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Chapter 8
Microbial Elicitors for Priming Plant 
Defense Mechanisms

Anamika, Anupam Patra, Sadaf Shehzad, Anju Rani, Pankaj Sharma, 
K. F. Mohammad, and Sahil Mehta

Abstract Some microrganisms have evolved to be associated with plants, receiv-
ing nutrients from plants, and helping plants to fight pathogens by producing micro-
bial elicitors, which are compounds that trigger plant defenses. Elicitors are thus 
safe compounds that can replace harmful pesticides for a sustainable agriculture. 
Here we review plant immunity and microbial elicitors with focus on antibiotics, 
volatile organic compounds, siderophores, antimicrobials, enzymes, salicylic acid, 
methyl salicylate, benzoic acid, benzothiadiazole and chitosan.
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Metabolites · Antibiotics · Siderophores

Abbreviations

PRR Pattern-recognition receptors
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8.1  Introduction

While the demand for food increases exponentially, crop productivity gets relent-
lessly haunted by an increased number of biotic and abiotic stress combinations 
generally associated with global warming (Schlenker and Roberts 2009; Challinor 
et al. 2014; Zhao et al. 2017; Mehta et al. 2019, 2020). Abiotic stress conditions like 
drought, salinity, low and high-temperature etc. also influence the biotic stress fac-
tors (microbes, insects, weeds, and phytopathogens) (Seherm and Coakley 2003; 
McDonald et al. 2009; Ziska et al. 2010; Peters et al. 2014) (Fig. 8.1). These stress 
conditions likewise influence the interactions between plants and microbes present 
in their rhizosphere which built up quite a long time ago. The more fascinating fact 
is that these plants are established on land with the help of symbiotic fungal associa-
tions. It suggests that plants are invariably exposed to microbes via associations 
since their first existence on land, and these disagreements between microbes and 
plants resulted in mutative coexistence cycles which further shaped their habitats, 
lifecycles, distribution, and genomes of both organisms.

Based on their nature, these microbes are either beneficial or harmful to the 
plants. The harmful microbes act as pathogens and delimit productivity by causing 
a large number of diseases in multiple crops (Lamichhane and Venturi 2015; 
Rahman et al. 2019; Singh et al. 2019). It is supported by the fact that these biotic 

Fig. 8.1 Abiotic and biotic stresses which reduce plant productivity
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Table 8.1 Characteristic features of necrotrophs and biotrophs

Features Necrotrophs Biotrophs

Uptake of nutrients From dead plant cells From live cells
Type of pathogen Opportunistic (non-obligate) Specialized (obligate)
Death of host cell Rapid Not rapid and induce 

hypersensitive cell death in 
incompatible interactions

Mode of entry Enter through wounds or natural 
openings thus considered as 
unspecialized

Specialized entry via direct 
(mechanical) entry or through 
natural openings

Secretion of lytic 
enzymes

Cell-wall degrading enzymes and 
toxins

Few lytic enzymes or toxins

Systemic Seldom Often
Host range Wide Narrow
Survival on host As saprotrophs On host or as dormant propagules
Host preference Weak, young, or damaged plants Plants of all ages
Control By quantitative resistance genes By specific (gene-for-gene)

Resistance genes
Growth within-host Intercellular and intracellular 

through dead cells
Intercellular

Defense pathways of 
plants against 
pathogens

Jasmonate and ethylene-dependent Salicylate-dependent

Examples Botrytis cinerea – Grey mold, 
Pythium ultimum – Damping-off 
in seedling

Uromyces fabea – Rust, Ustilago 
maydis – Maize smut

factors constrain the yield up to 26% globally. They invade the plants either through 
the leaf (stomata), stem (lenticels), and root surface directly or through injury. After 
the invasion, they employ a variety of strategies to impair plant growth. These 
pathogens are comprehensively divided into two types- necrotrophs (bacteria, fungi, 
insects, and also herbivorous animals), hemibiotrophs, and biotrophs (basically 
viruses). The former type kills their host and feeds on the dead material, unlike 
biotrophs that complete their life cycle in a living host. Being sessile by nature, the 
plants have evolved their immune system to prevent themselves from pathogens as 
they can’t escape their enemy, unlike vertebrates. The characteristic features of 
necrotrophs and biotrophs are tabulated in Table 8.1.

8.2  Plant Immunity Against Harmful Microbes

An enormous set of pathogens have the potential to kill or damage plants and it goes 
on through the entire ecosystem. Plants utilize preformed defenses intended to avert 
pathogen and herbivore attacks. The first line of defense in plants is provided by the 
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thick waxy or cuticular skin of the plant body along with the presence of anti-
microbial products (Dangl and Jones 2001). Although pathogen finds a broad spec-
trum of strategy to invade. For the passive form of invasion, intercellular space like 
apoplast, stomata, hydathodes, lenticels, or local wounds are the frequent target, and 
in the active, plant-pathogen develop specialized organs like nematode and aphid 
have stylet, fungi have hyphae as well as haustoria (Jones and Dangl 2006). On suc-
cessful plant invasion, the plants utilize their immune system consisting of mainly 
two interconnected tiers to fight against pathogens (Jones and Dangl 2006; Boller 
and Felix 2009; Thomma et al. 2011; Spoel and Dong 2012). One of these innate 
immunity strategies utilizes cell surface pattern-recognition receptors (PRRs) to 
perceive Microbe-Associated Molecular Patterns (MAMPs) and host-derived dam-
age-associated molecular patterns (DAMPs) present in a large variety of microbes 
(Boller and Felix 2009). Receptor-like kinases and receptor-like proteins (RLPs) are 
the cell surface pattern-recognition receptors in plants. The canonical structure of 
receptor-like kinases has an extracellular domain to recognize ligands, an intracel-
lular kinase domain with only one pass transmembrane domain (Couto and Zipfel 
2016; Zipfel and Oldroyd 2017). Receptor-like proteins lack the kinase domain 
(Zipfel 2014; Couto and Zipfel 2016; Zipfel and Oldroyd 2017) (Fig. 8.2).

Fig. 8.2 Mechanism of plant immunity against harmful microbes. Receptor-like kinases (RLKs) 
and receptor-like proteins (RLPs) are potent membrane molecules to identify Microbe-Associated 
Molecular Patterns (MAMPs) and Pathogen-Associated Molecular Patterns (PAMPs). R gene 
products (NB-LRRs) recognize the released Avr factors from pathogens. TIR Toll-interleukin-1 
receptor, NB Nucleotide-binding, LRR Leucine-rich repeat, CC Coiled coil, and R gene 
Resistance gene
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Pattern-Recognition Receptors have a highly variable ligand recognition domain 
and thus recognizes a wide range of microbes. They along with their co-receptors 
(known to have the same extracellular domain as PRRs) triggers a signaling cascade 
to establish pattern-triggered immunity (Jones and Dangl 2006; Zipfel 2014). 
Microbe-Associated Molecular Patterns (MAMPs) are shared similar molecular 
patterns such as lipopolysaccharides, peptidoglycan, flagellin, etc. (Jones and Dangl 
2006) which exist in pathogen cell wall or extremities to represent own group iden-
tity as well as potent virulence (Table 8.2). On the other hand, damage-associated 
molecular patterns (DAMPs) encourage the inflammatory responses by activating 
the PRRs (Table 8.3). They are endogenous molecules that are released from the 
stressed or dead cell eliciting the immune system activation (Gust et al. 2017). As, 
e.g., tomato systemin generated by the wound, influences the processing of pro- 
systemin and it induces adjacent cells as well as vascular bundle elements to pro-
duce Jasmonic acid which finally activates the expression of proteinase inhibitor 
genes (Pearce et al. 1991).

Table 8.2 Common potent microbe-associated molecular patterns with their respective pattern 
recognition receptors

S. No.
Microbe associated 
molecular patterns Origin

Family of 
pattern 
recognition 
receptors

Associated 
pattern 
recognition 
receptors Plant species

1. RaxX Xanthomonas 
oryzae pv. Oryzae

LRR XII XA21 Oryza 
longistaminata

2. Flagellin Pseudomonas 
syringae pv. 
Tabaci

LRR XII FLS2 Arabidopsis 
thaliana

3. csp22 Staphylococcus 
aureus

LRR XII CORE S. 
lycopersicum

4. EF-Tu Escherichia coli LRR XII EFR A. thaliana

5. Chitin Agaricus bisporus LysM AtCERK1, 
AtLYK5

A. thaliana

6. SnTox1 Stagonospora 
nodorum

WAK Snn1/
TaWAK

Triticum 
aestivum

7. Lipopolysaccharides P. fluorescens G-Lec SD1–29/
LORE

A. thaliana

8. Avr3/ Six1 Fusarium 
oxysporum

G-Lec I-3 S. 
lycopersicum

9. NLP Pythium 
aphanidermatum

LRR RLP23 A. thaliana

10. Elicitin Phytophthora 
cryptogea

LRR RLP85/
ELRb

S. 
microdontum

Source: Google scholar-based literature survey 1995–2020. LRR Leucine-rich repeats, WAK Wall- 
associated kinase, LysM Lysine motif, RLP Receptor-like protein
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Table 8.3 Potent damage-associated molecular patterns and respective host plants

Category
Potent Damage associated molecular 
patterns Host plants

Protein PAMP-induced secreted peptides Arabidopsis thaliana

Rapid alkalinization factors A. thaliana

AtPep1 A. thaliana

High mobility group box 3 A. thaliana

Carbohydrate Glucose (monosaccharide) Nicotiana tabacum

Sucrose (diholoside) A. thaliana

Trehalose (diholoside) A. thaliana

D-allose (monosaccharide) Oryza sativa

Lipid Hydroxystearic acid (cutin monomer) Hordeum vulgare

Nucleotide Extracellular ATP A. thaliana

Source: Google scholar-based literature survey 1995–2020

After recognizing microbe-associated molecular patterns or damage-associated 
molecular patterns, pattern recognition receptor-dependent response triggers the 
downstream cell signaling to initiate the immune response (Schwessinger and 
Ronald 2012). The Pattern-recognition receptors have many kinds of an extracellu-
lar domain, viz., leucine-rich repeats, lectin, lysine motif, epidermal growth factor- 
like domains which are intended to provide a more significant range of ligand 
recognition. The co-receptors that form the complex to activate the different down-
stream signaling molecules namely Receptor-like proteins, receptor-like kinases, 
etc. also have a role in plant growth, abiotic stress, and mutualism with beneficial 
microbes. Finally, Calcium-dependent protein kinases, Mitogen-activated protein 
kinase cascades, reactive oxygen species production, and cellulose deposition get 
activated, which leads to modification in transcriptional products (Boutrot and 
Zipfel 2017).

Through evolution, microbes have developed a vast repertoire of effector mole-
cules or elicitors for successful infection establishment in their hosts, while respon-
sive plants persistently produce disease resistant R proteins to combat these effector 
molecules. As the elicitors enter into a plant cell through the type III secretion sys-
tem (Finlay and Falkow 1997), their recognition in plants triggers the effector- 
triggered immunity (Jones and Dangl 2006; Spoel and Dong 2012). Most of the 
knowledge about the effectors and type III secretion system is based on the work 
conducted on Pseudomonas syringae, a highly diverse plant biotrophic pathogen 
(Baltrus et  al. 2011). The pan-genome of P. syringae species complex from 494 
strains was used to analyze type III secretory effector molecules, and a total 14, 613 
putative type III secretory effectors were identified out of which 4636 were unique 
at the amino acid level (Dillon et al. 2019). To date, this vast repertoire of effector 
molecules constitutes 66 families. A particular strain from this complex typically 
expresses 15–30 effector molecules. These effector molecules are encoded by hrp/
hrc (hypersensitive response and pathogenicity) genes and named Hop because of 
their ability to pass through the type III secretion system (Fig. 8.2).
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Many effectors from its pangenome are also known as ‘Avr’ because of their 
discovery in the post-genomic era as avirulence phenotype (Lindeberg et al. 2005). 
These effector molecules were analyzed in the context of their role in the two-grade 
innate immunity of plants. According to this model, primarily the immunity elicited 
by bacterial flagellin, lipopolysaccharide, peptidoglycan, and elongation factor Tu 
which is commonly known as Pattern-triggered immunity was suppressed by these 
effector molecules secreted by bacteria. Later, these molecules are perceived by 
resistance (R) proteins, the second grade of innate immunity familiarized as 
Effector-triggered immunity (Jones and Dangl 2006). The resistance (R) proteins 
are characterized by nucleotide-binding site leucine-rich repeats through which they 
recognize and bind to the effector molecules released by microbes resulting in 
Effector-triggered immunity response. Sometimes Effector-triggered immunity 
induced response is called hypersensitive response where programmed cell death 
occurs eventually. This kind of immune is very effective on biotrophs as their asso-
ciation is within the cell. Pathogenic type III secretory effectors are like ‘double- 
edged swords’, as on one hand, they trigger Effector-triggered immunity response 
and on the other, they suppress Effector-triggered immunity response (Hou 
et al. 2011).

Local cellular responses are delivered throughout the system to generate a large 
scale of resistance toward similar infections as well as secondary infections. The 
Effector-triggered immunity response also instigates the synthesis of small, low- 
molecular- weight, mobile, immune signaling molecules like salicylic acid, 
glycerol- 3-phosphate which are then transported from the site of infection where 
they were synthesized to the site of non-infection, to prevent the healthy plant tis-
sues from infection (Spoel and Dong 2012; Fu and Dong 2013). After perceiving 
these immune signaling molecules, uninfected tissue accumulates Salicylic acid 
resulting in massive transcriptional programming. This instigated immune signaling 
is known as systemic induced signaling (Spoel and Dong 2012; Fu and Dong 2013) 
(Fig. 8.3).

Recent studies suggested that plant symbionts and pathogens take advantage of 
comparable molecular strategies to conquer the defense reactions of plants. The 
Microbe Associated Molecular Patterns/Pattern Recognition Receptor system also 
takes part in harmonious reciprocity with symbiotic microbes. This proposes the 
role of beneficial microbes for disease tolerance against pathogens employing the 
innate immune system of plants (Hacquard et al. 2017).

8.3  Beneficial Microbes and Their Metabolites

The ecosystem of the soil is one of the most complex and multifarious ecosystems 
of the earth which is inhabited by a wide range of organisms from fungi, arthropods, 
nematodes to bacteria (Venturi and Keel 2016). Bacterial diversity is lower in the 
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Fig. 8.3 Down-stream signaling in tomato upon recognition of Pseudomonas syringae flagellin

rhizosphere but has increased abundance and activity. These bacteria in the rhizo-
sphere are under the selective pressure of plants suggesting a correlation between 
plant-derived metabolites and microbial metabolites. Through such association, 
mutual relationships are established between plants and microbes which are 
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essential for root-root interactions, nutrient availability, amassing of microorgan-
isms, and biofilm formation of soil microbes (Mommer et al. 2016; Rosier et al. 
2016; Sasse et al. 2018), as well as inhibition of phytopathogens (Bertin et al. 2003; 
Li et al. 2013).

Based on their effects on plants, plant-associated microbial communities are 
classified into three categories such as beneficial, deleterious, and neuter. 
Microbes that play a role in plant growth, nutrient uptake, defense, resistance, 
and development during stress and normal circumstances are known as plant 
growth-promoting microbes. The typical plant growth-promoting microbes in 
the rhizosphere are Paenibacillus, Burkholderia, Pseudomonas, Bacillus, 
Acinetobacter, Arthrobacter, and Arthrobacter (Finkel et  al. 2017; Sasse et  al. 
2018; Zhang et al. 2017). These bacteria secrete molecules to establish an asso-
ciation with plants which triggers specific changes in the transcriptome of plants. 
These plant growth-promoting microbes can produce phytohormones like aux-
ins, abscisic acid, cytokinins, salicylic acid, gibberellins, and jasmonic acid 
(Fahad et al. 2015).

Additionally, antibiotics, siderophores, antimicrobials, enzymes, volatile organic 
compounds, and many more helps in priming defense mechanisms in plants. All 
these metabolites secreted by microbes are known as “elicitors”. “Elicitors can be 
defined as small molecules secreted under stress which induces biosynthesis of spe-
cific molecules having an essential role in the adaptations of plants to a stress condi-
tion” (Radman et al. 2003). The role of these elicitors for plant growth promotion 
and ISR priming has been extensively studied for decades, and these are promising 
substitutes for herbicides, fertilizers, and pesticides (Kloepper et al. 2004; Gupta 
et  al. 2015). Below, we look at the elicitors secreted by plant growth-promoting 
microbes which are of paramount importance in priming induced systemic resis-
tance in plants against phytopathogens.

8.3.1  Antibiotics

The utmost important mechanism employed by plant growth-promoting microbes 
to hamper the negative impact of plant pathogens is the biosynthesis of a wide range 
of antibiotics (Couillerot et al. 2009; Raaijmakers and Mazzola 2012). However, the 
host range of these antibiotics varies and is also dependent on different field condi-
tions. A large range of bacterial antibiotics have been derived from genera Bacillus 
includes zwittermycin-A (Silo-Suh et al. 1994), kanosamine (Milner et al. 1996), 
Bacillomycin (Volpon et al. 1999) and Plipastatins A and B (Volpon et al. 2000). On 
the other hand, Pseudomonas include cepafungins (Shoji et al. 1989), pseudomonic 
acid (Fuller et al. 1971), 2,4 Diacetyl phloroglucinol (Shanahan et al. 1992), pyolu-
teorin (Howell and Stipanovic 1980), oomycinA (Kim et al. 2000), phenazine- 1- 
carboxylic acid (Pierson III and Pierson 1996), butyrolactones (Thrane et al. 2000), 
rhamnolipids, viscosinamide (Nielsen et  al. 1999), cepaciamide A (Howie and 
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Suslow 1991), ecomycins (Jiao et  al. 1996), azomycin (Shoji et  al. 1989), and 
karalicin which is an anti-viral antibiotic (Lampis et al. 1996).

These metabolites serve as antioxidant, antimicrobial, phytotoxic, antiviral anti-
helminthic, insect and mammalian antifeedant, cytotoxic, and plant growth- 
promoting activity agents and are best studied in disease management. For example, 
a novel antibiotic secreted by B. cereus UW85 is Zwittermicin A, which is highly 
active against Oomycetes, algal protists and moderately active against a vast range 
of gram-negative bacteria and fungi and few gram-positive bacteria. When it is com-
bined with another antibiotic, kanosamine secreted by the same organism they act 
synergistically against E. coli (Laura et  al. 1998). P. flouorescens produce 2,4 
Diacetyl phloroglucinol which inhibits Sclerotium rolfsii – a soil-borne pathogen 
(Asadhi et al. 2013). It also secretes another antimicrobial compound, phenazine-
1-carboxylic acid (Lohitha et al. 2016) which is responsible for oxidation- reduction 
reactions as well as amassing of superoxides in target cells and is efficacious in 
wheat disease caused by G. graminis var. tritici and S. rolfsii, resulting in stem rot 
in groundnut.

8.3.2  Siderophores

Iron is of paramount importance in the photosynthetic system of plants due to being 
an essential molecule of chlorophyll. However, its soluble concentration in soil is 
deficient and its insoluble form (ferric, Fe3+ hydroxides) is not readily available for 
plants and microbes (Saha et al. 2013). To find the key to this issue, some plants, 
fungi, and bacteria secrete iron-binding molecules of low molecular weight 
(~400–1000 Da) known as “siderophores” the chelating agents for iron (DalCorso 
et al. 2013; Saha et al. 2013). These molecules have a surprisingly high affinity for 
iron and thus scavenge it from the soil.

When iron gets bound to the siderophore, it becomes solubilized and is recog-
nized by receptors on the surface of plants or microbes from where it gets internal-
ized followed by reduction to ferrous state (Fe2+). For the most part, siderophores of 
plant growth-promoting microbes have a higher affinity for iron than plants and 
fungi (Saha et al. 2012, 2013). They behave as transport vehicles of iron and com-
mon iron-binding molecules and include catechols, hydroxamic acid, and hydrox-
ylic acid. In addition to priming growth, siderophores also help to dampen 
phytopathogens (Tank et al. 2012). For instance, B. subtilis secreted siderophores 
had similar disease suppression activity in chickpea against dry root rot causing 
fungi (Patil et al. 2014).
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8.3.3  Microbial Volatile Organic Compounds

Volatile organic compounds, as the name suggests are organic molecules having 
high vapor pressure at room temperature. They are products of metabolic pathways 
and occurs as a composite aggregation of low-molecular-weight compounds that are 
having an affinity for lipids and are now termed as “volatile” because of their com-
plex nature (Maffei et al. 2011). These are accountable for communication between 
various organisms like plants and their pathogens, plant growth-promoting microor-
ganisms, and plants (Maffei 2010; Maffei et al. 2011; Garbeva et al. 2014; Lemfack 
et al. 2014; Kanchiswamy et al. 2015). Due to their volatile nature, they can easily 
move from the point of their synthesis to the point of their action, thus acting as 
communication molecules among organisms (Maffei et al. 2011). Volatile organic 
compounds released by microbes are commonly termed as microbial volatile 
organic compounds.

These volatile organic compounds serve chemical windows through which infor-
mation is allowed to leave (Liang et al. 2008). To name a few; furfurals, camphor, 
acetaldehyde, methanol, geosmin, butanoic acid, 5-hydroxy methylfurfural, cam-
phene are the most commonly secreted molecules (Li et al. 2004; Müller et al. 2004; 
Leff and Fierer 2008; Gray et al. 2010; Ramirez et al. 2010; Wenke et al. 2010; Perl 
et al. 2011; Jünger et al. 2012; Sundberg et al. 2013). Among all metabolites secreted 
by beneficial microbes, volatile organic compounds form the successful primary 
defense system in plants against phytopathogens along with promoting plant growth 
(Ryu et al. 2004; Beneduzi et al. 2012; Song and Ryu 2013). For instance, the myce-
lial growth of Rhizoctonia solani has been reported to be inhibited by microbial 
volatile organic compounds (Kai et al. 2007). In vitro, volatile organic compounds – 
2,4decadienal, n-hexadecanoic acid, oleic acid, and diethyl phthalate secreted from 
Paenibacillus spp. and Bacillus suppresses the disease activities of Ascochyta cutril-
lina, Alternaria brassicae and Alternaria solani (Han et al. 2016).

In addition to all these, many beneficial microbes secrete enzymes like chitinase, 
glucanases, amylases, and lipases which also aids in the growth, development, and 
elicitation of defense mechanisms in plants against phytopathogens (Bull et  al. 
2002; Saraf et al. 2014). Plant receptors recognize lipopolysaccharides, flagellin, 
and elicitors from both phytopathogens and plant growth-promoting microorgan-
isms in the same manner, and in response, microbe-associated molecular pattern- 
triggered immunity is activated in both cases but somehow this response does not 
ward off beneficial microbes or plant growth-promoting microorganisms, the rea-
son  is still unknown (Van Wees et  al. 2008). Table  8.4 elucidates the various 
microbes and their respective elicitors in various plant species and Fig. 8.4 depicts 
the interaction between phytometabolites and microbial metabolites which includes 
beneficial as well as infectious interactions. Table 8.5 provides insight into the role 
of the elicitors and their mode of action in plant defense mechanisms.
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Table 8.4 Microbial elicitors that instigate systemic resistance in plants

Plants Microbes Organic substance Phytopathogen References

Arabidopsis 2,4-diacetylphoroglucinol Peronospora 
parasitica

P. fluorescens Iavicoli 
et al. (2003)

B. subtilis GB03, B. 
amyloliquefaciens IN937a

Volatile compounds Erwinia 
carotovora

Ryu et al. 
(2004)

B. subtilis Surfactin P. Syringae Bais et al. 
(2004)

Transgenic Arabidopsis PevD1 protein B. cinerea, P. 
syringae pv. 
Tomato

Liu et al. 
(2016)

B. Amyloliquefaciens 
UCMB5113

Fengycins Alternaria 
brassicicola

Asari et al. 
(2017)

Saccharothrix 
yanglingensis Hhs.015

BAR11 protein P. Syringae pv. 
Tomato DC3000

Zhang et al. 
(2018)

Bt cotton Penicillium chrysogenum Dry mycelium Fusarium 
oxysporum, 
Verticillium dahlia

Chen et al. 
(2006)

Cotton E. coli (recombinant) PevD1 protein Verticillium 
dahliae

Bu et al. 
(2014)

Tobacco E. coli, Alternaria 
tenuissima

PeaT1 Tobacco mosaic 
virus

Zhang et al. 
(2011)

Alternaria tenuissima Hrip1 Tobacco mosaic 
virus

Kulye et al. 
(2012)

B. subtilis 985, B. 
amyloliquefaciens 5499

Surfactin 
lipopeptide

Botrytis cinerea Cawoy 
et al. (2014)

B. subtilis Culture supernatant Tobacco mosaic 
virus, Ralstonia 
solanacearum, 
Phytophthora 
parasitica

Chang et al. 
(2015)

Bacillus sp. SJ Volatile compounds Rhizoctonia 
solani, 
Phytophthora 
nicotianae

Kim et al. 
(2015)

B. subtilis SYST2 Albuterol, 
1,3-propanediol

Ralstonia 
solanacearum 
TBBS1

Tahir et al. 
(2017)

Rice E. coli (recombinant) MoHrip1 Magnaporthe 
oryzae

Chen et al. 
(2012)

Pseudomonas protegens 
CHAO

Orfamide A Cochliobolus 
miyabeanus

Ma et al. 
(2017)

Soybean B. amyloliquefaciens 
MEP(2)18 and ARP(2)3

Surfactin, 
Fengycins

Sclerotinina 
scleriotorum

Alvarez 
et al. (2012)

Bean Pseudomonas sp. CMR12a Phenazines, 
sessilins

Rhizoctonia web 
blight

Ma et al. 
(2016)

Cucurbits B. subtilis UMAF6639 Iturin and fengycin Podosphaera 
fusca (cucurbit 
powdery mildew)

García- 
Gutiérrez 
et al. (2013)

(continued)
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Table 8.4 (continued)

Plants Microbes Organic substance Phytopathogen References

Grapevine B. subtilis Surfactin, 
mycosubtilin

B. cinerea Farace et al. 
(2015)

Tea P. fluorescens RRLJ134, P. 
aeruginosa RRLJ04

Phenazine 
analogues

Fomes lamoensis, 
Ustulina zonata

Mishra 
et al. (2014)

Tomato Trichoderma virens, 
Trichoderma atroviride

SM1 (small 
protein1) and EPl1 
proteins (eliciting 
plant response-like 
protein)

Alternaria solani, 
B. cinerea, P. 
syringae pv. 
Tomato (Pst 
DC3000)

Salas- 
Marina 
et al. (2015)

B. fortis IAGS 162 Phenylacetic acid Fusarium 
oxysporum f.sp. 
lycopersici

Akram 
et al. (2016)

P. aeruginosa PM12 3-Hydroxy-5- 
methoxy benzene 
methanol

Fusarium 
oxysporum

Fatima and 
Anjum 
(2017)

Maize B. Amyloliquefaciens, B. 
subtilis

Iturin A, Fengycin, 
Bacillomycin

Fusarium 
moniliforme

Gond et al. 
(2015)

B. subtilis DZSY21 Lipopeptides Bipolaris maydis Ding et al. 
(2017)

Fig. 8.4 Interaction of phytometabolites and microbial metabolites in the rhizosphere. ETI 
Effector-triggered immunity, PTI Pattern-triggered immunity, SAR Systemic acquired resistance, 
PGPM plant growth-promoting microorganism, VOCs Volatile organic compounds
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Table 8.5 Role of elicitors in plant defense mechanisms

Plants Elicitors/ inducers Phytopathogens
Mode of action of elicitors/ 
inducers References

Tobacco PeBA1 protein Tobacco mosaic 
virus, B. Cinerea

Induction of defense 
responsive genes to 
produce salicylic acid, 
phenyl ammonia-lyase, 
jasmonic acid, H2O2, and 
phenolic compounds

Wang et al. 
(2016)

3-Acetonyl-3- 
hydroxyoxindole 
(AHO)

Tomato spotted 
wilt virus

Two differentially 
expressed genes (PR1 and 
PR10) were activated for 
the synthesis of 
phytometabolites like 
propanoid, sesquiterpenoid 
and triterpenoid to protect 
the wax and cuticle of 
plants

Chen et al. 
(2017)

PevD1 Verticillium 
dahlia, tobacco 
mosaic virus, P. 
syringae pv. 
Tabaci

Interacts with Nbnrp1 to 
regulate PevD1

Liang et al. 
(2018)

Tobacco, 
Arabidopsis

Benzoyl salicylic 
acid

Tobacco mosaic 
virus

WRKY transcription 
factors, hypersensitive 
response molecule, 
mitogen-activated protein 
kinase as well as NPR1 
genes were activated

Kamatham 
et al. 
(2016)

Tomato Benzothiadiazole Tomato spotted 
wilt virus and 
citrus exocortis 
viroid

Activates salicylic acid 
signaling pathways of 
plants

López- 
Gresa et al. 
(2016)

N-decanoyl- 
homoserine 
lactone

Botrytis cinerea Induction of jasmonic acid 
synthesis pathway

Hu et al. 
(2018)

Sunflower Benzothiadiazole Sclerotinia 
sclerotiorum

Hinders growth of fungal 
hyphae and increase the 
formation of mycorrhizae 
in the plant roots

Bán et al. 
(2017)

Whitebark 
pine

Methyl jasmonate Cronartium 
ribicola, mountain 
pine beetle, 
Dendroctonus 
ponderosae

Reprogram of defensive 
genes

Liu et al. 
(2017)

Cassava Salicylic acid or 
methyl jasmonate

Xanthomonas 
axonopodis pv. 
Manihotis

Elevates the defense action Yoodee 
et al. 
(2018)

Note: PeBA1 protein elicitor from Bacillus amyloliquefaciens NC6, NPR1 Nonexpressor of 
Pathogenesis-Related Genes 1, Nbnrp1 Nicotiana benthamiana Neuropilin-1 gene, PevD1 
Proteinaceous elicitor secreted by Verticillium dahliae, PR1 Pathogenesis-related protein1, PR10 
Pathogenesis related protein10

Anamika et al.
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8.4  Conclusion

Thus, in the rhizosphere, plants along with all beneficial and pathogenic microbes 
are considered as a whole ecological community and referred to as “holobiont”. 
Plant pathogens are the necrotrophs, hemibiotrophs, and biotrophs had in due course 
of evolution helped the plant communities to advance their immune responses in 
one or the other way. The present strategies discussed above include Pattern recog-
nition receptors to perceive Microbe associated molecular patterns and Damage 
associated molecular patterns to further elicit the downstream signaling cascade 
involving Calcium dependent protein kinases, Mitogen-activated protein kinase, 
etc. However, in terms of co-evolution, the microbes developed an enormous reper-
toire of effector molecules while plants in response co-evolved with disease resis-
tance (R) proteins to counteract these effector molecules.

On the beneficial front or in other terms in a mutualistic way, plant growth- 
promoting microorganisms promote plant growth via establishing an association 
triggering the production of phytohormones like auxins, abscisic acid, cytokinins, 
salicylic acid, gibberellins, and jasmonic acid, antibiotics, siderophores, antimicro-
bials, enzymes, volatile organic compounds. For example, beneficial micro- 
organisms or plant growth-promoting microorganisms dominated by Bacillus and 
Pseudomonas spp. lives in a symbiotic relationship with the plants for food and 
nutrients and inturn helps plants in their growth, development, and defense against 
phytopathogens. Plant Growth Promoting Microbes employ direct and indirect 
mechanisms to hamper the growth of phytopathogens. The direct mechanism 
involves inhibition of metabolism while the indirect mechanism involves competi-
tion against phytopathogens for the nutrients. The metabolism of phytopathogen 
was inhibited by various mechanisms including secretion of antibiotics (antimicro-
bial, antiviral, etc.). However, all these mechanisms to surpass, co-evolve, or to 
involve in symbiotic associations pave the way for further advancements in both the 
plants and the microbial genome in order to thrive at their utmost capabilities and in 
future years may evolve or co-evolve in a different mechanism as discussed above 
under the influence of selection pressure and can lead to different or novel 
mechanisms.
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