Chapter 7 ®)
Free Localized Vibrations of a Thin oo
Elastic Composite Panel

Gurgen Ghulghazaryan and Lusine Ghulghazaryan

Abstract Free boundary and interfacial vibrations of a composite cylindrical panel
with free edges comprised of two finite orthotropic thin cylindrical panels with
different elastic properties and full contact along the generators are studied. Starting
from the formulation of the classical theory of orthotropic cylindrical shells, disper-
sion relations and asymptotic approximations for eigenfrequencies of interfacial
and boundary vibrations of such composite cylindrical panels are derived. An algo-
rithm for separating the interfacial and boundary vibrations is presented. Asymptotic
connections between the dispersion relations of the problem at hand and the analo-
gous problems for a composite rectangular plate are established. Examples of cylin-
drical panel with different widths of constituents are considered, and approximate
values of dimensionless eigenfrequencies are obtained.

Keywords Cylindrical panel - Boundary and interfacial vibrations - Full contact

7.1 Introduction

Investigation of free vibrations of composite cylindrical panels plays an important
role in the studies of dynamics of deformable solids. Such studies contribute to
the development of the theory itself and are also required for the practical needs
of different branches of engineering and industry, e.g. construction, instrument-
engineering, seismic surveys, etc. [1]. In many cases the objects of investigations
are finite thin-walled composite cylindrical panels. For such structures, attention is
often attracted to free vibrations localized near the edges of the panels, i.e. edge
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vibrations, as well as vibrations localized near the interface of material properties,
i.e. interfacial vibrations.

It is known that, at the free edge of an orthotropic plate planar and flexural vibra-
tions can occur independently of each other [1-4]. When the plate is bent, these
types of vibration are coupled, giving two new types of vibrations localized at the
free edge: predominantly tangential and predominantly bending vibrations. More-
over, for thin cylindrical elastic panel the transformation of one type of vibration into
the other occurs at the free edge of the panel. For this transformation of vibrations
complex distribution picture of frequencies of natural vibrations occur, depending
on the geometrical and mechanical parameters of the finite and infinite cylindrical
panels [4—15]. By increasing the number of free edges of a cylindrical panel, this
picture becomes more complex, see [15—18] and also [28, 29]. Therefore, investiga-
tion of edge resonance phenomena in composite plates and cylindrical panels with
free edges is among the most challenging problems in the theory of vibrations of
plates and shells [8]. These difficulties can be resolved by using a combination of
analytical and asymptotic theories, as well as by numerical methods.

For studies of free interfacial vibrations, the reader is referred to contributions [ 16—
18]. Transverse vibrations occurring along the contact line of two semi-infinite plates
and concentrated close to it are studied in [16]. The plane interfacial vibrations near
the interface of two joined semi-strips with different elastic properties are investigated
in [17]. We also mention important contributions to edge and interfacial vibrations
in shells, using special asymptotic methods, [5—8], see also a review paper [9].

In the present paper, free interfacial and edge vibrations of a composite cylindrical
panel with free edges, consisting of finite orthotropic cylindrical panels with different
elastic properties and longitudinal section of material properties are studied. On the
line of material interface, the full contact conditions are imposed. Such type of
structural elements are important components of modern constructions; therefore,
an issue of free vibrations of such elements is important and deserves attention.

The dispersion relations which determine the appropriate frequencies of inter-
facial and edge vibrations of the considered composite cylindrical panel with free
edges are derived. An asymptotic link between the dispersion relations of the consid-
ered problem and the analogous problem for a plate with free edges, composed of
orthotropic plates with different elastic properties is established. The derived disper-
sion relations and related asymptotic formulas can be used for controlling the spec-
trum of frequencies of the formulated problem by varying the geometry of the panel
and mechanical properties of materials. In particular, one can control the spectrum
by shifting either the origin of the spectrum or the points of condensation from the
undesirable resonance region.

1. Statement of the Problem and Basic Equations. Let the generatrices of the
cylindrical panel be orthogonal to the edge of the panel. On the middle surface of
the panel, the curvilinear coordinates («, ) are introduced, where o (0 < o <)
and B(—s® < B < s() are the oriented length of the generatrix and the length
of the arc of the directing circle, respectively. [ is the length of the cylindrical
panel (Fig. 7.1). B = 0 corresponds to the interface between materials with
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different properties. All the values corresponding to the right panel (0 < 8 <
sy on (Fig. 7.1) are marked with superscript (1). Similarly, for the left panel
(—s® < B < 0) superscript (2) is used.

As the initial equations describing vibrations of the left and right sides cylindrical
panels, we will use the equations corresponding to the classical theory of orthotropic
cylindrical shells written in the curvilinear coordinates for given « and 8 (Fig. 7.1)
[19]:
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r=1,2. (7.1)
Here u\”, Y and u{” (r = 1,2) are projections of the displacement vector on the
directions ¢, § and on the normal to the median surface of the shell, respectively; R
is the radius of the directing circumference of the median surface; u* = h?/12 (h is
shell thickness); w is the angular frequency, o (r = 1, 2) are densities of materials;
Bi(;) (r = 1,2) are elasticity coefficients. The boundary conditions for orthotropic
cantilever cylindrical panel have the form [19]
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Relations (7.2) are complete contact conditions at § = 0. Relations (7.3) and
(7.4) are the conditions of free edges at § = —s®, s and a = 0, I, respectively
(Fig. 7.1). It can be proved that the problem (7.1)—(7.4) is self-conjugate and has a
non—negative discrete spectrum with a limit point at +o0.

The problem (7.1)—(7.4) does not allow separation of variables. Therefore, based
on the nonnegative definiteness of the corresponding operator of problem (7.1)—
(7.4), for finding natural frequencies and corresponding natural forms a generalized
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Kantorovich—Vlasov method of reduction to ordinary differential equations can be
applied [21-25].
The eigenfunctions of the problem

VIIT __ 98W ///’
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are used as the basic functions. The problem (7.6) is self-conjugate and positive
definite. The eigenfunctions corresponding to the eigenvalues 63, m = 1, oo of the
problem (7.6) have the form.
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Also, these functions form an orthogonal basis in the Hilbert space L,[0, [] with
their first and second derivatives [25]. Here 6,,, m = 1, 0o, are the positive zeros of
the Wronskian of functions (7.8) at the point o = /.

Let us introduce the designations
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In formulas (7.8) and (7.9), derivatives are taken with respect to 6,,« and ,8,'" —
1, ,Bm — latm — +o00.

2. Derivation and Analysis of Characteristic Equations. In the first, second, and
third equations of system (7.1), the angular frequency w is formally replaced by
w1, w7, and w3, respectively. The solution of system (7.1) is sought in the form.
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Here, W, (6,,&0), m = 1, 00, are determined from formula (7.7) and ", v and x )
are undetermined constants. In this case, conditions (7.4) are satisfied automatically.
Let us insert Eq. (7.10) into Eq. (7.1). The equations found are scalarly multiplied
by the vector-function
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and then integrated between the limits from O to /. From the first two pairs of equations
we deduce
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From the third equation, by taking into account the relations (7.12) and (7.13),
we obtain the characteristic equations
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Let W (j =1, 2, 3 4), be pairwise different roots of the Eq. (7.14) with nonneg-
ative real parts and x +4 = —X/(’),j =1,2,3,4. Let (u(lr]), u(zrl), ugr])),,be nontrivial
solutions of type (7.10) of system (7.1) at x ) = X;r), j=1,2,...,8, respectively.
The solution of the problem (7.1)-(7.4) is sought for in the form

ul” Zu“)w(’) i=1,2,3r=12. (7.16)

Let us insert Eq. (7.16) into the boundary conditions (7.2)—(7.4). As a result, we
obtain the system of equations
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The superscript j means that the corresponding function is taken at x " = Xj(.r)
In order for the system (7.17) to possess a nontrivial solution, it is necessary and
sufficient that
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Performing elementary operations with columns of determinant (7.19), we obtain
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Expressions for m;; can be obtained in a similar way as in [24, 25].
It follows from (7.21) that the Eq. (7.19) are equivalent to the following

V = Det |t} _, =0,m =T o (7.23)

Taking into account the relations between 17%2 77;;1 and ng,)l, we conclude that

Egs. (7.23) determine frequencies of the interfacial and boundary types of corre-
sponding vibrations. At 7\ = n{") = n{) = n@) the Egs. (7.14) are the charac-
teristic equations of system (7.1), and Eqgs. (7.23) at 0 = 6, m € N the dispersion
equations of problem (7.1)—(7.4).

In Sect. 7.50, we will study the asymptotic behavior of the dispersion relations
(7.23) ate,, = 1/(6,,R) — 0 (transition to a rectangular composed plate with free
edges or to vibrations localized at the free edges and at the interface of materials
with different properties of the cylindrical panel) and at 6,,s"? — oo transition to a
wide enough cylindrical panel or to vibrations localized at the free edges and at the



100 G. Ghulghazaryan and L. Ghulghazaryan

interface of materials with different properties of the cylindrical panel). To verify the
reliability of the asymptotic relations found in Sect. 7.5, we will investigate the free
planar and flexural vibrations of a rectangular composed plate in the next sections.

3. Planar vibrations of a composite rectangular plate with free edges. Free inter-
facial and edge vibrations of a rectangular plate composed of finite thin elastic
orthotropic rectangular plates with different elastic coefficients are considered.
Let us introduce rectilinear oriented orthogonal coordinates (¢, §) on the mid-
plane, where 0 < a <[, —s(()z) <pB < s(()l). The line B = 0 corresponds to the

interface of material properties. All values related to the right plate 0 < 8 < sél)

are indicated by superscript (1), and to the left plate —séz) < B < 0by (2),
respectively. As the initial equations, the equations of small planar vibrations
of the left and right plates are used, which correspond to the classical theory of
orthotropic plates [19].
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Here (0 < a < [) and ﬁ(—s(()z) < ,B < s(l)) are the orthogonal rectilinear coor-
dinates of a point of the mid-plane; u] , ué” (r = 1,2) are the projections of the
displacements vector in the directions « and 8, respectively; Bi(,:), i,k=1260r=
1, 2), are coefficients of elasticity; w- is the natural frequency; pM(r = 1,2)-are
the density of the materials. The boundary conditions are written as
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The relations (7.25) describe the full contact conditions at8 = 0. Relations (7.26)
and (7.27) are the conditions of free edges at = —séz), sél) and o = 0, [, respectively,
see Fig. 7.2. The problem (7.24)—(7.27) does not allow the separation of variables.
The differential operator corresponding to this problem is self-conjugate and nonneg-
ative definite. Therefore, the generalized Kantorovich-Vlasov method of reduction
to ordinary differential equations can be used to find vibration eigenfrequencies and

eigenmodes [21-25]. The solution of system (7.24) is sought for in the form

(45} = (10}, O, 0 Oe) exp (=1 Y68 + ¥,
r=1,2;m=1,o00. (7.29)

Here w,,(6,,) are determined from formula (7.7) and u u(zr), y™) are undeter-

mined constants. In this case, the conditions (7.27) are satlsﬁed automatically. Let
us insert (7.29) into Eq. (7.24). As a result, we obtain the system of equations
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where n"), B/, B! are defined in (7.15) and (7.9), respectively. Equating the deter-

minant of system (7.30) to zero, the following characteristic equation of the system
(7.24) is found:
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Fig. 7.2 Kantorovich-Vlasov method of reduction to ordinary differential equations can be used
to find vibration eigenfrequencies and eigenmodes
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Let yl(r), yzr) (r =1, 2) be various roots of Eq. (7.31) with nonnegative real parts
and yj+2 = jr)(j = 1, 2). As a solution of Eq. (7.30) for y;’) (j =1, 4) we take
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The solution of the problem (7.24)—(7.27) can be presented in the form
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Let us insert Eq. (7.33) into boundary conditions (7.25) and (7.26). As a result,
we arrive at the following system of equations
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4
R
4
°-
ZR(') " —, ZRg’) W —0,r=1,2. (7.34)

r

B() B(’)
R — Doo <y(r>) b (ﬁ/ e ) ’
1j B(r) B(r) ( )

22 22
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) ") B ., . B

r r

R = 2 () + 2+ ot
B

) _ (. ()2
RY) = (y;) o (,a,;—(n,;) )

B(") +B(’) B(z)
r) _ _ 722 . _
R4]~ —y] T,C B(l), = 1,2 (735)
22 22

Equating the determinant A, of system (7.34) to zero and performing elementary
operations with columns of the determinant, we obtain the dispersion equations

€11

€13

€15

€16 =

2
ey = eleexp(z§ )> +eis [Zl 25

1 1 2 2
A, <y§) ¥ >> (y§> ¥ >) exp< Zs<r)< ) 4 (r)))
Det|e;; o1 =0,m=100. (7.36)
B w2 BY BY |
= 5 O8) + 25 (B = () ) e = 2o (17 +04").
B22 BZZ BZZ
= ellexp<zﬁl)>, ey = elzexp<z2 ) +e 1[ S (1)],
@ @
Beg ( 2 By (. @)\2
Bg)( J B(z) ( m )
)
Bg
= —CF( @ + y§2)> ey = celSexp<Z§ )),

@ (2>]

B (. B
_ ()
= B(l)y (yl ) <1>ﬁ +B<1>( ) ’

B () 1) | n) ()2
~ B0 (yl voo B = () )
22

€
1 1
€3 = —621€XP<Z(1 )) €24 = —ezzexP(Zg )> [25 )Z; )],
2)
B of(.® Bg
_ ()

€s = — )i (yl ) (2)13 + (2)( ) ’

By,

B(Z) 2). (2 2
- B(2) <y(> 2 4+ BO — (n®) ),627 —625€Xp<z(1 >)’

o2 = —e%exp(zf)) - [z?)zf)], (7.37)
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(D
2 Bes )2 1 1 1
€31 = (yl) - _B(l) (ﬂ,’n - (77,(,,)) ) €32 = y,( ) + yé ), €33 = e31€xp(zﬁ )>,
22

2

1 D_a » B 2
e3gexp(z§ )) + e31 [Zi )Zé )ily €35 = — (ylz) - BL(S)('B;” - (n;(i)) ) ’
2

2 2 2 2 2)_@
€3 = —(Y§ )+ yé )), ey = e3sexp<zg ))» esg = 636”1’(2; )> + 935[Z§ )Z; )];

€34

(1 (e8] [€))] (1)
_ By + Bg _ By + By _ )
€41 = Y , €42 = , €43 = —eq1expl\zy; ),
(D B(l)
2 »
1 H_a
e4s = —e4zexp(z§ )) — ey [zﬁ 'z )],
2) 2) ) (2)
_ @By +Bg _ By + By
€45 = Yy @ , €46 = 5 s
B B
2 2

2 2 2)_@
€47 = —64561617(25 )>, €48 = —646€XP(Z§ )) — €45 [Zi )Zé )];

€51 = €13, €52 = €14, €53 = €]1,€54 = €12, €55 = €56 = €57 = €58 = 0,
€61 = €23, €62 = €24, €63 = €21,€64 = €22, €65 = €66 = €67 = €68 = 0,

en1 =epn =e;3 =e4 =0,e75 = e17,e76 = €13, 77 = €15,€78 = €16,

€3] = €82 = €83 = €84 = 0, €8s = €27, €36 = €28, €87 = €5 €88 = €6,

o "\ _ ®
D _ g (0 [0,0] Omso (exl’ (ZZ ) exp (Zl ))
2 ==y 0msy |22 | =~

=

Equation (7.36) are equivalent to the following

,Jj=12r=12.

?,»:1 —0,m=T1,00. (7.38)

Det e
For 9ms(()l) — o0 and Gmséz) — oo the set of Eq. (7.38) have the form

Detle|;,_, =

2 2
(1) (2) (1) 1) p@) (2)
B ) B ) B, + Bgg By + B

K ()R ()L )+

[€Y) (1) (1) (2)
B22 BZZ B22 BZZ
2 2
>y o(exp(zy))) —0,m=T1,00 (7.39)
r=1 j=1

2

(1 (1) p) 2) (1)

L( ) (2)) _ By +Bgg By +Beg | [ Bes K(D( (U)Q(z)( (2>>

M s Mm™ ) = B(l) B(z) B(l) 2 \Im Nm
11 1 22
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B\ ([ Bée ’ @ @) oD, 1
+ (Bm) (Bm) &y ()2 ()

o
B!
W, 4 D@ (D), (1),2)
+ [(1 hy +1y 12)(’32 Ly +13 l42>

<1>
@y @Y (1@ 4 @D, (0@
+(111 by +15 12)(132 lgy +137 1) — ( Ly +hi )
1,2 @, _ (10,0 0,01, @)W
(512 +191) = (1903 1)) (1500 + 06| (7.40)

2
Bl(’i)B(r)

) 2 2 ( )
K9 = (8, - (1)) = ()| = ()8,
) (") ") () B() / %
Q" () =»"n"+—5 BY) (ﬁ - () )
(r) p) (r) (r) p@)
1} B ((y(’))2+ B (ﬁ/ _(nm)Z)) 1y Bes. ( o4 (r>)
— (r) J r) m m s (r) s
= B} B, = B
l(r) B(r) (r) B(r)
() (r) (r)
= Bz(g)y (yl ) (r)ﬁ + Bé;)( m ) ’
B(

2
1) = B(r) (y(r) " 4 g _ (n?) )

(r)
» B
17 = 1) = 5 (B = O0)) 18 =51 40

© 4 Y © 4 BY
[0 =y By +Bgg ) _ By + Bg
41 — 1 (r) s Y42 — r)
322 BZZ

,r=1,2.

It follows from (7.39) that for 6, s(l) — oo and 6, s(()z) — o0 the set of equations
from (7.38) splits into sets of equations

K(l)( (1)) =0,m=1,o0; KZ(Z)(nrzn) —0.m=T,00:
L(n®P, n®) =0,m =T, o. (7.41)

The first and second sets of equations from (7.41) are analogs of the Rayleigh
equation, which determine the frequencies of the edge oscillations of the gener-
ators f = s(()l), —s(()z) and the third set of equations from (7.41) is an analog of
Stoneley’s dispersion relations, which determines the frequencies of the interface

planar vibrations at the interface line of material properties 8 = 0.

4. Bending vibrations of composite rectangular plate with free edges. Existence
of free bending interface and edge vibrations of a rectangular plate composed of
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thin elastic orthotropic rectangular plates with different elastic properties is inves-
tigated. We introduce rectilinear orthogonal coordinates (¢, 8) on the middle
plane of a rectangular plate, where, 0 < o <, —s(()z) <B < sél). The straight
line B = 0 corresponds to the interface of material properties. All values related
to the right plate 0 < 8 < s(()l) are indicated by the superscript (1), and to the left
plate —s(()z) < B < Oby (2), respectively. As the initial equations, the equations of
small bending vibrations of the left and right plates are used, which correspond
to the classical theory of orthotropic plates [19].

. a4u(r) . . a4u(r) . 84M(V)
M4(Bfl)—3 +2(BY +2BY) ) 2 + B2

B
dat 90208 ' 2 oB
=pPo’u, r=1,2. (7.42)
Here u%’), r = 1,2 are the normal components of the displacement vector of the

right and left plates; Bi(;), r = 1, 2—elasticity coefficients; w—angular frequency;
p", r = 1,2—the density of materials; u* = h?/12 (h-plate thickness). The
following boundary conditions are considered.

oHW OH®
M &) M @
R IR e I R el
p= B=0 o g (2 P
dul dus
ugl)‘ﬁf() _ gD‘ﬁio’ 8;3 — a’g : (7.43)
B B =0 =0
aH®
N+ =0, MY =0,r=1,2. (7.44)
da B=(—1)""1s® B=(—1)"""s®
v OH" %)
N + =0, M =0,r=1,2. (7.45)
8ﬁ a=0,1 a=0,/

") ") 22 () ") 22 () ")
MO — h_33(r> Puy’ By duy Mo — EB(r) By *uy’ | 0%uy
1 12 11 P 0(2 B{Ii) 8ﬁ2 ’ 2 12 22 B;? 9 0(2 8ﬂ2 ’

. oH® W3 . 33u(") B(r)+4B(r) 83M(r)
Nl( ) + _ (r) 3 12 66 3 ,

B 12" dad BY) 9B

Ny +

aH(r) h3 83 (r) B(f) 4B(’) 83 (r)
(r) u3 12 + 66 M3 T = 1’2 (746)

da 12 2| 9pd BY)  0a%p

Here relations (7.43) are complete contact conditions at 8 = 0. Relations (7.44)

and (7.45) are the conditions of free edges at 8 = s(()l), —s(()z) and = 0, [, where

[ is the length of the plate, respectively (Fig. 7.2.) Problem (7.42)—(7.45) does not
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allow separation of variables. The differential operator corresponding to problem
(7.42)—(7.45) is self-conjugate and nonnegative definite. Therefore, the generalized
Kantorovich-Vlasov method of reduction to ordinary differential equations can be
used to find vibration eigenfrequencies and eigenmodes [25]. The solution of system
(7.42) is sought in the form

ud =w @) exp((=1) Y08+ YO 0s),
r=1,2m=1,00. (1.47)
Here w,, () defined in (7.7), y*, r = 1, 2 are undetermined coefficients. In this

case, conditions (7.45) are satisfied automatically. We substitute (7.47) into (7.42).
As a result, we obtain the characteristic equations

R =a’| ()"~
266 (n0V =0, r=1,2m=T, 00, (7.48)

where a?, n®), B, B/ are defined in (7.15), (7.9).

Let yér) , y4r) be the different roots of Eq. (7.48) with positive real parts and y +2 =

y;r) Jj = 3, 4. We seek solutions to problem (7.42)—(7.45) in the form

ul) Zwm(G a)exp(( 1)fy(’)9 /3+y(r)9 S(r)) ;r)’
j=1
r=12;m=1, 0. (7.49)

We substitute (7.49) into the boundary conditions (7.43)—(7.44). As a result, we
arrive at the system of equations

6

3 P exp(5"6,s(" Ju " CZP<2>exp( 2,52 )ul? =0,

3

6
1 1 1 1 2 2 2\, @
Z Pz(,) exp(y( )Bms(() )>w; Uy Z Pz(j) exp(y; )Qms(() ))w; ) =0,
3

6
Zexp<y;1)9ms(()l)) Z R<2> exp(ym@ s(z>) .5_2) - (7.50)
3
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6 6
1 (1 1 1 2 2 2 2
3o exp( s Y+ 3 2 exp(5802 2 = 0
3 3

6 6
S POw =03 P = 0,5 = 1.,2.
3 3
(r) (r) (r)
> B 3 BY 1 4B
(r) (r) 12 (r) (r) 12 66 (r)
Pl; - (yjr> - B(r) 131,71a PZ; = (yjr> - Tﬂllnyjr s
22 22
B(Z)
=2 r=1,2j=3,6 (7.51)
c Gr=12j=36. .
322

Equating the determinant of system (7.50) to zero and performing elementary
operations on the columns of the determinant, we obtain the dispersion equations

1 1 2 2
A, (yi) y< >) (yfl) ()) exp< Zs<r><y§r>+yir)>>

Det|by;|} _, =0,m =T, o0. (7.52)

i,j=1

(1)
2

I 1 I
bn =()’§ )) (l)ﬁmyblz_yé)‘F)’i)

biz = bnexza<z§ >, by = bnexp(zi”) + bn[Zgl)Zy)],
0) B @, ©
bis =— (y] ) _W:B;/n ,b16=—6( + ¥, )
By,
b7 = blsexz?<z§2)>, big = bmew(zf)> + bls[zf)zf)];

3 +4B D B(l)
1 1 H_
by = (y§ )) —66 B3 b = vV yi" + (1):3;,1’
322 B,

by = —b21€XP(2§1)>, by = —bzzexp(Zgl)) — by [Zgl)ZE])],

(@) @)
3 By +4B;
2
bys = c((yg )> — 266 %) :Br/ny?%)a
By,

.o B @
by =c|y3 v + (2) —Zg ) by = —b25€XP< ),
BZZ

byg = —bagexp (Z?) —bas [Z(Z)Zf)], (7.53)

1 1 1
b3t =1,b3=0,,b33 = €XP(Z§ )>, b3y = [Zg )Zi )],
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bss = —1,b36 =0, b3 = —exp(z§2)>, by = —[Zéz)zf)];
by = yél), by =1,bsy3 = —yé”ew(zé‘)), by = —exp(Zfll)> - y;l)[zgl)zf‘l)],

bys = yéz), bys =1, bay —yéz)exp(z?)), byg = —b46€xp(24(12)) — bys [zéz)sz)];

bsy = b13, bsy = b1y, bsz = b11,bsg = b1, bss = bsg = bs; = bsg =0,
be1 = ba3, bea = bas, bes = b1, bes = b2z, bes = bes = bs7 = bes = 0,
b7y = b7y = b7z = b3y = 0, bys = b7, big = big, b7r = bi5,bg = by,
bgy = bgy = bg3 = bgg = 0, bgs = b7, bgs = bog, bg7 = bas bgg = bog;

6,5 (ex <z(r)> —ex (z(r)))
L0 — g (@ [0 0] _ "m0 P\%a P\
AR R N ((r) (r)) ’
Z4 _Z3

j=34r=1,2:

Equation (7.52) are equivalent to the equations

8 —_

Det|b;||; ._, =0.m =1, occ. (7.54)

i,j=1

For Qms(()l) — oo and Hmséz) — oo the set of Eq. (7.54) have the form

B2\’
perlol! =-(25) ot 0 )
22
2 4
+ 3> 0(exwn(2)) =0.m =T o0, (7.55)

1 2 1 2 2
G 2) = ~K (1) — KD (1) + el ({55 + YD)

m

b (012 4 102) = (5 +2) (6268 + bW )1 =T 756

2
2 4B(V) B(r) 2
KO 09) = (000) + =SB = (=5 ) (8,)%r = 1.2
322 BZZ

(r)
p® — () B b0 — 0 40 0 _ (o)
=) = =GB b =y Fyi by =) —
B,
(r) (r) (r)
B, +4Bg o) " ., By

(r) /
Bnys sby =3 v+ —5Bu
Bég) mJ73 22 3 4 Bérz) m
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It follows from (7.55) that, for Omsél) — o0 and Gmséz) — 00, Eq. (7.54) splits
into sets of equations

G 1) = 0m =T, ;Kp(n;p):o,m:l,
1, 00

KP(m2)=0,m= (7.57)

The first set of equations from (7.57) is a set of dispersion equations of the bending
type of the interface vibration of a plate composed of two orthotropic sufficiently
wide plates with different elastic properties when the edges are free. The second and
third sets of equations from (7.57) are analogs of the Konenkov type equations for
the bending vibration of a plate made of the material of the right and left plates,
respectively, with free edges [8].

5. Asymptotics of dispersion Eq. (7.23) for ¢,, — 0

Using the formulae from Sect. 7.2, we assume that \” = n{? = n{? = 5®,

(r = 1,2). Then, when ¢,, — 0 Eq. (7.14) is transformed into a set of equations

N = _(X<r))4 _ Bé’)(x“))z +

B Be ()2 —
(- )) (e~ ) 2T o
11

2<B1(§) + ZBQQ) B0
Ry = () - S g oy B )
By, By,
B(r) 2
“ (n§2) =0,r=1,2m=T, (7.59)

(r)
By,

which are sets of characteristic equations for the equations of planar and bending
vibrations of the left and right rectangular components with two opposite free edges,
respectively [10]. The roots of Eqs (7.58) and (7.59) with positive real parts are
denoted by y\"”, ¢ and y{”, y\" respectively.

In the same way as in [27], it may be proved that under the condition
en < Ly v Ey0, i # ], (7.60)
the roots (x (’)) of Eq. (7.14) can be represented as

() =

Under conditions (7.60), taking into account relations (7.18), (7.61) and the fact
that

(y,‘”) +aDe 4 pOet 4o =T 4. (7.61)
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(r) (r) (r) (r) 2y .
M3:‘ = M4; = M7;, = M8; = 0(8m),] =1,2;r=1,2, (7.62)

the set of Eq. (7.23) is reduced to the form

Derligl -y = (VOGN () (KO () KD (02)) X
Det|e;; ||” \-Det||b;; ||”  +0(e) =0, m=T, o0, (7.63)

NO D) = (y(” + y§’)>< ) 4 yir)) (ym i y§’)><y(” + y(r>>

") () ") B{rl) Bég) ()2 ()2
r r r " r r
K3 (n,)) = ((5 — () ) PG W(nm) (p")
22 22
BYY ) BY+BY, 20" + (p0)
+<B(r)BZ B(r) (rrf) ’ r+( r))
22 22
2
( BY) ) ( 1 )2
(r) () g )
By, + By ) \B,
") ") B9 +380BY +a(B0)’
o _ B o B o 12 ) t3BBes +4(Bes )
p= 300 +a 30 (ny ) + RO R0 Bu | (7.64)
11 11 11 ~F66
o ) ) )
. B ) B » BY +3B
(r) 2 12 66
- T ( 5 (0 ﬂ) ((n;:>> +Tﬂfn),
B! B! B

and determinants Det H ejj ||
respectively.

It follows from Eq. (7.63) that, when ¢,, — 0 the set of Eq. (7.23) splits into sets
of equations

Det||b; |} ._, are defined in (7.38) and (7.54),

i,j=1" i,j=1

Det”el]”tj 1 O 1 005 D6t||bl1||tj 1 O

m=T,00 K (%) =0,r =1,2;m =T, 0. (7.65)

The first and second sets of equations from (7.65) are the dispersion equations of
planar and bending interface and edge vibrations of a composite plate, respectively.
The roots of the third and fourth set of equations correspond to planar vibrations of
the components of the cylindrical panel. They appear as a result of using the equation
of the corresponding classical theory of orthotropic cylindrical shells.

Fore, — O, Gmsél) — o0 and Gmséz) — 00, relations (7.23) take the form
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B\ (B2 (B2 B+ B BE 4 5
Del”%”,, 1= E F B(l) B B X
22 22 22 22 22
2
(NOPIND (D)) (K D) KD (12)) KL () kS () X
K(z)(n,f))K (D)L n)G (g i7) + O (e5,)

ST Eofer(s) =on =T

From (7.66) it follows that for, &,, — 0, O,ns(l) — 00 and Gms(()z) — 00 the set of
Eqgs. (7.23) splits into the totality of the equations

L(nfnl), n,(nz)) 0,m =1, o0; G(nr(nl), r),(nz)) 0,m=1,

K (n%) =0.m =T, 00; K{” (n)) = 0.m =T, o0

KO (0) =0,m=T,00r =1,2, (7.67)

The first and second sets of equations from (7.67) are, respectively, the disper-
sion equations of the planar and bending interface vibrations for a sufficiently wide
composite plate with free edges.

The third and fourth sets of equations from (7.67) are, respectively, analogs to the
Rayleigh and Konenkov equations for vibrations of a plate made of material (1) and
(2) localized at the free edges.

6. Numerical investigation. Tables 7.1 and 7.2 shows some of the roots of
Egs. (7.41), (7.57) and the dispersion Eqs. (7.38) and (7.54) of planar and bending
vibrations for a composite rectangular plate, with free edges, made of boroplastic
and special paper with mechanical parameters [19, 30]

k
Boroplastic pV = 2.10°~% £ ED = 2.646. 10“ _ B = 1323, T
- m

GM =9.604. 109 o) =02, =001 (7.68)

Paper p@ =0. 16 E@) =2.95281. 10"— EP =2.210. 109

2 2
7’2() 2

0

N
G? = 9.77076.108W, 2 = P =023 (7.69)
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Table 7.1 Characteristics of the natural frequencies for planar vibrations of a rectangular plate

N6 KO (ns') =0.L(nw 0 ) =0 | Derlley I, =0
Ky (nfi’) =0
1 1.95473 0.91143 ¢
0.92511 ine
27.5679 @
2 2.74891 0.98307 0.98171 M
0.98398 0.98311 ine
32.9634 30.7910 ¢@
3 3.52957 1.00099 0.99965 ™M
1.00225 1.00100 ine
33.3045 30.6812 ¢@
4 4.27693 0.97897 0.977771 M
0.98012 0.997897”18
32.6340 30.1650 ¢@
11 11.6577 0.98580 0.98436 ¢V
0.98696 0.98580 ine
32.8645 30.3826 ¢@
15 16.0962 0.98580 0.98436 ¢V
0.98696 0.98580 ine
32.8645 30.3826 ¢@
16 17.1935 0.98580 0.98436 ¢
0.98696 0.98580 ine
32.8645 30.3826 ¢@

and geometric parameters: [ = 4,h = %, s(()l) = 15, s((]z) = 5. The roots of the
dispersion Eqgs. (7.41) and (7.57) of planar and bending edge and interface vibrations
of a rectangular plate are given.

Note that the connection between {1 and 7 has the form

(2)B(1)
nP =26 (1.70)
p(l)B66

Tables 7.3 and 7.4 shows dimensionless characteristics 77%2 of the natural frequen-
cies of interface and edge vibrations for a composite cylindrical panel, made of boro-
plastic and special paper, with mechanical parameters (7.68), (7.69) and geometric
parameters:

R=451=4,h=1/50,s" =15.2927, s® = 5.01035.
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Table 7.2 Characteristics of the natural frequencies for bending vibrations of a rectangular plate

N O Kf”(n,(nl)) =0,G<77§nl),77£nz)> =0 De’”bij”zg,j:l =0
K (1) =0
1 1.95473 0.04872 0.04872 bH)
0.04874 0.04926 inb
0.59552 031068 5@
2 2.74891 0.08576 0.08580 bH)
0.08580 0.08638 inb
104836 0.82623 b
3 3.52957 0.10921 0.10921 »
0.10927 0.10949 inb
1.33494 1.11285 @
4 427693 0.12789 0.12789 »M
0.12795 0.12830 inb
156329 131165 5@
11 11.6577 0.35363 0.35363 bD
0.35382 0.35410 inb
432282 411623 p@
15 16.0962 0.48828 0.48828 b1
0.488531 0.49196 b
5.96867 5.80026 b
16 17.1935 0.52156 0.52156 bM
0.52183 0.52389 inb
6.37556 6.00390 H@

In Tables 7.1, 7.2, 7.3 and 7.4 after the characteristics of the natural frequen-
cies, the type of interface vibrations is indicated: ine is predominantly planar, inb
is predominantly bending; edge vibrations are: ¢, r = 1,2—predominantly planar
types, b, r = 1,2—predominantly bending types, n”, r = 1,2—new types of vibra-
tions corresponding to materials (1) and (2), respectively. Note that the new types
of vibrations are predominantly planar types. The latest manifests itself as a result
of using the basic equations corresponding to the classical theory of orthotropic
cylindrical shells.

In Table 7.3 the case ’752 = ngz =\, n§2 = 0,7 = 1,2 corresponds to
problem (7.1)—(7.4), in which there is no normal component of the inertia force, i.e.
we have a predominantly planar type of interface and edge vibrations. Similarly, the
case 1752 = ngr), =0, n§2 = ", r = 1,2 corresponds predominantly to bending
type.

In Table 7.4, the case 775:31 = ’752 = n§2 = 1" corresponds to the problem
(7.1)—(7.4).



7 Free Localized Vibrations of a Thin Elastic Composite Panel 115

Table 7.3 Characteristics of the natural frequencies for predominantly planar and predominantly
bending vibrations of cylindrical panel

N | 6n Kél)(nf,}’) =0 g =yl =nl N =ny) =0
(r) (r) (r)
K3(2)<nff))=0 nyy =0,r=1,2 Ny =1 -7 =1,2
1 1.95391 425538 0.91110 ¢ 4.25538 n™ | 0.04987 bV
41.3822 0.92492 ine 0.05037 inb
30.8139 @ 41.4274 n® 0.31296 b@
2 2.74776 4.94711 0.98479 ¢ 4.94711 n 0.08584 »(D
44.7479 0.99608 ¢ 0.08625 inb
30.8149 @ 44.7652 n@ 0.81451 @
3 3.52810 4.81097 1.00349 ™M 4.81005 n 0.10888 »M
44.0542 1.01586 e 0.10965 inb
30.6635 ¢ 43.9950 n® 1.10953 @
4 4.27542 475564 0.98210 eM 4.75564 n™ | 0.12759 pD
43.8201 0.99330 ine 0.12803 inb
30.5387 @ 43.8119 n@ 1.31880 »@
11 11.6577 4.78850 0.98696 ¢V 4.78850 nV 0.35377 bM
44.0115 0.99970 ine 0.35430 inb
30.3831 @ 44.0155 1@ | 4.12242 b@
15 [16.1102 478555 0.98696 ¢V 478555 n™ | 0.48841 bV
44.0396 0.99970 ine 0.50299 inb
30.3822 €@ 44.0403 n®@ 5.80563 b@
16 | 17.2065 4.78465 0.98696 ¢V 478465 n™  10.52158 b
44.0479 0.99970 e 0.52392 inb
2) 2)
30.3829 €@ 44.0506 n 590851 p2

For ¢,, — 0 the interface and edge vibrations of problem (7.1)—(7.4), are splitting
on quasi-transverse and quasi tangential vibrations. Meanwhile, the frequencies of
this problem tend to the frequencies of a similar problem for a composite plate.

In vibrations of a predominantly tangential typenff,)l = n§2 =", ng;i =0,r=
1, 2, in addition to planar interface and edge vibrations of the Stoneley and Rayleigh
type, new vibrations can also appear due to the longitudinal and torsional components

of the inertia force [14].

7.2 Conclusions

Using the system of equations of dynamic equilibrium of orthotropic cylindrical
shells of the corresponding classical theory, dispersion equations are obtained to
determine the eigenfrequencies of interfacial and edge vibrations of the composite
cylindrical panel with free edges.
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Table 7.4 Characteristics of " _ O _ " _ 0
the natural frequencies of a N Om Mm = om = M3 = Mm
cylindrical panel 1 1.95391  [0.91201 ™M 0.04986 bV 4.25908 n(V

0.92503 ¢ 0.05037 7P

30.8092 e 0.31295 6@ 41.4275 n®
2 274776 |0.98431 eV 0.08621 bV 4.94711 n™
0.99667 ¢ 0.086631 b

30.7821 ¢ 0.81451 b 44.7696 n®
3 3.52810 [ 1.00225 ™M 0.10932 bV 4.81097 nV
1.01914 i€ 0.10991 P

30.6693 ¢ 1.10952 b 43.9950 n®
4 427542 10.98291 ™M 0.12803 bV 4.75564 n(D
0.99309 ¢ (.12868 i"”

30.5395 @ 1.33719 6@ 43.8120 n®
11 11.6577 0.98696 ¢1 0.35351 bV 4.78850 n(V
0.99670 ¢ (0.35380 b

30.3831 @ 4.11548 b 44.0155 n®@
15 [16.1102 0.98696 ¢ 0.48828 bV 4.78555 n(»
0.99970 ¢ 0.49098 P

30.3822 ¢ 5.79800 6@ 44.0403 n®
16 | 17.2065 0.98696 M 0.52160 bV 4.78465 n(D
0.99970 ¢ 0.52339 inb

30.3829 e 5.98166 b? 44.0465 n®

The frequencies of intrinsic interfacial and edge vibrations of a composite cylin-
drical panel composed of two orthotropic thin elastic cylindrical panels with different
elastic coefficients and having full contact along the generators are determined by
the set of Eq. (7.23).

The frequencies of natural interface and edge vibrations for the composite
rectangular plate with free edges are determined by the sets of Eqs. (7.38) and (7.54).

The existence of interfacial and boundary vibrations depends on the radius of
the circle, the length and width of the components of the cylindrical panels and the
elastic coefficients.

The obtained asymptotic formulas and numerical analysis show that for large
0,, or small curvature of the composite panel, all the characteristics of the intrinsic
interface and edge vibrations of the cylindrical panel tend to the characteristics of
the interface and edge vibrations of the composed rectangular plate, respectively.

The first frequencies of natural vibrations depend on the selected basis functions
satisfying the same boundary conditions, and also, when ¢, — 0 the vibration
frequencies at the free generators become independent of the basis functions and the
boundary conditions on the ends [29].
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Numerical results show that the asymptotic formulas (7.63), (7.66) of the disper-
sion Eq. (7.23) provide an efficient approximation for finding the eigenfrequencies
of problem (7.1)—(7.4).

Further possible generalizations may include accounting for the effects of pre-
stress [31] and elastic foundations [32].
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