Chapter 8 Microbial Elicitors for Priming Plant Defense Mechanisms

Anamika, Anupam Patra, Sadaf Shehzad, Anju Rani, Pankaj Sharma, K. F. Mohammad, and Sahil Mehta

Abstract Some microrganisms have evolved to be associated with plants, receiving nutrients from plants, and helping plants to fght pathogens by producing microbial elicitors, which are compounds that trigger plant defenses. Elicitors are thus safe compounds that can replace harmful pesticides for a sustainable agriculture. Here we review plant immunity and microbial elicitors with focus on antibiotics, volatile organic compounds, siderophores, antimicrobials, enzymes, salicylic acid, methyl salicylate, benzoic acid, benzothiadiazole and chitosan.

Keywords Plants · Microbes · Pathogen · Immunity · Defence · R genes · Metabolites · Antibiotics · Siderophores

Abbreviations

Anamika \cdot A. Patra \cdot S. Shehzad \cdot S. Mehta (\boxtimes)

International Centre for Genetic Engineering and Biotechnology, New Delhi, India

P. Sharma

Department of Microbiology, CCS Haryana Agriculture University, Hisar, Haryana, India

K. F. Mohammad International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 N. K. Singh et al. (eds.), *Sustainable Agriculture Reviews 60*, Sustainable Agriculture Reviews 60, [https://doi.org/10.1007/978-3-031-24181-9_8](https://doi.org/10.1007/978-3-031-24181-9_8#DOI)

A. Rani Department of Biochemistry, CCS Haryana Agriculture University, Hisar, Haryana, India

8.1 Introduction

While the demand for food increases exponentially, crop productivity gets relentlessly haunted by an increased number of biotic and abiotic stress combinations generally associated with global warming (Schlenker and Roberts [2009](#page-20-0); Challinor et al. [2014](#page-15-0); Zhao et al. [2017](#page-21-0); Mehta et al. [2019](#page-19-0), [2020\)](#page-19-1). Abiotic stress conditions like drought, salinity, low and high-temperature etc. also infuence the biotic stress factors (microbes, insects, weeds, and phytopathogens) (Seherm and Coakley [2003;](#page-20-1) McDonald et al. [2009](#page-19-2); Ziska et al. [2010;](#page-21-1) Peters et al. [2014](#page-19-3)) (Fig. [8.1\)](#page-1-0). These stress conditions likewise infuence the interactions between plants and microbes present in their rhizosphere which built up quite a long time ago. The more fascinating fact is that these plants are established on land with the help of symbiotic fungal associations. It suggests that plants are invariably exposed to microbes via associations since their frst existence on land, and these disagreements between microbes and plants resulted in mutative coexistence cycles which further shaped their habitats, lifecycles, distribution, and genomes of both organisms.

Based on their nature, these microbes are either benefcial or harmful to the plants. The harmful microbes act as pathogens and delimit productivity by causing a large number of diseases in multiple crops (Lamichhane and Venturi [2015;](#page-18-0) Rahman et al. [2019;](#page-19-4) Singh et al. [2019\)](#page-20-2). It is supported by the fact that these biotic

Fig. 8.1 Abiotic and biotic stresses which reduce plant productivity

Features	Necrotrophs	Biotrophs
Uptake of nutrients	From dead plant cells	From live cells
Type of pathogen	Opportunistic (non-obligate)	Specialized (obligate)
Death of host cell	Rapid	Not rapid and induce hypersensitive cell death in incompatible interactions
Mode of entry	Enter through wounds or natural openings thus considered as unspecialized	Specialized entry via direct (mechanical) entry or through natural openings
Secretion of lytic enzymes	Cell-wall degrading enzymes and toxins	Few lytic enzymes or toxins
Systemic	Seldom	Often
Host range	Wide	Narrow
Survival on host	As saprotrophs	On host or as dormant propagules
Host preference	Weak, young, or damaged plants	Plants of all ages
Control	By quantitative resistance genes	By specific (gene-for-gene) Resistance genes
Growth within-host	Intercellular and intracellular through dead cells	Intercellular
Defense pathways of plants against pathogens	Jasmonate and ethylene-dependent	Salicylate-dependent
Examples	<i>Botrytis cinerea</i> – Grey mold, Pythium ultimum - Damping-off in seedling	Uromyces fabea - Rust, Ustilago $maydis - Maize$ smut

Table 8.1 Characteristic features of necrotrophs and biotrophs

factors constrain the yield up to 26% globally. They invade the plants either through the leaf (stomata), stem (lenticels), and root surface directly or through injury. After the invasion, they employ a variety of strategies to impair plant growth. These pathogens are comprehensively divided into two types- necrotrophs (bacteria, fungi, insects, and also herbivorous animals), hemibiotrophs, and biotrophs (basically viruses). The former type kills their host and feeds on the dead material, unlike biotrophs that complete their life cycle in a living host. Being sessile by nature, the plants have evolved their immune system to prevent themselves from pathogens as they can't escape their enemy, unlike vertebrates. The characteristic features of necrotrophs and biotrophs are tabulated in Table [8.1.](#page-2-0)

8.2 Plant Immunity Against Harmful Microbes

An enormous set of pathogens have the potential to kill or damage plants and it goes on through the entire ecosystem. Plants utilize preformed defenses intended to avert pathogen and herbivore attacks. The frst line of defense in plants is provided by the thick waxy or cuticular skin of the plant body along with the presence of antimicrobial products (Dangl and Jones [2001](#page-16-0)). Although pathogen fnds a broad spectrum of strategy to invade. For the passive form of invasion, intercellular space like apoplast, stomata, hydathodes, lenticels, or local wounds are the frequent target, and in the active, plant-pathogen develop specialized organs like nematode and aphid have stylet, fungi have hyphae as well as haustoria (Jones and Dangl [2006](#page-17-0)). On successful plant invasion, the plants utilize their immune system consisting of mainly two interconnected tiers to fght against pathogens (Jones and Dangl [2006;](#page-17-0) Boller and Felix [2009;](#page-15-1) Thomma et al. [2011;](#page-21-2) Spoel and Dong [2012](#page-20-3)). One of these innate immunity strategies utilizes cell surface pattern-recognition receptors (PRRs) to perceive Microbe-Associated Molecular Patterns (MAMPs) and host-derived damage-associated molecular patterns (DAMPs) present in a large variety of microbes (Boller and Felix [2009](#page-15-1)). Receptor-like kinases and receptor-like proteins (RLPs) are the cell surface pattern-recognition receptors in plants. The canonical structure of receptor-like kinases has an extracellular domain to recognize ligands, an intracellular kinase domain with only one pass transmembrane domain (Couto and Zipfel [2016;](#page-16-1) Zipfel and Oldroyd [2017\)](#page-21-3). Receptor-like proteins lack the kinase domain (Zipfel [2014](#page-21-4); Couto and Zipfel [2016](#page-16-1); Zipfel and Oldroyd [2017](#page-21-3)) (Fig. [8.2](#page-3-0)).

Fig. 8.2 Mechanism of plant immunity against harmful microbes. Receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are potent membrane molecules to identify Microbe-Associated Molecular Patterns (MAMPs) and Pathogen-Associated Molecular Patterns (PAMPs). R gene products (NB-LRRs) recognize the released Avr factors from pathogens. *TIR* Toll-interleukin-1 receptor, *NB* Nucleotide-binding, *LRR* Leucine-rich repeat, *CC* Coiled coil, and *R gene* Resistance gene

Pattern-Recognition Receptors have a highly variable ligand recognition domain and thus recognizes a wide range of microbes. They along with their co-receptors (known to have the same extracellular domain as PRRs) triggers a signaling cascade to establish pattern-triggered immunity (Jones and Dangl [2006](#page-17-0); Zipfel [2014\)](#page-21-4). Microbe-Associated Molecular Patterns (MAMPs) are shared similar molecular patterns such as lipopolysaccharides, peptidoglycan, fagellin, etc. (Jones and Dangl [2006\)](#page-17-0) which exist in pathogen cell wall or extremities to represent own group identity as well as potent virulence (Table [8.2](#page-4-0)). On the other hand, damage-associated molecular patterns (DAMPs) encourage the infammatory responses by activating the PRRs (Table [8.3\)](#page-5-0). They are endogenous molecules that are released from the stressed or dead cell eliciting the immune system activation (Gust et al. [2017\)](#page-17-1). As, e.g., tomato systemin generated by the wound, infuences the processing of prosystemin and it induces adjacent cells as well as vascular bundle elements to produce Jasmonic acid which fnally activates the expression of proteinase inhibitor genes (Pearce et al. [1991\)](#page-19-5).

			Family of pattern	Associated pattern	
S. No.	Microbe associated molecular patterns	Origin	recognition receptors	recognition receptors	Plant species
1.	RaxX	Xanthomonas oryzae pv. Oryzae	LRR XII	XA21	Oryza longistaminata
2.	Flagellin	Pseudomonas syringae pv. Tabaci	LRR XII	FLS ₂	Arabidopsis thaliana
3.	csp22	Staphylococcus aureus	LRR XII	CORE	S. lycopersicum
4.	$EF-Tu$	Escherichia coli	LRR XII	EFR	A. thaliana
5.	Chitin	Agaricus bisporus	LysM	AtCERK1, AtLYK5	A. thaliana
6.	SnTox1	Stagonospora nodorum	WAK	Snn1/ TaWAK	Triticum aestivum
7.	Lipopolysaccharides	P. fluorescens	$G-I$ ec	$SD1-29/$ LORE	A. thaliana
8.	Avr3/Six1	Fusarium oxysporum	$G-I$.ec	$I-3$	S. lycopersicum
9.	NLP	Pythium aphanidermatum	LRR	RLP23	A. thaliana
10.	Elicitin	Phytophthora cryptogea	LRR	RLP85/ ELRb	S. microdontum

Table 8.2 Common potent microbe-associated molecular patterns with their respective pattern recognition receptors

Source: Google scholar-based literature survey 1995–2020. *LRR* Leucine-rich repeats, *WAK* Wallassociated kinase, *LysM* Lysine motif, *RLP* Receptor-like protein

	Potent Damage associated molecular		
Category	patterns	Host plants	
Protein	PAMP-induced secreted peptides	Arabidopsis thaliana	
	Rapid alkalinization factors	A. thaliana	
	AtPep1	A. thaliana	
	High mobility group box 3	A. thaliana	
Carbohydrate	Glucose (monosaccharide)	Nicotiana tabacum	
	Sucrose (diholoside)	A. thaliana	
	Trehalose (diholoside)	A. thaliana	
	D-allose (monosaccharide)	Oryza sativa	
Lipid	Hydroxystearic acid (cutin monomer)	Hordeum vulgare	
Nucleotide	Extracellular ATP	A. thaliana	

Table 8.3 Potent damage-associated molecular patterns and respective host plants

Source: Google scholar-based literature survey 1995–2020

After recognizing microbe-associated molecular patterns or damage-associated molecular patterns, pattern recognition receptor-dependent response triggers the downstream cell signaling to initiate the immune response (Schwessinger and Ronald [2012](#page-20-4)). The Pattern-recognition receptors have many kinds of an extracellular domain, *viz*., leucine-rich repeats, lectin, lysine motif, epidermal growth factorlike domains which are intended to provide a more signifcant range of ligand recognition. The co-receptors that form the complex to activate the different downstream signaling molecules namely Receptor-like proteins, receptor-like kinases, etc. also have a role in plant growth, abiotic stress, and mutualism with benefcial microbes. Finally, Calcium-dependent protein kinases, Mitogen-activated protein kinase cascades, reactive oxygen species production, and cellulose deposition get activated, which leads to modifcation in transcriptional products (Boutrot and Zipfel [2017\)](#page-15-2).

Through evolution, microbes have developed a vast repertoire of effector molecules or elicitors for successful infection establishment in their hosts, while responsive plants persistently produce disease resistant R proteins to combat these effector molecules. As the elicitors enter into a plant cell through the type III secretion system (Finlay and Falkow [1997](#page-16-2)), their recognition in plants triggers the effectortriggered immunity (Jones and Dangl [2006](#page-17-0); Spoel and Dong [2012\)](#page-20-3). Most of the knowledge about the effectors and type III secretion system is based on the work conducted on *Pseudomonas syringae*, a highly diverse plant biotrophic pathogen (Baltrus et al. [2011](#page-15-3)). The pan-genome of *P. syringae* species complex from 494 strains was used to analyze type III secretory effector molecules, and a total 14, 613 putative type III secretory effectors were identifed out of which 4636 were unique at the amino acid level (Dillon et al. [2019](#page-16-3)). To date, this vast repertoire of effector molecules constitutes 66 families. A particular strain from this complex typically expresses 15–30 effector molecules. These effector molecules are encoded by hrp/ hrc (hypersensitive response and pathogenicity) genes and named Hop because of their ability to pass through the type III secretion system (Fig. [8.2](#page-3-0)).

Many effectors from its pangenome are also known as 'Avr' because of their discovery in the post-genomic era as avirulence phenotype (Lindeberg et al. [2005\)](#page-18-1). These effector molecules were analyzed in the context of their role in the two-grade innate immunity of plants. According to this model, primarily the immunity elicited by bacterial fagellin, lipopolysaccharide, peptidoglycan, and elongation factor Tu which is commonly known as Pattern-triggered immunity was suppressed by these effector molecules secreted by bacteria. Later, these molecules are perceived by resistance (R) proteins, the second grade of innate immunity familiarized as Effector-triggered immunity (Jones and Dangl [2006\)](#page-17-0). The resistance (R) proteins are characterized by nucleotide-binding site leucine-rich repeats through which they recognize and bind to the effector molecules released by microbes resulting in Effector-triggered immunity response. Sometimes Effector-triggered immunity induced response is called hypersensitive response where programmed cell death occurs eventually. This kind of immune is very effective on biotrophs as their association is within the cell. Pathogenic type III secretory effectors are like 'doubleedged swords', as on one hand, they trigger Effector-triggered immunity response and on the other, they suppress Effector-triggered immunity response (Hou et al. [2011\)](#page-17-2).

Local cellular responses are delivered throughout the system to generate a large scale of resistance toward similar infections as well as secondary infections. The Effector-triggered immunity response also instigates the synthesis of small, lowmolecular-weight, mobile, immune signaling molecules like salicylic acid, glycerol-3-phosphate which are then transported from the site of infection where they were synthesized to the site of non-infection, to prevent the healthy plant tissues from infection (Spoel and Dong [2012](#page-20-3); Fu and Dong [2013\)](#page-16-4). After perceiving these immune signaling molecules, uninfected tissue accumulates Salicylic acid resulting in massive transcriptional programming. This instigated immune signaling is known as systemic induced signaling (Spoel and Dong [2012;](#page-20-3) Fu and Dong [2013](#page-16-4)) (Fig. [8.3](#page-7-0)).

Recent studies suggested that plant symbionts and pathogens take advantage of comparable molecular strategies to conquer the defense reactions of plants. The Microbe Associated Molecular Patterns/Pattern Recognition Receptor system also takes part in harmonious reciprocity with symbiotic microbes. This proposes the role of benefcial microbes for disease tolerance against pathogens employing the innate immune system of plants (Hacquard et al. [2017](#page-17-3)).

8.3 Benefcial Microbes and Their Metabolites

The ecosystem of the soil is one of the most complex and multifarious ecosystems of the earth which is inhabited by a wide range of organisms from fungi, arthropods, nematodes to bacteria (Venturi and Keel [2016\)](#page-21-5). Bacterial diversity is lower in the

Fig. 8.3 Down-stream signaling in tomato upon recognition of *Pseudomonas syringae* fagellin

rhizosphere but has increased abundance and activity. These bacteria in the rhizosphere are under the selective pressure of plants suggesting a correlation between plant-derived metabolites and microbial metabolites. Through such association, mutual relationships are established between plants and microbes which are essential for root-root interactions, nutrient availability, amassing of microorganisms, and bioflm formation of soil microbes (Mommer et al. [2016](#page-19-6); Rosier et al. [2016;](#page-20-5) Sasse et al. [2018\)](#page-20-6), as well as inhibition of phytopathogens (Bertin et al. [2003;](#page-15-4) Li et al. [2013](#page-18-2)).

Based on their effects on plants, plant-associated microbial communities are classifed into three categories such as benefcial, deleterious, and neuter. Microbes that play a role in plant growth, nutrient uptake, defense, resistance, and development during stress and normal circumstances are known as plant growth-promoting microbes. The typical plant growth-promoting microbes in the rhizosphere are *Paenibacillus, Burkholderia, Pseudomonas, Bacillus, Acinetobacter, Arthrobacter,* and *Arthrobacter* (Finkel et al. [2017;](#page-16-5) Sasse et al. [2018](#page-20-6); Zhang et al. [2017](#page-21-6)). These bacteria secrete molecules to establish an association with plants which triggers specifc changes in the transcriptome of plants. These plant growth-promoting microbes can produce phytohormones like auxins, abscisic acid, cytokinins, salicylic acid, gibberellins, and jasmonic acid (Fahad et al. [2015\)](#page-16-6).

Additionally, antibiotics, siderophores, antimicrobials, enzymes, volatile organic compounds, and many more helps in priming defense mechanisms in plants. All these metabolites secreted by microbes are known as "elicitors". "Elicitors can be defned as small molecules secreted under stress which induces biosynthesis of specifc molecules having an essential role in the adaptations of plants to a stress condition" (Radman et al. [2003](#page-19-7)). The role of these elicitors for plant growth promotion and ISR priming has been extensively studied for decades, and these are promising substitutes for herbicides, fertilizers, and pesticides (Kloepper et al. [2004;](#page-17-4) Gupta et al. [2015](#page-17-5)). Below, we look at the elicitors secreted by plant growth-promoting microbes which are of paramount importance in priming induced systemic resistance in plants against phytopathogens.

8.3.1 Antibiotics

The utmost important mechanism employed by plant growth-promoting microbes to hamper the negative impact of plant pathogens is the biosynthesis of a wide range of antibiotics (Couillerot et al. [2009](#page-16-7); Raaijmakers and Mazzola [2012](#page-19-8)). However, the host range of these antibiotics varies and is also dependent on different feld conditions. A large range of bacterial antibiotics have been derived from genera *Bacillus* includes zwittermycin-A (Silo-Suh et al. [1994](#page-20-7)), kanosamine (Milner et al. [1996\)](#page-19-9), Bacillomycin (Volpon et al. [1999](#page-21-7)) and Plipastatins A and B (Volpon et al. [2000](#page-21-8)). On the other hand, *Pseudomonas* include cepafungins (Shoji et al. [1989](#page-20-8)), pseudomonic acid (Fuller et al. [1971](#page-16-8)), 2,4 Diacetyl phloroglucinol (Shanahan et al. [1992](#page-20-9)), pyoluteorin (Howell and Stipanovic [1980\)](#page-17-6), oomycinA (Kim et al. [2000](#page-17-7)), phenazine-1 carboxylic acid (Pierson III and Pierson [1996\)](#page-19-10), butyrolactones (Thrane et al. [2000\)](#page-21-9), rhamnolipids, viscosinamide (Nielsen et al. [1999](#page-19-11)), cepaciamide A (Howie and

Suslow [1991](#page-17-8)), ecomycins (Jiao et al. [1996\)](#page-17-9), azomycin (Shoji et al. [1989\)](#page-20-8), and karalicin which is an anti-viral antibiotic (Lampis et al. [1996\)](#page-18-3).

These metabolites serve as antioxidant, antimicrobial, phytotoxic, antiviral antihelminthic, insect and mammalian antifeedant, cytotoxic, and plant growthpromoting activity agents and are best studied in disease management. For example, a novel antibiotic secreted by *B. cereus* UW85 is Zwittermicin A, which is highly active against Oomycetes, algal protists and moderately active against a vast range of gram-negative bacteria and fungi and few gram-positive bacteria. When it is combined with another antibiotic, kanosamine secreted by the same organism they act synergistically against *E. coli* (Laura et al. [1998\)](#page-18-4). *P. fouorescens* produce 2,4 Diacetyl phloroglucinol which inhibits *Sclerotium rolfsii* – a soil-borne pathogen (Asadhi et al. [2013\)](#page-15-5). It also secretes another antimicrobial compound, phenazine-1-carboxylic acid (Lohitha et al. [2016\)](#page-18-5) which is responsible for oxidation-reduction reactions as well as amassing of superoxides in target cells and is effcacious in wheat disease caused by *G. graminis* var. *tritici* and *S. rolfsii*, resulting in stem rot in groundnut.

8.3.2 Siderophores

Iron is of paramount importance in the photosynthetic system of plants due to being an essential molecule of chlorophyll. However, its soluble concentration in soil is deficient and its insoluble form (ferric, $Fe³⁺$ hydroxides) is not readily available for plants and microbes (Saha et al. [2013](#page-20-10)). To fnd the key to this issue, some plants, fungi, and bacteria secrete iron-binding molecules of low molecular weight (~400–1000 Da) known as "siderophores" the chelating agents for iron (DalCorso et al. [2013;](#page-16-9) Saha et al. [2013\)](#page-20-10). These molecules have a surprisingly high affnity for iron and thus scavenge it from the soil.

When iron gets bound to the siderophore, it becomes solubilized and is recognized by receptors on the surface of plants or microbes from where it gets internalized followed by reduction to ferrous state (Fe^{2+}) . For the most part, siderophores of plant growth-promoting microbes have a higher affnity for iron than plants and fungi (Saha et al. [2012,](#page-20-11) [2013\)](#page-20-10). They behave as transport vehicles of iron and common iron-binding molecules and include catechols, hydroxamic acid, and hydroxylic acid. In addition to priming growth, siderophores also help to dampen phytopathogens (Tank et al. [2012](#page-21-10)). For instance, *B. subtilis* secreted siderophores had similar disease suppression activity in chickpea against dry root rot causing fungi (Patil et al. [2014](#page-19-12)).

8.3.3 Microbial Volatile Organic Compounds

Volatile organic compounds, as the name suggests are organic molecules having high vapor pressure at room temperature. They are products of metabolic pathways and occurs as a composite aggregation of low-molecular-weight compounds that are having an affnity for lipids and are now termed as "volatile" because of their complex nature (Maffei et al. [2011\)](#page-19-13). These are accountable for communication between various organisms like plants and their pathogens, plant growth-promoting microorganisms, and plants (Maffei [2010;](#page-18-6) Maffei et al. [2011;](#page-19-13) Garbeva et al. [2014;](#page-16-10) Lemfack et al. [2014](#page-18-7); Kanchiswamy et al. [2015\)](#page-17-10). Due to their volatile nature, they can easily move from the point of their synthesis to the point of their action, thus acting as communication molecules among organisms (Maffei et al. [2011](#page-19-13)). Volatile organic compounds released by microbes are commonly termed as microbial volatile organic compounds.

These volatile organic compounds serve chemical windows through which information is allowed to leave (Liang et al. [2008\)](#page-18-8). To name a few; furfurals, camphor, acetaldehyde, methanol, geosmin, butanoic acid, 5-hydroxy methylfurfural, camphene are the most commonly secreted molecules (Li et al. [2004;](#page-18-9) Müller et al. [2004;](#page-19-14) Leff and Fierer [2008](#page-18-10); Gray et al. [2010](#page-16-11); Ramirez et al. [2010](#page-19-15); Wenke et al. [2010](#page-21-11); Perl et al. [2011;](#page-19-16) Jünger et al. [2012](#page-17-11); Sundberg et al. [2013\)](#page-20-12). Among all metabolites secreted by benefcial microbes, volatile organic compounds form the successful primary defense system in plants against phytopathogens along with promoting plant growth (Ryu et al. [2004;](#page-20-13) Beneduzi et al. [2012;](#page-15-6) Song and Ryu [2013](#page-20-14)). For instance, the mycelial growth of *Rhizoctonia solani* has been reported to be inhibited by microbial volatile organic compounds (Kai et al. [2007\)](#page-17-12). In vitro, volatile organic compounds – 2,4decadienal, n-hexadecanoic acid, oleic acid, and diethyl phthalate secreted from *Paenibacillus* spp. and *Bacillus* suppresses the disease activities of *Ascochyta cutrillina, Alternaria brassicae* and *Alternaria solani* (Han et al. [2016\)](#page-17-13).

In addition to all these, many benefcial microbes secrete enzymes like chitinase, glucanases, amylases, and lipases which also aids in the growth, development, and elicitation of defense mechanisms in plants against phytopathogens (Bull et al. [2002;](#page-15-7) Saraf et al. [2014\)](#page-20-15). Plant receptors recognize lipopolysaccharides, fagellin, and elicitors from both phytopathogens and plant growth-promoting microorganisms in the same manner, and in response, microbe-associated molecular patterntriggered immunity is activated in both cases but somehow this response does not ward off beneficial microbes or plant growth-promoting microorganisms, the rea-son is still unknown (Van Wees et al. [2008\)](#page-21-12). Table [8.4](#page-11-0) elucidates the various microbes and their respective elicitors in various plant species and Fig. [8.4](#page-12-0) depicts the interaction between phytometabolites and microbial metabolites which includes benefcial as well as infectious interactions. Table [8.5](#page-13-0) provides insight into the role of the elicitors and their mode of action in plant defense mechanisms.

Plants	Microbes	Organic substance	Phytopathogen	References
Arabidopsis	2,4-diacetylphoroglucinol	Peronospora parasitica	P. fluorescens	Iavicoli et al. (2003)
	B. subtilis GB03, B. amyloliquefaciens IN937a	Volatile compounds	Erwinia carotovora	Ryu et al. (2004)
	B. subtilis	Surfactin	P. Syringae	Bais et al. (2004)
	Transgenic Arabidopsis	PevD1 protein	B. cinerea, P. syringae pv. Tomato	Liu et al. (2016)
	B. Amyloliquefaciens UCMB5113	Fengycins	Alternaria brassicicola	Asari et al. (2017)
	Saccharothrix yanglingensis Hhs.015	BAR11 protein	P. Syringae pv. Tomato DC3000	Zhang et al. (2018)
Bt cotton	Penicillium chrysogenum	Dry mycelium	Fusarium oxysporum, Verticillium dahlia	Chen et al. (2006)
Cotton	E. coli (recombinant)	PevD1 protein	Verticillium dahliae	Bu et al. (2014)
Tobacco	E. coli, Alternaria tenuissima	PeaT ₁	Tobacco mosaic virus	Zhang et al. (2011)
	Alternaria tenuissima	Hrip1	Tobacco mosaic virus	Kulye et al. (2012)
	B. subtilis 985, B. amyloliquefaciens 5499	Surfactin lipopeptide	Botrytis cinerea	Cawoy et al. (2014)
	B. subtilis	Culture supernatant	Tobacco mosaic virus, Ralstonia solanacearum, Phytophthora parasitica	Chang et al. (2015)
	Bacillus sp. SJ	Volatile compounds	Rhizoctonia solani, Phytophthora nicotianae	Kim et al. (2015)
	B. subtilis SYST2	Albuterol, 1,3-propanediol	Ralstonia solanacearum TBBS1	Tahir et al. (2017)
Rice	E. coli (recombinant)	MoHrip1	Magnaporthe oryzae	Chen et al. (2012)
	Pseudomonas protegens CHAO	Orfamide A	Cochliobolus miyabeanus	Ma et al. (2017)
Soybean	B. amyloliquefaciens $MEP(2)18$ and $ARP(2)3$	Surfactin, Fengycins	Sclerotinina scleriotorum	Alvarez et al. (2012)
Bean	Pseudomonas sp. CMR12a	Phenazines, sessilins	Rhizoctonia web blight	Ma et al. (2016)
Cucurbits	B. subtilis UMAF6639	Iturin and fengycin	Podosphaera fusca (cucurbit powdery mildew)	García- Gutiérrez et al. (2013)

Table 8.4 Microbial elicitors that instigate systemic resistance in plants

(continued)

Plants	Microbes	Organic substance	Phytopathogen	References
Grapevine	B. subtilis	Surfactin, mycosubtilin	B. cinerea	Farace et al. (2015)
Tea	P. fluorescens RRLJ134, P. aeruginosa RRLJ04	Phenazine analogues	Fomes lamoensis. Ustulina zonata	Mishra et al. (2014)
Tomato	Trichoderma virens. Trichoderma atroviride	SM1 (small protein1) and EP11 proteins (eliciting) plant response-like protein)	Alternaria solani. B. cinerea, P. syringae pv. Tomato (Pst DC3000)	Salas- Marina et al. (2015)
	B. fortis IAGS 162	Phenylacetic acid	Fusarium <i>oxysporum</i> f.sp. lycopersici	Akram et al. (2016)
	P. aeruginosa PM12	$3-Hydroxy-5-$ methoxy benzene methanol	Fusarium oxysporum	Fatima and Anjum (2017)
Maize	B. Amyloliquefaciens, B. subtilis	Iturin A, Fengycin, Bacillomycin	Fusarium moniliforme	Gond et al. (2015)
	B. subtilis DZSY21	Lipopeptides	Bipolaris maydis	Ding et al. (2017)

Table 8.4 (continued)

Fig. 8.4 Interaction of phytometabolites and microbial metabolites in the rhizosphere. *ETI* Effector-triggered immunity, *PTI* Pattern-triggered immunity, *SAR* Systemic acquired resistance, *PGPM* plant growth-promoting microorganism, *VOCs* Volatile organic compounds

			Mode of action of elicitors/	
Plants	Elicitors/inducers	Phytopathogens	inducers	References
Tobacco	PeBA1 protein	Tobacco mosaic virus, B. Cinerea	Induction of defense responsive genes to produce salicylic acid, phenyl ammonia-lyase, jasmonic acid, H_2O_2 , and phenolic compounds	Wang et al. (2016)
	3-Acetonyl-3- hydroxyoxindole (AHO)	Tomato spotted wilt virus	Two differentially expressed genes (PR1 and PR10) were activated for the synthesis of phytometabolites like propanoid, sesquiterpenoid and triterpenoid to protect the wax and cuticle of plants	Chen et al. (2017)
	Pev _{D1}	Verticillium dahlia, tobacco mosaic virus, P. syringae pv. Tabaci	Interacts with Nbnrp1 to regulate PevD1	Liang et al. (2018)
Tobacco, Arabidopsis	Benzoyl salicylic acid	Tobacco mosaic virus	WRKY transcription factors, hypersensitive response molecule, mitogen-activated protein kinase as well as NPR1 genes were activated	Kamatham et al. (2016)
Tomato	Benzothiadiazole	Tomato spotted wilt virus and citrus exocortis viroid	Activates salicylic acid signaling pathways of plants	López- Gresa et al. (2016)
	N-decanoyl- homoserine lactone	Botrytis cinerea	Induction of jasmonic acid synthesis pathway	Hu et al. (2018)
Sunflower	Benzothiadiazole	<i><u>Sclerotinia</u></i> sclerotiorum	Hinders growth of fungal hyphae and increase the formation of mycorrhizae in the plant roots	Bán et al. (2017)
Whitebark pine	Methyl jasmonate	Cronartium ribicola, mountain pine beetle, Dendroctonus ponderosae	Reprogram of defensive genes	Liu et al. (2017)
Cassava	Salicylic acid or methyl jasmonate	Xanthomonas axonopodis pv. Manihotis	Elevates the defense action	Yoodee et al. (2018)

Table 8.5 Role of elicitors in plant defense mechanisms

Note: *PeBA*1 protein elicitor from *Bacillus amyloliquefaciens* NC6, *NPR*1 Nonexpressor of Pathogenesis-Related Genes 1, *Nbnrp*1 *Nicotiana benthamiana* Neuropilin-1 gene, *PevD*1 Proteinaceous elicitor secreted by *Verticillium dahliae*, *PR*1 Pathogenesis-related protein1, *PR*10 Pathogenesis related protein10

8.4 Conclusion

Thus, in the rhizosphere, plants along with all benefcial and pathogenic microbes are considered as a whole ecological community and referred to as "holobiont". Plant pathogens are the necrotrophs, hemibiotrophs, and biotrophs had in due course of evolution helped the plant communities to advance their immune responses in one or the other way. The present strategies discussed above include Pattern recognition receptors to perceive Microbe associated molecular patterns and Damage associated molecular patterns to further elicit the downstream signaling cascade involving Calcium dependent protein kinases, Mitogen-activated protein kinase, etc. However, in terms of co-evolution, the microbes developed an enormous repertoire of effector molecules while plants in response co-evolved with disease resistance (R) proteins to counteract these effector molecules.

On the benefcial front or in other terms in a mutualistic way, plant growthpromoting microorganisms promote plant growth via establishing an association triggering the production of phytohormones like auxins, abscisic acid, cytokinins, salicylic acid, gibberellins, and jasmonic acid, antibiotics, siderophores, antimicrobials, enzymes, volatile organic compounds. For example, beneficial microorganisms or plant growth-promoting microorganisms dominated by *Bacillus* and *Pseudomonas* spp. lives in a symbiotic relationship with the plants for food and nutrients and inturn helps plants in their growth, development, and defense against phytopathogens. Plant Growth Promoting Microbes employ direct and indirect mechanisms to hamper the growth of phytopathogens. The direct mechanism involves inhibition of metabolism while the indirect mechanism involves competition against phytopathogens for the nutrients. The metabolism of phytopathogen was inhibited by various mechanisms including secretion of antibiotics (antimicrobial, antiviral, etc.). However, all these mechanisms to surpass, co-evolve, or to involve in symbiotic associations pave the way for further advancements in both the plants and the microbial genome in order to thrive at their utmost capabilities and in future years may evolve or co-evolve in a different mechanism as discussed above under the infuence of selection pressure and can lead to different or novel mechanisms.

Acknowledgements We would like to thank all the Indian funding agencies that provided fnancial support (JRF, SRF, and Merit Scholarship) to all the authors who have together contributed to this manuscript. The duly acknowledged funding agencies are the Council of Scientifc and Industrial Research (CSIR), University Grant Commission (UGC) and CCS Haryana Agriculture University (CCSHAU).

References

Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by *Bacillus fortis* IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against fusarium wilt. Front Plant Sci 7:498. <https://doi.org/10.3389/fpls.2016.00498>

- Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E (2012) The plant-associated *bacillus amyloliquefaciens* strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174. <https://doi.org/10.1111/j.1365-2672.2011.05182.x>
- Asadhi S, Bhaskara Reddy BV, Sivaprasad Y, Prathyusha M, Murali Krishna T, Vijay Krishna Kumar K, Raja Reddy K (2013) Characterisation, genetic diversity and antagonistic potential of 2,4-diacetylphloroglucinol producing *Pseudomonas fuorescens* isolates in groundnut-based cropping systems of Andhra Pradesh. India Arch Phytopathol Plant Prot 46(16):1966–1977. <https://doi.org/10.1080/03235408.2013.782223>
- Asari S, Ongena M, Debois D, De Pauw E, Chen K, Bejai S, Meijer J (2017) Insights into the molecular basis of biocontrol of *brassica* pathogens by *bacillus amyloliquefaciens* UCMB5113 lipopeptides. Ann Bot 120:551–562.<https://doi.org/10.1093/aob/mcx089>
- Bais HP, Fall R, Vivanco JM (2004) Biocontrol of *Bacillus subtilis* against infection of *Arabidopsis* roots by *pseudomonas syringae* is facilitated by bioflm formation and surfactin production. Plant Physiol 134:307–319.<https://doi.org/10.1104/pp.103.028712>
- Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL (2011) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 *pseudomonas syringae* isolates. PLoS Pathol 7:e1002132. <https://doi.org/10.1371/journal.ppat.1002132>
- Bán R, Baglyas G, Virányi F, Barna B, Posta K, Kiss J, Körösi K (2017) The chemical inducer, BTH (benzothiadiazole) and root colonization by mycorrhizal fungi (*glomus spp*.) trigger resistance against white rot (*Sclerotinia sclerotiorum*) in sunfower. Acta Biol Hung 68:50–59. <https://doi.org/10.1556/018.68.2017.1.5>
- Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051. [https://doi.](https://doi.org/10.1590/S1415-47572012000600020) [org/10.1590/S1415-47572012000600020](https://doi.org/10.1590/S1415-47572012000600020)
- Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.<https://doi.org/10.1590/s1415-47572012000600020>
- Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60:379–406. <https://doi.org/10.1146/annurev.arplant.57.032905.105346>
- Boutrot F, Zipfel C (2017) Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55:257–286. [https://doi.](https://doi.org/10.1146/annurev-phyto-080614-120106) [org/10.1146/annurev-phyto-080614-120106](https://doi.org/10.1146/annurev-phyto-080614-120106)
- Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X (2014) A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Rep 33:461–470. [https://doi.org/10.1007/](https://doi.org/10.1007/s00299-013-1546-7) [s00299-013-1546-7](https://doi.org/10.1007/s00299-013-1546-7)
- Bull C, Shetty K, Subbarao K (2002) Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896. <https://doi.org/10.1094/PDIS.2002.86.8.889>
- Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of *bacillus* depends on effcient surfactin production. Mol Plant-Microbe Interact 27:87–100. <https://doi.org/10.1094/MPMI-09-13-0262-R>
- Challinor AJ, Watson J, Lobell DB, Howden S, Smith D, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. [https://doi.](https://doi.org/10.1038/nclimate2153) [org/10.1038/nclimate2153](https://doi.org/10.1038/nclimate2153)
- Chang Y-H, Yan H-Z, Liou R-F (2015) A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol Plant Pathol 16(2):123–136. <https://doi.org/10.1111/mpp.12166>
- Chen AY, Schnarr NA, Kim C-Y, Cane DE, Khosla C (2006) Extender unit and acyl carrier protein specifcity of ketosynthase domains of the 6-deoxyerythronolide B synthase. J Am Chem Soc 128:3067–3074.<https://doi.org/10.1021/ja058093d>
- Chen M, Zeng H, Qiu D, Guo L, Yang X, Shi H et al (2012) Purifcation and characterization of a novel hypersensitive response-inducing elicitor from *Magnaporthe oryzae* that triggers defense response in rice. PLoS One 7(5):e37654. <https://doi.org/10.1371/journal.pone.0037654>
- Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li S, Hao X, Zhang Z, Wang X (2017) Integrating transcriptome and microRNA analysis identifes genes and microRNAs for AHOinduced systemic acquired resistance in *N. tabacum*. Sci Rep 7:12504. [https://doi.org/10.1038/](https://doi.org/10.1038/s41598-017-12249-y) [s41598-017-12249-y](https://doi.org/10.1038/s41598-017-12249-y)
- Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) *Pseudomonas fuorescens* and closely-related fuorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512. [https://doi.](https://doi.org/10.1111/j.1472-765X.2009.02566.x) [org/10.1111/j.1472-765X.2009.02566.x](https://doi.org/10.1111/j.1472-765X.2009.02566.x)
- Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552.<https://doi.org/10.1038/nri.2016.77>
- DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132.<https://doi.org/10.1039/c3mt00038a>
- Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833. <https://doi.org/10.1038/35081161>
- Dillon MM, Almeida RND, Lafamme B, Martel A, Weir BS, Desveaux D, Guttman DS (2019) Molecular evolution of *pseudomonas syringae* type III secreted effector proteins. Front Plant Sci 10:418. <https://doi.org/10.3389/fpls.2019.00418>
- Ding T, Su B, Chen X, Xie S, Gu S, Wang Q, Huang D, Jiang H (2017) An endophytic bacterial strain isolated from *Eucommia ulmoides* inhibits southern corn leaf blight. Front Microbiol 8:903.<https://doi.org/10.3389/fmicb.2017.00903>
- Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen YT, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang JL (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921. [https://doi.org/10.1007/](https://doi.org/10.1007/s11356-014-3754-2) [s11356-014-3754-2](https://doi.org/10.1007/s11356-014-3754-2)
- Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clement C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from *Bacillus subtilis* activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16(2):177–187. <https://doi.org/10.1111/mpp.12170>
- Fatima S, Anjum T (2017) Identifcation of a potential ISR determinant from *Pseudomonas aeruginosa* PM12 against fusarium wilt in tomato. Front Plant Sci 8:848. [https://doi.org/10.3389/](https://doi.org/10.3389/fpls.2017.00848) [fpls.2017.00848](https://doi.org/10.3389/fpls.2017.00848)
- Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant benefcial microbes. Curr Opin Plant Biol 38:155–163. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.pbi.2017.04.018) [pbi.2017.04.018](https://doi.org/10.1016/j.pbi.2017.04.018)
- Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169. [9184008](https://www.ncbi.nlm.nih.gov/pubmed/9184008)
- Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Ann Rev Plant Biol 64:839–863.<https://doi.org/10.1146/annurev-arplant-042811-105606>
- Fuller A, Mellows G, Woolford M, Banks G, Barrow K, Chain E (1971) Pseudomonic acid: an antibiotic produced by *Pseudomonas fuorescens*. Nature 234:416–417. [https://doi.](https://doi.org/10.1038/234416a0) [org/10.1038/234416a0](https://doi.org/10.1038/234416a0)
- Garbeva P, Hordijk C, Gerards S, De Boer W (2014) Volatiles produced by the mycophagous soil bacterium *Collimonas*. FEMS Microbiol Ecol 87:639–649. [https://doi.](https://doi.org/10.1111/1574-6941.12252) [org/10.1111/1574-6941.12252](https://doi.org/10.1111/1574-6941.12252)
- García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain *Bacillus subtilis* UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbial Biotechnol 6:264–274. <https://doi.org/10.1111/1751-7915.12028>
- Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic *bacillus* spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. <https://doi.org/10.1016/j.micres.2014.11.004>
- Gray CM, Monson RK, Fierer N (2010) Emissions of volatile organic compounds during the decomposition of plant litter. J Geophyl Res Biogeosci 115:G03015. [https://doi.](https://doi.org/10.1029/2010JG001291) [org/10.1029/2010JG001291](https://doi.org/10.1029/2010JG001291)
- Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbiol Biochem Technol 7:096–102. <https://doi.org/10.4172/1948-5948.1000188>
- Gust AA, Pruitt R, Nürnberger T (2017) Sensing danger: key to activating plant immunity. Trends Plant Sci 22:779–791.<https://doi.org/10.1016/j.tplants.2017.07.005>
- Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589. [https://doi.org/10.1146/](https://doi.org/10.1146/annurev-phyto-080516-035623) [annurev-phyto-080516-035623](https://doi.org/10.1146/annurev-phyto-080516-035623)
- Han S, Li D, Trost E, Mayer KF, Vlot AC, Heller W, Schmid M, Hartmann A, Rothballer M (2016) Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant benefcial endophyte *Acidovorax radicis* N35. Front Plant Sci 7:1868. [https://doi.org/10.3389/](https://doi.org/10.3389/fpls.2016.01868) [fpls.2016.01868](https://doi.org/10.3389/fpls.2016.01868)
- Hou S, Yang Y, Wu D, Zhang C (2011) Plant immunity: evolutionary insights from PBS1, Pto, and RIN4. Plant Signal Behav 6:794–799. <https://doi.org/10.4161/psb.6.6.15143>
- Howell C, Stipanovic R (1980) Suppression of *Pythium ultimum*-induced damping-off of cotton seedlings by *Pseudomonas fuorescens* and its antibiotic, pyoluteorin. Phytopathology 70:712–715. <https://doi.org/10.1094/Phyto-70-712>
- Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of *Pythium ultimum* in the cotton spermosphere and rhizosphere by *Pseudomonas fuorescens*. Mol Plant-Microbe Interact 4:393–399. <https://doi.org/10.1094/MPMI-4-393>
- Hu Z, Shao S, Zheng C, Sun Z, Shi J, Yu J, Qi Z, Shi K (2018) Induction of systemic resistance in tomato against *Botrytis cinerea* by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta 247:1217–1227. <https://doi.org/10.1007/s00425-018-2860-7>
- Iavicoli A, Boutet E, Buchala A, Métraux J-P (2003) Induced systemic resistance in *Arabidopsis thaliana* in response to root inoculation with *Pseudomonas fuorescens* CHA0. Mol Plant-Microbe Interact 16:851–858. <https://doi.org/10.1094/MPMI.2003.16.10.851>
- Jiao Y, Yoshihara T, Ishikuri S, Uchino H, Ichihara A (1996) Structural identifcation of cepaciamide a, a novel fungitoxic compound from *pseudomonas cepacia* D-202. Tetrahed Lett 37:1039–1042.<https://doi.org/10.1002/chin.199622220>
- Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. [https://doi.org/10.1038/](https://doi.org/10.1038/nature05286) [nature05286](https://doi.org/10.1038/nature05286)
- Jünger M, Vautz W, Kuhns M, Hofmann L, Ulbricht S, Baumbach JI, Quintel M, Perl T (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new identifcation tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93:2603–2614. [https://doi.](https://doi.org/10.1007/s00253-012-3924-4) [org/10.1007/s00253-012-3924-4](https://doi.org/10.1007/s00253-012-3924-4)
- Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen *Rhizoctonia solani*. Arch Microbiol 187:351–360. [https://doi.](https://doi.org/10.1007/s00203-006-0199-0) [org/10.1007/s00203-006-0199-0](https://doi.org/10.1007/s00203-006-0199-0)
- Kamatham S, Neela KB, Pasupulati AK, Pallu R, Singh SS, Gudipalli P (2016) Benzoylsalicylic acid isolated from seed coats of *Givotia rottleriformis* induces systemic acquired resistance in tobacco and *Arabidopsis*. Phytochemistry 126:11–22. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.phytochem.2016.03.002) [phytochem.2016.03.002](https://doi.org/10.1016/j.phytochem.2016.03.002)
- Kanchiswamy CN, Malnoy M, Maffei ME (2015) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20:206–211. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.tplants.2015.01.004) [tplants.2015.01.004](https://doi.org/10.1016/j.tplants.2015.01.004)
- Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against *Phytophthora capsici* and *Colletotrichum orbiculare*. Pest Manag Sci 56:1029–1035. [https://doi.org/10.1002/1526-4998\(200012\)56:12%3C1029::](https://doi.org/10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q) [AID-PS238%3E3.0.CO;2-Q](https://doi.org/10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q)
- Kim J-S, Lee J, Lee C-h, Woo SY, Kang H, Seo S-G, Kim S-H (2015) Activation of pathogenesisrelated genes by the rhizobacterium, *bacillus* sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J 31:195–201. <https://doi.org/10.5423/PPJ.NT.11.2014.0122>
- Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by *bacillus* spp. Phytopathology 94:1259–1266. [https://doi.org/10.1094/](https://doi.org/10.1094/PHYTO.2004.94.11.1259) [PHYTO.2004.94.11.1259](https://doi.org/10.1094/PHYTO.2004.94.11.1259)
- Kulye M, Liu H, Zhang Y, Zeng H, Yang X, Qiu D (2012) Hrip1, a novel protein elicitor from necrotrophic fungus, *Alternaria tenuissima*, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ 35:2104–2120. [https://](https://doi.org/10.1111/j.1365-3040.2012.02539.x) doi.org/10.1111/j.1365-3040.2012.02539.x
- Lamichhane JR, Venturi V (2015) Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front Plant Sci 6:385.<https://doi.org/10.3389/fpls.2015.00385>
- Lampis G, Deidda D, Maullu C, Petruzzelli S, Pompei R (1996) Karalicin, a new biologically active compound from *Pseudomonas fuorescens/putida*. J Antibiot 49:263–266. [https://doi.](https://doi.org/10.7164/antibiotics.49.260) [org/10.7164/antibiotics.49.260](https://doi.org/10.7164/antibiotics.49.260)
- Laura AS-S, Eric VS, Sandra JR, Jo H (1998) Target range of Zwittermicin a, an Aminopolyol antibiotic from *Bacillus cereus*. Curr Microbiol 37:6–11.<https://doi.org/10.1007/s002849900328>
- Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636. <https://doi.org/10.1016/j.soilbio.2008.01.018>
- Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748. <https://doi.org/10.1093/nar/gkx1016>
- Li H, Imai T, Ukita M, Sekine M, Higuchi T (2004) Compost stability assessment using a secondary metabolite: geosmin. Environ Technol 25:1305–1312. [https://doi.](https://doi.org/10.1080/09593332508618374) [org/10.1080/09593332508618374](https://doi.org/10.1080/09593332508618374)
- Li X-g, Zhang T-l, Wang X-x, Hua K, Zhao L, Han Z-m (2013) The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci 9:164–173. <https://doi.org/10.7150/ijbs.5579>
- Liang H, Zhang X, Jun RAO, Huanwen CHEN (2008) Microbial volatile organic compounds: generation pathways and mass spectrometric detection. J China Biotechnol 28:124–133
- Liang Y, Cui S, Tang X, Zhang Y, Qiu D, Zeng H, Guo L, Yuan J, Yang X (2018) An asparaginerich protein Nbnrp1 modulate *Verticillium dahliae* protein PevD1-induced cell death and disease resistance in *Nicotiana benthamiana*. Front Plant Sci 9:303. [https://doi.org/10.3389/](https://doi.org/10.3389/fpls.2018.00303) [fpls.2018.00303](https://doi.org/10.3389/fpls.2018.00303)
- Lindeberg M, Stavrinides J, Chang JH, Alfano JR, Collmer A, Dangl JL, Greenberg JT, Mansfeld JW, Guttman DS (2005) Proposed guidelines for a unifed nomenclature and phylogenetic analysis of type III hop effector proteins in the plant pathogen pseudomonas syringae. Mol Plant-Microbe Interact 18:275–282.<https://doi.org/10.1094/MPMI-18-0275>
- Liu M, Khan NU, Wang N, Yang X, Qiu D (2016) The protein elicitor PevD1 enhances resistance to pathogens and promotes growth in Arabidopsis. Int J Biol Sci 12:931–943. [https://doi.](https://doi.org/10.7150/ijbs.15447) [org/10.7150/ijbs.15447](https://doi.org/10.7150/ijbs.15447)
- Liu J-J, Williams H, Li XR, Schoettle AW, Sniezko RA, Murray M, Zamany A, Roke G, Chen H (2017) Profling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (*Pinus albicaulis*). Plant Mol Biol 95:359–374. [https://doi.](https://doi.org/10.1007/s11103-017-0655-z) [org/10.1007/s11103-017-0655-z](https://doi.org/10.1007/s11103-017-0655-z)
- Lohitha S, Bhaskara R, Sivaprasad Y, Prathyusha M, Sujitha A, Krishna T (2016) Molecular characterization and antagonistic potential of phenazine-1-carboxylic acid producing *Pseudomonas fuorescens* isolates from economically important crops in South India. Int J Clin Biol Sci 1:30–40. <https://doi.org/10.1094/PHYTO-06-16-0247-R>
- López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Bellés JM (2016) Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS One 11:e0166938.<https://doi.org/10.1371/journal.pone.0166938>
- Ma Z, Hua GKH, Ongena M, Höfte M (2016) Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep 8:896–904.<https://doi.org/10.1111/1758-2229.12454>
- Ma Z, Ongena M, Höfte M (2017) The cyclic lipopeptide orfamide induces systemic resistance in rice to *Cochliobolus miyabeanus* but not to *Magnaporthe oryzae*. Plant Cell Rep 36:1731–1746. <https://doi.org/10.1007/s00299-017-2187-z>
- Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631.<https://doi.org/10.1007/s00299-017-2187-z>
- Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380.<https://doi.org/10.1039/c1np00021g>
- McDonald A, Riha S, DiTommaso A, DeGaetano A (2009) Climate change and the geography of weed damage: analysis of US maize systems suggests the potential for signifcant range transformations. Agric Ecosyst Environ 130:131–140. <https://doi.org/10.1016/j.agee.2008.12.007>
- Mehta S, Singh B, Dhakate P, Rahman M, Islam MA (2019) Rice, marker-assisted breeding, and disease resistance. In: Wani SH (ed) Disease resistance in crop plants. Springer, Cham, pp 83–111. https://doi.org/10.1007/978-3-030-20728-1_5
- Mehta S, Lal SK, Sahu KP, Venkatapuram AK, Kumar M, Sheri V, Varakumar P, Vishwakarma C, Yadav R, Jameel MR, Ali M, Achary VMM, Reddy MK (2020) CRISPR/Cas9-edited Rice: a new frontier for sustainable agriculture. In: Rakshit A, Singh H, Singh A, Singh U, Fraceto L (eds) New frontiers in stress management for durable agriculture. Springer, Singapore, pp 427–458. https://doi.org/10.1007/978-981-15-1322-0_23
- Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by *Bacillus cereus* UW85. Appl Environ Microbiol 62:3061–3065. [8702302](https://www.ncbi.nlm.nih.gov/pubmed/8702302)
- Mishra A, Morang P, Deka M, Kumar SN, Kumar BD (2014) Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (*Camellia sinensis* (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot. Appl Biochem Biotechnol 174:506–521.<https://doi.org/10.1007/s12010-014-1090-0>
- Mommer L, Kirkegaard J, van Ruijven J (2016) Root–root interactions: towards a rhizosphere framework. Trends Plant Sci 21:209–217. <https://doi.org/10.1016/j.tplants.2016.01.009>
- Müller T, Thißen R, Braun S, Dott W, Fischer G (2004) (M) VOC and composting facilities part 2:(M) VOC dispersal in the environment. Environ Sci Pollut Res 11:152–157. [https://doi.](https://doi.org/10.1007/BF02979669) [org/10.1007/BF02979669](https://doi.org/10.1007/BF02979669)
- Nielsen T, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by *Pseudomonas fuorescens* DR54. J Appl Microbiol 87:80–90.<https://doi.org/10.1046/j.1365-2672.1999.00798.x>
- Patil S, Bheemaraddi M, Shivannavar C, Gaddad M (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR J Agric Vet Sci 7:63–68. <https://doi.org/10.9790/2380-07916368>
- Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897. [https://doi.org/10.1126/](https://doi.org/10.1126/science.253.5022.895) [science.253.5022.895](https://doi.org/10.1126/science.253.5022.895)
- Perl T, Jünger M, Vautz W, Nolte J, Kuhns M, Borg-von Zepelin M, Quintel M (2011) Detection of characteristic metabolites of *aspergillus fumigatus* and *Candida species* using ion mobility spectrometry–metabolic profling by volatile organic compounds. Mycoses 54:e828–e837. <https://doi.org/10.1111/j.1439-0507.2011.02037.x>
- Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agron Sustain Develop 34:707–721.<https://doi.org/10.1007/s13593-014-0245-2>
- Pierson LS III, Pierson EA (1996) Phenazine antibiotic production in *pseudomonas aureofaciens*: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136:101–108. <https://doi.org/10.1111/j.1574-6968.1996.tb08034.x>
- Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by benefcial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. [https://doi.](https://doi.org/10.1146/annurev-phyto-081211-172908) [org/10.1146/annurev-phyto-081211-172908](https://doi.org/10.1146/annurev-phyto-081211-172908)
- Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102.<https://doi.org/10.1042/BA20020118>
- Rahman M, Sultana S, Nath D, Kalita S, Chakravarty D, Mehta S, Wani SH, Islam MA (2019) Molecular breeding approaches for disease resistance in sugarcane. In: Wani SH (ed) Disease resistance in crop plants. Springer, Cham, pp 131–155. [https://doi.](https://doi.org/10.1007/978-3-030-20728-1_7) [org/10.1007/978-3-030-20728-1_7](https://doi.org/10.1007/978-3-030-20728-1_7)
- Ramirez KS, Lauber CL, Fierer N (2010) Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochem 99:97–107. [https://doi.org/10.1007/](https://doi.org/10.1007/s10533-009-9393-x) [s10533-009-9393-x](https://doi.org/10.1007/s10533-009-9393-x)
- Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP (2016) A perspective on inter-kingdom signaling in plant–benefcial microbe interactions. Plant Mol Biol 90:537–548. [https://doi.](https://doi.org/10.1007/s11103-016-0433-3) [org/10.1007/s11103-016-0433-3](https://doi.org/10.1007/s11103-016-0433-3)
- Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in *Arabidopsis*. Plant Physiol 134:1017–1026. [https://doi.org/10.1104/](https://doi.org/10.1104/pp.103.026583) [pp.103.026583](https://doi.org/10.1104/pp.103.026583)
- Saha D, Purkayastha G, Ghosh A, Isha M, Saha A (2012) Isolation and characterization of two new *Bacillus subtilis* strains from the rhizosphere of eggplant as potential biocontrol agents. J Plant Pathol 94:109–118.<https://doi.org/10.4454/jpp.fa.2012.020>
- Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317. <https://doi.org/10.1002/jobm.201100552>
- Salas-Marina MA, Isordia-Jasso MI, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S (2015) The Epl1 and Sm1 proteins from *Trichoderma atroviride* and *Trichoderma virens* differentially modulate systemic disease resistance against different life style pathogens in *Solanum lycopersicum*. Front Plant Sci 6:77.<https://doi.org/10.3389/fpls.2015.00077>
- Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.micres.2013.08.009) [micres.2013.08.009](https://doi.org/10.1016/j.micres.2013.08.009)
- Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41.<https://doi.org/10.1016/j.tplants.2017.09.003>
- Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106:15594–15598. [https://doi.org/10.1073/](https://doi.org/10.1073/pnas.0906865106) [pnas.0906865106](https://doi.org/10.1073/pnas.0906865106)
- Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol. 63:451–482. [https://doi.org/10.1146/](https://doi.org/10.1146/annurev-arplant-042811-105518) [annurev-arplant-042811-105518](https://doi.org/10.1146/annurev-arplant-042811-105518)
- Seherm H, Coakley SM (2003) Plant pathogens in a changing world. Australas Plant Pathol 32:157–165. <https://doi.org/10.1071/AP03015>
- Shanahan P, O'Sullivan DJ, Simpson P, Glennon JD, O'Gara F (1992) Isolation of 2, 4-diacetylphloroglucinol from a fuorescent pseudomonad and investigation of physiological parameters infuencing its production. Appl Environ Microbiol 58:353–358. PMID: 16348633
- Shoji J, Hinoo H, Terui Y, Kikuchi J, Hattori T, Ishii K, Matsumoto K, Yoshida T (1989) Isolation of azomycin from *Pseudomonas fuorescens*. J Antibiot 42:1513–1514. [https://doi.org/10.1128/](https://doi.org/10.1128/AEM.69.4.2023-2031.2003) [AEM.69.4.2023-2031.2003](https://doi.org/10.1128/AEM.69.4.2023-2031.2003)
- Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030. [8031096](http://www.ncbi.nlm.nih.gov/pubmed/8031096)
- Singh B, Mehta S, Aggarwal SK, Tiwari M, Bhuyan SI, Bhatia S, Islam MA (2019) Barley, disease resistance, and molecular breeding approaches. In: Wani SH (ed) Disease resistance in crop plants. Springer, Cham, pp 261–299. https://doi.org/10.1007/978-3-030-20728-1_11
- Song G, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open feld conditions. Int J Mol Sci 14:9803–9819.<https://doi.org/10.3390/ijms14059803>
- Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100. <https://doi.org/10.1038/nri3141>
- Sundberg C, Yu D, Franke-Whittle I, Kauppi S, Smårs S, Insam H, Romantschuk M, Jönsson H (2013) Effects of pH and microbial composition on odour in food waste composting. Waste Manag 33:204–211.<https://doi.org/10.1016/j.wasman.2012.09.017>
- Tahir HAS, Gu Q, Wu H, Raza W, Safdar A, Huang Z, Rajer FU, Gao X (2017) Effect of volatile compounds produced by *Ralstonia solanacearum* on plant growth promoting and systemic resistance inducing potential of *bacillus* volatiles. BMC Plant Biol 17:133. [https://doi.](https://doi.org/10.1186/s12870-017-1083-6) [org/10.1186/s12870-017-1083-6](https://doi.org/10.1186/s12870-017-1083-6)
- Tank N, Rajendran N, Patel B, Saraf M (2012) Evaluation and biochemical characterization of a distinctive pyoverdin from a *Pseudomonas* isolated from chickpea rhizosphere. Braz J Microbiol 43(2):639–648. <https://doi.org/10.1590/S1517-83822012000200028>
- Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15. <https://doi.org/10.1105/tpc.110.082602>
- Thrane C, Nielsen TH, Nielsen MN, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fuorescens DR54 exerts a biocontrol effect on *Pythium ultimum* in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146. [https://doi.org/10.1111/j.1574-6941.2000.](https://doi.org/10.1111/j.1574-6941.2000.tb00736.x) [tb00736.x](https://doi.org/10.1111/j.1574-6941.2000.tb00736.x)
- Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by benefcial microbes. Curr Opin Plant Biol 11:443–448.<https://doi.org/10.1016/j.pbi.2008.05.005>
- Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198. [https://doi.](https://doi.org/10.1016/j.tplants.2016.01.005) [org/10.1016/j.tplants.2016.01.005](https://doi.org/10.1016/j.tplants.2016.01.005)
- Volpon L, Besson F, Lancelin JM (1999) NMR structure of active and inactive forms of the steroldependent antifungal antibiotic bacillomycin L. Eur J Biochem 264:200–210. [https://doi.](https://doi.org/10.1046/j.1432-1327.1999.00605.x) [org/10.1046/j.1432-1327.1999.00605.x](https://doi.org/10.1046/j.1432-1327.1999.00605.x)
- Volpon L, Besson F, Lancelin J-M (2000) NMR structure of antibiotics plipastatins a and B from *Bacillus subtilis* inhibitors of phospholipase A2. FEBS Lett 485:76–80. [https://doi.org/10.1016/](https://doi.org/10.1016/S0014-5793(00)02182-7) [S0014-5793\(00\)02182-7](https://doi.org/10.1016/S0014-5793(00)02182-7)
- Wang N, Liu M, Guo L, Yang X, Qiu D (2016) A novel protein elicitor (PeBA1) from *bacillus amyloliquefaciens* NC6 induces systemic resistance in tobacco. Int J Biol Sci 12:757–767. <https://doi.org/10.7150/ijbs.14333>
- Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.<https://doi.org/10.1007/s00425-009-1076-2>
- Yoodee S, Kobayashi Y, Songnuan W, Boonchird C, Thitamadee S, Kobayashi I, Narangajavana J (2018) Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava. Plant Physiol Biochem 122:65–77. <https://doi.org/10.1016/j.plaphy.2017.11.016>
- Zhang W, Yang X, Qiu D, Guo L, Zeng H, Mao J, Gao Q (2011) PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol Biol Rep 38:2549–2556. <https://doi.org/10.1007/s11033-010-0393-7>
- Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y (2017) Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich benefcial bacteria. Soil Biol Biochem 104:208–217. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.soilbio.2016.10.023) [soilbio.2016.10.023](https://doi.org/10.1016/j.soilbio.2016.10.023)
- Zhang Y, Yan X, Guo H, Zhao F, Huang L (2018) A novel protein elicitor BAR11 from Saccharothrix yanglingensis Hhs. 015 improves plant resistance to pathogens and interacts with catalases as targets. Front Microbiol 9:700. <https://doi.org/10.3389/fmicb.2018.00700>
- Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114:9326–9331. <https://doi.org/10.1073/pnas.1701762114>
- Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351. [https://doi.](https://doi.org/10.1016/j.it.2014.05.004) [org/10.1016/j.it.2014.05.004](https://doi.org/10.1016/j.it.2014.05.004)
- Zipfel C, Oldroyd GE (2017) Plant signalling in symbiosis and immunity. Nature 543:328–336. <https://doi.org/10.1038/nature22009>
- Ziska LH, Tomecek MB, Gealy DR (2010) Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric $CO₂$. Agron J 102:118–123.<https://doi.org/10.2134/agronj2009.0205>