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Chapter 10
Microbial Alleviation of Abiotic and Biotic 
Stresses in Rice

Upendra Kumar , Megha Kaviraj, Swastika Kundu, Snehasini Rout, 
Himani Priya, and A. K. Nayak

Abstract  More than 90% of the cultivated area is affected globally by environmen-
tal constraints. For instance, abiotic and biotic  stresses are major  processes that 
decline agricultural production. Drought, salinity, heat, cold, acidity, and sodicity 
are major abiotic factors, while insects and pathogens are biotic factors. Rice, a 
staple food for more than half of the world’s population, is highly susceptible to 
abiotic and biotic stresses. Here, we review stresses in rice and mitigation strategies, 
with focus on microbes to alleviate stresses. Abiotic stresses in rice are alleviated by 
microbes belonging to genus Bacillus, Pseudomonas, Enterobacter, Ochrobactrum, 
Alcaligens, Paecilomyces, Burkholderia, Achromobacter, Azospirillum, and Glomus. 
This alleviation proceeds through an accumulation of ascorbate, proline, ethylene, 
auxin, and stomata conductance of leaf, and  by producing antioxidant enzymes, 
1-aminocyclopropane-1-carboxylate deaminase, β-aminobutyric acid, salicylic acid 
and siderophores. Biotic stresses in rice include brown spot, leaf blast, blunt, leaf 
blight, sheath blight, sheath rot, root rot and seedling disease. They are suppressed 
by Pseudomonas, Streptomyces, Bacillus, Trichoderma, Aspergillus by inhibiting 
mycelia growth, iron competition, producing antibiotics, phytohormones, metabo-
lites, and enzymes.

Keywords  Rice · Microbial interventions · PGPMs · Abiotic stress · ACC 
deaminase · Rice diseases · Biocontrol · Induced systemic tolerance · Siderophore · 
Stress enzymes
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PGPMs	 Plant growth-promoting microorganisms
PGPR	 Plant growth-promoting rhizobacteria

10.1 � Introduction

Presently, the world population is about 7.6 billion which is expected to increase by 
20.8% to 9.6 billion in 2050 (UN Report 2013). Most of this increase (93%) will 
occur in developing countries, whose share of population is projected to increase 
from 78% in 1990s to 83% in 2020. Rice is a staple crop for over half of the world’s 
population and is prone to a variety of abiotic and biotic stresses (Lafitte et al. 2004; 
Kumar et al. 2016, 2018a). High salinity, submergence, cold and drought stresses 
are the major abiotic factors, whereas insects and pathogens are the major biotic 
factors causing threat to rice crop thereby reducing food security for growing human 
population (Sanghera et  al. 2011; Shanker and Venkateswarlu 2011; Wani et  al. 
2013; Kumar et al. 2018b). According to various estimates, we have to produce 40% 
more rice by 2030 and 70% more by 2050 to satisfy the growing demand without 
affecting the resource base adversely (FAO 2009; Tilman et al. 2011). We have to 
achieve this demand from less land, labour, water and fewer chemicals.

To meet the challenge of producing more rice from affected lands, a wide range 
of adaptations and mitigation strategies are required. Efficient resource management 
and rice crop improvement for evolving transgenic may be one of the alternatives to 
overcome abiotic and biotic stresses to some extent. However, such strategies being 
long drawn and cost intensive, there is a need to develop simple and low-cost biologi-
cal methods for the management of abiotic stress and it can be used on short term 
basis (Kumar et al. 2017a, 2019). Plant growth-promoting microorganisms (PGPMs) 
are one of the best options to alleviate abiotic and biotic stresses in agricultural crops 
including rice with higher yield potential and greater yield stability, if we can exploit 
their unique properties of tolerance to extremities, ubiquity, genetic diversity, and 
their interaction with agricultural crops (Kumar et al. 2016). Researchers from all 
over the world have made great efforts in understanding the mechanisms of PGPM 
responses to abiotic and biotic stresses in rice (Sarkar et al. 2018; Pandey et al. 2013; 
Khan et al. 2016; Kakar et al. 2016; Reddy et al. 2007; Law et al. 2017; Saravanakumar 
et al. 2007). In this chapter, we emphasized a different abiotic and biotic stress miti-
gation strategy through microbial intervention particularly for rice crop and its mech-
anistic understanding is represented in Fig. 10.1.

10.2 � Plant Stress

Stress can be defined as any unfavorable condition or substance affecting or block-
ing the metabolism, growth or development of a plant (Lichtenthaler 1996). 
Accordingly, climate and environmental factors regulate the geographical 
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Fig. 10.1  Mode of action of plant growth-promoting microorganisms in rice under biotic and 
abiotic stresses. Lines with bar indicates inhibition of those environmental stresses by means of 
plant growth-promoting microorganisms and arrows represent secreted compounds and elicitors 
by plant growth-promoting microorganisms. IAA: Indole acetic acid; ACC: 
1-aminocyclopropane-1-carboxylate

distribution of plants (Walther et  al. 2002). Thus, unfavorable environmental 
changes can affect plant growth and crop yield (Duque et al. 2013). Reactive oxy-
gen species molecules are generally formed in response of oxidative stress (Kumar 
et  al. 2019). Drought, heat shock and salinity are the major oxidative stresses 
responsible to release reactive oxygen species in the system. Some of the well-
known reactive oxygen species molecules that result in membrane and macromo-
lecular damage include hydrogen peroxide (H2O2), hydroxyl ion (OH−) and 
superoxide anion (O2

−) (Kumar et  al. 2019; Blokhina et  al. 2003; Karim 2007; 
Farnese et al. 2016). In order to increase rice stress tolerance and decrease the det-
rimental effect of toxic reactive oxygen species compounds, they utilize several 
antioxidant defense mechanisms in order to scavenge reactive oxygen species.

Several antioxidants that plant mainly uses are namely, ascorbate peroxidase, 
superoxide dismutase, glutathione reductase and catalase (Kumar et  al. 2019) and 
non-enzymatic antioxidants such as carotenoids, glutathione, ascorbate and anthocy-
anin (Karim 2007; Mittler 2002; Blokhina et al. 2003; Gould et al. 2002). Whereas 
biotic stress includes parasitic organisms that are pathogenic and causes plant dis-
eases; this involves a wide spectrum of microbes (fungi, bacteria, viruses, nematodes, 
protozoa and insects) (Adhya et al. 2018). Every year pathogenic diseases cause sig-
nificant crop losses all over the world (Agrios 2005; Karim 2007). As we know, the 
nature of the parasitic organisms is to utilize the host plant for feeding, sheltering, 
multiplying and growing that causes significant host damage and ultimately leads to 
death. In these conditions, Plant growth-promoting microorganisms may act as bio-
control agents and mitigates the biotic stress in the plant (Kumar et al. 2013).
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10.3 � Plant Growth-Promoting Microorganisms

Plant growth-promoting microorganisms  (PGPMs) are beneficial microbes that 
have the distinctive ability to support plant development directly and indirectly. 
They live in the rhizosphere zone which is rich with plant exudates such as sugars 
and amino acids or some microbes establish themselves as endophytes within the 
plants in order to survive in the root rhizosphere by means of penetrating/burrowing 
tissues of plants, that contributes to plant’s nutrition, environment adaptability and 
survivability. These microbes extend their biological activities in order to survive in 
the rhizosphere, influencing plant survival and development (Kumari et al. 2015; 
Khan et al. 2016; Babalola 2010; Kumar et al. 2013). The process in which PGPMs 
play a role in stimulating variety of abiotic stress tolerance in plants is referred to as 
induced systemic tolerance (Kumar et al. 2012; Yang et al. 2009).

These PGPMs include multiple bacterial determinants such as Bacillus amyloliq-
uefaciens and Brevibacillus laterosporus, Azospirillum brasilense that are involved 
in induced systemic tolerance by means of production of indole-3-acetic acid (IAA), 
1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase, phosphate solubiliza-
tion, and volatile, exo-polysaccharides, siderophores production (Farag et al. 2013; 
Kumari et al. 2015; Nadeem et al. 2016).

These traits help the plants to overcome stress. Certain PGPMs function is to 
synthesize ACC deaminase that catalyzes the transformation of ACC (ethylene bio-
synthesis precursor) to ammonia and α-ketobutyrate. Thus, plants with decreased 
concentrations of ethylene would finally overcome the inhibition of abiotic stress by 
associating with ACC deaminase-producing bacteria such as Pleosporalean asco-
mycete, Alcaligenes, Rhodococcus and Variovorax (Barnawal et al. 2014; Nadeem 
et  al. 2010a; Senthilkumar et  al. 2009; Glick et  al. 2007; Mayak et  al. 2004). 
Considerable attention has been made to the isolation of ACC deaminase-producing 
microbes for their utilization in direct plant growth promotion under unfavourable 
environments (Ali et al. 2016; Hardoim et al. 2008; Nadeem et al. 2010b).

In addition to ACC deaminase enzyme, they also produce a variety of substances 
such as plant hormone–indole acetic acid (Enebe and Babalola 2018), siderophore 
(Stajkovic-Srbinovic et al. 2014), PO4

2− solubilizing enzyme, salicylic acid (Ekinci 
et al. 2014) and microbiocidal/biostatic enzyme (Moustaine et al. 2017). By trap-
ping and integrating nitrogen into the plant via nitrogen fixation, some of these 
microbes contribute to plant nutrition (Kumar et al. 2017b; Richardson et al. 2009). 
The subsequent impacts of this specific form of plant-bacterial association would 
provide plants with a source of nitrogen (ammonia) (Hardoim et al. 2008). PGPMs 
also help to sustain the plant’s inherent resistance to pathogenic and environmental 
problems. Some of these organisms are excellent in secretion of polysaccharide 
substances and formation of biofilm that helps to maintain stability during stress 
conditions (Kumar et al. 2013; Kasim et al. 2016).

The presence of microbes as bio-inoculant decreases metal stress in plants as 
they can produce metal rich solution through the biological oxidation of sulfur 
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containing ore and plays a crucial role in metal immobilization and make them 
unavailable using polymeric substances and other chemicals such as siderophore 
production (Fashola et  al. 2015) and have a significant contribution to 
bio-hydrometallurgy.

10.4 � Role of Microbes in Alleviating Abiotic Stresses in Rice

10.4.1 � Drought Stress

World’s 64% of the total land area has been affected by water deficit/drought stress 
(Mittler 2006; Cramer et al. 2011). It has a major impact on soil nutrients availabil-
ity and transportation through water to the roots. Thus, drought stress reduces the 
movement of nutrients and water-soluble supplements, such as, NO3−, SO4

2−, Ca, Si, 
and Mg which are considered essential for growth (Nasim et al. 2017). It also forms 
free radicals and reactive oxygen species that can further damage the rice plant by 
membrane lipid peroxidation or degradation of important structural and functional 
proteins (Kumar et al. 2019; Nair et al. 2008).

Drought stress have direct effects on plant physiology in rice as it ceases the cell 
growth because of altering the cellular turgidity and regular growth processes (Hsiao 
and Xu 2000; Rahdari and Hoseini 2012; Jabran et al. 2017). Among the various 
crops, rice is likely to be more vulnerable to drought stress (Showler 2016). Drought 
stress restricts the plants growth and development by interrupting biochemical pro-
cesses such as low nitrate uptake from dry soils, which further reduces the rate of 
photosynthetic pigmentation, is an indication of photo-oxidation. It also influences 
some enzymatic activities such as nitrate reductase activity, due of low uptake of 
NO3

− from dry soils which restricts plant growth and development (Ali et al. 2016; 
Awais et al. 2017a, b).

Furthermore, the grain filling stage of rice is adversely affected due to water 
shortage that favors the remobilization of stored carbohydrates into grains (Nasim 
et al. 2016a; Yang et al. 2012). Four components are assumed to be mainly involved 
in this procedure: (1) starch formation; (2) ADP-glucose-pyrophosphorylase; (3) 
sucrose formation; (4) starch branched compound (Taiz and Zeiger 2002). Under 
drought stress, decreased sucrose synthase activity lower the rate of grain filling and 
it also leads to inactivation of ADP-glucose-pyrophosphorylase which in turn causes 
developmental losses (Ahmadi and Baker 2001; Nasim et al. 2016b). Thus, drought 
conditions result in diminished photosynthesis, stomata closure and disturb cellular 
ionic balance because of low water content of soil (Flexas et al. 2004), consequently, 
reducing plant growth and development, obstructing grain filling and ultimately 
reducing grain yield.

One of the major weapons to mitigate this abiotic stress is beneficial microbes 
and some examples of these are presented in Table 10.1. Bacterial inoculation in 
rice enhanced the production of plant hormones such as IAA that improved lateral 
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Table 10.1  Beneficial microbes for alleviation of abiotic stress and plant growth-promotion in rice

Beneficial microbes
Abiotic 
stresses

Impact on plant-growth 
promotion in rice Reference

Azospirillum brasilense, 
Glomus intraradices

Drought Increased stomata 
conductance, photosynthesis, 
shoots fresh weight and plant 
vigor

Ruíz-Sánchez 
et al. (2011)

Bacillus amyloliquefaciens 
Bk7, Brevibacillus 
laterosporus B4

Drought, cold Improved the seedling height 
and shoot number; alleviate 
chlorosis, wilting, necrosis 
and rolling of leaves

Kakar et al. (2016)

Bacillus pumilus Salt Improved growth and nutrient 
uptake

Khan et al. (2016)

Pseudomonas sp., 
Burkholderia caryophylli, 
Achromobacter piechaudii

Salt, drought Reduce endogenous ethylene 
levels in plants and promotes 
root growth

Wu et al. (2009)

Ochrobactrum sp., 
Bacillus sp. (CdSP9, 
PbSP6, and AsSP9)

Heavy metals 
(cadmium, 
lead, arsenic)

Increase in germination 
percentage, relative root 
elongation, amylase and 
protease activities

Pandey et al. 
(2013)

Pseudomonas strain 
(TDK1)

Salt Increases plant height, root 
length and leaf area

Sen and 
Chandrasekhar 
(2014)

Bacillus amyloliquefaciens Salt, drought, 
desiccation, 
heat, cold

Increased accumulation of 
osmolytes (proline, soluble 
sugars, glycine betaine, 
trehalose, etc.); helped plant 
to overcome abiotic stresses 
by maintaining osmotic turgor

Tiwari et al. 
(2017)

Pseudomonas fluorescens Drought Encouraged the expression of 
abscisic acid synthetic genes 
particularly at the stage of 
reproduction by the plant

Saakre et al. 
(2017)

Thalassobacillus devorans 
(NCCP-58), 
Oceanobacillus kapialis 
(NCCP-76)

Salt Increased germination ability, 
root and shoot growth, 
protein, and chlorophyll 
contents as well as nutrient 
contents with reduced sodium 
ion accumulation in the plant

Shah et al. (2017)

Bacillus sp. Salt Aided the alleviation of salt 
stress by increasing the 
biomass and growth of rice 
seedling via production of 
indole acetic acid and ACC 
deaminase enzyme

Misra et al. (2017)

Bacillus thuringiensis Salt Promotes plant-growth Raheem and Ali 
(2015)

(continued)
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Table 10.1  (continued)

Beneficial microbes
Abiotic 
stresses

Impact on plant-growth 
promotion in rice Reference

Alcaligenes faecalis, 
Bacillus pumilus, 
Ochrobactrum sp.

Salt Results in shoot and root 
elongation

Bal et al. (2013)

Pseudomonas 
pseudoalcaligenes, 
Bacillus pumilus

Salt Increase in root length and 
promotes growth and yield

Jha et al. (2013)

Burkholderia pyrrocinia, 
Pseudomonas fluorescens

Water Induces increased production 
of carotenoids and chlorophyll 
b and promotes plant growth 
by maintaining the integrity of 
enzymes and proteins of cell 
wall

Rêgo et al. (2018)

Azospirillum brasilense Osmotic Increases the root elongation, 
root surface area, root dry 
matter, and development of 
lateral roots and root hairs

Cassan et al. 
(2009)

Bacillus subtilis, Bacillus 
megaterium, Bacillus sp.

Heavy metals Promotes plant growth and 
development along with 
increased dry matter, grain 
yield and phosphorus uptake

Asch and Padham 
(2005) and Becker 
and Asch (2005)

Enterobacter sp. Salt Promoted the growth of rice 
seedling and reduced ethylene 
production and antioxidant 
enzyme activities in the plant

Sarkar et al. 
(2018)

Pseudomonas 
fluorescence, P. jessenii, P. 
synxantha, Bacillus cereus, 
Arthrobacter 
nitroguajacolicus

Drought Enhances plant growth by 
induction of stress related 
enzymes and activation of 
antioxidant defense systems 
and improves stability of 
membranes of plant cells

Gusain et al. 
(2015)

Bacillus amyloliquefaciens 
NBRISN13

Salt Enhanced proline 
accumulation and 
upregulation or repression of 
set of stress responsive genes 
in leaf blade.

Nautiyal et al. 
(2013)

roots formation and root growth which ultimately increased leaf water content and 
decreased leaf water potential by increasing water uptake (Dossa et al. 2017). IAA 
produced by Azospirillum enhances tolerance of rice under drought stress, resulting 
in higher mineral quality and better grain yield (Dimkpa et al. 2009). Inoculation 
with arbuscular mycorrhizal fungus, Azospirillum brasilense, considerably enhances 
rice growth by increase stomatal conductance that improved growth parameter by 
80% under water deficit condition (Ruíz-Sánchez et al. 2011).

During water stress conditions, lipid peroxidation increases with decrease in glu-
tathione contents in plants; while inoculation with arbuscular mycorrhizal fungus, 
ascorbate and proline contents (as protective components) increase to bypass the 
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deleterious effect of water limitation (Ruíz-Sánchez et al. 2011). Inoculation of rice 
plants with Bacillus amyloliquefaciens Bk7 and Brevibacillus laterosporus B4 in 
water deficit conditions, improve shoot number, seedling height and showed least 
symptoms of chlorosis, necrosis, wilting and rolling of leaves (Kakar et al. 2016). 
The endophytic Plant growth-promoting rhizobacteria (PGPR), Azospirillum irak-
ense under drought stress trigger the expression of polygalacturonase encoding 
genes in rice inoculated roots (Sekar et al. 2000). Rice roots inoculated with endo-
phytic PGPR, Herbaspirillum seropedicae stimulate the gene expression receptive 
to ethylene and auxin and results in suppression of defense-related thionins and 
proteins PBZ1 (Brusamarello-Santos et al. 2012). Therefore, above reports suggest 
that drought stress in rice might be mitigated through different microorganisms by 
modulating plant defense responses.

10.4.2 � Cold Stress

One of the most significant environmental factors that hamper agricultural produc-
tion by affecting plant growth is cold stress which affects 57% of the total land area 
of the world (Mittler 2006; Cramer et al. 2011; Hashimoto and Komatsu 2007). Low 
temperature impacts the agronomic development of crops including rice. The sur-
vivability of plants at extreme low temperature relies upon it’s adaptability to cold 
stress (McKhann et al. 2008). Plants exposed to low temperatures showed increased 
penetrability that is correlated with the injury of the plasma layer, a major problem 
for maintaining ionic equilibrium and reversing the damage caused due to cold 
stress. The unsaturated or saturated fatty acids tend to rearrange themselves that 
causes a change in the plasma layer viz. thickness alterations that result in declining 
turgidity of the cell (Hughes and Dunn 1996). This plasma layer modification tends 
to be cold sensitive in several rice varieties that initiates a response by specific gene 
expression during cold stress (Chinnusamy et al. 2006). Thus, cold stress directly or 
indirectly hampers geographical distribution of rice that overall reduces the rate of 
harvest (Pearce and Fuller 2001). Microbes mediated stress responses are one of the 
best ways to cope up with this cold stress (Table 10.1).

It was reported that, PGPR consortium of two different bacterial strains 
Brevibacillus laterosporus B4 and Bacillus amyloliquefaciens Bk7 attributed to the 
production of high amount of siderophore and IAA and effectively colonized the 
roots of the plant under cold stress (Kakar et al. 2016). They also induced systemic 
tolerance in rice under chilling stress and enhanced growth and development. This 
strain is also well known for the biofilm formation and the production of biochemi-
cal elicitors (β-aminobutyric acid and Salicylic acid) in rice for cold stress tolerance. 
Catalase and superoxide dismutase activities in plants increased by 3.6- and 3.0- 
fold respectively, after inoculation of Bk7. Bacillus amyloliquefaciens NBRI-SN13 
(SN13) improved growth of rice seedling under cold stress by increasing proline 
content (Tiwari et al. 2017). It has been reported that, some phytohormones like 
abscisic acid, jasmonates, salicylic acid, and ethylene play a key role in cold, salt, 
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heat and drought stresses response in several plants including rice to sustain a bal-
anced and healthy growth of plant (Lata et al. 2011; Kohli et al. 2013).

10.4.3 � Heat Stress

Most of the cereal crops especially rice, are at major risk due to annual increase in 
temperature and its deleterious effect on overall growth, development and produc-
tivity (Fahad et  al. 2015a, b, 2016a, b, c, d, 2018; Watanabe and Kume 2009; 
Mahmood et al. 2007). It is expected that the rate of rice yield will decrease by 41% 
before the end of twenty-first century due to drastic increase in temperature 
(Ceccarelli et al. 2010). Even it is predicted that all the cropping zone of rice could 
completely wipe out if the temperature continues to be this extreme (Aghamolki 
et al. 2014).

The ideal temperature for appropriate rice growth and development ranges 
between 27 °C to 32 °C (Yin et al. 1996). Further higher temperatures than the given 
range could have severe impact on all the stages of rice; from growth stage to matu-
ration and then till harvesting. Heat tolerance ability of rice plant is very sensitive at 
different growth stages. It is highly temperature sensitive particularly during gen-
eration and blossoming which could lead to permanent damage and reduced yield 
(Porter 2005). Heat stress also widely influences both vegetative as well as repro-
ductive stages of rice; like at vegetative stage, a prolonged exposure to high day 
temperature can damage leaf properties, while a short time period of warmth could 
cause premature birth of botanical buds and open blooms in the middle of concep-
tive stage (Guilioni et al. 1997). Blooming and booting stages of rice are found to be 
more sensitive to high temperatures i.e., conceptive stage is more susceptible to 
temperatures than the vegetative stage (Ali et  al. 2016; Shah et  al. 2011; Peng 
et al. 2004).

Microbes mediated mitigation strategy is one of the alternate ways to alleviating 
the heat stress. Tiwari et al. (2017) reported that inoculation of Bacillus amylolique-
faciens in rice increased accumulation of osmotic protectants such as proline, solu-
ble sugars, glycine betaine, trehalose under heat stress conditions which helps rice 
plant to overcome inert stresses by maintaining osmotic turgidity. Inoculation with 
endophytic fungus, Paecilomyces formosus LWL1 in rice grown under no stress and 
high heat stress conditions, improved growth attributes viz. plant fresh weight, 
height, chlorophyll content and dry weight. Additionally, it also effectively miti-
gated heat stress by minimizing the endogenous level of stress-indicating compo-
nents such as jasmonic acid, abscisic acid and increasing total proteins content by 
18.76%–33.22% (Waqas et al. 2015). Such beneficial microbes might be very useful 
at high environmental temperature stresses to maintain an effective and sustainable 
production of rice.
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10.4.4 � Salinity Stress

Globally 6% of the total land area has been affected by salinity (Mittler 2006; 
Cramer et al. 2011). Salinity affected area has been increased by almost 34 million 
ha of irrigated land (FAO 2009). Increased annual loss of crop production in irri-
gated lands is due to land degradation by salinity (Qadir et al. 2014). Saline soils 
have a number of soluble salts such as Ca2+, Na+, Mg2+and anions SO4

2−, HCO3
−, 

Cl− with large amounts of K+, NO3
−

, CO3
−. A soil can be referred as saline if it has 

an osmotic pressure of approximately 0.2 M Pa (~40 mM NaCl) or the EC 4 dS m−1 
or more (USDA-ARS 2008). The pH of saline soils ranges between 7–8.5 (Mengel 
et al. 2001; Ghosh et al. 2016). Increased salt accumulation is very common in arid 
and semi-arid zones, where high evaporation and low precipitation occurs. Moreover, 
this process of salt deposition has been also favored by weathering of the parental 
rocks (Rengasamy 2002).

Rice is considered to be one of the most sensitive crops to salinity (Rahnama 
et al. 2010). Salt stress causes change in plants physiological processes by suppress-
ing seed germination (Shannon and Grieve 1998). The damage caused by Cl− ini-
tialization in rice can be figured by broad leaf cutting, indicates burning whereas 
Na+ accumulation can be characterized by rolling and molting of leaves (Acosta-
motos et  al. 2017). Salt stress reduces the rice leaf development, which leads to 
stomatal closure and in turn decreases the rate of photosynthesis (Rahnama et al. 
2010). The major components that regulate salt accumulation are reduced salt 
uptake, improved Na+/K+ proportion, antioxidant regulation system, tissue resis-
tance, proficiency of water utilization to minimize the concentration of NaCl in 
plants (Ismail et al. 2007; Hashmi et al. 2017). During the whole life cycle of plants, 
several phytohormones play a crucial role as they regulate the key processes of 
response in plants under abiotic stresses, including plant responses to salinity stress.

Salinity stress responses involve the synthesis of ethylene, as stress hormone, 
which also regulates the plant growth and development (Hardoim et  al. 2008). 
Biosynthetic pathway of ethylene involves the conversion of S-adenosyl-methionine 
by the enzyme ACS (1-aminocyclopropane-1-carboxylate synthase) into ACC 
(1-aminocyclopropane-1-carboxylate), which is the immediate precursor of ethyl-
ene to α-ketobutyrate and ammonia. However, in rice plants, under salt stress condi-
tions, ethylene involves in endogenous regulation of plants stable equilibrium which 
results in reduced growth of root and shoot, which finally impacts on yield 
productivity.

In plants, ACC is degraded and sequestered by bacteria producing ACC deami-
nase in order to supply energy and nitrogen under salt stress (Glick 2005). Further, 
by eliminating ACC, the harmful effect of ethylene is reduced by the bacteria that 
improves plants stress tolerance and promotes growth by inhibiting salt-induced 
growth. Soil microbes belonging to genera Bacillus, Alcaligenes, Rhodococcus and 
Variovorax have ACC deaminase producing activity which is effective to confer salt 
stress in rice (Belimov et al. 2005). Ochrobactrum sp. was also previously reported 
to have ACC deaminase producing ability (Jia et  al. 2013). It was reported that 

U. Kumar et al.



253

under salt stress, the rice seedlings showed improved plant biomass and salt toler-
ance capability by inoculation with class 2 endophyte Ascomycota (Fusarium cul-
morum FcRed1) (Redman et  al. 2011). Rice root inoculated with Pleosporalean 
ascomycete, isolated from the roots of halophyte Suaeda salsa belongs to family 
Amaranthaceae, significantly increased the proline accumulation followed by 
increased photosynthetic pigment (chlorophyll and carotenoids) levels under salt 
stress condition (Jogawat et al. 2013; Kumar et al. 2012). The fungal isolate from 
roots of halophyte Suaeda salsa could endophytically colonize rice roots and 
improved plant health under salt stress (Qin et al. 2016). A report also showed that, 
inoculation of strain Pseudomonas fluorescens MSP-393 in rice under salt stress, 
favored root colonization, the potential strain also synthesizes complex osmolytes 
such as glycine, alanine, serine, glutamine, asparagine and threonine in their cytosol 
along with increased production of salt stress protein for effective nullification of 
the negative impact of high osmolarity (Paul and Nair 2008).

Three promising isolates with multiple plant growth promoting traits viz. 
Bacillus, Alcaligenes and Ochrobactrum sp. promoted rice growth at 150 mM NaCl 
under axenic conditions and showed increased root elongation assay (Bal et  al. 
2013). Inoculation of Bacillus pumilus in rice seedlings under salt stress showed a 
progressive potential for the limitation of Na+ concentration in rice leaves that 
favored several antioxidant enzyme activities viz. superoxide dismutase, catalase, 
peroxidase that reversed the effect of salinity stress and enhanced plant growth 
(Khan et  al. 2016). Furthermore, it was reported that inoculation of the strain 
Enterobacter sp. P23  in rice seedling showed potential traits of IAA production, 
siderophore production, phosphate solubilization, ACC and NH3 production, which 
decreases stress-induced ethylene and promoted growth and development (Sarkar 
et al. 2018). Inoculation of two more promising strains of Bacillus i.e., Oceanobacillus 
kapialis (NCCP-76) and Thalassobacillus devorans (NCCP-58) in rice, improved 
root elongation and shoot length under NaCl stress (Shah et al. 2017).

10.4.5 � Heavy Metal Stress

Metal industries, agrochemical industries mainly pesticides, sewage sludge and 
other various sources discharge metalloids and heavy metals, which causes a critical 
threat to the environment as well as human health (Kumar et al. 2017a). The con-
centration of the toxic metals in soil results in absorption by the roots which is then 
transported to different parts of the plant leading to diminished plant metabolism, 
impaired growth and reduced yield production in rice (John et  al. 2012). In rice 
plants, some of the heavy metals play a major role in supplement of micronutrients 
(Prasad 2013); although presence of some heavy metals (Cd, Pb, Ni, Cu, Al, Zn) in 
small quantities have harmful impact on rice crop (Kovács et al. 2009; Lakho et al. 
2017). Plants exposed to heavy metal stress have shown penetrability expansion in 
plasma layer, as metal ions bind to OH−group of phospholipids and SH-group of 
proteins and further replaces Ca+2 at the initial cell growth level. Altogether these 
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conditions lead to imbalance in ionic homeostasis of cell and disturb the integrity 
layer of the cell (Lakho et al. 2017).

Among all the heavy metals present in soils, cadmium (Cd) is considered as the 
toxic one, as it reduces root and shoot growth of the plant and directly hamper pro-
ductivity by reducing essential nutrient uptake and disrupting homeostasis as well 
(Hashmi et al. 2017). Increased accumulation of cadmium in the soil causes impaired 
growth and development of root, nutrients disruption as well as low metabolism of 
carbohydrate which result in reduced yield and biomass (Akram et al. 2019). Among 
the metals, lead (Pb) is considered as one of the abundant metals on earth and its 
ingestion also results in severe health issues in humans. Even its minimal concentra-
tion in rice soil leads to yield loss by disturbing seed germination, rate of photosyn-
thesis, nutrition uptake, plant-water balance, activity of enzyme as well as cells 
proliferation (Patra et al. 2004). Several reports focused on the activity of enzymes 
under heavy metal stress and it is observed that metal stresses (Cd, Pb, Ni, Cu, Al) 
altered enzymatic activities. During seed germination the presence of heavy metals 
such as Cd, Pb, Zn and Cu severely impacts on the ratio of root/shoot length as well 
as height of young seedlings (Mahmood et al. 2007). Moreover, increased concen-
tration of heavy metals has a major impact on vegetative growth, seed germination 
and rice yield.

In such circumstances, PGPR plays an important role in removal of metal toxic-
ity and improve plant nutrition and development (Table  10.1). Many previous 
reports on bacteria in soil play a major role in mobilization and immobilization of 
metals for metals tolerant (Glick et al. 1998). PGPR helps in reduction of metal 
toxicity by two ways: (i) decrease in plants ethylene stress level in metal toxic soil 
by ACC deaminase activity resulting in longer roots development that allows better 
plant establishment during initial growth stages (Glick 2005), (ii) release of sidero-
phores, an iron chelating compound that causes the increased accumulation of iron 
in roots of the plant in the metal polluted conditions (Fig. 10.1). The rice variety 
‘Satabdi’ inoculated with cadmium resistant Ochrobactrum sp. CdSP9, arsenic 
resistant Bacillus sp. AsSP9 and lead resistant Bacillus sp. PbSP9, increased percent 
germination, overall biomass, relative root elongation, protease and amylase activ-
ity. It was also observed that all the three bacterial strains were positive to catalase 
and ACC deaminase activity (Pandey et al. 2013).

Several plant growth-promoting rhizobacteria, Pseudomonas spp., Bacillus spp., 
Azotobacter spp., Phosphobacteria spp., Azospirillum spp., Aspergillus niger, 
Penicillium spp. and Gluconacetobacter spp., isolated from rice roots rhizosphere 
were investigated for their role in heavy metal stress mitigation by production of 
IAA and catalase as well as growth enhancement in rice under heavy metal stress 
(Samuel and Muthukkaruppan 2011). Potent plant growth-promoting rhizobacterial 
strain Enterobacter aerogenes, isolated from heavy metal contaminated rice rhizo-
sphere found to be resistant to high degree of Pb2+, Cd2+, As3+ up to 3800 μg mL−1, 
4000 μg mL−1and 1500 μg mL−1, respectively. Upon screening of the strains, it was 
found that they had different plant growth-promoting rhizobacterial attributes like 
ACC deaminase activity, phosphate solubilization, IAA production and nitrogen 
fixation which helped in enhancement of rice growth and development (Pramanik 
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et al. 2018). Han et al. (2015) reported that inoculation of rice plants exposed to 
heavy metal stress (viz. 0.3 mM Cu2+, Zn2+, Co2+ or Ni2+) with strain of wild type 
Pseudomonas stutzeri A1501 resulted in increased plant biomass, root length, fresh 
and dry weight of root and plant height of rice plant. Seed inoculation of two bas-
mati rice cultivars (B-385 and KSK-282) grown in different concentration of nickel 
contaminated soil (0, 100, 250, 500, and 1000 ppm), with Bacillus licheniformis 
NCCP-59 showed enhanced seed germination and biochemical traits which reverses 
the effect of nickel toxicity; such strains can be used for the phytoremediation of Ni 
contaminated soil (Jamil et al. 2014).

10.5 � Biotic Stresses in Rice

The term biotic stress described as “interactions between living organisms and 
plants that leads to partial plant damage which can cost upon plants survivability”. 
Plants are utilized as host by the parasitic organisms for their feeding, sheltering, 
multiplying and growing purpose; which ultimately leads to senescence of the 
plants. Plant pathogens obtain nutrients by feeding on host plant organs and causes 
physical damage to the plant (Kumar et  al. 2016). Biotic stresses can hence be 
referred to as external biological factors affecting plants by damaging the cells, tis-
sues, organs, organelles or even whole plant. Biotic stresses generally include 
pathogenic-organisms viz., bacteria, fungi, viruses or even nematodes as well as 
insects (Kranner et al. 2010). Every year the reason behind major crop losses is due 
to attack of these disease-causing pathogens (Karim 2007). This is an interaction 
between pathogen-host at molecular and biochemical levels that causes certain 
physiological and metabolic changes which further leads to morphological disor-
ders and even death of the plant host (Karim 2007). The stress responsive mecha-
nisms for pathogen suppression can be categorized as (i) antibiotic mediated 
suppression, (ii) siderophore mediated suppression, (iii) enzymes and phytohor-
mones mediated suppression (Dreher and Callis 2007).

10.5.1 � Antibiotic-Mediated Suppression

Pseudomonas fluorescens can produce several antibiotic compounds viz. phenazine, 
2, 4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin etc. (Kumar et  al. 2018a; 
Mageshwaran et al. 2012; Meera and Balabaskar 2012). Balasubramanian (1994) 
reported that leaf and neck blast of rice can be controlled by P. fluorescens through 
production of Phenazine-1-Carboxylic acid. By producing these compounds, P. flu-
orescens not only enhances its own growth but also play a major role in protection 
of crops from pathogens. It inhibited the growth of Xanthomonas oryzae pv. oryzae, 
the causative agent of bacterial leaf blight disease of rice thereby maintains soil 
health (Kumar and Mishra 2014; Vasudevan et al. 2002; Velusamy et al. 2006). It 

10  Microbial Alleviation of Abiotic and Biotic Stresses in Rice



256

was also reported that strain P. aeruginosa PUPa3 successfully suppressed the dis-
ease caused by Sarocladium oryzae and Rhizoctonia solani by producing 
Phenazine-1- Carboxamide antibiotics in rice (Megha et al. 2007). The causative 
agent of rice sheath blight, S. oryzae was found highly susceptible to the antibiotics 
produced by P. fluorescence (Nathan et al. 2011). P. fluorescens isolated from the 
rice rhizosphere showed effective antifungal activity and suppressing mycelial 
growth by 62–85% against Rhizoctonia solani, Sarocladium oryzae, Magnaporthe 
grisea and Drechslera oryzae (Reddy et al. 2007).

Streptomyces vinaceusdrappus is reported to inhibit the growth of rice blast dis-
ease causing agent, Magnaporthe oryzae (anamorph Pyricularia oryzae), by inhib-
iting mycelial growth up to 88.73% (Law et al. 2017). Besides these, Streptomyces 
are well known producers of prolific and bioactive antibiotic compounds. 
Blasticidin-S and Kasugamycin isolated from Streptomyces griseochromogenes and 
Streptomyces kasugaensis, respectively; are often used as active fungicides for con-
trolling rice blast (Fukunaga et al. 1955; Tapadar and Jha 2013; Copping and Duke 
2007). Streptomyces sp. PM5 isolated from rice rhizosphere having the ability to 
produce two aliphatic compounds SPM5C-1 and SPM5C-2 with a ketone and lac-
tone carbonyl unit, which was effective against rice disease causing pathogen 
R. solani and P. oryzae as they showed active antifungal activity and suppressed the 
growth of these pathogens at concentrations of 25, 50, 75 and 100  μg  mL−1 
(Prabavathy et al. 2006). Omura et al. (1984) found that, 20 membered macrolides 
produced by Streptomyces flavus subsp. irumaensis showed potent activity against 
P. oryzae, however, an antifungal metabolite dapiramycin, obtained from 
Micromonospora sp. found to be effective against R. solani (Nishizawa et al. 1984). 
Three isolates namely Enterobacter agglomerans, Xanthomonas luminescens and 
Serratia liquefaciens were isolated from rice rhizosphere grown in Bali, effectively 
inhibited the growth of P. oryzae cv. that causes rice blast (Suprapta 2012) 
(Table 10.2).

10.5.2 � Siderophore-Mediated Suppression

Siderophores are extracellular iron binding compounds having low molecular 
weights and higher ferric iron affinity, produced by microbes for the uptake of iron 
from the environment (Saha et al. 2016). This iron sequestration ability of microor-
ganisms offers them a competitive advantage over pathogens. Siderophores serve as 
vehicle for transportation of ferric ions by chelating the ions into the microbial cell 
with a high specific activity (Neilands 1981). The ferric siderophore complex 
formed is particularly recognized by a membrane receptor that mediates the trans-
portation of iron into the cell (Mercado-Blanco and Bakker 2007). In various oxido-
reductive enzymatic reactions, iron acts as a co-factor and a crucial element in 
binding with siderophore. Thus, binding of iron with siderophores creates an 
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Table 10.2  Microbial biocontrol agents for disease suppression and growth promotion of rice

Microbial biocontrol agents Pathogens Diseases References

Pseudomonas fluorescens Cnaphalocrocis 
medinalis

Brown spot Saravanakumar et al. 
(2007)

P. fluorescens, Trichoderma spp. Pyricularia oryzae Blast Singh (2014)
Trichoderma harzianum, T. viride, 
T. virens, T. deliquescens

Neovossia indica Blunt Singh (2014)

Pseudomonas fluorescens, P. 
putida, T. harzianum, T. viride, T. 
virens, Aspergillus niger

Rhizoctonia solani Sheath 
blight

Kumar and Mishra 
(2014) and Singh 
(2014)

T. viride Drechslera oryzae Brown spot Singh (2014)
Bacillus spp. Xanthomonas oryzae Bacterial 

leaf blight
Singh (2014)

T. viride (Tv2), T. harzianum 
(Th5), T. reesei (Tr3)

Cochliobolus 
miyabeanus

Brown spot Harish et al. (2008)

Streptomyces sp. PM5 P. oryzae, 
Rhizoctonia solani

Blast & 
sheath 
blight

Prabavathy et al. 
(2006)

P. fluorescens Magnaporthe grisea Blast Reddy et al. (2007)
Drechslera oryzae Brown leaf 

spot
Rhizoctonia solani Sheath 

blight
Sarocladium oryzae Sheath rot

Streptomyces vinaceusdrappus Magnaporthe oryzae Blast Law et al. (2017)
P. fluorescens Magnaporthe oryzae Leaf blast De Vleesschauwer 

et al. (2008)
Bacillus amyloliquefaciens RWL-1 Fusarium spp. Root rot Shahzad et al. (2016)
P. fluorescens (S3), P. tolaasii 
(S20), P. veronii (S21), 
Sphingomonas trueperi

Achlya klebsiana, 
Pythium spinosum

Seedling 
disease

Adhikari et al. (2001)

artificial deficiency of iron in the soil, which results in disease suppression through 
iron competition with the pathogen of rice (Bakker et al. 2007; Duiff et al. 1997). 
Siderophore production by P. fluorescens was initially reported by Kloepper and 
Schroth (1981) and its plant pathogenic suppression was reported by Becker and 
Cook (1988). Fusarium oxysporum, causative agent of wilt diseases in rice was 
effectively controlled by P. fluorescens through iron competition (Shahzad et  al. 
2016). Root application of P. fluorescens WCS374r in rice successfully controlled 
M. oryzae, a causative agent of leaf blast in rice, through triggering the ISR, sidero-
phore and pseudobactin production, which accelerated the complex defense system. 
Thus, by generating multiple blast-effective pathways P. fluorescens successfully 
induced resistance (De Vleesschauwer et al. 2008).
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10.5.3 � Enzymes and Phytohormones-Mediated Suppression

Several defense enzymes viz., cellulase, chitinase, β-1,3 glucanase also play a key 
role in pathogenic (fungal pathogens) disease suppression in rice by means of cell 
wall degradation through breakdown of glycosidic bonds, chitin and β −1,3 glucan 
(Chet et al. 1990; Lorito et al. 1996; Schroth and Hancock 1981). Microbes involved 
in excretion of chitinase are categorized as effective biocontrol agents (Inbar and 
Chet 1991; Ordentlich et al. 1988). Chitinase produced by P. fluorescens suppressed 
the phytopathogenic fungi by breaking and fragmenting cell wall of fungus 
(Narayanan et al. 2009). P. oryzae causing blast disease was inhibited by P. fluores-
cens (AUPF25) through production of proteases and phytohormones such as IAA 
and siderophore, which inhibited mycelial growth (Shyamala and Sivakumaar 2012; 
Antoun and Prévost 2005). The endophytic bacterial strain, Bacillus amyloliquefa-
ciens RWL-1 isolated from rice seed suppressed the pathogenic effect of Fusarium 
spp. by producing phytohormones such as gibberellic acids GA4, GA12, and GA20. 
Two pathogenic rice seedling diseases caused by Pythium spinosum and Achlya 
klebsiana was inhibited by P. tolaasii (S20), P. fluorescens (S3), Sphingomonas 
trueperi (S12) and P. veronii (S21). However, other biocontrol agents such as 
Trichoderma virens, B. subtilis and P. fluorescens, respectively showed 80%, 63% 
and 93% reduction of the pathogenic fungi Aspergillus flavus (Reddy et al. 2009). 
Thus, several beneficial microbes along with active plant growth promoting traits in 
rice also give an immense contribution in the field of biocontrol through modulation 
of enzymes and endogenous hormones.

10.6 � Conclusion

Seven decades ago, there was a drastic increase in global agricultural production 
which was possible because of the green revolution era that saved billions of people 
from undernourishment and starvation. This triggered the introduction of chemical 
fertilizers and pesticides by human that marked the dawn of environmental damage. 
This injury further extended to the dome of abiotic and biotic stresses that added to 
environmental disturbances. These stresses are of a major threat and concern to rice 
productivity. The present chapter concludes a positive trend that could be set by the 
use of plant growth-promotion microorganisms in terms of conferring abiotic 
stresses to alleviate different stress effect on rice. Additionally, several researchers 
strongly advocated the use of bio-control agents to manage insect and diseases in 
rice without affecting the soil health. Moreover, their use in sustainable production 
for rice exists but more efforts are required to explore and spread awareness of these 
eco-friendly, non-harmful and omnipotent use of microbes. Thus, the use of these 
beneficial stress mitigating microbes will become safeguard for the stability and 
productivity of agro-ecosystem, which could uplift the global agricultural sustain-
ability and lead us towards to become one of the ideal agricultural producing 
nations.
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