx = 0.
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In particular we can take .φ = v̄ and since w is given through the classical single and
double layer it follows that .∇w ∈ L2(Bρ(0) \ �̄). Thus taking the limit as .ρ → ∞

.

∫
�

|∇v|2φ + q|v|2 dx +
∫

Bρ(0)\�
∇w · ∇(χw̄) dx = 0,

∫
�

|∇v|2φ + q|v|2 dx +
∫

Bρ(0)\�
|∇w|2 dx =

∫
Bρ(0)\�

∇w · ∇((1 − χ)w̄) dx,

which yields

.

∫
R

n
|∇v|2 + q|v|2 dx = 0

and therefore

.

∫
R

n
|∇v|2 + (Re q)|v|2 dx = 0.

Now, we can apply Hardy’s inequality for .H 1(Rn)

.
(d − 2)2

4

∫
R

n
|x|−2|v|2 dx ≤

∫
R

n
|∇v|2 dx

to finally obtain the condition

.

∫
R

n

[
(d − 2)2

4|x|2 + (Re q(x))

]
|v|2 dx ≤ 0.

Hence, for .Re q ≥ 0 this implies that .v ≡ 0 in .R
n. Thus .h ≡ 0 in .∂�. Hence

we obtain invertibility in the case .ζ = 0. Notice that we have been loose on the
requirement for q , since this will be enough for the complex-conductivity purposes,

but this proof works for potentials that satisfy the estimate .Re q ≥ − (d−2)2

4|x|2 .
Part (c) follows quite easily by the fact that the set of invertible operators is open.

However, we present the result with the help of some estimates and Neumann series.
For .h ∈ H 3/2(∂�) it holds .Kζ h = Sζ (	q − 	0)h, since due to Green’s formula

we have .Bζ = − 1
2I + Sζ 	0.

Moreover, by Lemma 4 and for .h ∈ H 3/2(∂�) we have the decomposition
.Sζ (	q − 	0)h = S0(	q − 	0)h +Hζ (	q − 	0)h. Moreover, we also have by the
lemma the estimate

.‖Hζ (	q − 	0)h‖H 3/2(∂�) ≤ C|ζ |n−2‖(	q − 	0)h‖H 1/2(∂�)

≤ C|ζ |n−2‖h‖H 3/2(∂�).
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From the invertibility of .I + K0 we obtain the decomposition

.[I + Kζ ] = I + K0 + Hζ

(
	q − 	0

)
= (I + K0)

(
I + (I + K0)

−1 Hζ

(
	q − 	0

))
and if

.‖ (I + K0)
−1 Hζ

(
	q − 	0

) ‖L(H 3/2(∂�)) < 1

we obtain invertibility for .I + Kζ in .H 3/2(∂�). This norm can be translated to an
estimate for .ζ by the above on .Hζ . We have

.‖ (I + K0)
−1 Hζ

(
	q − 	0

) ‖L(H 3/2(∂�))

≤ C|ζ |n−2
∥∥∥(I + K0)

−1
∥∥∥L(H 3/2(∂�))

∥∥Hζ

(
	q − 	0

)∥∥L(H 3/2(∂�))
< 1.

Hence, for

.|ζ | <

[
1∥∥(I + K0)

−1
∥∥L(H 3/2(∂�))

∥∥Hζ

(
	q − 	0

)∥∥L(H 3/2(∂�))

]1/(n−2)

=: ε,

invertibility is obtained by Neumann series.
Part (d) uses the existence of exponential growing solutions for large values of

.|ζ |.
Let .R > 0 be large enough such that for .ζ ∈ C

n with .ζ · ζ = 0, |ζ | > R we have
unique exponential growing solutions of (9), Corollary 1. Under this conditions, we
have showed that .Kζ := Sζ 	q − Bζ − 1

2I is compact in .H 3/2(∂�). Therefore,
.I +Kζ is a Fredholm operator of index zero in .H 3/2(∂�). We need to show that the
kernel is empty to prove that it is invertible.

Let .g ∈ H 3/2(∂�) be in .ker K . Then .h = [−Sζ	q + Dζ ]g solves the exterior
problem (i), (ii), (iv) and fulfills the radiation condition (15) (the proof is analogous
to Lemma 5).

Moreover, we can extend h to a solution .h̃ of .h̃ = − ∫
R

n Gζ (x − y)q(y)h̃(y) dy

in all of .Rn (analogous to the previous lemma). By the estimates on .Gζ we note that
.e−ix·ζ h̃ ∈ L2

δ−1(R
n), 0 < δ < 1 and

.e−ix·ζ h̃ = −Aζ (e
−ix·ζ h̃)



Reconstruction from Boundary Measurements: Complex Conductivities 231

with .Aζ defined as in (13). Since, we took .R > 0 large enough then .Aζ is a
contraction in .L2

δ−1(R
n) and this forces .h̃ ≡ 0. Therefore,

.g ≡ 0 and I + Kζ is invertible in H 3/2(∂�)

and the statement is proven. �
Therefore, we can solve the boundary integral equation for small and large values

of .|ζ | and obtain .ψ on .∂� by

.ψ(x, ζ ) =
[

1

2
I + Sζ 	q − Bζ

]−1 (
eix·ζ)

This allows us to obtain the scattering transform from the boundary data

Theorem 3 Suppose that .� is a bounded .C1,1-domain in .Rn, n ≥ 3. Let .q ∈
L∞(�) be complex-valued and suppose that 0 is not a Dirichlet eigenvalue of .−
+
q in .�.

We define the scattering transform for non-exceptional points .ζ ∈ V by

.t(ξ, ζ ) =
∫
R

3
e−ix·(ζ+ξ)q(x)ψ(x, ζ ) dx, ξ ∈ R

n. (30)

Then, for each .ξ ∈ R
n we can compute the scattering transform for the non-

exceptional points .ζ ∈ Vξ := {
ζ ∈ C

n \ {0} : ζ · ζ = 0, |ξ |2 + 2ζ · ξ = 0
}
from

the solutions of the boundary integral equation by

.t(ξ, ζ ) =
∫

∂�

e−ix·(ζ+ξ)
[
	q + i(ξ + ζ ) · ν]

ψ(x, ζ ) ds(x), ξ ∈ R
n. (31)

Proof From Lemmas 5 and 6 we obtain unique exponentially growing solutions
of (9) by the one-to-one relation with the boundary integral (22). Therefore, by
Green identity it holds

.t(ξ, ζ ) =
∫

�

e−ix·(ξ+ζ )q(x)ψ(x, ζ ) dx

=
∫

�

e−ix·(ξ+ζ )
ψ(x, ζ ) −
(

e−ix·(ζ+ξ)

)
ψ(x, ζ ) dx

=
∫

∂�

e−ix·(ξ+ζ )
[
	q + i(ξ + ζ ) · ν

]
ψ(x, ζ ) ds(x)

for .ξ ∈ R
n and .ζ ∈ Vξ such that the boundary integral equation has a unique

solution. �
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5 From t to γ

From the scattering transform we can obtain the Fourier transform of the potential
through large asymptotics. Unfortunately for this we need to solve the boundary
integral equation for large values .ζ , which is makes this method very unstable.
In [20] they avoid the boundary integral equation by using the approximation
.ψ(x, ζ ) ≈ eix·ζ to compute the scattering transform. This simplified version was
even applied for complex conductivities in order to obtain a stable reconstruction
procedure.

This method is based on the following asymptotic

Theorem 4 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 3. Let .q ∈ L∞(�) be a
complex-valued potential extended to zero outside .�, such that 0 is not a Dirichlet
eigenvalue of .(−
 + q). Then for .|ζ | > R and .0 < δ < 1

.|t(ξ, ζ ) − q̂(ξ)| ≤ c̃(δ, R)

|ζ | ‖q‖2
δ (32)

for all .ξ ∈ R
n.

Proof The proof follows trivially by Corollary 1. If .q ∈ L∞(�) is a complex-
valued and compactly supported potential it follows that .q̂ is well-defined and

.
∣∣t(ξ, ζ ) − q̂(ξ)

∣∣ =
∣∣∣∣
∫

e−ix·ξq(x)
[
e−ix·ζψ(x, ζ ) − 1

]
dx

∣∣∣∣
≤ ‖q‖1−δ‖e−ix·ζψ(x, ζ ) − 1‖δ−1 ≤ c̃(δ, R)

|ζ | ‖q‖2∞

holds true. �
One of the ways to obtain a more stable reconstruction is the so-called d-bar

method. Following the .∂̄ compatibility equations satisfied by .t known from [4, 21,
28], Nachman was able to derive a d-bar equation in three dimensions, which allows
to obtain solutions .μ that eventually permit the computation of .q̂ from .t(ξ, ζ ) for
.ξ ∈ R

n, .|ζ | ≥ M , .(ξ + ζ )2 = 0 and its derivative in .ζ . Although more elaborate
than in two dimensions, this method does not require taking the limit of .|ζ | → ∞.
In essence, the proof follows through for the complex-potential as well!

For such, let .ψ(x, ζ ) be the solution of (9) with .e−ix·ζψ(x, ζ ) − 1 ∈ L2
δ−1(R

n),
that is, .ζ is not an exceptional point. Define,

.μ(x, ζ ) := |q(x)|e−ix·ζψ(x, ζ ) (33)

then .μ solves the following integral equation

.μ(x, ζ ) = |q(x)| − |q(x)|
∫
R

n
gζ (x − y)q̃(y)μ(y, ζ ) dy (34)
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Hereby, we set

.Ãζ f (x) := |q(x)|
∫
R

n
gζ (x − y)q̃(y)f (y) dy

with .q̃(x) = q(x)/|q(x)| in the support of q and 0 otherwise. Moreover, the
scattering transform is given through

.t(ξ, ζ ) :=
∫
R

n
e−ix·ξ q̃(y)μ(x, ζ ) dx. (35)

Lemma 7 Suppose .q ∈ L∞(Rn) with compact support. Let .R > c(δ, a)‖q(x)

〈x〉‖L∞ with .δ ∈ (0, 1) and .c(δ, a) as in Proposition 1.

(a) If .ζ ≥ R, ζ · ζ = 0, then (34) has a unique solution .μ(·, ζ ) in .L2(Rn) with
compact support.

(b) For .|ζ | > M , .ζ · ζ = 0 and all .w ∈ C
n with .w · ζ̄ = 0,

.w · ∂μ

∂ζ̄
(x, ζ ) = −1

(2π)n−1

∫
eix·ξw · ξδ(|ξ |2 + 2ζ · ξ)t (ξ, ζ )μ(x, ζ + ξ) dξ.

(36)

(c) For .ζ ∈ Vξ with .|ζ | > M and all .w ∈ C
n with .w · ζ̄ = 0 and .w · ξ = 0,

.w · ∂t

∂ζ̄
(ξ, ζ ) = −1

(2π)n

∫
w · ηδ(η2 + 2ζ · η)t(ξ − η, ζ + η)t(η, ζ ) dη.

(37)

Proof For details see Nachman [26]. �
We keep it short here and refer to Nachman [26] for the formula to obtain q

without taking limits of the scattering transform.
Our interest resides now in the behavior of exponential growing solutions for .ζ

close to zero. Due to invertibility of the boundary integral equation we can in fact
show that there are no exceptional points near 0. Therefore, analogously to [14] we
are able to obtain the following estimate

Lemma 8 Let .γ ∈ C1,1(�) be the complex-conductivity with .σ ≥ c > 0, ε ≥
0, ω ∈ R

+ and suppose .γ ≡ 1 near .∂�. Set .q = (
γ 1/2)/γ 1/2 ∈ L∞(�).
For .ζ ∈ V sufficiently small and .φ ∈ H 3/2(∂�) the corresponding boundary

integral solution of (22), it holds

.‖φ(·, ζ ) − 1‖H 3/2(∂�) ≤ C|ζ |. (38)
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Proof Let .Kζ = Sζ

(
	q − 	0

)
. Solutions of the boundary integral equation fulfill

.φ(x, ζ ) − 1 =
(
eix·ζ − 1

)
− Kζ (φ(x, ζ ) − 1) ,

which follows by .	q1 = 0 and .	01 = 0, since the unique .H 2-solution of .(−
 +
q)u = 0, u|∂� = 1 is .γ 1/2 and .w = 1 is the unique harmonic function in .H 2(�)

with boundary value 1.
Under the conditions on .γ it holds that .Re q > 0 and hence by Proposition 4 it

holds that .[I + Kζ ] is invertible in .H 3/2(∂�) for small .ζ and hence,

.φ − 1 = [
I + Kζ

]−1
(
eix·ζ − 1

)
.

It clearly holds that by Taylor series that .‖eix·ζ − 1‖H 3/2(∂�) ≤ C1|ζ | and
.
∥∥[I + Kζ ]−1

∥∥L(H 3/2(∂�))
is uniformly bounded for small .|ζ | due to Neumann series

inversion. Thus,

.‖φ − 1‖H 3/2(∂�) ≤ C2‖eix·ζ − 1‖H 3/2(∂�) ≤ C3|ζ |

and the statement follows. �
Theorem 5 Let .γ ∈ C1,1(�) be the complex-conductivity with .σ ≥ c > 0, ε ≥
0, ω ∈ R

+ and suppose .γ ≡ 1 near .∂�. Set .q = (
γ 1/2)/γ 1/2 ∈ L∞(�).
For .ζ ∈ V small enough such that (9) has unique exponentially growing

solutions .ψ(x, ζ ), it holds

.‖ψ(·, ζ ) − γ 1/2(·)‖L2(�) ≤ C|ζ |. (39)

Proof Since .γ = 1 near the boundary .∂� we have that .γ 1/2 is the unique .H 2(�)

solution of

.

{
−
u + qu = 0, in �

u|∂� = 1.

By the elliptic estimates, we obtain that

.‖ψ(·, ζ ) − γ 1/2(·)‖L2(�) ≤ ‖ψ(·, ζ ) − γ 1/2(·)‖H 2(�)

≤ ‖ψ(·, ζ ) − γ 1/2(·)‖H 3/2(∂�) ≤ C|ζ |

and the statement follows. �
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This theorem states that we can reconstruct the complex-conductivity from the
exponential growing solutions by

.γ (x) = lim|ζ |→0
ψ(x, ζ ), for a.e. x ∈ �. (40)

However, recall that for small .ζ we only know how to obtain the boundary values
of the exponential growing solutions from the boundary measurements. To provide
a reconstruction of .γ in .� it is necessary to compute these solutions for all .ζ small
inside .� from the scattering data. This might be possible by the .∂̄-equation.

In order to obtain a .∂̄ reconstruction method complex conductivities the follow-
ing problems need to be solved

1. Uniqueness of (34) for .ζ non-exceptional and considerably small: A first
step is to show that this equation is uniquely solvable for small values of .ζ .
In Nachman’s proof invertibility of the operator .I + Ãζ in .L2(Rn) follows by
that of .I + Aζ obtained in Corollary 1 for .ζ large. In the case of small values,
we showed that the integral equation (9) is uniquely solvable due to the unique
solvability of the boundary integral equation. However, this will not imply that
the operator .I + Aζ is invertible and therefore we can follow the same approach
to prove the existence of a unique solution .μ to (34).

2. Solvability of .∂̄-equation: In [26] there is no proof that .∂̄−equation is uniquely
solvable, but this is essential since this would be the only equation fully
independent of q and where its information is given through the scattering
transform. In this sense, we need to study the equation in the space .V \ {ζ ∈
C

n : ε ≤ |ζ | < R}. In the work of [23] they establish this approach in a two-
dimensional positive energy setting and intuition could lead to a similar work in
our case.

6 Reconstruction of �q from the Boundary
Measurements �γ

The Dirichlet-to-Neumann map .	γ is bounded from .H 1/2(∂�) to .H−1/2(∂�).
Moreover, it is properly defined through

.〈	γ f, g〉 =
∫

�

γ∇u · ∇v dx, (41)

where u is the unique .H 1(�) solution of the interior problem .∇ · (γ∇u) = 0 in .�

and .u|∂� = f and .v ∈ H 1(�) with .v|∂� = g.
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We can also define the Dirichlet-to-Neumann map for the Schrödinger operator
by

.	q : H 1/2(∂�) → H−1/2(∂�)

〈	qf̃ , g̃〉 =
∫

�

∇ũ · ∇ṽ + qũṽ dx, ∀ṽ ∈ H 1(�), s.t. ṽ|∂� = g̃,

and .ũ ∈ H 1(�) is the unique solution to .(−
 + q)ũ = 0, in �, ũ|∂� = f̃ .
As in the real case, since both problems are interconnected we can obtain .	q

from .	γ by

.	q = γ −1/2
[
	γ + 1

2

∂γ

∂ν

]
γ −1/2. (42)

This brings to light that we can determine .	q from .	γ and the boundary values

.γ |∂� and .
∂γ
∂ν

∣∣∣
∂�

. Thus, if .γ ≡ 1 near .∂� then for .γ ∈ W 2,∞(�) it holds that

.	q = 	γ . Otherwise, we need to obtain a method to reconstruct these boundary
values.

There are many results to compute these boundary values. However, most of
them need further smoothness. Still Nachman holds the best result for our case. In
[27] he showed that the boundary values can be obtained without further smoothness
assumptions. Following his proof we see that there is no explicit requirement of .γ

being real, besides the fact that .γ ≥ c > 0 and uniqueness of the Dirichlet problem
in .H 1(�). Hence, we can quickly extend the result for complex-conductivities in
.W 2,∞(�) with .Re γ ≥ c > 0.

The result is obtained through the following lemmas.

Lemma 9 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 2. Assume .γ ∈ W 1,r (�)

for .r > n and .Re γ ≥ c > 0.
Then for any .f ∈ H 1/2(∂�) and

.h ∈ H̊−1/2(∂�) :=
{
h ∈ H−1/2(∂�) : 〈h, 1〉∂�j = 0, j = 1, . . . , N

}
the identity holds

.〈h, (γ − R	γ )f 〉 =
∫

�

u∇w · ∇γ, (43)

where .u ∈ H 1(�) solution of ∇ ·(γ∇u) = 0, u|∂� = f, and .w ∈ H 1(�) is a weak
solution of .
w = 0 in .� with .

∂w
∂ν

= h and .R denotes the Neumann-to-Dirichlet
map.

Lemma 10 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 2. Assume .γ is in
.W 2,p(�), .p > n/2 and .Re γ ≥ c > 0.
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For any .f, g ∈ H 1/2(∂�) the identity holds

.〈g,

(
2	γ − 	1γ − γ	1 + ∂γ

∂ν

)
f 〉 =

∫
�

2v∇(u − u0) · ∇γ + v(2u − u0)
γ dx

where .u, u0, v are respectively the .H 1(�) solutions of .Lγ (u) = 0, 
u0 =
0 and 
v = 0, in .�, with .u|∂� = f, u0|∂� = f and .v|∂� = g.

From this we obtain the boundary reconstruction formulas.

Theorem 6 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 2. Suppose .γ ∈
W 1,r (�), r > n and .Re γ ≥ c > 0.

(i) .γ |∂�∩U can be recovered from .	γ by

.〈h, γf 〉 = lim|η|→∞
η∈Rn−1×{0}

〈hη,R	γ e−i〈·,η〉f 〉, (44)

with .f ∈ H 1/2(∂�) ∩ C(∂�) and .h ∈ L2(�) supported in .U ∩ ∂� and .hη is
defined as zero outside .∂� ∩ U and

.hη(x) = h(x)e−ix·η − 1

|∂� ∩ U |
∫

∂�∩U

h(y)e−iy·η dy, for x ∈ ∂� ∩ U.

(ii) If .γ ∈ W 2,r , r > n/2, then for any continuous function .f, g in .H 1/2(∂�) with
support in .∂� ∩ ∂� holds

.〈g,
∂γ

∂ν
f 〉 = lim|η|→∞

η∈Rn−1×{0}
〈g, e−i〈·,η〉 (

γ	1 + 	1γ − 2	γ

)
ei〈·,η〉f 〉. (45)
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