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Abstract. The problem of motion in the free molecular flow of particles
of a rigid body with a fixed point, bounded by the surface of an ellipsoid
of revolution is considered. This problem is similar in many aspects to
the classical problem of motion of a heavy rigid body about a fixed point.
In particular, this problem possesses the integrable cases, correspond to
the classical Euler – Poinsot, Lagrange and Hess cases of integrability of
equations of motion of a heavy rigid body with a fixed point. Equations
of motion of the body in the flow of particles are presented in hamilto-
nian form. Using the theorem on the Liouville – type nonintegrability
of Hamiltonian systems near elliptic equilibrium positions we present
the necessary conditions for the existence in the considered problem of
an additional analytic first integral independent of the energy integral.
We proved that the obtained necessary conditions are not fulfilled for
the rigid body with a mass distribution corresponding to the classical
Kovalevskaya integrable case in the problem of motion of a heavy rigid
body with a fixed point.

Keywords: Rigid body with a fixed point · Free molecular flow of
particles · Hamiltonian system · Nonintegrability

1 Introduction. V.V. Kozlov’s Theorem
on the Nonexistence of Analytic First Integral Near
the Equilibrium Position of Hamiltonian System

In 1976 V.V. Kozlov in his paper [1] (see also [2,3]), proved the theorem, which
gives the sufficient conditions of the nonexistence for the Hamiltonian system
the analytic with respect to canonical variables first integral, independent with
Hamilton function H. Below we give the statement of the problem using the
notations from [1] and the formulation of the corresponding theorem.

Let us consider the system of canonical equations

dxi

dt
=

∂H

∂yi
,

dyi

dt
= −∂H

∂xi
, i = 1, . . . n, n ≥ 2 (1)
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with the Hamilton function H (y1, . . . , yn, x1, . . . , xn, ε), depending analytically
on the variables y = (y1, . . . , yn), x = (x1, . . . , xn) and on the parameter ε,
which takes values in some connected domain D ∈ R

r. Suppose that for all ε the
point yi = 0, xi = 0, (i = 1, . . . , n) be an equilibrium position of the system (1).
In the vicinity of an equilibrium position yi = 0, xi = 0, (i = 1, . . . , n) the
Hamilton function H can be represented as follows:

H = H(2) + H(3) + · · · ,

where H(s) is a homogeneous form of degree s with respect to y = (y1, . . . , yn)
and x = (x1, . . . , xn). The coefficients of this expansion are analytic functions
of the parameter ε. Let us assume that for all ε ∈ D the frequencies of linear
oscillations ω (ε) = (ω1 (ε) , . . . , ωn (ε)) do not satisfy any resonant relation

(m · ω) = m1ω1 + · · · + mnωn = 0

of order |m1| + · · · + |mn| ≤ m − 1. Using Birkhoff’s normalization method (see,
for example [4,5]), we can find a canonical transformation (y, x) → (p, q), such
that in the new variables

H(2) =
1
2

n∑

i=1

ωiρi, H(k) = H(k) (ρ1, . . . , ρn, ε) , k ≤ m − 1,

where ρi = p2i + q2i . The corresponding transformation is analytic in ε. Now we
introduce the canonical action – angle variables (I, ϕ) by the formulas:

Ii =
ρi

2
, ϕi = arctan

pi

qi
, (1 ≤ i ≤ n) .

In the canonical variables (I, ϕ) we have

H = H(2) (I, ε) + · · · + H(m−1) (I, ε) + H(m) (I, ϕ, ε) + · · ·

We represent the trigonometric polynomial H(m) as a finite Fourier series

H(m) =
∑

h
(m)
k (I, ε) exp (i (k · ϕ)) .

Theorem 1 (V. V. Kozlov [1–3]). Let (k · ω (ε)) �≡ 0 for all k ∈ Z
n\0. Sup-

pose that for some ε0 ∈ D the resonant relation (k0 · ω (ε0)) = 0, |k0| = m

is satisfied and h
(m)
k0

�≡ 0. Then the canonical Eqs. (1) with Hamilton function

H =
∑

H(s) do not have a complete set of (formal) integrals Fj =
∑

F
(s)
j ,

whose quadratic terms F
(2)
j (y, x, ε) are independent for all ε ∈ D. �

Remark 1. Note that under the assumptions of the V. V. Kozlov’s Theorem 1
there may exist independent integrals with dependent (for certain values of ε)
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quadratic parts of their Maclaurin expansions. Here is a simple example: the
canonical equations with Hamilton function

H =
1
2

(
x2
1 + y2

1

)
+

α

2
(
x2
2 + y2

2

)
+ 2x1y1y2 − x2y

2
1 + x2

1x2

have a first integral
F = x2

1 + y2
1 + 2

(
x2
2 + y2

2

)
.

For α = 2, it is dependent on the quadratic form H(2). However, all conditions
of the Theorem 1 are satisfied. �

The advantage of the V. V. Kozlov’s Theorem 1 consists in the absence of
preliminary restrictive assumptions regarding the parameters of the system. This
advantage substantially compensates for the fact that the additional integral
must belong to the class of analytic functions, the quadratic part of which are
functionally independent with the quadratic part of the Hamilton function.

V. V. Kozlov’s Theorem 1 was successfully applied for proving the nonexis-
tence of an additional first integral in the plane circular restricted three body
problem [1–3]; for studying the integrability of the problem of motion about a
fixed point of a dynamically symmetric rigid body with the center of mass lies
in the equatorial plane of the ellipsoid of inertia [1,3,6]; for proving the nonexis-
tence of an additional integral in the problem of motion of a plane heavy double
pendulum [6–8]; for obtaining the necessary conditions for the existence of an
additional first integral in the problem of motion of a dynamically symmetric
ellipsoid on a smooth horizontal plane [9]; for the study of nonintegrability of
the Kirchhoff equations of motion of a rigid body in a fluid [10,11].

In this paper V. V. Kozlov’s Theorem 1 is used to derive necessary conditions
for the existence of an additional analytic integral in the problem of motion in
the flow of particles of a rigid body with a fixed point bounded by the surface
of an ellipsoid of revolution.

2 Formulation of the Problem. Hamilton Function
of the Problem

Equations of motion of a rigid body with a fixed point, bounded by the surface
of an ellipsoid and exposed by the flow of particles, have the form [12,13]:

A1ω̇1 + (A3 − A2) ω2ω3 = ρv2
0πa1a2a3

√
γ2
1

a2
1

+
γ2
2

a2
2

+
γ2
3

a2
3

(h2γ3 − h3γ2) ,

A2ω̇2 + (A1 − A3) ω1ω3 = ρv2
0πa1a2a3

√
γ2
1

a2
1

+
γ2
2

a2
2

+
γ2
3

a2
3

(h3γ1 − h1γ3) ,

A3ω̇3 + (A2 − A1) ω1ω2 = ρv2
0πa1a2a3

√
γ2
1

a2
1

+
γ2
2

a2
2

+
γ2
3

a2
3

(h1γ2 − h2γ1) ;

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

(2)
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Here A1, A2, A3 are the moments of inertia of the body about the principal
axes of inertia Ox1x2x3 with the origin at the fixed point O; ω = (ω1, ω2, ω3)
is the angular velocity vector of the body; γ = (γ1, γ2, γ3) is the unit vector
directed along the flow of particles; ρ is the constant density of the flow of
particles; v0 is the constant velocity of particles in the flow, a1, a2, a3 are the
lengths of the semiaxes of the ellipsoid, bounding a rigid body; h = (h1, h2, h3)
is the vector directed from a fixed point to the center of the ellipsoid bounding
the rigid body.

For any values of parameters Eqs. (2) possess the first integrals:

J1 = A1ω1γ1 + A2ω2γ2 + A3ω3γ3 = c1 = const, J2 = γ2
1 + γ2

2 + γ2
3 = 1. (3)

Let us assume that the center of the ellipsoid lies on the first principal axis
of inertia Ox1 with the origin at the fixed point O, at a distance l from the fixed
point. In other words, in the Eqs. (2) we put

h1 = l, h2 = 0, h3 = 0.

We also assume that the ellipsoid bounding the rigid body is an ellipsoid
of revolution with the axis of symmetry passing through the fixed point O.
Therefore in the Eq. (2) we put

a1 = b, a2 = a3 = a.

In addition we assume, that the body is dynamically symmetric, and the axis
of dynamical symmetry of the body does not coincide with the axis of symmetry
of the ellipsoid, that bounds the body. In other words we assume, that

A1 = A2 = A, A3 = C.

Then the equations of motion in the flow of particles of a rigid body with a
fixed point bounded by the surface of an ellipsoid of revolution will be rewritten
as follows:

Aω̇1 + (C − A) ω2ω3 = 0,

Aω̇2 + (A − C) ω1ω3 = −ρv2
0πa2bl

√
1 − γ2

1

a2
+

γ2
1

b2
γ3,

Cω̇3 = ρv2
0πa2bl

√
1 − γ2

1

a2
+

γ2
1

b2
γ2;

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

(4)

We multiply the first equation of system (4) by ω1, the second—by ω2, the
third—by ω3 and add them. As a result we get the following equation:

A (ω1ω̇1 + ω2ω̇2) + Cω3ω̇3 = ρv
2
0πa

2
bl

√
1 − γ2

1

a2
+

γ2
1

b2
(ω3γ2 − ω2γ3) = ρv

2
0πa

2
blγ̇1

√
1 − γ2

1

a2
+

γ2
1

b2
.

Thus we can conclude that Eqs. (4) admit in addition to first integrals (3)
the energy type first integral

H =
A

2
(
ω2
1 + ω2

2

)
+

C

2
ω2
3 − G (γ1) = h = const.
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The function G (γ1) is written differently depending on whether the ellip-
soid, bounding the rigid body is prolate (b > a) or oblate (a > b). For a prolate
ellipsoid of revolution (b > a), the function G (γ1) has the form:

G (γ1) =
ρv2

0πa2bl

2
γ1

√
1 − γ2

1

a2
+

γ2
1

b2
+

ρv2
0πbl

2
√

1
a2

− 1
b2

arctan

⎛

⎜⎜⎝

√
1
a2

− 1
b2

γ1
√

1 − γ2
1

a2
+

γ2
1

b2

⎞

⎟⎟⎠ .

For an oblate ellipsoid of revolution (a > b), the function G (γ1) has the form:

G (γ1) =
ρv2

0πa2bl

2
γ1

√
1 − γ2

1

a2
+

γ2
1

b2
+

ρv2
0πbl

2

√
1

b2
− 1

a2

ln

⎛
⎝a

√
1

b2
− 1

a2
γ1 + a

√
1 − γ2

1

a2
+

γ2
1

b2

⎞
⎠ .

Further we will consider the case of a prolate ellipsoid of revolution (the
case of an oblate ellipsoid of revolution is considered in a similar way and gives
the same result). As generalized coordinates in this problem we introduce the
standard Euler angles θ, ψ and ϕ. Then we have

γ1 = sin θ sinϕ, γ2 = sin θ cos ϕ, γ3 = cos θ

and the Hamilton function of the problem in standard notations has the form:

H =
1

2

(
p2

θ

A
+

p2
ϕ

C
+

(pψ − pϕ cos θ)2

A sin2 θ

)
− ρv2

0πa2bl

2
sin θ sinϕ

√
1 − sin2 θ sin2 ϕ

a2
+

sin2 θ sin2 ϕ

b2
−

− ρv2
0πbl

2

√
1

a2
− 1

b2

arctan

⎛
⎜⎜⎜⎜⎝

√
1

a2
− 1

b2
sin θ sinϕ√

1 − sin2 θ sin2 ϕ

a2
+

sin2 θ sin2 ϕ

b2

⎞
⎟⎟⎟⎟⎠ .

(5)
Obviously, the Hamilton function H does not depend on the generalized

coordinate ψ, that is the generalized momentum pψ is a constant. The generalized
momentum pψ is the area integral J1 (see (3)). The equations of motion of the
body have a hamiltonian form with the Hamilton function (5), in which pψ is
a parameter. We will assume that the parameter pψ is the parameter that was
mentioned in the statement of the V. V. Kozlov’s Theorem 1. Let us obtain the
necessary conditions for the existence of an additional first integral, analytic in
pψ and independent of the Hamilton function H.

3 Application of V.V. Kozlov’s Theorem 1

For any value of pψ the point

(pθ, pϕ, θ, ϕ) =
(
0, 0,

π

2
,

π

2

)
−

is the equilibrium of the considered Hamiltonian system. We denote

pθ = y1, pϕ = y2, θ =
π

2
+ x1, ϕ =

π

2
+ x2.
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The units of measurement can always be chosen so, that

πρv2
0la

2 = 1, A = 1.

We introduce also the following parameters:

pψ =
√

x,
1
C

= y,
b2

a2
= z.

Then (x, y, z) are change in the domain R
3
+ = {x, y, z : x > 0, y > 0, z > 0}.

In a neighborhood of the equilibrium point y1 = 0, y2 = 0, x1 = 0, x2 = 0 the
expansion of the Hamilton function (5) has the form:

H = H(2) + H(3) + H(4) + · · · ,

H(2) (y1, y2, x1, x2) =
1
2
y2
1 +

y

2
y2
2 +

√
xx1y2 +

(1 + x)
2

x2
1 +

1
2
x2
2,

H(3) (y1, y2, x1, x2) = 0,

H
(4)

(y1, y2, x1, x2) =
1

2
x
2
1y

2
2 +

5

6

√
xx

3
1y2 +

(
z

4
− 1

2

)
x
2
1x

2
2 +

(
x

3
+

z

8
− 1

6

)
x
4
1 +

(
z

8
− 1

6

)
x
4
2.

Note that in the case of z = 1, i.e. when the rigid body is bounded by
the sphere, the expressions H(2) (y1, y2, x1, x2) and H(4) (y1, y2, x1, x2) exactly
coincide with the corresponding expressions obtained by V. V. Kozlov [1–3] when
studying the problem of motion of a heavy dynamically symmetric rigid body
with a fixed point, with the center of mass situated in the equatorial plane of
the ellipsoid of inertia.

Equations of motion of the system with the Hamilton function H(2) has the
form of the linearized equations of the system, namely

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṗ1

ṗ2

q̇1

q̇2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −√
x − (x + 1) 0

0 0 0 −1

1 0 0 0

0 y
√

x 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

q1

q2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The characteristic equation for determining the natural frequencies of the
linear system (6) with the Hamilton function H = H(2) is written as follows:

λ4 + (1 + x + y) λ2 + y (1 + x) − x = 0. (7)

Obviously, the roots of the characteristic equation are purely imaginary if

y >
x

1 + x
.
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Let us denote by E the subset of R2
+, where this inequality is satisfied. The

characteristic Eq. (7) is biquadratic, therefore, if the frequency ratio is three,
then the ratio of the squares of the frequencies should be nine. Calculating
the squares of the frequencies and equating their ratio to nine, we obtain the
following condition for the parameters x and y:

4 (1 + x + y) = 5
√

1 + 6x − 2y + x2 − 2xy + y2. (8)

Therefore, squaring both sides of this equation and subtracting the left side
from the right side, we find that the ratio of the frequencies λ1/λ2 = 3 if the
parameters x and y are connected by the following equation

9x2 − 82xy + 9y2 + 118x − 82y + 9 = 0. (9)

This is the equation of a hyperbola; for x > 0 and y > 0 its branches are
entirely in E.

From the triangle inequality for the moments of inertia (A1 + A2 ≥ A3) it
follows, that y ≥ 1/2. For any fixed y0 ≥ 1/2, there exists x0 > 0, such that the
point (x0, y0) satisfies Eq. (9). Consider a small interval (a, b) of variation of
the parameter x, including the point x0. For x ∈ (a, b), y = y0 the roots of the
characteristic equation are purely imaginary and distinct. When x = x0, then
the frequencies λ1 and λ2 are connected by the equation λ1−3λ2 = 0. It remains
to find out, when the secular coefficient h

(4)
1,−3 is zero.

To calculate the coefficient h
(4)
1,−3 let us make the canonical change of variables

(y1, y2, x1, x2) → (p1, p2, q1, q2) such, that in the new variables the quadratic
part H(2) of the Hamilton function H is represented in the form:

H(2) =
B1

2
p21 +

K1

2
q21 +

B2

2
p22 +

K2

2
q22 ,

where Bi and Ki, (i = 1, 2) are coefficients to be determined.
The required change of variables in linear with respect to the variables p1,

p2, q1, q2. Let us represent it in the most general form, namely:

y1 = α1p1 + β1p2 + ξ1q1 + η1q2, y2 = α2p1 + β2p2 + ξ2q1 + η2q2,

x1 = α3p1 + β3p2 + ξ3q1 + η3q2, x2 = α4p1 + β4p2 + ξ4q1 + η4q2.
(10)

This change of variables must satisfy two properties:

1. it should be a canonical transformation;
2. in the new variables the expression H(2) do not contain the mixed products

p1p2, p1q1, p1q2, p2q1, p2q2, q1q2.

Using the standard condition of the canonicity of the change of variables in
the Hamiltonian system (see, for example, [14,15])

p1dq1 + p2dq2 − y1dx1 − y2dx2 = −dF
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it can be shown that a linear change of variables (10) will be canonical transfor-
mation if the following conditions are satisfied:

β1α3 + β2α4 − β3α1 − β4α2 = 0, ξ1α3 + ξ2α4 − ξ3α1 − ξ4α2 + 1 = 0,

η1α3 + η2α4 − η3α1 − η4α2 = 0, ξ1β3 + ξ2β4 − ξ3β1 − ξ4β2 = 0,

η1β3 + η2β4 − η3β1 − η4β2 + 1 = 0, η1ξ3 + η2ξ4 − η3ξ1 − η4ξ2 = 0.

(11)

In addition to these six equations, we should write down the condition for the
vanishing of the coefficients of the mixed terms in the Hamilton function H(2),
written in the variables p1, p2, q1, q2 (there also be six such mixed members:
p1p2, p1q1, p1q2, p2q1, p2q2, q1q2). These conditions are as follows:

ξ1η1 + ξ3η3 + ξ4η4 +
√

x (ξ2η3 + ξ3η2) + xξ3η3 + yξ2η2 = 0,

α1ξ1 + α3ξ3 + α4ξ4 +
√

x (α2ξ3 + α3ξ2) + xα3ξ3 + yα2ξ2 = 0,

β1ξ1 + β3ξ3 + β4ξ4 +
√

x (β2ξ3 + β3ξ2) + xβ3ξ3 + yβ2ξ2 = 0,

α1η1 + α3η3 + α4η4 +
√

x (α2η3 + α3η2) + xα3η3 + yα2η2 = 0,

α1β1 + α3β3 + α4β4 +
√

x (α2β3 + α3β2) + xα3β3 + yα2β2 = 0,

β1η1 + β3η3 + β4η4 +
√

x (β2η3 + β3η2) + xβ3η3 + yβ2η2 = 0.

(12)

Thus we have 12 Eqs. (11)–(12) on the 16 unknown coefficients αi, βi, ξi and
ηi, i = 1, . . . , 4. In order for the number of equations to be equal to the number
of unknown coefficients, we assume from the very beginning that

β1 = 0, α2 = 0, η3 = 0, ξ4 = 0.

The solution of the obtained system of 12 Eqs. (11)–(12) with respect to 12
unknown coefficients α1, α3, α4, β2, β3, β4, ξ1, ξ2, ξ3 and η1, η2, η4 was found
using the software for symbolic computations MAPLE 7. It turned out, that the
solution has the form:

ξ1 = 0, η2 = 0, α3 = 0, β4 = 0, ξ2 = Δξ3,

α1 =
√

x

ξ3 (2
√

x + (y − 1 − x) Δ)
, η1 =

Δ
√

x

β2 (2
√

x + (y − 1 − x) Δ)
,

β3 = −β2 (
√

x + (y − 1 − x)Δ)
Δ

√
x

, α4 = −
√

x + (y − 1 − x) Δ

ξ3Δ (2
√

x + (y − 1 − x)Δ)
,

η4 =
√

x

β2 (2
√

x + (y − 1 − x) Δ)
,
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where β2 and ξ3 are free parameters, and Δ is the positive root of the quadratic
equation: √

xΔ2 + (x + 1 − y) Δ − √
x = 0

We will assume that the free parameters take the following values:

β2 =
Δ

√
x

(
√

x + (y − 1 − x) Δ)
, ξ3 = 1.

For these values of the free parameters, the linear canonical transformation
(y1, y2, x1, x2) → (p1, p2, q1, q2) takes the most simple form

y1 =
1

1 + Δ2
p1+

Δ2

1 + Δ2
q2, y2 =

1

Δ
p2+Δq1, x1 = q1−p2, x2 =

Δ

1 + Δ2
(q2 − p1)

The quadratic part H(2) of the Hamilton function H is represented as follows:

H(2) =
B1

2
p21 +

K1

2
q21 +

B2

2
p22 +

K2

2
q22 ,

B1 =
1

1 + Δ2
, B2 =

y − 2Δ
√

x + (1 + x)Δ2

Δ2
=

(
1 + Δ2

)
(y − √

xΔ)
Δ2

,

K1 = Δ2y + 2Δ
√

x + 1 + x =
(
1 + Δ2

)(
y +

√
x

Δ

)
, K2 =

Δ2

1 + Δ2
.

Now we introduce action – angle variables (I, ϕ) by the formulas:

q1 = i

√
√
√
√ I1

2

√

B1

K1
(exp (−iϕ1)− exp (iϕ1)) , p1 =

√
√
√
√ I1

2

√

K1

B1
(exp (iϕ1) + exp (−iϕ1)) ,

q2 = i

√
√
√
√ I2

2

√

B2

K2
(exp (−iϕ2)− exp (iϕ2)) , p2 =

√
√
√
√ I2

2

√

K2

B2
(exp (iϕ2) + exp (−iϕ2)) .

Here i is the unit imaginary number. In the new variables the form H(4) will
be written as follows:

H(4) =
∑

0≤|m1|+|m2|≤4

h(4)
m1,m2

exp (i(m1ϕ1 + m2ϕ2)) .

Let us calculate now the coefficient h
(4)
1,−3 explicitly. Note, that the exponent

exp (i (ϕ1 − 3ϕ2)) can only appear in the following expressions: p1p
3
2, p1p

2
2q2,

p1p2q
2
2 , p1q

3
2 , q1p

3
2, q1p

2
2q2, q1p2q

2
2 , q1q

3
2 .

This remark greatly simplifies the process of calculating the coefficient h
(4)
1,−3.

The condition for this coefficient to be zero can be written as follows:

5
√

xΔ3 + (3z + 8x − 10) Δ2 + 3 (z − 7)
√

xΔ + 6y − 3zy + 6 =

=
(
(4 − 3z) (y − Δ

√
x) + 3 (z − 2) Δ2

) √
xy + y − x.

(13)
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Further simplifications of the Eq. (13) are based on the Eqs. (8)–(9) and also
on the equations

√
xy + y − x =

3
10

(1 + x + y) , Δ =
9y − x − 1

10
√

x
,

which can be derived by direct calculations from Eqs. (8)–(9) and from the
definition of the parameter Δ.

Finally, the condition for vanishing of the coefficient h
(4)
1,−3 in the expansion

of the function H(4) can be reduced to the following form:

27x3z + 111x2yz − 159xy2z − 243y3z − 9x3 − 617x2y − 39x2z + 2093xy2 − 118xyz + 1701y3+

+621y2z + 653x2 − 4374xy − 59xz − 2727y2 − 129yz + 2633x + 543y + 7z − 29 = 0.

(14)
Thus, the following theorem is valid.

Theorem 2. Necessary conditions for the existence of an additional integral,
analytic in canonical variables and the parameter x and independent with the
Hamilton function H, in the problem of motion in the flow of particles of a
dynamically symmetric rigid body with a fixed point, bounded by the surface of
an ellipsoid of revolution, whose center lies in the equatorial plane of the ellipsoid
of inertia, have the form of Eqs. (9), (14).

Remark 2. For z = 1 i.e. in the case when the rigid body is bounded by a sphere,
the conditions (9), (14) take the form

9x2 − 82xy + 9y2 + 118x − 82y + 9 = 0, (15)

18x3−506x2y +1934xy2 +1458y3 +614x2−4492xy−2106y2 +2574x+414y−22 = 0,
(16)

and coincide with the necessary conditions for the existence of an additional
integral in the problem of motion of a heavy dynamically symmetric rigid body
with a fixed point and with the center of mass situated in the equatorial plane of
the ellipsoid of inertia, obtained by V. V. Kozlov [1–3,6]. Algebraic curves (15)
and (16) intersect at two points (x, y):

(
4
3
, 1

)
and (7, 2) ,

which correspond to the Lagrange integrable case (A = C) and Kovalevskaya
integrable case (A = 2C). �

Let us put in the conditions (9), (14) y = 2, i.e. consider a rigid body with the
mass distribution corresponding to the Kovalevskaya integrable case in the prob-
lem of motion of a heavy rigid body with a fixed point. Then the condition (9)
takes the form:

(9x + 17) (x − 7) = 0,
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and can only be valid if x = 7. Substituting the values x = 7 and y = 2 into the
condition (14) gives

12000 (z − 1) = 0.

Thus, for a rigid body with a mass distribution corresponding to the
Kovalevskaya case, an additional first integral, independent of the energy inte-
gral, can exist only when the rigid body is bounded by a sphere. In the case,
when a rigid body, exposed by the flow of particles, is bounded by the ellipsoid,
there is no additional first integral.

Analysis of Eqs. (9), (14), performed using MAPLE 7 symbolic computations
software, shows that this system has solutions

x = 0, y =
1
9
; x = −16

3
, y = 1; x =

4
3
, y = 1. (17)

existing for any value of the parameter z. The first two of the solutions (17) do
not satisfy the conditions

x > 0, y ≥ 1
2

and therefore they have no physical meaning. As for the third solution, it corre-
sponds to the Lagrange integrable case (A = C). Thus, in this problem, for any
shape of the ellipsoid (both when it is prolate and when it is oblate), there is an
integrable case, corresponding to the Lagrange case.

In addition to the three solutions (17), Eqs. (9), (14) admit a z – depen-
dent solution, in which y is a root of the quadratic equation with coefficients,
depending on z, and x is expressed in terms of y and z:

(3z − 4) (7z − 52) y2 − (
76z2 − 632z + 736

)
y + 20z2 − 432z + 592 = 0,

x =

(
4048z2 − 471z3 − 3200 − 2672z

)
y + 3252z2 − 54z3 − 17424z + 18816

2 (3z − 4) (7z − 52) ((23z − 32) y − 38z + 56)
.

Among the parameters (x, y, z) that belong to this solution, one can find
such parameters, that have a physical meaning. These are, for example, the
parameters

x =
57
23

, y =
30
23

, z =
1
5
.

Thus for some values of parameters, the necessary conditions for the existence
of an additional first integral in the problem of motion of a rigid body with a
fixed point in the flow of particles are satisfied. The study of existence of an
additional first integral for such values of parameters is a problem, which we will
try to investigate in the future.

4 Conclusions

In this paper we presented necessary conditions for the existence of an additional
analytic first integral independent of the energy integral in the problem of motion
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of a rigid body with a fixed point in the flow of particles. The obtained necessary
conditions is always fulfilled in the case of motion of a dynamically symmetric
rigid body with the center of mass situated on the axis of dynamical symmetry
of the body (the case similar to the Lagrange integrable case of the classical
problem of motion of a heavy rigid body with a fixed point) and these conditions
is not fulfilled for the dynamically symmetric rigid body with the center of mass
situated in the equatorial plane of the ellipsoid of inertia (the mass distribution
similar to the Kovalevskaya integrable case in the classical problem of motion of
a heavy rigid body with a fixed point). Thereby we proved the nonexistence of
the integrable case similar to the Kovalevskaya integrable case in the problem
of motion in the flow of particles of a rigid body with a fixed point.
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