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Preface

Both, harmonic analysis and the analysis of partial differential equations are closely
intertwined fields of mathematical research. The aim of this volume is to bring
together a broad range of current research topics and emerging ideas, providing
insights into novel approaches and highlighting some of the connections between
seemingly different areas of pure and applied mathematics.

Most of the contributions in this volume are related to talks given and results
presented at the 13th ISAAC Congress in Ghent in August 2021. The special session
Harmonic Analysis and PDEs attracted 42 participants from 16 countries.

Ghent, Belgium Michael Ruzhansky
Stuttgart, Germany Jens Wirth
October 2022
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The Wave Resolvent for Compactly
Supported Perturbations of Minkowski
Space

Michał Wrochna and Ruben Zeitoun

Abstract In this note, we consider the wave operator .�g in the case of globally
hyperbolic, compactly supported perturbations of static spacetimes. We give an
elementary proof of the essential self-adjointness of .�g and of uniform microlocal
estimates for the resolvent in this setting. This provides a model for studying
Lorentzian spectral zeta functions which is particularly simple, yet sufficiently
general for locally deriving Einstein equations from a spectral Lagrangian.

1 Introduction

1.1 Motivation

Let .P = �g be the wave operator on a Lorentzian manifold .(M, g). It was shown
by Vasy [26] that if .(M, g) is a non-trapping Lorentzian scattering space then .�g

is essentially self-adjoint in the sense of the canonical .L2(M, g) space. This result
was then generalized by Nakamura–Taira [16–18] to long-range perturbations of
Minkowski space, higher order operators and asymptotically static spacetimes with
compact Cauchy surface. In consequence, in each of these settings one can define
complex powers .(�g − iε)−α by functional calculus for all .ε > 0.
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In the first situation, it was shown in [2] that under the extra hypothesis that .n ≥ 4
is even and .(M, g) is globally hyperbolic, the Schwartz kernel of .(�g−iε)−α has for
.Re α > n

2 a well-defined on-diagonal restriction .(�g − iε)−α(x, x), which extends
to a meromorphic function of .α ∈ C (called the Lorentzian spectral zeta function
density). Furthermore, the residues can be expressed in terms of the metric g, in
particular:

. lim
ε→0+ res

α= n
2 −1

(
�g − iε

)−α
(x, x) = Rg(x)

i6(4π)
n
2 �

(
n
2 − 1

) , (1)

where .Rg(x) is the scalar curvature at .x ∈ M . Since the variational principle .δgRg =
0 is equivalent to vacuum Einstein equations and the l.h.s. refers to spectral theory,
this gives a spectral action (or strictly speaking, Lagrangian) for gravity.

The proofs of essential self-adjointness and formula (1) rely on microlocal radial
estimates [8, 15, 24–26], which are nowadays broadly used in hyperbolic problems.
The non-expert reader might however not be familiar with the required formalism,
nor with the various technical issues that arise from the combination of microlocal
and global aspects (even the definition of non-trapping Lorentzian scattering spaces
requires some familiarity).

In this note, our objective is to present a much simpler model in which it is
possible to give more elementary proofs. This is motivated first of all by pedagogical
reasons, but also by the need of having a toy model for testing various ideas that go
beyond formula (1).

The easiest case is without doubt the class of ultra-static spacetimes .(M, g)

(Minkowski space being the primary example). In this situation, the wave operator
.�g is of the form .∂2

t − �h for some t-independent Riemannian metric h. Essential
self-adjointness is then almost immediate (provided that .�h is essentially self-
adjoint), and it can also be easily proved for more general static metrics (see
Dereziński–Siemssen [5]) in which case there are extra multiplication operators in
the expression for .�g. The proof of (1) simplifies as well, at least for ultra-static
metrics [2]. However, this type of assumptions is in practice too restrictive because
it narrows down the allowed metric variations to time-independent ones.

This leads us to consider compactly supported perturbations of static spacetimes.
Such perturbations are indeed sufficient for formulating a variational principle and
for the purpose of illustrating propagation phenomena arising in greater generality.
On the other hand, the assumption that the perturbation has compact support
allows us to largely bypass the asymptotic analysis, and we can give proofs based
almost exclusively on variants of Hörmander’s classical propagation of singularities
theorem.
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1.2 Main Result and Sketch of Proof

More precisely, let .(Y, h) be a Riemannian metric of dimension .n−1 (where .n � 2),
and let .(M, g0) be .M = R × Y equipped with a Lorentzian metric of the form

. g0 = β dt2 − h = β2(y)dt2 − hij (y)dyidyj ,

for some positive .β ∈ C∞(Y ). A metric of this form is called static, or more
precisely, standard static (see e.g. [21] for more remarks on the terminology). In
the special case .β = 1 the metric is said to be ultra-static; the latter is the natural
Lorentzian analogue of a Riemannian product-type metric.

Let g be another smooth Lorentzian metric on M . We make the following
assumptions.

Hypothesis 1 We assume that:

1. the Riemannian manifold .(Y, h) is complete;
2. g is a compactly supported perturbation of .g0, i.e.

. supp(g − g0) is compact;

3. there exists a constant .C > 0 such that .C < β(y) < C−1 for all .y ∈ Y ;
4. .(M, g0) and .(M, g) are globally hyperbolic spacetimes.

We recall that a Lorentzian manifold .(M, g) is a globally hyperbolic spacetime
if it is time oriented and there exists a Cauchy surface, i.e. a closed subset of M

intersected exactly once by each maximally extended time-like curve. We remark
that when .(M, g0) is (for instance) Minkowski space, then global hyperbolicity of
the perturbed spacetime .(M, g) is equivalent to a non-trapping condition, see [10,
Prop. 4.3].

Let .�g be the wave operator, or d’Alembertian on .(M, g), i.e. the Laplace–
Beltrami operator for the Lorentzian metric g. More explicitly, denoting .|g| =
|det g| for brevity, we have

.�g = |g(x)|− 1
2 ∂xj |g(x)| 1

2 gjk(x)∂xk

where we sum over repeated indices. In this setting, we prove the following result.

Theorem 1 Assume Hypothesis 1. Then the wave operator .�g is essentially self-
adjoint on .C∞

c (M) in .L2(M, g).

Furthermore, we show uniform microlocal resolvent estimates for the wave
operator .�g (strictly speaking, its closure). In [2] they are a key ingredient in the
analysis of complex powers of .�g. We give here an analogue in our setting.

Theorem 2 Assume Hypothesis 1. Then the wave resolvent .(�g − z)−1 has
Feynman wavefront set. More precisely, let .s ∈ R, .ε > 0 and .θ ∈ ]0, π/2[. Then
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for .|arg z − π/2| < θ , .|z| ≥ ε, the uniform operator wavefront set of .(�g − z)−1 of

order s and weight .〈z〉− 1
2 (see Definition 1) satisfies

.WF′ (s)
〈z〉− 1

2

(
(�g − z)−1) ⊂ �,

where .� is the (primed) Feynman wavefront set (see Definition 2).

This type of estimates is used in [2] to show that the resolvent and complex
powers of .�g are sufficiently well approximated by a Hadamard parametrix, which
in turn can be used to extract the scalar curvature .Rg (see [4] for a brief review). That
subsequent analysis is completely general, and so by combining Theorem 2 with [2,
§§4–8] we obtain the following result (see also [3] for further consequences).

Corollary 1 Assume Hypothesis 1. Then the identity (1) holds true in even dimen-
sion .n = dim M � 4.

We remark that while our assumptions are certainly restrictive, our results are
not exclusively special cases of [2, 16–18, 26] because we allow for more general
behaviour in the spatial directions. Together with the recent work [18], this provides
further evidence for Dereziński’s conjecture [6] that essential self-adjointness may
hold true on a large class of asymptotically static spacetimes (with possibly general
behaviour in the spatial directions). We conjecture that the statement of Theorem 2
would remain valid as well.

1.3 Structure of Paper

Essential self-adjointness, i.e. Theorem 1, is proved in Sect. 2, preceded by various
preliminaries on propagation of singularities. Theorem 2 is proved in Sect. 3; that
section also contains the necessary background on operator wavefront sets.

2 Essential Self-Adjointness

2.1 Preliminaries on Self-Adjointness

Let us first consider the ultra-static case .β = 1. Let

.P0 = ∂2
t − �h

be the unperturbed wave operator, i.e. the wave operator on the static spacetime
.(M, g0). In that case there is an argument that gives its essential self-adjointness
immediately.
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Lemma 1 .P0 is essentially self-adjoint on .C∞
c (M) in .L2(M, g0).

Proof We quote the argument from [5] for the reader’s convenience. We know that
.D2

t is essentially self-adjoint on .C∞
c (R) in .L2(R), and .�h is essentially self-adjoint

on .C∞
c (Y ) in .L2(Y, h) [1]. Therefore by Reed and Simon [20, § VIII.10], .P0 =

−D2
t ⊗1−1⊗�h is essentially self-adjoint on the algebraic tensor product of .C∞

c (R)

with .C∞
c (Y ), which is dense in .C∞

c (M) in .L2(M, dt2 + h) = L2(M, dt2 − h) =
L2(M, g0). ��

Denoting also by .P0 the closure, the resolvent .(P0 − z)−1 exists for .z ∈ C \ R.
Let us denote by .L0 the closure of minus the Laplace–Beltrami operator .∂2

t +�h

on the complete Riemannian metric .dt2 +h. We use it to introduce a global Sobolev
space of order .s ∈ R:

.Hs(M) := (1 + L0)
− s

2 L2(M, g0),

i.e. the norm is given by .‖u‖Hs =
∥
∥
∥(1 + L0)

s
2 u

∥
∥
∥

L2
in terms of the norm of

.L2(M, g0). We will also frequently write .L2(M) instead of .L2(M, g0) for the
sake of brevity. Since .P0 commutes with .L0, for all .m ∈ R we can extend
the resolvent to an operator .(P0 − z)−1 ∈ B(Hm(M),Hm(M)) which satisfies
.(P0 − z)(P0 − z)−1 = 1 on .Hm(M). By a direct computation one can check the
formula

.
(
(P0 − z)−1f

)
(t) = −1

2

∫

R

e−i|t−s|√−�h−z

√−�h − z
f (s)ds, (2)

for .Im z > 0 and .f ∈ L2(M), where the r.h.s. is defined using Fourier transform
and functional calculus.

Let us now focus on the wave operator .�g for the perturbed metric g. Let .U :
L2(M, g0) → L2(M, g) be the multiplication operator by .|g|− 1

4 |g0| 1
4 , and let

.P := U∗�gU.

Then, .supp(P − P0) is compact, and since U is bounded and boundedly invert-
ible, essential self-adjointness of .�g in .L2(M, g) is equivalent to essential self-
adjointness of P in .L2(M, g0).

Recall that the standard criterion for essential self-adjointness says that it suffices
to show the implication

.∀u ∈ L2(M) s.t. (P ± i)u = 0, u = 0, (3)

where .(P ± i)u = 0 is meant in the sense of distributions. While the two conditions
with different signs are needed, they are largely analogous so we will only consider
the ‘.−’ case.
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The basic argument consists in writing for all .u ∈ L2(M) such that .(P −i)u = 0,

.2i ‖u‖2
L2 = (Pu|u)L2 − (u|Pu)L2 .

If .u ∈ H 2(M), by integration by parts the latter expression vanishes, and we
conclude in that case .u = 0. For this reason it suffices to prove

.∀u ∈ L2(M) s.t. (P ± i)u = 0, u ∈ H 2(M). (4)

As shown by Nakamura–Taira [16], in the case of compactly supported pertur-
bations, global aspects can be dealt with relatively easily.

We denote by .�m(M) the set of pseudo-differential operators of order .m ∈ R

on M (in the sense of the general pseudo-differential calculus on manifolds, see
e.g. [22, §4.3]).

Proposition 1 Assume .β = 1. Let .k ∈ N≥0 and suppose .u ∈ L2(M) ∩ Hk+1
loc (M)

satisfies .(P − i)u = 0. Then .u ∈ Hk(M).

Proof The proof of [16, Prop. C.1] applies verbatim to our case; we repeat it for

the reader’s convenience. Set .Nε = (1 + L0)
1
2 (1 + εL0)

− 1
2 , .ε ≥ 0. For .ε > 0,

.Nε ∈ �0(M)∩B(L2(M)), hence .N2k
ε u ∈ L2(M)∩Hk+1

loc (M). Let .ψ ∈ C∞(M) be
such that .ψ = 0 in a neighborhood of .supp(P − P0) and .ψ = 1 on the complement
of some compact set.

Then,

.P0(ψu) = P(ψu) = ψPu + [P,ψ]u = −iψu + Bu, (5)

where .B := [P,ψ] is of order 1 and has compactly supported coefficients. The latter
implies .Bu ∈ Hk(M), so by (5) we get .P0(ψu) ∈ L2(M). We can now compute

.

2i Im(N2k
ε (ψu)|P0(ψu))L2 = 2i Im(N2k

ε (ψu)| − iψu + Bu)L2

= 2‖Nk
ε (ψu)‖2

L2 + 2i Im(N2k
ε (ψu)|Bu)L2 .

(6)

On the other hand, .[Nε, P0] = 0, .Nε is bounded and .P0(ψu) ∈ L2(M) ∩ Hk
loc(M),

so .P0(N
2k
ε (ψu)) = N2k

ε (P0(ψu)) ∈ L2(M) ∩ Hk
loc(M). In consequence,

.2i Im(N2k
ε (ψu)|P0(ψu))L2 = (N2k

ε (ψu)|P0(ψu))L2 − (P0(ψu)|N2k
ε (ψu))L2 = 0.

(7)

Thus, we have

.‖Nk
ε (ψu)‖2

L2 =
∣
∣∣Im(N2k

ε (ψu), Bu)L2

∣
∣∣ � ‖Nk

ε (ψu)‖L2‖Nk
ε Bu‖L2, (8)
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hence .‖Nk
ε (ψu)‖L2 � ‖Nk

ε Bu‖L2 . Since .L0 ≥ 0, .Nε � Nε′ for .ε′ < ε. Moreover,
.Nk

0 Bu ∈ L2(M) since .Bu ∈ Hk(M). Therefore, by monotone convergence, as
.ε → 0+ we get .‖Nk

0 (ψu)‖L2 � ‖Nk
0 Bu‖L2 < +∞. Since .N0 = 〈L0〉, this implies

.ψu ∈ Hk(M) as claimed. ��

2.2 Preliminaries on Microlocal Analysis

In view of Proposition 1 we are left with the task of proving sufficient local
regularity of .L2 solutions of .(P − i)u = 0. To that end we will need several basic
notions from microlocal analysis.

We will write .(x; ξ) = (t, y; τ, η) for points in .T ∗M and .o for the zero section.
Let .p(x; ξ) be the principal symbol of P , and let .� = p−1({0}) be its characteristic
set. It splits into two connected components, .� = �+ ∪ �−, where the sign
convention is fixed by saying that in the special case when .p(x; ξ) = p0(x; ξ) =
−τ 2 + η2, .�± equals

.�±
0 = {(t, y; τ, η) ∈ T ∗M \ o | τ = ± |η|}.

Let us recall that bicharacteristics are integral curves of the Hamilton vector field
.Hp of p, defined in terms of the Poisson bracket by .Hp = {p, ·}. For a pair of points
.(xi; ξi) ∈ T ∗M \o, .i = 1, 2, we write .(x1; ξ1)∼(x2; ξ2) if .(x1; ξ1) ∈ � and .(x2; ξ2)

can be joined from .(x1; ξ1) by a bicharacteristic in .�.
Recall that given .u ∈ D′(M), its Sobolev wavefront set .WF(s)(u) of order .s ∈ R

is defined as follows: .(x; ξ) ∈ T ∗M \ o is not in .WF(s)(u) if and only if there exists
a properly supported .B ∈ �0(M) (or equivalently, .B ∈ �m(M) for some .m ∈ R)
such that .Bu ∈ Hs

loc(M) (resp. .Bu ∈ Hs−m
loc (M)).

Let us recall a special case of Hörmander’s classical propagation of singularities
theorem for real principal type operators (.P − z is of real principal type by global
hyperbolicity of .(M, g), see e.g. [19, Prop. 4.3]), formulated here in terms of the
Sobolev wavefront set.

Proposition 2 (Duistermaat and Hörmander [7, §6.3]) Let .z ∈ C and suppose
.u ∈ D′(M) satisfies .f := (P − z)u ∈ Hs−1

loc (M). If .(x; ξ) ∈ WF(s)(u), then
.(x; ξ) ∈ �, and furthermore .(x ′; ξ ′) ∈ WF(s)(u) for all .(x ′; ξ ′) ∈ T ∗M \ o such
that .(x; ξ) ∼ (x ′; ξ ′).

Strictly speaking, the basic statement that .(x; ξ) ∈ � is referred to as microlocal
elliptic regularity or the elliptic estimate, as it can indeed be written in the form of
a uniform estimate.
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2.3 Proof of Local Regularity

Let .V = P − P0. By hypothesis, V is a second order differential operator with
compactly supported coefficients. Let .T > 0 be large enough so that .supp V ⊂
[−T , T ] × Y .

We start by showing a key lemma about microlocal regularity for large times.
Although in the proof of essential self-adjointness we will only need a particular
case with fixed z and .f = 0, the general statement will be useful in the next section.
For further reference the lemma is stated for general P obtained with compactly
supported perturbations of .P0.

Lemma 2 Let P be a second order differential operator such that .V = P −P0 has
compactly supported coefficients. Assume .β = 1. Let .(x1; ξ1) = (t1, y1; τ1, η1) ∈
�± be such that .±t1 > T . Then for .Im z � ε > 0, there exists a bounded family of
properly supported pseudo-differential operators .B±(z) ∈ �0(M), each elliptic at
.(x1; ξ1) and such that for all .u ∈ L2(M) satisfying .f := (P − z)u ∈ L2

c(M),

.B±(z)(u − (P0 − z)−1f ) = 0. (9)

If in addition .supp f ⊂ [−T−, T+] × Y for some .T+, T− > 0 and .±t1 > ±T± then

.B±(z)u = 0. (10)

Proof For all .u ∈ L2(M), if .f = (P − z)u ∈ L2
c(M) then .(P0 − z)u = f − V u as

elements of .H−2
loc (M), and

.u − (P0 − z)−1f = −(P0 − z)−1V u. (11)

Let .A(z) = (−�h − z)1/2. Then .A(z) ∈ �1(M), and its principal symbol is .|η|
1
2
h

(cf. the last paragraph in the proof of Lemma 3). Setting .v = (1 ⊗ A(z)−1)V u and
using the formula (2) for .(P0 − z)−1, extended to elements .H−2

loc (M) supported in a
finite time interval, we obtain

.
(
u − (P0 − z)−1f

)
(t) = 1

2

∫

R

e−i|t−s|A(z)v(s)ds.

Since .supp v ⊂ [−T , T ] × Y , this implies that

.
(
u − (P0 − z)−1f

)
(t) = 1

2
e∓itA(z)

∫

R

e±isA(z)v(s)ds for ± t > T . (12)

In consequence,

.(Dt ± A(z))
(
u − (P0 − z)−1f

)
(t) = 0 for ± t > T .



The Wave Resolvent for Compactly Supported Perturbations of Minkowski Space 9

If in addition .supp f ⊂ [T−, T+] × Y , then we can represent .(P0 − z)−1f similarly
as the r.h.s. of (12). Hence .(Dt ± A(z))(P0 − z)−1f = 0 for .±t > ±T± and we
conclude

.(Dt ± A(z))u(t) = 0 for ± t > max{T ,±T±}. (13)

Now, let .(x1; ξ1) = (t1, y1; τ1, η1) ∈ �± be such that .±t1 > T . Although .Dt ±
A(z) = (Dt⊗1)±(1⊗A(z)) is not a pseudo-differential operator in .�1(M) (instead,
it is in some larger class with rather bad properties), there exists .B0 ∈ �0(M)

properly supported such that

.B±,1(z) := B0(Dt ± A(z)) ∈ �1(M),

and such that .B±,1(z) is elliptic at .(x1; ξ1). In fact, since .(t1, y1; τ1, η1) ∈ �, we
have .η1 �= 0 (as .η1 = 0 would imply .τ1 = 0), so we can choose .B0 = 0 microlocally
in a conic neighborhood of .{η1 = 0} and .B0 = 1 in a punctured neighborhood of
it, see [13, Thm. 18.1.35], cf. the proof of [9, (3), Prop. 6.8]. Finally, by composing
.B±,1(z) with a suitable family .C(z) ∈ �−1(M), vanishing for .±t � T (resp. for
.±t � max{T ,±T±}), we obtain .B±(z) := C(z)B±,1(z) with the desired uniformity
in .�0(M) and satisfying (9) (resp. (10)). ��
Remark 1 Lemma 2 is a microlocal regularity statement at large, but finite times,
and then our next step will be to deduce a corresponding statement for arbitrary
times by Hörmander’s propagation of singularity theorem. In more general situa-
tions, one needs to start with a regularity statement at infinite times, which motivates
the use of radial propagation estimates or related methods [16–18, 26]. In these
settings, the asymptotic analogues of the two conditions (13) can be thought as
boundary conditions at infinity [10]: these were shown by Taira to be satisfied in the
case of the wave resolvent on asymptotically Minkowski spacetimes [23].

Proposition 3 Assume .β = 1, and suppose .u ∈ L2(M) satisfies .(P − i)u = 0.
Then .u ∈ C∞(M).

Proof For any .(x; ξ) ∈ �± ∩ {±t > T } we use Lemma 2 with .z = i and .f = 0,
which gives existence of .B± ∈ �0(M) elliptic at .(x; ξ) such that .B±u = 0. Thus,
.(x; ξ) /∈ WF(s)(u) for all .s ∈ R. We conclude

.WF(s)(u) ∩ �± ∩ {±t > T } = ∅.

By propagation of singularities, this implies .WF(s)(u)∩�± = ∅. Since .WF(s)(u) ⊂
� = �+ ∪ �− we deduce immediately .WF(s)(u) = ∅ for all .s ∈ R, hence .u ∈
C∞(M). ��

Proposition 3 combined with Proposition 1 implies (4). This concludes the
proof of essential self-adjointness of P , hence the self-adjointness of .�g stated in
Theorem 1 in the case .β = 1.
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2.4 Generalization to Static Spacetimes

Let us now discuss the adaptations needed to prove the essential self-adjointness
in the case when the spacetime is not necessarily ultra-static, i.e. when .β is not
necessarily 1.

The unperturbed wave operator is then

.P0 = β−1∂2
t − �h.

Thanks to the assumption .C < β < C−1, the multiplication operator .β is bounded
with bounded inverse. Let

.P̃0 = β
1
2 P0β

1
2 , P̃ = β

1
2 Pβ

1
2 , �̃h = β

1
2 �hβ

1
2 .

Then, as observed in [5], essential self-adjointness of P is equivalent to essential
self-adjointness of .P̃ . Furthermore,

.P̃0 = ∂2
t − �̃h

with .�̃h essentially self-adjoint, and the coefficients of .P̃ − P̃0 are compactly
supported. Therefore, we can repeat the arguments from Sects. 2.1–2.3 to show the
essential self-adjointness of .P̃0 and .P̃ , and hence of P .

This concludes the proof of Theorem 1.
In the next section we will be interested in the resolvent .(P − z)−1, which is not

related in a straightforward way with the resolvent of .(P̃ − z)−1. For this reason we
will need a more direct approach. The key fact is that Lemma 2 remains valid for P

with .β �= 1, as shown below.

Lemma 3 The assertion of Lemma 2 holds true for .P0 and P without the
assumption .β = 1.

Proof Let .Im z ≥ ε > 0. In comparison with the case .β = 1, the main difference is
that the formula for the unperturbed resolvent .(P0 − z)−1 needs to be modified. We
have indeed

.(P0 − z)−1 = β
1
2 (P̃0 − zβ)−1β

1
2 , (14)

provided that we check that .P̃0 − zβ = ∂2
t − �̃h − zβ is boundedly invertible.

Let us first define

.L(z) := i(−�̃h − zβ), with domain Dom L(z) := Dom(−�̃h).

Since .β is bounded, the operator .L(z) is closed. Furthermore,

. Re(u|L(z)u) = (Im z)(u|βu) ≥ 1

2
C−1ε‖u‖L2, u ∈ Dom L(z), (15)
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so .L(z) is m-accretive and .0 /∈ sp(L(z)). By [14, §3, Thm. 3.35], .L(z) has a unique

m-accretive square root .L(z)
1
2 , which in addition is sectorial of angle .

π
4 and satisfies

.0 /∈ sp(L(z)
1
2 ). It follows that if we set

.A(z) := e−iπ/4L(z)
1
2 , (16)

then .0 /∈ sp(A(z)) and moreover, .iA(z) is m-accretive. In consequence, .−iA(z) is
the generator of a strongly continuous contraction semigroup denoted by .R+ � t �→
e−itA(z) ∈ B(L2(M)). Let now

.(R(z)f )(t) =
∫

R

e−i|t−s|A(z)A(z)−1f (s)ds

for .f ∈ L2
c(M). Since .(1 ⊗ A(z)−1)f ∈ L2

c(R; Dom A(z)), standard semigroup
theory applies, and we get easily .R(z)f ∈ C0(R; Dom A(z)), in particular .R(z)f

is a distribution. In the sense of distributions,

.
(P̃0 − zβ)R(z)f = (∂2

t + A(z)2)R(z)f

= (∂t − iA(z))(∂t + iA(z))R(z)f = f
(17)

for all .f ∈ L2
c(M). On the other hand, by a computation analogous to (15) we obtain

that the operator .i(P̃0 − zβ) with domain .Dom P̃0 is m-accretive and boundedly
invertible. By applying its inverse to both sides of (17) we obtain .(P̃0 − zβ)−1 =
R(z) on .L2

c(M). We conclude that .(P0 − z)−1 = β
1
2 (P̃0 − zβ)−1β

1
2 = β

1
2 R(z)β

1
2

on .L2
c(M). In summary,

.((P0 − z)−1f )(t) = β
1
2

∫

R

e−i|t−s|A(z)A(z)−1β
1
2 f (s)ds, f ∈ L2

c(M).

From that point on we can repeat the proof of Lemma 2 with .(Dt ± A(z)) replaced

by .(Dt ± A(z))β− 1
2 , where .A(z) is defined in (16).

This requires us to check that .A(z) ∈ �1(M). In fact, we can show in analogy to
the proof of [11, Prop. 4.7] that the resolvent .(L(z)−λ)−1 of .L(z) satisfies a variant
of the Beals criterion in global Sobolev spaces defined using .−�̃h. Then, for all
.χ1, χ2 ∈ C∞

c (M), .χ1A(z)χ2 can be expressed as an integral of .χ1(L(z) − λ)−1)χ2
(see the proof of [14, §3, Thm. 3.35]). By repeating the arguments in the proof of
[11, Thm. 4.8] (with all relevant formulas multiplied by .χ1 and .χ2) we conclude that

.A(z) ∈ �1(M), and its principal symbol equals .σpr
(
A(z)

)
(y; η) = |η|

1
2
h (y). ��
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3 Uniform Microlocal Estimates

3.1 Uniform Wavefront Set

Throughout this section we will write .P = �g (rather than .P = U∗�gU ).
We start by introducing the uniform wavefront set which appears in the formula-

tion of Theorem 2.

Definition 1 Let .Z ⊂ C and suppose .{G(z)}z∈Z is for all .m ∈ R a bounded family
of operators in .B(Hm

c (M),Hm
loc(M)). The uniform operator wavefront set of order

.s ∈ R and weight .〈z〉− 1
2 of .{G(z)}z∈Z is the set

.WF′ (s)
〈z〉− 1

2

(
G(z)

) ⊂ (T ∗M \ o) × (T ∗M \ o) (18)

defined as follows: .((x1; ξ1), (x2; ξ2)) is not in (18) if and only if for all .ε > 0 there
exists a uniformly bounded family .Bi(z) ∈ �0(M) of properly supported operators,
each elliptic at .(xi; ξi) and such that for all .r ∈ R, the family

.〈z〉 1
2 B1(z)G(z)B2(z)

∗ for z ∈ Z is bounded in B(Hr
c (M),H r+s

loc (M)).

We define the uniform operator wavefront set of order .s ∈ R and weight 1

in the same way, with .〈z〉 1
2 replaced by 1, and we denote that set .WF′ (s)(G(z)

)

for simplicity. Definition 1 is similar to the definition from [2, §3], with the only
difference that we allow .Bi to depend on z (which is easier to verify in practice).

Let us denote by .�∗ be the diagonal in .(T ∗M \ o)×2, i.e.

.�∗ = {((x1; ξ1), (x2; ξ2)) | x1 = x2, ξ1 = ξ2} ⊂ (T ∗M \ o)×2.

Definition 2 The Feynman wavefront set .� ⊂ (T ∗M \ o)×2 is defined by

.

� := (
(�+)×2 ∩ {((x1; ξ1),(x2; ξ2)) | (x1; ξ1) ∼ (x2; ξ2) and x1 ∈ J−(x2)}

)

∪ (
(�−)×2 ∩ {((x1; ξ1),(x2; ξ2)) | (x1; ξ1) ∼ (x2; ξ2)

and x1 ∈ J+(x2)}
)∪ �∗.

In the definition we employed the convention which corresponds to considering
primed wavefront sets (as opposed to wavefront sets of Schwartz kernels). We
caution the reader that beside the choice of working with ‘primed’ or ‘non-primed’
wavefront sets, in the context of QFT there are two sign conventions possible.

As in [2] we will use the following version of Hörmander’s propagation of
singularities theorem, formulated in terms of the uniform wavefront set.
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Proposition 4 Let .Z ⊂ {z ∈ C | Im z � 0}. Suppose that for all .m ∈ R, .G(z) and
.(P − z)G(z) are bounded families of operators in .B(Hm

c (M),Hm
loc(M)) for .z ∈ Z.

Suppose

.((x1; ξ1),(x2; ξ2)) ∈ WF′ (s)(G(z)
) \ WF′ (s−1)

(
(P − z)G(z)

)
. (19)

Then .(x1; ξ1) ∈ �. Furthermore, .((x ′
1; ξ ′

1),(x2; ξ2)) ∈ WF′ (s)(G(z)
)
for all

.(x ′
1; ξ ′

1) such that .(x ′
1; ξ ′

1) ∼ (x1; ξ1) and .(x ′
1; ξ ′

1) precedes .(x1; ξ1) along the
bicharacteristic flow, provided that .((x; ξ),(x2; ξ2)) /∈ WF′ (s−1)

(
(P − z)G(z)

)
for

all .(x; ξ) on the bicharacteristic connecting .(x1; ξ1) and .(x ′
1; ξ ′

1).

Proof We explain the relationship to better known formulations for the sake of
completeness, see [2] for more details. In what follows, all pseudo-differential
operators are assumed compactly supported.

The proof of propagation of singularities by positive commutator arguments [12]
gives a uniform estimate of the following form. Let .s ∈ R, .N � 0. For any .B ′

1 ∈
�0(M) elliptic at .(x1; ξ1), and any .B ∈ �0(M) elliptic in a neighborhood of the
bicharacteristic from .(x ′

1; ξ ′
1) to .(x; ξ), we have

.‖B1u‖s � C(‖B ′
1u‖s + ‖B(P − z)u‖s−1 + ‖χu‖N) (20)

uniformly for .u ∈ H−N
loc (M) and .z ∈ Z, where .B1 ∈ �0(M) is some .�DO elliptic at

.(x1; ξ1) and .χ ∈ C∞
c (M). Now, suppose .((x ′

1; ξ ′
1),(x2; ξ2)) /∈ WF′ (s)(G(z)). Then

there exist .B ′
1(z), B2(z) ∈ �0(M) elliptic at respectively .(x ′

1; ξ ′
1), (x2; ξ2) such

that for any bounded subset .U ⊂ Hl
c(M), the set .B ′

1(z)G(z)B∗
2 (z)U is uniformly

bounded in .Hl+s
loc (M). By (20) applied to elements of .G(z)B∗

2U , .B1G(z)B∗
2 (z)U is

bounded in .Hl+s
loc (M), hence .((x1; ξ1),(x2; ξ2)) /∈ WF′ (s)(Gz). ��

Note that .WF′ (s)(1) = �∗ for large .s ∈ R. Thus, if .(P − z)G(z) = 1, then
Proposition 4 says that we can propagate singularities (or equivalently, regularity)
of .G(z) along bicharacteristics in the first factor as long as they do not hit .�∗.

There is an analogous statement for propagation in the second factor of .(T ∗M \
o)×2 if .G(z)(P − z) is bounded in .B(Hm

c (M),Hm
loc(M)). Namely, if

.((x1; ξ1),(x2; ξ2)) ∈ WF′ (s)(G(z)
) \ WF′ (s−1)

(
G(z)(P − z)

)
, (21)

then .(x2; ξ2) ∈ �. Furthermore, .((x1; ξ1),(x
′
2; ξ ′

2)) ∈ WF′ (s)(G(z)) for all .(x ′
2; ξ ′

2)

such that .(x ′
2; ξ ′

2) ∼ (x2; ξ2), provided that .((x1; ξ1),(x; ξ)) /∈ WF′ (s−1)
(
G(z)(P −

z)
)

for all .(x; ξ) on the bicharacteristic connecting .(x2; ξ2) and .(x ′
2; ξ ′

2).
For .ε > 0, let .Zε ⊂ C be a “punctured sector” in the upper half-plane of the form

.Zε := {z ∈ C | |arg z − π/2| < θ, |z| ≥ ε} (22)

for some arbitrarily chosen .θ ∈ ]0, π/2[.
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Proposition 5 If .Z = Zε with .ε > 0 then in Proposition 4 we can replace
.((x ′

1; ξ ′
1),(x2; ξ2)) ∈ WF′ (s)(G(z)

)
by .((x ′

1; ξ ′
1),(x2; ξ2)) ∈ WF′ (s−1/2)

〈z〉− 1
2

(
G(z)

)

Proof The positive commutator argument used to prove (20) gives actually the
stronger estimate

.‖B1u‖s + (Im z)
1
2 ‖B1u‖s− 1

2
� C(‖B ′

1u‖s + ‖B(P − z)u‖s−1 + ‖χu‖N), (23)

see [2] for more details. Furthermore,

.‖B1u‖
s− 1

2
� C1〈z〉− 1

2 (‖B1u‖s + (Im z)
1
2 ‖B1u‖

s− 1
2
)

for some .C1 > 0 uniformly in .z ∈ Zε. Hence,

.‖B1u‖s− 1
2
� C2〈z〉− 1

2 (‖B ′
1u‖s + ‖B(P − z)u‖s−1 + ‖χu‖N),

and from that point on we can apply the argument recalled after (20). ��

3.2 Uniform Resolvent Estimate

We first prove a basic estimate on regularity properties of .(P − z)−1, which later on
enables us to use the operator formulation of propagation of singularities.

Lemma 4 For all .m � 0, the family of operators .(P − z)−1, .Im z > 0, is bounded
in .B(Hm

c (M),Hm+1
loc (M)).

Proof This can be shown in a similar vein as Proposition 3. Namely, let .f ∈
Hm

c (M). By Lemma 2, for every .(x1; ξ1) = (t1, y1; τ1, η1) ∈ �± with .±t1
sufficiently large there exists a bounded family .B±(z) ∈ �0(M) such that .B±(z) is
elliptic at .(x1; ξ1) and

.B±(z)(P − z)−1f = 0, (24)

hence .(x1; ξ1) /∈ WF(m+1)((P − z)−1f ) by (24). Since .WF(m)(f ) = ∅, by
propagation of singularities applied to .(P − z)−1f we get .(x; ξ) /∈ WF(m+1)((P −
z)−1f ) for all .(x; ξ) such that .(x; ξ) ∼ (x1; ξ1) and .±t � ±t1. In conclusion,
.�± ∩ WF(m+1)((P − z)−1f ) = ∅. On the other hand .WF(m+1)((P − z)−1f ) ⊂
� = �+ ∪ �− by elliptic regularity. Hence .WF(m+1)((P − z)−1f ) = ∅, which
yields .(P − z)−1f ∈ Hm+1

loc (M). By the uniformity of propagation estimates and of
the elliptic estimate, .Hm+1

loc (M)-seminorms of .(P −z)−1f are bounded by .Hm
c (M)-

seminorms of f , uniformly in z. ��
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We are now ready to prove that the uniform operator wavefront set of .(P − z)−1

in .Zε is contained in the Feynman wavefront .�.

Proof of Theorem 2

Step 1. Let .(x1; ξ1) = (t1, y1; τ1, η1) ∈ �± with .±t1 > T (where T is as in
Sect. 2.3) and let .(x2; ξ2) = (t2, y2; τ2, η2) ∈ T ∗M \ o be such that .±t1 > ±t2.
Then by Lemma 2, there exists a bounded family .B±(z) ∈ �0(M) such that
.B±(z) is elliptic at .(x1; ξ1) and

.B±(z) ◦ (P − z)−1 ◦ χ = 0

for some .χ ∈ C∞
c (M) with .χ(x2) �= 0, provided that .supp χ is a sufficiently

small neighborhood of .x2. This implies .((x1; ξ1), (x2; ξ2)) /∈ WF′ (s)((P − z)−1
)

for all .s ∈ R. In conclusion,

.
(
�± × (T ∗M \o))∩{±t1 > T, ±t1 > ±t2}∩WF′ (s)((P − z)−1) = ∅. (25)

Step 2. Next, we use propagation of singularities to deduce

.
(
�± × (T ∗M \ o)

) ∩ WF′ (s)
〈z〉− 1

2

(
(P − z)−1) ⊂ �. (26)

More precisely, let .(x; ξ) ∈ �± and suppose .(x2; ξ2) ∈ T ∗M \ o is such that

.((x; ξ),(x2; ξ2)) ∈ WF′ (s)
〈z〉− 1

2

(
(P − z)−1) \ �. (27)

Since .(x; ξ) ∈ �± and .((x; ξ),(x2; ξ2)) /∈ �, we can find .(x1; ξ1) =
(t1, y1; τ1, η1) ∈ �± with .±t1 > max{T ,±t2} such that .(x1; ξ1) ∼ (x; ξ)

and .(x2; ξ2) does not intersect the bicharacteristic connecting .(x1; ξ1) and .(x; ξ).
By (25), .((x1; ξ1),(x2; ξ2)) /∈ WF′ (s)((P −z)−1

)
. By propagation of singularities

in the form given in Proposition 4 this implies .((x; ξ),(x2; ξ2)) /∈ WF′ (s)
〈z〉− 1

2

(
(P −

z)−1
)
, which contradicts (27). The argument is valid for any .(x; ξ) ∈ �±, so we

conclude (26).
Step 3. By proceeding analogously in the second factor, we obtain

.
(
(T ∗M \ o) × �±) ∩ WF′ (s)

〈z〉− 1
2

(
(P − z)−1) ⊂ �. (28)

In combination with the two versions of identity (26) this yields

.(� × �) ∩ WF′ (s)
〈z〉− 1

2

(
(P − z)−1) ⊂ �. (29)
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On the other hand, by the elliptic regularity statement in Proposition 4 and its
analogue in the second factor, we have

.WF′ (s)
〈z〉− 1

2

(
(P − z)−1) ⊂ (� × �) ∪ �∗.

Thus (29) implies .WF′ (s)
〈z〉− 1

2

(
(P − z)−1

) ⊂ � ∪ �∗ = �, which concludes the

proof. ��
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Smoothing Effect and Strichartz
Estimates for Some Time-Degenerate
Schrödinger Equations

Serena Federico

Abstract In this paper we present recent results about the smoothing properties of
some Schrödinger operators with time degeneracies. More specifically, we will show
that time-weighted smoothing and Strichartz estimates hold true for the operators
under consideration. Finally, by means of the aforementioned estimates, we will
derive local well-posedness results for the suitable corresponding nonlinear initial
value problem.

1 Introduction

In this paper we shall investigate the smoothing properties of some time-degenerate
Schrödinger operators of the form

.Lα,c := i∂t + tα� + c(t, x) · ∇x (1)

and

.Lb := i∂t + b′(t)�, (2)

where .α > 0, .c(t, x) = (c1(t, x), . . . , cn(t, x)) is such that, for all .j = 1, . . . , n,
.cj (t, x) is a complex valued function satisfying suitable dacy assumptions, while
.b ∈ C1(R) and satisfies .b(0) = b′(0) = 0. We will go through the analysis of two
kind of smoothing properties characterizing the solutions of Schrödinger equations
in the Euclidean setting, that is, those described by smoothing and Strichartz
estimates. More specifically, we will prove that local weighted smoothing estimates
are satisfied by .Lα,c, while local weighted Strichartz estimates are satisfied by .Lb.
Once these results will be at our disposal, we will consider suitable nonlinear initial
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value problems for .Lα,c and .Lb, and give the corresponding local well-posedness
results in each case.

Considering what previously mentioned, it should be clear that the estimates
object of this work constitute a crucial tool to attack nonlinear IVPs (initial value
problems) for dispersive equations.

Smoothing estimates are used to show that the solution of a certain equation
gains regularity (in terms of derivatives) with respect to the regularity of the initial
datum (homogeneous smoothing estimate) and/or with respect to the regularity of
the inhomogeneous term of the equation (inhomogeneous smoothing estimate).
Therefore these estimates are the suitable ones to be used when dealing with
nonlinear problems with derivative nonlinearities.

Strichartz estimates, instead, allow to obtain a gain of integrability of the solution
of a certain equation with respect to the integrability property of the initial datum
(homogeneous Strichartz estimate) and/or with respect to the integrability property
of the inhomogeneous term of the equation (inhomogeneous Strichartz estimate).
These are the estimates to be used to solve semilinear IVPs.

Results concerning smoothing and Strichartz estimates for constant coefficient
Schrödinger equations, but also for general constant coefficient dispersive equations,
are by now classical (see [3, 5, 6, 17–21, 31, 32]). As for the variable coefficients
case where the Laplacian is replaced by a variable coefficient (elliptic) operator
(the constant case with potentials is also well understood and widely studied) the
situation is much different, and the results available are quite limited.

The smoothing effect of Schrödinger equations with nondegenerate space-
variable coefficients was proved in [22] by Kenig et al., where the authors
considered and solved the ultrahyperbolic case too. Important achievements in the
study of smoothing estimates are due to Doi (see [8] and [7]), who considered
the problem in the general manifold setting. As regards Strichartz estimates,
Staffilani and Tataru proved in [30] the validity of such estimates for Schrödinger
equations with nonsmooth coefficients (with compactly supported perturbations
of the Laplacian), while in [26] Robbiano and Zuily obtained these estimates for
Schrödinger equations with small perturbations of the Laplacian. Let us mention that
several results have been proved for equations with potentials and in the manifold
setting, and we refer the interested reader to [1, 2, 9, 10, 24, 27, 28] and references
therein. As for uniqueness properties of Schrödinger operators with nondegenerate
space variable coefficients, we refer to the recent work [15] and references therein.

Our analysis here, despite the aforementioned results, focuses on time-degenerate
Schrödinger operators of the form (1) and (2). It is worth to mention that the
class of operators (1) was first considered by Cicognani and Reissig in [4], who
studied the linear problem and proved the local well-posedness of the linear IVP
both in Sobolev and Gevrey spaces. The results about the local smoothing effect of
the class (1), proved by the author and Staffilani in [12], will be presented below
in a selfcontained way. Some results about the homogeneous smoothing effect of
nondegenerate operators of the form (2) were proved by Sugimoto and Ruzhansky
in [29]. As for Strichartz estimates and local well-posedness for the class .Lb on
the one and on the two-dimensional torus, and possibily generalizable to general
compact Riemaniann manifolds, they were proved by the author and Staffilani
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in [13] (see also [14]), where some nondegenerate space-variable coefficient
Schrödinger operators on the one and on the two-dimensional torus were also
studied.

Concerning the Strichartz estimates for (2) treated in this paper, they were proved
by the author and Ruzhansky in [11] (see also [14]), where some homogeneous
smoothing results were also established by means of comparison principles.

Let us now conclude this introduction by giving the plan of the paper. In Sect. 2
we shall analyze the local smoothing effect of .Lα,c in two cases: when .c ≡ 0 (in
Sect. 2.1) and when c is not necessarily identically 0 (in Sect. 2.2). In each case we
also give the local well-posedness result for the corresponding nonlinear IVP.

In Sect. 3 we focus on the class .Lb and on the validity of local Strichartz
estimates in this case. A local well-posedness result for a semilinear IVP for .Lb

will also be given.

Notations We use the notation .A � B to indicate that there exists an absolute
constant .c > 0 such that .A ≤ cB. We shall denote by .�s the pseudo-
differential operator of order s whose symbol is given by .�s(ξ) = 〈ξ〉s =
(1 + |ξ |2)s/2.

The mixed norm space .L
p
x L

q
t (Rn × [0, T ]), 1 ≤ p, q ≤ ∞, is the space

of functions .f (t, x) that are .Lq in time on the interval .[0, T ] and are .Lp in
space. The norm is taken in the right to left order. In a similar manner we
define the spaces .Lp([0, T ]; Hs(Rn)), 1 ≤ p ≤ ∞, of functions that are .Lp

in time and in the Sobolev space .Hs(Rn) in space. Finally we shall denote by
.Sm := Sm

1,0 the class of classical symbols of order .m ∈ R defined by

.Sm := {p(x, ξ) ∈ C∞(Rn × R
n); |p|(j)

Sm < ∞},

where

.|p|(j)
Sm := sup

|α+β|=j

‖〈ξ〉−m+|α|∂α
ξ ∂

β
x p(x,ξ)‖L∞(Rn×R

n).

Finally, by writing .g �≡ 0 we will mean that a function .g = g(t, x) is not
necessarily identically 0.

2 Smoothing Effect and Local Well-Posedness for the Class
Lα,c

This section is devoted to the study of the class .Lα,c as in (1). Below we will discuss
the cases .c ≡ 0 and .c �≡ 0 separately, in Sects. 2.1 and 2.2 respectively . This
distinction is done in order to show that one can use standard techniques in the first
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case .c ≡ 0, and that in the more general case .c �≡ 0 the usual technique does not
work anymore (the case .c ≡ 0 is always contained in the case .c �≡ 0 according
to our notation). For the reader convenience we shall state our main results for the
class under consideration at the beginning of each subsection. As explained in the
introduction, these results will be about the local smoothing and about the local
well-posedness of the nonlinear IVP.

2.1 The Class Lα

In the sequel we will use the notation .Lα := Lα,0 := i∂t + tα�x . The operator
.Wα(t, s) in the statements below is the operator defined as in (9) giving the solution
at time t of the homogeneous IVP for .Lα with initial condition .u(s, x) = us(x) at
time s. Our main results for .Lα are the following.

Theorem 1 Let .Wα(t) := Wα(t, 0), with .α > 0, then
If .n = 1 for all .f ∈ L2(R),

. sup
x

‖tα/2D
1/2
x Wα(t)f ‖2

L2
t ([0,T ]) � ‖f ‖2

L2(R)
. (3)

If .n ≥ 2, on denoting by .{Qβ}β∈Zn the family of non overlapping cubes of unit
size such that .Rn = ⋃

β∈Zn Qβ , then for all .f ∈ L2
x(Rn),

. sup
β∈Zn

(∫

Qβ

∫ T

0
|tα/2D

1/2
x Wα(t)f (x)|2dt dx

)1/2

� ‖f ‖L2(Rn), (4)

where .D
γ
x f (x) = (|ξ |γ f̂ (ξ))∨(x).

Theorem 2 Let .n = 1 and .g ∈ L1
xL

2
t (R × [0, T ]), then

.‖D1/2
x

∫

R+
tα/2Wα(0, t)g(t)dt‖L2

x (R) � ‖g‖L1
xL2

t (R×[0,T ]), (5)

and, for all .g ∈ L1
t L

2
x([0, T ] × R),

.‖tα/2D
1/2
x

∫ t

0
Wα(t, τ )g(τ )dτ‖L∞

x (R)L2
t ([0,T ]) � ‖g‖L1

t L
2
x([0,T ]×R). (6)



Smoothing Effect and Strichartz Estimates for Some Time-Degenerate. . . 23

If .n ≥ 2, on denoting by .{Qβ}β∈Zn a family of non overlapping cubes of unit size
such that .Rn = ⋃

β∈Zn Qβ , then, for all .g ∈ L1
t L

2
x([0, T ] × R

n),

. sup
β∈Zn

(∫

Qβ

∥
∥
∥
∥tα/2D

1/2
x

∫ t

0
Wα(t, τ )g(τ )dτ

∥
∥
∥
∥

2

L2
t ([0,T ])

dx

)1/2

� ‖g‖L1
t L

2
x([0,T ]×R

n).

(7)

Theorem 3 Let .k ≥ 1, then the IVP

.

{Lαu = ±u|u|2k

u(0, x) = u0(x),
(8)

is locally well-posed in .Hs for .s > n/2 and its solution satisfies smoothing
estimates.

Remark 1 Notice that Theorem 2 amounts to the validity of the homogeneous and
inhomogeneousweighted smoothing estimates with a gain of .1/2 derivative for .Lα .

When .α = 0 one has actually an inhomogeneous smoothing effect better than the
one described in (7), that is the inhomogeneous part of the solution gains 1 instead
of .1/2 derivative with respect to the inhomogeneious part of the equation (in other
words, when .α = 0, one can replace .D

1/2
x by .D1

x in (7), see [20]).
When .α �= 0 the suitable corresponding weighted estimate still holds. This

property is described in Theorem 4 part .(iii) below for the general case .Lα,c, with
c being not necessarily identically 0, directly.

We stress that the proofs of the results of this subsection rely on the explicit
knowledge of the solution of the inhomogeneous IVP for .Lα . Indeed, by using
classical Fourier analysis methods and Duhamel’s principle (that still holds in this
case, see [12]), we get that the solution of the IVP

.

{Lαu = f (t, x)

u(s, x) = us(x),

for .s < t , is given by

.u(t, x) = Wα(t, s)us(x) +
∫ t

s

Wα(t, t ′)f (t ′, x)dt ′,

where

.Wα(t, s)us(x) := ei tα+1−sα+1
α+1 �x us(x) :=

∫

R
n
e−i( tα+1−sα+1

α+1 |ξ |2−x·ξ)ûs(ξ)dξ (9)
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is the so called solution operator, that is the operator giving the solution of the
homogeneous problem at time t with initial condition at time s. This is a two-
parameter family of unitary operators satisfying:

1. .Wα(t, t) = I ;
2. .Wα(t, s) = Wα(t, r)Wα(r, s) for every .s, t, r ∈ [0, T ];
3. .Wα(t, s)�xu = �xWα(t, s)u;
4. .‖Wα(t, s)us‖Hs

x
= ‖us‖Hs

x
.

Let us remark that in the case .α = 0 the operator above coincides with the well
known Schrödinger group.

Now we can finally give the proofs of Theorems 2 and 3.

Proof of Theorem 1 First note that (3) and (4) are true when .α = 0, that is, when
.Wα(t) = W0(t) = eit�x (see, for instance, [20]). Then it suffices to prove that

.‖tα/2D
1/2
x Wα(t)f ‖2

L2
t ([0,T ]) = ‖D1/2

x W0(t)f ‖2
L2

t ([0,T ′]).

To prove that the identity above is satisfied, we use the change of variables
.tα+1/(α + 1) = s, and get

. ‖tα/2D
1/2
x Wα(t)f ‖2

L2
t ([0,T ])

=
∫ T

0

∣
∣
∣
∣t

α/2
∫

R
n
e−i

(
tα+1|ξ |2/(α+1)−x·ξ)

|ξ |1/2f̂ (ξ)dξ

∣
∣
∣
∣

2

dt

=
∫ T α+1

α+1

0

∣
∣
∣
∣

∫

R
n
e−i

(
s|ξ |2−x·ξ)

|ξ |1/2f̂ (ξ)dξ

∣
∣
∣
∣

2

ds

= ‖D1/2
x W0(t)f ‖2

L2
t ([0,T α+1/(α+1)]).

Finally, by application of the smoothing estimates for .W0(t) = eit�x , we con-
clude (3) and (4) (see [20], Theorem 2.1). ��
Proof of Theorem 2 Inequality (5) follows directly from (3) by duality.

As for (6), on denoting by .L
p
x := L

p
x (Rn), we have

.‖tα/2D
1/2
x

∫ t

0
Wα(t, τ )g(τ )τ‖L∞

x L2
t ([0,T ])

≤
Minkowski

∥
∥
∥
∥
∥

∫ T

0

(∫ T

0

∣
∣
∣tα/2D

1/2
x Wα(t, τ )g(τ )

∣
∣
∣
2
dt

)1/2

dτ

∥
∥
∥
∥
∥

L∞
x

≤
by (3)

∫ T

0
‖Wα(0, τ )g(τ )‖L2

x
dτ = ‖g‖L1

t ([0,T ])L2
x

which gives (6).
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To prove (7) we first observe that, by Minkowsky inequality,

.

∥
∥
∥
∥tα/2D

1/2
x

∫ t

0
Wα(t, τ )g(τ )dτ

∥
∥
∥
∥

L2
t ([0,T ])

≤
∫ T

0
‖tα/2D

1/2
x Wα(t, 0)Wα(0, τ )g(τ )‖L2

t ([0,T ])dτ,

therefore

.

(∫

Qβ

∥
∥
∥
∥tα/2D

1/2
x

∫ t

0
Wα(t, τ )g(τ )dτ

∥
∥
∥
∥

2

L2
t ([0,T ])

dx

)1/2

≤
[∫

Qβ

(∫ T

0
‖tα/2D

1/2
x Wα(t)Wα(0, τ )g(τ )‖L2

t ([0,T ])dτ

)2

dx

]1/2

≤
Minkowski

∫ T

0

(∫

Qβ

‖tα/2D
1/2
x Wα(t, 0)Wα(0, τ )g(τ )‖2

L2
t ([0,T )]dx

)1/2

dτ.

Then we apply the .supβ∈Zn on both the RHS and the LHS of the previous inequality
and get

. sup
β∈Zn

(∫

Qβ

∥
∥
∥
∥tα/2D

1/2
x

∫ t

0
Wα(t, τ )g(τ )dτ

∥
∥
∥
∥

2

L2
t ([0,T ])

dx

)1/2

≤
∫ T

0
sup
β∈Zn

(∫

Qβ

‖tα/2D
1/2
x Wα(t, 0)Wα(0, τ )g(τ )‖2

L2
t ([0,T ])dx

)1/2

dτ

≤
by (4)

∫ T

0
‖Wα(0, τ )g(τ )‖L2

x(Rn)dτ =
∫ T

0
‖g(τ)‖L2

x(Rn)dτ,

which gives (7) and concludes the proof. ��
We are almost ready to prove our well-posedness result, but first let us recall what

we mean by saying that the IVP (8) is locally well-posed.

Definition 1 We say that the IVP (8) is locally well-posed (l.w.p) in .Hs(Rn) if for
any ball B in the space .Hs(Rn) there exist a time T and a Banach space of functions
.X ⊂ L∞([0, T ],H s(Rn)) such that, for each initial datum .u0 ∈ B, there exists a
unique solution .u ∈ X ⊂ C([0, T ],H s(Rn)) of the integral equation

.u(x, t) = Wα(t)u0 +
∫ t

0
Wα(t, τ )|u|2ku(τ )dτ.
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Furthermore the map .u0 �→ u is continuous as a map from .Hs(Rn) into
.C([0, T ],H s(Rn)).

Proof of Theorem 3 The proof is based on the standard contraction argument. We
summarize below the main steps of the proof. For further details we refer the
interested reader to [12].

Let us first assume that .n = 1, and let us define the metric space X as

.X := {u : [0, T ]×R → C; ‖tα/2D
1/2+s
x u‖L∞

x L2
t ([0,T ]) < ∞, ‖u‖L∞

t ([0,T ])Hs
x

< ∞},

which we equip with the distance

.d(u, v) = ‖tα/2D
1/2+s
x (u−v)‖L∞

x L2
t ([0,T ])+‖u−v‖L∞

t ([0,T ])Ḣ s
x
+‖u−v‖L∞

t ([0,T ])L2
x
,

where .Ḣ s
x stands for the homogeneous Sobolev space. We then consider the map

.
 : X → X, 
(u) = Wα(t)u0 +
∫ t

0
Wα(t, τ )u|u|2k(τ )dτ,

and prove that it is a contraction on a ball of X, that is on .BR := {u ∈ X; ‖u‖X ≤
R} ⊂ X for a suitable R.

By using the estimates in Theorem 2 and in Theorem 3 we get that

.‖
(u)‖X ≤ 3‖u0‖Hs
x

+ C1T ‖u‖2k+1
X ,

which, for .R = 6‖u0‖Hs
x

and .T = 1
C1R2k , gives that .
 sends .BR into itself. Now,

fixing .R = 6‖u0‖Hs
x
, and by using arguments similar to those used above, we can

conclude that .
 is a contraction. Indeed, for all .u, v ∈ BR , we have

.‖
(u) − 
(v)‖X ≤ C2T R2k‖u − v‖X,

therefore, by choosing T such that .T = min{ 1
C1R2k , 1

C2R2k }, we obtain that .
 is a
contraction, and the result follows by the fixed point theorem.

Let us now assume that .n > 1. In this case we define X to be the space

.X := {u : [0, T ] × R
n → C; |||tα/2D

s+1/2
x u|||T < ∞, ‖u‖L∞[0,T ]Hs

x
< ∞},

where

.||| · |||T = sup
β∈Zn

‖ · ‖L2
x(Qβ)L2

t ([0,T ]),

and

.dX(u, v) = |||tα/2D
s+1/2
x (u − v)|||T + ‖u − v‖L∞

t ([0,T ])Ḣ s
x

+ ‖u − v‖L∞
t ([0,T ])L2

x
.



Smoothing Effect and Strichartz Estimates for Some Time-Degenerate. . . 27

Then, considering the map .
 as before but now defined on the new space X, we
can exploit the estimates in Theorem 2 and in Theorem 3 holding in the high
dimensional case to get the same estimates and properties as in the case .n = 1. The
result then follows again by the fixed point theorem. For more details and explicit
computations see [12]. ��
Remark 2 Let us remark that the methods applied above in the case .Lα := Lα,0 can
also be applied to the case .Lα,c = Lα,tαv , with v being a complex vector .v ∈ C

n.

2.2 The Class Lα,c

This section focuses on the study of the more general case .Lα,c with c being not
necessarily identically zero (.c �≡ 0 in our notation). We stress that the results of this
subsection hold true in the case .c ≡ 0 as well, and that in the latter case a direct
proof can be performed. However, due to the presence of the variable coefficients
.c(t, x), whose properties will be stated soon (see Theorem 4), the strategy to be used
to analyze the problem for .Lα,c is different than the one used before for .Lα . The
key tools of our analysis will be the use of the pseudodifferential calculus and the
application of a lemma due to Doi in [8], that we shall call Doi’s Lemma, that we
recall in Lemma 2 in the Appendix.

We shall state in Theorem 4 below our result about the smoothing properties of
the solution of the IVP

.

{
∂tu = itα�xu + ic(t, x) · ∇xu + f (t, x),

u(0, x) = u0(x).
(10)

Moreover, we will give in Theorems 5 and 6 local well-posedness results for the
IVP (10) when .f = ±|u|2ku, .k ≥ 1, and when .f = ±tβ

∑n
j=1(∂xj u)u, with

.β ≥ α > 0, respectively.

Theorem 4 Let .u0 ∈ Hs(Rn), s ∈ R. Assume that, for all .j = 1, . . . , n, .cj is such
that .cj ∈ C([0, T ], C∞

b (Rn)) and there exists .σ > 1 such that

.|Im ∂
γ
x cj (t, x)|, |Re ∂

γ
x cj (t, x)| � tα〈x〉−σ−|γ |, x ∈ R

n. (11)

Then, denoting by .λ(|x|) := 〈x〉−σ , we have the following properties:

(i) If .f ∈ L1([0, T ]; Hs(Rn)) then the IVP (10) has a unique solution .u ∈
C([0, T ]; Hs(Rn)) and there exist positive constants .C1, C2 such that

. sup
0≤t≤T

‖u(t)‖s ≤ C1e
C2(

T α+1
α+1 +T )

(

‖u0‖s +
∫ T

0
‖f (t)‖sdt

)

;
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(ii) If .f ∈ L2([0, T ]; Hs(Rn)) then the IVP (10) has a unique solution .u ∈
C([0, T ]; Hs(Rn)) and there exist two positive constants .C1, C2 such that

. sup
0≤t≤T

‖u(t)‖2
s +

∫ T

0

∫

R
n
tα

∣
∣
∣�s+1/2u

∣
∣
∣
2
λ(|x|)dx dt

. ≤ C1e
C2(

T α+1
α+1 +T )

(

‖u0‖2
s +

∫ T

0
‖f (t)‖2

s dt

)

;

(iii) If .�s−1/2f ∈ L2([0, T ] × R
n; t−αλ(|x|)−1dtdx) then the IVP (10) has a

unique solution .u ∈ C([0, T ]; Hs(Rn)) and there exist positive constants
.C1, C2 such that

. sup
0≤t≤T

‖u(t)‖2
s +

∫ T

0

∫

R
n
tα

∣
∣
∣�s+1/2u

∣
∣
∣
2
λ(|x|)dx dt

. ≤ C1e
C2

T α+1
α+1

(

‖u0‖2
s +

∫ T

0

∫

R
n
t−αλ(|x|)−1

∣
∣
∣�s−1/2f

∣
∣
∣
2
dx dt

)

.

Above we abbreviated the norm .‖f ‖Hs(Rn) =: ‖f ‖s .

Theorem 5 Let .Lα be such that condition (11) is satisfied. Then the IVP (10) with
.f (t, x) = ±|u|2ku is locally well posed in .Hs for .s > n/2 and the solution satisfies
smoothing estimates.

Theorem 6 Let .Lα be such that condition (11) is satisfied with .σ = 2N (thus
.λ(|x|) = 〈x〉−2N ) for some .N ≥ 1, and let .s > n+4N+3 be such that .s−1/2 ∈ 2N.
Then, the IVP (10) with .f = ±tβ

∑n
j=1(∂xj u)u, where .β ≥ α > 0, is locally well

posed in .Hs
λ := {u0 ∈ Hs(Rn); λ(|x|)u0 ∈ Hs(Rn)} and the solution satisfies

smoothing estimates.

Remark 3 Let us stress that it is natural to require the coefficients .cj of the first
order term to satisfy some decay conditions, usually called Levi conditions. Indeed
such kind of conditions were proved to be necessary to have the local well-posedness
of the linear IVP in the case .α = 0. To be precise, it is enough to impose some
decay on .Re ∂

γ
x cj (t, x) only (for all .j = 1, . . . , n,) to conclude the local well-

posedness of the linear IVP. However, the additional condition on .Im ∂
γ
x cj (t, x), for

all .j = 1, . . . , n, appears in order to get estimates with “gain of derivatives”, namely
smoothing estimates, needed to deal with the nonlinear problem with derivative
nonlinearities.

Remark 4 Notice that part .(ii) and .(iii) in Theorem 4 correspond to the weighted
homogeneous and inhomogeneous smoothing estimate for .Lα,c with a gain of .1/2
and 1 derivative, respectively. When .α = 0, these results coincide with the classical
ones for .L0,c (see, for instance, [20] and [22]).
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The proof of Theorem 4 is based on the results in Lemma 1 below. The proof of
Lemma 1, instead, relies deeply on the use of Lemma 2, also called Doi’s lemma.
The crucial result due to Doi in [8] is needed to define a new norm N , equivalent to
the .Hs-Sobolev norm, which is used to perform the energy estimate from which the
smoothing estimates are derived. We explain below the way we use Doi’s lemma,
that is Lemma 2, to define N .

We apply Lemma 2 on the symbol .aw := a = a2 + ia1 +a0 with .a2(x, ξ) = |ξ |2
and .a1 = a0 = 0. In this case conditions (B1) and (B2) of Lemma 2 are trivially
satisfied, while (A6) holds with .q(x, ξ) = x · ξ〈ξ〉−1. Therefore, by Lemma 2 with
.λ′(|x|) = C′〈x〉−σ (see Remark 6), with .C′ to be chosen later, we get that there
exists .p ∈ S0 and .C > 0 such that (37) holds.

We then consider the pseudo-differential operator K with symbol .K(x, ξ) =
ep(x,ξ)�s , where .�s := 〈ξ〉s and .p(x, ξ) is the symbol given by Doi’s lemma, and
define the norm N on .Hs(Rn), equivalent to the standard one (see [22] for the proof
of the equivalence), as

.N(u)2 = ‖Ku‖2
0 + ‖u‖2

s−1, (12)

where .‖ · ‖s stands for the standard norm in the Sobolev space .Hs(Rn).
With the norm .N(·) in (12) at our disposal we can prove Lemma 1 from which

Theorem 4 will follow. To prove Lemma 1 we employ the technique used in [22].

Lemma 1 Let .s ∈ R, .λ(|x|) := 〈x〉−σ , .Pα := ∂t − itα�x − ic(t, x) · ∇x , and
.σ > 1 such that (11) holds. Then there exists .C1, C2 > 0 such that, for all .u ∈
C([0, T ]; Hs+2(Rn))

⋂
C1([0, T ]; Hs(Rn)), we have

. sup
0≤t≤T

‖u(t)‖s ≤ C1e
C2(

T α+1
α+1 +T )

(

‖u0‖s +
∫ T

0
‖Pαu(t, ·)‖sdt

)

; . (13)

sup
0≤t≤T

‖u(t)‖s ≤ C1e
C2(

T α+1
α+1 +T )

(

‖u(·, T )‖s +
∫ T

0
‖P ∗

α u(t, ·)‖sdt

)

; . (14)

sup
0≤t≤T

‖u(t)‖2
s +

∫ T

0

∫

R
n
tα

∣
∣
∣�s+1/2u

∣
∣
∣
2
λ(|x|)dx dt

≤ C1e
C2(

T α+1
α+1 +T )

(

‖u0‖2
s +

∫ T

0
‖Pαu(t, ·)‖2

s dt

)

; . (15)

sup
0≤t≤T

‖u(t)‖2
s +

∫ T

0

∫

R
n
tα

∣
∣
∣�s+1/2u

∣
∣
∣
2
λ(|x|)dx dt

≤C1e
C2

T α+1
α+1

(

‖u0‖2
s +

∫ T

0

∫

R
n
t−αλ(|x|)−1

∣
∣
∣�s−1/2Pαu(t, ·)

∣
∣
∣
2
dxdt

)

.

(16)
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Proof The proof is based on an energy estimate in terms of the norm .N(·) in (12).
We recall that .Pα := ∂t − itα�x − ic(t, x) · ∇x , .Dx = (Dx1, . . . ,Dxn) :=
(−i∂x1, . . . ,−i∂xn), and that .〈·, ·〉 stands for the .L2(Rn)-scalar product. We then
consider

.∂tN(u)2 = ∂t‖Ku‖2
0 + ∂t‖u‖2

s−1 = I + II,

and estimate I and II separately.
We start by estimating term II , for which we get

.II = ∂t‖u‖2
s−1 = 2Re〈�s−1∂tu,�s−1u〉 = 2Re〈�s−1Pαu,�s−1u〉

= −2Re〈�s−1c(t, x) · Dxu,�s−1u〉 + 2Re〈�s−1f,�s−1u〉
≤ Ctα‖u‖2

s + 2Re〈�s−1f,�s−1u〉.

Now, since

.2Re〈�s−1f,�s−1u〉 ≤ 2‖f ‖s−1‖u‖s−1 ≤ CN(f )N(u) (17)

and

.2Re〈�s−1f,�s−1u〉 = 2Re〈t−α/2λ(|x|)−1/2�s−1/2f, tα/2λ(|x|)1/2�s−3/2u〉
≤ ‖t−α/2λ(|x|)−1/2�s−1/2f ‖2

0 + ‖tα/2λ(|x|)1/2�s−3/2u‖2
0

≤ 〈t−αλ(|x|)−1�s−1/2f,�s−1/2f 〉 + tαN(u)2, (18)

it follows that

.II ≤ CtαN(u)2 +C′ min{N(f )N(u); 〈t−αλ(|x|)−1�s−1/2f,�s−1/2f 〉}, (19)

with C and .C′ new suitable constants.
As for term I we have that

.∂t‖Ku‖2
0 = 2Re〈∂tKu,Ku〉 = 2Re〈K∂tu,Ku〉

= 2Re〈KPαu,Ku〉 + 2Re〈Kf,Ku〉
= 2Re〈itα[K,�x ]u,Ku〉 + 2Re〈itα�xKu,Ku〉

︸ ︷︷ ︸
=0

− 2Re〈K b(t, x) · Dxu,Ku〉 + 2Re〈Kf,Ku〉
= 2Re〈itα[K,�x ]u,Ku〉 − 2Re〈[K, c(t, x) · Dx ]u,Ku〉
− 2Re〈c(t, x) · Dx Ku,Ku〉 + 2Re〈Kf,Ku〉, (20)
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therefore, in order to estimate I, it is crucial to prove suitable upper bounds for the
quantities .2Re〈itα[K,�x ]u,Ku〉 and .2Re〈[K, c(t, x) · Dx ]u,Ku〉 in the fifth line
of (20).

By using the pseudodifferential calculus we can compute the symbol of the
commutator .[K, c(t, x) · Dx ], which is an operator of order s, and get, thanks to
the properties of c (recall that .c ∈ C∞

b and is bounded, together with its derivatives
in space, by .tαλ(|x|)), that

. − 2Re〈[K, b(t, x)Dx ]u,Ku〉 ≤ Ctα‖u‖2
s .

For more details about how to get to this estimate see Lemma 5.0.1 in [12].
For the term .2Re〈itα[K,�x ]u,Ku〉, once more by using the pseudodifferential

calculus, we have that .[K,�x ](x,D) = [p,�x ]K(x,D)+ rs(x,D), where .rs is an
operator of order s, while .p = p(x,D) is the operator of order 0 appearing in the
definition of the norm .N(·).

These considerations lead to

.(20) ≤ Ctα‖u‖2
s + 2Re〈(itα[p,�x ](x,D) − c(t, x) · Dx)Ku,Ku〉

+ |2Re〈itαrs(x,D)u,Ku〉|
≤ Ctα‖u‖2

s + 2Re〈(itα[p,�x ](x,D) − c(t, x)Dx)Ku,Ku〉, (21)

where C is a new suitable positive constant.
Now we denote by .Q(x,D) := itα[p,�x ](x,D) − b(t, x) · Dx the operator

whose symbol satisfies

.ReQ(x, ξ) = Re
(
itα(−i){p,−|ξ |2}(x, ξ) − b(t, x) · ξ

)
+ r0

≤ −tα{p, |ξ |2}(x, ξ) + |Re b(t, x) · ξ | + r0

≤
by (37)

−C′tαλ(|x|)|ξ | + C2t
α + C0t

αλ(|x|)|ξ | + C

≤ −Ctαλ(|x|)|ξ | + C2t
α + C4

≤ −Ctαλ(|x|)(1 + |ξ |2)1/2 + C3t
α + C4

= tα(−Cλ(|x|)(1 + |ξ |2)1/2 + C3) + C4,

where we chose .C′ (which is possible by Doi’s lemma, see Remark 6) in order to
have .C0 − C′ < 0.
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The property of the symbol of Q allow us to apply the sharp Gårding inequality
and to conclude that

.2Re〈Q(x,D)Ku,Ku〉 ≤ −Ctα〈λ(|x|)�1Ku,Ku〉 + C3t
α‖Ku‖2

0 + C4‖Ku‖2
0

≤ −Ctα〈λ(|x|)�1Ku,Ku〉 + C3t
α‖u‖2

s + C4‖u‖2
s

≤ Ctα‖λ(|x|)1/2�1/2Ku‖2
0 + C3t

α‖u‖2
s + C4‖u‖2

s , (22)

where .C > 0 is a new suitable constant.
By plugging (22) in (21) we get

.∂t‖Ku‖0 ≤ CtαN(u)2 + C′N(u)2 − C′′tα‖λ(|x|)1/2�1/2Ku‖2
0 + C′′′N(f )N(u).

(23)

Finally, (19) and the equivalence of the norms .‖ · ‖s and .N(·) (see [22] pag.390)
yield

.∂tN(u)2 = ∂t‖Ku‖2 + ∂t‖u‖2
s−1

≤ CtαN(u)2 + C′N(u)2 − C′′tα‖λ(|x|)1/2�1/2Ku‖2
0 + C′′′N(f )N(u)

+ C3 min{N(f )N(u); 〈t−αλ(|x|)−1�s−1/2f,�s−1/2f 〉}, (24)

where the constants are (eventually) new suitable constants. ��
Estimate (24) is now the starting point to get (13), (14) and (15).

Proof of (13) From (24) we have

.∂tN(u)2 ≤ C1(t
α + 1)N(u)2 + C2N(u)N(f )

(again with .C1 and .C2 new constants), which gives

.2∂tN(u) ≤ C1(t
α + 1)N(u) + C2N(f )

and

.∂t

(
2e− 1

2 C1(t
α+1/(α+1)+t )N(u)

)
≤ C2e

− 1
2 C1(t

α+1/(α+1)+t )N(f ).

Hence, by integrating in time from 0 to t and using the equivalence of the norms
.N(·) and .‖ · ‖s , (13) follows. ��
Proof of (14) The proof of (14) follows from (13) applied to the adjoint operator
and with .u(t, ·) replaced by .u(T − t, ·). ��
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Proof of (15) Here we use the fact that there exists a pseudodifferential operator .K̃

such that

.I = K̃K + r−1,

where .r−1 is a pseudodifferential operator with symbol .r−1 of order .−1 (see [22]
pag.390 for the proof of this property). This gives that

.‖λ(|x|)1/2�s+1/2u‖0 ≤ ‖(λ(|x|)1/2�1/2)(�sK̃)Ku‖0 + O(N(u))

. ≤ ‖(�sK̃)(λ(|x|)1/2�1/2)Ku‖0 + cN(u) ≤ c
(
‖(λ(|x|)1/2�1/2)Ku‖0 + N(u)

)
,

(25)

since .[�sK̃, λ(|x|)1/2�1/2]K�1/2 is a pseudo-differential operator of order s.
Therefore, (24) and (25) yield

.∂tN(u)2 + C2〈tα/2λ(|x|)1/2�s+1/2u, tα/2λ(|x|)1/2�s+1/2u〉
≤ C1(t

α + 1)N(u)2 + C4N(f )2.

Now, integrating in time from 0 to t the previous inequality, using (13) and the
estimate

.e
1
2 C1(t

α+1/(α+1)+t )

∫ t

0
e− 1

2 C1(s
α+1/(α+1)+s)〈sα/2λ(|x|)1/2�s+1/2u, sα/2λ(|x|)1/2

�s+1/2u〉ds

≥
∫ t

0
〈sα/2λ(|x|)1/2�s+1/2u, sα/2λ(|x|)1/2�s+1/2u〉ds,

(15) follows (for further details see [12]). ��
Proof of (16) To prove (16) we exploit the following estimate

.2Re〈Kf,Ku〉 = 2Re〈tα/2λ1/2�1/2Kf, t−α/2λ−1/2�−1/2Ku〉 (26)

≤ c1ε‖tα/2λ1/2�s+1/2u‖2
0 + c2

1

ε
‖t−α/2λ−1/2�s−1/2f ‖2

0

+ c3t
α‖u‖2

s .
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By using (25) and (26) in (24) and the equivalence of .N(·) and .‖ · ‖s , we obtain

.∂tN(u)2 + (c0 − c1ε)‖tα/2λ1/2�s+1/2u‖2
0 ≤ c3t

αN(u)2

+ c2
1

ε
‖t−α/2λ−1/2�s−1/2f ‖2

0,

where .cj , .j = 0, 1, 2, 3, are new suitable constants, and where .ε > 0 can be chosen
in such a way that .c0 − c1ε ≥ c > 0. Finally, integrating in time from 0 to t , and
arguing as in the proof of (15), the result follows. This concludes the proof. ��
Proof of Theorem 4 Estimate (13) of Lemma 1 gives readily the uniqueness of the
solution. In fact, let u be a solution of the homogeneous IVP for .Lα,c with initial
datum .u0 = 0. Then, by (13) of Lemma 1, .u = 0, which proves the uniqueness
(even in the general inhomogeneous IVP where .f �= 0 and .u0 �= 0).

As for the existence, it will follow by using density arguments.

Case 1: .f ∈ S(Rn+1) and .u0 ∈ S(Rn).
We consider the subspace .E ⊂ L1([0, T ]; H−s(Rn)

.E = {P ∗ϕ; ϕ ∈ C∞
0 (Rn × [0, T ))} = (∂t − itα�x + b(t, x) · Dx)∗(C∞

0 (Rn+1))

and the linear functional

.�∗ : E → C, �∗(P ∗ϕ) =
∫ T

0
〈f, ϕ〉L2×L2dt + 〈u0, ϕ(·, 0)〉L2×L2 .

Now inequality (14) of Lemma 1 (applied to .ϕ) with s replaced by .−s gives, for
.η = P ∗ϕ and .ϕ ∈ C∞

0 (Rn × [0, T )),

.|�∗(η)| ≤ ‖f ‖(L1[0,T ];Hs
x ) sup

t∈[0,T ]
‖ϕ‖H−s

x
+ ‖u0‖Hs

x
‖ϕ(0)‖H−s

x

. ≤ eC(T α+1/(α+1)+T )
(
‖f ‖L1

t ([0,T ];Hs
x ) + ‖u0‖Hs

x

)
‖η‖L1

t ([0,T ];H−s
x ),

which implies the continuity of .�∗ on E. Then, by the Hahn-Banach theorem
we can extend .�∗ on .L1([0, T ] : H−s(Rn)) and finally get the existence of .u ∈
L1([0, T ]; H−s(Rn))∗ = L∞([0, T ]; Hs(Rn)) such that

.�∗(P ∗ϕ) = 〈u, P ∗ϕ〉L2×L2 =
∫ T

0
〈f, ϕ〉L2×L2dt + 〈u0, ϕ(·, 0)〉L2×L2,

and thus .Pu = f in the sense of distributions for .0 < t < T .

Notice that .Pu
D′
= f means that .(∂t − itα�x + b(t, x) · Dx)u

D′
= f (as

distributions on .C∞
0 ([0, T ) × R

n)). Therefore, since .f ∈ S(Rn+1), we have
that .∂tu ∈ (L∞[0, T ) : Hs−2(Rn)), which gives .u ∈ (C([0, T ) : Hs−2(Rn)). We
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then use the equation once more, that is .∂tu = itα�x +b(t, x) ·Dxu+f , and get,
by the same consideration, that .u ∈ (C1[0, T ) : Hs−4(Rn)) and .u(x, 0) = u0(x).
Finally, since .u0 ∈ Hs(Rn), repeating the previous argument with .s + 4 in place
of s we conclude that there exists a solution u of the IVP associated to (10) to
which parts (i)–(iv) of Lemma 1 apply.

Case 2: .f ∈ L1([0, T ]; Hs(Rn)) and .u0 ∈ Hs(Rn).
In this case we take two sequences .fj ∈ S(Rn+1), .vj ∈ S(Rn) such that .fj → f

in .(L1([0, T ]) : Hs(Rn) and .vj → u0 in .Hs(Rn).
By the arguments of case 1 we find a solution .uj of (10) with .fj and .vj in place
of f and .u0 respectively. Since .uj satisfies (13) of Lemma 1, we have that .uj

is a Cauchy sequence, therefore, passing to the limit, we get that .u = limj→ uj

is a solution of the IVP with inhomogeneous term f and with initial datum .u0
satisfying (14) of Lemma 1, which proves part (ii) of the theorem.

Case 3: .f ∈ L2([0, T ]; Hs(Rn)) and .u0 ∈ Hs(Rn).
Here we proceed as in case 2 but with .fj ∈ S(Rn+1) being such that .fj → f in
.(L2([0, T ]); Hs(Rn). Under this hypothesis we obtain point (ii) of the theorem,
that is, it exists a solution .u ∈ (C[0, T ) : Hs(Rn)) satisfying (15) of Lemma 1.

Case 4: .�s−1/2f ∈ (L2(Rn × [0, T ]) : t−αλ(|x|)−1dxdt) and .u0 ∈ Hs(Rn).

In this case it is possible to prove that there exists .gj ∈ S(Rn+1) such that .gj →
�s−1/2f in .(L2(Rn)×[0, T ] : t−αλ(|x|)−1dxdt). Applying once again the strategy
used in case 1 with .fj replaced by .�−s+1/2gj in (16) of Lemma 1, and passing to
the limit, we finally obtain point (iii) of Theorem 4. ��

As a consequence of Theorem 4 one gets the local well-posedness results stated
in Theorem 5 and in Theorem 6. We will not give a complete proof of these results
here, and we refer the interested reader to [12] for detailed proofs. However, we give
below a sketch of the proof listing the main ingredients of the argument.

Sketch of the Proof of Theorem 5 As in the case .c ≡ 0, the proof is based on the
standard contraction argument.

According to Theorem 4 we have the local well-posedness in .Hs , .s > n/2, for
the linear IVP (10) for a general function f satisfying the assumptions. We now
write the solution of (10) as

.u(t, x) = Wα(t)u0 +
∫ t

0
Wα(t, τ )f (τ, x)dτ, (27)

where .Wα(t, τ ) is a new suitable two-parameter family of unitary operators
representing the solution operator.

Because of the previous assumption, solving the IVP (10) with .f = u|u|2k is
equivalent to find the solution of the integral equation

.u(t, x) = Wα(t)u0(x) +
∫ t

0
Wα(t, τ )u|u|2k(τ, x)dτ.
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Hence, as in the proof of Theorem 4, we look for the solution given by the fixed
point of the map

.
u0(u) := Wα(t)u0 +
∫ t

0
Wα(t, τ )u|u|2kdτ,

defined on

.Xs
T : ={u : [0, T ] × R

n → C; ‖u‖L∞
t H s

x
< ∞,

(∫ T

0

∫

R
n
tαλ(|x|)|�s+1/2u|2dx dt

)1/2

< ∞},

where, recall, .λ(|x|) := 〈x〉σ , with .σ > 1 being such that (11) holds. Notice
that the choice of the space .Xs

T is dictated by the smoothing estimates we proved
in Theorem 4. To conclude that .
u0 is a contraction on the space .Xs

T , we
apply the estimates in Theorem 4 together with Sobolev embeddings and a few
technical lemmas taken from [22]. Finally, the application of the fixed point theorem
then gives the result. Notice that the solution will belong to the space .Xs

T , and,
consequently, will satisfy smoothing estimates. ��
Sketch of the Proof of Theorem 6 Their proof of this result follows by using the
same arguments as before. Here the contraction argument is performed on a different
space, that is, specifically, on the space

.Xs
T : ={u : [0, T ] × R

n → C; ‖u‖L∞
t H s

x
<∞,

(∫ T

0

∫

R
n
tαλ(|x|)|�s+1/2u|2dx dt

)1/2

< ∞,

.‖λ(|x|)−1u‖
L∞

t H
s−2N−3/2
x

< ∞},

where

.‖u‖2
Xs

T
= ‖u‖2

L∞
t H s

x
+

∫ T

0

∫

R
n
tαλ(|x|)|�s+1/2u|2dx dt +‖λ(|x|)−1u‖2

L∞
t H

s−2N−3/2
x

.

We repeat the assumption that the solution of (10) is given in terms of a solution
operator .Wα(t, s), so we look for the solution of the nonlinear problem as the fixed
point of a map .
u0 as before, but now with .f = tβ

∑n
j=1 ∂ξj u|u|2, with .β ≥ α. We

then use the smoothing estimates in Lemma 1, more precisely (16), together with
Lemma 6.0.1 in [12] and some technical lemmas taken form [22], and conclude
the result via the standard contraction argument. Once again the solution satisfies
smoothing estimates. For the complete proof see [12]. ��
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Let us remark once again that the previous results still hold true in the case .c ≡ 0.
Moreover, more general nonlinearities can be considered in the IVP for .Lα,c, that is,
for instance, nonlinearities containing polynomials in u, in the derivatives of order
one of u, and in their complex conjugates. The specific choices we made for the
nonlinear terms were to keep the exposition simpler and shorter.

We finally conclude by saying that the smoothing and well-posedness results
presented here are very likely still true for some generalizations of .Lα,c, that is for
equations containing first order terms in .ū and with time degeneracies different than
.tα (for more details about these generalizations see Section 7 in [12]).

3 Strichartz Estimates and Local Well-Posedness for Lb

This section is devoted to the study of the class .Lb as in (2), for which, as
we shall show below, local weighted Strichartz estimates hold true. Additionally,
we will employ such estimates to prove the local well-posedness of a semilinear
IVP associated with .Lb, where the form of the nonlinear term is dictated by the
inhomogenous Strichartz estimate at our disposal. The results of this section were
proved in [11] where results other than local weighted Strichartz estimates are
proved. In particular, in [11] also global weighted Strichartz estimates are derived,
as well as homogeneous smoothing estimates for time-degenerate operators of any
order by means of comparison principles. Our choice to treat the local estimates
only is due to the fact that these inequalities, because of their different form with
respect to the global counterpart, are the ones to be used to get the well-posedness
of the semilinear IVP. For more details and results about the class .Lb we refer the
interested reader to [11].

The semilinear IVP we will study in this section is

.

{
∂tu + ib′(t)�u = µ|b′(t)||u|p−1u,

u(0, x) = u0(x),
(28)

with .p > 1 suitable, .µ ∈ R, and b satisfying the following condition (H):

(H) .b ∈ C1(R), .b(0) = b′(0) = 0, and, for any .T̃ < ∞, .�{t ∈ [0, T̃ ], b′(t) = 0} =
k < ∞.

Since we are interested in the time-degenerate case, we assume .k ≥ 1 in condition
(H), that is, .b(0) = b′(0) = 0. However, our results are applicable in the
nondegenerate case .b′(t) �= 0, .t ∈ [0, T ], as well.

Notice that, as for .Lα, the solution operator for .Lb (giving the solution of the
homogeneous IVP at time t starting at time s) can be computed explicitly, and is
given, for .s < t , by

.ei(b(t)−b(s))�us(x) := W(t, s)us (x) :=
∫ t

s

eix·ξ−i(b(t)−b(s))|ξ |2ûs(ξ)dξ,
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which coincides with the Schrödinger group .ei(t−s)� when .b(t) = t . Moreover,
Duhamel’s principle still holds true in this case.

As we will make use of the so called admissible pairs, we recall this notion here
for completeness.

Given .n ≥ 1 we shall call a pair of exponents .(q, p) admissible if .2 ≤ q, p ≤ ∞,
and

.
2

q
+ n

p
= n

2
, with (q, p, n) �= (2,∞, 2).

With this definition in mind we can now state the main results of this section.

Theorem 7 (Local Weighted Strichartz Estimates) Let .b ∈ C1([0, T ]) be such
that it satisfies condition (H). Then, on denoting by .L

q
t L

p
x := Lq([0, T ]; Lp(Rn)),

we have that for any .(q, p) admissible pair, with .2 < q,p < ∞, the following
estimates hold

.‖|b′(t)|1/qeib(t)�ϕ‖L
q
t L

p
x

≤ C‖ϕ‖L2
x(Rn), (29)

.‖eib(t)�ϕ‖L∞
t L2

x
≤ ‖ϕ‖L2

x(Rn), (30)

.‖|b′(t)|1/q

∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖L

q
t L

p
x

≤ C‖|b′|1/q ′
g‖

L
q′
t L

p′
x

, (31)

and

.‖
∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖L∞

t L2
x

≤ C‖|b′|1/q ′
g‖

L
q′
t L

p′
x

, (32)

with .C = C(k, n, q, p).

Remark 5 Observe that, as opposed to the classical statement of Strichartz esti-
mates, that is in the case when .b(t) = t , we have estimates involving only one
admissible pair .(q, p), and not two arbitrary admissible pairs .(q, p) and .(q̃, p̃).
However, this is enough to derive the following well-posedness result.

Theorem 8 Let .1 < p < 4
n

+ 1 and .b ∈ C1([0,+∞)) satisfying condition (H).
Then, for all .u0 ∈ L2(Rn), there exists .T = T (‖u0‖2, n,µ, p) > 0 such that there
exists a unique solution u of the IVP (28) in the time interval .[0, T ] with

.u ∈ C([0, T ]; L2(Rn))
⋂

L
q
t ([0, T ]; L

p+1
x (Rn))

and .q = 4(p+1)
n(p−1)

. Moreover the map .u0 �→ u(·, t), locally defined from .L2(Rn) to

.C([0, T ); L2(Rn)), is continuous.
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Proof of Theorem 7 Estimate (30) is immediate and follows by the unitary of
.eib(t)�. As for (31), we consider .0 = T0 ≤ T1 < T2 < . . . < Tk ≤ Tk+1 = T

such that .b′(Tj ) = 0 for .j = 1, . . . k, so that b is strictly monotone on .[Tj , Tj+1],
and we have

.‖|b′(t)|1/qeib(t)�ϕ‖L
q
t L

p
x

=
⎛

⎝
k∑

j=0

‖|b′(t)|1/qeib(t)�ϕ‖q

Lq([Tj ,Tj+1];Lp
x )

⎞

⎠

1/q

≤
k∑

j=0

‖|b′(t)|1/qeib(t)�ϕ‖Lq([Tj ,Tj+1];Lp
x )

≤
b(t)=t ′

k∑

j=0

‖eit�ϕ‖
Lq([T̃j ,T̃j+1];Lp

x )

≤ (k + 1)C(n, q, p)‖ϕ‖L2
x
,

which proves the estimate.
To prove (29) we split the time interval again, and get

.‖|b′(t)|1/q

∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖L

q
t L

p
x

. ≤
k∑

j=0

‖|b′(t)|1/q

∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖L

q
t ([Tj ,Tj+1];Lp

x ). (33)

Now, by using the changes of variables .t ′ = b(t) and .s′ = b(s), each therm in the
sum above satisfies

.‖|b′(t)|1/q

∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖L

q
t ([Tj ,Tj+1];Lp

x ) (34)

≤ ‖
∫ b(t)

0
ei(t ′−s ′)�g̃(s′)ds′‖L

q

t ′ ([T̃j ,T̃j+1];Lp
x )

= ‖
∫ b(T )

0
ei(t ′−s ′)�χ(s′)g̃(s′)ds′‖

L
q

t ′ ([T̃j ,T̃j+1];Lp
x )

,
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where .g̃ = g ◦ b−1, .T̃j = b(Tj ) and .χ = 1[0,b(t)]. We then analyze the last quantity,
and, by using the properties of the Schrödinger group .eit�, we have

.‖
∫ b(T )

0
ei(t ′−s ′)�χ(s′)g̃(s′)ds′‖

L
q

t ′ ([T̃j ,T̃j+1];Lp
x )

. ≤ ‖
∫ b(T )

0
‖ei(t ′−s ′)�χ(s)g̃(s′)‖L

p
x
ds′‖

L
q

t ′ ([T̃j ,T̃j+1])

. ≤ ‖
∫ b(T )

0

1

|t ′ − s′|n(1/2−1/p)
‖χ(s′)g̃(s′)‖

L
p′
x

ds′‖L
q

t ′ ([T̃j ,T̃j+1])

. ≤
H-L-S

C(n, q, p)‖g̃‖
L

q′
t ′ ([T̃j ,T̃j+1];Lp′

x )
≤

t=b−1(t ′)
C(n, q, p)‖|b′|1/q ′

g‖
L

q′
t ([Tj ,Tj+1];Lp′

x )
,

where H-L-S stands for the application of the Hardy-Littlewood-Sobolev inequality.
Summarizing, we have proved that

.‖|b′(t)|1/q

∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖L

q
t ([Tj ,Tj+1];Lp

x )

. � ‖|b′|1/q ′
g‖

L
q′
t ([Tj ,Tj+1];Lp′

x )
� ‖|b′|1/q ′

g‖
L

q′
t ([0,T ];Lp′

x )
,

which, together with (33), gives

.‖|b′(t)|1/qeib(t)�ϕ‖L
q
t L

p
x

≤ (k + 1)C(n, q, p)‖|b′|1/q ′
g‖

L
q′
t L

p′
x

,

and thus (31).
We are now left with the proof of (32). By using the fact that .eib(t)� is unitary,

we have

.‖
∫ t

0
|b′(s)|ei(b(t)−b(s))�g(s)ds‖2

L2
x

= ‖
∫ t

0
|b′(s)|e−ib(s))�g(s)ds‖2

L2
x

. =
∫

R
n

(∫ t

0
|b′(s)|e−ib(s)�g(s)ds

) (∫ t

0
|b′(s′)|e−ib(s ′)�g(s′)ds′

)

dx

. ≤
∫ t

0
‖|b′(s)|1/q ′

g(s)‖
L

p′
x

‖|b′(s)|1/q

∫ t

0
|b′(s′)|ei(b(s)−b(s ′))�g(s′)ds′‖L

p
x
ds

. ≤
by (31)

(k + 1)C(n, q, p)‖|b′|1/q ′
g‖2

L
q′
t L

p′
x

,

which, in particular, gives (32). This concludes the proof . ��
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Proof of Theorem 8 The proof is standard and based on the fixed point argument.
Here the space where the contraction argument is performed is

.XT := {u ∈ C([0, T ]; L2(Rn)
⋂

L
q
t ([0, T ]; L

p+1
x (Rn)); ‖u‖XT < ∞},

where

.‖u‖XT := ‖u‖L∞
t L2

x
+ ‖|b′(t)|1/qu‖

L
q
t L

p+1
x

,

with .L
q
t L

p
x := Lq([0, T ]; L

p
x (Rn)), and the map .
u0 is

.
u0(u) := eib(t)�u0 + µ

∫ t

0
|b′(s)|ei(b(t)−b(s))�|u|p−1u ds.

Then we take .q = 4(p+1)
n(p−1)

so that .(q, p + 1) is an admissible pair, and we prove that
the map above is a contraction on a suitable ball of .XT (with sufficiently small radius
depending on .‖u0‖L2

x
) by using the estimates in Theorem 7. Finally, the application

of the fixed point theorem gives the result. For a detailed proof see [11]. ��
We conclude this section by giving a few examples of operators to which

Theorem 8 for the IVP (28) applies.

Example 1 .Lb = L tα+1
α+1

= ∂t + itα�, α ≥ 0;
Example 2 .Lb = Let−t−1 = ∂t + i(et − 1)�;
Example 3 .Lb = Lcos(t) := ∂tu − i sin(t)�.

Notice that in the first two examples we have only one degenerate point, that is at
time .t = 0. Example 3, instead, is more interesting, since we have .k ≥ 1 degenerate
points on any finite time interval .[0, T ]. Since Theorem 8 applies to all the cases
listed above, this gives that, if the time of existence T in Theorem 8 is large enough,
then in Example 3 we will cross more than one degenerate point.
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Appendix

We use this section to give the statement of a key result used in this paper, that is,
specifically, that of the so called Doi’s lemma (Lemma 2.3 in [8]). But first, let us
make clear the conditions needed to apply the aforementioned lemma.
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In the sequel we will use the notations used by Doi in [8], so we shall denote by
(B1), (B2) and (A6) the following conditions:

Let .aw(t, x, ξ) be the Weyl symbol of a pseudo-differential operator .A =
A(t, x,Dx) (see [16]). We shall say that .aw := a satisfies .(B1), .(B2) and .(A6)

if

(B1) .a(t, x, ξ) = ia2(x, ξ) + a1(t, x, ξ) + a0(t, x, ξ), where .a2 ∈ S2
1,0 is real-

valued and .aj ∈ S
j
1,0, for .j = 0, 1;

(B2) .|a2(x, ξ)| ≥ δ|ξ |2 with .x ∈ R
n, .|ξ |2 ≥ C, and .δ, C > 0;

(A6) There exists a real-valued function .q ∈ C∞(Rn × R
n) such that, with

.Cαβ,C1, C2 > 0,

.|∂α
ξ ∂β

x q(x, ξ)| ≤ Cαβ 〈x〉〈ξ〉−|α|, x, ξ ∈ R
n,

.Ha2q(x, ξ) = {a2, q}(x, ξ) ≥ C1|ξ | − C2, x, ξ ∈ R
n,

where we denoted by .S
j
1,0 = S

j
ρ=1,δ=0 =: Sj the standard class of pseudo-

differential symbols of order j, and by .{·, ·} the Poisson bracket.
Lemma 2 (Doi [8], Lemma 2.3) Assume .(B1), .(B2) and .(A6). Let .λ(s) be a
positive non increasing function in .C([0,∞)). Then

1. If .λ ∈ L1([0,∞)) there exists a real-valued symbol .p ∈ S0 and .C > 0 such that

.Ha2p ≥ λ(|x|)|ξ | − C, x, ξ ∈ R
n; (35)

2. If .
∫ t

0 λ(τ)dτ ≤ C log(t+1)+C′, .t ≥ 0, .C,C′ > 0, then there exists a real-valued
symbol .p ∈ S0

1 (log〈ξ〉) such that

.Ha2p ≥ λ(|x|)|ξ | − C1 log〈ξ〉 − C2, x, ξ ∈ R
n. (36)

Remark 6 We remark that, by taking .λ′(|x|) = C′λ(|x|) in Doi’s lemma, where
.C′ is any positive constant and .λ is as in Lemma 2, then we get that there exists a
real-valued symbol .p ∈ S0 and a constant .C > 0 such that

.Ha2p ≥ C′λ(|x|)|ξ | − C, x, ξ ∈ R
n. (37)
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On the Cauchy Problem for the
Nonlinear Wave Equation with Damping
and Potential

Masakazu Kato and Hideo Kubo

Abstract In this note, we study the Cauchy problem for the nonlinear wave
equation with damping and potential terms. The aim of this study is to generalize
the result in Georgiev et al. (J. Differ. Equ. 267(5):3271–3288, 2019) into two
directions. One is to relax the condition which characterizes the behavior of the
coefficient of the damping term at spatial infinity as in (6). The other is to treat
the slowly decreasing initial data. The decaying rate of the data affects the global
behavior of the solutions even if the nonlinear exponent lies in the super-critical
regime (see Theorem 5 below).

1 Introduction

This paper is concerned with the Cauchy problem for the nonlinear wave equation
with damping and potential:

.

{
(∂2

t + 2w(r)∂t − � + V (r))U = |U |p in (0, T ) × R
3,

U(0, x) = εf0(r), (∂tU)(0, x) = εf1(r) for x ∈ R
3,

(1)

where .r = |x| and .p > 1. In the earlier work [8], the coefficients of damping and
potential terms are supposed to satisfy the relation:

.V (r) = −w′(r) + w(r)2 for r > 0, (2)
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where

.w(r) = 1/r for r ≥ 1.

Keeping such a relation between the coefficients of damping and potential terms, we
relax the assumption on the initial data at spatial infinity. Actually, we obtain upper
bound of the lifespan for slowly decreasing initial data in Theorems 1 and 5 below.
Moreover, we are able to broaden the choice of the damping coefficient, essentially,
as .w(r) = µ/(2r) for .µ ≥ 0 and .r ≥ 1. The number .µ affects on the shift of the
critical exponent of the Strauss type, as we shall see below.

Before going into further details, we recall some known results. The case without
any damping term, i.e. the case when .w = V = 0, has been intensively studied for
few decades (see [4, 6, 9, 11, 14, 17, 20], or references in [5]) and in this case there
is a critical nonlinear exponent known as Strauss critical exponent that separates
the global existence and blow-up of the small data solutions. This critical exponent
.p0(n) is given by the positive root of

.γ (p, n) := 2 + (n + 1)p − (n − 1)p2 = 0.

For the semilinear wave equation with potential

.(∂2
t − � + V (x))U = |U |p in (0, T ) × R

3,

one can find blow up result in [18] or global existence part in [7].
In the case where the coefficient of the damping term is a function of time

variable, D’Abbicco et al. [3] derived the critical exponent for the Cauchy problem
to

.

(
∂2
t + 2

1 + t
∂t − �

)
U = |U |p in (0, T ) × R

3, (3)

by assuming the radial symmetry. Indeed, they proved that the problem admits a
global solution for sufficiently small initial data if .p > p0(5), and that the solution
blows up in finite time if .1 < p < p0(5). This result can be interpreted as an effect
of the damping term in (3) that shifts the critical exponent for small data solutions
from .p0(3) to .p0(5). The assumption about the radial symmetry posed in [3] was
removed by Ikeda and Sobajima [10] for the blow-up part (actually, they treated
more general damping term .µ(1 + t)−1∂tu with .µ > 0), and by Kato and Sakuraba
[12] and Lai [16] for the existence part, independently.

In the next section, we formulate our problem and describe the statements to the
problem.
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2 Formulation of the Problem and Results

Since we are interested in spherically symmetric solutions to the problem (1), we
set

.u(t, r) = rU(t, rω) with r = |x|, ω = x/|x|.

Then, by the relation (2) we obtain

.

⎧⎨
⎩

(∂t − ∂r + w(r))(∂t + ∂r + w(r))u = |u|p/rp−1 in (0, T ) × (0,∞),

u(0, r) = εϕ(r), (∂tu)(0, r) = εψ(r) for r > 0,

u(t, 0) = 0 for t ∈ (0, T ),

(4)

where .ϕ(r) = rf0(r) and .ψ(r) = rf1(r).

In order to express the solution of (4), we set .W(r) =
∫ r

0
w(τ)dτ for .r ≥ 0 and

define

.E−(t, r, y) = e−W(r)e2W(2−1(y−t+r))e−W(y) for t, r ≥ 0, y ≥ t − r. (5)

We suppose that .w(r) is a function in .C([0,∞)) ∩ C1(0,∞) satisfying

.w(r) = µ

2r
+ w̃(r), |w̃(r)| � r−1−δ for r ≥ r0 (6)

with some positive number .r0, .µ ≥ 0, and .δ > 0. This assumption implies

.eW(r) ∼ 〈r〉µ/2, r > 0.

Then the definition (5) of .E− implies

.E−(t, r, y) ∼ 〈r − t + y〉µ
〈r〉µ/2〈y〉µ/2

. (7)

Following the argument in [8], we see that the problem (4) can be written in the
integral form

.u(t, r) = εuL(t, r) + 1

2

∫∫
�−(t,r)

E−(t − σ, r, y)
|u(σ, y)|p

yp−1 dydσ (8)

for .t > 0, .r > 0, where we have set

.�−(t, r) = {(σ, y) ∈ (0,∞) × (0,∞); |t − r| < σ + y < t + r, σ − y < t − r}.



48 M. Kato and H. Kubo

Besides, we put

.uL(t, r) =1

2

∫ t+r

|t−r |
E−(t, r, y)

(
ψ(y) + ϕ′(y) + w(y)ϕ(y)

)
dy (9)

+ χ(r − t)E−(t, r, r − t)ϕ(r − t),

where .χ(s) = 1 for .s ≥ 0, and .χ(s) = 0 for .s < 0.
Then, the blow-up result in [8] where the case of .µ = 2 is handled can be

extended as follows.

Theorem 1 Suppose that (6) holds. Let .ϕ, .ψ ∈ C([0,∞)) satisfy

.ϕ(r) ≡ 0, ψ(r) ≥ 0, ψ(r) �≡ 0 for r ≥ 0. (10)

If .1 < p ≤ p0(3 + µ), then

.T (ε) ≤
{

exp(Cε−p(p−1)) if p = p0(3 + µ),

Cε−2p(p−1)/γ (p,3+µ) if 1 < p < p0(3 + µ).

Here .T (ε) denotes the lifespan of the problem (4).

On the other hand, when .p > p0(3 + µ), we expect that the solution exists
globally. Actually, when the initial data decays rapid enough, one can show the
following result analogously to [8]. But the pointwise estimate (12) is improved in
the region away from the light cone, due to the factor .〈t + r〉−1.

Theorem 2 Suppose that (6) holds. Assume .p > p0(3+µ) and .κ ≥ (µ/2+1)p−1.
Let .ϕ ∈ C1([0,∞)), .ψ ∈ C([0,∞)) satisfy

.|ϕ(r)| ≤ r〈r〉−κ , |ϕ′(r)| + |ψ(r)| ≤ r〈r〉−κ−1 for r ≥ 0. (11)

Then there exists .ε0 > 0 so that the corresponding integral Eq. (8) to the problem (4)
has a unique global solution satisfying

.|u(t, r)| �εr 〈r〉−µ/2〈t + r〉−1〈t − r〉−η, η := (µ/2 + 1)(p − 1) − 1 (12)

for .t > 0, .r > 0 and any .ε ∈ (0, ε0].
This theorem leads us to one natural question, that is, what will happen when

the initial data decays more slowly. In view of the work of Asakura [1], the self-
similarity comes into play (see also [2, 13, 15, 19]). Namely, the global behavior
would be different between the cases .κ ≥ 2/(p − 1) and .κ < 2/(p − 1). Indeed,
we are able to show the global existence result in the former case.
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Theorem 3 Let .κ > µ/2. Suppose that (6) holds. Assume .p > p0(3 + µ) and
.κ ≥ 2/(p − 1). Let .ϕ ∈ C1([0,∞)), .ψ ∈ C([0,∞)) satisfy (11). Then there exists
.ε0 > 0 so that the integral Eq. (8) has a unique global solution for .ε ∈ (0, ε0].

The proof of Theorem 3 is based on the contraction mapping principle in a
suitable weighted .L∞-space, similarly to the proof of Theorem 2. But we need to
replace the weight function according to the size of .κ as

.w(r, t) = r

〈r〉µ/2

×

⎧⎪⎪⎨
⎪⎪⎩

〈t + r〉−(κ−µ/2) (µ/2 < κ < µ/2 + 1),

〈t + r〉−1
(

1 + log
1 + t + r

1 + |t − r|
)

(κ = µ/2 + 1),

〈t + r〉−1〈t − r〉−(κ−µ/2−1) (µ/2 + 1 < κ ≤ (µ/2 + 1)p − 1).

for .t > 0, .r > 0. Note that .w(r, t) coincides with the upper bound appeared in (12)
when .κ = (µ/2 + 1)p − 1.

When either .p > p0(3 + µ) and .κ < 2/(p − 1) or .1 < p ≤ p0(3 + µ), we
obtain the following lower bounds of the lifespan.

Theorem 4 Let .κ > µ/2 and set .κ1 := µ/2 + 1 + 1/p. Suppose that (6) holds. Let
.ϕ ∈ C1([0,∞)), .ψ ∈ C([0,∞)) satisfy (11). Then there exist .C > 0 and .ε0 > 0
such that for any .ε ∈ (0, ε0]

.T (ε) ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp(Cε−p(p−1)) (p = p0(3 + µ) and κ > κ1),

Cε−2p(p−1)/γ (p,3+µ) (1 < p < p0(3 + µ) and κ > κ1),

exp(Cε−(p−1)) (p = 1 + 2/κ = p0(3 + µ)),

Cb(ε) (1 < p < 1 + 2/κ and κ = κ1),

Cε−(p−1)/(2−(p−1)κ) (1 < p < 1 + 2/κ and κ < κ1).

Here .b(ε) is defined by

.εp(p−1)bγ (p,3+µ)/2(log(1 + b))p−1 = 1.

In order to prove Theorem 4, we reformulate the integral Eq. (8) to the following
one:

.v(t, r) = 1

2

∫∫
�−(t,r)

E−(t − σ, r, y)
|εuL(σ, y) + v(σ, y)|p

yp−1 dydσ (13)

for .t > 0, .r > 0, by introducing the new unknown function .v = u − εuL,
as in the proof of Theorem 2.3 in [14]. It is rather easy to treat the integral
Eq. (13) than the original one. Indeed, the solution v can be presumably assumed
to satisfy the essentially same upper bound as in (12), although the solution .uL

to the homogeneous equation does not satisfy such an estimate if the size of .κ is
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small. Moreover, since .uL exists globally in time, the maximal existence time of the
solution u of (8) is the same as that of the solution v of (13), so that the desired
conclusion follows from the study of (13).

To conclude the optimality of those lower bounds in Theorem 4 with respect to
.ε, the upper bounds given in Theorem 1 are not enough for the last three cases.
However, the following result enable us to conclude the optimality in these cases.

Theorem 5 Suppose that (6) holds. Let .ϕ, .ψ ∈ C([0,∞)) satisfy

.ϕ(r) ≡ 0, ψ(r) ≥ (1 + r)−κ for r ≥ 0 (14)

for some .0 < κ ≤ κ1. Then there exist .C > 0, .ε0 > 0 such that for any .ε ∈ (0, ε0]

.T (ε) ≤
⎧⎨
⎩

exp(Cε−(p−1)) (p = 1 + 2/κ = p0(3 + µ)),

Cb(ε) (1 < p < 1 + 2/κ and κ = κ1),

Cε−(p−1)/(2−(p−1)κ) (1 < p < 1 + 2/κ and κ < κ1).

Thanks to the assumption (14), if the solution of (8) exists globally in time, then
we can prove that for any .(t, r) satisfying .0 < t ≤ 2r and .t − r ≥ b with a positive
number b, and for any natural number n, the following type of lower bound of the
solution:

.u(t, r) ≥ (t − r)µ/2+1

rµ/2(t − r − b)2/(p−1)
exp(pn log J (t, r)), . (15)

J (t, r) = εE (t − r − b)2/(p−1)+µ/2+1(t − r)−κ−(µ/2)−1 (16)

holds, when .1 < p < 1 + 2/κ , for instance. Here E is a positive constant
independent of t , r , n, and .ε. By choosing .(t, r) far away from the origin on the
line .t = 2r so that .log J (t, r) is strictly positive, we find that the value of .u(t, r)

becomes unbounded as .n → ∞. This gives a contradiction together with the upper
bound of the lifespan.

This paper is organized as follows. We shall prove only Theorems 1 and 2 in
this note, because the proofs of other theorems are rather technical and will appear
elsewhere. In the Sect. 3, we give preliminary facts. The Sect. 4 is devoted to the
proof of a blow-up result given in Theorem 1. In the Sect. 5, we derive a priori
upper bounds and complete the proof of Theorem 2.

3 Preliminaries

In this section we prepare a couple of lemmas which will be used in the proofs of
Theorems 1 and 2. For the proofs of Lemmas 1 and 2, see [14], Lemma 2.2 and
Lemma 2.3.
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Lemma 1 Let .0 < a < b and .µ, .ν ≥ 0. Then there exists .C = C(µ, ν) > 0 such
that

.

∫ b

a

(ρ − a)ν

ρµ
dρ ≥ C

aµ−ν−1

(
1 − a

b

)ν+1
.

Lemma 2 Let .C1, .C2 > 0, .α, .β ≥ 0, .θ ≤ 1, .ε ∈ (0, 1], and .p > 1. Suppose that
.f (y) satisfies

.f (y) ≥ C1ε
α, f (y) ≥ C2ε

β

∫ y

1

(
1 − η

y

)
f (η)p

ηθ
dη, y ≥ 1.

Then, .f (y) blows up in a finite time .T∗(ε). Moreover, there exists a constant .C∗ =
C∗(C1, C2, p, θ) > 0 such that

.T∗(ε) ≤
{

exp(C∗ε−{(p−1)α+β}) if θ = 1,

C∗ε−{(p−1)α+β}/(1−θ) if θ < 1.

Lemma 3 Let .0 ≤ a ≤ b and .k ∈ R. Then we have

.

∫ b

a

〈x〉−kdx � (b − a) ×
⎧⎨
⎩

〈b〉−k (k < 1),

〈b〉−1〈a〉−k+1 (k > 1),

〈b〉−1�(a, b) (k = 1).

(17)

Here, for .0 ≤ a ≤ b, we put

.�(a, b) := 2 + log
1 + b

1 + a
. (18)

Proof

(i) When .k > 1, we have

.

∫ b

a

〈x〉−kdx � 1

k − 1

{
1

(1 + a)k−1 − 1

(1 + b)k−1

}

� 1

(1 + a)k−1

{
1 −

(
1 + a

1 + b

)k−1
}

.

Note that

.1 − sl ≤ max{1, l}(1 − s) for l ≥ 0, 0 ≤ s ≤ 1. (19)

Hence we obtain (17) for .k > 1.
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(ii) When .k < 1, we have in the similar manner

.

∫ b

a

〈x〉−kdx � 1

1 − k

{
1

(1 + b)k−1 − 1

(1 + a)k−1

}

� 1

(1 + b)k−1

{
1 −

(
1 + a

1 + b

)1−k
}

� (b − a)〈b〉−k.

(iii) When .k = 1, It follows that

.

∫ b

a

〈x〉−1dx � log

(
1 + b

1 + a

)
. (20)

If .a ≥ b/2, since .log(1 + s) ≤ s .(s ≥ 0), we find that

.

∫ b

a

〈x〉−1dx � log

(
1 + b − a

1 + a

)
� b − a

1 + a
� (b − a)〈b〉−1.

If .a ≤ b/2 and .b ≥ 1, we find that .b − a ≥ b/2. Hence we have from (20)

.

∫ b

a

〈x〉−1dx � b − a

b
log

(
1 + b

1 + a

)
� (b − a)〈b〉−1 log

(
1 + b

1 + a

)
.

If .0 < b ≤ 1, we obtain

.

∫ b

a

〈x〉−1dx � b − a ∼ (b − a)〈b〉−1.

Therefore we get (17). This completes the proof. ��
Lemma 4 Let .k1, k2, k3 ≥ 0 and .α ≥ 0. Then we have

.

∫ α

−α

〈α + β〉−k1−k2〈β〉−k1−k3dβ � 〈α〉−k1 ×
⎧⎨
⎩

〈α〉1−(k1+k2+k3) (k1+k2 + k3 < 1),

1 (k1+k2 + k3 > 1),

log(2 + α) (k1+k2 + k3 = 1),

Proof First of all, we prove for .a, b ≥ 0 and .α ≥ 0

.

∫ α

−α

〈α + β〉−a〈β〉−bdβ �

⎧⎨
⎩

〈α〉1−(a+b) (a + b < 1),

1 (a + b > 1),

log(2 + α) (a + b = 1).

(21)
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We note that for .−α < β < −α/2, we have .|β| > α+β and that for .−α/2 < β < α,
we have .|β| < α + β. Then we see that the .β-integral is bounded by the sum of

.

∫ −α/2

−α

〈α + β〉−(a+b)dβ ≤
∫ 0

−α

〈α + β〉−(a+b)dβ,

∫ α

−α/2
〈β〉−(a+b)dβ ≤ 2

∫ α

0
〈β〉−(a+b)dβ.

Then we get (21) by a direct computation.
We now divide the .β-integral into .I1 and .I2:

.I1 :=
∫ −α/2

−α

〈α + β〉−k1−k2〈β〉−k1−k3dβ,

I2 :=
∫ α

−α/2
〈α + β〉−k1−k2〈β〉−k1−k3dβ.

Then we get from (21)

.I1 � 〈α/2〉−k1

∫ α

−α

〈α + β〉−k1−k2〈β〉−k3 dβ

� 〈α〉−k1 ×
⎧⎨
⎩

〈α〉1−(k1+k2+k3) (k1 + k2 + k3 < 1),

1 (k1 + k2 + k3 > 1),

log(2 + α) (k1 + k2 + k3 = 1).

As to .I1, we have

.I2 � 〈α/2〉−k1

∫ α

−α

〈α + β〉−k2〈β〉−k1−k3dβ,

which implies the desired estimate by (21). This completes the proof. ��

4 Proof of Theorem 1

Let u denote the solution of the problem (4) in what follows. When .ϕ ≡ 0, it follows
from (8), (9) and (7) that

.u(t, r) � εuL(t, r) + Ĩ−(|u|p/yp−1)(t, r), . (22)

uL(t, r) � J̃−(ψ)(t, r) (23)
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holds for t , .r > 0, where we put

.Ĩ−(F )(t, r) =
∫∫

�−(t,r)

〈−t + σ + r + y〉µ
〈r〉µ/2〈y〉µ/2 F(σ, y)dydσ, . (24)

J̃−(ψ)(t, r) =
∫ t+r

|t−r |
〈r − t + y〉µ
〈r〉µ/2〈y〉µ/2

ψ(y)dy. (25)

Our first step is to obtain basic lower bounds of the solution to the problem (4).
By (10), we may assume that .ψ is strictly positive in an interval .[a, b].
Lemma 5 We assume (10) holds. Then we have

.uL(t, r) � c0

〈r〉µ/2 , c0 := min
a≤r≤b

ψ(r) (26)

for

.t < r < t + a, t + r > b. (27)

Moreover, if u is the solution to (4), then we have

.u(t, r) � εp

〈r〉µ/2(t − r)η
, η = (µ/2 + 1)(p − 1) − 1 (28)

for .0 < t < 2r and .t − r > b.

Proof First, we show (26). Let .(t, r) satisfy (27). Then, from (23) we have

.uL(t, r) �
∫ t+r

r−t

〈r − t + y〉µ
〈r〉µ/2〈y〉µ/2 ψ(y)dy

� c0

∫ b

a

1

〈r〉µ/2〈y〉µ/2 dy,

which implies (26).
Next we show (28). Let .0 < t < 2r and .t − r > b. If we set

.�̃(t, r) = {(σ, y) ∈ (0,∞) × (0,∞); 0 ≤ y − σ ≤ a, t − r < σ + y < t + r},

then .�̃(t, r) ⊂ �−(t, r). In addition, we see from (22) and (26) that .u(σ, y) �
ε〈y〉−µ/2 for .(σ, y) ∈ �̃(t, r). Therefore, from (22) we get

.u(t, r) � εp

∫∫
�̃(t,r)

〈−t + σ + r + y〉µ
〈r〉µ/2〈y〉µ/2

1

〈y〉(µ/2+1)p−1
dydσ.
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Now, introducing the coordinates .α = σ + y, .β = σ − y, we obtain

.u(t, r) � εp

∫ t+r

t−r

dα

∫ 0

−a

〈α − t + r〉µ
〈r〉µ/2〈α − β〉(µ/2+1)p+µ/2−1

dβ

� εp

∫ t+r

t−r

〈α − t + r〉µ
〈r〉µ/2〈α〉(µ/2+1)p+µ/2−1

dα.

Since .t < 2r , we have .t + r > 3(t − r), so that

.〈r〉µ/2u(t, r) � εp

∫ 3(t−r)

t−r

(α − t + r)µ

〈α〉(µ/2+1)p+µ/2−1
dα

� εp〈t − r〉−((µ/2+1)p+µ/2−1)

∫ 3(t−r)

t−r

(α − t + r)µdα

� εp(t − r)−η

for .t − r > b. This completes the proof. ��
For .ρ > 0, we introduce the following quantity:

.〈u〉(ρ) = inf{〈y〉µ/2(σ − y)η|u(σ, y)|; (σ, y) ∈ �(ρ)},

where we set

.�(ρ) = {(σ, y); 0 ≤ σ ≤ 2y, σ − y ≥ ρ}.

For simplicity, we assume .0 < b ≤ 1. Then, (28) yields

.〈u〉(y) ≥ C1ε
p for y ≥ 1. (29)

Let .ξ ≥ 1 and .(t, r) ∈ �(ξ), so that .t − r ≥ 1. For .ρ > 0 we set

.�̃(ρ, t − r) = {(σ, y); y ≥ t − r, σ + y ≤ 3(t − r), σ − y ≥ ρ}.

It is easy to see that .�̃(ρ, t − r) ⊂ �−(t, r) for any .η > 0 and .(t, r) ∈ �(ξ) and
that .(σ, y) ∈ �̃(1, t − r) implies .(σ, y) ∈ �(σ − y). Therefore, from (22) we have

.u(t, r)

�
∫∫

�̃(1,t−r)

(−t + σ + r + y)µ

〈r〉µ/2〈y〉µ/2

[〈u〉(σ − y)]p

〈y〉(µ/2+1)p−1(σ − y)pη
dy dσ

� (t − r)µ

〈r〉µ/2

∫∫
�̃(1,t−r)

[〈u〉(σ − y)]p

〈y〉(µ/2+1)p+µ/2−1(σ − y)pη
dy dσ,
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because .−t+σ +r+y = −t+r+(σ −y)+2y ≥ 1+(t−r) for .(σ, y) ∈ �̃(1, t−r).
Changing the variables by .β = σ − y, .z = y, we have

.u(t, r) � (t − r)µ

〈r〉µ/2

∫ t−r

1
dβ

∫ (3(t−r)−β)/2

t−r

[〈u〉(β)]p

〈z〉(µ/2+1)p+(µ/2−1)βpη
dz

� 1

〈r〉µ/2(t − r)(µ/2+1)(p−1)

∫ t−r

1

t − r − β

2

[〈u〉(β)]p
βpη

dβ

� 1

〈r〉µ/2(t − r)(µ/2+1)p−(µ/2+2)

∫ t−r

1

(
1 − β

t − r

) [〈u〉(β)]p
βpη

dβ.

Since the function

.y �→
∫ y

1

(
1 − β

y

) [〈u〉(β)]p
βpη

dβ

is non-decreasing, for any .(t, r) ∈ �(ξ), we have

.〈r〉µ/2(t − r)(µ/2+1)p−(µ/2+2)u(t, r) ≥ C2

∫ ξ

1

(
1 − β

ξ

) [〈u〉(β)]p
βpη

dβ.

Thus, recalling .η = (µ/2 + 1)p − (µ/2 + 2) from (28), we obtain

.〈u〉(ξ) ≥ C2

∫ ξ

1

(
1 − β

ξ

) [〈u〉(β)]p
ηpη

dβ, ξ ≥ 1 (30)

Proof of Theorem 1 By (29) and (30), we can apply Lemma 2 as .α = p, .β = 0,
and .θ = pη. Since .1 < p ≤ p0(3 + µ) implies .θ ≤ 1, the maximal existence time
.T∗(ε) of .〈u〉(ξ) satisfies the following estimates:

.T∗(ε) ≤
{

exp(Cε−p(p−1)) if θ = 1,

Cε−p(p−1)/(1−θ) if θ < 1.

Since .θ = 1 and .θ < 1 correspond to .p = p0(3 + µ) and .1 < p < p0(3 + µ),
respectively, we obtain the desired conclusion. ��

5 Proof of Theorem 2

Our first step is to obtain the following estimates for the homogeneous part of the
solution to the problem (8).
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Lemma 6 Assume that (6) holds and .ϕ ∈ C1([0,∞)), .ψ ∈ C0([0,∞)) sat-
isfy (11), so that

.|ϕ(r)| � r 〈r〉−κ , |ψ(r) + ϕ′(r) + w(r)ϕ(r)| � 〈r〉−κ for r ≥ 0 (31)

holds with some positive constant .κ . We put

.ν := κ − µ/2 − 1. (32)

Then we have

.

∣∣∣∣
∫ t+r

|t−r |
E−(t, r, y)

(
ψ(y) + ϕ′(y) + w(y)ϕ(y)

)
dy

∣∣∣∣

� r

〈r〉µ/2
×

⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0),

〈t + r〉−1�(|t − r|, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0)

(33)

for .t > 0, .r > 0, where .�(a, b) is defined in (18). Moreover, for .0 < t ≤ r we have

. |E−(t, r, r − t)ϕ(r − t)| � r

〈r〉µ/2 ×
⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0), .

〈t + r〉−1�(r − t, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0).

(34)

Proof We begin with the proof of (33). In the following, let .t > 0, .r > 0. Since
.0 ≤ r − t + y ≤ 2y for .y ≥ |t − r|, from (7) we have

.|E−(t, r, y)| � 〈y〉µ/2/〈r〉µ/2 for y ≥ |t − r|. (35)

Therefore, by using the assumptions on the data, the left hand side of (33) is
estimated by

.〈r〉−µ/2
∫ t+r

|r−t |
〈y〉µ/2

∣∣ψ(y) + ϕ′(y)+w(y)ϕ(y)
∣∣ dy � 〈r〉−µ/2

∫ t+r

|r−t |
〈y〉−κ+µ/2dy.

From (32) and Lemma 3, the last integral is estimated as follows:

.

∫ t+r

|r−t |
〈y〉−κ+µ/2dy � r ×

⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0),

〈t + r〉−1�(|t − r|, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0).

Therefore we obtain (33).
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Next we prove (34), by assuming .0 < t ≤ r . From (31) and (35) we have

.|E−(t, r, y)ϕ(y)| � y

〈r〉µ/2〈y〉κ−µ/2 for y ≥ |t − r|. (36)

Let .r ≥ 1. It follows from (32) and (36) that

. |E−(t, r, r − t)ϕ(r − t)| � r − t

〈r〉µ/2〈r − t〉κ−µ/2

� r

〈r〉µ/2+1〈r − t〉κ−µ/2−1

� r

〈r〉µ/2
×

{ 〈r + t〉−κ+µ/2 (ν ≤ 0),

〈r + t〉−1〈r − t〉−ν (ν > 0).

Let .0 < r ≤ 1. We obtain from (36)

. |E−(t, r, r − t)ϕ(r − t)| � r

〈r〉µ/2〈r − t〉κ−µ/2

� r

〈r〉µ/2 ×
{ 〈r + t〉−κ+µ/2 (ν ≤ 0),

〈r + t〉−1〈r − t〉−κ+µ/2 (ν > 0).

Hence, we obtain the desired estimate (34). This completes the proof. ��
For .t > 0, .r > 0, it follows from (9) and Lemma 6 that

.|uL(t, r)| ≤ C̃0r 〈r〉−µ/2 ×
⎧⎨
⎩

〈t + r〉−κ+µ/2 (ν < 0),

〈t + r〉−1�(|t − r|, t + r) (ν = 0),

〈t + r〉−1〈t − r〉−ν (ν > 0)

(37)

with some positive constant .C̃0, provided (6) and (11) hold.
Our next step is to consider the integral operator appeared in (8):

.I−(F )(t, r) := 1

2

∫∫
�−(t,r)

E−(t − σ, r, y)F (σ, y)dydσ.

For .(σ, y) ∈ �−(t, r) we have .y ≥ |t − r − σ |, so that (35) yields

.E−(t − σ, r, y) � 〈r〉−µ/2〈y〉µ/2 for (σ, y) ∈ �−(t, r).

Hence we get

.|I−(F )(t, r)| � 〈r〉−µ/2
∫∫

�−(t,r)

〈y〉µ/2|F(σ, y)|dydσ. (38)
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In order to derive an apriori estimate, we introduce the following weighted .L∞-
norm:

.‖u‖1 = sup
(t,r)∈[0,∞)×[0,∞)

{w1(t, r)
−1|u(t, r)|}, (39)

where we put

.w1(t, r) := r 〈r〉−µ/2〈t + r〉−1〈t − r〉−η. (40)

Here we choose

.η = (µ/2 + 1)(p − 1) − 1

as in (28), so that .η > 1/p, by the assumption .p > p0(3 + µ).

Lemma 7 Let .η > 0 be as above. Then, there exists a positive constant .C̃1 such
that

.‖I−(F )‖1 ≤ C̃1‖u‖p

1 (41)

with .F(t, r) = |u(t, r)|p/rp−1.

Proof From (39) and (40), we obtain

.〈r〉µp/2〈t + r〉p〈t − r〉ηp|F(t, r)| ≤ r‖u‖p

1 .

It follows from (38) that

.|I−(F )(t, r)| � 〈r〉−µ/2‖u‖p

1 I (t, r),

where we put

.I (t, r) :=
∫∫

�−(t,r)

y

〈y〉µ(p−1)/2〈σ + y〉p〈σ − y〉ηp dydσ. (42)

In order to show (41), it is enough to prove

.I (t, r) � r

〈t + r〉〈t − r〉η .

To evaluate the integral (42), we pass to the coordinates

.α = σ + y, β = y − σ
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and deduce

.I (t, r) �
∫ t−r

|r−t |

∫ α

r−t

1

〈α〉p〈α + β〉µ(p−1)/2−1〈β〉ηp dβdα. (43)

First, suppose .r ≥ t . Then we get

.I (t, r) �
∫ t−r

r−t

dα

〈α〉η+1

∫ α

r−t

1

〈β〉ηp dβ.

Since .pη > 1, we have from Lemma 3

.I (t, r) �
∫ t+r

r−t

1

〈α〉η+1 dα � r

〈t + r〉〈t − r〉η .

Next, suppose .r < t . Since .pη > 1, we have from (43), Lemma 3, and Lemma 4
with .k1 = η, .k2 = 0, and .k3 = η(p − 1)

.I (t, r) �
∫ t+r

t−r

dα

〈α〉
∫ α

−α

1

〈α + β〉η〈β〉ηp dβ

�
∫ t+r

t−r

1

〈α〉η+1 dα � r

〈t + r〉〈t − r〉η .

This completes the proof. ��
Proof of Theorem 2 Let X be the linear space defined by

.X = {u(t, r) ∈ C([0,∞) × [0,∞)) ; ‖u‖1 < ∞} .

We can verify easily that X is complete with respect the norm .‖ · ‖1. We define the
sequence of functions .{un} by

.u0 = εuL, un+1 = εuL + I−(|un|p/rp−1) (n = 0, 1, 2, · · · ).

Since .κ ≥ (µ/2 + 1)p − 1 and .ν = κ − µ/2 − 1, we have .ν ≥ η. Therefore, it
follows from (37), (39) and (40) that .‖u0‖1 ≤ εC̃0. Hence .u0 ∈ X.

Now, by choosing .ε is sufficiently small, we find from Lemma 7 that .{un} ∈ X

for all n. Moreover, we can prove that .{un} is a Cauchy sequence in X. Since X is
complete, there exists .u ∈ X such that .un converges uniformly to u as .n → ∞.
Clearly, u satisfies (8). This completes the proof. ��
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Local Well-Posedness for the
Scale-Critical Semilinear Heat Equation
with a Weighted Gradient Term

Noboru Chikami, Masahiro Ikeda, and Koichi Taniguchi

Abstract The purpose of this paper is to prove local well-posedness for the Cauchy
problem of the scale-critical semilinear heat equation with a weighted gradient term
in the framework of weighted Lebesgue spaces and weighted Sobolev spaces.

1 Introduction and Main Results

We consider the Cauchy problem of the following semilinear heat equation:

.

{
∂tu − �u = |x|γ |∇u|α, t > 0, x ∈ R

d ,

u(0, x) = u0(x), x ∈ R
d ,

(1)

where .d ∈ N, .γ > −1 and .α > 1. The Eq. (1) in the case .γ = 0 is known as the
viscous Hamilton-Jacobi equation, and has been well studied in the framework of
Lebesgue space .Lq(Rd) and Sobolev space .W 1,q (Rd) (see [1, 3, 4, 11, 12, 14, 16, 18]
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and references therein). A similar problem to (1) with .γ �= 0 is the Hardy-Hénon
parabolic equation

.

{
∂tu − �u = |x|γ |u|α−1u, t > 0, x ∈ R

d,

u(0, x) = u0(x), x ∈ R
d,

which has been studied by many authors (see [5–10, 13, 15, 17, 19]). In particular,
local well-posedness has been established for all .γ > − min{2, d} in the framework
of the weighted Lebesgue spaces (see [9]).

In this paper, we prove the local well-posedness for (1) in the scale-critical case.
Following the idea of [9], we employ the weighted Lebesgue spaces .L

q
s (Rd ) and

weighted Sobolev space .W
1,q
s (Rd) as the solution spaces. Here, for .s ∈ R and .q ∈

[1,∞], .L
q
s (Rd) and .W

1,q
s (Rd ) are defined by the spaces of Lebesgue measurable

functions on .Rd such that

.‖f ‖L
q
s

:=
(∫

R
d
(|x|s|f (x)|)q dτ

) 1
q

< ∞,

.‖f ‖
W

1,q
s

:= ‖f ‖L
q
s
+ ‖∇f ‖L

q
s

< ∞

with the usual modification from integral to supremum for .q = ∞, respectively. We
introduce some exponents from the point of view of scale invariance. We define the
scale transformation

.uλ(t, x) := λ
2+γ−α

α−1 u(λ2t, λx), λ > 0,

under which (1) is invariant. More precisely, if u is a classical solution to (1), then

so is .uλ with the rescaled initial data .λ
2+γ−α

α−1 u0(λx). Moreover, we calculate

.‖uλ(0)‖L
q
s

= λ
−s+ 2+γ−α

α−1 − d
q ‖u0‖L

q
s
,

.‖∇uλ(0)‖L
q
s

= λ
−s+ 1+γ

α−1 − d
q ‖∇u0‖L

q
s

for .λ > 0. Hence, we define

.sc,1 = sc,1(d, γ, α, q) := 2 + γ − α

α − 1
− d

q
,

.sc,2 = sc,2(d, γ, α, q) := 1 + γ

α − 1
− d

q
,
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and then,

.‖uλ(0)‖L
q
sc,1

= ‖u0‖L
q
sc,1

,

.‖∇uλ(0)‖L
q
sc,2

= ‖∇u0‖L
q
sc,2

for .λ > 0, i.e., the norms .‖uλ(0)‖L
q
sc,1

and .‖∇uλ(0)‖L
q
sc,2

are invariant with respect

to .λ. Thus, the exponents .sc,1 and .sc,2 are called scale-critical exponents with respect
to .‖ · ‖L

q
s

and .‖∇ · ‖L
q
s
, respectively. Note that .sc,2 = sc,1 + 1 and

.W
1,q
sc,2 (Rd ) ↪→ L

q
sc,1(R

d)

holds if .2 + γ −α > 0 and .1 ≤ q < ∞ by the weighted Hardy inequality (see, e.g.,
(1.2) in [2]). Moreover, we define the exponent .αF as

.αF = αF (d, γ ) := 1 + 1 + γ

d + 1
,

which is the scale-critical exponent in .L1(Rd) and the Fujita exponent for (1). From
the point of view of integrability of the nonlinear term, we introduce the exponent
.Sc defined by

.Sc = Sc(d, γ, α, q) := d + γ

α
− d

q
.

In fact, this .Sc is the critical exponent in the sense that

.|x|γ |v|α ∈ L1
loc(R

d) for any v ∈ L
q
s (Rd )

if and only if

.s < Sc or s = Sc and q ≤ α.

Let us give a notion of solution in this paper.

Definition 1.1 Let .X = L
q
s (Rd) or .W

1,q
s (Rd). Let .u0 ∈ X and .T ∈ (0,∞]. We say

that a function u is a mild solution to (1) with initial data .u0 if .u ∈ C([0, T ); X)

satisfies the integral equation

.u(t, x) = (et�u0)(x) +
∫ t

0
e(t−τ )�(| · |γ |∇u(τ)|α)(x) dτ
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for almost everywhere .(t, x) ∈ (0, T ) × R
d , where .{et�}t>0 is the heat semigroup

whose elements are defined by

.et�f := Gt ∗ f, f ∈ S′(Rd )

with the Gaussian kernel

.Gt(x) := (4πt)−
d
2 e− |x|2

4t , t > 0, x ∈ R
d .

Here, .∗ denotes the convolution operator and .S′(Rd ) is the space of tempered
distributions. We denote by .Tmax = Tmax(u0) the maximal existence time of u. ��

Our results are the following:

Theorem 1.2 Let .d ∈ N, .−1 < γ < d , .αF < α < min{2, 2 + γ }, .α ≤ q < ∞ and
.s = sc,1. Assume that

.
1

q
< min

{
2 − α

d(α − 1)
,

1

d(α − 1)
+ (d − 1)α − d − γ

dα(α − 1)
,

1

d(α − 1)

+ (d − 1)α − γ − 1

d(α − 1)2

}
,

. max

{
−d

q
, sc,2 − 2

α
,

γ

α − 1
,
sc,1 + γ

α

}
< s̃ < min

{
Sc, sc,1

}
.

Then, for any .u0 ∈ L
q
sc,1(R

d), there exist a time .T > 0 and a unique mild solution u

to (1) in the class

.C([0, T ]; L
q
sc,1(R

d )) ∩ C((0, T ]; W
1,q

s̃
(Rd )).

Moreover, there exists an .ε0 > 0 such that if the initial data .u0 satisfies

. max

{
sup

0<t<Tmax

tβ1‖et�u0‖L
q

s̃
, sup

0<t<Tmax

tβ1+ 1
2 ‖∇et�u0‖L

q

s̃

}
≤ ε0,

then .Tmax = ∞ and . lim
t→∞ ‖u(t)‖L

q
sc,1

= 0. Here, .β1 = (sc,1 − s̃)/2. ��
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Theorem 1.3 Let .d ∈ N, .γ > −1, .α > αF , .α ≤ q < ∞ and .s = sc,2. Assume
that

.
1

q
< min

{
1

d(α − 1)
,

1

d(α − 1)
+ (d − 1)α − d − γ

dα(α − 1)
,

1

d(α − 1)

+ (d − 1)α − γ − α

d(α − 1)2

}
,

. max

{
−d

q
, sc,2 − 2

α
,

γ

α − 1
,
sc,2 + γ

α

}
< s̃ < min

{
Sc, sc,2

}

Then, for any .u0 ∈ W
1,q
sc,2 (Rd), there exist a time .T > 0 and a unique mild solution

u to (1) in the class

.C([0, T ]; W
1,q
sc,2 (Rd )) ∩ C((0, T ]; W

1,q

s̃
(Rd )).

Moreover, there exists an .ε0 > 0 such that if the initial data .u0 satisfies

. max

{
sup

0<t<Tmax

tβ2‖et�u0‖L
q

s̃
, sup

0<t<Tmax

tβ2‖∇et�u0‖L
q

s̃

}
≤ ε0,

then .Tmax = ∞ and . lim
t→∞ ‖u(t)‖

W
1,q
sc,2

= 0. Here, .β2 = (sc,2 − s̃)/2. ��
Remark 1.4 Let us give some remarks on the theorems.

(a) Theorems 1.2 and 1.3 with .γ = 0 correspond to the results on local well-
posedness for the viscous Hamilton-Jacobi equation in the scale-critical case
(see Theorem 2.1 and Proposition 2.4 in [4]).

(b) It is not clear whether the restrictions .α < min{2, 2 + γ } and .γ < d in
Theorem 1.2 are sharp or not. In the case .γ = 0, it is known that the restriction
.α < 2 is sharp (see Proposition 3.1 in [4]).

(c) The conditions on .s̃ come from the nonlinear estimates (Lemmas 2.2 and 2.3
below) and .β1, β2 > 0. The upper bounds of .1/q are conditions to guarantee
the existence of .s̃.

2 Proofs of Theorems 1.2 and 1.3

We use the following weighted estimates for the heat semigroup .{et�}t>0.
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Lemma 2.1 (Chikami et al. [10]) Let .d ∈ N, .1 ≤ q1, q2 ≤ ∞, .s1, s2 ∈ R and
.k = 0, 1. Assume that .q1, q2, s1, s2 satisfy

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− d
q2

< s2 ≤ s1 < d
(

1 − 1
q1

)
,

d
(

1
q1

− 1
q2

)
+ s1 − s2 ≥ 0,

q1 ≤ q2 if d
(

1
q1

− 1
q2

)
+ s1 − s2 = 0.

Then there exists a constant .C > 0 such that

.‖∇ket�f ‖
L

q2
s2

≤ Ct
− d

2 ( 1
q1

− 1
q2

)− s1−s2
2 − k

2 ‖f ‖
L

q1
s1

for any .t > 0 and .f ∈ L
q1
s1 (Rd ). ��

To prove local well-posedness for (1) in .L
q
sc,1(R

d ), we prepare the following
nonlinear estimates.

Lemma 2.2 Let .d ∈ N, .γ ∈ R, .α > 1, .q ∈ [1,∞), .s̃ ∈ R and .k = 0, 1, and let .β1
be defined by

.β1 := sc,1 − s̃

2
. (2)

Then the following assertions hold:

(i) Assume that

.αF < α ≤ q, −d

q
< s̃,

γ

α − 1
≤ s̃ < Sc, (3)

.sc,2 − 2

α
< s̃ < sc,2 + 1 − k

α − 1
, (4)

Then there exists a constant .C > 0 such that

.

tβ1+ k
2 ‖∇k(N(u1)(t) − N(u2)(t))‖L

q

s̃

≤ C max
i=1,2

(
sup

0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃

)α−1

sup
0<τ<t

τβ1+ 1
2 ‖∇(u1(τ ) − u2(τ ))‖L

q

s̃

for any functions .u1, u2 satisfying

. sup
0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃
< ∞, i = 1, 2. (5)
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(ii) Assume that

.αF < α ≤ q,
sc,1 + γ

α
≤ s̃ < Sc, (6)

.sc,2 − 2

α
< s̃ < sc,2. (7)

Then there exists a constant .C > 0 such that

.

‖N(u1)(t) − N(u2)(t)‖L
q
sc,1

≤ C max
i=1,2

(
sup

0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃

)α−1

sup
0<τ<t

τβ1+ 1
2 ‖∇(u1(τ ) − u2(τ ))‖L

q

s̃

for any functions .u1, u2 satisfying (5).

Proof Let .α > 1, .γ ∈ R, .q ∈ [1,∞), .s̃ ∈ R, .k = 0, 1 and .σ := αs̃ − γ . By the
definition of .N(u), we have

.|∇k(N(u1)(t) − N(u2)(t))| ≤
∫ t

0
∇ke(t−τ )�

(| · |γ F (u1, u2)(τ )
)

dτ, (8)

where

.F(u1, u2)(τ ) :=
(
|∇u1(τ )|α−1 + |∇u2(τ )|α−1

)
|∇(u1(τ ) − u2(τ ))|.

First, we prove the assertion (i). Assume (3). Then, by Lemma 2.1 with .(q1, s1) =
(q/α, σ ) and .(q2, s2) = (q, s̃), we have

.

‖∇k(N(u1)(t) − N(u2)(t))‖L
q

s̃

≤ C

∫ t

0
‖∇ke(t−τ )�

(| · |γ F (u1, u2)(τ )
) ‖L

q

s̃
dτ

≤ C

∫ t

0
(t − τ )

− d
2 ( α

q
− 1

q
)− σ−s̃

2 − k
2 ‖| · |γ F (u1, u2)(τ )‖

L
q
α
σ

dτ.

By Hölder’s inequality, we have

. ‖| · |γ F (u1, u2)(τ )‖
L

q
α
σ

= ‖| · |αs̃F (u1, u2)(τ )‖
L

q
α

≤ C max
i=1,2

‖∇ui(τ )‖α−1
L

q

s̃

‖∇(u1(τ ) − u2(τ ))‖L
q

s̃
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≤ Cτ−(β1+ 1
2 )α max

i=1,2

(
sup

0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃

)α−1

sup
0<τ<t

τβ1+ 1
2 ‖∇(u1(τ )

−u2(τ ))‖L
q

s̃
,

where .β1 is given in (2). Hence,

.

‖∇k(N(u1)(t) − N(u2)(t))‖L
q

s̃
≤ C

∫ t

0
(t − τ )

− d
2 ( α

q
− 1

q
)− σ−s̃

2 − k
2 τ−(β1+ 1

2 )α dτ

× max
i=1,2

(
sup

0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃

)α−1

sup
0<τ<t

τβ1+ 1
2 ‖∇(u1(τ ) − u2(τ ))‖L

q

s̃
.

Assume further (4). Then, the integral in the right-hand side can be calculated as
follows:

.

∫ t

0
(t − τ )

− d
2 ( α

q
− 1

q
)− σ−s̃

2 − k
2 τ−(β1+ 1

2 )α dτ

= t−β1− k
2 B

(
−d

2

(
α

q
− 1

q

)
− σ − s̃

2
− k

2
+ 1,−

(
β1 + 1

2

)
α + 1

)
,

where .B(a, b) is the beta function for .a, b > 0. Here, we note that

. − d

2

(
α

q
− 1

q

)
− σ − s̃

2
− k

2
+ 1 > 0 and −

(
β1 + 1

2

)
α + 1 > 0.

Thus, the assertion (i) is proved.
Similarly, we can prove the assertion (ii). Assume (6) and (7). Then, by

Lemma 2.1 with .(q1, s1) = (q/α, σ ) and .(q2, s2) = (q, sc,1), we have

.

‖N(u1)(t) − N(u2)(t)‖L
q
sc,1

≤ C

∫ t

0
(t − τ )

− d
2 ( α

q
− 1

q
)− σ−sc,1

2 ‖| · |γ F (u1, u2)(τ )‖
L

q
α
σ

dτ

≤ C

∫ t

0
(t − τ )

− d
2 ( α

q − 1
q )− σ−sc,1

2 τ−(β1+ 1
2 )α dτ

× max
i=1,2

(
sup

0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃

)α−1

sup
0<τ<t

τβ1+ 1
2 ‖∇(u1(τ ) − u2(τ ))‖L

q

s̃

≤ CB

(
−d

2

(
α

q
− 1

q

)
− σ − sc,1

2
+ 1,−

(
β1 + 1

2

)
α + 1

)

× max
i=1,2

(
sup

0<τ<t

τβ1+ 1
2 ‖∇ui(τ )‖L

q

s̃

)α−1

sup
0<τ<t

τβ1+ 1
2 ‖∇(u1(τ ) − u2(τ ))‖L

q

s̃
,
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where we note that

. − d

2

(
α

q
− 1

q

)
− σ − sc,1

2
+ 1 > 0 and −

(
β1 + 1

2

)
α + 1 > 0.

Thus, the assertion (ii) is also proved. ��
Proof of Theorem 1.2 Let .d ∈ N, .−1 < γ < d and .αF < α < min{2, 2 + γ }, and
let q and .s̃ be as in Theorem 1.2. Let us take .ρ > 0 and .M > 0 as

.ρ + C0M
α ≤ M and 2C1M

α−1 < 1,

where .C0 and .C1 are given in (9) and (10) below. For .T > 0, let .X(T ) be the
complete metric space defined by

.X(T ) :=
{
u : (0, T ] → W

1,q

s̃
(Rd ) ; ‖u‖X(T ) ≤ M

}
,

.‖u‖X(T ) := max

{
sup

0<t<T

tβ1‖u(t)‖L
q

s̃
, sup

0<t<T

tβ1+ 1
2 ‖∇u(t)‖L

q

s̃

}

endowed with the metric

.d(u1, u2) := ‖u1 − u2‖X(T ).

Let .u0 ∈ S′(Rd ) be such that

.‖et�u0‖X(T ) ≤ ρ.

Define the map .� by

.�(u) := et�u0 +
∫ t

0
e(t−τ )�(|x|γ |∇u|α) dτ.

Thanks to Lemmas 2.1 and 2.2 (i), we have

.‖�(u)‖X(T ) ≤ ‖et�u0‖X(T ) + C0‖u‖α
X(T ) ≤ ρ + C1M

α ≤ M (9)

and

.‖�(u1) − �(u2)‖X(T ) ≤ C1 max
i=1,2

‖ui‖α−1
X(T )‖u1 − u2‖X(T )

≤ C1M
α−1‖u1 − u2‖X(T ) (10)

for any .u, u1, u2 ∈ X(T ), where .C1M
α−1 < 1. These show that .� is a

contraction mapping from .X(T ) into itself. Thus, Banach’s fixed point theorem
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ensures the existence of a unique fixed point .u ∈ X(T ) of .�, and u satisfies
.u ∈ C([0, T ]; L

q
sc,1(R

d)) by Lemma 2.2 (ii). The proof of small data global
existence is similar to the above argument, and the proof of small data dissipation
can be found in Proposition A.10 in [8] for instance. Hence, we may omit the details.

��
Next, to prove local well-posedness in .W

1,q
sc,2 (Rd ), we prepare the following

nonlinear estimates.

Lemma 2.3 Let .d ∈ N, .γ ∈ R, .α > 1, .q ∈ [1,∞), .s̃ ∈ R and .k = 0, 1, and let .β2
be defined by

.β2 := sc,2 − s̃

2
. (11)

Then the following assertions hold:

(i) Assume that

.αF < α ≤ q, −d

q
< s̃,

γ

α − 1
≤ s̃ < Sc, (12)

.sc,2 − 2

α
< s̃ < sc,2 + 1 − k

α − 1
, (13)

Then there exists a constant .C > 0 such that

.

tβ2‖∇k(N(u1)(t) − N(u2)(t))‖L
q

s̃

≤ Ct
1−k

2 max
i=1,2

(
sup

0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃

)α−1

sup
0<τ<t

τβ2‖∇(u1(τ ) − u2(τ ))‖L
q

s̃

for any functions .u1, u2 satisfying

. sup
0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃
< ∞, i = 1, 2. (14)

(ii) Assume that

.α ≤ q,
sc,2 + γ

α
≤ s̃ < Sc, (15)

.sc,2 − 2

α
< s̃ < sc,2 + 1 − k

α − 1
. (16)
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Then there exists a constant .C > 0 such that

.

‖∇k(N(u1)(t) − N(u2)(t))‖L
q
sc,2

≤ Ct
1−k

2 max
i=1,2

(
sup

0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃

)α−1

sup
0<τ<t

τβ2‖∇(u1(τ ) − u2(τ ))‖L
q

s̃

for any functions .u1, u2 satisfying (14).

Proof The proof is similar to that of Lemma 2.2. Let .α > 1, .γ ∈ R, .q ∈ [1,∞),
.s̃ ∈ R, .k = 0, 1 and .σ := αs̃ − γ . First, we prove the assertion (i). Assume (12).
Then, by (8) and Lemma 2.1 with .(q1, s1) = (q/α, σ ) and .(q2, s2) = (q, s̃), we
have

.

‖∇k(N(u1)(t) − N(u2)(t))‖L
q

s̃

≤ C

∫ t

0
(t − τ )

− d
2 ( α

q
− 1

q
)− σ−s̃

2 − k
2 ‖| · |γ F (u1, u2)(τ )‖

L
q
α
σ

dτ.

By Hölder’s inequality, we have

.

‖| · |γ F (u1, u2)(τ )‖
L

q
α
σ

≤ Cτ−β2α max
i=1,2

(
sup

0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃

)α−1

sup
0<τ<t

τβ2‖∇(u1(τ ) − u2(τ ))‖L
q

s̃
,

where .β2 is given in (11). Hence,

.

‖∇k(N(u1)(t) − N(u2)(t))‖L
q

s̃
≤ C

∫ t

0
(t − τ )

− d
2 ( α

q − 1
q )− σ−s̃

2 − k
2 τ−β2α dτ

× max
i=1,2

(
sup

0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃

)α−1

sup
0<τ<t

τβ2‖∇(u1(τ ) − u2(τ ))‖L
q

s̃
.

Assume further (13). Then, the integral in the right-hand side can be calculated as
follows:

.

∫ t

0
(t − τ )

− d
2 ( α

q − 1
q )− σ−s̃

2 − k
2 τ−β2α dτ

= t−β2+ 1−k
2 B

(
−d

2

(
α

q
− 1

q

)
− σ − s̃

2
− k

2
+ 1,−β2α + 1

)
,
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Here, we note that

. − d

2

(
α

q
− 1

q

)
− σ − s̃

2
− k

2
+ 1 > 0 and − β2α + 1 > 0.

Thus, the assertion (i) is proved.
Similarly, we can prove the assertion (ii). Assume (15) and (16). Then, by

Lemma 2.1 with .(q1, s1) = (q/α, σ ) and .(q2, s2) = (q, sc,2), we have

.

‖∇kN(u1)(t) − N(u2)(t)‖L
q
sc,2

≤ C

∫ t

0
(t − τ )

− d
2 ( α

q − 1
q )− σ−sc,2

2 − k
2 ‖| · |γ F (u1, u2)(τ )‖

L
q
α
σ

dτ

≤ C

∫ t

0
(t − τ )

− d
2 ( α

q − 1
q )− σ−sc,2

2 − k
2 τ−β2α dτ

× max
i=1,2

(
sup

0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃

)α−1

sup
0<τ<t

τβ2‖∇(u1(τ ) − u2(τ ))‖L
q

s̃

≤ Ct
1−k

2 B

(
−d

2

(
α

q
− 1

q

)
− σ − sc,2

2
− k

2
+ 1,−β2α + 1

)

× max
i=1,2

(
sup

0<τ<t

τβ2‖∇ui(τ )‖L
q

s̃

)α−1

sup
0<τ<t

τβ2‖∇(u1(τ ) − u2(τ ))‖L
q

s̃
,

where we note that

. − d

2

(
α

q
− 1

q

)
− σ − sc,2

2
− k

2
+ 1 > 0 and − β2α + 1 > 0.

Thus, the assertion (ii) is also proved. ��
The proof of Theorem 1.3 is done by proceeding the argument in the proof of

Theorem 1.2 together with Lemma 2.3. So, we may omit the proof.
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On the Rellich Type Inequality
for Schrödinger Operators with Singular
Potential

Vladimir Georgiev and Hideo Kubo

Dedicated to Professor Tohru Ozawa on his 60th birthday

Abstract The aim of this note is to derive the Rellich type inequality for
Schrödinger operators with singular potential of the inverse-square type. In general,
the standard Rellich inequality holds in the case of the space dimensions n is larger
than 5. It seems interesting that the inequality still holds by perturbing the minus
Laplacian by means of inverse-square positive potential even if .n = 3, 4.

1 Introduction

The Hardy inequality:

.
n − 2

2

∥
∥
∥
∥

u

| · |
∥
∥
∥
∥

L2(Rn)

≤ ‖∇u‖L2(Rn) for u ∈ H 1(Rn), n ≥ 3

and the Rellich inequality:

.
n2 − 4n

4

∥
∥
∥
∥

u

| · |2
∥
∥
∥
∥

L2(Rn)

≤ ‖�u‖L2(Rn) for u ∈ H 2(Rn), n ≥ 5
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are known to be useful in the study of partial differential equations. In this note,
we prove analogous inequalities for Schrödinger operators with singular potential
of the form:

.A0u = −�u + χ(r)

r2 u, u ∈ C∞
0 (Rn),

where .χ ∈ L∞([0,∞)) is a given real-valued function. The reason why we are
interesting in this inverse-square type potential is the fact that it has the same
scaling as the classical Laplacian. In this critical case, the size of .χ affects the self-
adjointness of the operator .A0. Indeed, in order to get the Friedrichs extension of
.A0, it suffices to assume

.χ(r) > −
(

n − 2

2

)2

, r ≥ 0.

However, we do need the essential self-adjointness of .A0 for getting the Rellich type
inequality. As such, we require the following stronger condition on .χ :

.χ(r) > 1 −
(

n − 2

2

)2

= n2 − 4n

4
, r ≥ 0. (1)

Under this assumption, the operator .A0 can be extended as an essentially self-adjoint
operator A (by using the result of Simon in [10]).

Theorem 1 Let .n ≥ 3. If a real-valued function .χ ∈ L∞([0,∞)) satisfies (1), then
there exists a constant C such that

.

∫

R
n

|u(x)|2
|x|2 dx ≤ C

∫

R
n
|A1/2u(x)|2dx (2)

for .u ∈ D(A1/2), and

.

∫

R
n

|u(x)|2
|x|4 dx ≤ C

∫

R
n
|Au(x)|2dx (3)

for .u ∈ D(A).

We underline that when .n ≥ 5, (3) recovers the standard Rellich inequality,
because (1) is fulfilled by .χ ≡ 0, and that even when .n = 3, 4, the Rellich type
inequality is still valid by shifting .−� by .χ(r)/r2 in the positive direction. We also
remark that a similar approach to the Rellich inequality is found in Evans and Lewis
[3], where .� is replaced by the magnetic Laplacian .(∇ − iA)2 with .curl (A) being
of Aharonov-Bohm type.

In our previous work [4], we proved the inequalities in Theorem 1 for .n = 3, and
used them for treating the following Cauchy problem to the power-type nonlinear
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wave equations with the potential:

.
(∂2

t − � + χ(r)

r2 )u = |u|p−1u, for (t, x) ∈ [0, T ) × R
3,

u(0, x) = f (x), (∂tu)(0, x) = g(x) for x ∈ R
3.

(4)

More precisely, we established the existence of global strong solution .u(t), i.e., there
exists

.u ∈ C2([0,∞) : L2(R3)) ∩ C([0,∞) : D(A))

which satisfies the associated integral equation:

.u(t) = (cos tA1/2)f + sin tA1/2

A1/2
g +

∫ t

0

sin(t − τ )A1/2

A1/2
|u(τ)|p−1u(τ)dτ,

provided that .p > 1 + √
2 and the initial data are sufficiently small and compactly

supported (see also [1, 2, 7, 8] for the case of the inverse-square potential .a/r2 with
a constant .a > −(n − 2)2/4).

This note is organized as follows. In the Sect. 2, we describe an overview about
the basic facts for Schrödinger operators with singular potential. We give a new
characterization of the domain of the closure of .A0 in the Sect. 3, and finish the
proof of Theorem 1.

2 Preliminary Observations

This section is an overview on the basic facts for Schrödinger operators with singular
potential, without specifying the concrete form of the potential. In order to handle
such an operator, it is useful to consider the quadratic form, as we shall see in
Proposition 1 for instance.

Let X be a Hilbert space equipped with an inner product .(·, ·) and the norm
.‖ · ‖ = √

(·, ·). Let .D be a dense subspace of X. We shall consider the Hermitian
form .q : D ×D → C, that is, q is linear in the first variable and .q(u, v) = q(v, u).

We say that a Hermitian form q is bounded from below, if there exists .α ∈ R

such that

.q[u] := q(u, u) ≥ α‖u‖2, u ∈ D. (5)

When (5) holds, if we define

.(u, v)α = q(u, v) + (1 − α)(u, v), u, v ∈ D,
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then it is an inner product on .D. If .D is complete with respect to the norm .‖u‖α =
(u, u)α , then q is called an .α-closed form.

As is well-known, such a Hermitian form generates a self-adjoint operator, due
to Friedrichs (see for example Theorem X.23 in [9]).

Theorem 2 (Friedrichs extension) Let .D be a dense subspace of X. If a Hermitian
form q on .D satisfies (5) and is .α-closed, then there exists a unique self-adjoint
operator .QF on X such that

• .D(QF ) ⊂ D,
• .(QF u, v) = q(u, v) for .u ∈ D(QF ), .v ∈ D,
• .(QF u, u) ≥ α‖u‖2 for .u ∈ D(QF ),
• .D = D((QF − α)1/2).

Proof Since it is easy to see that the uniqueness holds, we only consider the
existence part. First of all, we note that

.‖u‖2
α = q[u] + (1 − α)‖u‖2 ≥ ‖u‖2, u ∈ D.

For a fixed .v ∈ X, we define a functional .Fv(u) := (u, v) for .u ∈ D. Then, we
have

.|Fv(u)| ≤ ‖u‖‖v‖ ≤ ‖u‖α‖v‖, u ∈ D,

so that .‖Fv‖L(D,C) ≤ ‖v‖. Since .D is a Hilbert space equipped with the norm .‖·‖α ,
by the Riesz theorem, there exists a unique .wv ∈ D such that .Fv(u) = (u,wv)α and
.‖wv‖α = ‖Fv‖L(D,C). Therefore, we can define a map .T : X → D by .T v := wv .
It is easy to see that T is a bounded operator on X. Since

.(u, v) = (u, T v)α, u ∈ D, v ∈ X,

we find that T is self-adjoint and injective. Moreover, the range of T denoted by
.R(T ) is dense in .D with respect to .‖ · ‖α . Indeed, if .u ∈ D satisfies .(u, v)α = 0
for any .v ∈ R(T ), then we have .(u,w) = 0 for any .w ∈ X, so that .u = 0. This
implies the density of .R(T ) in .D. This fact further means that .R(T ) is dense in X

with respect to .‖ · ‖.
Then, one can verify that .S := T −1 is a self-adjoint operator with a domain

.D(S) = R(T ). Moreover, for .u ∈ D(S), .v ∈ D

.(Su, v) = (T Su, v)α = (u, v)α,

because

.(u, v) = (T u, v)α, u ∈ X, v ∈ D.
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Now, we define .QF := S − (1 − α). Then we have

.D(QF ) = D(S) = R(T ) ⊂ D,

and for .u ∈ D(QF ), .v ∈ D

.(QF u, v) = (Su, v) − (1 − α)(u, v) = (u, v)α − (1 − α)(u, v) = q(u, v),

so that .(QF u, u) = q[u] ≥ α‖u‖2 for .u ∈ D(QF ).
Finally, we prove .D = D(Q

1/2
α ) with .Qα := QF − α. Let .u ∈ D. Then there

exists .{uj } ⊂ D(QF ) such that .‖uj − u‖α → 0, because of the density of .D(QF )

in .D. Since

.‖uj − uk‖2
α − (1 − α)‖uj − uk‖2 = (QF (uj − uk), uj − uk),

and .D(QF ) ⊂ D(Q
1/2
F ) by the functional calculus, we get

.‖Q1/2
α (uj − uk)‖2 = ‖uj − uk‖2

α − ‖uj − uk‖2 → 0.

Since any self-adjoint operator is closed, so is .Q
1/2
α . Therefore, the fact that .{uj }

converges to u and .{Q1/2
α uj } is Cauchy in X implies .u ∈ D(Q

1/2
α ). Hence .D ⊂

D(Q
1/2
α ).

In order to derive the opposite inclusion, we use the fact that .D(Qα) is a core of
.Q

1/2
α . Indeed, since .Qα is a self-adjoint operator satisfying .(Qαu, u) ≥ 0 for any

.u ∈ D(Qα), (i.e. non-negative), we can apply a general result stated in Theorem 3
below. Now, let .u ∈ D(Q

1/2
α ). Then, we find a sequence .{uj } ⊂ D(Qα) satisfying

.uj → u and .Q
1/2
α uj → Q

1/2
α u in X, as .Q

1/2
α |D(Qα) = Q

1/2
α . Since .{uj } ⊂ D(QF ),

we have

.‖uj − uk‖2
α = ‖Q1/2

α (uj − uk)‖2 + ‖uj − uk‖2 → 0.

By the completeness of .D with respect to .‖ · ‖α , there exists .v ∈ D such that
.‖uj − v‖α → 0, which implies .u = v ∈ D. Thus we have done the proof. �

The following result was used in the proof of Theorem 2. For the proof, we refer
to Theorem 3.35 in Kato [6] (notice that if T is self-adjoint and non-negative, then
T is m-accretive).

Theorem 3 Let T be a non-negative self-adjoint operator. Then there exists a
unique non-negative self-adjoint operator .T 1/2 such that .(T 1/2)2 = T , .D(T ) is
a core of .T 1/2, and .T 1/2 commutes with any bounded operator on X that commutes
with T .
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As an application of Theorem 2, we consider the following Hermitian form:

.q(u, v) := (∇u,∇v)L2 +
∫

R
n
V uvdx, D := H 1(Rn) ∩ D(

√
V ),

where .V ∈ L1
loc(R

n) is a non-negative function. It is clear that .q[u] ≥ 0 for all
.u ∈ D. So, once we could show that q is 0-closed, we obtain an associated self-
adjoint operator .QF with the above Hermitian form q .

Let .{uj } be Cauchy in .D with respect to .‖ · ‖0, that is

.‖∇(uj − uk)‖L2 +
∫

R
n
V |uj − uk|2dx + ‖uj − uk‖L2 → 0

as j , .k → ∞. In particular, .{uj } is Cauchy in .H 1(Rn), so that there exists .u ∈
H 1(Rn) such that .‖uj −u‖H 1 → 0 as .j → ∞. Moreover, since .{√V uj } is Cauchy
in .L2(Rn), there exists .v ∈ L2(Rn) such that .‖√V uj −v‖L2 → 0 as .j → ∞. Then,
we can choose a subsequence of .{uj }, still denoted by the same letter, such that

.uj → u,
√

V uj → v, a.e. x ∈ R
n,

which means that .v = √
V u. Therefore, we find that .‖√V uj −v‖0 → 0 and .u ∈ D.

This shows the 0-closedness of q .
As a consequence, we obtain the following.

Proposition 1 Let .V ∈ L1
loc(R

n) be a non-negative function. Then there exists a
unique non-negative self-adjoint operator .QF in .L2(Rn) such that for .u ∈ D(QF ),
.v ∈ H 1(Rn) ∩ D(

√
V )

.(∇u,∇v)L2 +
∫

R
n
V uvdx = (QF u, v)L2 (6)

holds and .D(QF ) ⊂ D(Q
1/2
F ) = H 1(Rn) ∩ D(

√
V ).

However, the concrete description of .D(QF ) is not clear. To clarify this issue,
we introduce an operator H in .L2(Rn) by

. Hu = −�u + V u, u ∈ D(H), (7)

D(H) = {u ∈ L2(Rn)| V u ∈ L1
loc(R

n), −�u + V u ∈ L2(Rn)}.

Here .�u should be understood in the distribution sense, but we may regard it as a
function in .L1

loc(R
n) when .u ∈ D(H).

Proposition 2 Let .V ∈ L1
loc(R

n) be a non-negative function and let .QF be the one
obtained in Proposition 1. Then, .QF = H .
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Proof First, we show .QF ⊂ H . Let .u ∈ D(QF ). Note that .C∞
0 (Rn) ⊂ H 1(Rn) ∩

D(
√

V ) and that .V u = √
V ·√V u ∈ L1

loc(R
n) for .u ∈ D(QF ). Therefore, from (6),

we have

. − (u,�φ)L2 + (V u, φ)L2 = (QF u, φ)L2

for any .φ ∈ C∞
0 (Rn). This means that .�u = −QF u + V u holds in .L1

loc(R
n), and

hence .−�u +V u = QF u ∈ L2(Rn). Therefore, .u ∈ D(H) and .QF u = Hu holds.
Next we prove .D(H) ⊂ D(QF ). Let .v ∈ D(H). Since .QF is non-negative, we

see that .−1 is in the resolvent set of .QF . Therefore, there exists .u ∈ D(QF ) such
that .(QF + 1)u = v + Hv. Since .QF ⊂ H , we have .H(u − v) = v − u, that is

.�(u − v) = (V + 1)(u − v).

Since the right hand side is in .L1
loc(R

n), we are in a position to apply the Kato
inequality, which is stated in Theorem 4 below, to get

.�|u − v| ≥ Re (sgn (u − v) �(u − v)) (8)

= (V + 1)|u − v| ≥ |u − v|,

as .V ≥ 0. From this inequality, we shall deduce that

.

∫

R
n
|v − u|ψdx = 0 (9)

for any rapidly decreasing function .ψ satisfying .ψ ≥ 0. Once we could prove it, we
can conclude that .|u(x) − v(x)| = 0 for a.e. .x ∈ R

n, i.e., .v = u ∈ D(QF ).
For a given .ψ ∈ S, we can solve the equation .(1 − �)φ = ψ . Indeed, it is clear

that .φ ∈ S and it has the integral representation with the positive kernel. Therefore,
if .ψ ≥ 0, then .φ ≥ 0. On the other hand, there exists a sequence .{φj } such that
.φj ≥ 0 and .(1 − �)φj → (1 − �)φ = ψ as .j → ∞. Then we see from (8) that

.(|u − v|, (1 − �)φj )L2 ≤ 0.

Taking the limit as .j → ∞, we get (9), This completes the proof. �
The following inequality is found by the work of Kato [5].

Theorem 4 Let .u ∈ L1
loc(R

n) satisfy .�u ∈ L1
loc(R

n). Then

.(�|u|, φ)L2 ≥ (Re (sgnu �u), φ)L2 (10)
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holds for any .φ ∈ C∞
0 (Rn) satisfying .φ ≥ 0. Here we put

.sgnu(x) =

⎧

⎪⎨

⎪⎩

u(x)

|u(x)| , u(x) �= 0,

0, u(x) = 0.

Now, the domain of .QF and its action become clear. However, it is still not clear
whether .−�u and V u are in .L2 for .u ∈ D(H) or not, although their sum is in .L2.
In order to consider this problem, we shall make use of the following result, due to
Simon in [10].

Theorem 5 Let .V ∈ L2
loc(R

n \ {0}) satisfy

.V (x) ≥ 3 − (n − 1)(n − 3)

4|x|2 , x ∈ R
n \ {0}. (11)

We define .H0 by

.H0 = −� + V with domainD(H0) = C∞
0 (R3 \ {0}).

Then .H0 is essentially self-adjoint, i.e., its closure .H0 is self-adjoint.

As a corollary, we show that .H0 coincides with the Friedrichs extension .QF

obtained in Proposition 1, if .1 ≤ n ≤ 4.

Corollary 1 Let .1 ≤ n ≤ 4 and let .V ∈ L2
loc(R

n \ {0}) satisfy (11). Then, .H0 =
H = QF . Here H is the one defined by (7). Moreover,

. D(H0) = {u ∈ L2| V u ∈ L1
loc, −�u + V u ∈ L2},

D((H0)
1/2) = H 1(Rn) ∩ D(

√
V ).

Proof Note that (11) implies .V ≥ 0 for .1 ≤ n ≤ 4. Therefore, the existence of .QF

is assured by Proposition 1 and we have .H = QF by Proposition 2, so that H is
self-adjoint. Hence, we have only to show .H0 = H .

It is easy to see that .C∞
0 (Rn \ {0}) ⊂ D(H) for .V ∈ L2

loc(R
n \ {0}) and that

.H0 = H |C∞
0 (Rn\{0}). This means that .H0 ⊂ H , and hence .H0 ⊂ H by the self-

adjointness of H . But, since .H0 is also self-adjoint by Theorem 5, we get .H0 = H .
This completes the proof. �



On the Rellich Type Inequality for Schrödinger Operators with Singular Potential 85

3 Proof of Theorem 1

We now turn back to the case where the potential takes the following form:

.V (x) = χ(r)

r2 , x ∈ R
n \ {0}, r = |x|,

and consider the associated Schrödinger operator:

.A0 = −� + χ(r)

r2 with domain D(A0) = C∞
0 (R3 \ {0}).

Here .χ is a real-valued bounded function on .[0,∞) satisfying

.c := inf
r≥0

χ(r) >
3 − (n − 1)(n − 3)

4
= 1 −

(
n − 2

2

)2

. (12)

We shall give now simple characterization of the domain of the closure .A0 of .A0,
based on Theorem 5. Once we could prove Lemma 1 below, then it is easy to see
that Theorem 1 is valid.

Lemma 1 We assume .n ≥ 3. Let .χ be a real-valued bounded function on .[0,∞)

satisfying (12). Then we have

a) .A0u = −�u + χ(r)

r2
u for .u ∈ D(A0) and

.D(A0) = {u ∈ H 2(Rn)| u/|x|2 ∈ L2(Rn)},

b) for .u ∈ D(A0) we have

.

∥
∥
∥
∥

u

| · |2
∥
∥
∥
∥

L2
� ‖A0u‖L2, ‖�u‖L2 � ‖A0u‖L2 . (13)

c) for .u ∈ D((A0)
1/2) we have

.

∥
∥
∥
∥

u

| · |
∥
∥
∥
∥

L2
� ‖(A0)

1/2u‖L2, ‖∇u‖L2 � ‖(A0)
1/2u‖L2 . (14)

Proof For .u ∈ D(A0), there exists a sequence .{uk}k∈N in .D(A0) = C∞
0 (Rn \ {0})

such that

. lim
k→∞ ‖uk − u‖L2 = 0 and lim

k→∞ ‖A0uk − A0u‖L2 = 0. (15)
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We set

.gk := A0uk = −�uk + χ(r)

r2 uk. (16)

Using radial coordinates .r = |x|, ω = x/|x|, we rewrite the above relation as:

. − ∂2
r uk − n − 1

r
∂ruk − 1

r2 �
S

n−1uk + χ(r)

r2 uk = gk.

We shall multiply this equation by .rn−3uk(rω) and integrate over .r ∈ (0,∞), ω ∈
S

n−1 by using the measure .drdω. By the integration by parts, it follows that

.

∫ ∞

0
∂2
r ukukr

n−3dr = −
∫ ∞

0
(∂r(ukr

(n−3)/2))2dr +
(

n − 3

2

)2 ∫ ∞

0
u2

kr
n−5dr,

∫ ∞

0

n − 1

r
∂rukukr

n−3dr = − (n − 1)(n − 4)

2

∫ ∞

0
u2

kr
n−5dr,

because .uk(rω) = 0 for r close to .0. Therefore we have

.

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0

∫

S
n−1

|∂r(uk(rω)r(n−3)/2)|2dωdr+

+ n2 − 4n − 1

4

∫ ∞

0

∫

S
n−1

|uk(rω)|2rn−5dωdr+

+
∫ ∞

0

∫

S
n−1

|∇ωuk(rω)|2rn−5dωdr+

+
∫ ∞

0

∫

S
n−1

χ(r)|uk(rω)|2rn−5dωdr =

=
∫ ∞

0

∫

S
n−1

gk(rω)uk(rω)rn−3dωdr.

(17)

Notice that for .f ∈ C1
(0)((0,∞)), i.e. for .f ∈ C1((0,∞)) with compact support in

.(0,∞) the Hardy inequality:

.

∫ ∞

0
|∂rf (r)|2dr ≥ 1

4

∫ ∞

0

|f (r)|2
r2 dr

is valid. Applying this to the first term on the left-hand side of (17), we see that the
left-hand side can be estimated from below by

.

(

c + n2 − 4n

4

) ∫ ∞

0

∫

S
n−1

|uk(rω)|2rn−5dωdr.



On the Rellich Type Inequality for Schrödinger Operators with Singular Potential 87

We can bound the right-hand side (17) from above by using Cauchy inequality by

.‖gk‖L2(Rn)

(∫ ∞

0

∫

S
n−1

|uk(rω)|2rn−5dωdr

)1/2

.

Hence we have the estimate

.

(

c + n2 − 4n

4

) (∫ ∞

0

∫

S
n−1

|uk(rω)|2rn−5dωdr

)1/2

≤ ‖gk‖L2(Rn),

or

.

(

c +
(

n − 2

2

)2

− 1

)∥
∥
∥
∥

uk

| · |2
∥
∥
∥
∥

L2(Rn)

≤ ‖gk‖L2(Rn). (18)

Since this estimate with .uk being replaced by .uk − um is valid, using the fact that
.gk is a Cauchy sequence in .L2(Rn), we see that .uk/|x|2 is a Cauchy sequence in
.L2(Rn). Combining this with the fact that .uk converges to u in .L2(Rn), we find that
.uk/|x|2 tends to .u/|x|2 in .L2(Rn). Since .χ is bounded, from (16) we obtain

. − �u + χ(r)u

r2
= A0u (19)

in the sense of distribution. Thus we deduce .u ∈ H 2(Rn).
In conclusion, we have established that

.D(A0) ⊆ {u ∈ H 2(R3)| u/|x|2 ∈ L2(Rn)}

and (taking the limit as .k → ∞ in (18))

.

∥
∥
∥
∥

u

| · |2
∥
∥
∥
∥

L2(Rn)

� ‖A0u‖L2(Rn) (20)

for any .u ∈ D(A0), by (12).
The opposite inclusion easily follows. This completes the proof of a). The proof

of b) follows directly from (20) and the Eq. (19).
Finally, we prove c). For .u ∈ D((A0)

1/2), there exists .{uj } ⊂ D(A0) such that
.uj → u and .(A0)

1/2uj → (A0)
1/2u in .L2(Rn), because .D(A0) is a core of the

closed operator .(A0)
1/2. Then we see from a) that

.(A0uj , φ)L2 = (−�uj , φ)L2 +
∫

R
n

χ(r)

r2 ujφdx
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for any .φ ∈ C∞
0 (Rn). By definition of .A0, for each .uj with fixed j , there exists

.{φk
j }k ⊂ C∞

0 (Rn \ {0}) such that .φk
j → uj as .k → ∞ in .L2(Rn). Therefore, we

have

.(A0uj , uj )L2 = (−�uj, uj )L2 +
∫

R
n

χ(r)

r2 |uj |2dx, (21)

as .uj ∈ D(A0). Note that we may replace .uj by .uj − um in this identity.
Let us denote the positive and negative parts of .χ by .χ+ and .χ−, respectively.

Namely,

.χ = χ+ − χ−, χ+ = (|χ | + χ)/2, χ− = (|χ | − χ)/2.

Then we have

.‖(A0)
1/2(uj − um)‖L2 = ‖∇(uj − um)‖L2 +

∫

R
n

χ+(r)

r2
|uj − um|2dx

−
∫

R
n

χ−(r)

r2 |uj − um|2dx.

If .c = inf χ(r) ≥ 0, then we have .χ− ≡ 0, so that

.‖(A0)
1/2(uj − um)‖L2 = ‖∇(uj − um)‖L2 +

∫

R
n

χ+(r)

r2
|uj − um|2dx,

which implies that .{uj } converges in .H 1(Rn) and .{√χ+(r)uj /r} converges in
.L2(Rn), since .{uj } converges to u in .L2(Rn). Thus, from (21), we find

.‖(A0)
1/2u‖L2 = ‖∇u‖L2 +

∫

R
n

χ+(r)

r2 |u|2dx.

On the other hand, if .c < 0, then we have .0 ≤ χ−(r) ≤ −c for .r ≥ 0, so that

.0 ≤
∫

R
n

χ−(r)

r2 |uj − um|2dx ≤ −c

(
2

(n − 2)

)2

‖∇(uj − um)‖2
L2,
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by the Hardy inequality. Since .c > −( 2
(n−2)

)2 by (12), similarly to the above, we

see that .{uj } converges in .H 1(Rn) and .{√χ±(r)uj /r} converges in .L2(Rn). Since
.{uj } converges to u in .L2(Rn), we obtain

.‖(A0)
1/2u‖L2 = ‖∇u‖L2 +

∫

R
n

χ(r)

r2 |u|2dx

≥ (1 + c

(
2

(n − 2)

)2

)‖∇u‖L2 +
∫

R
n

χ+(r)

r2
|u|2dx.

In both cases, we have established .‖∇u‖L2 � ‖(A0)
1/2u‖L2 , and also .‖u/r‖L2 �

‖(A0)
1/2u‖L2 , thanks to the Hardy inequality. This finishes the proof. �
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Global Solutions to the Nonlinear
Maxwell-Schrödinger System

Raffaele Scandone

Abstract We study the existence of global-in-time solutions to a nonlinear
Maxwell-Schrödinger system in three spatial dimensions. We combine suitable
dispersive estimate in Besov spaces for the magnetic Schrödinger flow with a
refined Brezis-Gallouet inequality, in order to prove global bounds in the case of a
sub-cubic nonlinearity.

In this note we consider the nonlinear Maxwell-Schrödinger system

.

{
i∂tu = −�Au + φu + |u|γ−1u

�A = PJ,
t ∈ R, x ∈ R

3, (1)

in the unknown .(u,A) : Rt × R
3 → C × R

3, with initial conditions

.(u(0), A(0), ∂tA(0)) = (u0, A0, A1), divxA0 = divxA1 = 0. (2)

Here .�A := ∇2
A = (∇ − iA)2 is the magnetic Laplacian, .φ = φ(u) :=

(−�)−1|u|2, .J = J (u,A) := 2Im(u(∇ − iA)u), and .P := I − ∇div�−1 is the
Helmholtz-Leray projection onto divergence free vector fields. The choice of the
Coulomb gauge (.divxA = 0) is convenient for our analysis, but other gauges are
possible as well, see e.g. the discussion in [3, Section 6].

The total charge .Q(t) := ‖u‖2
L2

x
and the energy

.E(t) :=
∫
R

3
|∇Au|2 + 1

2

(|∂tA|2 + |∇A|2 + |∇φ|2) + 2

γ + 1
|u|γ+1dx (3)

are formally conserved by solutions to (1).
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The solution theory for the classical Maxwell-Schrödinger system (i.e. system (1)
without the pure-power nonlinearity) has been widely investigated by several
authors—we refer to [3] for a comprehensive overview of the literature. Global

well-posedness at the .H
11
8 +-level of regularity for the wave function u has been

obtained by Nakamura and Wada in [9]. The well-posedness at lower regularity, and
in particular at the finite energy level .(u,A) ∈ H 1 × H 1, has been recently proved
by Bejenaru and Tataru [4] by exploiting the tool of Bourgain-type spaces adapted
to the magnetic-Schrödinger evolution.

For system (1) there are fewer results available. Local well-posedness at the

.H
11
8 +-level of regularity for u has been proved in [5], by adapting the approach

by Nakamura and Wada. On the other hand, it is unclear whether the result of
Bejenaru and Tataru in the energy space could be extended to the case of a pure-
power nonlinearity (some attempts in this direction can be found in [5]). The
existence of weak solutions in the energy space has been proved in [1] by means of
a regularization-compactness argument (see also [2, 6] for related results). Global
well-posedness in the sub-cubic case (i.e. .γ ∈ (1, 3)), at the .H 2-level of regularity
for u, has been proved in [3] by means of a modified energy argument.

The purpose of this note is to extend the above global well-posedness result
for (1) to the whole regime for which a local theory is available.

In order to state our main theorem, we preliminary introduce suitable functional
spaces. Given .s, σ ∈ R, we define

.�σ := {(A0, A1) ∈ Hσ (R3,R3) × Hσ−1(R3,R3) | divxA0 = divxA1 = 0},
Ms,σ := Hs(R3,C) × �σ .

Without loss of generality, we restrict our attention to forward-in-time solutions. We
have the following result.

Theorem 1 Let us fix .s ∈ [ 11
8 , 2], .σ ∈ (1, min{ 3

2 s, 2s − 3
4 }), and .γ ∈ (s, 3). Let us

fix moreover an initial data .(u0, A0, A1) ∈ Ms,σ . Then the Cauchy problem (1)–(2)
admits a unique, global solution .u ∈ C(R+,Ms,σ ), satisfying for .T > 0 the double
exponential upper bound

.‖(u,A, ∂tA)‖L∞
T Ms,σ � exp exp T . (4)

Some remarks on Theorem 1 are in order.

• The restriction .s ≤ 2 is not strictly necessary for the well-posedness, and with
some extra analysis (in the same spirit of [9, Proposition 4.2]) one could extend
the result to the whole regime .s ≥ 11

8 (with suitable upper bounds on .σ ).
• The restriction .σ > 1 is more subtle, and it is related to the failure of the

endpoint Strichartz estimates for the wave equation in three dimensions. It could
be possible to assume the extra regularity on the angular part of .(A0, A1) only,
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as in this regime the endpoint Strichartz are recovered [8]. For the sake of
concreteness, we do not purse this direction here.

• The lower bound .γ > s is required so that the pure-power nonlinearity is smooth
enough to preserve the .Hs-regularity. When .s = 2 this can be sharpened to
.γ > 1 (see [3, Section 4]), and it is conceivable that the same improvement can
be obtained for a generic .s ∈ [ 11

8 , 2] by adapting the argument of Pecher [10].
• In the special case .s = 2, as already mentioned, Theorem 1 can be proved via a

modified energy method [3]. This allows, as byproduct, to deduce a polynomial
upper bound for the growth of the .M2,σ -norm of the solutions (for .s = 2 also the
cubic case .γ = 3 is covered, with an exponential upper bound). In the general
case of fractional regularity, it is difficult to reproduce the modified energy
argument, which is based on explicit integrations by parts. Our approach use
instead refined a priori estimates in Besov spaces for u (see estimate (7) below)
and sharp logarithmic corrections to critical Sobolev embedding (Lemma 2),
which allows to cover the sub-cubic case with a double exponential bound.

Before starting our analysis, we briefly comment on our notation. Given an
interval .I ⊆ R, we often write .L

p
I to denote the space .Lp(I); if .I = [0, T ] we

just write .L
p

T . We use the Japanese bracket .〈λ〉 := √
1 + λ2. Given two positive

quantities .A,B, we write .A � B if there exists .C > 0 such that .A ≤ CB;
if the constant C depends on some parameter k, we write .A �k B. When not
specified otherwise, m denotes a positive integer constant, which may change at
each occurrence. We consider the shifted logarithm .ln+(x) := ln(e + x). We will
use the classical Besov space .Bs

p,q , that is the space of all tempered distributions f

such that

.‖f ‖Bs
p,q

:= ‖2ksfk‖	
q
kL

p
x

< ∞,

where .{fk}k≥0 is the Littlewood-Paley decomposition of f .
One of the main tool we shall exploit is the following version of Koch-Tzvetkov

estimates for the inhomogeneous Schrödinger in the context of Besov spaces.

Lemma 1 Let .s ∈ R, .α, T > 0, and let .ψ ∈ L∞
T H s be a weak solution to the

equation .i∂tψ = −�ψ + F . Then we have the estimate

.‖ψ‖L2
T Bs−α

6,2
�T ‖ψ‖L∞

T Hs + ‖F‖L2
T Hs−2α . (5)

Estimate (5) has been proved in [9, Lemma 2.4], even though the result in [9] is
stated for the Sobolev (Bessel potential) space .Hs−α,6(R3) instead of the refined
Besov space .Bs−α

6,2 (R3).
Using Lemma 1, and arguing as in the proof of [3, Proposition 3.1], one deduces

the following a priori bounds for the Maxwell-Scrödinger system (1).

Proposition 1 Let .γ ∈ (1, 3), .s ∈ [1, 2], .σ > 1, .T > 0, and set .σ̃ := min{σ, 7
6 }.

Fix moreover an initial data .(u0, A0, A1) ∈ Ms,σ , and let .(u,A) be a weak solution
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to the Cauchy problem (1)–(2). Then the following estimates hold true.

. ‖A‖L2
T L∞ + ‖(A, ∂tA)‖L∞

T �σ̃ �T 〈‖(u,A)‖m
L∞

T (H 1×H 1)
〉〈‖(A0, A1)‖m

�σ 〉,
(6)

. ‖u‖
L2

T B
s−1/2
6,2

�T 〈‖(u,A)‖m
L∞

T (H 1×H 1)
〉〈‖(A0, A1)‖m

�σ 〉‖u‖L∞
T Hs . (7)

For our purposes it is relevant to consider the refined bound (7) for u in a Besov
space, as the second scale exponent is strictly related to the logarithmic corrections
of critical Sobolev embeddings (which in turn will be crucial for the globalization
argument). In particular, we consider the following generalization [7, Theorem 2.1]
of the classical Brezis-Gallouet-Weinger inequality.

Lemma 2 Let .p, q, r ∈ [1,∞), and .s > 3
q
. Then we have the estimate

.‖f ‖L∞(R3) ≤ D
(
1 + ‖f ‖

Ḃ
3/p
p,r (R3)

ln1−1/r
+ ‖f ‖Ḃs

q,∞(R3)

)
, (8)

for a suitable constant .D > 0.

Observe that, when .r = 1, estimate (8) is essentially equivalent to the well-known
embedding .Ḃ

3/p
p,1 (R3) ↪→ L∞(R3). When .r = 2, which is the second scale exponent

arising from the refined estimate (7), one gets a .ln1/2
+ correction to the critical

embedding into .L∞(R3), which will be sufficient to globalize the solutions (in the
regime .γ < 3) through a nonlinear Grönwall-type argument.

We are now able to prove the main result of this note.

Proof of Theorem 1 The existence of a unique, strong .Ms,σ -solution to (1), defined
on a maximal existence interval .[0, Tmax), together with conservation of mass and
energy and the blow-up alternative, has been proved in [5, Theorem 2.1]. We need
to show that the solution can be extended globally in time, namely .Tmax = +∞. To
this aim, let us fix an arbitrary .T ∈ (0, Tmax).

In view of the a priori estimates (6)–(7), the conservation of mass and energy,
and the equivalence between classical and magnetic .H 1-norms [9, Lemma 2.2], we
deduce the bound

.‖u‖
L∞

T H 1∩L2
T B

1/2
6,2

+ ‖(A, ∂tA)‖
L∞

T �
min{σ, 7

6 } �T 1. (9)

As a consequence of (9) and the a priori bound (7) we also get

.‖u‖
L2

I B
s−1/2
6,2

≤ C1‖u‖L∞
I Hs , (10)

for some positive constant .C1 := C1(T ), valid for every interval .I ⊆ [0, T ].



Global Solutions to the Nonlinear Maxwell-Schrödinger System 95

In addition, using estimate [9, Lemma 3.3] for the linear magnetic Schrödinger
propagator and the bound (9), we obtain

.‖u‖L∞
I Hs ≤ C2

(‖u( t̃ )‖Hs + ‖|u|γ−1u‖L1
I Hs

)
(11)

for some constant .C2 := C2(T ) > 1, valid for every interval .I ⊆ [0, T ] and .̃t ∈ I .
Next we consider a sequence of times .t0 = 0 < t1 . . . < tN−1 < tN = T such

that, setting .Ij = [tj−1, tj ] and

.Mj := ln(γ−1)/2
+ (T

1
2 C12jC

j
2 ),

we have .|Ij | < (4CD)−1 and

.‖u‖γ−1

L2
Ij

B
1/2
6,2

≤ 1

4C2DMj

, j = 1, . . . N, (12)

where .D > 0 is the constant appearing in estimate (8) (with .p = 6, .r = 2). The
existence of such sequence is guaranteed by the bound (9) for the .L2

T B
1/2
6,2 -norm of

u, the asymptotic .M(j) ∼ j (γ−1)/2 for large j , and the divergence of the harmonic
series (observe that .N ≈ exp T ). Now we have

.

‖|u|γ−1‖L1
Ij

L∞ ≤ D

∫ tj

tj−1

1 + ‖u(t)‖γ−1

B
1/2
6,2

ln(γ−1)/2
+ ‖u(t)‖

B
s−1/2
6,2

dt

≤ (4C2)
−1 + D‖u‖γ−1

L2
Ij

B
1/2
6,2

( ∫ tj

tj−1

ln(γ−1)/(3−γ )
+ ‖u‖

B
s−1/2
6,2

dt
) 3−γ

2

≤ (4C2)
−1 + D‖u‖γ−1

L2
Ij

B
1/2
6,2

ln(γ−1)/2
+ ‖u‖

L1
Ij

B
s−1/2
6,2

≤ (4C2)
−1 + (4C2Mj)

−1 ln(γ−1)/2
+ (T

1
2 C1‖u‖L∞

Ij
Hs ),

where we used the generalized Brezis-Gallouet inequality (8) in the first step, Hölder
inequality in time and the bound .|Ij | ≤ (4CD)−1 in the second step, Jensen
inequality in the third step (.lnα+ is concave for any .α > 0), and the bounds (10)
and (12) in the last step. Combining the estimate above with (11) we obtain

.

‖u‖LIj
Hs ≤ C2‖u(tj−1)‖Hs + 1

4‖u‖L∞
Ij

Hs

+ (4Mj)
−1 ln(γ−1)/2

+
(
T

1
2 C1‖u‖L∞

Ij
Hs

)‖u‖L∞
Ij

Hs .

(13)
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Using the definition of .Mj , and applying the bound (13) iteratively, we get
.‖u(tj )‖Hs ≤ (2C2)

j‖u0‖Hs for .j = 1, . . . , N . Since .N ≈ exp T , we deduce

.‖u‖L∞
T Hs � exp exp T . (14)

Once the bound (14) for the .Hs-norm of u is available, one can argue as in the proof
of [3, Proposition 3.5] (which treats the case .σ = 2) to infer

.‖(A, ∂tA)‖L∞
T �σ � exp exp T . (15)

Combining (14)–(15) and using the blow-up alternative we then get .Tmax = +∞,
together with the double exponential bound (4). The proof is complete. ��
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On the Plate Equation with
Exponentially Degenerating Stochastic
Coefficients on the Torus

Xiaojun Lu

Abstract This paper aims to investigate the plate equation with time-dependent
stochastic coefficients on the torus, which is used for modeling the vibration of
beams with random perturbations from various sources. We mainly study the joint
influence from the exponentially degenerating and strong oscillating coefficients on
the biharmonic and Laplace-Beltrami operators to explore the upper bound of loss of
regularity by applying important techniques from microlocal analysis and stochastic
analysis. More importantly, the critical case for loss of regularity has been deduced
by the exquisite normal form diagonalization process. Furthermore, appropriate
counter-examples with periodic coefficients are constructed in order to demonstrate
the optimality of the estimates by the application of instability arguments.

1 Introduction

Plate equations are important mathematical models in the theoretical and practical
research of vibrations of beams and deflection of plates. Study from various fields,
such as mechanics of biochemical soft matters, inspection of polymeric material
defects by piezoelectric smart beams, safety assessment of mega projects (cross-
sea bridges, channel tunnels), etc. reveals that plenty of random influencing factors
from both internal and external environments will inevitably make a significant
impact on the vibration mechanics. To incorporate certain random perturbations, we
discuss the plate equations with exponentially degenerating and strong oscillating
coefficients of second-ordermoment stochastic processes. It is interesting to explore
the well-posedness of the solutions of such kind of stochastic equations.
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This paper mainly addresses a degenerate 2-evolution plate equation described
as follows,

.

{
utt + D2(t, ω)Δ2

T u − B(t, ω)ΔT u = 0, in (0, T ] × T
N × Ω,

u(0, x) = u0(x), ut (0, x) = u1(x), on TN .
(1)

• Here, .ΔT represents the Laplace-Beltrami operator on the torus .T
N . Let . m =

(m1, · · · ,mN) ∈ Z
N be an integer vector. As is known, the spectrum set

.spec(−ΔT ) on .L2(TN) is composed of nonnegative discrete points

.spec(−ΔT ) = {| m|2 : m ∈ Z
N }.

In effect, the dimension of the eigenspace associated to .|m|2 is calculated
by the permutations and combinations of .(m1,m2, · · · ,mN) ∈ Z

N such that
.
∑N

j=1 m2
j = |m|2. Moreover, on .L2(TN), there exists a corresponding complete

orthonormal basis in the following form,

.

{
φ

(m1,··· ,mN)
|m| (x) = (2π)−N exp

(
− i

N∑
j=1

mjxj

)
:

N∑
j=1

m2
j = |m|2, m ∈ Z

N
}
.

Next, we begin to define the generalized Fourier transform and Fourier inverse
transform by using the eigenvalues (spectrum) and eigenfunctions of the Laplace-
Beltrami operator .ΔT on the torus .T

N .

Definition 1 Given the Laplace-Beltrami operator .ΔT on the torus .T
N , the asso-

ciated generalized Fourier transform and Fourier inverse transform of a function
.f ∈ L2(TN) are defined as follows:

.f̂ (m1,··· ,mN )(|m|2) := (f, φ
(m1,··· ,mN )
|m| )L2, m ∈ Z

N,

.f (x) :=
∑
m∈ZN

∑
∑N

i=1 m2
i

= | m|2
f̂ (m1,··· ,mN)(| m|2)φ(m1,··· ,mN )

|m| (x).

The .L2-norm for f is defined accordingly in the sense of Fourier analysis,

.‖f ‖L2 :=
( ∑
m∈ZN

∑
∑N

i=1 m2
i

= | m|2

∣∣∣f̂ (m1,··· ,mN )(| m|2)
∣∣∣2)

1
2
.
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Definition 2 Let F be a real-valued function on .[0,+∞). We define a pseudodif-
ferential operator as follows:

.F(
√−ΔT ) : Dom(F (

√−ΔT )) ⊂ L2(TN) → L2(TN),

.F(
√−ΔT )u(x) : =

∑
m∈ZN

F (| m|)
( ∑

∑N
i=1 m2

i
= | m|2

û(m1,··· ,mN )(| m|2)φ(m1,··· ,mN)
|m| (x)

)
,

for .u ∈ Dom(F (
√−ΔT )). Furthermore, for any .s > 0, the nonhomogeneous

Sobolev space .H s(TN) is defined as follows,

.H s(TN) := {u ∈ L2(TN) : (Id − ΔT )
s
2 u ∈ L2(TN)}.

And the corresponding .H s -norm is defined by means of the general Fourier
transform and inverse transform, (.〈m〉 := √

1 + |m|2)

.‖u‖H s :=
( ∑
m∈ZN

〈m〉2s
( ∑

∑N
i=1 m2

i
= | m|2

∣∣∣û(m1,··· ,mN )(| m|2)
∣∣∣2))

1
2
.

Spacial fractional order pseudodifferential operators are effective in modeling
nuclear magnetic resonance diffusometry in percolative and porous media, diffusion
of a scalar tracer in an array of convection rolls, charge carrier transport in
amorphous semiconductors, etc. For more interesting industrial applications and
modeling processes, please refer to [12, 14, 18] and references therein.

• Due to the complex physical structures and random perturbations [2–4, 8,
9, 13, 14, 19], the mathematical model has both degenerating and randomly
oscillating coefficients for the principle biharmonic operator. This coupling
effect poses lots of challenges and it is our prior mission to explore the joint
influence of both types of coefficients on the well-posedness of the solution. The
degenerating and oscillating coefficient on the biharmonic operator part, that is,
.D(t, ω) = exp(−t−1)A(t, ω) is a second-order moment stochastic process and
.A : (0, T ]×Ω → R, T < 1 is a second-order moment stochastic process, which
measures the oscillation on the principal biharmonic operator about the starting
time 0. In addition, for any .t ∈ (0, T ], the oscillating process A is bounded
almost surely, namely, there exist positive constants .b0 and .b1 such that for any
.t ∈ (0, T ],

.P

(
Ω1 := {ω ∈ Ω | b0 ≤ A(t, ω) ≤ b1}

)
= 1. (2)
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Assume that for .∀ ω ∈ Ω1, .A ∈ C2((0, T ]) and there exist two nonnegative
random variables .Ck : Ω → R, k = 1, 2, such that the first and second
derivatives of .A(t, ω) satisfy

.|A(k)(t, ω)| ≤ Ck(ω)(ν(t)t−2)k, k = 1, 2, (3)

where .ν ∈ C(0, T ] is a decreasing and positive measure function of oscillation
near the starting time 0. For instance, in constructing counterexamples, we will
focus on the general case .limt→0+ ν(t) = +∞. More importantly, for .k = 1, 2,
.Ck are uniformly bounded almost surely, that is to say, there exists an .M > 0,
such that

.P

(
Ω2 := {ω ∈ Ω | 0 ≤ Ck(ω) ≤ M, k = 1, 2}

)
= 1. (4)

Actually, from (2) and (4), we have .P(Ω1 ∩ Ω2) = 1. Recall [17, 20] and let
.{X(t), t ∈ T } be a second-order moment stochastic process. .X ∈ L2(Ω,F ,P)

is called the limit in mean square (l.i.m) of .X(t) at .t = t0, denoted as
.l.i.mt→t0X(t) = X, if .limt→t0 ‖X(t) − X‖2 = 0. Here, .t0 can also be .∞. Due
to the almost sure boundedness of .A(t, ω), it is clear that .l.i.mt→0+D(t, ω) =
0, and .D(t, ω) is a nonstationary stochastic process since the corresponding
autocorrelation function .R(s, t) does not depend on the difference of s and t .
As a matter of fact, our model covers lots of second-order stochastic processes in
mechanical applications. For instance, .A(t, ω) = F(t−1(ln(t−1))κ + Θ), κ ∈
(1,+∞), where .F ∈ C2(R) is a bounded positive periodic function. It is evident
that .A(t, ω) is a nonstationary process. In this case, for any random variable .Θ ,
such as Bernoulli trials, simple symmetric random walk, .(0 − 1) distribution,
Poisson distribution, uniform distribution, normal distribution or .Γ distribution,
the corresponding stochastic processes .A(t, ω) satisfy the above assumptions
with .ν(t) = (ln(t−1))κ .

• The degenerating and oscillating coefficient on the Laplace-Beltrami operator
part .B : [0, T ] × Ω → R is expressed as

.B(t, ω) = γ tβ exp(−t−1)K(t, ω),

where .β ≥ −2, .γ ∈ R and .K(t, ω) is an oscillating second-order moment
stochastic process. Here we are interested in the .C∞ type Levi conditions. For
any given .ω ∈ Ω , K is continuous with respect to t and furthermore, K is
uniformly bounded with respect to t and .ω, and there exist two positive constants
.δ0 and .δ, such that

.0 < δ0 ≤ inf
(t,ω)∈(0,T ]×Ω

|K(t, ω)| ≤ sup
(t,ω)∈(0,T ]×Ω

|K(t, ω)| ≤ δ.
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Now, it is ready to show the main results concerned with the regularity behavior.
Under the above assumptions, we have the following regularity statement for the
Cauchy problem (1):

Theorem 1 Let us consider the Cauchy problem (1) on .[0, T ] × T
N × Ω . Assume

that the initial Cauchy data satisfy

.u0 ∈ H s (TN), u1 ∈ 1

I−1(
2P1

Id − ΔT

)

H s(TN),

where the Sobolev exponent .s ≥ 2, .P1 is an appropriate positive integer to be
detailed in the proof and .I−1 stands for the inverse of the strictly increasing function
.I : (0, T ] → R

N , defined by

.I (t) := exp(−t−1)t2.

.Id stands for the identity operator. Then, there exists a unique stochastic process u

whose regularity behavior is described by means of pseudodifferential operators as
follows,

• For the following three cases:

1. .γ = 0
2. .γ �= 0 and .β > −2
3. .γ �= 0, .β = −2 and .0 < |γ |δ ≤ b0

we have

.u ∈ Cms

(
[0, T ]; J (Id − ΔT )H s (TN)

)
,

.ut ∈ Cms

(
[0, T ]; J (Id − ΔT )H s−2(TN)

)
.

• For .γ �= 0, .β = −2 and .|γ |δ > b0, we have

.u ∈ Cms

(
[0, T ]; L

(
G−1(

2P2

Id − ΔT

)
)
J (Id − ΔT )H s (TN)

)
,

.ut ∈ Cms

(
[0, T ]; L

(
G−1(

2P2

Id − ΔT

)
)
J (Id − ΔT )H s−2(TN)

)
.

Here, .P2 is an appropriate positive integer. The function .G−1 is the inverse of the
strictly increasing function .G : (0, T ] → R, defined by

.G(t) := t2 exp(−t−1)

ν(t)
.
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The strictly decreasing function .L : (0, T ] → R
N is defined as

.L(t) := exp
( |γ |δ − b0

2b0t

)
for |γ |δ > b0.

And the function .J : (0,+∞) → R is defined as

.J (z) := exp
(
Cν(G−1(

2P2

z
))
)
,

where C is a sufficiently large positive constant and .Cms(T ) is defined as the set of
all continuous in mean square second-order moment stochastic processes on .T .

Remark 1 Here, .|γ |δ = b0 is a critical case of loss of regularity, since there usually
appears an abrupt jump of loss from .|γ |δ < b0 to .|γ |δ > b0. It is interesting
to observe that, if .|γ |δ < b0, then, loss of regularity comes directly from the
biharmonic part. While in the other case .|γ |δ > b0, the interaction of all the time-
dependent coefficients determines the loss of regularity. As for the case .γ �= 0,
.β < −2, which does not satisfy the Levi-condition[8–10], the techniques we used
in the proof does not work any more. However, when we consider a mild case in an
approximate manner, that is, we let .δ → +∞, actually we obtain the infinite loss
of regularity. This fact gives us a glimpse of the infinite loss of regularity for the
case .β < −2. In comparison with the results in [11], it is clear the difference of
regularity for initial Cauchy data is significantly influenced by the degenerating part
of the coefficients. More importantly, the oscillation of the stochastic coefficient
.K(t, ω) on the Laplace-Beltrami part plays an insignificant role in the regularity
behavior of the solution.

Remark 2 Continuity in mean square .Cms with respect to t is a much stronger notion
in comparison with the deterministic classic continuity with respect to t . That is to
say, the deterministic continuity is the simplest case in the sense of continuity in
mean square. More often, it is not correct to deduce the continuity in mean square
purely from the classic continuity for a specific given .ω. For instance, let us consider
a discrete stochastic process .F1(t,Θ), t ∈ R as follows:

Obviously, .Θ ∈ L2(Ω,F ,P) since the series (Table 1)

.

∞∑
n=1

n2 · 1

2n
< ∞.

For each .θn, .F1(·, θn) ∈ C∞(R). It is easy to verify that .F1(t,Θ) is definitely not a
second-order moment stochastic process. Indeed, for each .t �= 0,

.E[|F1(t,Θ)|2] =
∞∑

n=1

|F1(t, θn)|2P(θn) =
∞∑

n=1

t2
25n

4n

1

2n
= ∞.
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Table 1 Distribution of a
stochastic process .F1(t,Θ)

.Θ .P(Θ) .F1(t,Θ)

.θ1 = 1 . 12 . 52 t

.θ2 = 2 . 1
22

. 5
2

22
t

.
.
.
. .

.

.

. .
.
.
.

.θn = n . 12n . 5
n

2n t

.
.
.
. .

.

.

. .
.
.
.

Table 2 Distribution of
stochastic processes .F2(t,Θ)

and .F3(t,Θ)

.Θ .P(Θ) .F2(t,Θ) .F3(t,Θ)

.θ1 = 2 . 45 .sin(25t) .25 cos(25t)

.θ2 = 22 . 4
52

.sin(210t) .210 cos(210t)

.
.
.
. .

.

.

. .
.
.
. .

.

.

.

.θn = 2n . 45n .sin(25nt) .25n cos(25nt)

.
.
.
. .

.

.

. .
.
.
. .

.

.

.

Subsequently, .F1 /∈ Cms(R). In the proof, we will apply the apriori micro-energy
estimates and theory of second-order moment stochastic processes to deal with this
property.

Remark 3 It is important to emphasize that In Theorem 1, the derivative .ut is
in the sense of classic derivative for given .ω. We attach more importance upon
the discussion of continuity in mean square for .‖ 1

J (Id−ΔT )
ut (t, ·, ω)‖H s−2 , since

the above stochastic process is not necessarily the derivative in mean square of
.‖ 1

J (Id−ΔT )
u(t, ·, ω)‖H s due to loss of regularity and stochastic phenomenon. In

order to elucidate this point, let us consider two stochastic processes .F2(t,Θ) and
.F3(t,Θ) displayed below (Table 2).

Clearly, .Θ ∈ L2(Ω,F ,P) since the series

.

∞∑
n=1

22n · 4

5n
< ∞.

Here, .F2(t,Θ) is a second-order moment stochastic process for .t ∈ R due to the
fact

.E[|F2(t,Θ)|2] =
∞∑

n=1

|F2(t, θn)|2P(θn) =
∞∑

n=1

sin2(25nt) · 4

5n
< ∞.

As is known, for each .θn,

.
d

dt
F2(t, θn) = F3(t, θn).
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However, .F3(t,Θ) is not a derivative in mean square of .F2(t,Θ) since .F3(t,Θ) is
not a second-order moment stochastic process for .t ∈ R. Indeed, for each .t = kπ ,
.k ∈ N+, .h �= 0 sufficiently small, there exists a .P ∈ N such that .25P h > 10. By
systematic calculation, we have

.

E

[( sin(Θ(kπ + h)) − sin(Θkπ)

h
− Θ cos(Θkπ)

)2]

=
∞∑

n=1

( sin(25n(kπ + h)) − sin(25nkπ)

h
− 25n cos(25nkπ)

)2 · 4

5n

=
∞∑

n=1

( sin(25nkπ)(cos(25nh) − 1)

h
+ cos(25nkπ)(sin(25nh) − 25nh)

h

)2 · 4

5n

=
∞∑

n=1

( sin(25nh) − 25nh

h

)2 · 4

5n

≥
∞∑

n=P

(25n−1h

h

)2 · 4

5n
=

∞∑
n=P

210n

5n
.

As a result,

. lim
h→0

E

[( sin(Θ(kπ + h)) − sin(Θkπ)

h
−Θ cos(Θkπ)

)2] ≥ lim
P→∞

∞∑
n=P

210n

5n
= ∞.

Further analysis of the autocorrelation function for .F2(t,Θ) tells that .F2(t,Θ) is
not differentiable in mean square for .t ∈ R.

It remains to discuss the optimality of the apriori estimates in Theorem 1. As
a matter of fact, the method of instability argument was introduced in [2] to deal
with well-posedness for equations with non-Lipschitz coefficients. Now we further
develop this idea to demonstrate that the precise .ν-loss of regularity really appears
for plate equations with both degenerating and oscillating stochastic coefficients.
Indeed, from Theorem 1, it is natural to deduce the following corollary which shows
that at most a .ν-loss for a family of Cauchy problems. In this part, we focus on the
deterministic case with the general assumption .limt→0+ ν(t) = +∞.

Corollary 1 Let us consider a family of Cauchy problems on .[0, T ] × T
N .

.

{
uk,t t + exp(−2t−1)A2

k(t, ω)Δ2
T uk − B(t, ω)ΔT uk = 0, in (0, T ] × T

N,

uk(0, x) = uk,0(x), uk,t (0, x) = uk,1(x), on TN .

(5)
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where the sequence .{Ak}k satisfies all assumptions for the coefficient of the principal
biharmonic operator in Theorem 1. If the initial Cauchy data satisfy

.uk,0 ∈ H s (TN), uk,1 ∈ 1

I−1(
2P1

Id − ΔT

)

H s (TN),

then, there exists a unique sequence of solutions .{uk}k in the following function
spaces.

• For the following three cases:

1. .γ = 0
2. .γ �= 0 and .β > −2
3. .γ �= 0, .β = −2 and .0 < |γ |δ ≤ b0

we have

.uk ∈ Cms

(
[0, T ]; J (Id − ΔT )H s (TN)

)
,

.uk,t ∈ Cms

(
[0, T ]; J (Id − ΔT )H s−2(TN)

)
.

• For .γ �= 0, .β = −2 and .|γ |δ > b0, we have

.uk ∈ Cms

(
[0, T ]; L

(
G−1(

2P2

Id − ΔT

)
)
J (Id − ΔT )H s (TN)

)
,

.uk,t ∈ Cms

(
[0, T ]; L

(
G−1(

2P2

Id − ΔT

)
)
J (Id − ΔT )H s−2(TN)

)
.

In the following, we mainly focus on the loss operator .J (Id −ΔT ) in the exponential
form. In order to construct a counter-example showing at least a .ν-loss appears, we
apply the following nonhomogeneous energy.

Definition 3 For w belonging to the function spaces

.w ∈ C
(
[0, T ];H s (TN)

)
, wt ∈ C

(
[0, T ];H s−2(TN)

)
,

we introduce the nonhomogeneous energy for .s ≥ 2,

.Es(w)(t) := exp(−2t−1)‖w(t, ·)‖2H s + ‖wt(t, ·)‖2H s−2 . (6)

As a matter of fact, the difference of regularity for the initial Cauchy data originates
from the degenerating part .exp(−2t−1). Here, we apply the above definition since
the difference of regularity has been fully embodied in this energy form. Without
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loss of generality, we mainly consider the case .γ = 0. In a word, our optimality
argument can be expressed in the following statement.

Theorem 2 For .γ = 0, there exists

• a sequence of oscillating coefficients .{bk(t)}k satisfying all assumptions of
Theorem 1 with constants independent of k;

• a sequence of initial Cauchy data .{(uk,0(x), uk,1(x))}k belonging to the function
space

.H s(TN) × 1

I−1(
2P1

Id − ΔT

)

H s(TN),

such that the sequence of the corresponding solutions .{uk}k of (5) satisfies

. sup
k

E2(uk)(0) ≤ C(ε), (7)

. sup
k

E2

(
exp

(
− c1(ε)ν(G−1(

2P2

Id − ΔT

))
)
uk

)
(t) = +∞, (8)

for .t ∈ (0, T ], where .C(ε) and .c1(ε) depend on the sufficiently small positive
constant .ε.

Remark 4 The idea of the above argument lies in the essential regularity behavior
which emphasizes that, de facto, the constant C in the pseudodifferential operator
.J (Id − ΔT ) must be larger than 0. In this case, we are endowed with the possibility
to search for a smaller positive constant .c1(ε) which will lead to infinity of the
corresponding .H s-norms.

The rest of the paper is organized as follows. Section 2 is devoted to the proof of
Theorem 1. Some important tools from microlocal analysis will be taken to obtain
the precise .ν-loss of regularity. In Sect. 3, we construct suitable counter-examples
for Theorem 2 and discuss the optimality of the apriori estimates in Theorem 2 by
the application of harmonic analysis and instability arguments.

2 Proof of Theorem 1

For all .ω ∈ Ω1
⋂

Ω2 and .m ∈ Z
N , by applying the generalized Fourier transform

from Definition 1 on the Cauchy problem (1), we have, for .t ∈ [0, T ],

.

⎧⎪⎨
⎪⎩

û
(m1,··· ,mN )
t t + D2(t, ω)|m|4û(m1,··· ,mN) + B(t, ω)|m|2û(m1,··· ,mN ) = 0,

û(m1,··· ,mN )(0, |m|2) = û
(m1,··· ,mN )
0 (|m|2),

û
(m1,··· ,mN )
t (0, |m|2) = û

(m1,··· ,mN )
1 (|m|2).

(9)



On the Plate Equation with Exponentially Degenerating Stochastic Coefficients 107

For convenience’s sake, as no further confusion arises, we denote

.λ := |m|2,

.û(t, λ, ω) := û(m1,··· ,mN )(t, |m|2, ω) = (u, φ
(m1,··· ,mN )
|m| )L2 .

Therefore, (9) can be simplified as

.

{
ût t + D2(t, ω)λ2û + B(t, ω)λû = 0,
û(0, λ) = û0(λ), ût (0, λ) = û1(λ).

(10)

2.1 Introduction to Some Tools from Microlocal Analysis

First and foremost, we introduce some important tools from microlocal analysis
which will facilitate our discussion. Similar as the I-Method for Schrödinger type
equations introduced in [1, 14], we give three zones in the quantized time-frequency
(spectrum) space.

Definition 4 We divide the quantized time-frequency space into three zones .Zi ,
.i = 1, 2, 3, namely,

.

Z1 :=
{
(t, λ) ∈ [0, T ] × spec(−ΔT ) : t2 exp(−t−1)(1 + λ) ∈ (0, 2P1)

}
;

Z2 :=
{
(t, λ) ∈ (0, T ] × spec(−ΔT ) : t2 exp(−t−1)(1 + λ) ∈ [2P1, 2P2ν(t))

}
;

Z3 :=
{
(t, λ) ∈ (0, T ] × spec(−ΔT ) : t2 exp(−t−1)(1 + λ) ∈ [2P2ν(t),+∞)

}
,

where .P1, P2 ∈ N+ are constants which will be detailed later in the proof.

In fact, when we study the regularity behavior of solutions, large .λ is of prime
consideration. Therefore, in the definition of zones, we exclude the case .λ = 0.
Here, for large .λ, .|m|2 ≈ 〈m〉2.
Definition 5 Due to the monotonicity of the function .ν, .t(i)λ , i = 1, 2 are defined as
the solutions of

.t4 exp(−2t−1)(1 + λ)2 = 22Pi ν2i−2(t), i = 1, 2,

respectively. And

.(t
(i)
λ )4 exp(−2(t(i)λ )−1)(1 + λ)2 = 22Pi ν2i−2(t

(i)
λ ), i = 1, 2

are called the first and second separating curves in the quantized time-frequency
space, respectively.
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Definition 6 In each zone, for given .ω ∈ Ω1
⋂

Ω2, we define the corresponding
micro-energy matrix uniformly as

.V (t, λ, ω) := (V1(t, λ, ω), V2(t, λ, ω))T .

More specifically, let .φ be the positive root of

.φ2 := 1 + t−2 exp(−t−1)λ.

The precise micro-energies are listed as, (.Dt := 1

i

∂

∂t
)

• In .Z1, .V (t, λ, ω) := (φû,Dt û)T ;
• In .Z2, .V (t, λ, ω) := exp(−t−1)λû,Dt û)T ;
• In .Z3, .V (t, λ, ω) := ((D(t, ω)λû,Dt û)T .

Indeed, the choice of the auxiliary function .φ is very important. A good choice
can lead to exquisite estimates. Up to now, the above .φ is very effective from the
empirical point of view. For given .ω ∈ Ω1

⋂
Ω2, in .Z3, we define a generalized

Schwarz symbol class .Sr
ω{m1,m2,m3} and introduce several rules of symbol

calculus.

Definition 7 For given .ω ∈ Ω1
⋂

Ω2 and .r ∈ N, we say that

.a(t, λ, ω) ∈ Sr
ω{m1,m2,m3}

if for all .k = 1, · · · , r ,

.|a(k)(t, λ, ω)| ≤ Ck(ω)λ
m1
2 exp(−m2t

−1)
(
t−2ν(t)

)m3+k

hold, where .mi ∈ R, .i = 1, 2, 3, .Ck(ω), .k = 1, · · · , r are positive constants
depending upon .ω. And .a(k) stands for the k-th partial derivative with respect to
the time.

Indeed, by using Definitions 4 and 7, we can easily verify the following facts
about symbol calculus, which are very crucial for the normal form diagonalization
processes.

Lemma 1 For given .ω ∈ Ω1
⋂

Ω2, the subsequent rules of symbol calculus hold:

• .Sr+1
ω {m1,m2,m3} ⊂ Sr

ω{m1,m2,m3};
• If .a ∈ Sr

ω{m1,m2,m3}, .b ∈ Sr
ω{k1, k2, k3}, then, .ab ∈ Sr

ω{m1+k1,m2+k2,m3+
k3};

• If .a ∈ Sr
ω{m1,m2,m3}, then, .a(k) ∈ Sr−k

ω {m1,m2,m3 + k}, where .k = 1, · · · , r;
• In .Z3, .Sr

ω{m1,m2,m3} ⊂ Sr
ω{m1 + 2p,m2 + p,m3 − p}, where .p ≥ 0;

• In .Z3, if .a ∈ S0
ω{−2,−1, 2}, then, .

∣∣∣
∫ t

t
(2)
λ

a(τ, λ, ω)dτ
∣∣∣ ≤ C(ω)ν(t

(2)
λ ).
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2.2 Micro-Energy Estimates in Z1

Lemma 2 Given ω ∈ Ω1
⋂

Ω2, for (t, λ) ∈ Z1, we have the following uniform
apriori estimates with a positive constant C depending upon P1 and b1:

.|û(t, λ, ω)| ≤ C
(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

.|Dt û(t, λ, ω)| ≤ Cλ exp(−(t
(1)
λ )−1)

(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

Proof Let us study the first order system

.DtV = C (t, λ, ω)V :=

⎛
⎜⎜⎝

Dtφ
φ

φ

D2(t, ω)λ2 + γ tβ exp(−t−1)K(t, ω)λ
φ

0

⎞
⎟⎟⎠V.

And we explore the fundamental solution E = E (t, s, λ, ω) of the above system by
means of the method in [6],

.

{
DtE (t, s, λ, ω) = C (t, λ, ω)E (t, s, λ, ω),

E (s, s, λ, ω) = I.
(11)

Actually, the following facts hold

.

DtE11(t, s, λ, ω) = Dtφ
φ

E11(t, s, λ, ω) + φE21(t, s, λ, ω),

DtE12(t, s, λ, ω) = Dtφ
φ

E12(t, s, λ, ω) + φE22(t, s, λ, ω),

DtE21(t, s, λ, ω) = D2(t, ω)λ2 + γ tβ exp(−t−1)K(t, ω)λ
φ

E11(t, s, λ, ω),

DtE22(t, s, λ, ω) = D2(t, ω)λ2 + γ tβ exp(−t−1)K(t, ω)λ
φ

E12(t, s, λ, ω),

(12)

with the initial value matrix

.

(
E11(s, s, λ, ω) E12(s, s, λ, ω)

E21(s, s, λ, ω) E22(s, s, λ, ω)

)
=

(
1 0
0 1

)
.

��



110 X. Lu

Moreover, we have the following estimates for the fundamental solution of (11)
in Z1:

Lemma 3 The entries of the fundamental solution matrix E = E (t, s, λ, ω) can be
estimated as (Here, the constant C(P1, b1) maybe different from line to line)

.

|E11(t, s, λ, ω)| ≤ C(P1, b1)
φ(t, λ)
φ(s, λ)

,

|E12(t, s, λ, ω)| ≤ C(P1, b1)φ(t, λ)(t − s),

|E21(t, s, λ, ω)| ≤ C(P1, b1)
(exp(−t−1) − exp(−s−1))λ

φ(s, λ)
,

|E22(t, s, λ, ω)| ≤ C(P1, b1)
(
1 + (t − s)(exp(−t−1) − exp(−s−1))λ

)
.

Proof Let us denote

.C (t, λ, ω) =
(
C11 C12

C21 C22

)
,

.C 0
21(t, λ, ω) := D2(t, ω)λ2 + γ tβ exp(−t−1)K(t, ω)λ.

By taking into account the definition of Z1, we deduce that, there exists a positive
constant C(P1, b1) depending upon P1 and b1 such that

.‖C (t, λ, ω)‖ ≤ C(P1, b1)φ + φt

φ
.

By the matrizant representation method in [12, 15], one has, in Z1

.‖E (t, s, λ, ω)‖ ≤ C(P1, b1)
φ(t, λ)

φ(s, λ)
.

From (12), we deduce that$o

.

|E21(t, s, λ, ω)| ≤ C(P1, b1)

∣∣∣
∫ t

s

C 0
21(τ, λ, ω)

φ(s, λ)
dτ

∣∣∣

≤ C(P1, b1)
(exp(−t−1) − exp(−s−1))λ

φ(s, λ)
.
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As for E12(t, s, λ, ω), indeed, once more from (12), we obtain the following
representation

.E12(t, s, λ, ω) = iφ(t, λ)

∫ t

s

E22(τ, s, λ, ω)dτ.

Let us denote f (t, s, λ, ω) :=
∫ t

s

E22(τ, s, λ, ω)dτ . Then, we get

.

⎧⎪⎪⎨
⎪⎪⎩

ft (t, s, λ, ω) = E22(t, s, λ, ω),

ftt (t, s, λ, ω) = E22,t (t, s, λ, ω),

f (s, s, λ, ω) = 0,
ft (s, s, λ, ω) = 1.

Simple calculation shows

.ftt = −C 0
21(t, λ, ω)f.

In order to estimate f in a profound way, we apply a comparison lemma from [5].
��

Lemma 4 If h, g ∈ C2[s, T ] are the solutions of

.

{
htt (t, s) = A1(t)h(t, s),

h(s, s) = H0 ≥ 0, ht (s, s) = H1 ≥ 0,

and

.

{
gtt (t, s) = B1(t)g(t, s),

g(s, s) = G0 ≥ 0, gt (s, s) = G1 ≥ 0,

respectively, where A1, B1 ∈ C[s, T ] and |B1(t)| ≤ A1(t), G0 ≤ H0, G1 ≤ H1.
Then, it holds

.|g(t, s)| ≤ h(t, s), t ∈ [s, T ].

For convenience’ sake, without any confusion, let h = h(t, s) be the solution of the
second-order differential equation with Cauchy data

.

{
htt (t, s) = C(P1, b1)t

−2 exp(−t−1)λh(t, s),

h(s, s) = 0, ht (s, s) = 1.
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Clearly, for T sufficiently small, since

.|C 0
21(t, λ, ω)| ≤ C(P1, b1)t

−2 exp(−t−1)λ,

then, h(t, s) ≥ 0 and ht (t, s) > 0, which lead to

.htt (t, s) ≤ C(P1, b1)
(
exp(−t−1)λh(t, s)

)
t
.

By integrating from s to t , we have

.ht (t, s) − 1 ≤ C(P1, b1) exp(−t−1)λh(t, s).

Furthermore, keeping in mind the definition of Z1, we apply Gronwall’s inequality
and obtain

.h(t, s) ≤ C(P1, b1)(t − s).

Subsequently, by means of the comparison result in Lemma 4, we have

.

∣∣∣
∫ t

s

E22(τ, s, λ, ω)dτ
∣∣∣ ≤ C(P1, b1)(t − s).

Consequently,

.|E12(t, s, λ, ω)| ≤ C(P1, b1)φ(t, λ)(t − s).

It remains to estimate E22(t, s, λ, ω). Actually, it holds that

.

|E22(t, s, λ, ω) − 1|

=
∣∣∣i
∫ t

s

C 0
21(t, λ)

φ(τ, λ)
E12(τ, s, λ, ω)dτ

∣∣∣

≤ C(P1, b1)(t − s)(exp(−t−1) − exp(−s−1))λ.

Lemma 3 is concluded. ��
Using the entry estimates for the fundament solution E , we have

.|φ(t, λ)û(t, λ, ω)| ≤ C(P1, b1)
(
φ(t, λ)|û0(λ)| + φ(t, λ)t|û1(λ)|

)
;

.|Dt û(t, λ, ω)| ≤ C(P1, b1)
(
λ exp(−t−1)|û0(λ)| + (1 + t exp(−t−1)λ)|û1(λ)|

)
.
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Lemma 2 is deduced immediately when we recall the definitions of Z1 and the first
separating curve (t

(1)
λ )2 exp(−(t

(1)
λ )−1)λ = 2P1 . The proof is concluded. ��

2.3 Micro-Energy Estimates in Z2

Lemma 5 Given ω ∈ Ω1
⋂

Ω2, for (t, λ) ∈ Z2, we have the following uniform
apriori estimates with positive constants C1 and C2 depending upon P1, P2 and b1:

.|û(t, λ, ω)| ≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

.|Dt û(t, λ, ω)| ≤ C1λ exp(−(t
(1)
λ )−1) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

Proof In this zone, we consider the following first order system

.

DtV = H (t, λ, ω)V

:=

⎛
⎜⎜⎝

1

it2
exp(−t−1)λ

exp(−t−1)A2(t, ω)λ + γ tβK(t, ω) 0

⎞
⎟⎟⎠V.

Without any confusion, we still denote the fundamental solution of the above system
by E = E (t, s, λ, ω),

.

{
DtE (t, s, λ, ω) = H (t, s, λ, ω)E (t, s, λ, ω),

E (s, s, λ, ω) = I.

As a matter of fact, the fundamental solution E = E (t, s, λ, ω) can be given in the
matrizant representation form

.E = I +
∞∑

k=1

ik
∫ t

s

H (t1, λ, ω)

∫ t1

s

H (t2, λ, ω) · · ·
∫ tk−1

s

H (tk, λ, ω)dtk · · · dt1.
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Indeed, by the induction method, it holds that

.

‖E (t
(2)
λ , t

(1)
λ , λ, ω)‖

≤ exp
( ∫ t

(2)
λ

t
(1)
λ

‖H (τ, λ, ω)‖dτ
)

≤ exp
( ∫ t

(2)
λ

t
(1)
λ

C(b1)(exp(−τ−1)λ + 1

τ 2
)dτ

)

≤ exp
(
C(P1, P2, b1)ν(t

(2)
λ )

)
.

As a result, we have the following estimates,

.| exp(−t−1)λû(t, λ, ω)| ≤ exp
(
Cν(t

(2)
λ )

)
(
exp(−(t

(1)
λ )−1)λ|û(t

(1)
λ , λ, ω)| + |ût (t

(1)
λ , λ, ω)|

)
;

.|Dtû(t, λ, ω)| ≤ exp
(
Cν(t

(2)
λ )

)(
exp(−(t

(1)
λ )−1)λ|û(t

(1)
λ , λ, ω)|+|ût (t

(1)
λ , λ, ω)|

)
.

Taking into account Lemma 2, we conclude the proof immediately. ��

2.4 Micro-Energy Estimates in Z3

Lemma 6 Given ω ∈ Ω1
⋂

Ω2, for (t, λ) ∈ Z3, we have the following uniform
apriori estimates with positive constants C1 and C2 depending upon P1, P2, b0 and
b1:

• For the following three cases:

1. γ = 0
2. γ �= 0 and β > −2
3. γ �= 0, β = −2 and 0 < |γ |δ ≤ b0

.|û(t, λ, ω)| ≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

.|Dtû(t, λ, ω)| ≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.
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• For γ �= 0, β = −2 and |γ |δ > b0

.|û(t, λ, ω)| ≤ C1L(t
(2)
λ ) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

.|Dtû(t, λ, ω)| ≤ C1λL(t
(2)
λ ) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

Proof The whole proof is based on two steps of diagonalization and the estimates
of fundamental solutions. By taking into account the definition of micro-energy in
this zone, we study the following first order system:

.DtV −
⎛
⎝ 0 D(t, ω)λ

D(t, ω)λ 0

⎞
⎠V −

⎛
⎜⎜⎜⎜⎝

1

it2
+ A′(t, ω)

iA(t, ω)
0

γ tβK(t, ω)

A(t, ω)
0

⎞
⎟⎟⎟⎟⎠V = 0.

Step 1: First Step of Diagonalization

For our purposes, let the diagonalizer matrix be

.M := 1

2

(
1 −1
1 1

)
.

Applying the change of variables V0 = MV , we obtain

.

DtV0 − DV0 + K V0 = DtV0 − DV0 + K1V0 − K2V0

:= DtV0 −
(−D(t, ω)λ 0

0 D(t, ω)λ

)
V0

+γ tβK(t, ω)

2A(t, ω)

(
1 1

−1 −1

)
V0 −

( 1

2it2
+ A′(t, ω)

2iA(t, ω)

)(
1 1
1 1

)
V0

= 0,

whereD ∈ S2
ω{2, 1, 0} andK = K1 − K2 ∈ S1

ω{0, 0, 1}.
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Step 2: Second Step of Normal Form Diagonalization

To carry out this step of diagonalization, or the so-called normal form diago-
nalization, we follow the procedure of asymptotic theory for differential equations.
That is to say, we aim to construct an invertible matrix

.N1(t, λ, ω) := I + N (1)(t, λ, ω)

for our purposes. To further the discussion, let

.N (0) := I, K (0) := K , F (0) := diag(K (0));

.N (1)
qr := K (0)

qr

τq − τr

, q �= r;

.N (1)
qq := 0;

.τk := (−1)kD(t, ω)λ, k = 1, 2;

.K (1) := (Dt − D + K )(I + N (1)) − (I + N (1))(Dt − D + F (0)).

According to the calculus properties of the Schwarz symbol class, we deduce that
N (1) ∈ S1

ω{−2,−1, 1} andF (0) ∈ S1
ω{0, 0, 1}. Moreover, it holds that

.K (1) = K + [N (1),D] − F (0) + DtN
(1) + K N (1) − N (1)F (0),

where [·, ·] is the Lie bracket. Indeed, the construction principle indicates that the
first three terms of K (1) vanish. Hence, K (1) ∈ S0

ω{−2,−1, 2}. Subsequently, let
us define

.R1 := N −1
1 ((Dt − D + K )(I + N (1)) − (I + N (1))(Dt − D + F (0))).

By virtue of the principles of symbol calculus, this definition means R1 ∈
S0

ω{−2,−1, 2}. As a matter of fact, keeping in mind the definition of Z3, from
N (1) ∈ S1

ω{−2,−1, 1}, we deduce that

.|N (1)
qr | ≤ C1

2P2
,

where C1 is a positive constant independent of ω. Evidently, an appropriate large
integer P2 assures that

.‖N1 − I‖ <
1

2
,

which implies the invertibility ofN1.
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As a result, we have the following system after the second step of diagonaliza-
tion:

.(Dt −D +K )N1 = N1(Dt −D +diag(K )+R1), where R1 ∈ S0
ω{−2,−1, 2}.

Step 3: Estimates of the Fundamental Solutions

We apply the change of variables V1 = N −1
1 V0 and consider the following first

order system

.

(
Dt − D + diag(K ) + R1

)
V1 = 0.

After a careful rearrangement of the terms, we obtain another representation form

.(Dt − D̃ + K̃ + R1)V1 = 0, (13)

with

.

D̃ :=
(−D(t, ω)λ 0

0 D(t, ω)λ

)

+

⎛
⎜⎜⎝

1

2it2
+ A′(t, ω)

2iA(t, ω)
0

0
1

2it2
+ A′(t, ω)

2iA(t, ω)

⎞
⎟⎟⎠

and

.K̃ :=

⎛
⎜⎜⎝

γ tβK(t, ω)

2A(t, ω)
0

0 −γ tβK(t, ω)

2A(t, ω)

⎞
⎟⎟⎠ .

Without any confusion,we still denote the fundamental solution of (13) as E . In fact,
the fundamental solution for the system (13) is represented as E = E1S , where

.

E (11)
1 (t, s, λ, ω)=exp

(
− i

∫ t

s

D(τ, ω)λdτ + 1

2
ln(

exp(−t−1)

exp(−s−1)
)+ 1

2
ln(

A(t, ω)

A(s, ω)
)
)
,

E (22)
1 (t, s, λ, ω)=exp

(
i

∫ t

s

D(τ, ω)λdτ + 1

2
ln(

exp(−t−1)

exp(−s−1)
)+ 1

2
ln(

A(t, ω)

A(s, ω)
)
)
,

E (12)
1 (t, s, λ, ω)=E (21)

1 (t, s, λ, ω)=0,
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andS is the fundamental solution of the following system

.DtS + E1(t, s, λ, ω)−1(K̃ (t, ω) + R1(t, λ, ω))E1(t, s, λ, ω)︸ ︷︷ ︸
R̃1(t,s,λ,ω)

S = 0.

Indeed, we have

.‖E1(t, s, λ)‖ ≤ C

√
exp(−t−1)

exp(−s−1)
,

where the positive constantC is independent of ω. SinceR1 ∈ S0
ω{−2,−1, 2}, then,

it holds that

.

‖R̃1(t, s, λ, ω)‖ ≤
∣∣∣γ tβK(t, ω)

2A(t, ω)

∣∣∣ + C
t−4 exp(t−1)ν2(t)

λ

≤ |γ |δ
2b0t−β

+ C
t−4 exp(t−1)ν2(t)

λ
,

where C is independent of ω. Consequently, we have

.

‖S (t, s, λ, ω)‖ ≤ exp
( ∫ t

s

‖R̃1(τ, s, λ, ω)‖dτ
)

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
(
Cν(s)

)( t

s

) |γ |δ
2b0 , β = −1,

exp
(
Cν(s)

)
exp

( |γ |δ
2b0

(
tβ+1

β + 1
− sβ+1

β + 1
)
)
, β �= −1,

with C independent of ω. Therefore, the fundamental solution of (13) can be
estimated as:

for β = −1,

.‖E (t, t
(2)
λ , λ, ω)‖ ≤ C1

√√√√ exp(−t−1)

exp(−(t
(2)
λ )−1)

( t

t
(2)
λ

) |γ |δ
2b0 exp

(
C2ν(t

(2)
λ )

)
,
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for β �= −1,

.‖E (t, t
(2)
λ , λ, ω)‖ ≤ C1

√√√√ exp(−t−1)

exp(−(t
(2)
λ )−1)

exp
(
C2ν(t

(2)
λ )+|γ |δ

2b0

tβ+1 − (t
(2)
λ )β+1

β + 1

)
.

Step 4: Estimates of the Micro-Energy

As a matter of fact,

.V1(t, λ, ω) = E (t, t
(2)
λ , λ, ω)V1(t

(2)
λ , λ, ω).

For γ = 0, by recalling the invertible transforms

.V1 = N −1
1 V0, V0 = MV1,

we have the following estimates for both cases β = −1 and β �= −1,

.

|û(t, λ, ω)| ≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dt û(t, λ, ω)| ≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
,

where C1 and C2 are positive constants depending upon P1, P2, b0 and b1.

Now we discuss the further estimates for γ �= 0 in three cases.

Case I γ �= 0, β = −1
In this case, we have

.‖V (t, λ, ω)‖ ≤ C1

√√√√ exp(−t−1)

exp(−(t
(2)
λ )−1)

( t

t
(2)
λ

) |γ |δ
2b0 exp

(
C2ν(t

(2)
λ )

)
‖V (t

(2)
λ , λ, ω)‖,

(14)

where C1 and C2 are positive constants depending upon P1, P2, b0 and b1. Actually,
from Lemma 5, we deduce that,

.

|û(t
(2)
λ , λ, ω)| ≤ C1 exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dt û(t
(2)
λ , λ, ω)| ≤ C1λ exp

(
C2ν(t

(2)
λ )

)
exp

(
− (t

(1)
λ )−1

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(15)
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By combining the estimates (14) and (15), we derive the following estimates in Z3,

.

|û(t, λ, ω)|

≤ C1

(exp(−(t
(2)
λ )−1)

exp(−t−1)

) 1
2
( t

t
(2)
λ

) |γ |δ
2b0 exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dtû(t, λ, ω)|

≤ C1λ exp(−t−1)
(exp(−(t

(2)
λ )−1)

exp(−t−1)

) 1
2
( t

t
(2)
λ

) |γ |δ
2b0 exp

(
C2ν(t

(2)
λ )

)

·
(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(16)

Case II γ �= 0, β > −1
For this case, we have

.

|û(t, λ, ω)|

≤ C1

(exp(−(t
(2)
λ )−1)

exp(−t−1)

) 1
2
exp

(
C2ν(t

(2)
λ ) + |γ |δ

2b0

tβ+1 − (t
(2)
λ )β+1

β + 1

)

·
(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dt û(t, λ, ω)|
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.

≤ C1λ exp(−t−1)
(exp(−(t

(2)
λ )−1)

exp(−t−1)

) 1
2
exp

(
C2ν(t

(2)
λ ) + |γ |δ

2b0

tβ+1 − (t
(2)
λ )β+1

β + 1

)

·
(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(17)

Case III γ �= 0, −2 ≤ β < −1
Let S : (0, T ] → R be defined as

.S(t) := exp(−t−1) exp
( |γ |δ
b0(−β − 1)t−β−1

)
.

In the case −2 < β < −1, since S′(t) > 0, then, we have

.

|û(t, λ, ω)|

≤ C1

√
S(t

(2)
λ )

S(t)
exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dtû(t, λ, ω)|

≤ C1λ exp(−t−1)C1

√
S(t

(2)
λ )

S(t)
exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(18)
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In the case β = −2, since S′(t) > 0 when
|γ |δ
b0

≤ 1, then, we have

.

|û(t, λ, ω)|

≤ C1

√
S(t

(2)
λ )

S(t)
exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dtû(t, λ, ω)|

≤ C1λ exp(−t−1)C1

√
S(t

(2)
λ )

S(t)
exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(19)

In the case β = −2, since S′(t) < 0 when
|γ |δ
b0

> 1, then, we have

.

|û(t, λ, ω)|

≤ C1

√
S(t

(2)
λ )

S(t)
exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1

√
S(t

(2)
λ ) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dtû(t, λ, ω)|

≤ C1λ exp(−t−1)C1

√
S(t

(2)
λ )

S(t)
exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)

≤ C1λ

√
S(t

(2)
λ ) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(20)

Lemma 6 follows immediately when we recall the results from Lemma 5.
��
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2.5 Conclusion

By considering Lemmas 2, 5 and 6 in a comprehensive manner, we have the
following uniform estimates with respect to .ω. Pay attention that, the positive
constants .C1 and .C2 depend upon .P1, .P2, .b0 and .b1.

• For the following three cases:

1. .γ = 0
2. .γ �= 0 and .β > −2
3. .γ �= 0, .β = −2 and .0 < |γ |δ ≤ b0

.

|û(t, λ, ω)| ≤ C1 exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dt û(t, λ, ω)| ≤ C1λ exp
(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(21)

• For .γ �= 0, .β = −2 and .|γ |δ > b0

.

|û(t, λ, ω)| ≤ C1L(t
(2)
λ ) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
;

|Dt û(t, λ, ω)| ≤ C1λL(t
(2)
λ ) exp

(
C2ν(t

(2)
λ )

)(
|û0(λ)| + t

(1)
λ |û1(λ)|

)
.

(22)

Taking into account the definitions of two separating curves and definitions of
pseudodifferential operators associated to the Laplace-Beltrami operator on the
torus, we may conclude the regularity results of Theorem 1. It is worth noticing that
the first separating curve determines the difference of regularity of initial Cauchy
data, while the second separating curve determines the loss of regularity.

It remains to discuss the continuity in mean square of the solutions. Without
loss of generality, we consider the discrete stochastic processes with .γ = 0. For
the discussion of the case .γ �= 0, we can replace the operator .J (Id − ΔT ) by
corresponding operators in other cases since the time interval is bounded. The
continuous cases can be discussed in a similar manner. Let

.ui(t, x) := u(t, ωi, x).

As a matter of fact, from (21), we know the continuity properties for each .ωi ∈
Ω1

⋂
Ω2,

.
ui ∈ C

(
[0, T ]; J (Id − ΔT )H s(TN)

)
,

ui,t ∈ C
(
[0, T ]; J (Id − ΔT )H s−2(TN)

)
.

(23)
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At the same time, for the initial Cauchy data satisfying

.ui,0 ∈ H s (TN), ui,1 ∈ 1

I−1(
2P1

Id − ΔT

)

H s (TN),

we have the following uniform estimates with a positive constant D independent of
t and .ωi ,

.

∥∥∥ 1

J (Id − ΔT )
ui(t, ·)

∥∥∥
H s

≤ C
(
‖u0‖H s +

∥∥∥I−1(
2P1

Id − ΔT

)u1

∥∥∥
H s

)
≤ D,

∥∥∥ 1

J (Id − ΔT )
ui,t (t, ·)

∥∥∥
H s−2

≤ C
(
‖u0‖H s +

∥∥∥I−1(
2P1

Id − ΔT

)u1

∥∥∥
H s

)
≤ D.

(24)

In order to prove the continuity in mean square for .‖ 1

J (Id − ΔT )
u(t, ·, ω)‖H s and

.‖ 1

J (Id − ΔT )
ut (t, ·, ω)‖H s−2 , respectively, it suffices to consider the autocorre-

lation functions for both stochastic processes, in respectively. In the following, we

focus on the continuity in mean square for .‖ 1

J (Id − ΔT )
u(t, ·, ω)‖H s . For the sake

of simplicity, we denote

.X(t) :=
∥∥∥ 1

J (Id − ΔT )
u(t, ·, ω)

∥∥∥
H s

,

.X(t, ωi) :=
∥∥∥ 1

J (Id − ΔT )
ui(t, ·)

∥∥∥
H s

.

As a matter of fact, .X(t) is a second-order moment stochastic process. Indeed, from
the estimates in (24), we have

.

‖X(t)‖22 = E

[∥∥∥ 1

J (Id − ΔT )
u(t, ·, ω)

∥∥∥2
H s

]

=
∑

i

∥∥∥ 1

J (Id − ΔT )
ui(t, ·)

∥∥∥2
H s

P(ωi) ≤ D2.

Similarly, .‖ 1

J (Id − ΔT )
ut (t, ·, ω)‖H s−2 ∈ L2(Ω,F ,P).
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In effect, we deduce that, for .(s, t) ∈ [0, T ] × [0, T ], the corresponding
autocorrelation function .R(s, t) of .X(t) satisfies

.R(s, t) = E[X(s)X(t)] =
∑

i

X(s, ωi )X(t, ωi)P(ωi) ≤ D2.

Actually, for .|Ω | < +∞, the continuity in mean square for .X(t) is directly deduced
from the continuity of .X(t, ωi). Indeed, the corresponding autocorrelation function
.R(s, t) is continuous with respect to .(s, t) ∈ [0, T ] × [0, T ]. Now we turn our
attention to the general case .|Ω | = ∞. For each .t0 ∈ [0, T ], by using Schwarz
inequality, we have

.

|R(s, t) − R(t0, t0)|2

=
∣∣∣E[X(s)X(t)] − E[X(t0)X(t0)]

∣∣∣2

≤ 2
∣∣∣E[(X(s) − X(t0))X(t)]

∣∣∣2 + 2
∣∣∣E[X(t0)(X(t) − X(t0))]

∣∣∣2

≤ 2E[|X(s) − X(t0)|2]E[|X(t)|2] + 2E[|X(t) − X(t0)|2]E[|X(t0)|2]

≤ 2D2
E[|X(s) − X(t0)|2] + 2D2

E[|X(t) − X(t0)|2].

Furthermore, Weierstrass theorem assures that the series

.

E[|X(s) − X(t0)|2]

=
∑

i

|X(s, ωi ) − X(t0, ωi)|2P(ωi)

=
∑

i

(
|X(s, ωi )|2 + |X(t0, ωi)|2 − 2X(s, ωi)X(t0, ωi)

)
P(ωi)

converges uniformly, which gives the continuity of .E[|X(s) − X(t0)|2] with respect
to s together with the results in (23). Consequently, we have

. lim
s→t0

E[|X(s) − X(t0)|2] = 0.

In the final analysis, we have

. lim
(s,t)→(t0,t0)

R(s, t) = R(t0, t0),
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which demonstrates the property of continuity in mean square in the interval .[0, T ]
for .‖ 1

J (Id − ΔT )
u(t, ·, ω)‖H s . In a similar manner, continuity in mean square for

the stochastic process .‖ 1

J (Id − ΔT )
ut (t, ·, ω)‖H s−2 in the interval .[0, T ] can be

proved.
In particular, one can prove that

.
∂

∂s
R(s, t),

∂

∂t
R(s, t),

∂2

∂s∂t
R(s, t),

∂2

∂t∂s
R(s, t)

all exist and are continuous on .[0, T ] × [0, T ] due to the uniform continuity
properties and estimates in (24). Therefore, the general second-order differentia-
bility of .R(s, t) is assured, which indicates the differentiability in mean square of

.‖ 1

J (Id − ΔT )
u(t, ·, ω)‖H s with respect to .t ∈ [0, T ]. It is worth noticing that

the derivative in mean square for .‖ 1

J (Id − ΔT )
u(t, ·, ω)‖H s cannot be directly

deduced as in the deterministic case, since .‖ 1

J (Id − ΔT )
ut (t, ·, ω)‖H s may pos-

sibly tend to infinity. This phenomenon is not so surprising since the derivative with
respect to time t is inevitably influenced by the spacial structures of the system
stochastic and phenomenon as shown in Remark 3.

The other cases can be proved in a similar manner. And we conclude the whole
proof of Theorem 1.

3 Proof of Theorem 2

Similar as in [7, 11, 14–16, 19], we divide the proof into four steps.

3.1 Step 1: Introduction of Some Auxiliary Functions
and Series

In order to construct appropriate coefficients leading to the designated loss of
regularity, it is necessary to introduce some proper oscillating functions.
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Definition 8 For a sufficiently small .ε > 0, we define two oscillating functions on
.R:

.wε(t) := sin t exp
(
2ε

∫ t

0
ψ(τ) sin2 τdτ

)
,

.aε(t) := 1 − 4εψ(t) sin(2t) − 2εψ ′(t) sin2 t − 4ε2ψ2(t) sin4 t,

where the non-negative real-valued smooth function .ψ is .2π-periodic on .R and
identically 0 in a neighborhood of 0. Furthermore, it satisfies

.

∫ 2π

0
ψ(τ) sin2(τ )dτ = π.

Based on the above definition, it is easy to verify the following fact through simple
calculations.

Lemma 7 As are defined in Definition 8, both .aε and .wε are smooth functions on
.R. Particularly, .wε is the unique solution of the following Cauchy problem

.

{
w′′

ε (t) + aε(t)wε(t) = 0,
wε(0) = 0, w′

ε(0) = 1.

Next, we begin to construct the oscillating and degenerating intervals.

Definition 9 Three sequences are defined as follows:

.{δk}k :=
{
exp(−t−1

k )
}

k
,

.{hk}k :=
{2P2ν(tk)

t2k

}
k
,

.{ρk}k :=
{2−P2+2πt2k [ν(tk)]

ν(tk)

}
k
,

where .{tk}k is a sequence tending to 0 and lies on the following curve, namely,
.2P2ν(tk) = t2k exp(−t−1

k )〈mk〉2, .k ∈ N. .[a] represents the integer part of a.

Furthermore, the sequence .{hk}k tends to .+∞ and .
hkρk

4π
∈ N+.
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Definition 10 Subsequently, another two time sequences are defined: .{t ′k} := {tk +
ρk}k and .{t ′′k } := {tk − ρk}k . Accordingly, we define three time intervals .Ik , .I ′

k and
.I ′′
k ,

.Ik :=
[
tk − ρk

2
, tk + ρk

2

]
,

.I ′
k :=

[
t ′k − ρk

2
, t ′k + ρk

2

]
,

.I ′′
k :=

[
t ′′k − ρk

2
, t ′′k + ρk

2

]
.

Remark 5 .{Ik}k is called the sequence of oscillating intervals, .{I ′
k}k is the sequence

of right buffer intervals, and .{I ′′
k }k is the sequence of left buffer intervals. It is

evident that both the sequences .{tk}k and .{ρk}k tend to 0 with .tk >> ρk since .P2 is
sufficiently large. Such choice of .ρk guarantees that .Ik ⊂ (0, T ] for all .k ∈ N.

3.2 Step 2: Construction of a Sequence of Oscillating
Coefficients

First, we define a smooth increasing function on .R as

.µ(x) :=
⎧⎨
⎩
0, x ∈ (−∞,−1/3],
strictly increasing, x ∈ (−1/3, 1/3),
1, x ∈ [1/3,+∞).

Next, we introduce a sequence of oscillating coefficients .{bk(t)}k:

.b2k(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, t ∈ [0, T ] \ (I ′
k ∪ Ik ∪ I ′′

k );

δ2kaε

(
hk(t − tk)

)
exp(−2t−1)

, t ∈ Ik;

δ2k

{
1 − µ

( t − t ′k
ρk

)}

exp(−2t−1)
+ µ

( t − t ′k
ρk

)
, t ∈ I ′

k;

δ2kµ
( t − t ′′k

ρk

)

exp(−2t−1)
+ 1 − µ

( t − t ′′k
ρk

)
, t ∈ I ′′

k .
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In addition, according to the definition of .{ρk}k , we have the following uniform
estimates,

.d+
0 ≤ inf

k

exp(−t−1
k )

exp(−(tk − ρk)−1)
≤ sup

k

exp(−t−1
k )

exp(−(tk − ρk)−1)
≤ d+

1 ,

.d−
0 ≤ inf

k

exp(−t−1
k )

exp(−(tk + ρk)−1)
≤ sup

k

exp(−t−1
k )

exp(−(tk + ρk)−1)
≤ d−

1 ,

where .d+
0 , .d

−
0 , .d

+
1 and .d−

1 are all positive constants independent of k. Indeed, since
.P2 is sufficiently large, then, .tk is always the dominating part. Simple calculations
lead to

.0 < b0 ≤ inf
t∈(0,T ] bk(t) ≤ sup

t∈(0,T ]
bk(t) ≤ b1 < ∞,

where .b0 and .b1 are independent of k. Moreover, in the union .Ik

⋃
I ′
k

⋃
I ′′
k , we have

.|b′
k(t)| ≤ C

ν(t)

t2
, |b′′

k (t)| ≤ C
(ν(t)

t2

)2
,

where C is independent of k. More importantly, one can check that, for all .k ∈ N+,
the coefficient .exp(−2t−1)b2k(t) is increasing except for the interval .Ik .

3.3 Step 3: Construction of Auxiliary Functions

Succeedingly, we study the sequence of Cauchy problems in .Ik × T
N ,

.

{
uk,t t + exp(−2t−1

k )aε(hk(t − tk))Δ
2
T uk = 0,

uk(tk, x) = 0, uk,t (tk, x) = uk,1(x).
(25)

Let the initial data be

.uk,1(x) = φ
(m1,··· ,mN )
|mk | (x)

and apply the change of variables

.s = hk(t − tk).

At the same time, we define

.vk(s, x) := uk(t (s), x).
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Then, for .s ∈ [−hkρk

2
,
hkρk

2
], we obtain the following Cauchy problem

.

{
vk,ss + exp(−2t−1

k )h−2
k aε(s)Δ

2
T vk = 0,

vk(0, x) = 0, vk,s (0, x) = h−1
k uk,1(x).

(26)

As a matter of fact, there exists a unique solution for (26) in the form of

.vk(s, x) = h−1
k uk,1(x)wε(s).

By transforming back to .uk(t, x), we obtain

.uk(t, x) = h−1
k φ

(m1,··· ,mN)
|mk | (x)wε(hk(t − tk))

in .Ik . Further calculations lead to

.

uk(tk − ρk

2
, x) = 0, uk,t

(
tk − ρk

2
, x

) = φ
(m1,··· ,mN )
|mk | (x) exp(−ερkhk

2
),

uk

(
tk + ρk

2
, x

) = 0, uk,t

(
tk + ρk

2
, x

) = φ
(m1,··· ,mN )
|mk | (x) exp(

ερkhk

2
).

(27)

3.4 Step 4: Existence of ν-Loss of Regularity

Now, we introduce an energy increasing property for the following time-dependent
2-evolution problem.

Lemma 8 For the Cauchy problem in .[t0, T0) × T
N ,

.

{
utt + z2(t)Δ2

T u = 0,
u(t0, x) = 0, ut (t0, x) = cφ

(m1,··· ,mN)
|mk | (x),

(28)

with .c ∈ R. If .z(t) is nonnegative and .zt (t) ≥ 0, then, for sufficiently large .|mk| and
sufficiently small time interval .T0 − t0 > 0, the nonhomogeneous energy does not
decrease, that is,

.Es(u)(t) ≥ Es(u)(t0).
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Proof In effect, by means of separation of variables, we have the following explicit
representation of the unique solution

.u(t, x) = cy(t)φ
(m1,··· ,mN)
|mk | (x),

where .y(t) satisfies the following Cauchy problem:

.

{
ytt + |mk|4z2(t)y = 0,
y(t0) = 0, yt (t0) = 1.

(29)

By applying the definition of the nonhomogeneous Sobolev spaces .H s(TN), .s ≥ 2,
we calculate the nonhomogeneous energy for the solution u. It holds that

.

E′
s(u)(t) =

(
z2(t)‖u(t, ·)‖2H s + ‖ut (t, ·)‖2H s−2

)′

=
{
z2(t)

( ∑
m∈ZN

〈m〉2s
( ∑

∑N
i=1 m2

i
= |m|2

∣∣∣û(m1,··· ,mN )
t (|m|2)

∣∣∣2))

+
∑
m∈ZN

〈m〉2(s−2)
( ∑

∑N
i=1 m2

i
= |m|2

∣∣∣û(m1,··· ,mN )(|m|2)
∣∣∣2)}′

=
(
c2z2(t)y2(t)〈mk〉2s + c2y2

t (t)〈mk〉2(s−2)
)′

= 2c2〈mk〉2szzty
2 + 2c2z2yyt〈mk〉2(s−2)(〈mk〉4 − |mk|4)

≥ 0.

The proof is concluded. ��
By keeping in mind the definition of .bk(t) and the monotonicity of .exp(−2t−1)b2k(t)

on various intervals except for .Ik , we have, according to Lemma 8,

.E2(uk)(t) ≤ exp(−ερkhk), for t ∈ [0, tk − ρk

2
]; (30)

.E2(uk)(t) ≥ exp(ερkhk), for t ∈ [tk + ρk

2
, T ]. (31)
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It is evident that (7) follows directly from (30). While for .t = tk + ρk

2
, by applying

the theory of pseudodifferential operators, we have

.

E2

(
exp

(
− c1(ε)ν(G−1(

2P2

1 − ΔT

))
)
uk

)
(t)

= exp
(

− 2c1(ε)ν(G−1(
2P2δk

hk

)) + ερkhk

)

= exp
(

− 2c1(ε)ν(tk) + ερkhk

)
.

(32)

Taking into account the choice of .ρk , .hk , we can choose a sufficiently small .c1(ε)

satisfying

.0 < c1(ε) < π,

which is independent of k such that (8) holds. This concludes our proof.
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Existence Results for Critical Problems
Involving p-Sub-Laplacians on Carnot
Groups

Annunziata Loiudice

Abstract We provide existence results for the quasilinear subelliptic Dirichlet
problem

. − Δp,Gu = |u|p∗−2u + g(ξ, u) inΩ, u ∈ S
1,p
0 (Ω),

where .Δp,G is the p-sub-Laplacian on a Carnot group .G, .p∗ = pQ/(Q − p) is the
critical Sobolev exponent in this context, .Ω is a bounded domain of .G and .g(ξ, u) is
a subcritical perturbation. By means of standard variational methods adapted to the
stratified context, we prove the existence of solutions both in the mountain pass and
in the linking case. A crucial ingredient in this abstract framework is the knowledge
of the exact rate of decay of the p-Sobolev extremals on Carnot groups.

1 Introduction

In this paper we provide existence results for the following quasilinear subelliptic
problem with critical Sobolev exponent

.

{− Δp,Gu = |u|p∗−2u + g(ξ, u) in Ω,

u = 0 on ∂Ω.
(Pg)

under suitable subcritical assumptions on the lower order perturbation .g(ξ, u).
Here, .Δp,G is the p-sub-Laplacian operator on a Carnot group .G of homogeneous
dimension Q, where .1 < p < Q, the exponent .p∗ = pQ/(Q − p) is the critical
Sobolev exponent in this context, .Ω is a bounded domain of .G and the lower order
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term satisfies subcritical growth assumptions. In particular, we obtain existence
results for the case .g(ξ, u) = λ|u|p−2u, with .λ ∈ R.

The present results extend to the p-sub-Laplacian case the existence results
obtained by the author in [30] for the semilinear Carnot case .p = 2, subsequently
generalized in [31] to the semilinear case with a Hardy-Sobolev nonlinearity and in
[35] to the case with a Hardy-type perturbation.

We recall that a great deal of interest has been paid in the literature to the
topic of subelliptic equations with critical Sobolev exponent or general power-type
nonlinearities on stratified Lie groups. See e.g. [4, 5, 12, 22, 23, 25, 29–37, 39, 41,
44, 45, 48] and the references therein. In particular, in the recent papers [44, 45],
interesting generalizations of variational-type results are obtained for Rockland
operators on general graded Lie groups (see [15] for an overview on this functional
setting). Concerning the quasilinear case, we recall that Vassilev in [48] studies the
main aspects of the critical equation

. − Δp,Gu = |u|p∗−2u, u ∈ S
1,p
0 (Ω),

where .Ω is an arbitrary open subset of .G. Precisely, he proves global boundedness
and interior regularity of solutions, discusses the problem of the regularity near the
characteristic set of the boundary and, in the case .Ω = G, obtains the existence of
ground state solutions.

In [33], the author establishes the decay of positive entire solutions .u ∈ S1,p(G)

of the critical equation

. − Δp,Gu = up∗−1 inG,

obtaining that they have the following asymptotic behavior at infinity

.u(ξ) ∼ 1

d(ξ)(Q−p)/(p−1)
as d(ξ) → ∞, (1)

where d is any fixed homogeneous norm on .G. This result applies, in particular,
to the extremals of the p-Sobolev inequality on Carnot groups (4) and it turns out
to be a useful tool in adapting the well-known Brezis-Nirenberg type techniques
[8] to problems of the type (Pg), in absence of the explicit knowledge of Sobolev
minimizers. In fact, such minimizers are only known when .G is a Iwasawa-type
group and .p = 2.

Further recent results for quasilinear equations and systems on Carnot groups can
be found e.g. in [7, 13, 14, 19, 39, 41, 43, 46, 47]. In particular, Pucci-Temperini in
[41] obtain existence of entire solutions to the problem

. − Δp,Hu = k(ξ)|u|p∗−2u + λw(ξ)|u|q−2u, u ∈ S1(Hn),

in the model case of the Heisenberg group .G = H
n, where .p ≤ q < p∗, under

appropriate hypotheses on k and w.
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Let us, now, introduce our existence results on bounded domains for problem
(Pg). Let .G be a Carnot group of homogeneous dimension Q and, for .1 < p < Q,
let

.Δp,Gu =
m∑

i=1

Xi(|Xu|p−2Xiu)

be the p-sub-Laplacian operator on .G (see Sect. 2 for the definition). We denote by
.S
1,p
0 (Ω) the completion of .C∞

0 (Ω) with respect to the norm

.‖u‖
S
1,p
0 (Ω)

:= (

∫
Ω

|Xu|p dξ)1/p.

We shall deal with weak solutions of problem (Pg), i.e. functions .u ∈ S
1,p
0 (Ω) such

that

.

∫
Ω

|Xu|p−2<Xu,Xφ > dξ =
∫

Ω

|u|p∗−2uφ dξ +
∫

Ω

g(ξ, u)φ dξ, ∀φ ∈ C∞
0 (Ω).

Let the functional .J : S
1,p
0 (Ω) → R be defined as

.J (u) = 1

p

∫
Ω

|Xu|p dξ − 1

p∗

∫
Ω

|u|p∗
dξ −

∫
Ω

G(ξ, u) dξ,

where .G(ξ, s) = ∫ s

0 g(ξ, t)dt . If g is continuous, then .J ∈ C1(S
1,p
0 (Ω),R) and the

critical points of J corresponds to weak solutions of Eq. (Pg).
Concerning the lower order term, following [1, 24], we assume that g is

subcritical in the following sense

.

⎧⎪⎨
⎪⎩

g : Ω × R → R is a Carathéodory function satisfying:

∀ε > 0, ∃ aε ∈ L
pQ

Q(p−1)+p such that

|g(ξ, s)| ≤ aε(ξ) + ε|s|Q(p−1)+p
Q−p for a.e. ξ ∈ Ω,∀s ∈ R.

(2)

Moreover, other assumptions will be required on the primitive .G(ξ, s) =∫ s

0 g(ξ, t) dt . In particular, we assume that

.G(ξ, s) ≥ 0 for a.e. ξ ∈ Ω, ∀s ∈ R, (3)

while .g(ξ, s) is allowed to change sign. Further assumptions on G will be required,
according to the different cases to be considered, namely the case when J has a
mountain pass geometry or the case where J has a linking structure, with or without



138 A. Loiudice

resonance. Roughly speaking, these three cases correspond to

.0 ≤ lim
s→0+

G(ξ, s)

sp
<

λ1

p
, lim

s→0+
G(ξ, s)

sp
= λ1

p
,

λ1

p
< lim

s→0+
G(ξ, s)

sp
,

where .λ1 denotes the first eigenvalue of .−Δp,G with Dirichlet boundary condition,
that is,

.λ1 = min
u∈S

1,p
0 (Ω)\{0}

‖Xu‖p
p

‖u‖p
p

.

As in the Euclidean case, in view of Lemma 1 below, the existence results in
the different three cases will be obtained by constructing suitable Palais-Smale

sequences (in short PS-sequences) for J at a level .c ∈ (0, SQ/p

Q
), where S denotes

the best constant in the Sobolev inequality .(4). To this aim, as in the semilinear
cases in [30, 31, 35] the behavior at infinity of the extremals for the Sobolev
inequality on groups recalled in (1) will be used in a crucial way. We finally quote
that analogous considerations have been used in the Euclidean setting to treat the
quasilinear nonlocal case (see [38]).

The paper is organized as follows. In Sect. 2, we introduce the functional
framework of Carnot groups; in Sect. 3 we treat the case when the functional J has
a mountain pass geometry: we state the existence results in Theorems 1, 2 and 3,
introducing the appropriate additional hypotheses on G, and we give a sketch of the
proofs; in Sect. 4, we consider the case when J has a linking geometry, treating both
the resonance and the non resonance case; the related existence results are contained
in Theorems 4 and 5.

2 The Functional Setting

Let us briefly introduce the functional setting of Carnot groups. For a complete
overview, we refer the reader to the monographs [6, 15] and the classical papers
[16, 17].

A Carnot group .(G, ◦) (or Stratified Lie group) is a connected, simply connected
nilpotent Lie group, whose Lie algebra .g admits a stratification, namely a decompo-
sition .g = ⊕r

j=1 Vj , such that .[V1, Vj ] = Vj+1 for .1 ≤ j < r , and .[V1, Vr ] = {0}.
The number r is called the step of the group .G and the integer .Q = ∑r

i=1 i dimVi

is the homogeneous dimension of .G. Note that, if .Q ≤ 3, then .G is necessarily the
ordinary Euclidean space .G = (RN,+).

The simplest non-abelian Carnot group is the Heisenberg group .H
n =

(R2n+1, ◦), which is a two-step Carnot group with homogeneous dimension
.Q = 2n + 2 and composition law given by .ξ ◦ ξ ′ = (x + x ′, y + y ′, t + t ′ +
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2(〈x ′, y〉 − 〈x, y ′〉)), for every .ξ = (x, y, t), ξ ′ = (x ′, y ′, t ′) ∈ R2n+1, where
.x, y ∈ R

n and .t ∈ R.
By means of the natural identification of .G with its Lie algebra via the

exponential map, which we shall assume throughout, it is not restrictive to suppose
that .G is a homogeneous Carnot group, according to the definition in [6], i.e.
.G = R

N = R
N1 ×R

N2 × . . . ×R
Nr , where .Ni = dimVi , endowed with dilations .δλ

of the form

.δλ(ξ) = (λ ξ(1), λ2 ξ(2), · · · , λr ξ (r)),

where .ξ(j) ∈ R
Nj for .j = 1, . . . , r . Let .m := N1 and let .X1, . . . , Xm be the set

of left invariant vector fields of .V1 that coincide at the origin with the first m partial
derivatives. It holds that .rank(Lie{X1, . . . , Xm}) = N at any point of .G. We shall
denote by .X = (X1, . . . , Xm) such system of vector fields. Then, the differential
operator

.Δp,Gu :=
m∑

i=1

Xi(|Xu|p−2Xiu)

is called the canonical p-sub-Laplacian on .G. Note that for any .c > 0, one has
.Δp,G(cu) = cp−1Δp,Gu and furthermore, since the .Xj ’s are homogeneous of
degree one with respect to the dilations .δλ, the operator .Δp,G is homogeneous of
degree p with respect to .δλ, namely

.Δp,G(u ◦ δλ) = λpΔp,Gu ◦ δλ.

By definition, a homogeneous norm on .G is a continuous function .d : G →
[0,+∞), smooth away from the origin, such that .d(δλ(ξ)) = λ d(ξ), for every
.λ > 0 and .ξ ∈ G,.d(ξ) = 0 if and only if .ξ = 0.We recall that any two homogeneous
norms on a Carnot group .G are equivalent, as observed in [6, Prop. 5.1.4]. If we let
.d(ξ, η) := d(η−1 ◦ ξ), d is a pseudo-distance on .G. Throughout the paper, d will
indicate a fixed homogeneous norm on .G; we shall denote by .B(ξ, r) the d-ball with
center at .ξ and radius r , i.e.

.B(ξ, r) = {η ∈ G | d(ξ−1 ◦ η) < r},

and we will simply denote by .Br the d-ball centered at 0 with radius r .
The starting point of the variational formulation of our problem is the validity of

the following Sobolev-type inequality on .G (see Folland [16]): for any .p ∈ (1,Q),
there exists .S > 0, depending on p and .G, such that

.

∫
G

|Xu|p dξ ≥ S

(∫
G

|u|p∗
dξ

)p/p∗

, ∀ u ∈ C∞
0 (G). (4)
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It is know that the best constant in (4) is achieved (see [23, 48]); however, the explicit
form of the extremal functions is not known, except for the case when .p = 2 and .G

is a group of Iwasawa type (see Jerison-Lee [28], Frank-Lieb [18] for the Heisenberg
case, Ivanov-Minchev-Vassilev [27] and Christ-Liu-Zhang [11] for the remaining
cases). Nevertheless, relevant qualitative properties of such extremals in the general
case have been obtained by the author in [33].

Concerning the main regularity tools for quasilinear subelliptic equations, such
as Moser-type estimates and Harnack-type inequality, we refer to Capogna-Danielli-
Garofalo [9]. Moreover, we indicate the paper [2] for an overview on the main
aspects of nonlinear potential theory on Carnot groups. We also quote [3] for a
strong maximum principle for quasilinear equations involving Hörmander vector
fields.

3 The Mountain Pass Case

In this section, we treat the case when J has a mountain pass geometry.We introduce
the additional needed assumptions on G and we state the related existence results in
Theorems 1, 2 and 3 below. Finally, we sketch the proof of the theorems.

Before introducing the additional assumptions which ensure the mountain pass
geometry, we state a compactness result which is valid under the only assump-
tion (2). Recall here that a sequence .{un} ⊂ S1

0 (Ω) is called a Palais-Smale sequence
(PS sequence in short) for J at level c if .J (un) → c and .J ′(un) → 0 in .S−1,p′

(Ω).

Lemma 1 Assume that (2) holds. If .{un} ⊂ S1
0 (Ω) is a PS sequence for J at level

.c ∈ (0, SQ/p

Q
), there exists .u ∈ S1

0 (Ω) \ {0} such that .un ⇀ u up to a subsequence
and .J ′(u) = 0.

The proof is standard and it will be omitted, referring to the Euclidean counterpart
(see, for instance, Lemma 1 in [1]). In view of the above result, the solutions to
problem (Pg), both in the mountain pass and in the linking case, will be obtained by

constructing a PS sequence at a level .c ∈ (0, SQ/p

Q
).

Assume, now, that there exist an open subset .Ω0 ⊂ Ω and some constants
.σ, δ,µ > 0 and .a, b > 0, .a < b, such that

.G(ξ, s) ≤ 1

p
(λ1 − σ)|s|p for a.e. ξ ∈ Ω, ∀|s| ≤ δ (5)

and

.G(ξ, s) ≥ µ for a.e. ξ ∈ Ω0,∀s ∈ [a, b]. (6)

Under these assumptions, the following existence results hold.
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Theorem 1 Assume that (2), (3), (5), (6) hold.
If .1 < p2 < Q, then problem (Pg) admits a positive solution.
If .Q = p2 and .µ in (6) is large enough, then problem (Pg) admits a positive
solution.

From the above theorem, we obtain, for the particular case .g(ξ, u) = λ|u|p−2u, the
following result, which was proved in the Euclidean context by Garcìa Azorero and
Peral [20] (see also [26] for related regularity and nonexistence results).

Corollary 1 Let .1 < p2 ≤ Q. Then, problem

.

{− Δp,Gu = |u|p∗−2u + λ|u|p−2u in Ω,

u = 0 on ∂Ω
(Pλ)

admits a positive solution for any .λ ∈ (0, λ1).

If, instead, .p < Q < p2, in the ordinary Euclidean setting we are in the case
of critical dimensions in the sense of Pucci-Serrin [40]. Therefore, in order to get
existence of solutions for problem (Pg), the assumption (6) is no longer sufficient;
we require that there exists a nonempty open set .Ω0 ⊂ Ω such that

. lim
s→+∞

G(ξ, s)

sβ
uniformly inΩ0, (7)

where .β = p(Qp+p−2Q)
(p−1)(Q−p)

. Under this additional assumption, the following result
holds.

Theorem 2 Let .1 < p < Q < p2. Assume that conditions (2), (3), (5) and (7)
hold. Then problem (Pg) admits a positive solution.

We notice that, in the Euclidean setting, Theorems 1 and 2 were generalization of
results proved in [21].

Finally, in the same range of dimensions considered in Theorem 2, we can also
prove the following result about problem (Pλ), which provides existence of solutions
in a left neighborhood of .λ1. For the semilinear subelliptic counterpart, see [30,
Theorem 1.2].

Theorem 3 Let .Λ = S|Ω |−p/Q and assume that .1 < p < Q < p2 and .λ ∈
(λ1 − Λ,λ1). Then, problem (Pλ) admits a positive solution.

In what follows, we prove the existence results stated above. The idea of the
proofs is to find a nonnegative function .v ∈ S

1,p
0 (Ω) such that .maxt≥0 J (tv) <

SQ/p

Q
. Indeed, noting that there exists .tv > 0 such that .J (tvv) < 0, consider the set

.Γv = {γ ∈ C([0, 1])|γ (0) = 0, γ (1) = tvv}
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and the inf-max value

.c := inf
γ∈Γv

max
t∈[0,1]J (γ (t)).

By standard variational arguments (see, for instance, [42]), if such v exists, we

obtain a PS sequence at level .c ∈ (0, SQ/p

Q
). In the proofs of Theorems 1, 2 and 3, a

different choice of v will be done.

Proof of Theorem 1 Let .U > 0 be a fixed extremal function for (4). We can
assume, up to a normalization, that .‖XU‖p

p = ‖U‖p∗
p∗ = SQ/p. For .ε > 0, define

.Uε(ξ) = ε−(Q−p)/pU(δ1/ε(ξ)), ξ ∈ G. (8)

Of course, .Uε are also minimizers and verify .‖XUε‖p
p = ‖Uε‖p∗

p∗ = SQ/p. Now,
observe that it is not restrictive to suppose .0 ∈ Ω . Let .R > 0 be such that .BR ⊂ Ω

and let .ϕ ∈ C∞
0 (BR) be a cut-off function, .0 ≤ ϕ ≤ 1, .ϕ ≡ 1 in .BR/2. Define

.uε(ξ) = ϕ(ξ)Uε(ξ). (9)

Reasoning as in [30], by exploiting the asymptotic estimate (1) proved in [33], we
are able to prove that

.‖Xuε‖p
p ≤ SQ/p + Cε(Q−p)/(p−1), ‖uε‖p∗

p∗ ≥ SQ/p − CεQ/(p−1). (10)

We claim that, for .ε sufficiently small, it holds

.max
t≥0

J (tuε) <
1

Q
SQ/p. (11)

Indeed, assume by contradiction that for all .ε > 0, there exists .tε > 0 such that

.J (tεuε) ≥ 1

Q
SQ/p. (12)

It is easily seen that, as .ε → 0, the sequence .{tε} is upper and lower bounded by
two positive constants; moreover, by the expansions (10), as .ε → 0 we have

.

‖X(tεuε)‖p
p

p
− ‖tεuε‖p∗

p∗

p∗ ≤ SQ/p

Q
+

(
tpε − 1 − Q − p

Q
(tp

∗
ε − 1)

)
SQ/p

p

+ O(ε(Q−p)/(p−1))

≤ SQ/p

Q
+ O(ε(Q−p)/(p−1)).

(13)
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It can be also verified that there exists .c1, c2 > 0 such that, for .ε sufficiently small

.c1ε
1/p < d(ξ) < c2ε

1/p implies a < tεuε(ξ) < b,

where .a, b are as in (6). Hence, since .Bε ⊂ Ω0 for small .ε, by (3) and (6) we have

.

∫
Ω

G(ξ, tεuε) ≥ cµ

∫ c2ε
1/p

c1ε1/p
ρQ−1dρ ≥ cµεQ/p, (14)

where we used the appropriate polar coordinates formula. So, if .Q > p2, we get
that there exists a function .ζ = ζ(ε) such that .limε→0 ζ(ε) = +∞ such that, for .ε

small,

.

∫
Ω

G(ξ, tεuε) ≥ ζ(ε) · ε(Q−p)/(p−1).

Hence, from (13) and the latter estimate, we get that, for .ε small enough,

.J (tεuε) <
SQ/p

Q
.

Analogously, if .Q = p2, from (13) and (14), we get

.J (tεuε) ≤ SQ/p

Q
+ O(εp) − cµεp <

SQ/p

Q
,

for suitable small .ε and .µ large enough. Hence,(12) cannot hold. So, from (11),
we obtain a Palais-Smale sequence for J , belonging to the cone of nonnegative

functions in .S
1,p
0 (Ω), at level .c ∈ (0, SQ/p

Q
): its weak limit is nonnegative, nontrivial

and it solves (Pg).
Finally, such solution turns out to be strictly positive by the nonlinear strong

maximum principle in [3]. ��
Proof of Theorem 2 The proof follows the scheme of the proof of Theorem 1,
except for estimate (14), which is replaced by the following considerations.
From (7), there exists an increasing function .ζ such that .limt→+∞ ζ(t) = +∞
such that .G(ξ, s) ≥ ζ(s) · sβ for a.e. .ξ ∈ Ω0 and all .s > 0. Therefore,

.

∫
Ω

G(ξ, tεuε) ≥ ζ
(
cε(p−Q)/p

)
εβ(p−Q)/p

∫ ε

0
ρQ−1dρ

≥ ζ
(
cε(p−Q)/p

)
ε(Q−p)/(p−1),

(15)

where it is used that .mind(ξ)≤ε tεuε ≥ cε(p−Q)/p. ��
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Proof of Theorem 3 Also in this case, we prove that the PS sequence obtained by
the mountain pass argument is at level below the compactness threshold. Following
the idea in [10], let .e1 be the first positive eigenfunction of .−Δp,G in .Ω and let us
estimate .J (te1), where .t > 0. We have

.

J (te1) = λ1 − λ

p
tp‖e1‖p

p − Q − p

Qp
tp

∗‖e1‖p∗
p∗

≤ λ1 − λ

p
|Ω |p/Qtp‖e1‖p

p∗ − Q − p

Qp
tp

∗‖e1‖p∗
p∗

≤ (λ1 − λ)Q/p

Q
|Ω |,

(16)

where in the last inequality we have maximized with respect to .t ≥ 0. So, if .λ ∈
(λ1 − Λ,λ1), then

.max
t≥0

J (te1) <
1

Q
SQ/p,

and the existence of a solution follows as in the preceding proofs. ��

4 The Case with Linking Geometry

This section is devoted to the case with linking geometry. We introduce the
necessary notation and, under the appropriate hypotheses on G, we state the related
existence results (see Theorems 4 and 5 below). Finally, after some preliminary
lemmas, we sketch the proofs.

4.1 Statement of the Results

Let us introduce some further notation. Let .w ∈ S−1,p′
(Ω), the dual space of

.S
1,p
0 (Ω). We denote by .E⊥

w the subspace of .S
1,p
0 (Ω) orthogonal to w, i.e.

.E⊥
w = {u ∈ S

1,p
0 (Ω) | 〈w,u〉 = 0},

where .〈, 〉 is the duality product between .S−1,p′
(Ω) and .S

1,p
0 (Ω); denote by .B1 =

{u ∈ S
1,p
0 (Ω) | ‖u‖p = 1}. Let

.λ = sup
w∈S−1,p′

(Ω)

inf
u∈E⊥

w∩B1
‖Xu‖p

p .
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It is possible to verify that .λ ≤ λ2, where .λ2 is the second eigenvalue of .−Δp,G.
If .p = 2, then .λ = λ2; if .p �= 2, it is not clear whether the equality holds or not.
However, it holds that .λ > λ1 (see Lemma 2 below).

The non-resonance case corresponds to requiring the following assumptions on
.G(ξ, u):

.

1

p
(λ1 + σ)|s|p ≤ G(ξ, s) ≤ 1

p
(λ − σ)|s|p for a.e. ξ ∈ Ω,∀|s| ≤ δ

G(ξ, s) ≥ 1

p
(λ1 + σ)|s|p − 1

p∗ |s|p∗
for a.e. ξ ∈ Ω,∀s �= 0.

(17)

We observe that (5) and (17) imply .g(ξ, 0) = 0 a. e. in .Ω and .u = 0 is a solution of
(Pg). In this case, we prove the following result.

Theorem 4 If .1 < p2 ≤ Q, assume that (2), (3) and (17) hold; if .1 < p <

Q < p2, assume that (2), (3), (7), (17) hold. Then, problem (Pg) admits a nontrivial
solution.

We conclude with the case of resonance near the origin. We assume that there
exists .δ > 0 and .σ ∈ (0, 1/p∗) such that

.

1

p
λ1|s|p ≤ G(ξ, s) ≤ 1

p
(λ − σ)|s|p for a.e. ξ ∈ Ω,∀|s| ≤ δ

G(ξ, s) ≥ 1

p
λ1|s|p − (

1

p∗ − σ)|s|p∗
for a.e. ξ ∈ Ω,∀s ∈ R.

(18)

We also need the following condition on .G(ξ, s) at infinity: there exists an open
nonempty set .Ω0 ⊂ Ω such that

. lim
s→+∞

G(ξ, s)

sγ
= +∞ uniformly inΩ0, (19)

where .γ = Qp(Qp+2p−2Q)
(Q−p)(Qp+p−Q)

. The following result holds.

Theorem 5 Let .1 < p < Q and assume that (2), (3), (18), (19) hold. Then,
problem (Pg) admits a nontrivial solution.

We observe that .γ < p∗ for any .1 < p < Q and .γ > 0 for .p > 2Q
Q+2 . From

Theorem 5, we deduce the following result for problem (Pλ).

Corollary 2 Let .p > 1 and Q such that . Q2

Q+1 > p2. Then, problem (Pλ) admits a
nontrivial solution for .λ = λ1.
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4.2 Proof of the Results

In this subsection, we sketch the proof of Theorems 4 and 5. We begin with some
preliminary lemmas. We first need a lemma which provides a sufficient condition
for the linking geometry to hold.

Lemma 2 For any .w ∈ S−1,p′
(Ω) such that .〈w, e1〉 �= 0 there exists a constant

.cw > 0 depending on w such that if .u ∈ E⊥
w , then .‖Xu‖p

p − λ1‖u‖p
p ≥ cw‖Xu‖p

p;
therefore, .λ > λ1.

Proof The proof follows the Euclidean outline in [1], so we omit it. ��
Now, let .e1 denote the positive eigenfunction relative to .λ1 and such that .‖e1‖p =

1 and let .Ω0 be as in (7) or (19). Without restriction, we can assume that .0 ∈ Ω0 ⊂
Ω . Denote by .Br the d-ball centered at 0 with radius r . For .m ∈ N sufficiently large
so that .B2/m ⊂ Ω0, define the functions .φm : Ω → R as follows

.φm(ξ) :=

⎧⎪⎪⎨
⎪⎪⎩
0 if ξ ∈ B1/m

m d(ξ) − 1 if ξ ∈ B2/m \ B1/m

1 if ξ ∈ Ω \ B2/m.

(20)

Let .em
1 := φme1 and let .Em := span{em

1 }. We prove the following approximation
result.

Lemma 3 As .m → ∞, there holds

.em
1 → e1 in S

1,p
0 (Ω) and ‖X(em

1 )‖p
p ≤ λ1 + νmp−Q, (21)

for a suitable .ν > 0.

Proof Let us compute

.

‖X(em
1 − e1)‖p = ‖e1Xφm + (φm − 1)Xe1‖p

≤ ‖e1Xφm‖p + ‖(φm − 1)Xe1‖p

≤ c(mp−Q + m−Q) → 0,

(22)

where we have used that

.

∫
Ω

|Xφm|p = mp

∫
B2/m\B1/m

|Xd|p ≤ Cmp|B2/m \ B1/m| = Cmp−Q,

due to the boundedness of .ψ = |Xd|. Hence, .em
1 → e1 and by the definition of .em

1 ,
the second estimate in (21) follows. ��
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Let now observe that, for all .δ > 0, there exists .w ∈ S−1,p′
(Ω) such that

.minu∈E⊥
w∩B1 ‖Xu‖p ≥ λ − δ. Let, for such w, .E⊥

δ := E⊥
w .

Lemma 4 Assume that (2), (3) and either (17) or (18) hold. Then, there exists
.α, δ, ρ > 0 such that

.J (u) ≥ α ∀u ∈ ∂Bρ ∩ E⊥
δ .

Now, consider the family of Sobolev minimizers .Uε defined in (8) and, for .m ∈ N,
take a cut-off function .ηm ∈ C∞

0 (B1/m), .0 ≤ η ≤ 1, such that .ηm ≡ 1 in .B1/2m and
.‖Xηm‖∞ ≤ 3m. Then, for .ε > 0, define

.um
ε (ξ) = ηm(ξ)Uε(ξ), ξ ∈ G. (23)

Then, as .εm → 0, analogous estimates as in (10) hold

.‖Xum
ε ‖p

p ≤ SQ/p + C(εm)(Q−p)/(p−1), ‖um
ε ‖p∗

p∗ ≥ SQ/p − C(εm)Q/(p−1).

(24)

Note that, by construction, for all .ε > 0 and .m ∈ N we get

.supp(um
ε ) ∩ supp(em

1 ) = ∅. (25)

Now, define

.Qε
m = {u ∈ S

1,p
0 (Ω) | u = aem

1 + bum
ε , |a| ≤ R, 0 ≤ b ≤ R}.

It can be verified that .∂Qε
m and .∂Bρ ∩ E⊥ link (see [42]) if .R > ρ, where .ρ is as

in Lemma 4. Moreover, by (25), if R and m are large enough, then .J (u) ≤ 0 for all
.u ∈ ∂Qε

m. By these choices on R and m, if we let

.Γ = {h ∈ C(Qε
m, S

1,p
0 (Ω) | h(u) = u,∀u ∈ ∂Qε

m},

by standard arguments, we obtain a PS sequence for J at level

.c = inf
h∈Γ

max
u∈Qε

m

J (h(u)).

Then, the conclusions of Theorems 4 and 5 will follow by showing that, for .ε

sufficiently small, .c < SQ/p

Q
.

Proof of Theorem 4 Let .1 < p2 ≤ Q. Choosem large enough so that .νmp−Q < σ ,
where .ν is as in Lemma 3 and .σ is as in (17). It follows that

.∀w ∈ Em J (w) ≤ 0. (26)
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We prove that there exists .ε > 0 such that

. max
u∈Qε

m

J (u) <
1

Q
SQ/p. (27)

Arguing by contradiction, assume that

.∀ε > 0, max
u∈Qε

m

J (u) ≥ 1

Q
SQ/p.

By the compactness of the set .{u ∈ Qε
m|J (u) ≥ 0}, for all .ε > 0 there exist

.wε ∈ Em and .tε ≥ 0 such that, letting .vε = wε + tεu
m
ε , it holds

.J (vε) = max
u∈Qε

m

J (u) ≥ 1

Q
SQ/p,

that is

.
1

p
‖Xvε‖p

p −
∫

Ω

G(ξ, vε) − 1

p∗ ‖vε‖p∗
p∗ ≥ 1

Q
SQ/p, ∀ε > 0. (28)

As in Theorem 1, it follows that .tε is bounded between two positive constants. We
now estimate the term .

∫
Ω

G(ξ, tεuε). We claim that there exists a function .ζ = ζ(ε)

satisfying .limε→0 ζ(ε) = +∞, such that for .ε sufficiently small, it holds

.

∫
Ω

G(ξ, tεuε) ≥ ζ(ε) · ε(Q−p)/(p−1). (29)

The above estimate can be seen as follows. For .ε sufficiently small, there exists a
constant .c1 > 0 such that .tεUε(ξ) ∈ (0, δ) for all .ξ such that .d(ξ) ≥ c1ε

(p−1)/p2
;

we also observe that, if .ξ ∈ B1/2m, then .um
ε = Uε . Therefore, by (17) and (1), we

get

.

∫
Ω

G(ξ, tεuε) ≥ c

∫ 1/2m

c1ε
1/p

Up
ε (ξ)

≥ cε(Q−p)/(p−1)
∫ 1/2m

c1ε1/p
ρ(p2−Q−p+1)/(p−1)dρ

= cε(Q−p)/(p−1)

{
ε(p2−Q)/(p−1) ifQ > p2

| log ε| ifQ = p2.

(30)

Hence, the function .ζ(ε) in (29) is obtained.
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So, from (13), (25), (26) and (30), we have

.J (vε) ≤ J (tεuε) ≤ SQ/p

Q
+ (c − ζ(ε))ε(Q−p)/(p−1),

and choosing .ε small, we get a contradiction with (28).
The case .p < Q < p2 can be treated analogously, taking into account esti-

mate (15). ��
Proof of Theorem 5 The proof follows the scheme of that of Theorem 4: as before,
we can show that, (27) holds for sufficiently large .m ∈ N, under the asymptotic
assumption (19) on G. We omit the details, referring to the Euclidean outline in [1].

��
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The Wodzicki Residue
for Pseudo-Differential Operators
on Compact Lie Groups

Duván Cardona

Abstract Let G be an arbitrary compact Lie group. In this work we apply the
method of the analytic continuation of traces in order to compute the Wodzicki
residue for a classical pseudo-differential operator onG in terms of its matrix-valued
symbol (which is globally defined on the non-commutative phase space .G×̂G, with
.̂G being the unitary dual of G). Our main theorem is complementary to the results
in Cardona et al. (Dixmier traces, Wodzicki residues, and determinants on compact
Lie groups: the paradigm of the global quantisation. arXiv:2105.14949), where
we remove the ellipticity hypothesis when the operators belong to the Hörmander
classes on G defined by local coordinate systems.

1 Introduction

Let .�•
cl(M) := ∪m�m

cl (M) be the algebra of classical pseudo-differential operators
on a closed manifold .M. Of particular interest for this work, is the case where .M =
G is a compact Lie group endowed with its unique bi-invariant Riemannian metric.
Indeed, although much work has been done when computing regularised traces (as
the Wodzicki reside, se e.g. [5–7, 9–11, 16]) on the algebra .�•

cl(M), in this paper
we address the problem of computing the (non-commutative) Wodzicki residue on
.�•

cl(G), in terms of the representation theory of .G, where very little appears to be
known, see [1–3].

In order to accomplish our goal, we are going to apply the algebraic formalism
developed by Ruzhansky and Turunen [12], where the notion of a global symbol
has been introduced for describing the Hörmander classes of pseudo-differential
operators, see Hörmander [8]. In such a formalism, the symbol of an operator is
globally defined on the non-commutative phase space .G × ̂G, where .̂G is the
unitary dual of .G, instead of the classical local notion of a symbol defined by
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charts, which is defined on the cotangent space .T ∗M. In particular the paper [14] by
Ruzhansky et al. is a source of many open problems, between them, the problem of
computing geometric invariants of G in terms of the matrix-valued symbols, where
the Wodzicki residue is a fundamental one on the list.

In order to present the contribution of this note, we recall the definition of the
Wodzicki residue, which is a trace, that measures the locality of an operator. Indeed,
if .A ∈ �m

cl (M) is a classical pseudo-differential operator of order .m, its Hörmander
symbol (defined by local coordinate systems) admits a decomposition of the form

.σH (x, ξ) ∼
∞
∑

k=0

am−k(x, ξ), (x, ξ) ∈ T ∗M,

in components .am−j , of homogeneous degree .m − j at .ξ �= 0. Then, Wodzicki in
his seminal paper [17] proved that, up to a constant, the functional

.res(A) := 1

n(2π)n
∫

M×{ξ∈T ∗
x M:|ξ |=1}

a−n(x, ξ)|dξ dx|, n = dim(M), (1)

is the unique trace on the algebra of classical pseudo-differential operators
.�•

cl(M) := ∪m�m
cl (M). It is a remarkable fact that, although the complete symbol

does not have an invariant meaning, the right hand side of (1) is well-defined.
Indeed, the invariance of the Wodzicki residue shows that .x 	→ resx(A) : M → C

is a density on .M, where .resx(A) := 1
n(2π)n

∫{ξ∈T ∗
x M:|ξ |=1} a−n(x, ξ)dξ. In the

picture below (see Fig. 1) we illustrate how any open covering of M allows us to
define .resx(A) in a local way and how this functional can be glued over the whole
manifold.

There are several ways of computing the Wodzicki residue. There is a global
spectral approach which shows the delicate relation between .ζ -functions and heat
kernel expansions that is as follows. For .A ∈ �m

cl (M), and for any elliptic operator
.E ∈ �e(M), of positive order .e > 0, we have the complex formula (see e.g.
[9, 10, 15])

.res(A) = 1

n(2π)n
e · resz=0Tr(AP−z), (2)

Fig. 1 Here we illustrate the local construction of the Wodzicki residue in the case of the torus.
We start by choosing an atlas of the manifold, and on each open set of this covering we define a
local density .resx . After doing this process, we construct a global density using the compatibility
of the open subsets of the covering
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and the identity via the heat kernel

.res(A) = cn,m coefficient of log(t) in the expansion of Tr(Ae−tP ), as t → 0+,

(3)

where .cn,m := −m/n(2π)n. Our main Theorem 1, proved by using the method
of the analytic continuation of traces, removes the ellipticity hypothesis in [3] when
computing theWodzicki residue for the Hörmander classes defined by charts, where
the results were derived by using the real variable methods of the spectral calculus
of subelliptic operators.

Now we present our main result. For a bounded operator T on a separable Hilbert
space H , we use the following notation for the decomposition of T into its real and
imaginary part,

.Re(T ) := T + T ∗

2
, Im(T ) := T − T ∗

2i
,

and the decomposition of .Re(T ) and .Im(T ) into their positive and negative parts,

.Re(T )+ := Re(T ) + |Re(T )|
2

, Re(T )− := |Re(T )| − Re(T )

2
,

and

.Im(T )+ := Im(T ) + |Im(T )|
2

, Im(T )− := |Im(T )| − Im(T )

2
,

the mapping .σA : (x, [ξ ]) ∈ G × ̂G 	→ σA(x, [ξ ]) denotes the (global) matrix-
valued symbol of a pseudo-differential operator A in the algebraic formalism of
Ruzhansky and Turunen [12], and .‖L‖L(1,∞)(̂G) denotes the weak-.�1 quasi-norm

of a matrix-valued function L on the unitary dual .̂G, see Sect. 2.3 for details.

Theorem 1 Let .A ∈ �−n
cl (G) be a classical pseudo-differential operator on .G.

Assume that the symbol of A admits an asymptotic expansion

.σA(x, [ξ ]) ∼
−n
∑

k=−∞
σk(x, [ξ ]), (4)

in components with decreasing order, which means that, for any .N ∈ N,

.σA(x, [ξ ]) −
−n
∑

k=−N−n

σk(x, [ξ ]) ∈ S
−(N+1)−n
1,0 (G × ̂G). (5)
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Then, the Wodzicki residue of A can be computed according to the formula

.res(A) = ∫
G

(

‖Re(σ−n(x, [ξ ]))+‖L(1,∞)
(̂G)

− ‖Re(σ−n(x, [ξ ]))−‖L(1,∞)
(̂G)

)

dx

+i ∫
G

(

‖Im(σ−n(x, [ξ ]))+‖L(1,∞)
(̂G)

− ‖Im(σ−n(x, [ξ ]))−‖L(1,∞)
(̂G)

)

dx.

This paper is organised as follows. In Sect. 2 we record the preliminaries of
this work. More precisely, Sect. 2.1 is dedicated to presenting the basics on the
Hörmander classes defined by local coordinate systems. In Sect. 2.2 we record
the construction of the global matrix-valued symbols in the Ruzhansky–Turunen
formalism. In Sect. 2.3 we present the weak .�1-space on the unitary dual .̂G that we
will use in Sect. 3 in order to prove our main Theorem 1.

2 Preliminaries

2.1 Pseudo-Differential Operators via Localisations

Pseudo-differential operators on compact manifolds, and consequently on compact
Lie groups, can be defined by using local coordinate charts, see Hörmander [8]. Let
us briefly introduce these classes starting with the definition in the Euclidean setting.
Let U be an open subset of .Rn. We say that the “symbol” .a ∈ C∞(U × R

n,C)

belongs to the Hörmander class of order m and of .(ρ, δ)-type, .Sm
ρ,δ(U × R

n), .0 �
ρ, δ � 1, if for every compact subset .K ⊂ U and for all .α, β ∈ N

n
0, the symbol

inequalities

.|∂β
x ∂α

ξ a(x, ξ)| � Cα,β,K(1 + |ξ |)m−ρ|α|+δ|β|,

hold true uniformly in .x ∈ K for all .ξ ∈ R
n. Then, a continuous linear operator

.A : C∞
0 (U) → C∞(U) is a pseudo-differential operator of order m of .(ρ, δ)-type,

if there exists a symbol .a ∈ Sm
ρ,δ(U × R

n) such that

.Af (x) = ∫
R

n
e2πix·ξa(x, ξ)(FR

nf )(ξ)dξ,

for all .f ∈ C∞
0 (U), where

.(FR
nf )(ξ) := ∫

U

e−i2πx·ξf (x)dx

is the Euclidean Fourier transform of f at .ξ ∈ R
n.
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Once the definition of Hörmander classes on open subsets of .Rn is established, it
can be extended to smooth manifolds as follows. Given a .C∞-manifold .M, a linear
continuous operator .A : C∞

0 (M) → C∞(M) is a pseudo-differential operator of
order m of .(ρ, δ)-type, with .ρ � 1 − δ, and .0 ≤ δ < ρ ≤ 1, if for every local
coordinate patch .ω : Mω ⊂ M → Uω ⊂ R

n, and for every .φ,ψ ∈ C∞
0 (Uω), the

operator

.T u := ψ(ω−1)∗Aω∗(φu), u ∈ C∞(Uω),

is a standard pseudo-differential operator with symbol .aT ∈ Sm
ρ,δ(Uω × R

n). In
this case we write .A ∈ �m

ρ,δ(M, loc). In particular for .(ρ, δ) = (1, 0) we denote

.�m(M) := �m
1,0(M, loc).1

2.2 The Global Symbol in the Ruzhansky–Turunen Formalism

Let A be a continuous linear operator from .C∞(G) into .C∞(G), and let .̂G be the
algebraic unitary dual of .G. Then, it was established by Ruzhansky and Turunen in
[12] that there is a function

.σA : G × ̂G → ∪�∈NC�×�, (6)

that we call the matrix-valued symbol of .A, such that .σA(x, ξ) := σA(x, [ξ ]) ∈
C

dξ ×dξ for every equivalence class .[ξ ] ∈ ̂G, where .ξ : G → Hom(Hξ ), .Hξ
∼= C

dξ ,

and such that

.Af (x) =
∑

[ξ ]∈̂G

dξTr[ξ(x)σA(x, ξ) ̂f (ξ)], ∀f ∈ C∞(G). (7)

We have denoted by

. ̂f (ξ) ≡ (Ff )(ξ) := ∫
G

f (x)ξ(x)∗dx ∈ C
dξ×dξ , [ξ ] ∈ ̂G,

the Fourier transform of f at .ξ ∼= (ξij )
dξ

i,j=1, where the matrix representation of .ξ

is induced by an orthonormal basis of the representation space .Hξ. The function .σA

in (6) satisfying (7) is unique, and satisfies the identity

.a(x, ξ) = ξ(x)∗(Aξ)(x), Aξ := (Aξij )
dξ

i,j=1, [ξ ] ∈ ̂G.

1 As usually, .ω∗ and .(ω−1)∗ are the pullbacks, induced by the maps .ω and .ω−1 respectively.
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Note that the previous identity is well defined. Indeed, it is well known that the
functions .ξij , which are of .C∞-class, are the eigenfunctions of the positive Laplace
operator .LG, that is .LGξij = λ[ξ ]ξij for some non-negative real number .λ[ξ ] ≥ 0
depending only of the equivalence class .[ξ ] and not on the representation .ξ .

In general, we refer to the function a as the (global or full) symbol of the operator
.A, and we will use the notation .A = Op(a) to indicate that .a := σA is the symbol
associated with the operator .A. We will use the notation

.Sm
cl (G × ̂G) := {σA : G × ̂G →

⋃

�

C
�×�| A ∈ �m

cl (G)},

for the class of matrix-valued symbols of the classical operators of order .m ∈ R on
.M.

One of the main contributions of the works [12, 14] was to use the notion of
difference operators, which endows .̂G with a difference structure making possible
to classify the Hörmander classes [8]. Using the class of functions

.�(̂G) := {σ : ̂G → ∪�∈NC�×�},

the space of distributions on .̂G is exactly the set

.D ′(̂G) := {σ ∈ �(̂G) : ∃K ∈ D ′(G) such that σ = ̂K}, (8)

where .D ′(G) is the topological dual of .C∞(G) endowed with its natural Fréchet
structure. Moreover, The Schwartz class of distributions on .̂G is defined via

.S (̂G) := {σ ∈ �(̂G) : ∃K ∈ C∞(G) such that σ = ̂K}. (9)

Following [14], we will say that a difference operator .Qξ : D ′(̂G) → D ′(̂G) is
of order k if

.Qξ
̂f (ξ) = ̂qf (ξ), [ξ ] ∈ ̂G, (10)

for some function q vanishing of order k at the neutral element .e = eG. We will
denote by .diffk(̂G) the class of all difference operators of order .k. For a fixed smooth
function .q, the associated difference operator will be denoted by .�q ≡ Qξ . A
system of difference operators (see e.g. [13])

.�α
ξ := �α1

q(1)
· · · �αi

q(i)
, α = (αj )1�j�i ,

with .i ≥ n, is called admissible if, for any orthonormal basis

.X = {X1,X2, · · · ,Xn}



The Wodzicki Residue for Pseudo-Differential Operators on Compact Lie Groups 159

of the Lie algebra .g, and for its respective gradient .∇X = (X1, · · · ,Xn), we have
that

.rank{∇Xq(j)(e) : 1 � j � i} = dim(G), and �q(j)
∈ diff1(̂G).

Then, it is useful to introduce an admissible collection of difference operators, which
is admissible and additionally,

.

i
⋂

j=1

{x ∈ G : q(j)(x) = 0} = {eG}.

Remark 1 Matrix components of unitary representations induce difference opera-
tors, [13]. Indeed, if .ξ1, ξ2, · · · , ξk, are fixed irreducible and unitary representation
of G, which not necessarily belong to the same equivalence class, then each
coefficient of the matrix

.ξ�(g) − Idξ�
= [ξ�(g)ij − δij ]dξ�

i,j=1, g ∈ G, 1 ≤ � ≤ k, (11)

that is each function .q�
ij (g) := ξ�(g)ij − δij , .g ∈ G, defines a difference operator

.Dξ�,i,j := F (ξ�(g)ij − δij )F
−1. (12)

We can fix .k ≥ dim(G) of these representations in such a way that the corresponding
family of difference operators is admissible, that is,

.rank{∇q�
i,j (e) : 1 � � � k} = dim(G).

To define higher order difference operators of this kind, let us fix a unitary
irreducible representation .ξ�. Since the representation is fixed we omit the index .�

of the representations .ξ� in the notation that will follow. Then, for any given multi-

index .α ∈ N
d2
ξ�

0 , with .|α| = ∑dξ�

i,j=1 αi,j , we write

.D
α := D

α11
1,1 · · ·Dαdξ�

,dξ�

dξ�
dξ�

for a difference operator of order .|α|.
We are now going to introduce the global Hörmander classes of symbols defined

in [12]. First let us recall that every left-invariant vector field .Y ∈ g can be identified
with the first order differential operator .∂Y : C∞(G) → D ′(G) given by

.∂Y f (x) = (Yxf )(x) = d

dt
f (x exp(tY ))|t=0.



160 D. Cardona

If .{X1, · · · ,Xn} is a basis of the Lie algebra .g, then we will use the standard multi-
index notation

.∂α
X = Xα

x = ∂
α1
X1

· · · ∂αn

Xn
,

for a canonical left-invariant differential operator of order .|α|.
By using this property, together with the following notation for the so-called

elliptic weight

.〈ξ〉 := (1 + λ[ξ ])1/2, [ξ ] ∈ ̂G,

we can finally give the definition of global symbol classes, as finally it was adopted
in [4].

Definition 1 Let G be a compact Lie group and let .0 � δ, ρ � 1. Let

.σ : G × ̂G →
⋃

[ξ ]∈̂G

C
dξ ×dξ ,

be a matrix-valued function such that for any .[ξ ] ∈ ̂G, .σ(·, [ξ ]) is of .C∞-class, and
such that, for any given .x ∈ G there is a distribution .kx ∈ D ′(G), smooth in .x,

satisfying .σ(x, ξ) = ̂kx(ξ), .[ξ ] ∈ ̂G. We say that .σ ∈ S m
ρ,δ(G) if the following

symbol inequalities

.‖∂β
X�

γ
ξ σA(x, ξ)‖op � Cα,β 〈ξ〉m−ρ|γ |+δ|β|, (13)

are satisfied for all .β and .γ multi-indices and for all .(x, [ξ ]) ∈ G × ̂G. For .σA ∈
S m

ρ,δ(G) we will write .A ∈ �m
ρ,δ(G) ≡ Op(S m

ρ,δ(G)).

The global Hörmander classes on compact Lie groups can be used to describe the
Hörmander classes defined by local coordinate systems. This is one of the depth
applications of the Ruzhansky–Turunen formalism. We present the corresponding
statement as follows.

Theorem 2 (Equivalence of Classes, [12, 14]) Let .A : C∞(G) → D ′(G) be a
continuous linear operator and let .0 ≤ δ < ρ ≤ 1, with .ρ ≥ 1 − δ. Then, .A ∈
�m

ρ,δ(G, loc), if and only if .σA ∈ S m
ρ,δ(G). Consequently,

.Op(S m
ρ,δ(G)) = �m

ρ,δ(G, loc), 0 � δ < ρ � 1, ρ � 1 − δ. (14)
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2.3 The Weak �1 Space L(1,∞)(̂G)

It was introduced by the author and C. Del Corral in [1] the weak .�1 space on the
unitary dual .̂G for the study of the Dixmier trace of left-invariant operators. To
introduce this space let us consider the family of matrix-valued symbols

.�(̂G)mod := {σ : ̂G → ∪�∈NC�×� and size(σ ([ξ ])) = dξ × dξ }.

Then, the weak .�1-space on .̂G is defined by the subset of functions .σ in .�(̂G)mod
such that

.‖σ(ξ)‖L(1,∞)
(̂G)

:= lim
N→∞

1

logN

∑

[ξ ]:〈ξ 〉≤N

dξ Tr(|σA(ξ)|) < ∞, (15)

where the elliptic weight .〈ξ〉 := (1 + λ[ξ ])
1
2 is the elliptic weight associated to the

positive Laplace operator .LG.

3 Proof of Theorem 1

Proof First, let us assume that the matrix symbol σ of A is positive on any
representation space, i.e.

.∀(x, [ξ ]) ∈ G × ̂G, ∀L ∈ C
dξ , (σ (x, [ξ ])L,L)

C
dξ ≥ 0, (16)

where (L,M)
C

dξ := ∑dξ

j=1 LjMj , stands for the inner product on C
dξ . For any

x ∈ G, we denote by

.Ax := Op[[ξ ] 	→ σ(x, [ξ ])]

the operator associated to the matrix symbol σ(x, ·). In view of the compactness
of G, for any x ∈ G, Ax ∈ �−n

cl (G, loc) is also a classical pseudo-differential
operator, see [14, Page 482]. Let us assume also that for any x, Ax is self-adjoint on
L2(G). Note that for any z ∈ C,

.A(1 + LG)
z
2 ∈ �

−n+Re(z)
cl (G, loc), ∀x ∈ G, Ax(1 + LG)

z
2 ∈ �

−n+Re(z)
cl (G, loc),

(17)

in view of the composition properties of the Hörmander calculus, see [8, Chapter
XVIII]. The functions

.z 	→ f (z) := Tr[A(1 + LG)
z
2 ] (18)
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and

.z 	→ f (x, z) := Tr[Ax(1 + LG)
z
2 ], x ∈ G, (19)

are analytic mappings on the left semi-plane

.C<0 := {z ∈ C : Re(z) < 0}. (20)

It is straightforward the existence of holomorphic extensions f̃ and f̃ (x, ·) of f and
f (x, ·), respectively, on the right semi-plane (see e.g. Lesch [9])

.C≥0 := {z ∈ C : Re(z) ≥ 0}. (21)

The analytic continuations f̃ and f̃ (x, ·) have simple poles at N0 := {j ∈ Z : j ≥
0}. Let us make the principal observation of this proof. For z ∈ C<0, we have the
identity

.f (z) := Tr[A(1 + LG)
z
2 ] = ∫

G

∑

[ξ ]∈̂G

dξTr[a(x, [ξ ])〈ξ〉z]dx = ∫
G

f (x, z)dx.

Note that the function

.F̃ (z) := ∫
G

f̃ (x, z)dx

is an analytic extension of

.f (z) = ∫
G

f (x, z)dx,

and that in consequence F̃ |C<0 = f̃ |C<0 = f. Because the domain C<0 clearly
contains accumulation points in its interior, in view of the identity theorem for
analytic functions, we conclude that F̃ and f̃ agree on the domain C≥0 \ {j ∈ Z :
j ≥ 0}. All these facts allow us to compute the Wodzicki residue of A. Indeed, by
fixing 0 < ε < 1/2, using that for any classical operator B of order −n, on G, the
Wodzicki residue can be computed as the residue at z = 0 of the analytic extension
of the complex function Tr[B(1 + LG)

z
2 ], see e.g. Lesch [9, Eq. (1.2)], that is

.res(B) = resz=0Tr[B(1 + LG)
z
2 ], B ∈ �m

cl (G, loc), m ∈ R, (22)
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Fig. 2 The figure illustrates the curve of integration on the complex plane used in the proof of the
theorem

and by using Fubini theorem, we have

.res(A) = resz=0f̃ (z) = 1

2πi
∫

|z|=ε

f̃ (z)dz = 1

2πi
∫

|z|=ε

∫
G

f̃ (x, z)dxdz

= 1

2πi
∫
G

∫
|z|=ε

f̃ (x, z)dxdz

= ∫
G

resz=0f̃ (x, z)dx

= ∫
G

res(Ax)dx,

where we have used the compactness of G. We illustrate the sector of integration on
the complex plane in the figure below (see Fig. 2).

The positivity of the symbol a(x, ·) implies the positivity of the operator Ax.

Indeed, for any x0 ∈ G,

.Spect[Ax0] =
⋃

[ξ ]∈̂G

Spect[a(x0, [ξ ])] ⊂ R
+
0 . (23)

Indeed, the spectrum of any matrix a(x0, [ξ ]) is positive. This fact implies that Ax0

being self-adjoint is positive on L2(G). Then, using Theorem 1.1 in [1], we have
that

.res(Ax) = ‖a(x, ·)‖L(1,∞)(̂G) .
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In consequence,

.res(A) = ∫
G

‖a(x, ·)‖L(1,∞)(̂G)dx. (24)

Now, we are going to use the decomposition strategy in [3] for extending the formula
in (24) to the general case where the symbol is not necessarily a positive matrix on
every representation space.

We use the decomposition of A into its (self-adjoint) real and imaginary part,

.Re(A) := A + A∗

2
, Im(A) := A − A∗

2i
,

and the decomposition of Re(A) and Im(A) into their (self-adjoint) positive and
negative parts,

.Re(A)+ := Re(A) + |Re(A)|
2

, Re(A)− := |Re(A)| − Re(A)

2
,

and

.Im(A)+ := Im(A) + |Im(A)|
2

, Im(A)− := |Im(A)| − Im(A)

2
.

Now, the operator A can be written as

.A = Re(A) + iIm(A)

= (

Re(A)+ − Re(A)−
) + i

(

Im(A)+ − Im(A)−
)

.

So, by the linearity of the Wodzicki residue Trω we have

.res(A) = res(Re(A)) + ires(Im(A))

= (

res(Re(A)+) − res(Re(A)−)
) + i

(

res(Im(A)+) − res(Im(A)−)
)

.

Now, we will exploit the subelliptic functional calculus in [2] in order to compute
the symbols of the positive operators Re(A)+,Re(A)−, Im(A)+, Im(A)−. Indeed,
we have

.σRe(A)(x, [ξ ]) = σA+A∗
2

(x, [ξ ]) = Re(σ−n(x, [ξ ])) + lower order terms,

.σIm(A)(x, [ξ ]) = σA−A∗
2i

(x, [ξ ]) = Im(σ−n(x, [ξ ])) + lower order terms,



The Wodzicki Residue for Pseudo-Differential Operators on Compact Lie Groups 165

.σRe(A)+(x, [ξ ]) = σRe(A)+|Re(A)|
2

(x, [ξ ]) = Re(σ−n(x, [ξ ]))+ + lower order terms,

.σRe(A)−(x, [ξ ]) = σ |Re(A)|−Re(A)
2

(x, [ξ ]) = Re(σ−n(x, [ξ ]))− + lower order terms,

and

.σIm(A)+(x, [ξ ]) = σ Im(A)+|Im(A)|
2

(x, [ξ ]) = Im(σ−n(x, [ξ ]))+ + lower order terms,

.σIm(A)−(x, [ξ ]) = σ |Im(A)|−Im(A)
2

(x, [ξ ]) = Im(σ−n(x, [ξ ]))− + lower order terms.

Now, by applying (24), we can eliminate the lower terms when computing the
Wodzicki residue, and we have the following formulae

.res(Re(A)+) = ∫
G

‖Re(σ−n(x, [ξ ]))+‖L(1,∞)
(̂G)

dx

.res(Re(A)−) = ∫
G

‖Re(σ−n(x, [ξ ]))−‖L(1,∞)
(̂G)

dx

.res(Im(A)+) = ∫
G

‖Im(σ−n(x, [ξ ]))+‖L(1,∞)
(̂G)

dx

.res(Im(A)−) = ∫
G

‖Im(σ−n(x, [ξ ]))−‖L(1,∞)
(̂G)

dx.

In view of the linearity of the Wodzicki residue we end the proof. ��
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New Characterizations of Harmonic
Hardy Spaces

Joel E. Restrepo and Durvudkhan Suragan

Abstract We present new equivalent descriptions of the harmonic Hardy spaces in
the unit disc and in the upper half plane. Such descriptions are found as applications
of a generalized Hadamard operator of a standard function kernel.

1 Introduction

The generalized Hadamard operator .L(ω) of M. M. Djrbashian (see [17], pp. xxxi,
xxxvi, 344–346, 432, 435) or, as it is also called Djrbashian’s generalized fractional
integral, was introduced and used to construct the factorization theory of the
Nevanlinna type classes .N{ω} [4, 5] of meromorphic functions in the unit disc of the
complex plane. Some of these classes contain Nevanlinna’s class N of functions of
bounded type and all meromorphic functions in the unit disc .D = {z ∈ C : |z| < 1},
while the others are contained in .N{ω} and possess better boundary properties [8].
In Sect. 2, we discuss appearance of the operator .L(ω) in an equivalent description
of the harmonic Hardy space .h1 in .D, i.e. harmonic functions in .D with bounded
integral means. We also establish several results for its inverse operator. Notice that
the integral means give a measure of growth and lead to a fruitful theory with many
applications. For more details we refer to the books [2, 6].

Substantial progress was made on the half-plane analogue of a part of the
theory of M. M. Djrbashian–V. S. Zakaryan [4, 5] over the space of harmonic and
delta-subharmonic functions in .G+ = {z : Im z > 0}. Namely, similar results
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were obtained in [12] for .ω-weighted classes of harmonic functions possessing
nonnegative harmonic majorants in the upper half-plane, which extend the results
established in [10]. Further studies were done for delta-subharmonic in .G+ [13].
The following growth condition is used in the upper half plane .G+:

. sup
y>0

∫ +∞

−∞
|u(x + iy)|dx < +∞, (1)

which represents an analogue of the bounded integral means condition used in
the unit disc. Notice that the harmonic Hardy space .H 1 over .G+ is the set of
harmonic functions in .G+ which satisfy condition (1). In the latter mentioned
papers, a generalized integro-differential operator .Lω∗ (.ω∗ is taken in a certain
function space) was used, which becomes, in a particular case, the Liouville integro-
differential operator [14, 17]. The operator .Lω∗ , which is defined in Sect. 3, is a half
plane analog of the operator .L(ω) introduced in the unit disc. The operator .Lω∗
was first introduced in [11]. In Sect. 3, we show the important role which plays the
operator .Lω∗ over the harmonic Hardy space .H 1. Moreover, we give the explicit
form of the inverse operator of .Lω∗ and some results related to it.

2 A Description of the Harmonic Hardy Space h1 in D

In this section we recall some basic statements on the harmonic Hardy space .h1

in the unit disc. In fact, we show that the functions of .h1 can be represented by
the generalized fractional operator .L(ω) of M.M. Djrbashian to an integral which
depends on the Schwarz’ type kernel. We also recall an important result where it is
proved the existence and explicit form of a left inverse operator [15, Lemma 2.1],
which is, in fact, as it is proved here a right inverse operator as well.

We begin by recalling preliminaries on the generalized fractional operator .L(ω)

of M.M. Djrbashian.
A function .ω(t) is said to be of the class .�, if

(i) .ω(t) > 0 and is continuous and nondecreasing in .[0, 1),

(ii) .ω(0) = 1 and .

∫ 1

0
ω(t)dt < +∞.

Sometimes, see e.g. [4, 5, 15], it is also assumed that .ω(t) is of a Lipschitz class
.λt ∈ (0, 1] for all .t ∈ [0, 1). Nevertheless, the Lipschitz condition is used to prove
continuity and convergence for some logarithmic Blaschke type factors under the
application of .L(ω). Here we do not require it since we do not use such factors.
For a functional parameter .ω(t) ∈ �, we use the following operators which are
formally defines on functions .u(z) given in the unit disc .D:

.L(ω1)u(z) := −
∫ 1

0
u(zt)dω1(t), where ω1(t) =

∫ 1

t

ω(x)

x
dx,
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and

.L(ω)u(z) = u(0) + L(ω1)U(z), where U(z) = |z| ∂

∂|z|u(z), z ∈ D.

The operator .L(ω)u(r) is an essential generalization of the Riemann-Liouville
integro-differential operators .Iα

a+ and .Dα
a+ .(−1 < α < +∞, a ∈ R) [14, 17],

since

.L(ω)u(r) = �(1 + α)r−αI 1+α
0+ u′(r), −1 < α < +∞,

.L(ω)u(r) = �(1 + α)r−αD
−(1+α)
0+ u(r), −1 < α < 0,

for .ω(x) = (1 − x)α when .0 � x � 1 and it is also assumed .u(0) = 0. Notice that
the operator .L(ω) is a simplified form of the operator used in [4, 5] (see Lemma 1.1
in [8]). Besides, we use M. M. Djrbashian’s Cauchy type kernel

.C(z; ω) :=
+∞∑
k=0

zk

�k

, �0 = 1, �k = k

∫ 1

0
tk−1ω(t)dt (k = 1, 2, . . .),

(2)

which is holomorphic in .D for any .ω(t) ∈ � and in the particular case of power
functions .ω(x) = (1 − x)α, .−1 < α < 0, it is the .1 + α order of the ordinary
Cauchy kernel:

.C(z; ω) = 1

(1 − z)1+α
, and C0(z)

∣∣
ω≡1 = 1

1 − z
, z ∈ D.

Also, we use the Schwarz type kernel

.S(z; ω) := 2C(z; ω) − 1 = 1 + 2
+∞∑
k=1

zk

�k

, z ∈ D,

for which

. S(z; ω)

∣∣∣
ω(x)=(1−x)α

= 2

(1 − z)1+α
− 1, S0(z) = 1 + z

1 − z
, z ∈ D.

One can see that

.L(ω)[rk] = rk�k, r ∈ [0, 1], k = 0, 1, 2, . . . , (3)

. L(ω)u(z)

∣∣∣
u(z)≡1

= 1, z ∈ D,



170 J. E. Restrepo and D. Suragan

and by (2) and (3)

.L(ω)C(z; ω) = C0(z), z ∈ D.

The next lemma is about the inversion operator of .L(ω) [15, Lemma 2.1].

Lemma 2.1 If .ω ∈ �, then the Volterra equation

. −
∫ 1

x

ω
(x

t

)
dω̃(t) ≡ 1 for a.e. x ∈ (0, 1)

has a non-increasing solution .̃ω(x) such that .̃ω(1) = 0, .̃ω(+0) = 1 and .̃ω(x) ≤
[ω(x)]−1 for all .0 < x < 1. Moreover, the operator .L(ω) is one-to-one mapping of
harmonic functions in any disc .|z| < R < +∞ to harmonic functions in the same
disc, and .

(
L(ω)

)−1
is the operator

.L(ω̃)u(z) := −
∫ 1

+0
u(zσ)dω̃(σ ), i.e. L(ω̃)L(ω)u(z)=(

L(ω)
)−1

L(ω)u(z)=u(z).

Remark Notice that the application of the operator .L(ω̃) to a function harmonic .v(z)

in a disc .|z| < R < +∞ means a multiplication of the coefficients of the harmonic
series of .v(z) by .�k := �k(ω̃). Therefore, .L(ω̃) is a one-to-one operator. �	

Let us now give the definition of bounded variation function which will be used
through the whole chapter.

Definition 2.2 Let .f : [a, b] → C be a given function. Given any finite partition
of .[a, b], i.e. .P = {a = y0 < · · · < yn = b}, and setting

.SP =
n∑

k=1

|f (xi) − f (xi−1)|,

we have that the variation of f on .[a, b] is

.

b∨
a

f = V (f, a, b) = sup{SP : P is a partition of [a, b]}.

Therefore, a function is said to be of bounded variation on .[a, b] if .

b∨
a

f < ∞.

Similarly, for a function .f : R → C, we have .

+∞∨
−∞

f = sup
a<b

V (f, a, b). �	



New Characterizations of Harmonic Hardy Spaces 171

Now we recall an important relation between the Poisson kernel, the generalized
fractional operator .L(ω) and the Schwarz type kernel [5, formula (4.10)]:

.P(θ − ϕ, r) = 1 − |z|2
|eiθ − z|2 = L(ω)

{
Re S(rei(θ−ϕ); ω)

}
, z = reiϕ ∈ D. (4)

We also recall the harmonic Hardy space .h1, which is the class of harmonic
functions in .D such that

. sup
0≤r<1

{∫ 2π

0

∣∣u(reiϕ)
∣∣dϕ

}
< +∞.

Let us denote

.Gω,σ (z) := −Re
1

2π

∫ 2π

0
S
(
rei(θ−ϕ); ω

)
dσ(θ), z = reiϕ ∈ D,

where .σ(t) is a function of bounded variation in .[0, 2π]. One can see that .Gω,σ (z)

is a harmonic function in .D since the kernel .S(z; ω) is holomorphic in .D. It is also
easy to show that .Gω,σ ∈ h1.

Observe that the class of functions .u ∈ h1 coincides with the set of functions
representable in the form

.u(z) = L(ω)Gω,σ (z), z ∈ D, (5)

where .σ(t) is a function of bounded variation in .[0, 2π] and it can be found by the
Stieltjes inversion formula

.σ(θ) = lim
ρ→1−0

∫ θ

0
u(ρeiϕ)dϕ, a.e. 0 � θ � 2π. (6)

In fact, recall that a function in .h1 can be written as [6, Theorem 1.1]

.u(reϕ) = 1

2π

∫ 2π

0
P(θ − ϕ, r)dσ(θ),

where .σ(θ) is a function of bounded variation in .[0, 2π]. By (4) we have

.u(reϕ) = 1

2π

∫ 2π

0
L(ω)

{
Re S(rei(θ−ϕ); ω)

}
dσ(θ)

= L(ω)

(
Re

1

2π

∫ 2π

0
S
(
rei(θ−ϕ); ω

)
dσ(θ)

)
.
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Corollary 2.3 The set of functions .u ∈ h1 coincides with the set of functions
representable in the form:

.u(z) = L(ω)Gω,σ (z) = L(ω)L(ω̃)u(z) and L(ω̃)u(z) = Gω,σ (z), z ∈ D,

therefore .L(ω̃) is a left and right inverse operator of .L(ω) over the harmonic Hardy
space .h1 (Lemma 2.1). �	
Proof By (5) we have .u(z) = L(ω)Gω,σ (z). Now applying the operator .L(ω̃)

to both sides of the latter equality and using Lemma 2.1 we get .L(ω̃)u(z) =
L(ω̃)L(ω)Gω,σ (z) = Gω,σ (z). �	

3 A Description of the Harmonic Hardy SpaceH 1 inG+

This section is devoted to prove that any function u of the harmonic Hardy space
.H 1 over .G+ can be represented as .u(z) = LωKω,µ(z), where .Lω is a Hadamard-
Liouville type operator and .Kω,µ is an integral of a holomorphic Cauchy type kernel
in .G+. We also show the existence and explicit form of the inverse operator which
improves some results from [12]. An expository survey of the harmonic Hardy space
in a half space can be found in [1] and for specific studies, see e.g. [3, 7, 16, 19, 20].

In this section, we assume that .ω(x) is a function of the class .�, i.e. .ω(x) > 0,
is non-increasing in .(0,+∞) and

.ω1(x) =
∫ x

0
ω(t)dt < +∞, 0 < x < +∞.

For .ω(x) ∈ � and .u(z) given in .G+ we recall the Hadamard-Liouville type operator
[11]

.Lωu(z) = −Lω1

∂

∂y
u(z), where Lω1u(z) =

∫ +∞

0
u(z + iλ)dω1(λ).

Besides, we use the Cauchy type kernel

.Cω(z) =
∫ +∞

0
eizt dt

Iω(t)
, where Iω(t) = t

∫ +∞

0
e−tλω(λ)dλ,

which is a holomorphic function in .G+, under the restriction [12, Lemma 2.1]:

.ω(x) � xα for some − 1 < α < 0 and any x � �0 > 0
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(.ω(x) � xα means that .C1x
α � ω(x) � C2x

α for some constants .C1,2 > 0). Here
we give an alternative proof of the holomorphicity of .Cω(z) without requiring the
latter strong condition.

Lemma 3.1 If .ω(x) ∈ � and .
∫ +∞
�0

dσ

σ 2ω(σ)
< +∞ for some .�0 ∈ (0,+∞), then

the function .Cω(z) is holomorphic in .G+, and for any .ρ > 0 there exists a constant
.Mρ,ω > 0 depending only on .ρ and .ω, such that

.|Cω(x + iy)| � Mρ,ω, −∞ < x < +∞, y > ρ. (7)

Proof Let .0 < ρ < y < +∞. Then for .0 < t < 1/�0, we have

.

∣∣∣∣∣
ei(x+iy)t

Iω(t)

∣∣∣∣∣ = e−yt

t
∫ +∞

0 e−utω(u)du
� e−ρt

t
∫ 1/t

0 e−utω(u)du

� e−ρt

ω(1/t)t
∫ 1/t

0 e−utdu
= e−ρt

ω(1/t)(1 − e−1)
,

while for .1/�0 < t < +∞, we obtain

.

∣∣∣∣∣
ei(x+iy)t

Iω(t)

∣∣∣∣∣ = e−yt

t
∫ +∞

0 e−xtω(x)dx
≤ e−ρt

t
∫ �0

0 e−xtω(x)dx

� 1

ω(�0)

e−ρt

t
∫ �0

0 e−xtdx
≤ 1

ω(�0)

e−ρt

1 − e−t�0
.

Therefore, it yields

.|Cω(z)| � 1

(1 − e−1)

∫ 1/�0

0

e−ρtdt

ω(1/t)
+ 1

ω(�0)

∫ +∞

1/�0

e−ρtdt

1 − e−t�0

� 1

(1 − e−1)

∫ +∞

�0

dσ

σ 2ω(σ)
+ 1

ω(�0)(1 − e−1)

e−ρ/�0

ρ
< +∞,

for any .ρ > 0 and then the integrand of the kernel .Cω has a summable majorant,
which implies that is uniformly convergent in the half-plane .y > ρ, and thus .Cω(z)

is holomorphic in .G+. �	
It is easy to verify that for any .z ∈ G+

.
∂

∂Im z
Cω(z) = −Cω1(z) and Cω(z) =

∫ +∞

Im z

Cω1(Re z + it)dt,
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where, .Cω1(z) is assumed to be the Cauchy type kernel from [11]. Besides, in the
particular case of power functions .ω(x) = xα, .−1 < α < 0, we have

.Cω(z) = 1

(−iz)1+α
and Cω(z)

∣∣∣
ω(x)=1

= 1

−iz
z ∈ G+,

i.e. .Cω(z) becomes the ordinary Cauchy kernel, and also

.LωCω(z) = 1

−iz
, z ∈ G+.

We now recall an important theorem established by Solomentsev on subharmonic
functions in .G+ which satisfy the condition (1).

Theorem 3.2 (E. D. Solomentsev [18]) The class of subharmonic functions .u(z)

in .G+ satisfying the condition (1) coincides with the set of functions representable
in the form

.u(z) =
∫∫

G+
log

∣∣∣∣z − ζ

z − ζ

∣∣∣∣ dν(ζ ) + y

π

∫ +∞

−∞
dµ(t)

(x − t)2 + y2 , z = x + iy ∈ G+,

where .µ(t) is a function of bounded variation on .(−∞,+∞) and .ν(ξ) ≥ 0 is a
Borel measure on .G+, such that

.

∫∫
G+

Im ζ dν(ζ ) < +∞.

Let us now denote

.Kω,µ(z) := −Re
1

π

∫ +∞

−∞
Cω(z − t)dµ(t), z = x + iy ∈ G+,

where .µ(t) is a function of bounded variation on .(−∞,+∞). Notice that .Kω,µ(z)

is a harmonic function in .G+ by Lemma 3.1.
Let us now establish the main results of this section. Notice that for harmonic

functions Solomentsev’s theorem gives the representation with only the second
integral since the Borel measure (so called charge) does not exist. Indeed, if one has
such measure, then the first integral will be a subharmonic function, which yields a
contradiction.
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Theorem 3.3 The harmonic Hardy space .H 1 coincides with the class of functions
representable in the form

.u(z) = LωKω,µ(z), z = x + iy ∈ G+ and ω ∈ �,

where .µ(t) is a function of bounded variation on .(−∞,+∞). �	
Proof By Solomentsev’s theorem we have

.u(z) = y

π

∫ +∞

−∞
dµ(t)

(x − t)2 + y2 = Re
1

πi

∫ +∞

−∞
dµ(t)

t − z

= Re
1

π

∫ +∞

−∞

[∫ +∞

0
ei(z−t )ξdξ

]
dµ(t)

= Re
1

π

∫ +∞

−∞

[∫ +∞

0
ei(z−t )ξ

( ∫ +∞
0 e−sξ dω1(s)∫ +∞

0 e−σξdω1(σ )

)
dξ

]
dµ(t)

= Re
1

π

∫ +∞

0

[∫ +∞

−∞

(∫ +∞

0

ei(z+is−t )ξdξ∫ +∞
0 e−σξ dω1(σ )

)
dµ(t)

]
dω1(s)

= Re
1

π

∫ +∞

0

[∫ +∞

−∞
Cω1(z + is − t)dµ(t)

]
dω1(s)

= −Re
1

π

∫ +∞

0

[
∂

∂y

∫ +∞

−∞
Cω(z + is − t)dµ(t)

]
dω1(s)

= −
∫ +∞

0

[
∂

∂y
Kω,µ(z + is)

]
dω1(s),

since the above integrals are absolutely and uniformly convergent inside .G+ as we
now prove. First, notice that

.

∫ +∞

0
e−sξ dω1(s) �

∫ y/2

0
e−sξ dω1(s) � e−(y/2)ξω1(y/2),

and

.

∫ +∞

0
e−sξ dω1(s) =

∫ y/2

0
e−sξ dω1(s) +

∫ +∞

y/2
e−sξ dω1(s)

� ω1(y/2) + ω(y/2)
e−(y/2)ξ

ξ
. (8)
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Therefore, using the fact that .(y/2)ω(y/2) �
∫ y/2

0 ω(r)dr , we get

.

∣∣∣∣∣
∫ +∞

−∞

[∫ +∞

0
ei(z−t )ξ

( ∫ +∞
0 e−sξ dω1(s)∫ +∞

0 e−σξ dω1(σ )

)
dξ

]
dµ(t)

∣∣∣∣∣

�
+∞∨
−∞

µ ·
∫ +∞

0

e−yξ

e−(y/2)ξω1(y/2)

(
ω1(y/2) + ω(y/2)

e−(y/2)ξ

ξ

)
dξ

�
+∞∨
−∞

µ ·
∫ +∞

0
e−(y/2)ξ

(
1 + 2

y

e−(y/2)ξ

ξ

)
dξ � C

y

+∞∨
−∞

µ � C�0

+∞∨
−∞

µ < +∞,

for some fixed .�0 such that .y > �0 > 0 and some positive constants .C,C�0 . �	
The Hadamard–Liouville type operator has a left inverse operator, which is stated

in [12, Lemma 4]. In the proof of the latter lemma it was required that

.ω(x) � xα for some − 1 < α < 0 and any x � �0 > 0

which is a strong condition to control the behavior of the functional parameters .ω

near infinity. We now prove that the above condition is not necessary if we require
that

.

∫ +∞

�0

dσ

σ 2ω(σ)
< +∞, for some �0 > 1, and lim

σ→+∞
1

σω(σ)
= 0. (9)

By .x2 � e2x (for any .x � 0) and the convergence of the above integral, it implies
that

.

∫ +∞

�0

e−tσ dσ

ω(σ)
< +∞, (10)

is absolutely convergent for any .t > 0. We also point out that the condition

.

∫ +∞

�0

dσ

σω(σ)
< +∞, for some �0 > 1, (11)

is stronger than (9). The absolute convergence of the above integral implies that

. lim
σ→+∞

1

σω(σ)
= 0 and also the absolute convergence of integral in (9). The simple

example of .ω ≡ 1 satisfies the condition (9) but it fails for the condition (11).
The statement of the following lemma is proved in [12, Lemma 4] under some

stronger conditions which we have avoided in this paper, and the proof remains
almost the same, but we give it for the sake of completeness.
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Lemma 3.4 If .ω ∈ � satisfies the conditions (9), then the Volterra equation

.

∫ x

0
ω(x − t)dω̃(t) ≡ 1, 0 < x < +∞,

has a nondecreasing solution .̃ω(x) such that .̃ω(0) = 0 and .̃ω(x) � [ω(x)]−1 for
all .0 < x < +∞. Besides,

.Cω(z) = Lω̃

(
1

−iz

)
= Lω̃LωCω(z), z ∈ G+, (12)

for the operator

.Lω̃f (z) ≡
∫ +∞

0
f (z + iσ )dω̃(σ ).

Proof By [9, Theorem 1.2] with .�1(x) ≡ 1, .�2(x) ≡ ω(x), we get the existence
of the function .̃ω(x) with the desired properties. Therefore, we get

.

∫ +∞

0
e−tµ

(∫ µ

0
ω(µ − σ)dω̃(σ )

)
dµ = 1/t, 0 < t < +∞. (13)

Notice now that for any .t > 0 we have

.

∫ +∞

0
e−tσ dω̃(σ )

∫ +∞

0
e−tλω(λ)dλ =

∫ +∞

0
dω̃(σ )

∫ +∞

σ

e−tµω(µ − σ)dµ

=
∫ +∞

0
e−tµdµ

∫ µ

0
ω(µ − σ)dω̃(σ )

(14)

due to the absolute convergence of these integrals, which follows by

.

∫ +∞

0
e−tσ dω̃(σ ) = e−tσ ω̃(σ )

∣∣∣∣
+∞

σ=0
+ t

∫ +∞

0
e−tσ ω̃(σ )dσ

� t

∫ +∞

0

e−tσ dσ

ω(σ)
= t

( ∫ �0

0
+

∫ +∞

�0

)
e−tσ dσ

ω(σ)

� t

ω(�0)

∫ �0

0
e−tσ dσ + t

∫ +∞

�0

e−tσ dσ

ω(σ)
dσ < +∞,

since .
e−tσ

ω(σ )
� 1

tσω(σ )
, . lim

σ→+∞
1

σω(σ)
= 0, .̃ω(x) ≤ [ω(x)]−1 for all .0 < x < +∞

and the absolute convergence of integral (10) for any .t ∈ (0,+∞). On the other
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hand, by (8) we also have

.

∫ +∞

0
e−tλω(λ)dλ � ω1(δ0) + ω(δ0)

e−δ0t

t
, for some δ0 > 0.

By (13) and (14)

.
1

Iω(t)
=

(
t

∫ +∞

0
e−tλω(λ)dλ

)−1

=
∫ +∞

0
e−tσ dω̃(σ ) (15)

for any .t ∈ (0,+∞), and consequently

.Cω(z) =
∫ +∞

0
eizt dt

Iω(t)
=

∫ +∞

0
eizt

(∫ +∞

0
e−tσ dω̃(σ )

)
dt.

To complete the proof, it is necessary to see that for any .z ∈ G+

.Lω̃

(
1

−iz

)
=

∫ +∞

0
dω̃(σ )

∫ +∞

0
ei(z+iσ )tdt =

∫ +∞

0
eizt

(∫ +∞

0
e−tσ dω̃(σ )

)
dt,

where the integrals are absolutely convergent since

.

∫ +∞

0
dω̃(σ )

∫ +∞

0

∣∣∣ei(z+iσ )t
∣∣∣ dt �

∫ +∞

0

dω̃(σ )

y + σ
< +∞, z = x + iy ∈ G+,

due to the conditions in (9), we have

.

∫ +∞

0

dω̃(σ )

y + σ
= ω̃(σ )

y + σ

∣∣∣∣
+∞

σ=0
+

∫ +∞

0

ω̃(σ )dσ

(y+σ)2 �
(∫ �0

0
+

∫ +∞

�0

)
dσ

(y+σ)2ω(σ)

� 1

ω(�0)

∫ �0

0

dσ

(y + σ)2 +
∫ +∞

�0

dσ

σ 2ω(σ)
< +∞.

�	
Remark It is clear that functions like .ω(x) = 1/xα for .0 < α < 1 and .x > 0 satisfy
the conditions of Lemma 3.4. But, we also have functions like .ω(x) = 1

xα log(1+x)

for .0 < α < 1 and .x > 0. In fact, Lemma 3.4 allows us to consider functions
which possesses a different behavior as .ω(x) = 1/xα for .0 < α < 1 and .x > 0 in
infinity. �	
Remark Since the condition (11) is stronger than (9), it is obvious that:

If .ω ∈ � satisfy the condition (11), then the Volterra equation

.

∫ x

0
ω(x − t)dω̃(t) ≡ 1, 0 < x < +∞,
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has a nondecreasing solution .̃ω(x) such that .̃ω(0) = 0 and .̃ω(x) � [ω(x)]−1 for all
.0 < x < +∞, which satisfies the equality (12). �	
Theorem 3.5 Let .ω ∈ � be such that the conditions (9) hold. For any function
.u ∈ H 1 we have

.u(z) = LωLω̃u(z) = Lω̃Lωu(z), Lω̃u(z) = Kω,µ(z), z = x + iy ∈ G+,

i.e. .Lω̃ is a left and right inverse operator of .Lω over the harmonic Hardy space
.H 1, where .µ(t) is a function of bounded variation on .(−∞,+∞). �	
Proof By Theorem 3.3 we have

.u(z) = LωKω,µ(z) = −Re
1

π

∫ +∞

−∞
LωCω(z − t)dµ(t).

Applying the operator .Lω̃ to both sides of the above equality and using (12) we get

.Lω̃u(z) = −Re
1

π

∫ +∞

−∞
Lω̃LωCω(z − t)dµ(t)

= −Re
1

π

∫ +∞

−∞
Cω(z − t)dµ(t) = Kω,µ(z),

which implies .u(z) = LωLω̃u(z). On the other hand, as it was obtained in the proof
of Theorem 3.3, we have

.u(z) = Re
1

π

∫ +∞

−∞

(∫ +∞

0
ei(z−t )ξdξ

)
dµ(t)

= Re
1

π

∫ +∞

−∞

[∫ +∞

0
ei(z−t )ξ

( ∫ +∞
0 e−sξ dω1(s)∫ +∞

0 e−σξdω1(σ )

)
dξ

]
dµ(t).

By equality (15) it follows that

.u(z) = Re
1

π

∫ +∞

−∞

[∫ +∞

0
ei(z−t )ξ

( ∫ +∞
0 e−sξ dω1(s)∫ +∞

0 e−σξdω1(σ )

)
dξ

]
dµ(t)

= Re
1

π

∫ +∞

−∞[∫ +∞

0
ei(z−t )ξ

∫ +∞

0
e−sξ dω1(s)

(
ξ

∫ +∞

0
e−σξ dω̃(σ )

)
dξ

]
dµ(t)

= Re
1

π

∫ +∞

0
dω̃(σ )

∫ +∞

−∞

[∫ +∞

0
ξdξ

∫ +∞

0
ei(z−t+is+iσ )ξdω1(s)

]
dµ(t)
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= −Re
1

π

∫ +∞

0
dω̃(σ )

∫ +∞

−∞[∫ +∞

0
dξ

∫ +∞

0

∂

∂y
ei(z−t+is+iσ )ξdω1(s)

]
dµ(t)

= −
∫ +∞

0
dω̃(σ )

∫ +∞

0

∂

∂y[
Re

1

π

∫ +∞

−∞

(∫ +∞

0
ei(z−t+is+iσ )ξdξ

)
dµ(t)

]
dω1(s)

=
∫ +∞

0
dω̃(σ ) · Lω

(
Re

1

π

∫ +∞

−∞

(∫ +∞

0
ei(z−t+iσ )ξdξ

)
dµ(t)

)

= Lω̃Lω

(
Re

1

π

∫ +∞

−∞

(∫ +∞

0
ei(z−t )ξdξ

)
dµ(t)

)
= Lω̃Lωu(z).

�	
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On the Solvability of the Synthesis
Problem for Optimal Control Systems
with Distributed Parameters

Akylbek Kerimbekov, Elmira Abdyldaeva, and Aitolkun Anarbekova

Abstract The solvability of synthesis problem of external and boundary controls is
investigated for optimization of oscillation process, described by partial differential
equations with Fredholm integral operator. Functions of the external and boundary
actions are nonlinearly with respect to control. An integro-differential equation is
obtained in the specific type for Bellman functional.

An algorithm is developed for constructing solutions to synthesis problem of
external and boundary controls.

Keywords Generalized solution · Bellman functional · Frechet differential ·
Integro-differential equation · Fredholm operator · Optimal control synthesis

1 Introduction

In the study of applied problems by methods of the theory of optimal control of
systems with distributed parameters, a special place is occupied by the problem
of constructing positional control (the problem of control synthesis), where the
desired control is defined as a function (or functional) of the state of the controlled
process. The first studies in this direction were carried out for controlled processes
described by partial differential equations in [1, 2]. After the appearance of the work
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of Professor A.I. Egorov [2], where the procedure for deriving a functional equation
of the Bellman type was described using the example of thermal process control,
it became possible to study the synthesis problem for controlled systems with
distributed parameters. In doing so, he used the definition of a generalized solution
of a boundary value problem of a controlled process and the Fréchet differential
of the Bellman functional. According to the Bellman-Egorov scheme, studies were
carried out in works [3–7].

This article investigates the solvability of the problem of synthesis of boundary
and distributed (special structure) controls in the case of nonlinear optimization
of an oscillatory process described by a partial integro-differential equation with a
Fredholm integral operator. An algorithm for constructing boundary and distributed
positional controls has been developed.

2 Formulation of Synthesis Problem

Consider a controlled oscillation process described by the following boundary value
problem

.vtt − Av = λ

∫ T

0
K(t, τ )v(τ, x)dτ + g(t, x)f [t, u(t)], (1)

for .(t, x) ∈ QT = (0, T ) × Q with

.v(0, x) = ψ1(x), vt (0, x) = ψ2(x) (2)

for all .x ∈ Q and

.�v(t, x) ≡
n∑

i,k=1

aik(x)vxk (t, x) cos(μ, xi) + a(x)v(t, x) = b(t, x)p[t, ϑ(t)],

(3)

for .x ∈ γ and .0 < t < T . The operator A is elliptic and defined by the formula

.Av(t, x) =
n∑
i,k

(aik(x)vxk (t, x))xi − c(x)v(t, x), (4)
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and Q is a domain of .Rn bounded by a piecewise smooth curve .γ = ∂Q and
.a(x) ≥ 0 and .c(x) ≥ 0 are measurable functions. We denote .QT = (0, T ) × Q

and .γT = (0, T ) × γ . The functions .K(t, τ ) ∈ H(D) on .D = {0 ≤ t, τ ≤ T }
and .ψ1(x) ∈ H1(Q), .ψ2(x) ∈ H(Q), .aik(x) are known. We denote by .μ the
outer normal vector from the point .x ∈ γ . Furthermore, .f [t, u(t)] ∈ H(0, T ) for
all external controls .u(t) ∈ H(0, T ) and .p[t, ϑ(t)] ∈ H(0, T ) for all boundary
controls .ϑ(t) ∈ H(0, T ), where .H(Y) denotes the Hilbert space of square-
summable functions defined on the set Y and .H1(Y ) is the Sobolev space of the
first order.

The functions of external and boundary influences are assumed to be monotonic
with regard to functional variable, i.e.

.fu[t, u(t)] �= 0, ∀t ∈ (0, T ); pϑ [t, ϑ(t)] �= 0, ∀t ∈ (0, T ), (5)

and .g(t, x) ∈ H(QT ), b(t, x) ∈ H(γT ) are given functions.
Note that, according to conditions (5) a one-to-one correspondence is established

between the elements of the control space .{[u(t), ϑ(t)]} and the space of controlled
process states .{v(t, x)}.

It is required to find such controls .u0(t) ∈ H(0, T ) and .ϑ0(t) ∈ H(0, T ) that
minimize the functional

.

J [u(t), ϑ(t)] =
∫

Q

{[v(T , x) − ξ1(x)]2 + [vt (T , x) − ξ2(x)]2}dx

+
∫ T

0
{αM2[t, u(t)] + βN2[t, ϑ(t)]}dt,

(6)

where .α, β > 0 and .ξ1(x) ∈ H(Q) .ξ2(x) ∈ H(Q) are given functions, defined on
set of solutions of boundary value problem (1)–(5).

The sought controls .u0(t) and .ϑ0(t)should be found as a functional of the
controlled process’s state, i.e. as

.u0(t) = u[t, v(t, x), vt (t, x)], t ∈ (0, T ),

.ϑ0(t) = ϑ[t, v(t, x), vt (t, x)], t ∈ (0, T ).

3 Generalized Solution of Boundary Value Problem

As it is known, in the study of applied control problems it is advisable to use the
concept of a generalized solution of a boundary value problem.
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Definition 1 A generalized solution of the boundary value problem (1)–(5) is a
function .v(t, x) ∈ H(QT ), that together with the generalized derivatives .vt (t, x)

and .vxi (t, x) satisfies the integral identity

.

∫
Q

(vt (t, x)φ(t, x))
∣∣t2
t1
dx=

∫ t2

t1

{
∫

Q

[vt (t, x)φt (t, x)−
n∑

i,k=1

aik(x)vxk (t, x)φxi (t, x)

− c(x)v(t, x)φ(t, x)

+ (
λ

∫ T

0
K(t, τ )v(τ, x)dτ

+ g(t, x)f [t, u(t)])φ(t, x)]dx

+
∫

γ

(b(t, x)p[t, ϑ(t)] − a(x)v(t, x))φ(t, x)dx}dt

(7)

for any .t1 and .t2 .(0 < t1 ≤ t ≤ t2 ≤ T ) and any function .φ(t, x) ∈ H1(QT ), and
satisfies the initial conditions in the weak sense, i.e. we have the next equalities

.

lim
t→t0

∫
Q

[v(t, x) − ψ1(x)]φ0(x)dx = 0,

lim
t→t0

∫
Q

[vt (t, x) − ψ1(x)]φ1(x)dx = 0

for .φ0(x) ∈ H(Q) and .φ1(x) ∈ H(Q).

The solution of problem (1)–(5) we will seek in the form of

.v(t, x) =
∞∑

n=1

vn(t)zn(x), vn(t) =
∫

Q

v(t, x)zn(x)dx, (8)

where .zj (x) are generalized eigenfunctions of the boundary value problem

.

B[φ(t, x), zj (x)] ≡
∫

Q

[ n∑
i,k=1

aik(x)φxk (t, x)zjxi
(x) + c(x)zj (x)φ(t, x)

]
dx

+
∫

γ

a(x)zj (x)φ(t, x)dx

= λ2j

∫
Q

φ(t, x)zj (x)dx,

�zj (x) = 0, (t, x) ∈ γT , j = 1, 2, 3, . . . ,
(9)
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and they are form a complete orthonormal system in the Hilbert space .H(Q)

and the corresponding eigenvalues .λj satisfy the conditions .λj ≤ λj+1, j =
1, 2, 3, . . . , lim λj = ∞ at .j → ∞.

Using Liouville’s method,we find the Fourier coefficients .vn(t) for each fixed
.n = 1, 2, 3, . . ., as a solution of a linear Fredholm integral equation of the second
kind of the following form

.vn(t) = λ

∫ T

0
Kn(t, s)vn(s)ds + an(t), (10)

where

.Kn(t, s) = 1

λn

∫ t

0
sin λn(t − τ )K(τ, s)dτ, Kn(0, s) = 0, n = 1, 2, 3, . . . ,

and

.

an(t) =ψ1n cos λnt + 1

λn

ψ2n sin λnt

+ 1

λn

∫ t

0
sin λn(t − τ )(gn(τ )f [τ, u(τ )] + bn(τ )p[τ, ϑ(τ )])dτ,

(11)

together with

.gn(τ ) =
∫

Q

g[τ, x]zn(x)dx, bn(τ ) =
∫

γ

b[τ, x]zn(x)dx. (12)

The solution to integral equation (10) is found by formula

.vn(t) = λ

∫ T

0
Rn(t, s, λ)an(s)ds + an(t), (13)

where .Rn(t, s, λ) is the resolvent of kernel .Kn(t, s). The resolvent is a continuous
function for the values of the parameter .λ satisfying the following estimates for any
.n = 1, 2, 3, . . . ,

.|λ| <
λ1

T
√

K0
, (14)

where

.K0 =
∫ T

0

∫ T

0
K2(t, τ )dτdt,
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and

.

∫ T

0
R2

n(t, s, λ)ds ≤ K0T

(λn − |λ|T √
K0)2

. (15)

Thus, the solution to the boundary value problem (1)–(5) according to (8)–(9) has
the form

.v(t, x) =
∞∑

n=1

[
λ

∫ T

0
Rn(t, s, λ)an(s)ds + an(t)

]
zn(x) (16)

differentiating with respect to .t , we obtain

.vt (t, x) =
∞∑

n=1

[
λ

∫ T

0
R′

nt (t, s, λ)an(s)ds + a′
n(t)

]
zn(x).

Taking into account (11)–(15) and the inequality

.

∫ T

0
R2

nt (t, s, λ)ds ≤ T K0λ
2
n

(λn − |λ|T √
K0)2

. (17)

Based on these calculations, one can prove .v(t, x), vt (t, x) ∈ H(QT ).
The solution (16) of the boundary value problem (1)–(5) we rewrite in the form

.v(t, x) =
∞∑

n=1

{
ψn(t, λ)

+ 1

λn

∫ T

0
εn(t, η, λ)[gn(η)f (η, u(η)) + bn(η)p(η, ϑ(η))]dη

}
zn(x), (18)

where

.εn(t, η, λ) =
{
sin λ(t − η) + λ

∫ T

η Rn(t, s, λ) sin λn(s − η)ds, 0 ≤ η ≤ t,

λ
∫ T

η
Rn(t, s, λ) sin λn(s − η)ds, t ≤ η ≤ T ,

is continuous at .η = t and

.

ψn(t, λ) =ψ1n[cosλnt + λ

∫ T

0
Rn(t, s, λ) cos λnsds]

+ ψ2n

λn

[sinλnt + λ

∫ T

0
Rn(t, s, λ) sin λnsds].

(19)

Lemma 1 The function .v(t, x) is an element of the Hilbert space .H(QT ).
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Proof The assertion of the lemma follows from the inequality

.

∫ T

0

∫
Q

v2(t, x)dxdt =
∫ T

0

∞∑
n=1

v2n(t)dt

≤ 2
∫ T

0

∞∑
n=1

{
ψ2

n(t, λ) + 2

λ2n
[
∫ T

0
ε20(t, η, λ)g2n(η)dη

∫ T

0
f 2(η, u(η))dη

+
∫ T

0
ε2n(t, η, λ)b2n(η)dη

∫ T

0
p2(η, ϑ(η))]

}
dη

≤ 4T
∞∑

n=1

(
1 + λ2K0T

2

(λ2n − |λ|
√

K0T 2)2

){
ψ2
1n + ψ2

2n

λ2n

+ 2

λ2n
[
∫ T

0
g2n(τ )dτ ‖f (t, u(t))‖2H(0,T ) +

∫ T

o

b2n(τ )dτ · ‖p(t, υ(t))‖2H(0,T )]
}

≤ 4T

(
1 + λ2K0T

2

(λ21 − |λ|
√

K0T 2)2

){
‖ψ1(x)‖2H(Q) + 1

λ21

‖ψ2(x)‖2H(Q)

+ 2

λ2n
[‖g(t, x)‖2H(0,T ) ‖f (t, u(t))‖2H(0,T )

+ ‖b(t, x)‖2H(0,T ) ‖p(t, ϑ(t))‖2H(0,T )]
}

< ∞,

i.e. .v(t, x) ∈ H(QT ). �
Lemma 2 The function .vt (t, x) is an element of the Hilbert space .H(QT ).

Proof Differentiating by t the function (16) .v(t, x) we get

.vt (t, x) =
∞∑

n=1

v′
n(t)zn(x) =

∞∑
n=1

{
ψ ′

n(t, λ)

+ 1

λn

∫ T

0
ε′
nt (t, η, λ)[gn(η)f (η, u(η)) + bn(η)p(η, ϑ(η))]dη}zn(x)

}

=
∞∑

n=1

{
ψ1n

[
− λn sin λnt + λ

∫ T

0
R′

nt
(t, s, λ) cos λnsds

]

+ ψ2n

λn

[
λn cos λnt + λ

∫ T

0
R′

nt
(t, s, λ) sin λnsds

]

+ 1

λn

∫ T

0
ε′
nt (t, η, λ)[gn(η)f (η, u(η)) + bn(η)p(η, ϑ(η))]dη

}
zn(x),
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where now

.ε′
nt (t, η, λ) =

{
λn cos λn(t − η) + λ

∫ T

η R′
nt (t, s, λ) sin λn(s − η)ds, 0 ≤ η ≤ t,

λ
∫ T

η R′
nt (t, s, λ) sin λn(s − η)ds, t ≤ η ≤ T ,

has at .η = t a jump equal to .λn. The assertion of the lemma follows from the
inequality

.

∫ T

0

∫
Q

v2t (t, x)dxdt =
∫ T

0

∫
Q

( ∞∑
n=1

v′
n(t)zn(x)

)2

dxdt =
∫ T

0

∞∑
n=1

v′2
n (t)dt

≤ 2
∫ T

0

∞∑
n=1

{
ψ ′2

nt
(t, λ) + 2

λ2

∫ T

0
ε′2
nt

(t, η, λ)g2n(η)dτ

∫ T

0
f 2(η, u(η))dη

+
∫ T

0
ε′
n(t, η, λ)b2n(η)

∫ T

0
p2(η, ϑ(η))}dη

}
dt

≤ 2
∫ T

0

∞∑
n=1

{
2ψ2

1n

[
λ2n + λ2

∫ T

0
R′2

nt
(t, s, λ)ds

∫ T

0
cos2 λnsds

]

+ 2
ψ2
2n

λ2n

[
λ2n + λ2

∫ T

0
R′2

nt
(t, s, λ)ds

∫ T

0
sin2 λnsds

]

+ 2

λ2n

∫ T

0
ε′2
nt

(t, η, λ)g2n(η)dη

∫ T

0
f 2(η, u(η))dη

+
∫ T

0
ε′
n(t, η, λ)b2n(η)

∫ T

0
p2(η, ϑ(η))}dη

}
dt

≤ 4
∫ T

0

∞∑
n=1

{
ψ2
1n

[
λ2n + λ2

K0T
2λ2n

(
√

λ2n − |λ|
√

K0T 2
)2

]

+ ψ2
2n

λ2n

[
λ2n + λ2

K0T
2λ2n

(
√

λ2n − |λ|
√

K0T 2)2

]

+ 2

λ2n

[
λ2n + λ2

K0T
2λ2n

(
√

λ2n − |λ|
√

K0T 2)2

] ∫ T

0
g2n(η)dη ‖f (t, u(t))‖2H(0,T )

+
∫ T

0
b2n(η)dη ‖p(t, ϑ(t))‖2H(0,T )

}
dt

≤ 4T
∞∑

n=1

(
1 + λ2K0T

2

(
√

λ2n − |λ|
√

K0T 2)2

){
λ2nψ

2
1n + ψ2

2n+
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+
∫ T

0
g2n(η)dη ‖f (t, u(t))‖2H(0,T )

+
∫ T

0
b2n(η)dη ‖p(t, ϑ(t))‖2H(0,T )

}

≤ 4T

(
1 + λ2K0T

2

(

√
λ21 − |λ|

√
K0T 2)2

){
‖ψ1(x)‖2H1(Q)

+ ‖ψ2(x)‖2H(Q) + ‖g(t, x)‖2H(Q) ‖f (t, u(t))‖2H(0,T )

+ ‖b(t, x)‖2H(0,T ) ‖p(t, ϑ(t))‖2H(0,T )

}
< ∞

i.e. .vt (t, x) ∈ H(QT ). �

4 On Solvability of the Synthesis Problem

For functional (6), the Bellman functional is defined in the form

.

S[t, ω(t, x)] = min
u∈U,ϑ∈V

{ ∫ T

t

{
αM2[τ, u(τ )]

+ βN2[τ, ϑ(τ )]}dτ +
∫

Q

‖ ω(T , x) − ξ(x) ‖2 dx
}
,

(20)

where .ω(t, x) = {v(t, x), vt (t, x)} is the vector function of states; .ξ(x) =
{ξ1(x), ξ2(x)} is the vector function of the desired state of the controlled process
at the moment of time T ; .‖ . ‖ is the norm of vector; U is the set of allowed
values of control .u(t), t ∈ (0, T ); V is the set of allowed values of control .ϑ(t), t ∈
(0, T ). According to the Bellman-Egorov scheme, assuming that .S[t, ω(t, x)] is
differentiable function with respect to t , it is Frechet differentiable functional and
can be rewritten as

.

−∂S[t, ω(t, x)]
∂t

�t = min
u∈U,ϑ∈V

{ ∫ t+�t

t

(
αM2[τ, u(τ )]

+ βN2[τ, ϑ(τ )]
)

dτ + ds[t, ω(t, x); �ω(t, x)] + o(�t)

+ δ[t, ω(t, x); �ω(t, x)]
}
,

(21)

where .�ω(t, x) = ω[t + �t, x] − ω[t, x], .ds[t, ω(t, x); �ω(t, x)] is a Frechet
differential, .δ[t, ω(t, x); �ω(t, x)] are infinitesimal values with respect to .�t .
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As the Frechet differential is linear functional with respect to .�ω(t, x) ∈
H 2(QT ) = H(QT ) × H(QT ) the following equality holds

.

ds[t, ω(t, x); �ω(t, x)] =
∫

Q

m∗(t, x)�ω(t, x)dx

≡
∫

Q

{
m1(t, x)�v(t, x) + m2(t, x)�vt (t, x)

}
dx,

(22)

where * is the transpose symbol; the vector-function .m(t, x) = {m1(t, x),m2(t, x)}
is the gradient of the functional .S[t, ω(t, x)] and belongs to the space .H 2(QT ) in
almost all .(t, x) ∈ QT . Note, that .m(t, x) is defined depending on the functional
.S[t, ω(t, x)], i.e.

.m(t, x) = m(t, x, S[t, ω(t, x)]). (23)

The following identity holds

.

∫
Q

m∗(t, x)�ω(t, x)dx =
∫

Q

(m2(t, x)�vt (t, x))t+�t
t dx

+
∫

Q

m1(t, x)�v(t, x)dx

−
∫

Q

�m2(t, x)vt (t + �t, x)dx.

(24)

Taking (22)–(24) into account equality (21) can be rewritten in form of

.

−∂S[t, ω(t, x)]
∂t

�t = min
u∈U,ϑ∈V

{ ∫ t+�t

t

[
αM2[τ, u(τ )]

+ βN2[τ, ϑ(τ )]
]
dτ +

∫
Q

(m2(τ, x)vt (τ, x))t+�t
t dx

+
∫

Q

[m1(t, x)�v(t, x) − �m2(t, x)vt (t + �t, x)]dx

+ o(�t) + δ[t, ω(t, x); �ω(t, x)]
}
.

(25)



On the Solvability of the Synthesis Problem for Optimal Control 193

Let .m2(t, x) ∈ H1(QT ). Then in the integral identity (7) assuming that .φ(t, x) ≡
m2(t, x) and .t1 = t, t2 = t + �t we have

.

∫
Q

(m2(τ, x)vt (τ, x))
∣∣t+�t

t
dt ≡

∫ t+�t

t

{ ∫
Q

[
m2t (τ, x)vt (τ, x)

−
n∑

i,k=1

aik(x)vxk (τ, x)m2xi (τ, x) − c(x)v(τ, x)m2(τ, x)

+
(

λ

∫ T

0
K(τ, σ )v(σ, x)dσ + g(τ, x)f [τ, u(τ )]

)
m2(τ, x)

]
dx

+
∫

γ

(
b(τ, x)p[τ, ϑ(τ )] − a(x)v(τ, x)

)
m2(τ, x)dx

}
dτ.

Taking this identity into account, we rewrite the equality (25) in the form

. − ∂S[t, ω(t, x)]
∂t

= min
u∈U,ϑ∈V

{ 1

�t

∫ t+�t

t

[
αM2[τ, u(τ )] + βN2[τ, ϑ(τ )]

]
dτ

+ 1

�t

∫ t+�t

t

( ∫
Q

[
m2t (τ, x)vt (τ, x) −

n∑
i,k=1

aik(x)vxk (τ, x)m2xi (τ, x)−

− c(x)v(τ, x)m2(τ, x) +
(

λ

∫ T

0
K(τ, σ )v(σ, x)dσ+

+ g(τ, x)f [τ, u(τ )]
)

m2(τ, x)
]
dx +

∫
γ

(
b(τ, x)p[τ, ϑ(τ )]−

− a(x)v(τ, x)

)
m2(τ, x)dx

)
dτ +

∫
Q

[
m1(t, x)

�v(t, x)

�t
−

− �m2(t, x)

�t
vt (t + �t, x)

]
dx + o(�t)

�t
+ δ[t, ω(t, x); �ω(t, x)]

�t

}
.

According the following relation

. lim
t→+0

o(�t)

�t
= 0, lim

t→+0

δ[t, ω; �ω]
�t

= 0,

we obtain nonlinear integro-differential equation of Bellman-type

. − ∂S[t, ω(t, x)]
∂t

= min
u∈U,ϑ∈Y

{
αM2[t, u(t)] +

∫
Q

m2(t, x)g(t, x)f [t, u(t)]dx+

+ βN2[t, ϑ(t)] +
∫

γ

m2(t, x)b(t, x)p[t, ϑ(t)]dx+
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+
∫

Q

(
λ

∫ T

0
K(t, τ )v(τ, x)dτ

)
m2(t, x)dx +

∫
Q

m1(t, x)vt (t, x)dx−

−
∫

Q

[ n∑
i,k=1

aik(x)vxk (t, x)m2xi
(t, x) + c(x)v(t, x)m2(t, x)

]
dx−

−
∫

γ

a(x)v(t, x)m2(t, x)dx
}
. (26)

According to (20) this equation should be considered with the condition

.S[T ,ω(T , x)] =
∫

Q

‖ ω(T , x) − ξ(x) ‖2 dx. (27)

Thus, function .S[t, ω(t, x)] should be found as a solution to problem (26)–(27),
which is called the Cauchy-Bellman problem. To solve this problem, we first solve
the minimization problem in the right-hand side of Eq. (25).

Consider the case when U and V are open sets. Using the classical method for
solving the extremum problem, we find that the “controls suspicious for optimality”
.u0(t) are obtained as follows.

The desired control .u0(t) is determined according to the optimality conditions in
the form of the equality

.2αM[t, u(t)]Mu[t, u(t)] +
∫

Q

m2(t, x)g(t, x)dxfu[t, u(t)] = 0 (28)

and a differential inequality

.2α

(
M[t, u(t)]Mu[t, u(t)]

)
u

+
∫

Q

m2(t, x)g(t, x)dxfuu[t, u(t)] > 0

which are fulfilled simultaneously for almost all .(t, x) ∈ QT . A differential
inequality is a difficult condition to verify. However, it can be transformed to the
form of

.fu[t, u(t)]
(M[t, u(t)]Mu[t, u(t)]

fu[t, u(t)]
)

u
> 0. (29)

Let the optimality conditions (28) and (29) be satisfied. Then, according to
the implicit function theorem from equality (28), the control .u(t) is uniquely
determined, that is, there exists a function .ϕ1 such that

.u0(t) = ϕ1[t,
∫

Q

m2(t, x)g(t, x)dx, α]

for .t ∈ (0, T ).
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Similarly, the “boundary controls suspicious for optimality” .ϑ0(t) are obtained
as follows.

According to the optimality conditions in the form of the equality

.2βN[t, ϑ(t)]Nϑ [t, ϑ(t)] +
∫

γ

m2(t, x)ε(t, x)p[t, ϑ(t)]dx = 0

and the differential inequality

.pϑ [t, ϑ(t)]
(N[t, ϑ(t)]Nϑ [t, ϑ(t)]

pϑ [t, ϑ(t)]
)

ϑ
> 0

the desired control .ϑ0(t) is determined by the formula

.ϑ0(t) = h1[t,
∫

γ

m2(t, x)ε(t, x)dx, β]

for .t ∈ (0, T ) and a suitable function .h1.

5 Conclusion

This article shows some features of the considered synthesis problem, in particular,
the presence of the Fredholm integral operator in the boundary value problem
significantly affects the solvability of the Cauchy-Bellman problem, and as well
as on the construction of an algorithm for synthesizing controls depending on the
state of the controlled process. The results obtained can be used in the development
of new research methods and methods for solving nonlinear synthesis problems.
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On the Determination of a Coefficient
of an Elliptic Equation via Partial
Boundary Measurement

Hyeonbae Kang, June-Yub Lee, and Igor Trooshin

Abstract We consider an inverse problem to identify coefficient of elliptic equation
via partial boundary measurement when the given domain is a rectangle and the
coefficient depends only on one variable. We prove unique identifiability and
provide reconstruction procedure in this case using classical results of the inverse
Sturm–Liouville theory.

1 Introduction

In this paper we are interested in the inverse problem to identify a unknown potential
of stationary Schrödinger equation by means of the partial Dirichlet-to-Neumann
(DtN) map.

Let .� be a bounded Lipschitz domain in .Rn, .n = 2, 3, with the connected
boundary .∂�. Let .�1 and .�2 be open connected subsets of .∂�. .�1 is the part of
.∂� where the input is assigned and .�2 is where measurement is made. The partial
DtN map .�q is defined by

.�q(f ) := ∂u

∂ν

∣
∣
∣
∣
�2

, supp(f ) ⊂ �1, (1)

H. Kang
Department of Mathematics and Institute of Applied Mathematics, Inha University, Incheon,
South Korea
e-mail: hbkang@inha.ac.kr

J.-Y. Lee
Department of Mathematics, Ewha Womans University, Seoul, South Korea
e-mail: jyllee@ewha.ac.kr

I. Trooshin (�)
Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto, Japan
e-mail: trushin@shinshu-u.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ruzhansky, J. Wirth (eds.), Harmonic Analysis and Partial
Differential Equations, Trends in Mathematics,
https://doi.org/10.1007/978-3-031-24311-0_12

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24311-0protect T1	extunderscore 12&domain=pdf

 66 3599 a 66 3599 a
 
hbkang@inha.ac.kr
hbkang@inha.ac.kr
hbkang@inha.ac.kr

 66 3890
a 66 3890 a
 
jyllee@ewha.ac.kr
jyllee@ewha.ac.kr
jyllee@ewha.ac.kr

 66 4180 a 66 4180 a
 
trushin@shinshu-u.ac.jp
trushin@shinshu-u.ac.jp
trushin@shinshu-u.ac.jp
trushin@shinshu-u.ac.jp
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12
https://doi.org/10.1007/978-3-031-24311-0_12


198 H. Kang et al.

where u is the solution of the following problem:

.

{

�u + qu = 0 in �,

u|∂� = f ∈ H 1(∂�).
(2)

The inverse problem is to determine q by means of .�q . This inverse problem is
closely related to the inverse problem to identify an unknown conductivity by means
of the partial Dirichlet-to-Neumann (DtN) map.

The conductivity distribution .γ of .� is a continuous function on .� satisfying
.γ (x) > c0, .x ∈ �, for some .c0 > 0. The partial DtN map .�

�1,�2
γ is defined to be

.��1,�2
γ (f ) := γ

∂u

∂ν

∣
∣
∣
∣
�2

, f ∈ H 1/2(∂�), supp(f ) ⊂ �1, (3)

where u is the solution of the problem

.

{

∇ · (γ∇u) = 0 in �,

u|∂� = f.
(4)

By the well-known Liouville transform .q = −�
√

γ /
√

γ , the inverse con-
ductivity problem can be transformed to our problem under investigation and the
corresponding DtN maps are related via

.�q(f ) = 1

2
γ −1 ∂γ

∂ν
f + γ −1/2�γ (γ −1/2f ). (5)

If .�1 = �2 = ∂�, then there is a well-established theory on uniqueness and
reconstruction of the conductivity [1, 2, 7, 11, 12, 16–18]. However, in practice some
part of .∂� is inaccessible, and hence the problem of identification via a partial DtN
map has practical significance [3, 5, 6, 8–10]. These results mentioned are mainly
concerned with infinitely many measurements, but in our paper we are dealing with
a single partial measurement.

Let us now turn to a very special situation. Let .� = (0, π)×(0, L) ⊂ R
2 for some

.L > 0. We assume that the conductivity .γ depends only on x, i.e., .γ (x, y) = γ (x).
Let

.�l = {0} × [0, L], �r = {π} × [0, L], and �b = [0, π] × {0}.

When .�1 = �l ∪ �r and .�2 = �b , it is well known that uniqueness holds. In
fact, .��1,�2

γ (f ) for a single nonzero f determines .γ in an explicit simple formula
[11]. One probable reason for this is that one can see inside .� through the boundary
portion .�b since .γ depends only on x. Thus in this case the genuine boundaries
seem to be .�l and .�r .
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In this paper we deal with the Schrödinger equation when .q(x, y) = q(x) and
.�1 = �2 = �l = {0}×[0, L] in terms of the measurement corresponding to a single
Dirichlet datum.

We specify the Dirichlet data to be used: .suppf ⊂ �l and .f ∈ H 1(∂�). We
expand the given Dirichlet data f in terms of the Fourier sine series

.f (y) =
∞∑

n=1

fn sin
nπy

L

and denote by K the family of those functions .f ∈ H 1(∂�) with support in .�l such
that there exists a sequence of natural numbers .k(n), .n ≥ N for some fixed N , with
the property

.fk(n) 	= 0,
∞
∑

n=N

1

k(n)
= ∞. (6)

For example, we can take the following sequence

.k(n) = n

σ
(1 + εn), 0 < σ ≤ 1, εn → 0.

The set K is not empty for arbitrary small support of Dirichlet data f . For
example, the function .f (x) = (x − x0)

2 − ε2 for .x ∈ [x0 − ε, x0 + ε] and .f (x) = 0
for .x ∈ [0, x0 − ε] ∪ [x0 + ε, L] belongs to K and its support can be arbitrary small.
Let us also mention that linear combinations of basic trigonometric functions do not
belong to K .

The main result of this paper is the following:

Theorem 1 Suppose that .q(x) ∈ L2(0, π) and .q̃(x) ∈ L2(0, π) are functions
depending only on x-variable, and that .�1 = �2 = �l . If .�q(f ) = �q̃(f ) for a
single .f ∈ K , then .q(x) = q̃(x) almost everywhere in .�.

To prove this theorem we use the fact (see appendix) that the solution u of (28)
is given by

.u(x, y) =
∞
∑

n=1

un(x) sin
nπy

L
,

where .un(x), .n ∈ N, are the solutions of the problems

.

⎧

⎪⎨

⎪⎩

u′′
n + q(x)un = n2π2

L2
un,

un(0) = fn, un(π) = 0.

(7)
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Then DtN map is then represented as

.�q(f )(0, y) = −
∞∑

n=1

u′
n(0) sin

nπy

L
. (8)

Coefficients .u′
n(0) can be found uniquely from .�q(f )(0, y). Then the inverse

problem is to determine .q(x) in terms of the data .{un(0) = fn, u′
n(0) : n ∈ N}

and Theorem 1 follows directly from the following theorem

Theorem 2 Let .un(x), .n ∈ N, be the solutions of (7), and .ũn(x), .n ∈ N, be the
solution of (7) with .q(x) replaced with .q̃(x). If .k(n) is defined by (6), .fk(n) 	= 0 and
.u′

k(n)(0) = ũ′
k(n)(0) for all .n ∈ N, then .q(x) = q̃(x) almost everywhere in .(0, π).

In the case when the coefficient .q(x) is an analytic function we can use the
method of standard models [4] to reconstruct the coefficient .q(x). Let us suppose
that it is known a priori, that

.q(x) =
∞
∑

k=0

qk
xk

k! (9)

with the radius of convergence .≥ π . In such situation it is sufficient to reconstruct
the sequence of coefficients .qk, k = 0, . . . ,∞. To do so, we can employ the
following algorithm: First

.q0 = 2 lim
l→∞

(
k(l)π

L

)3
(

uk(l)(0)

u′
k(l)

(0)
+ L

k(l)π
tanh

k(l)π

L

)

. (10)

Next we find recurrently

.qn = 2n+1 lim
l→∞

(
k(l)π

L

)n+3
[

uk(l)(0)

u′
k(l)(0)

− mn

(

−
(

k(l)π

L

)2
)]

(11)

Here .mn(λ) = −sn(π, λ)/cn(π, λ), where .sn(x, λ) and .cn(x, λ) are solutions to the
equation .−y ′′ − qn(x)y = λy subject to initial conditions .cn(0, λ) = s′

n(0, λ) = 1,
.c′
n(0, λ) = sn(0, λ) = 0 with

.qn(x) =
n−1
∑

k=0

qk
xk

k! . (12)

Theorem 2 is proved in the next section. In Sect. 3 we justify the reconstruction
algorithm (10)–(11).
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2 Inverse Spectral Problem

Here we prove the Theorem 2. For .λ ∈ C, let .F(x, λ) be the solution to the boundary
value problem

.

{−F ′′(x, λ) − q(x)F (x, λ) = λF(x, λ),

F ′(0, λ) = 1, F (π, λ) = 0.
(13)

The function .F(x, λ) is called the Weyl solution and the function .m(λ) = F(0, λ)

is called the Weyl function of the boundary problem

.

{−y ′′ − q(x)y = λy,

y ′(0) = y(π) = 0.
(14)

It is well known that the Weyl function .m(λ), .λ ∈ C, determines the potential .q(x)

of the problem (14) uniquely. (See, for example, [4, pp. 29–31]).
The Weyl function m can be represented as

.m(λ) = − s(π, λ)

c(π, λ)
, (15)

where .s(x, λ) and .c(x, λ) are solutions to the equation

. − y ′′ − q(x)y = λy (16)

subject to initial conditions

.c(0, λ) = s′(0, λ) = 1, c′(0, λ) = s(0, λ) = 0. (17)

To show (15) we introduce the solution .χ(x, λ) to (16) subject to initial conditions

.χ(π, λ) = 0, χ ′(π, λ) = −1.

Since functions .F(x, λ) and .χ(x, λ) satisfy the same boundary condition on the
right side of the interval, we have

.F(x, λ) = a(λ)χ(x, λ)

for every .λ ∈ C. Let us find that .a(λ). By differentiating .δ(x, λ) = χ(x, λ)c′(x, λ)−
χ ′(x, λ)c(x, λ) with respect to x, one can see immediately that .δ(x, λ) is indepen-
dent of x, and hence

.c(π, λ) = −χ ′(0, λ).
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Since

.1 = F ′(0, λ) = a(λ)χ ′(0, λ) = −a(λ)c(π, λ),

we get

.F(x, λ) = −χ(x, λ)/c(π, λ), (18)

and hence

.m(λ) = F(0, λ) = −χ(0, λ)/c(π, λ). (19)

On the other hand, one can also see that .χ(x, λ)s′(x, λ) − χ ′(x, λ)s(x, λ) is
independent of x, and hence

.s(π, λ) = χ(0, λ).

Thus we get (15) from (19).
The solutions .un(x) and .F(x,− (

nπ
L

)2
) satisfy the same boundary condition

.un(π) = F(π,− (
nπ
L

)2
) = 0. As result, the solution .un(x) to (7) may be

represented as

.un(x) = u′
n(0)F

(

x,−
(nπ

L

)2
)

. (20)

The Sturm-Liouville problem (14) possesses only finitely many negative eigen-
values (see [15, p. 38], [14, p. 7]).

So we may assume, by excluding corresponding .k(n) from further consideration,

that all of .−
(

k(n)π
L

)2
are not eigenvalues of (14) (and the corresponding problem,

where the potential .q(x) is replaced with .q̃(x)).
After such adjustment we have .u′

k(n)(0)uk(n)(0) 	= 0 for all n. Then it follows
from the coincidence .u′

k(n)(0) = ũ′
k(n)(0) and .uk(n)(0) = ũk(n)(0) and (20) that

.
uk(n)(0)

u′
k(n)(0)

= F

(

0,−
(nπ

L

)2
)

= m

(

−k(n)2π2

L2

)

= m̃

(

−k(n)2π2

L2

)

, n ∈ N,

(21)

where .m̃ is the Weyl function corresponding to the potential .q̃ . Thus, to complete
the proof it is sufficient to show that (21) implies that

.m(λ) = m̃(λ) for all λ ∈ C. (22)
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Let .c̃(x, λ) and .s̃(x, λ) be the solutions of (16) with .q(x) replaced with .q̃(x)

satisfying the same initial conditions as .c(x, λ) and .s(x, λ), respectively. Then
.m̃(λ) = −s̃(π, λ)/c̃(π, λ). Let

.G(ρ) := [m̃(ρ2) − m(ρ2)]c(π, ρ2)c̃(π, ρ2). (23)

By (15) we get

.G(ρ) = s(π, ρ2)c̃(π, ρ2) − c(π, ρ2)s̃(π, ρ2). (24)

and we see, that .G(ρ) has .i k(n)π
L

as its zeros.
It is well known (see, for example, [4, pp. 8, 13]) that .s(π, ρ2), c(π, ρ2) and

consequently .G(ρ) is entire function of exponential type and is bounded on the real
axis.

To show that .G(ρ) ≡ 0 for .ρ ∈ C, we now invoke the following corollary of
Carleman’s lemma (see [13, pp. 222–223]).

Theorem 3 (Corollary of Carleman’s Lemma) If .f (z) is an entire nonzero
function of exponential type, bounded on the real axis, and if .zn = rne

iθn (n =
1, 2, 3, . . .) are the zeros of .f (z) other than .z = 0, then the series

.

∞
∑

n=1

sin θn

rn

is absolutely convergent.

Since .G(ρ) has .i k(n)π
L

as its zeros and the series .
∑∞

n=1
L

k(n)π
does not converge

because of (6), we have .G(ρ) ≡ 0 and consequently .m̃(ρ2) ≡ m(ρ2) and it
completes the proof of the Theorem 2.

3 Reconstruction Procedure

In the case of an analytic coefficient .q(x) we apply the method of standard models
[4, pp. 74–77] to reconstruct the coefficient .q(x). Let us suppose that it is known a
priori, that

.q(x) =
∞
∑

k=0

qk

xk

k!

with radius of convergence .≥ π . In such situation it is sufficient to reconstruct the
sequence of coefficients .qk , .k = 0, . . . ,∞.
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We now take arbitrary analytic coefficient .q̃0(x) and sequence of arbitrary
analytic coefficients .q̃n(x), n ≥ 1, such that the first n Maclaurin coefficients of
.q(x) and .q̃n(x) coincide. As the coefficients .q̃nk , .k ≥ n are arbitrary, we can put
.q̃nk = 0, .k ≥ n, and obtain

.q̃n(x) =
n−1
∑

k=0

qk
xk

k! +
∞
∑

k=n

q̃nk
xk

k! .

Denote .F̃n(x, λ) and .m̃n(λ) the Weyl solution and Weyl function respectively of
problem (14) with q replaced with .q̃n

.

{−F̃ ′′
n (x, λ) − q̃n(x)F̃n(x, λ) = λF̃n(x, λ),

F̃ ′
n(0, λ) = 1, F̃n(π, λ) = 0.

(25)

Multiplying (13) by .F̃n(x, λ) and (25) by .F(x, λ), subtracting and integrating we
see, that

.

∫ π

0
(q(x) − q̃n(x))F (x, λ)F̃n(x, λ)dx = m̃n(λ) − m(λ). (26)

Denote .D = {ρ : argρ ∈ [δ, π − δ]}, .δ > 0. It follows directly from
representation (18), that Weyl solution has the following asymptotic behavior,

.F(x, λ) = 1

iρ
eiρx

(

1 + ψ(x, ρ)

ρ

)

,

where the function .ψ(x, ρ) is continuous and bounded for .x ∈ [0, π], .ρ ∈ Dδ =
{ρ : argρ ∈ [δ, π − δ]}, .|ρ| ≥ ρ� with fixed sufficiently large .ρ� > 0 and arbitrary
fixed .δ > 0.

By the choice of the .q̃n(x) we have

.q(x) − q̃n(x) = xn

n! (qn − q̃nn + p(x)), p(x) ∈ C[0, 1], p(0) = 0.

Then we can calculate (see [4, p. 77])

.

∫ π

0
(q(x) − q̃n(x))F (x, λ)F̃n(x, λ)dx = (−1)n4

(2iρ)n+3 (qn − q̃nn + o(1))

for .ρ ∈ Dδ, |ρ| → ∞ and, consequently, from (26)

.qn = q̃nn + (−1)n+1

4
lim|ρ|→∞,ρ∈D

(2iρ)n+3(m(λ) − m̃n(λ)).



Determination of a Coefficient of an Elliptic Equation via Partial Boundary. . . 205

Let us remind now (see (21)), that

.m(−k(n)2π2

L2 ) = uk(n)(0)

u′
k(n)(0)

.

It allows us to find immediately

.qn = q̃nn + 2n+1 lim
l→∞

(
k(l)π

L

)n+3
[

uk(l)(0)

u′
k(l)(0)

− m̃n

(

−
(

k(l)π

L

)2
)]

.

If we take .q̃0(x) = 0, we can calculate directly

.q0 = 2 lim
l→∞

(
k(l)π

L

)3
(

uk(l)(0)

u′
k(l)(0)

+ L

k(l)π
tanh

k(l)π

L

)

and then, taking .q̃nk = 0, k ≥ n we come to the recurrent formulae (10)–(11).

Acknowledgments Third author conducted this research while being a visiting professor at Ewha
Womans University, Seoul, Korea.

Appendix: Representation of Solution to Schrödinger
Equation

In the case .f ∈ H 1(∂�), .suppf ⊂ �l = {0} × [0, L] we expand

.f (0, y) =
∞∑

n=1

fn sin
nπy

L
, (27)

with series uniformly convergent over .[0, L].
Theorem 4 In the case .f ∈ H 1(∂�), suppf ⊂ �l = {0} × [0, L] the solution
.u(x, y) of

.

{

�u + qu = 0 in �,

u|∂� = f on ∂�.
(28)

could be represented as uniformly convergent in .� series

.u(x, y) =
∞
∑

n=1

un(x) sin
nπy

L
, (29)
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where .un(x), .n ∈ N, are the unique solutions of the boundary problems

.

⎧

⎪⎨

⎪⎩

u′′
n + q(x)un = n2π2

L2
un,

un(0) = fn, un(π) = 0.

(30)

Proof We put

.u(x, y) =
∞
∑

n=1

un(x, y), un(x, y) = un(x) sin
nπy

L
, (31)

As .un(x, y) satisfy Eq. (28), to show that .u(x, y1, . . . , yN−1) satisfy Eq. (28) it is
sufficient to prove that series consisting of .un(x, y) and its corresponding partial
derivatives converge uniformly on .[ε, π] × [0, L] for every .ε > 0.

To show that we note that

.un(x) = fn�

(

x,−
(nπ

L

)2
)

where .�(x, λ) is the solution to the boundary value problem

.

{−�′′(x, λ) − q(x)�(x, λ) = λ�(x, λ),

�(0, λ) = 1,�(π, λ) = 0.

As in the proof of the Theorem 2, we show that

.�(x, λ) = −χ(x, λ)/s(π, λ),

with .s(x, λ) and .χ(x, λ) being solutions to the equation

. − y ′′ − q(x)y = λy, (32)

subject to initial conditions

.

s(0, λ) = 0, s′(0, λ) = 1,

χ(π, λ) = 0, χ ′(π, λ) = −1.
(33)

and hence

.un(x) = fnχ

(

x,−
(nπ

L

)2
)

/s

(

π,−
(nπ

L

)2
)

.
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There are known asymptotic formulas (see e.g. [4, pp. 8, 13])

.

χ(x, λ) = cos(ρ(π − x)) + O

(
1

ρ
e|τ |(π−x)

)

,

χ ′(x, λ) = ρ sin(ρ(π − x)) + O
(

e|τ |(π−x)
)

(34)

and

.s(x, λ) = sin(ρx)

ρ
+ O

(
1

ρ2 e|τ |x
)

. (35)

as .|ρ| → ∞ uniformly with respect to .x ∈ [0, π]. Here .λ = ρ2, τ = Imρ.
So for sufficiently large n there are uniform with respect to .x ∈ [0, π] estimates

.|un(x)| ≤ Cne−xnπ/L (36)

.|u′
n(x)| ≤ Cn2e−xnπ/L (37)

.|u′′
n(x) + q(x)un(x)| = |

(nπ

L

)2
un(x)| ≤ Cn3e−xnπ/L (38)

Hence, the series (29) converges uniformly on .[ε, π] × [0, L] for every .ε > 0 and
represents a solution of Eq. (28). Boundary conditions are satisfied according to the
maximum principle.
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Reconstruction from Boundary
Measurements: Complex Conductivities

Ivan Pombo

Abstract In this paper we show that following Nachman’s method we can still
reconstruct complex conductivities in .C1,1 from its Dirichlet-to-Neumann map in
three and higher dimensions. For such, we analyze all of his results and pinpoint
what really needs to be shown for complex conductivities. Moreover, we show the
existence of non-exceptional points for low frequency and .C1,1-domains. As far as
we are aware, this is the first reconstruction procedure for complex conductivities,
even though the proof follows easily by extending some of the theorems obtained
by Nachman to the complex case.

1 Introduction

In Electrical Impedance Tomography (EIT) we determine the interior impedance
inside a bounded domain .� by applying alternating electrical currents and measur-
ing the corresponding voltages at the boundary .∂�, or vice-versa. Impedance is the
inverse of admittance which is defined through .γ = σ + iωε, where .ω is the angular
frequency, .σ, ε are the electrical conductivity and permittivity of materials inside .�,
respectively.

Our working assumptions are

.γ ∈ C1,1(�̄) and isotropic, σ ≥ c > 0, ε ≥ 0, ω ∈ R
+, . (1)

� is a bounded domain with C 1,1 boundary in R
n, n ≥ 3 (2)

In applications, most data acquisition systems and respective algorithms focus
on computing the conductivity .σ . However, in certain applications it is highly
valuable to also obtain permittivity from boundary measurements. It brings extra
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knowledge to the table and allows us to distinguish more clinical conditions than
is possible with the conductivity alone. An example is the ability to distinguish
between pneumothorax and hyperinflation. Both scenarios correspond to regions
of low resistivity, which implies high conductivity, but the pneumothorax has zero
permittivity while the hyperinflation corresponds to low yet positive permittivity.
Other possible application is in multi-frequency EIT since the properties .σ and .ε

vary with the applied angular frequency .ω, while in the real case the frequency is
somewhat discarded.

Mathematically, the direct problem concerns the unique determination of the
electrical potential .u ∈ H 1(�) given a voltage .f ∈ H 1/2(∂�) set at the boundary,
modelled by

.

{
∇ · (γ∇u) = 0, in �

u|∂� = f
(3)

Uniqueness in .H 1(�) holds from the assumption .Re γ > 0, which implies by
the weak formulation that 0 is not a Dirichlet eigenvalue of the operator .∇ · (γ∇u)

in .�.
Formally, from each voltage .f ∈ H 1/2(∂�) and each corresponding electrical

potential .u ∈ H 1(�) we can determine the electrical current measured at the
boundary given by .γ ∂u

∂ν
. In essence, we can define for .γ ∈ L∞(�) the Dirichlet-to-

Neumann map .	γ f = γ ∂u
∂ν

, which holds weakly by

.	γ : H 1/2(∂�) → H−1/2(∂�), (4)

f �→ 〈	γ f, g〉 =
∫

�

γ∇u · ∇v dx,

where .v ∈ H 1(�) has trace .g ∈ H 1/2(∂�).
In 1980 A.P. Calderón [11] was the first to pose the mathematical problem

whether the conductivity .σ ∈ L∞(�) can be uniquely determined by boundary
measurements, .	γ , and if so how to reconstruct it. He showed that the linearized
problem at constant conductivities has a unique solution. In mathematical literature,
this is designated as Calderón’s problem or inverse conductivity problem. In medical
imaging the problem is know by Electrical Impedance Tomography (EIT).

After the initial work of Calderón there were many extensions to global unique-
ness results. In [34], Sylvester and Uhlmann used ideas of scattering theory, namely
the exponential growing solutions of Faddeev [15] to obtain global uniqueness in
dimensions .n ≥ 3 for smooth conductivities. Using this foundations the uniqueness
for lesser regular conductivities was further generalized for dimensions .n ≥ 3 in the
works of [1, 7, 8, 12, 13, 19, 26, 29, 32]. Currently, the best know result is due to
Haberman [18] for conductivities .γ ∈ W 1,3(�). The reconstruction procedure for
.n ≥ 3 was obtained in both [26] and [30] independently. As far as we are aware,
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there seems to be no literature concerning reconstruction for conductivities with less
than two derivatives.

In two dimensions the problem seems to be of a different nature and tools
of complex analysis were used to establish uniqueness. Nachman [27] obtained
uniqueness and a reconstruction method for conductivities with two derivatives. The
uniqueness result was soon extend for once-differentiable conductivities in [9] and
a corresponding reconstruction method was obtained in [22]. In 2006, Astala and
Päivärinta [2] gave a positive answer Calderón’s problem for .σ ∈ L∞(�), σ ≥ c >

0, by providing the uniqueness proof through the reconstruction process.
The first extension to admittances, and here forward also designated by complex-

conductivities, was in two-dimensions in [16]. Francini extended the work of Brown
and Uhlmann [9] in two-dimensions by proving uniqueness for small angular
frequencies and .γ ∈ W 2,∞. Afterwards, Bukgheim influential paper [10] proved the
general result in two-dimensions for complex-conductivities in .W 2,∞. He reduced
the (3) to a Schrödinger equation and shows uniqueness through the stationary
phase method (based on is work many extensions followed [3, 5, 31]). Recently,
by mixing techniques of [9] and [10], Lakshtanov et al. obtained in [24] uniqueness
for Lipschitz complex-conductivities in .R2. In [33], the author followed up their
work to show that it is possible to reconstruct complex-conductivity with a jump at
least in a certain set of points.

As far as we are aware, in dimensions higher than 2 there is no explicit literature
for complex-conductivities. As stated in [6], it is possible to obtain uniqueness for
twice differentiable complex-conductivities by the approach obtained in [34] and
[29]. Furthermore, there is reference of a theoretical work for direct reconstruction
method in the case of complex conductivities, since most works restrict themselves
to the real scenario.

However, in [20] Nachman’s reconstruction method is used to find complex
conductivities from boundary measurements. This is a promising result that requires
a theoretical background to support it, even if for some researchers it seems folklore.

Hence, in this paper, we show that Nachman’s reconstruction method holds for
complex conductivities. To be precise, the main result of this paper is the following:

Theorem 1 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3. Let .γ1, γ2 ∈ C1,1(�)

be complex-valued conductivities, such that .Re γj ≥ c > 0 for .j = 1, 2. Further,
let .	1, 	2 be their corresponding Dirichlet-to-Neumann maps.

If .	1 = 	2, then .γ1 = γ2 in .�.

Under careful examination of [26], we highlight here that the only requirement
for the reconstruction method to hold concerns the uniqueness of boundary value
problems with complex coefficient for .f ∈ H 3/2(∂�). For convenience of the
reader, we present here the most essential results of Nachman’s magnificent work,
taking a sequential tour through the pieces needed to make this work. Hence, in
essence this paper works as a review of Nachman’s procedure highlighting the
requirements for it to work for complex-conductivities.
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Furthermore, following the work of [14] we show that the complex-conductivity
can also be obtained from low-frequency asymptotics through the exponential
growing solutions.

2 Uniqueness of Schrödinger Inverse Problem

The recurring idea on Calderón’s problem is to convert our equation into one
that has the coefficient in the lowest order terms. Here, we transform into the
Schrödinger equation with complex-potential. We start by following the uniqueness
result presented in [29], under the assumption of complex-valued potentials in
.L∞(�̄). In their work, there is no mention and need of the potential to be real,
therefore we present their proof in its entirety.

Let .u ∈ H 1(�) be the unique solution of (3) with trace .f ∈ H 1/2(∂�) at the

boundary. Then the substitution .u = γ −1/2w yields with .q = 
γ 1/2

γ 1/2 ,

.

{
−
w + qw = 0, in �,

w|∂� = γ 1/2f.
(5)

Notice that if .γ ∈ C1,1(�) and .σ ≥ c > 0 then .γ 1/2 is well-defined and twice
weakly differentiable. Therefore, q is well-defined and in .L∞(�). As previously
stated, the assumptions on .γ lead to 0 not being a Dirichlet eigenvalue of .∇ ·(γ∇u).
The relation above implies a bijection between solutions of the (3) and of (5).
Therefore, 0 is also not a Dirichlet eigenvalue of the Schrödinger problem.

In general, if 0 is not a Dirichlet eigenvalue of the Schrödinger operator in .�, then
the Dirichlet-to-Neumann map, .	q , is well-defined from .H 1/2(∂�) to .H−1/2(∂�)

and formally is given by

.	qf = ∂w

∂ν

∣∣∣∣
∂�

for w being the unique solution of .(−
 + q)w = 0, in � and .w|∂� = f .
Hence, here the corresponding inverse problem is to determine q from the boundary
measurements .	q uniquely.

In this manner, we can cast our focus into the Schrödinger equation. First, we
can extend q to zero outside the domain and study solutions of

. − 
w + qw = 0, in R
n (6)

which behave like

.w = eix·ζ (1 + ψ(x, ζ )) , for ζ ∈ C
n, ζ · ζ = 0.
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In Calderón’s paper [11] he already uses the family of exponential harmonic
functions, .eix·ζ in its proof, but it was Sylvester and Uhlmann [34] that first used this
type of solutions to dispense the requirement of .σ be close to a constant. Substituting
into (6), it follows that .ψ must satisfy

. − 
ψ − 2iζ · ∇ψ + qψ = −q (7)

From scattering theory, we inherited the Faddeev-Green’s function (see [15])
which takes a principal role in the study of the above Eq. (7). For .ζ ∈ C

n with
.ζ · ζ = 0 it is given by .Gζ (x) = eix·ζ gζ (x), where .gζ is the fundamental solution
of operator .(−
 − 2iζ · ∇) and is defined as:

.gζ (x) = 1

(2π)n

∫
R

n

eix·ξ

|ξ |2 + 2ζ · ξ
dξ, (8)

Recall, that as a fundamental solution .Gζ differs from the classical one .G0 by an
harmonic function .Hζ .

From this, solutions of (6) with the desired asymptotics can be obtained by
solving the integral equation

.w(x, ζ ) = eix·ζ −
∫

Gζ (x − y)q(y)w(y, ζ ) dy (9)

with .ψ solving

.ψ + gζ ∗ (qψ) = −gζ ∗ q. (10)

The study of these integral equations follows by a weighted .L2 estimate for
.gζ obtained in [34], which guarantees unique solvability of (9) for .|ζ | large, even
for complex conductivities. This estimate is one of the most important elements
in scattering works, since it allows the existence and uniqueness of solutions and
already puts into light their behavior in terms of .ζ .

Let .〈x〉 = (1 + |x|2)1/2. We define the weighted .L2-space for .δ ∈ R as

.L2
δ (R

n) := {
f : ‖f ‖δ := ‖〈x〉δf ‖L2(Rn) < ∞ }

.

Then the convolution operators with .gζ and .Gζ satisfy the following estimates

Proposition 1 For all .ζ ∈ C
n with .ζ ·ζ = 0 and .|ζ | ≥ a the operator of convolution

with .gζ satisfies

.
∥∥gζ ∗ f

∥∥
δ−1 ≤ c(δ, a)

|ζ | ‖f ‖δ, for 0 < δ < 1 (11)
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Moreover, let .H 2
δ (�) := {

f : Dαf ∈ L2−δ(R
n), 0 ≤ |α| ≤ 2

}
be the weighted

Sobolev space with norm

.‖f ‖2,δ =
⎛
⎝ ∑

|α|≤2

‖Dαf ‖2
δ

⎞
⎠

1/2

.

Then, for any .ζ ∈ C
n with .ζ · ζ = 0 it holds for .δ ∈ (1/2, 1) that

.‖gζ ∗ w‖2,−δ ≤ c(δ, ζ )‖w‖2,δ.

Furthermore, under the definition

.Gζw(x) =
∫

�

Gζ (x − y)w(y) dy

it holds that

.‖Gζw‖H 2(�) ≤ c(ζ,�)‖w‖L2(�).

Proof The first estimate can be found in [34, Corollary 2.2], while the rest is in [26,
Lemma 2.11]. �

For the uniqueness proof our interest resides in studying the exponential growing
solutions given through Eq. (9)

Corollary 1 Let .0 < δ < 1 and .q ∈ L∞(�) be complex-valued and extended to
zero outside .�. Then there exists an .R > 0 such that for all .ζ ∈ C

n with .ζ · ζ = 0
and .|ζ | > R the integral equation (9) is uniquely solvable with .e−ix·ζw(x, ζ )− 1 ∈
L2

δ−1(R
n). Furthermore, it holds

.‖e−ix·ζw(x, ζ ) − 1‖δ−1 ≤ c̃(R, δ)

|ζ | ‖q‖δ. (12)

Proof Let .Mqφ = qφ, i.e., the operator of multiplication with q . We show that
for .q ∈ L∞(Rn) with compact support, .Mq : L2

δ−1(R
n) → L2

δ (R
n) is a bounded

operator.
Let .f ∈ L2

δ−1(R
n). Then

.‖Mqf ‖δ =
[∫

R
n
(1 + |x|2)δ|q(x)f (x)|2 dx

]1/2

=
[∫

R
n

(
1 + |x|2

)
|q(x)|2

(
1 + |x|2

)δ−1 |f (x)|2 dx

]1/2

≤ ‖〈x〉q‖∞‖f ‖δ−1.
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We define the operator .Aζ = Cζ Mq , where .Cζ is the convolution with .gζ , that is

.Aζf (x) =
∫
R

n
gζ (x − y)q(y)f (y) dy = Cζ Mqf (13)

By Proposition 1 for .|ζ | ≥ R we obtain

.‖Aζ f ‖δ−1 = ‖Cζ Mqf ‖δ−1 ≤ c(δ, R)

|ζ | ‖Mqf ‖δ ≤ c(δ, R)

|ζ | ‖〈x〉q‖∞ ‖f ‖δ−1

Therefore, .Aζ is bounded in .L2
δ−1(R

n). Furthermore, if we consider

.|ζ | > R := c(δ, R) ‖〈x〉q‖∞

then .Aζ is a contraction and .I + Aζ is invertible.
Since .q ∈ L∞ and as compact support then it is in .L2

δ and therefore the right-
hand side of (10) is in .L2

δ−1. Hence, the unique solution to (7) is given by

.ψ(x, ζ ) = − [
I + Aζ

]−1 (
gζ ∗ q

)
.

From here, we already know that

.w = eix·ζ (
1 − [

I + Aζ

]−1 (
gζ ∗ q

))
solves the integral equation (9). Furthermore, the estimate (12) easily follows from
.[I + Aζ ]−1 being bounded in .L2

δ−1, Proposition 1 and .gζ ∗ q ∈ L2
δ−1.

Now, let us suppose that there exist two solutions .w1, w2 of (9) such that

.φj = e−ix·ζwj − 1 ∈ L2
δ−1.

Then, their difference is also in .L2
δ−1 and both fulfill the equation

.[I + Aζ ]φj = −gζ ∗ q.

This implies .[I +Aζ ]
(
e−ix·ζ (w1 − w2)

) = 0 and thus .w1 ≡ w2 by the invertibility
of .I + Aζ in .L2

δ−1. Hence, uniqueness of the integral equation (9) for exponential
growing solutions follows. �

We designate the values .ζ for which this solution does not exist or is not unique
as exceptional points.

Definition 1 Let .q ∈ L∞(�) complex-valued and extended to zero outside .�.
Let .ζ ∈ V := {ζ ∈ C

n \ {0}ζ · ζ = 0}. Then we call .ζ ∈ V an exceptional point
for q if there is no unique exponential growing solution of .(−
 + q)w = 0 in .Rn,
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that is, there is no unique solution of the type

.w(x, ζ ) := eix·ζ (1 + μ(x, ζ )) , with μ ∈ L2
δ−1(R

n), 0 < δ < 1.

The uniqueness proof of this section given by Nachman et al. [29] and Nachman’s
reconstruction method [26], only require large non-exceptional points .ζ . However,
in this sense the reconstruction process is very unstable. Hence, one of our desires
is to mimic the theory in two-dimensions, where we are able to reconstruct .γ from
small values of non-exceptional points .ζ by the D-bar method. We will see in a
further section how under circumstances one can still apply a version of it.

Now a first step in the uniqueness proof is to show that the exponential growing
solutions outside .� are uniquely identified by the Dirichlet-to-Neumann map.

Lemma 1 Let .q1, q2 ∈ L∞(�) and extended to zero outside .�, such that 0 is not
a Dirichlet eigenvalue of .−
 + qj in .� for .j = 1, 2. Further, let .ζ ∈ V a non-
exceptional point for .q1, q2. Suppose that .	q1 = 	q2 and .w1, w2 are the unique
solutions of .(−
 + qj )wj = 0 in .Rn of the form .eix·ζ (

1 + μj

)
. Then

.w1 = w2, in R
n \ �.

Proof Let .v ∈ H 1(�) be the unique solution of

. − 
v + q2 v = 0, in �

v|∂� = w1|∂� .

Then we define

.h =
{

v, in �

w1, in R
n \ �

Since, .	q1 = 	q2 it holds that .	q1 w1|∂� = 	q2 w1|∂� and thus .
∂w1
∂ν

= ∂v
∂ν

. This
implies that h is continuous over .∂�, as well as, .

∂h
∂ν

. Therefore, h solves .−
h +
q2 h = 0 in .Rn and has the appropriate asymptotics since .w1 has them. By the
uniqueness theorem it follows that .h = w2 and thus .w1 = w2 in .Rn \ �. �

Now the uniqueness theorem obtained in [29] follows also for complex-
conductivities directly.

Theorem 2 Let .q1, q2 ∈ L∞(�) extended to zero outside .�. Suppose that 0 is not
a Dirichlet eigenvalue of .−
 + qj , .j = 1, 2 on .�. If .	q1 = 	q2 , then .q1 = q2.

Proof Let .k ∈ R
n be fixed and for .m, s ∈ R

n we set

.ζ = 1

2
((k + s) + im) and ζ̃ = 1

2
((k − s) − im)
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with .k · s = k · m = s · m = 0 and .|k|2 + |s|2 = |m|2. The .ζ, ζ̃ are in .C
n and fulfill

the condition .ζ · ζ = 0. Hence, taking .s, m large enough we obtain solutions .wj of
the integral equation (9) for their respective potentials for .ζ̃ . By Green’s identity it
holds that

.

∫
�

eix·ζ qj (x)wj (x) dx =
∫

�

eix·ζ
wj (x) − wj
eix·ζ dx

=
∫

∂�

eix·ζ ∂wj

∂ν
− wj (ν · iζ ) eix·ζ dσ (x).

By hypothesis and the previous lemma .	q1 = 	q2 and thus .w1|∂� = w2|∂�.
Therefore, it also holds that

.
∂w1

∂ν

∣∣∣∣
∂�

= ∂w2

∂ν

∣∣∣∣
∂�

as .wj solve the interior problem .(−
 + qj )wj = 0. Hence, the right-hand side of
the integral above is equal for both .qj and assuming the asymptotics of .wj w.r.t. .ζ̃

it follows

.

∫
�

eix·ζ (q1w1 − q2w2) dx = 0

which is equivalent to

.

∫
�

eix·(ζ+ζ̃ ) (q1 − q2) dx =
∫

�

eix·(ζ+ζ̃ ) (q1ψ1 − q2ψ2) dx

Using .ζ + ζ̃ = k and taking modulus we obtain by Cauchy-Schwarz inequality and
Corollary 1

.

∣∣∣∣
∫

�

eix·k (q1 − q2) dx

∣∣∣∣ ≤
2∑

j=1

∫
�

∣∣qjψj

∣∣ ≤
2∑

j=1

‖qj‖1−δ‖ψj‖δ−1

≤
2∑

j=1

C

|ζ̃ | ‖qj‖1−δ‖qj‖δ.

Since .ζ̃ was arbitrarily depending on s, we can take the limit as .|s| → ∞. This
implies that the left-hand side equals to zero for each fixed .k ∈ R

n. Given that the
proof holds for all k we have

.

∫
�

eix·k(q1 − q2) dx = 0, ∀k ∈ R
n

Therefore, by Fourier inversion theorem we obtain .q1 = q2 in .�. �
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Note We do not require more assumptions for q being complex; second the
following uniqueness proof only works for .n ≥ 3 due to the required choice of
.ζ, ζ̃ .

Hence, uniqueness is extended for complex-potentials in .L∞(�) with 0 not
a Dirichlet eigenvalue of .(−
 + q), directly from the work of [29]. To extend
uniqueness for admittivities .γ ∈ C1,1(�̄) it is still necessary to establish a relation
between .	γ and .	q . We will present this in a later section. Now, we proceed
to explain how Nachman’s reconstruction method equally holds for complex-
conductivities.

3 Preliminaries for Reconstruction

In the following section, we present the necessary results to follow Nachman’s
approach [26]. The two main pinpoints in our extension to complex-conductivities
are the Lemma 4 and Proposition 3.

The first result concerns an estimate for the single layer operator which will
help us prove that there are no-exceptional points close to zero for complex-
conductivities. The estimate was obtained in [14].

The second result concerns the uniqueness of the interior Schrödinger problem.
In essence, this is were Nachman’s work needs to be extended, since is version
of this proposition was proven by estimates for real-coefficients. Even though, the
machinery to prove a complex-coefficient version does not require anything novel it
seems essential to provide a clear statement into why Nachman’s method still works.

Analogously to the classical single and double layer potentials we define the
respective operators for .Gζ . The single layer operator is defined as

.Sζ f (x) =
∫

∂�

Gζ (x − y)f (y) ds(y)

and the double layer as

.Dζ f (x) =
∫

∂�

∂Gζ

∂ν
(x − y)f (y) ds(y).

Moreover, taking the trace of double layer potential it holds

.Bζ f (x) := p.v.
∫

∂�

∂Gζ

∂ν
(x − y)f (y) ds(y), for x ∈ ∂�.

Since the singularity of .Gζ for x near y is the same as .G0, it is locally integrable on
.∂� and the trace of .Sζ is still “itself”.

We state here the properties that Nachman established and are essential for the
later proofs.
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Proposition 2 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3.

(i) For .0 ≤ s ≤ 1

.
∥∥Sζ f

∥∥
Hs+1(∂�)

≤ c(ζ, s)‖f ‖Hs(∂�). (14)

(ii) For .0 ≤ s ≤ 3
2 we have that .Bζ is bounded in .Hs(∂�).

Let .ρ0 be a number large enough so that .�̄ ⊂ {x : |x| < ρ0}. For any .ρ > ρ0 we
define .�′

ρ = {x : x �∈ �̄, |x| < ρ}.
Lemma 2 If .f ∈ H 1/2(∂�), the function .φ = Sζ f has the following properties

(i) .
φ = 0 in .R
n \ ∂�.

(ii) .φ ∈ H 2(�) and .φ ∈ H 2(�′
ρ) for any .ρ > ρ0.

(iii) .φ satisfies an analogue to the Sommerfeld radiation condition. For almost
every x it holds

. lim
ρ→∞

∫
|y|=ρ

[
Gζ (x − y)

∂φ

∂ν(y)
− φ(y)

∂Gζ

∂ν(y)
(x − y)

]
ds(y) = 0. (15)

In fact, for .ρ > ρ0 the above identity holds for .|x| < ρ even without taking
the limit.

(iv) Let .B†
ζ denote the operator on the boundary

.B
†
ζ f (x) = p.v.

∫
∂�

∂Gζ

∂ν(x)
(x − y)f (y) ds(y). (16)

It follows that the (nontangential) limits .∂φ/∂ν+, ∂φ/∂ν− of the normal
derivative of .φ as the boundary is approached from the outside and inside .�,
respectively, are given by

.
∂φ

∂ν±
= ∓1

2
f (x) + B

†
ζ f (x), for almost every x ∈ ∂�. (17)

(v) The boundary values .φ+, φ− of .φ from outside and inside of .�, respectively,
are identical as elements of .H 3/2(∂�) and agree with the trace of the single
layer potential .Sζ f .

Lemma 3 If .f ∈ H 3/2(∂�) the function .ψ = Dζ f defined in .R
n \ ∂� has the

properties (i), (ii) and (iii) of the Lemma 2.
Moreover, the non-tangential limits .ψ+, ψ− of .ψ as we approach the boundary

from outside and inside of .�, respectively, exist and satisfy

.ψ±(x) = ±1

2
f (x) + Bζ f (x), for almost every x ∈ ∂�. (18)



220 I. Pombo

Lemma 4 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3. The Faddeev fundamen-

tal solution .Gζ can be given through the decomposition

.Gζ (x) = G0(x) + Hζ (x),

where .G0 is the classical fundamental solution and .Hζ is an harmonic function.
Moreover, the single and double layer operators have a similar decomposition

and, for our own convenience, we present here the case for the single layer. For
.f ∈ H 1/2(∂�) we have

.Sζ f (x) = S0f (x) +
∫

∂�

Hζ (x − y)f (y) ds(y) =: S0f (x) + Hζ f (x).

Further, it holds

.‖Hζ ‖L(H 1/2(∂�),H 3/2(∂�) ≤ C|ζ |n−2,

where the constant C only depends on the domain.

Proof See [14] for further details. �
Now we provide the proof for uniqueness of the interior problem with a complex-

potential. This is the only “new” and required statement to bring forth the proof of
Nachman’s reconstruction to complex-admittivities.

Proposition 3 Let .� be a bounded .C1,1−domain in .R
n, n ≥ 3. Suppose that .q ∈

L∞(�̄) is complex-valued and that 0 is not a Dirichlet eigenvalue of .(−
 + q) in
.�. Then for every .f ∈ H 3/2(∂�) there is a unique .w ∈ H 2(�) such that

.

{
(−
 + q) w = 0 in �

w|∂� = f.
(19)

The solution operator is defined by .Pqf := w and has the mapping property

.Pq : H 3/2(∂�) → H 2(�).

Moreover, the Dirichlet-to-Neumann map operator has the mapping property

.	q : H 3/2(∂�) → H 1/2(∂�).

Proof The proof follows by studying first the Laplacian and showing that multipli-
cation by q is a compact operator from .H 2(�) to .L2(�).

Thus, let

.P0 : H 2(�) → L2(�) × H 3/2(∂�), u �→ ( −
u, tr u) .
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By the definition of .H 2(�) and the trace properties on this space and .C1,1−domains
the operator .P0 is linear and bounded. By Theorem 9.15. of [17] and under our
conditions on the domain, there always exists a unique solution in .H 2(�) of

.

{
−
u = f,

u|∂� = g.

Therefore, the operator .P0 is bijective and invertible. In particular is Fredholm of
index zero.

Analogously, we define the operator

.Pq : H 2(�) → L2(∂�) × H 3/2(∂�), u �→ ( [−
 + q] u, tr u) .

Then, the difference of the operators .Pq − P0 maps u to .(qu, 0) between the same
spaces. Since, the embedding .H 2(�) ↪→ L2(�) is compact, it immediately follows
that multiplication by .q ∈ L∞(�) is a compact operator. Hence, by definition .Pq −
P0 is a compact and since .Pq = P0 +(Pq −P0) is the sum of a Fredholm operator of
index zero and a compact operator, it still is Fredholm of index zero. Thus, to show
invertibility we prove that .ker Pq = {0}. Let .w ∈ ker Pq . By definition this implies
w is a solution in .H 2(�) of

.

{
−
w + qw = 0,

w|∂� = 0,

but due to the assumption of 0 not being a Dirichlet eigenvalue of .(−
 + q) in .� it
follows that .w ≡ 0. �

Our main assumption is that .γ ∈ C1,1(�̄), thus it is in .H 2(�). Therefore, for
potentials q given by the complex-conductivity the following statement holds.

Corollary 2 Let .� be a bounded .C1,1−domain in .R
n, n ≥ 3. For .γ ∈ C1,1(�̄)

such that .Re γ ≥ c > 0.
Then .q ∈ L∞(�) given by .q = 
(γ 1/2)/γ 1/2 is well-defined and 0 is not a

Dirichlet eigenvalue of .(−
 + q). Then the unique solution .w ∈ H 2(�) of

.

{
−
w + qw = 0

w|∂� = γ 1/2
(20)

is .w ≡ γ 1/2.

This corollary brings to light that if we know the boundary values of the
conductivity and the potential q in .�, we can find .γ by solving the above boundary
value problem.
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4 Boundary Integral Equation

The properties of the previous section allows us to establish a one-to-one correspon-
dence between the solution of a boundary integral equation and of the following
exterior problem

.(i) 
ψ = 0, in �′ := R
n \ �̄, (21)

(ii) ψ ∈ H 2(�′
ρ), for any ρ > ρ0,

(iii) ψ(x, ζ ) − eix·ζ satisfies (15),

(iv)
∂ψ

∂ν+
= 	qψ on ∂�.

In this section, we assume that .� is a bounded .C1,1-domain in .Rn, .n ≥ 3 and
.q ∈ L∞(�) is a complex-potential for which 0 is not a Dirichlet eigenvalue. Further,
most proofs follow directly from Nachman’s work [26], but we provide them here
for convenience of the reader. We will highlight the new pieces needed to put the
puzzle together.

Lemma 5 Let .ζ ∈ V.

(a) Suppose .ψ solves the exterior problem (21). Then its trace .fζ = ψ+ = ψ|∂�

solves the boundary integral equation

.fζ = eix·ζ −
[
Sζ 	q − Bζ − 1

2
I

]
fζ . (22)

(b) Conversely, suppose .fζ ∈ H 3/2(∂�) solves (22). Then the function .ψ(x, ζ )

defined for .x ∈ �′ by

.ψ(x, ζ ) = eix·ζ − (
Sζ 	q − Dζ

)
fζ (x) (23)

solves the above exterior problem under all conditions. Furthermore, .ψ|∂� =
fζ .

Proof

(a) Assume .ψ solves (21). We apply Green’s identity to .Gζ and .ψ in .�′
ρ , .ρ > ρ0.

It holds

.

(∫
|y|=ρ

−
∫

∂�

) [
Gζ (x − y)

∂ψ

∂ν+
− ψ+(y, ζ )

∂Gζ

∂ν+(y)
(x − y)

]
ds(y)

(24)

=
∫

�′
ρ

[
Gζ (x − y)
ψ(y, ζ ) − ψ(y, ζ )
yGζ (x − y)

]
dy.
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Since, .ψ is harmonic on .�′
ρ and .Gζ is the fundamental solution of .−
 we

obtain for arbitrary .x ∈ �′
ρ

.ψ(x, ζ ) =
∫

|y|=ρ

[
Gζ (x − y)

∂
(
ψ − eiy·ζ )

∂ν

−
(
ψ − eiy·ζ) ∂Gζ

∂ν+(y)
(x − y)

]
ds(y) (25)

+
∫

|y|=ρ

[
Gζ (x − y)

∂eiy·ζ

∂ν
− eiy·ζ ∂Gζ

∂ν(y)
(x − y)

]
ds(y)

−
∫

∂�

[
Gζ (x−y)

∂ψ

∂ν+
ds(y) −

∫
∂�

ψ+(y, ζ )
∂Gζ

∂ν(y)
(x−y)

]
ds(y)

By hypothesis (21-iii), the first integral vanishes. The function .eiy·ζ is harmonic
and a re-application of Green’s identity to the second integral on .|y| < ρ

equals .eix·ζ . Finally, due to (21-iv) the last integral is .
[
Sζ 	q − Dζ

]
ψ . Thus,

the function .ψ fulfills for .x ∈ �′ the identity

.ψ(x, ζ ) = eix·ζ − [
Sζ 	q − Dζ

]
fζ .

Taking the non-tangential limit to the boundary from the outside we obtain
by Lemmas 2 and 3

.fζ (x) = eix·ζ −
[
Sζ 	q − Bζ − 1

2
I

]
fζ (x).

(b) Conversely, suppose .fζ ∈ H 3/2(∂�) solves the boundary integral equa-
tion (22). Define a function .ψ in .�′ by

.ψ(x, ζ ) = eix·ζ − [
Sζ 	q − Dζ

]
fζ (x). (26)

We show that this .ψ solves the exterior problem (21) from properties of the
single and double layer (Lemmas 2 and 3).

It is immediate to see that .ψ fulfills the property (i) of (21), since for .ζ ·ζ = 0 the
exponential .eix·ζ is harmonic, and .Sζ 	qfζ , .Dζ fζ are harmonic in .�′ by the above
mentioned lemmas. Moreover, it holds that .Sζ 	qfζ , Dζ fζ ∈ H 2(�′

ρ), ρ > ρ0 and
further the identity (15) also holds. Hence, the property (ii) and (iii) of the exterior
problem follow.
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To show the last property, we approach the boundary .∂� non-tangentially from
the outside and we obtain, as in part (a),

. ψ|∂� = eix·ζ −
[
Sζ 	q − Bζ − 1

2
I

]
fζ .

By virtue of .fζ fulfilling the boundary integral equation the right-hand side equals
.fζ and therefore .ψ|∂� = fζ . From this and the first three properties of (21), that
we already showed .ψ fulfills, we can obtain analogously to part (a)

.ψ(x, ζ ) = eix·ζ − Sζ

(
∂ψ

∂ν+

)
+ Dζ fζ , for x ∈ �′. (27)

Subtracting both formulations of .ψ , (27) and (26), the following equality holds
throughout .�′

.Sζ

[
	qfζ − ∂ψ

∂ν+

]
= 0. (28)

By taking traces from the outside, it actually holds on the boundary .∂�. We are

reminded that .Sζ

[
	qfζ − ∂ψ

∂ν+

]
is harmonic in .Rn \ ∂� and since the trace is 0 on

.∂� uniqueness of the interior problem for .q ≡ 0 implies that the equality (28) holds
everywhere. Then, its normal derivatives will be zero and subtracting them on .∂�

with the help of (17) we obtain

.
[
	q − ∂ψ/∂ν+

] = ∂Sζ

[
	q − ∂ψ/∂ν+

]
∂ν−

− ∂Sζ

[
	q − ∂ψ/∂ν+

]
∂ν+

= 0. (29)

Thus the last property of the exterior problem follows. �
Furthermore, we are able to obtain a relation between the exterior problem and

the solutions of integral equation (9).

Lemma 6 Let .ζ ∈ V.

(a) Suppose .ψ ∈ L2
loc(R

n) is a solution of

.ψ(x, ζ ) = eix·ζ −
∫
R

n
Gζ (x − y)q(y)ψ(y, ζ ).

Then the restriction of .ψ to .�′ solves the exterior problem (21) and fulfills the
respective properties (i)–(iv).

(b) Conversely, if .ψ solves the exterior problem (21), there is a unique solution
.ψ̃ ∈ L2

loc(R
n) of the integral equation (9), such that .ψ̃ = ψ in .�′.
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Proof

(a) From the Proposition 1 it follows .ψ ∈ H 2
loc(R

n), which immediately implies
property (ii) of the exterior problem. Moreover, in .R

n it holds .(−
 + q)ψ = 0,
thus due to .q ≡ 0 on .�′ the property (i) holds, i.e., .−
ψ = 0 in .�′.

Applying Green identity on .|y| < ρ yields

.

∫
|y|=ρ

[
Gζ (x − y)

∂ψ

∂ν(y)
− ψ(y, ζ )

∂Gζ

∂ν(y)
(x − y)

]
ds(y)

=
∫

|y|<ρ

Gζ (x − y)q(y)ψ(y, ζ ) dy + ψ(x, ζ ), for a.e. x with |x| < ρ.

Now, we can choose .ρ large in order to contain the supp of q . Since .ψ solves
integral equation this means that the right-hand side equals .eix·ζ . Moreover, we
already showed that

.eix·ζ =
∫

|y|=ρ

[
Gζ (x−y)

∂eiy·ζ

∂ν(y)
− eiy·ζ ∂Gζ

∂ν(y)
(x − y)

]
ds(y).

Then passing the exponential to the right-hand side, we obtain

.

∫
|y|=ρ

[
Gζ (x − y)

∂
(
ψ − eiy·ζ )
∂ν(y)

−
(
ψ(y, ζ ) − eiy·ζ) ∂Gζ

∂ν(y)
(x − y)

]

× ds(y) = 0

for all .ρ > ρ0 Thus property iii) follows by taking the limit as .ρ → ∞.
Immediately, we can see that .	qψ− = ∂ψ

∂ν− and since .ψ ∈ H 2 in a two-

sided neighborhood of .∂� it holds that .ψ− = ψ+ and .
∂ψ
∂ν− = ∂ψ

∂ν+ . This leads
to .ψ fulfilling the iv) property. Therefore, the restriction of .ψ to .�′ solves the
exterior problem (21).

(b) Suppose .ψ defined in .�′ solves the exterior problem (21). Set .ψ̃ by .ψ̃ = Pqψ+
in .� and .ψ̃ = ψ in .�′. Then on .∂�,

.ψ̃− = (Pqψ+) = ψ+ = ψ̃+

and

.
∂ψ̃

∂ν−
= 	qψ+ = ∂ψ

∂ν+
= ∂ψ̃

∂ν+
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due to (iv). Thus .ψ̃ solves .(−
 + q)ψ̃ = 0 on .R
n. Applying Green’s formula

in .|y| < ρ yields

.

∫
|y|=ρ

[
Gζ (x − y)

∂ψ

∂ν(y)
− ψ(y, ζ )

∂Gζ

∂ν(y)
(x − y)

]
ds(y)

=
∫

|y|<ρ

Gζ (x − y)q(y)ψ̃(y, ζ ) dy + ψ̃(x, ζ )

for almost every x with .|x| < ρ. Thus by letting .ρ → ∞ the radiation condition
(iii) implies that the left-hand side is .eix·ζ . Hence .ψ̃ verifies the desired integral
equation in .R

n.

To finalize we prove that this extension is unique. Suppose that we have two
extensions .ψ̃1, ψ̃2 ∈ L2

loc(R
n) of .ψ which agree in .�′ and solve the integral

equation everywhere. As in part (a), we see that .ψ̃1, ψ̃2 ∈ H 2
loc(R

n) and .(−
 +
q)ψ̃j = 0 in .Rn for .j = 1, 2. Hence, they are in .H 2 on a two-sided neighborhood
of .∂�. This implies that .ψ̃j

+ = ψ̃
j
−, for .j = 1, 2, which promptly leads to .ψ̃1− = ψ̃2−

since they agree on .�′. Now, from the uniqueness of the interior problem it follows
that .ψ̃1 = ψ̃2. �
Remark The two previous lemmas establish that a solution of the boundary integral
equation is equivalent to a exponential growing solution of the Schrödinger equation
in .R

n. The interesting remark is that there was no explicit requirement of .ζ being
large. Hence, by showing that the boundary integral equation is uniquely solvable
for small values of .ζ we guarantee the existence of exponential growing solutions
for these .ζ .

Moreover, on all the proves above there is no explicit difference of q being real
or complex.

Keeping this in mind, we focus now on solvability of the boundary integral
equation. The following proposition glues together the papers [26] and [14] and
applies them to the complex potential by making use of the uniqueness of the interior
problem in this scenario obtained in Proposition 3.

Proposition 4 Let .� be a bounded .C1,1-domain in .R
n, n ≥ 3. Let q be a complex-

valued potential in .L∞(�) and suppose that 0 is not Dirichlet eigenvalue of .−
+q

in .�. We define .Kζ = Sζ 	q − Bζ − 1
2 I and for any .ζ ∈ V it holds

(a) The operators .K0, Kζ are compact on .H 3/2(∂�).
(b) If .Re q ≥ 0, then .I + K0 is invertible in .H 3/2(∂�).
(c) If .Re q ≥ 0 there exists an .ε > 0 with .|ζ | < ε for which the operator .I + Kζ is

invertible in .H 3/2(�).
(d) There exists an .R > 0 such that for all .|ζ | > R the operator .I +Kζ is invertible

in .H 3/2(∂�).
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Proof Part (a) follows by a compactness embedding. Let .f ∈ H 3/2(∂�) and set
.w = Pqf as the solution of interior Dirichlet problem (19). Let .x ∈ � we use the
Green’s formula to obtain

.

∫
�

Gζ (x − y)
w(y) dy + w(x) = [
Sζ 	q − Dζ

]
f (x)

which is equivalent to

.

∫
�

Gζ (x − y)q(y)Pqf (y) dy + w(x) = [
Sζ	q − Dζ

]
f (x)

By letting x approach the boundary non-tangentially from the inside we thus obtain

.tr
(
Gζ ∗ (qPqf )

) + f (x) = Sζ 	qf (x) −
[
−1

2
f (x) + Bζ f (x)

]

and therefore

.

[
Sζ 	q − Bζ − 1

2
I

]
f = tr

(
Gζ ∗ (qPqf )

)
.

Hence, our desired operator satisfies this factorization, where the following mapping
properties hold

.Pq : H 3/2(∂�) → H 2(�);

.ı : H 2(�) → L2(�) is a compact embedding;

.Mq : L2(�) → L2(�);

.Gζ : L2(�) → H 2(�) convolution with .Gζ , which we prove up next;

.tr : H 2(�) → H 3/2(∂�).

And the compactness of the embedding implies compactness of the desired operator.
(b) Let .ζ = 0. In this case .G0 is the classical fundamental solution and the

corresponding operators are the classical ones. By part (a), we already know that

.S0	q − B0 − 1
2 I is compact on .H 3/2(∂�). Then .I + K0 =

[
1
2I + S0	q − B0

]
is

Fredholm of index zero on .H 3/2(∂�). Therefore, it is enough to show injectivity.

Let .h ∈ H 3/2(∂�) such that .

[
1
2 I + S0	q − B0

]
h = 0. Define .w = −S0	qh +

D0h. Then w is harmonic in .R
n, .w ∈ H 2(�) and .w ∈ H 2(�′

ρ) by Lemmas 2 and 3.
Moreover, approaching the boundary non-tangentially by the inside we obtain

.w− = −S0	qh +
(

−1

2
h + B0h

)
= −

[
1

2
I + S0	q − B0

]
h = 0.

Since, the problem .−
w = 0, w|∂� = 0 is uniquely solvable in .H 2(�) it follows
that .w ≡ 0 in .� and thus .

∂w
∂ν− = 0 on .∂�.
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By noticing the jump relations for the single and double layer operator (see [25]),
we can deduce that

.[w] = w+ − w− = w+ = [D0h] = h

and

.

[
∂w

∂ν

]
= ∂w

∂ν+
= −

[
∂

∂ν
S0	qh

]
= 	qh.

Now, by Proposition 3 there is a unique solution .u ∈ H 2(�) of

.

{
(−
 + q) u = 0,

u|∂� = h,

such that .	qh = ∂u
∂ν−

∣∣∣
∂�

. We set

.v =
{

u, in �

w, in R
n \ �

and see that .u− = w+ = h and .
∂u
∂ν− = ∂w

∂ν+ = 	q , thus it holds that v and .
∂v
∂ν

are

continuous over the boundary .∂�. Therefore .v ∈ H 2(Bρ(0)), ρ > 0 and it solves
.−
v + qv = 0 in .R

n, since .q ≡ 0, in .R
n \ �.

Let .χρ ∈ C∞
c (Rn) such that .χ ≡ 1 in .Bρ−ε(0) and .χ ≡ 0 in .ρ − ε < |x| < ρ,

for .ε > 0 small enough.
Then for .φ ∈ H 1(Rn) it follows by Green’s identity

.

∫
|x|<ρ

(−
v + qv) (χφ) dx = 0,

which is equivalent to

.

∫
|x|<ρ

∇v · ∇(χφ) + qv(χφ) dx = 0,

as well as

.

∫
�

∇v · ∇φ + qvφ dx +
∫

Bρ(0)\�
∇w · ∇(χφ) dx = 0.
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In particular we can take .φ = v̄ and since w is given through the classical single and
double layer it follows that .∇w ∈ L2(Bρ(0) \ �̄). Thus taking the limit as .ρ → ∞

.

∫
�

|∇v|2φ + q|v|2 dx +
∫

Bρ(0)\�
∇w · ∇(χw̄) dx = 0,

∫
�

|∇v|2φ + q|v|2 dx +
∫

Bρ(0)\�
|∇w|2 dx =

∫
Bρ(0)\�

∇w · ∇((1 − χ)w̄) dx,

which yields

.

∫
R

n
|∇v|2 + q|v|2 dx = 0

and therefore

.

∫
R

n
|∇v|2 + (Re q)|v|2 dx = 0.

Now, we can apply Hardy’s inequality for .H 1(Rn)

.
(d − 2)2

4

∫
R

n
|x|−2|v|2 dx ≤

∫
R

n
|∇v|2 dx

to finally obtain the condition

.

∫
R

n

[
(d − 2)2

4|x|2 + (Re q(x))

]
|v|2 dx ≤ 0.

Hence, for .Re q ≥ 0 this implies that .v ≡ 0 in .R
n. Thus .h ≡ 0 in .∂�. Hence

we obtain invertibility in the case .ζ = 0. Notice that we have been loose on the
requirement for q , since this will be enough for the complex-conductivity purposes,

but this proof works for potentials that satisfy the estimate .Re q ≥ − (d−2)2

4|x|2 .
Part (c) follows quite easily by the fact that the set of invertible operators is open.

However, we present the result with the help of some estimates and Neumann series.
For .h ∈ H 3/2(∂�) it holds .Kζ h = Sζ (	q − 	0)h, since due to Green’s formula

we have .Bζ = − 1
2I + Sζ 	0.

Moreover, by Lemma 4 and for .h ∈ H 3/2(∂�) we have the decomposition
.Sζ (	q − 	0)h = S0(	q − 	0)h +Hζ (	q − 	0)h. Moreover, we also have by the
lemma the estimate

.‖Hζ (	q − 	0)h‖H 3/2(∂�) ≤ C|ζ |n−2‖(	q − 	0)h‖H 1/2(∂�)

≤ C|ζ |n−2‖h‖H 3/2(∂�).
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From the invertibility of .I + K0 we obtain the decomposition

.[I + Kζ ] = I + K0 + Hζ

(
	q − 	0

)
= (I + K0)

(
I + (I + K0)

−1 Hζ

(
	q − 	0

))
and if

.‖ (I + K0)
−1 Hζ

(
	q − 	0

) ‖L(H 3/2(∂�)) < 1

we obtain invertibility for .I + Kζ in .H 3/2(∂�). This norm can be translated to an
estimate for .ζ by the above on .Hζ . We have

.‖ (I + K0)
−1 Hζ

(
	q − 	0

) ‖L(H 3/2(∂�))

≤ C|ζ |n−2
∥∥∥(I + K0)

−1
∥∥∥L(H 3/2(∂�))

∥∥Hζ

(
	q − 	0

)∥∥L(H 3/2(∂�))
< 1.

Hence, for

.|ζ | <

[
1∥∥(I + K0)

−1
∥∥L(H 3/2(∂�))

∥∥Hζ

(
	q − 	0

)∥∥L(H 3/2(∂�))

]1/(n−2)

=: ε,

invertibility is obtained by Neumann series.
Part (d) uses the existence of exponential growing solutions for large values of

.|ζ |.
Let .R > 0 be large enough such that for .ζ ∈ C

n with .ζ · ζ = 0, |ζ | > R we have
unique exponential growing solutions of (9), Corollary 1. Under this conditions, we
have showed that .Kζ := Sζ 	q − Bζ − 1

2I is compact in .H 3/2(∂�). Therefore,
.I +Kζ is a Fredholm operator of index zero in .H 3/2(∂�). We need to show that the
kernel is empty to prove that it is invertible.

Let .g ∈ H 3/2(∂�) be in .ker K . Then .h = [−Sζ	q + Dζ ]g solves the exterior
problem (i), (ii), (iv) and fulfills the radiation condition (15) (the proof is analogous
to Lemma 5).

Moreover, we can extend h to a solution .h̃ of .h̃ = − ∫
R

n Gζ (x − y)q(y)h̃(y) dy

in all of .Rn (analogous to the previous lemma). By the estimates on .Gζ we note that
.e−ix·ζ h̃ ∈ L2

δ−1(R
n), 0 < δ < 1 and

.e−ix·ζ h̃ = −Aζ (e
−ix·ζ h̃)
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with .Aζ defined as in (13). Since, we took .R > 0 large enough then .Aζ is a
contraction in .L2

δ−1(R
n) and this forces .h̃ ≡ 0. Therefore,

.g ≡ 0 and I + Kζ is invertible in H 3/2(∂�)

and the statement is proven. �
Therefore, we can solve the boundary integral equation for small and large values

of .|ζ | and obtain .ψ on .∂� by

.ψ(x, ζ ) =
[

1

2
I + Sζ 	q − Bζ

]−1 (
eix·ζ)

This allows us to obtain the scattering transform from the boundary data

Theorem 3 Suppose that .� is a bounded .C1,1-domain in .Rn, n ≥ 3. Let .q ∈
L∞(�) be complex-valued and suppose that 0 is not a Dirichlet eigenvalue of .−
+
q in .�.

We define the scattering transform for non-exceptional points .ζ ∈ V by

.t(ξ, ζ ) =
∫
R

3
e−ix·(ζ+ξ)q(x)ψ(x, ζ ) dx, ξ ∈ R

n. (30)

Then, for each .ξ ∈ R
n we can compute the scattering transform for the non-

exceptional points .ζ ∈ Vξ := {
ζ ∈ C

n \ {0} : ζ · ζ = 0, |ξ |2 + 2ζ · ξ = 0
}
from

the solutions of the boundary integral equation by

.t(ξ, ζ ) =
∫

∂�

e−ix·(ζ+ξ)
[
	q + i(ξ + ζ ) · ν]

ψ(x, ζ ) ds(x), ξ ∈ R
n. (31)

Proof From Lemmas 5 and 6 we obtain unique exponentially growing solutions
of (9) by the one-to-one relation with the boundary integral (22). Therefore, by
Green identity it holds

.t(ξ, ζ ) =
∫

�

e−ix·(ξ+ζ )q(x)ψ(x, ζ ) dx

=
∫

�

e−ix·(ξ+ζ )
ψ(x, ζ ) −
(

e−ix·(ζ+ξ)

)
ψ(x, ζ ) dx

=
∫

∂�

e−ix·(ξ+ζ )
[
	q + i(ξ + ζ ) · ν

]
ψ(x, ζ ) ds(x)

for .ξ ∈ R
n and .ζ ∈ Vξ such that the boundary integral equation has a unique

solution. �
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5 From t to γ

From the scattering transform we can obtain the Fourier transform of the potential
through large asymptotics. Unfortunately for this we need to solve the boundary
integral equation for large values .ζ , which is makes this method very unstable.
In [20] they avoid the boundary integral equation by using the approximation
.ψ(x, ζ ) ≈ eix·ζ to compute the scattering transform. This simplified version was
even applied for complex conductivities in order to obtain a stable reconstruction
procedure.

This method is based on the following asymptotic

Theorem 4 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 3. Let .q ∈ L∞(�) be a
complex-valued potential extended to zero outside .�, such that 0 is not a Dirichlet
eigenvalue of .(−
 + q). Then for .|ζ | > R and .0 < δ < 1

.|t(ξ, ζ ) − q̂(ξ)| ≤ c̃(δ, R)

|ζ | ‖q‖2
δ (32)

for all .ξ ∈ R
n.

Proof The proof follows trivially by Corollary 1. If .q ∈ L∞(�) is a complex-
valued and compactly supported potential it follows that .q̂ is well-defined and

.
∣∣t(ξ, ζ ) − q̂(ξ)

∣∣ =
∣∣∣∣
∫

e−ix·ξq(x)
[
e−ix·ζψ(x, ζ ) − 1

]
dx

∣∣∣∣
≤ ‖q‖1−δ‖e−ix·ζψ(x, ζ ) − 1‖δ−1 ≤ c̃(δ, R)

|ζ | ‖q‖2∞

holds true. �
One of the ways to obtain a more stable reconstruction is the so-called d-bar

method. Following the .∂̄ compatibility equations satisfied by .t known from [4, 21,
28], Nachman was able to derive a d-bar equation in three dimensions, which allows
to obtain solutions .μ that eventually permit the computation of .q̂ from .t(ξ, ζ ) for
.ξ ∈ R

n, .|ζ | ≥ M , .(ξ + ζ )2 = 0 and its derivative in .ζ . Although more elaborate
than in two dimensions, this method does not require taking the limit of .|ζ | → ∞.
In essence, the proof follows through for the complex-potential as well!

For such, let .ψ(x, ζ ) be the solution of (9) with .e−ix·ζψ(x, ζ ) − 1 ∈ L2
δ−1(R

n),
that is, .ζ is not an exceptional point. Define,

.μ(x, ζ ) := |q(x)|e−ix·ζψ(x, ζ ) (33)

then .μ solves the following integral equation

.μ(x, ζ ) = |q(x)| − |q(x)|
∫
R

n
gζ (x − y)q̃(y)μ(y, ζ ) dy (34)



Reconstruction from Boundary Measurements: Complex Conductivities 233

Hereby, we set

.Ãζ f (x) := |q(x)|
∫
R

n
gζ (x − y)q̃(y)f (y) dy

with .q̃(x) = q(x)/|q(x)| in the support of q and 0 otherwise. Moreover, the
scattering transform is given through

.t(ξ, ζ ) :=
∫
R

n
e−ix·ξ q̃(y)μ(x, ζ ) dx. (35)

Lemma 7 Suppose .q ∈ L∞(Rn) with compact support. Let .R > c(δ, a)‖q(x)

〈x〉‖L∞ with .δ ∈ (0, 1) and .c(δ, a) as in Proposition 1.

(a) If .ζ ≥ R, ζ · ζ = 0, then (34) has a unique solution .μ(·, ζ ) in .L2(Rn) with
compact support.

(b) For .|ζ | > M , .ζ · ζ = 0 and all .w ∈ C
n with .w · ζ̄ = 0,

.w · ∂μ

∂ζ̄
(x, ζ ) = −1

(2π)n−1

∫
eix·ξw · ξδ(|ξ |2 + 2ζ · ξ)t (ξ, ζ )μ(x, ζ + ξ) dξ.

(36)

(c) For .ζ ∈ Vξ with .|ζ | > M and all .w ∈ C
n with .w · ζ̄ = 0 and .w · ξ = 0,

.w · ∂t

∂ζ̄
(ξ, ζ ) = −1

(2π)n

∫
w · ηδ(η2 + 2ζ · η)t(ξ − η, ζ + η)t(η, ζ ) dη.

(37)

Proof For details see Nachman [26]. �
We keep it short here and refer to Nachman [26] for the formula to obtain q

without taking limits of the scattering transform.
Our interest resides now in the behavior of exponential growing solutions for .ζ

close to zero. Due to invertibility of the boundary integral equation we can in fact
show that there are no exceptional points near 0. Therefore, analogously to [14] we
are able to obtain the following estimate

Lemma 8 Let .γ ∈ C1,1(�) be the complex-conductivity with .σ ≥ c > 0, ε ≥
0, ω ∈ R

+ and suppose .γ ≡ 1 near .∂�. Set .q = (
γ 1/2)/γ 1/2 ∈ L∞(�).
For .ζ ∈ V sufficiently small and .φ ∈ H 3/2(∂�) the corresponding boundary

integral solution of (22), it holds

.‖φ(·, ζ ) − 1‖H 3/2(∂�) ≤ C|ζ |. (38)
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Proof Let .Kζ = Sζ

(
	q − 	0

)
. Solutions of the boundary integral equation fulfill

.φ(x, ζ ) − 1 =
(
eix·ζ − 1

)
− Kζ (φ(x, ζ ) − 1) ,

which follows by .	q1 = 0 and .	01 = 0, since the unique .H 2-solution of .(−
 +
q)u = 0, u|∂� = 1 is .γ 1/2 and .w = 1 is the unique harmonic function in .H 2(�)

with boundary value 1.
Under the conditions on .γ it holds that .Re q > 0 and hence by Proposition 4 it

holds that .[I + Kζ ] is invertible in .H 3/2(∂�) for small .ζ and hence,

.φ − 1 = [
I + Kζ

]−1
(
eix·ζ − 1

)
.

It clearly holds that by Taylor series that .‖eix·ζ − 1‖H 3/2(∂�) ≤ C1|ζ | and
.
∥∥[I + Kζ ]−1

∥∥L(H 3/2(∂�))
is uniformly bounded for small .|ζ | due to Neumann series

inversion. Thus,

.‖φ − 1‖H 3/2(∂�) ≤ C2‖eix·ζ − 1‖H 3/2(∂�) ≤ C3|ζ |

and the statement follows. �
Theorem 5 Let .γ ∈ C1,1(�) be the complex-conductivity with .σ ≥ c > 0, ε ≥
0, ω ∈ R

+ and suppose .γ ≡ 1 near .∂�. Set .q = (
γ 1/2)/γ 1/2 ∈ L∞(�).
For .ζ ∈ V small enough such that (9) has unique exponentially growing

solutions .ψ(x, ζ ), it holds

.‖ψ(·, ζ ) − γ 1/2(·)‖L2(�) ≤ C|ζ |. (39)

Proof Since .γ = 1 near the boundary .∂� we have that .γ 1/2 is the unique .H 2(�)

solution of

.

{
−
u + qu = 0, in �

u|∂� = 1.

By the elliptic estimates, we obtain that

.‖ψ(·, ζ ) − γ 1/2(·)‖L2(�) ≤ ‖ψ(·, ζ ) − γ 1/2(·)‖H 2(�)

≤ ‖ψ(·, ζ ) − γ 1/2(·)‖H 3/2(∂�) ≤ C|ζ |

and the statement follows. �
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This theorem states that we can reconstruct the complex-conductivity from the
exponential growing solutions by

.γ (x) = lim|ζ |→0
ψ(x, ζ ), for a.e. x ∈ �. (40)

However, recall that for small .ζ we only know how to obtain the boundary values
of the exponential growing solutions from the boundary measurements. To provide
a reconstruction of .γ in .� it is necessary to compute these solutions for all .ζ small
inside .� from the scattering data. This might be possible by the .∂̄-equation.

In order to obtain a .∂̄ reconstruction method complex conductivities the follow-
ing problems need to be solved

1. Uniqueness of (34) for .ζ non-exceptional and considerably small: A first
step is to show that this equation is uniquely solvable for small values of .ζ .
In Nachman’s proof invertibility of the operator .I + Ãζ in .L2(Rn) follows by
that of .I + Aζ obtained in Corollary 1 for .ζ large. In the case of small values,
we showed that the integral equation (9) is uniquely solvable due to the unique
solvability of the boundary integral equation. However, this will not imply that
the operator .I + Aζ is invertible and therefore we can follow the same approach
to prove the existence of a unique solution .μ to (34).

2. Solvability of .∂̄-equation: In [26] there is no proof that .∂̄−equation is uniquely
solvable, but this is essential since this would be the only equation fully
independent of q and where its information is given through the scattering
transform. In this sense, we need to study the equation in the space .V \ {ζ ∈
C

n : ε ≤ |ζ | < R}. In the work of [23] they establish this approach in a two-
dimensional positive energy setting and intuition could lead to a similar work in
our case.

6 Reconstruction of �q from the Boundary
Measurements �γ

The Dirichlet-to-Neumann map .	γ is bounded from .H 1/2(∂�) to .H−1/2(∂�).
Moreover, it is properly defined through

.〈	γ f, g〉 =
∫

�

γ∇u · ∇v dx, (41)

where u is the unique .H 1(�) solution of the interior problem .∇ · (γ∇u) = 0 in .�

and .u|∂� = f and .v ∈ H 1(�) with .v|∂� = g.
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We can also define the Dirichlet-to-Neumann map for the Schrödinger operator
by

.	q : H 1/2(∂�) → H−1/2(∂�)

〈	qf̃ , g̃〉 =
∫

�

∇ũ · ∇ṽ + qũṽ dx, ∀ṽ ∈ H 1(�), s.t. ṽ|∂� = g̃,

and .ũ ∈ H 1(�) is the unique solution to .(−
 + q)ũ = 0, in �, ũ|∂� = f̃ .
As in the real case, since both problems are interconnected we can obtain .	q

from .	γ by

.	q = γ −1/2
[
	γ + 1

2

∂γ

∂ν

]
γ −1/2. (42)

This brings to light that we can determine .	q from .	γ and the boundary values

.γ |∂� and .
∂γ
∂ν

∣∣∣
∂�

. Thus, if .γ ≡ 1 near .∂� then for .γ ∈ W 2,∞(�) it holds that

.	q = 	γ . Otherwise, we need to obtain a method to reconstruct these boundary
values.

There are many results to compute these boundary values. However, most of
them need further smoothness. Still Nachman holds the best result for our case. In
[27] he showed that the boundary values can be obtained without further smoothness
assumptions. Following his proof we see that there is no explicit requirement of .γ

being real, besides the fact that .γ ≥ c > 0 and uniqueness of the Dirichlet problem
in .H 1(�). Hence, we can quickly extend the result for complex-conductivities in
.W 2,∞(�) with .Re γ ≥ c > 0.

The result is obtained through the following lemmas.

Lemma 9 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 2. Assume .γ ∈ W 1,r (�)

for .r > n and .Re γ ≥ c > 0.
Then for any .f ∈ H 1/2(∂�) and

.h ∈ H̊−1/2(∂�) :=
{
h ∈ H−1/2(∂�) : 〈h, 1〉∂�j = 0, j = 1, . . . , N

}
the identity holds

.〈h, (γ − R	γ )f 〉 =
∫

�

u∇w · ∇γ, (43)

where .u ∈ H 1(�) solution of ∇ ·(γ∇u) = 0, u|∂� = f, and .w ∈ H 1(�) is a weak
solution of .
w = 0 in .� with .

∂w
∂ν

= h and .R denotes the Neumann-to-Dirichlet
map.

Lemma 10 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 2. Assume .γ is in
.W 2,p(�), .p > n/2 and .Re γ ≥ c > 0.
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For any .f, g ∈ H 1/2(∂�) the identity holds

.〈g,

(
2	γ − 	1γ − γ	1 + ∂γ

∂ν

)
f 〉 =

∫
�

2v∇(u − u0) · ∇γ + v(2u − u0)
γ dx

where .u, u0, v are respectively the .H 1(�) solutions of .Lγ (u) = 0, 
u0 =
0 and 
v = 0, in .�, with .u|∂� = f, u0|∂� = f and .v|∂� = g.

From this we obtain the boundary reconstruction formulas.

Theorem 6 Let .� be a bounded .C1,1-domain in .Rn, n ≥ 2. Suppose .γ ∈
W 1,r (�), r > n and .Re γ ≥ c > 0.

(i) .γ |∂�∩U can be recovered from .	γ by

.〈h, γf 〉 = lim|η|→∞
η∈Rn−1×{0}

〈hη,R	γ e−i〈·,η〉f 〉, (44)

with .f ∈ H 1/2(∂�) ∩ C(∂�) and .h ∈ L2(�) supported in .U ∩ ∂� and .hη is
defined as zero outside .∂� ∩ U and

.hη(x) = h(x)e−ix·η − 1

|∂� ∩ U |
∫

∂�∩U

h(y)e−iy·η dy, for x ∈ ∂� ∩ U.

(ii) If .γ ∈ W 2,r , r > n/2, then for any continuous function .f, g in .H 1/2(∂�) with
support in .∂� ∩ ∂� holds

.〈g,
∂γ

∂ν
f 〉 = lim|η|→∞

η∈Rn−1×{0}
〈g, e−i〈·,η〉 (

γ	1 + 	1γ − 2	γ

)
ei〈·,η〉f 〉. (45)
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