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Abstract Salinity and drought are among the most influencing factors facing 
agricultural production. In many regions they cause up to 50 yield loss due to 
the secondary oxidative stress they create. The physiological reactions caused by 
oxidative stress adversely affect germination rate, plant growth, and development. 
Legumes, with their N2 fixing symbioses, developed various tolerance strategies to 
cope with these constrains, but the complexity of oxidative stress and climate change 
make it more difficult to maintain crop productivity. Seed priming may constitute an 
alternative as an easy, inexpensive, safe, and reliable technique for ameliorating 
germination under stress. It consists of inducing a particular physiological state 
in the plant via the treatment of the seeds with natural or synthetic agents before 
germination. Under unfavorable environmental conditions, seed priming allowed to 
restart the germination metabolism, thus improving the germination percentage and 
germination rate and reducing the germination time. Seed priming with nanoparti-
cles (NPs) is a promising field of plant nanotechnology that can enhance osmotic 
stress tolerance by alleviating oxidative stress injuries in plants and install stress 
resistance in treated seedlings. Thus, this review will highlight the various potential 
benefits of NPs application as priming agents in the seeds of legumes and non-
legumes, in some cases, through the comparison to the standard priming agents like 
polyethylene glycol (PEG), NaCl, and bioactive agents. Primed seeds 0showed low
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oxidative injuries due to the accumulation of osmoprotectants and osmotic adjust-
ment stimulated by the variant priming agents including PEG, NaCl, etc. Bioactive 
priming agents like plant growth-promoting rhizobacteria (PGPRs), Pseudomonas, 
and Trichoderma are among many beneficial microorganisms used against biotic 
and abiotic stressors. Active NPs act in priming like biostimulants of salinity and 
drought resistance and enhanced water uptake. Seed germination and vigor, stimulate 
aquaporin (AQP) synthesis, photosynthesis, RuBisCo activity, antioxidant defense, 
nodulation in legumes, and nutrient uptake. 

Keywords Salinity · Drought · Seeds · Priming · Nanoparticles · PGPRs 

1 Introduction 

Agriculture is facing many challenges due to climate change. Salinity and drought are 
the main abiotic factors to which plants are exposed during their life cycle. These two 
environmental constraints cause severe production loss by affecting growth, devel-
opment and productivity of crops, especially in arid and semi-arid regions (Singh 
et al. 2015). Almost 20% of the world’s arable land is affected by salinity, with an 
annual increase of 1 to 2% of land becoming affected. The presence of more salt in 
the soil than the plant needs disrupts its physiological, biochemical and metabolic 
processes (Xiong and Zhu 2002). Due to osmotic stress and ionic toxicity, salinity 
and water deficit induce the generation of reactive oxygen species (ROS), inhibit seed 
germination, reduce photosynthetic activity, disrupt membrane stability, and ionic 
balance and lipid metabolism (Farissi et al. 2018; Muchate et al. 2016; Aqtbouz et al. 
2016; Zargar et al.  2017; Mouradi et al. 2018). 

Various methods are used to improve plants’ tolerance to abiotic stress. Selec-
tion of resistant varieties, natural crossings and genetic engineering are the main 
techniques to improve plants’ tolerance to salt and water stresses (Jisha et al. 2013). 
Recently, ‘seed priming’ a pre-sowing treatment has been developed as a simple, 
effective, ecological, and natural method for improving plants’ resistance to abiotic 
and biotic stresses (Bhanuprakash and Yogeesha 2016; Conrath et al. 2015). It 
consists of partially hydrating the seeds with natural or synthetic agents to proceed the 
pre-germinative events and prevent the radicle emergence in the imbibition phase. 
This creates a particular physiological state (plant tolerance memory) in the seed 
that can impact the plant tolerance in later growth stages (Abid et al. 2018; Chen 
and Arora 2013). When primed with the suitable agent, dry seeds accumulate more 
osmoprotectants and compatible solutes like proteins, glycine betaine, and sucrose, 
responsible of osmotic adjustment under salinity and drought constraints. It has been 
reported that this technique could improve seed germination, growth, photosynthesis, 
mineral and water nutrition, and the antioxidant system of plants (Lahrizi et al. 2021; 
Tounekti et al. 2020; Sen and Puthur 2020; Llorens et al. 2020; Parveen et al. 2019; 
Yusefi-Tanha et al. 2019).
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Many nanomaterials, especially nanoparticles (NPs), belong to nanotechnology 
and have the potential to contribute as a new technological solution for agriculture 
problems. Many of them have proven their effectiveness when applied to plants 
for the protection from phytopathogens, plant nutrition amelioration and inducing 
resistance to abiotic stressors (Nayana et al. 2020; Maswada et al. 2020; Kumar et al. 
2020). It has been reported that the binding proportion between seeds and NPs agents 
in nanopriming was found to be high compared to other priming agents like PEG, 
water and vitamins (Mahakham et al. 2017; Anand et al. 2019). The use of NPs and 
nanofetilizers as priming agents can strongly contribute to pest control, plant nutri-
tion amelioration, and ecofriendly production methods. The NPs in seed priming can 
also act as biostimulants, improving seed germinative metabolism, plant growth, and 
activators of many signaling pathways. These effects depend on the size and the prop-
erties of the NPs applied to the seed. Researchers are exploring avenues for reducing 
fertilizer requirements by tweaking the seed metabolism through growth booster 
molecules or seed priming agents and using different nanoparticles as fertilizers. 

The aim of this review is to provide an update concerning the potential applications 
of seed priming and nanopriming techniques with NPs and plant growth promoting 
rhizobacteria (PGPR) in legumes with their N2 fixing symbioses and other plant 
species for mitigating the climate change effects and particularly salinity and drought 
constraints. 

2 Seed Priming Techniques and Utilization in Legumes 

One of the important challenges seed physiologists face is the selection of the priming 
medium. Seed priming has been reported to be one of the most widely used tech-
niques to improve the tolerance of plants to abiotic stresses. This technique consists 
of inducing a particular physiological state in the plant by treating the seeds with 
natural or synthetic agents before germination (Lutts et al. 2016). Under unfavor-
able environmental conditions, seed priming helped restart germinal metabolism, 
thereby improving germination parameters as germination percentage, its rate and 
germination time (Pradhan et al. 2017; Lemmens et al. 2019). 

Various seed priming techniques, including hydropriming, halopriming, osmo-
priming, chemopriming, biopriming, priming with growth hormones, etc., have been 
reported for their positive effects in improving plants’ tolerance to some abiotic 
stresses like salinity and drought (Mouradi et al. 2018; Khadraji et al. 2020; Lahrizi 
et al. 2021) (Table 1). Although the role of seed pretreatment in improving seed and 
plant emergence has been reported by several authors (Khadraji et al. 2017, Mouradi 
et al. 2016b), the most suitable type of pretreatment mainly depends on the plant 
species and the type of stress to which the plants are exposed (Paparella et al. 2015).
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2.1 Osmopriming 

Osmopriming consists of immersing the seeds in an osmoticum such as mannitol, 
sodium chloride, or polyethylene glycol (PEG) and has a positive effect on the 
enhancement of seeds germination and seedlings growth, especially under stress 
conditions (Farooq and Basra 2006; Farooq et al. 2009; Chen and Arora 2011). This 
pretreatment makes it possible to influence the development of the seedlings, by 
modulating the metabolic and biochemical activities during the reversible phase of 
germination, which gives the seed a significant germination potential and subse-
quently allows a certain tolerance level to various abiotic stresses (Khadraji et al. 
2017; Mouradi et al. 2016a) (Fig. 1). Osmopriming is a simple technique for the 
successful germination of many species, nodulation, and N2 fixation capacity for 
legumes and their production under environmental stress through the acquisition of 
nutrients from poor soils (Mouradi et al. 2016b; Amooaghaie and Nikzad 2013). 
Studies on the germination of alfalfa and chickpea seeds primed with polyethylene 
glycol 6000 (PEG 6000) showed a higher germination rate and growth compared to 
untreated plants. The highest germination percentages reached 90.8% under severe 
stress (Mouradi et al. 2016b). Osmopriming treatment by PEG 6000 improved the 
activity of antioxidant enzymes (peroxidase and catalase), maintained membrane 
stability through limiting phospholipids peroxidation (reduced malonyldialdehyde 
content) and reducing electrolyte leakage under this stress. In general, germination 
success was positively correlated with peroxidase (PO) and catalase (CAT) activities 
and the degree of membrane stability in drought-tolerant populations (Khadraji et al. 
2017; Mouradi et al. 2016b) (Table 1). 

Fig. 1 Effects on germination parameters, growth, and plant physiology under different abiotic 
stresses
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2.2 Halopriming 

Halopriming is a technique of priming based on immersing seeds in different saline 
solutions (CaCl2, CaSO4, NaCl, etc.) that allows uniform germination of seeds, 
early emergence of seedlings, and an increase in biomass production, even under 
adverse environmental conditions (Khadraji et al. 2020; Jisha and Puthur 2014). 
This technique also induces the activation of enzymes involved in the breakdown and 
mobilization of reserves (Varier et al. 2010). The positive effects can continue even at 
the time of flowering and pod formation (Zare et al. 2011; Giri and Schillinger 2003). 
Several authors have explained the rapid and synchronized germination in the case of 
halopriming by activation of pre-germination processes, which promote quantitative 
and qualitative biochemical modifications at the level of the seed (Maroufi et al. 2011; 
Varier et al. 2010). Halopriming induces membrane repair (Jowkar et al. 2012) as  
well as the activation of endo-β-mannase (Varier et al. 2010) and more generally the 
increased activity of antioxidant enzymes (Ahmad et al. 2012). On the other hand, 
Varier et al. (2010) have explained the beneficial effects of halopriming on growth 
by an acceleration of nuclear replication in the roots and leaves. 

2.3 Biopriming 

Biopriming is an advanced treatment of seeds with biological means which allows 
both hydration and inoculation of the seeds by beneficial microorganisms before 
sowing, for improving the viability and vigor of the seeds as well as their germination, 
in particular under unfavorable conditions (Lahrizi et al. 2021; Mouradi et al. 2018). 
This technique also represents a kind of biocontrol through the use of microorganisms 
antagonistic to bacteria and phytopathogenic fungi in the soil by coating the seeds 
(Mahmood et al. 2016). The term biopriming was first introduced by Callan et al. 
(1990), where they applied a layer of biological primer on sweetcorn seeds with the 
fungi Trichoderma asperellum and Trichoderma harzianum and immersed them in 
lukewarm water (35–40% moisture content) for imbibition. In general, the goal of this 
treatment is to introduce beneficial microbes into the soil environment, followed by 
conventional inoculation (Reddy 2012). It allows uniform seed germination, viability, 
plant growth and finally improves crop yield. Most importantly, this ecofriendly 
approach protects seeds and plants from soil-borne pathogens mainly at the early 
stage of plant development (Lahrizi et al. 2021; Singh et al. 2016) (Fig. 1). Some 
biocontrol agents used with the seeds, like Pseudomonas fluorescens and Clonos-
tachys rosea, have been shown to be able to colonize the rhizosphere, providing solu-
bilized minerals to plants beyond the germination and seedling stages (Bennett and 
Whipps 2008). This depends mainly on the photosynthates exudation along with the 
root mucilage. This includes organic acids, amino acids, and carbohydrates, manda-
tory for microbial rhizosphere and root colonization (Reddy 2012). The main concern 
of this technique is related to the viability of the microbial agent on the surface of the
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seed. It has been demonstrated that PGPR strains keep on multiplying on the surface 
and in the spermosphere of seeds even before sowing (Mirshekari 2012; Reddy 2012). 
The bacterial survival depends on the species, soil proprieties, nutrients, competi-
tion with pathogens and other microbes, and water availability. Lahrizi et al. (2021) 
have demonstrated that plants raised from bioprimed seeds with rhizobia showed 
significant improvement of photosystem II performance, leaf relative water content, 
nodulation, and membrane integrity under water deficit (Table 1). Reddy (2012) 
reported that several microorganisms like Trichoderma, Pseudomonas, Azotobactor, 
Azospirillum, and Agrobacterium, when used as priming agents, can improve drought 
tolerance. Mirshekari (2012) demonstrated that seed biopriming with Typha angus-
tifolia improved the salinity resistance in Pissium sativum L. Primed seeds showed 
better germination into seedlings under salinity by modulating membrane integrity. 
Photosynthesis, sugar metabolism and ionic hemostasis were also ameliorated in 
bioprimed P. sativum seedlings (Ghezal et al. 2016). 

3 Nanoparticles (NPs) for Seed Priming for Legumes 

Seed nano priming is a technology of seed treatment that uses nanomaterials for seed 
priming (Griffin et al. 2017). The particularity of this technique is that the priming 
solution is a suspension of nano formulations, mainly nanoparticles (NPs) of 1–100 
nm. The nanoparticles are the building blocks of the nanotechnology. NPs are abun-
dant in nature from inorganic ash, soot, sulfur, and mineral particles found in the 
air or in wells, to sulfur and selenium nanoparticles produced by many bacteria and 
yeasts (Buzea et al. 2007; Griffin et al.  2017). These are formed by many natural 
processes such as volcanic eruptions (silicate and iron compounds), forest fires 
(carbon nanotubes), erosion plants and animals shedding (selenium and tellurite) and 
photochemical reactions (silver NPs) (Griffin et al. 2017; Buzea et al. 2007; Bartlett 
et al. 2016). The NPs are recognizably different to the bulk materials for their small 
size and large surface area (Hong et al. 2013). Other differences are related to the 
physical strength, chemical reactivity, electrical conductivity, magnetism, and also 
optical effects (Hong et al. 2013). These proprieties allow them to be used in several 
industrial domains including food production and agriculture to reduce production 
cost. Several studies showed that nanoparticles have a great potential to be used in 
agriculture like nanosensors, with phytohormones, food additives, genetic improve-
ment, for drugs, nano pesticides and nanofertilizers (Hong et al. 2013). The main 
factors adjusting the effect on plants depend on the plant species, the NPs intrinsic 
proprieties and concentration, the interaction time, and the interaction between living 
environment and plant (Miralles et al. 2012). 

In seed nano priming, the NPs may or may not be taken up by the seed. Most of 
the nano priming techniques employ nano suspensions where the majority of NPs is 
retained in the seed surface or coat (do Espirito Santo Pereira et al. 2021). The seed 
nano priming can be used with seed coating with fungicides and insecticides in order 
to protect the crop from biotic ravagers or with biostimulants to improve tolerance
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Fig. 2 Seed nanopriming. Active nanoparticles (NPs), systems that can be taken directly by the 
seed coat. They are generally plant growth and development stimulators and Nonactive NPs are 
systems of carriers providing a slow release of NPs during germination and seedlings growth and 
can be loaded by active compounds like fungicides, bactericides etc. (do Espirito Santo Pereira et al. 
2021)

to abiotic stressors (Nayana et al. 2020; Bayat et al. 2020). In nano priming, we can 
distinguish two types of NPs, active or nonactive NPs (Fig. 2). The active NPs are 
particles that will be taken by the seed and retained in the seed coat after application. 
The nonactive particles will be used as nanocarriers for the active NPs when applied to 
the seed. The active NPs have been shown to ameliorate seed germination, and act as 
defense mechanisms against pathogens and environmental stresses (Chandrasekaran 
et al. 2020; Agathokleous et al. 2019). The system of carriers and active NPs is charac-
terized by the slow release of the active NPs to the seed during germination. Both nano 
priming systems can be applied to seeds in order to provide protection during storage, 
improve germination, germination synchronization, and plant growth, as well as to 
increase the resistance to abiotic or biotic stress conditions (Chandrasekaran et al. 
2020; Agathokleous et al. 2019). Active NPs can be characterized as direct stim-
ulators of plant growth and development through activating biological effects and 
responses against stressors (Rizwan et al. 2019; Mishra and Singh 2015). Nanocar-
riers are systems of NPs that can be active itself or when loaded by other bioactive or 
synthetic compounds providing a slow release over time in the seed coat (do Espirito 
Santo Pereira et al. 2021; Kumar et al. 2020). Metallic and nonmetallic NPs can be 
used as active NPs priming suspension (Table 1). They have a direct effect on the seed 
germination and seedling growth. Many biopolymeric NPs can be used for the slow-
release system. The biopolymers (more than 100 nm) are made from polysaccharides, 
lipids, and proteins and can be loaded by many substances of essential oils, pesticides, 
phytohormones, and fertilizers. For nano priming, alginate, cellulose, chitosan, and
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lipid NPs can be used to modify plant metabolism or against pathogens (do Espirito 
Santo Pereira et al.2021; Nayana et al. 2020; Kumar et al. 2020; Bayat et al. 2020).

3.1 Important Effects on Seed Germination 

Nanomaterials can be applied to seeds (nanopriming) for the induction and improve-
ment of seed germination, seed protection during storage, enhancement of plant 
growth, and the resistance to abiotic or biotic stressors (do Espirito Santo Pereira et al. 
2021). Mahakham et al. (2017) investigated the effect of Ag NPs with Citrus hystrix 
leaf extracts to improve the germination of non-legume Oryza sativa seeds. The 
results demonstrated an enhancement of seed water uptake, α-amylase activity, and 
starch hydrolysis and produced more reactive oxygen species (ROS). Also, Maroufi 
et al. (2011) demonstrated that titanium (TiO2, 0.02%) NPs improved germination 
and seedling growth of Vigna radiata. Carbon nanotubes also accelerated seed germi-
nation, growth rates as well as seedling vigor in tomato (Mondal et al. 2011). Bayat 
et al. (2020) demonstrated that the combination of iron and zinc NPs as seed priming 
accelerated the emergence of cotyledons in red beans and common beans cultivars. 
This may perhaps be due to the role of iron and zinc elements in the functional 
changes of different enzymes, which in turn causes positive synergistic effects on 
the bean plants. Furthermore, Hussain et al. (2019) reported that silicon (Si NPs) 
application as seed priming increased biomass and yield while reducing oxidative 
stress in wheat plants subjected to cadmium stress. Abdel-Aziz and Rizwan (2019) 
reported that silver (Ag NPs) increased growth of Vicia faba seedlings, photosyn-
thesis, chlorophyll content, and starch accumulation. In the same sense, Zmeeva et al. 
(2017) showed that Si NPs improved plant height and tillers number, yield, fresh and 
dry root mass, plant transpiration, chlorophyll and carotenoids and photosynthetic 
pigments in Medicago sativa. It has been demonstrated also that silver NPs, used as 
priming suspension, may protect the seed from bacteria and fungi while silica NPs 
had the potential to improve the leaves mechanical strength, light absorption, enhance 
photosynthesis capacity, plant growth and endurance of plant organs and also reduce 
transpiration (Abbasi Khalaki et al. 2021). Iron NPs application control antioxidant 
activities and the functioning of phytohormones to enhance plant biomass while that 
of Titanium NPs helps to increase seed water absorption and boost vigor of old seeds 
(Abbasi Khalaki et al. 2021). 

The majority of nanoparticles used with the seed nano priming for legumes are.
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3.2 Seed Nanopriming and Oxidative Stress Tolerance 

With their smaller size and higher effectivity, the NPs can help reduce the required 
quantities of chemical pesticides and fertilizers. Inside the plants and via the active 
transport system through xylem, NPs can change their structure and form ion 
complexes with other molecules or nutrients. The NPs can modulate the enzymatic 
activities related to the secondary oxidative stress, induced under osmotic stress, and 
activate the stress defense mechanisms. NPs can, at moderate levels, induce the gener-
ation of ROS, which constitute signaling pathways for transcription of different genes 
during the germination, and regulate secondary metabolites in germinated seedlings 
related to stress tolerance. These beneficial effects depend on the size and concen-
trations of the NPs and their physicochemical proprieties, mode of application, and 
the plant species (Fig. 3). 

Fig. 3 Supposed model by Chandrasekaran et al. (2020) and do Espirito Santo Pereira et al. (2021) 
for the events occurring in nanoprimed seeds compartments by the action of active NPs. At low 
levels active NPs taken by the seed coat increased abscisic acid (ABA) synthesis and seed dormancy 
installation. At optimal level NPs induced ROS activation and signaling regulation of the gibberellic 
acid (GA) and ROS scavenging enzymes. Undetermined involvement of GA in internalization as 
well as NPs transport from seed coat to endosperm. Factors involved in sugar signaling responses, 
α amylase activity after NPs adhesion to radicle growth is indicated. ROS signaling of aquaporins 
(AQP) and increasing water uptake after NPs adhesion. At high level, NPs cause oxidative injuries 
through high levels of ROS and loss of the seed viability
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Fig. 4 NPs priming variant roles in overcoming drought stress in legumes and other plants (do 
Espirito Santo Pereira et al. 2021; Maswada et al. 2020; Agathokleous et al. 2019)

Generally, the beneficial effect of NPs under stress is clear at low doses and causes 
a low response stimulation “hormesis” under stress (Agathokleous et al. 2019). For 
example, in some non-legume species, carbon nanotubes application at 50 mg/l can 
stimulate drought tolerance by enhancing water uptake and the reduction of oxida-
tive injury of Hyoscyamus niger L. while at high dose it causes cell injury (Hatami 
et al. 2017). Xiong et al. (2018) demonstrated that seed nanopriming with Fullerol 
represses ROS generation in Brassica napus L. by regulating the activation of non-
enzymatic and enzymatic antioxidant compounds and also the ABA accumulation. 
The metallic NPs have also been demonstrated to be effective against drought in 
many species. Seed priming with iron NPs improved growth, photosynthesis, and 
photosystem II in sorghum plants (Maswada et al. 2018). Bayat et al. (2020) reported 
that soaking legumes seed with iron oxide NPs 4% for 3 hours enhanced growth and 
development of red beans (Table 2). Cao et al. (2018) demonstrated that Cerium oxide 
NPs improved biomass, water productivity, photosynthesis, and Rubisco activity 
in soybean plants subjected to different drought conditions (Fig. 4). Seyed Sharifi 
(2016) reported that ZnO NPs application next to biofertilizers improved nodulation 
in Glycine max L.. Mohaddam et al. (2017) reported that the combination of ZnO and 
Ag NPs enhanced nodulation in legume-rhizobium symbioses. This demonstrated 
that the beneficial effects of seed priming are conserved even at post germinative plant 
stages with markable changes in several physiological and biochemical responses in 
legumes and non-legumes (Mouradi et al. 2016a; Maswada et al. 2020). Seed priming
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with colloidal Molybdenum (Mo) NPs in the presence of microbial preparation stim-
ulates root nodulation, symbiotic system, and antioxidant defense in chickpea under 
stress conditions (Taran et al. 2014). TiO2 NPs can also stimulate plant growth in 
mung bean shoots and root length, nodulation, and promotes microbes in the rhizo-
sphere (Raliya et al. 2015). These NPs have been reported enhancing the many crop 
performances and stress tolerance including soybean (Glycine max L.). this through 
enhancing chlorophyll content, photosynthesis and nutrient uptake (Andersen et al. 
2016).

The effect of seed nanopriming on non-legumes like Zea mays L. and Capsicum 
annum L. under salinity stress has been investigated by Shah et al. (2021) and Ye 
et al. (2020). TiO2 NPs (60 ppm) application mitigates salinity injuries in maize by 
maintaining leaf water content and inducing antioxidant enzymatic defense under 
salinity, 200 mM NaCl. Mn NPs at low concentrations (0.1, 0.5, 1 mg/L) improved 
the root growth (elongation) in salt-stressed seedlings of C. annuum L. (Ye et al. 
2020). Mn NPs penetrates the seed coat, reduces the injuries of oxidative stress, and 
forms nanoparticle-corona complexes. This may play an important role in installing 
late salt tolerance in C. annuum L. (Fig. 5) (Ye et al. 2020). Shafiq et al. (2021) 
reported that Fullerenol at 80 nM improved ion uptake to reduce sodium toxicity 
and ameliorated biomass and grain yield in wheat plants under 150 mM NaCl. In 
legumes, nano silica (8 g/L) and gibberellic acid enhanced seed germination of pea, 
water uptake, ROS, and antioxidant in the seed under salinity (Chourasiya et al. 
2021). Maroufi et al. (2011) reported that under salinity TiO2 NPs (0.02%) signifi-
cantly ameliorated germination percentage, seedling dry weight, and seedling vigor 
in Vigna radiata L. This nanopriming techniques can ameliorate seed germination 
performance and quality under stress in many ways including the activation of α-
amylase activity, soluble sugars content, and stimulation of the activity of aquaporin 
channels increasing antioxidants to scavenge ROS, and the formation of nanopores 
to increase water uptake (do Espirito Santo Pereira et al. 2021).

3.3 Seed Nano Priming with PGPRs 

PGPRs are root associated beneficial bacteria known for their ability to promote 
plant growth with direct or indirect mechanisms. Bacteria with direct mechanisms 
involve those related to nutrients mobilization like phosphate, zinc, iron, and sulfur, 
nitrogen-fixing symbioses and phytohormones production (Grobelak et al. 2015; 
Nayana et al. 2020). Indirect mechanisms involve protection against phytopathogens 
and enhancement of plant tolerance to abiotic stresses. The great variability of the 
PGPRs behavior is due to many factors like soil, plant species, and competitiveness 
with other microorganisms which is challenging their exploration as biofertilizers 
(Nayana et al. 2020). 

In biopriming, PGPRs are applied as bacterial suspensions to the seeds, root 
surfaces, or directly in the rhizosphere. A consortium of bacteria has been proven to 
be more effective against indigenous microorganisms’ competition in the soil then the
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Table 2 Nanoparticles (NPs) utilized in seed nanopriming for legumes, their characteristics, the 
main effects on each studied species and stress conditions 

Nano particle 
priming 

Concentration 
and 
characteristics 

Main effects Legume 
species 

Citation 

Iron oxide Soaked in 4% 
concentration 
and dried for 
30 minutes in 
shade 

Growth and 
development 

Red beans Bayat et al. 
(2020) 

FeS2 Nano-iron 
pyrite 

100 μg/mL 
aqueous 
suspension of 
FeS2 for 
12 hours 
(overnight) 

Biomass, number of 
leaves, root, and shoot 
length 

Medicago 
sativa L 

Das et al. 
(2016) 

Zinc nanoparticles −0.15%, size 
20 nm spherical 
shape 40 and 
60 nm elongated 
shape (3 hours) 
−0.006%, size 
21.3 nm for 
12 hours 

Salinity resistance, 
increase of SOD, CAT, 
POD, and APX 
enzymes activities, 
photosynthetic 
pigments, organic 
solutes, as well as total 
phenols, ascorbic acid, 
and Zn over stressed 
plants alone 

• Phaseolus 
vulgaris L 

• Lupinus 
termis L 

Mahdieh 
et al. (2018), 
Latef et al. 
(2017) 

Titanium NPs 2% for 24 hours Increase in root and 
shoot length, lateral 
roots antioxidant 
enzymes 

Phaseolus 
vulgaris L 

Paul et al. 
(2020) 

Silver 
nanoparticles (Ag 
NPs) 

0.005% for 
6 hours 
−0.000125% for 
1.5 hours 

Growth attributes and 
biomasses of bean 
seedlings chlorophyll 
contents, starch, and 
total carbohydrate 
contents 
• Biomass, plant height, 
number of nodules, 
Net photosynthesis 
intensity 

• Broad bean 
• Green bean 

Abdel-Aziz 
and Rizwan 
(2019), 
Prażak et al. 
(2020) 

Platinum 
nanoparticles 
stabilized with 
poly 
(vinylpyrrolidone) 

1 mM,  size  
3.2 nm, and 
spherical shape 
for 3 hours 

Seed and seedling vigor, 
plant morphology, 
higher yield 

Pisum sativum 
L 

Rahman 
et al. (2020)

(continued)
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Table 2 (continued)

Nano particle
priming

Concentration
and
characteristics

Main effects Legume
species

Citation

Copper 
nanoparticle 

0.1%, size 25 nm 
for 20 min 

Seed and seedling vigor 
and biomass. High 
concentration inhibited 
seed germination 

Phaseolus 
vulgaris L 

Duran et al. 
(2017) 

Silicon SiO2 NPs 0.006% for 
48 hours 

Increased germination 
rate 20% of deteriorated 
seed, reduced the mean 
germination time 
(MGT) 

Glycine max L Mansouri 
Gandomani 
and Omidi 
(2017) 

Chitosan and 
carbon nanotubes 

• Chitosan 10% 
nanoparticles 
with size of 
95 nm 

• Carbon 
nanotubes 
10% with size 
of 40 nm for 
3 hours 

• CsNPs 0.05%, 
size 20 nm for 
3 hours 

• Plant morphology 
ROS elevation 

• Seed germination, 
total polyphenols, 
antioxidant activities 

Phaseolus 
vulgaris L 
Broad Beans 

Zayed et al. 
(2017), 
Abdel-Aziz 
(2019)

Fig. 5 Proposed Model of the effect of NPs priming on plants under salinity stress (Shafiq et al. 
2021; Ye et al.  2020; Abou-Zeid et al. 2021)

single inoculation. The microbial consortium can be prepared with NPs for wider use 
due to their small amounts and great effects on plant growth and resistance (Fig. 6) 
(Nayana et al. 2020). In nature, root exudate can produce various nano size metallic 
formulation acting as plants bio stimulants in the rhizosphere. It is reported that Gold 
NPs with Pseudomonas monteilii enhanced indole acetic acid (IAA) production in the 
bacteria and improved probiotic effect in cowpea. ZnO NPs had been reported to also 
ameliorate nodulation, plant height, grain yield and weight in soybean (Seyed Sharifi
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Fig. 6 Combined application effects of NPs and PGPRs (Nayana et al. 2020) 

and Khoramdel 2015). In non-legumes, Karunakaran et al. (2013) reported that SiO 
NPs synthesized from rice ash with a consortium of Bacillus, Pseudomonas, and 
Azotobacter genera improved seed germination percentage of maize in comparison 
to conventional Si NPs. Hatami et al. (2021) reported that the application of SiO NPs 
(100 mg/L) as seed priming with P. fluorescens produced healthy seedlings of lemon 
balm with higher biomass, RWC, photosynthetic pigments and antioxidant activity, 
and lower membrane electrolyte leakage. The application of SiO NPs induced the 
appearance of micropores in the seed coat causing higher water uptake and healthier 
seedlings (Hatami et al. 2021). 

4 Conclusion and Recommendations 

Salinity and drought are the major factors facing agriculture production and food 
security in many regions around the world. The present chapter reveals that seed 
priming is a safe and easily applied technique for uniform and successful germination 
and establishments of legumes, especially under salinity and drought. Seed priming 
enhanced germination parameters under stress including germination percentage, 
mean germination time (MGT), germination rate, and seedlings growth by increasing 
antioxidants. Seed priming also ameliorated the N2 fixing ability of legumes by
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enhancing nodulation, rhizobia root colonization, and nutrient uptake. According to 
the literature in this review, the application of NPs as nano priming agents is signif-
icantly more important in stimulating osmotic stress tolerance in legumes and other 
plant species than the standard priming agents like PEG, nutrients, and vitamins. 
NPs in seed priming can alleviate osmotic stress damages by inducing antioxidant 
defense, osmoprotectants, and ion balance in the seed and thus promote water uptake, 
seed germination, and seedling health. NPs can also stimulate aquaporins synthesis, 
photosynthesis, Rubisco activity, nodulation in legumes, and nutrient uptake. In addi-
tion, the application of NPs with PGPRs is a promising field of biofertilizers research. 
Further l studies will be needed to examine the interactions of treated plants with 
NPs and PGPRs consortia in order to increase osmotic stress tolerance in legumes. 
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