
Discovering Top-k Periodic-Frequent
Patterns in Very Large Temporal

Databases

Palla Likhitha(B) , Penugonda Ravikumar , Rage Uday Kiran ,
and Yutaka Watanobe

University of Aizu, Aizuwakamatsu, Japan
likhithapalla7@gmail.com, raviua138@gmail.com,

{udayrage,yutaka}@u-aizu.ac.jp

Abstract. Discovering periodic-frequent patterns in temporal data-
bases is a challenging data mining problem with abundant applica-
tions. It involves discovering all patterns in a database that satisfy
the user-specified minimum support (minSup) and maximum periodicity
(maxPer) constraints. MinSup controls the minimum number of trans-
actions in which a pattern must appear in a database. MaxPer controls
the maximum time interval within which a pattern must reappear in the
database. Setting an appropriate minSup and maxPer values for any
given database is an open research problem. This paper addresses this
open problem by proposing a solution to discover top-k periodic-frequent
patterns in a temporal database. Top-k periodic-frequent patterns rep-
resent a total of k periodic-frequent patterns with the lowest periodicity
value in a database. An efficient depth-first search algorithm, called Top-
k Periodic-Frequent Pattern Miner (k-PFPMiner), which takes only k
threshold as an input was presented to find all desired patterns in a
database. Experimental results on synthetic and real-world databases
demonstrate that our algorithm is memory and runtime efficient and
highly scalable.

Keywords: Data mining · Pattern mining · Temporal databases

1 Introduction

Frequent pattern mining [1] is a popular data mining model aiming to discover
all frequently occurring patterns in a transactional database. However, a funda-
mental limitation of this model is that it fails to discover temporal regularities
that may exist in a temporal database. When confronted with this problem
in real-world applications, researchers proposed an extended model to discover
periodic-frequent patterns [12] in a temporal database that satisfy the user-
specified minimum support (minSup) and maximum periodicity (maxPer) con-
straints.

Several pattern mining techniques, such as fuzzy periodic-frequent pattern
mining [6], local periodic pattern mining [4], partial periodic pattern mining
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. P. Roy et al. (Eds.): BDA 2022 India, LNCS 13773, pp. 200–210, 2022.
https://doi.org/10.1007/978-3-031-24094-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24094-2_14&domain=pdf
http://orcid.org/0000-0003-3032-9061
http://orcid.org/0000-0001-9124-9781
http://orcid.org/0000-0002-5417-0289
http://orcid.org/0000-0002-0030-3859
https://doi.org/10.1007/978-3-031-24094-2_14

Discovering Top-k Periodic-Frequent Patterns 201

[9], stable periodic pattern mining [5], recurring pattern mining [8], and peri-
odic sequential pattern mining, were inspired from the periodic-frequent pat-
tern model. However, this model’s widespread adoption and successful industrial
application was hindered by this obstacle: “minSup and maxPer are two key
constraints that make periodic-frequent pattern mining practicable in real-world
applications. They are used to prune the search space and limit the number of
patterns generated. Unfortunately, setting these two constraints for an applica-
tion is an open research problem and may require a profound knowledge of the
application background.” This paper addresses this challenging open problem by
finding top-k periodically occurring frequent patterns in a temporal database.
This paper’s contribution is as follows: (i) we proposed a novel model of top-k
periodic-frequent patterns that may exist in temporal databases. Only one con-
straint k is used to find the interesting top-k periodic-frequent patterns with
the lowest periodicity in the entire database. (ii) We also introduced an upper-
bound measure and a pruning technique called dynamic maximum periodicity to
reduce the search space and in pruning the uninteresting patterns. (iii) We pro-
posed an efficient search algorithm called top-k Periodic-frequent Pattern Miner
(k-PFPMiner) to find all the desired patterns. (v) Experimental results on syn-
thetic and real-world databases demonstrate that our algorithm is memory and
runtime efficient and highly scalable.

The rest of the paper is organized as follows. Section 2 describes related work
on finding top-k periodic-frequent patterns in databases. Section 3 describes a
proposed model to find top-k periodic-frequent patterns in databases. Section 4
describes the proposed algorithm to discover the top-k periodic-frequent pat-
terns. Section 5 presents the experimental results obtained. Finally, in Sect. 6,
we conclude and discuss future research.

2 Related Work

Agrawal et al. [1] introduced the concept of frequent pattern mining to extract
useful information from transactional databases. Luna et al. [10] conducted a
detailed survey on frequent pattern mining and presented the improvements in
the past 25 years. However, finding patterns that appear regularly in a database
with the help of frequent pattern mining, which only considers frequency, is not
appropriate.

Tanbeer et al. [12] generalized the frequent pattern model to discover
periodic-frequent patterns in a temporal database. Amphawan et al. [2] intro-
duced a model to find the most periodic-frequent patterns called Top-k periodic-
frequent patterns. Uday et al. [7] have designed a novel concept named local peri-
odicity to prune the non-periodic patterns locally. Authors have discarded the
patterns whose local periodicity is less than the user-specified maxPer value.
As a result, most of the non-periodic patterns tid-lists were not completely
built, resulting in a decrease in the computational time of the proposed algo-
rithm. Since its inception, the problem of finding periodic-frequent patterns
has received a great deal of attention [3,11]. The basic model used in most
of these algorithms remains the same. Discovering complete set of patterns in

202 P. Likhitha et al.

Table 1. Temporal database

ts items ts items

1 pqr 6 prs

2 qrs 7 pqrst

3 pqrs 8 pr

4 pqrt 9 pqr

5 qr 10 st

temporal databases that satisfy the user-specified minSup and maxPer values.
Setting a user-specified minSup and maxPer for a given database is an open
research problem. When confronted with this problem in real-world applications,
researchers have tried to find top-k periodic-frequent patterns. Amphawan et al.
[2] described the top-k periodic-frequent patterns from transactional databases
without minSup constraint. However, the authors have used the user-specified
maxPer constraint and a k value to generate top-k periodic-frequent patterns.

In this paper, we are updating the maxPer value dynamically without user
intervention while generating exciting patterns. By setting the user-defined k
value only, we are extracting the top-k periodic-frequent patterns from the large
temporal databases.

3 Proposed Model: top-k Periodic-Frequent Patterns

Let O be the set of objects (or items). Let P ⊆ O be a itemset (or a pattern).
A itemset containing α, α ≥ 1, number of items is called a α-pattern. In a
transaction, tk = (ts, X) is a tuple, where ts represents the timestamp at
which the pattern X has occurred. A temporal database TDB over O is a set
of transactions, i.e., TDB = {tr1, · · · , trm}, m = |TDB|, where |TDB| can be
defined as the number of transactions in TDB. For a transaction trk = (ts, X),
k ≥1, such that Z ⊆ X, it is said that Z occurs in trk (or trk contains Z) and
such a timestamp is denoted as tsZ . Let TSZ = {tsZj , · · · , tsZk }, j, k ∈ [1,m]
and j ≤ k, be an ordered set of timestamps where Z has occurred in TDB.

Example 1. Let O = {p, q, r, s, t} be the set of items. A temporal database gen-
erated from items O is shown in Table 1. The set of items ‘r’ and ‘p’, i.e., {r, p}
is considered as a pattern. For short, we represent this pattern as ‘rp .’ This
pattern is a 2-pattern because it contains two items. The pattern ‘rp’ appears
at the timestamps of 1, 3, 4, 6, 7, 8, and 9. Therefore, the list of timestamps
containing ‘rp’, i.e., TSrp = {1, 3, 4, 6, 7, 8, 9}.

Definition 1. (Periodicity of Z) A period of Z in TDB is calculated using
the following three ways: (i) pZ1 = tsZa − tsmin, (ii) pZi = tsZq − tsZp , where
2 ≤ i ≤ |TSZ | and a ≤ p ≤ q ≤ c represent the periods (or inter-arrivals) of
Z in the database, and (iii) pZ|TSZ |+1 = tsmax − tsZc . The maximal and mini-
mal timestamps of all transactions in the database are represented as tsmin and

Discovering Top-k Periodic-Frequent Patterns 203

tsmax. Let PZ = {pZ1 , pZ2 , · · · , pZk }, k = |TSZ | + 1, be the set of all periods of Z
in UTDB. The periodicity of Z, denoted as per(Z) = max(pZ1 , pZ2 , · · · , pZk).

Example 2. The periods for this pattern are: prp1 = 1 (= 1 − tsinitial), prp2 =
2 (= 3 − 1), prp3 = 1 (= 4 − 3), prp4 = 2 (= 6 − 4), prp5 = 1 (= 7 − 6), prp6 =
1 (= 8 − 7), prp7 = 1 (= 9 − 8), and prp8 = 1 (= tsfinal − 9), where tsinitial =
0 represents the timestamp of initial transaction and tsfinal = |TDB| = 10
represents the timestamp of final transaction in the database. The periodicity of
rp, i.e., per(rp) = maximum(1, 2, 1, 2, 1, 1, 1, 1) = 2.

Definition 2. (Top-K periodic-frequent pattern X.) Let {X1,X2, · · · ,Xk,-
· · · ,Xp}, 1 ≤ k ≤ p ≤ 2m − 1, be an ordered set of all patterns such that
per(X1) ≤ per(X2) ≤ · · · ≤ per(Xk) ≤ · · · ≤ per(Xp). A pattern Xa, 1 ≤ a ≤ p,
is said to be a top-k periodic pattern if its periodicity is no more than the
periodicity of pattern Xk in the database. That is, Xa is said to be a top-k
periodic pattern if per(Xa) ≤ per(Xk).

Example 3. If the per(rp) ≤ per(t), the pattern rp is considered as top-k periodic
frequent patterns.

Definition 3. (Problem definition.) Given a temporal database (TDB) and a
user-specified k value, the goal of top-k periodic pattern mining is to discover only
top-k periodic-frequent patterns that have the lowest periodicities in a database.

4 Our Algorithm

4.1 Basic Idea: Dynamic Maximum Periodicity

Reducing the enormous search space is challenging as our model does not employ
any constraint to reduce the search space. In this context, our idea to reduce
this huge search space is as follows: “Create an empty list known as candidate
periodic pattern-list (or cpp-List). Also, create a Max-heap data structure and set
its root to null. Then, scan the database and keep adding the patterns to the cpp-
List. Simultaneously, update the Max-heap with the periodicity values of those
items. Once the size of cpp-List reaches the size of k, set dynamic maximum
periodicity (dMaxPer) equal to the value of root in Max-heap. Prune the search
space (or itemsets) using the dMaxPer constraints. If we find any pattern in
the constraint, add the corresponding pattern into the cpp-List by removing the
existing k-pattern. We will update dMaxPer accordingly. We keep repeating this
process until we complete the search space.” The time complexity to determine
periodicity of a pattern are O(1) and O(n), respectively. Where n represents the
number of timestamps (or frequency) of a pattern in the database.

Definition 4. (Dynamic maximum periodicity constraint.) Let AP =
{X1,X2, · · · ,X2n−1}, n ≥ 1, be the set of all patterns in a database. Let
EP ⊆ SP be the set of patterns explored by our algorithm until now. Let
EPk ⊆ EP such that |EPk| = k be a set of top-k candidate periodic patterns

204 P. Likhitha et al.

found until now. The dynamic maximum periodicity, denoted as dMaxPer, rep-
resents the highest periodicity among all patterns in EPk. That is, dMaxPer =
{max(per(Xp)|∀Xp ∈ EPk)}.
Example 4. Let AP = {p, q, r, s, t, pq, pr, · · · , pqrst} be the set of all pat-
terns in a database. Let EP = {p, q, r, s, t} ⊂ AP be the set of patterns
explored until now. If k = 5, then EPk = {p, q, r, s, t}. Thus, dMaxPer =
max(per(p), per(q), per(r), per(s), per(t)) = max(2, 2, 1, 3, 4) = 4. For the pat-
tern pr, TSpr = {1, 3, 4, 6, 7, 8, 9} and per(pr) = 2. If we explore a different
pattern pr, then EP = {p, q, r, s, t, pr}. As per(pr) < dMaxPer, we prune pat-
tern t and add pr in the EPk. Thus, EPk = {p, q, r, s, pr} and dMaxPer =
max(2, 2, 1, 3, 2) = 3. Thus, dMaxPer automatically gets updated whenever a
candidate top-k periodic-frequent pattern is found in the database.

The above constraint says that a pattern must have periodicity less than
the dMaxPer to be a candidate top-k periodic pattern. Thus, this constraint
can be used to determine the minimal occurrences a pattern must have to be a
candidate top-k periodic-frequent pattern.

Property 1. (Pruning technique:) Prune the pattern X if per(X) >
dMaxPer. It is because neither X nor its supersets can be top-k periodic-
frequent patterns.

The correctness of this property is based on Properties 2, 3, and Lemma
1. Our algorithm uses the above pruning technique to discover top-k periodic
patterns effectively.

Property 2. For a pattern X, if per(X) > dMaxPer, then X cannot be a top-k
periodic pattern.

Lemma 1. For a pattern X, if per(X) > dMaxPer, then X cannot be a top-k
periodic pattern.

Proof. The correctness is straight forward to prove from Property 2.

Property 3. If X ⊂ Y , then per(X) ≤ per(Y) as TSX ⊇ TSY .

4.2 k-PFPMiner

k-PFPMiner starts with finding top-k single items in the database and stores
them in cPP-List described in Algorithm 1. Next, Algorithm 2 describes the
procedure for finding top-k periodic patterns in a depth-first search manner. We
now describe the working of this algorithm using the newly generated cPP-list.

We start with item r, the pattern in the cPP-list with the lowest periodicity
(line 2 in Algorithm 2). We preserve the periodicity of r, as shown in Fig. 1(a).
Since r is a periodic-frequent pattern, we proceed to its child node rp by com-
bining with other periodic items in the database and generate its TS-list by
intersecting TS-lists of both items r and p, i.e., TSrp = TSr ∩ TSp (lines 3 and

Discovering Top-k Periodic-Frequent Patterns 205

Fig. 1. Mining Top-K periodic patterns using DFS

4 in Algorithm 2). We record periodicity of rp, as shown in Fig. 1(b). We ver-
ify whether rp is a candidate periodic-frequent pattern or uninteresting pattern
(line 6 in Algorithm 2). Since rp is a candidate periodic-frequent pattern, we
check if periodicity of rp if per(pr) < dMaxPer, (in Algorithm 3) and calculate
dMaxPer as a maximum of all the periodicities of periodic-frequent patterns in
current existing topkPatterns. Since rp is a top-k periodic-frequent pattern, we
proceed to its child node rpq and generate its TS-list by performing the inter-
section of TS-lists of rp and q, i.e., TSrpq = TSrp ∩ TSq. We record periodicity
of rpq, as shown in Fig. 1(c), identify it as a periodic-frequent pattern and check
if it can be a top-k periodic frequent pattern. Since rpq is a top-k periodic fre-
quent pattern, we again move to its child node rpqs and generate its TS-list by
performing the intersection of TS-lists of rpq and s, i.e., TSrpqs = TSrpq ∩ TSs.
As periodicity of rpqs is greater than the dMaxPer, we will prune the pattern
rpqs from the candidate periodic patterns list as shown in Fig. 1(d). We move
to the other child of rp and generate its TS-list by performing the intersection
of TS-lists rp and s, i.e., TSrps = TSrp ∩ TSs. As the periodicity of rps is
greater than the dMaxPer, we will prune the pattern rps from the candidate
periodic-frequent patterns list as shown in Fig. 1(e). The exact process is done
for all the remaining nodes in the tree to find all periodic-frequent patterns.
The complete set of periodic-frequent patterns generated from Table 1 is shown
in Fig. 1(f) without striking. The above approach of finding periodic-frequent
patterns using the downward closure property is efficient because it effectively
reduces the search space and the computational cost.

5 Experimental Results

Since there exists no algorithm to find Top-k periodic-frequent patterns in tem-
poral databases with only k constraint, we evaluated our algorithm k-PFPMiner
on different databases varying k.

206 P. Likhitha et al.

Algorithm 1. PeriodicItems(Temporal Database (TDB), K (k):
1: Let’s say that the T-PFPList=(Y, TS-list(Y)) is a dictionary that keeps track of

temporal information about a pattern that occurs in a TDB. First, let’s create
a temporary list called TSl and use it to keep track of the timestamp of the last
time an item appeared in the database. Let Per be a temporary list to record the
periodicity of an item in the database. Let topkPatterns be a list to record the
top items with lowest periodicity. Let dMaxPer be a variable to store the dynamic
maximum period dMaxPer among topkPatterns.

2: for every transaction tcur ∈ TDB do
3: Set tscur = tcur.ts;
4: for every item i ∈ tcur.X do
5: if i does not exit in cPP-list then
6: Insert i and its timestamp into the PFP-list. Set TSl[i] = tscur and P [i] =

(tscur − tsinitial);
7: else
8: Add i’s timestamp in the cPP-list. Update TSl[i] = tscur and P [i] =

max(P [i], (tscur − TSl[i]));
9: for each item i in cPP-list do

10: Calculate P [i] = max(Per[i], (tsfinal − TSl[i]));
11: Sort the remaining items in the cPP-list in ascending order of their periodicity.
12: for each item i in PFP-list do
13: if length(topkPatterns) < K: then
14: Store the item into topkPatterns
15: dMaxPer = max(periodicity of all items in topkPatterns)
16: Call k-PFPMiner(cPP-List).

Algorithm 2. k-PFPMiner(cPP-List)
1: for each item i in cPP-List do
2: Set tp = ∅ and X = i;
3: for each item j that comes after i in the cPP-list do
4: Set Y = X ∪ j and TSY = TSX ∩ TSj ;
5: Calculate periodicity of Y ;
6: if per(TSY) ≤ dMaxPer then
7: Add Y to tp and Y is considered as candidate top-k periodic-frequent item-

set;
8: Check(Y, TSY)

(to check if pattern can make in to top-k periodic-frequent pattern)
9: k-PFPMiner(tp)

Algorithm 3. Check(X, TS-List)
if per(TS − List) < dMaxPer then

Pop the Last pattern and insert X in topk − patterns.
dMaxPer = max(periodicity of all items in topkPatterns)

Discovering Top-k Periodic-Frequent Patterns 207

Table 2. The complete statistical information of the databases used in our experiments

S.No Database Type Transaction Length (in count) Items
(in count)

Database Size
(in count)min. avg. max.

1 T10I4D100K Synthetic 1 10 29 870 1,00,000

2 Retail Real 2 12 77 16,471 88,162

3 Congestion Real 1 58 337 1,414 8, 928

4 Pollution Real 11 460 971 1,600 720

5 Kosarak Real 2 9 2,499 41,270 99,00,00

5.1 Experimental Setup

Our k-PFPMiner algorithm was developed in Python 3.7 and executed on a Giga-
byte R282-z94 rack server machine containing two AMD EPIC 7542 CPUs and
600 GB RAM. The operating system of this machine is Ubuntu Server OS 20.04.
The experiments have been conducted on both synthetic (T25I10D10K) and
(Retail) and real-world (Congestion, Pollution, and Kosarak) databases.
The T10I10D100K database is a synthetic database generated using the pro-
cedure described in [3]. Table 2 presents the statistical information that may
be found in the databases mentioned above. Pollution and Congestion may be
high-dimensional databases that include extensive transactions.

In the field of intelligent transportation systems, one challenging but impor-
tant task is monitoring traffic congestion in smart cities. In this regard, the
JARTIC situated in Kobe, Japan has established many sensor networks to mon-
itor congestion in several smart cities. Each transaction in this database takes
place every 5min and includes a timestamp and the identifiers of road segments
that have reported traffic jams of more than 300m. The time period covered by
the data collection is from July 1st to July 31st, 2015.

The Japanese Ministry of the Environment developed the AEROS to tackle
air pollution problems. Several air pollution measurement sensors are scattered
around Japan as part of this system. Each station collects the data of various air
pollutants, say PM2.5, NO2, and O3, on an hourly basis. For our experiment, we
confine to PM2.5, since that particular particle size is the primary contributor
to the wide variety of cardio-respiratory issues experienced by Japanese citizens.
According to Air Quality Index Standards, PM2.5 values greater than 16 μg/m3

per hour are unsuitable for people.

5.2 Evaluation of Algorithm by Varying only k

Figures 2a, 2b, 2c and 2d show the time consumed at a different number of k val-
ues in T10I10D100K, Retail, Congestion and Pollution databases, respectively.
It can be observed that an increase in K increases the runtime to find all top-k
periodic-frequent patterns being generated at different k values. As k increases,
the number of patterns to be mined increases, resulting in time consumption.

208 P. Likhitha et al.

0 500 1,000 1,500 2,000 2,500
0

10

20

30

40

K

R
u
n
ti
m
e(
se
co
n
d
s)

k-PFPMiner

(a) T10I4D100K

0 500 1,000 1,500 2,000 2,500

0

50

100

150

200

K

R
u
n
ti
m
e(
se
co
n
d
s)

k-PFPMiner

(b) Retail

60 80 100 120 140

0

50

100

150

200

K

R
u
n
ti
m
e(
se
co
n
d
s)

k-PFPMiner

(c) Congestion

60 80 100 120 140

0

100

200

300

K

R
u
n
ti
m
e(
se
co
n
d
s)

k-PFPMiner

(d) Pollution

Fig. 2. Runtime evaluation on various databases by varying k

0 500 1,000 1,500 2,000 2,500

1.42

1.42

1.43

1.43

1.43

1.43

·108

K

M
em

or
y
(b
y
te
s)

k-PFPMiner

(a) T10I4D100K

0 500 1,000 1,500 2,000 2,500

1.41

1.42

1.43

1.44

1.45
·108

K

M
em

or
y
(b
y
te
s)

k-PFPMiner

(b) Retail

60 80 100 120 140

4.92

4.94

4.96

4.98

5

5.02

·107

K

M
em

or
y
(b
y
te
s)

k-PFPMiner

(c) Congestion

60 80 100 120 140

6.8

6.85

6.9

6.95

·107

K

M
em

or
y
(b
y
te
s)

k-PFPMiner

(d) Pollution

Fig. 3. Memory evaluation on various databases by varying k

Figures 3a, 3b, 3c and 3d show the memory consumed at a different num-
ber of k values in T10I10D200K, Retail, Congestion and Pollution databases,
respectively. It can be observed that an increase in K increases the memory to
find all top-k periodic-frequent patterns being generated at different k values.

5.3 Scalability Test

In this experiment, we have used the Kosarak database, which is a huge database
having 9,90,000 transactions (in count). We have divided this database into five
segments, each consisting of 2,00,000 transactions. We have evaluated the perfor-
mance of k-PFPMiner by adding each successive segment to the ones that came
before it. The runtime requirements and memory consumption k-PFPMiner for
each segment of the Kosarak database are shown in Fig. 4a and 4b, when k = 200.
The following are some noteworthy findings that can be derived from these fig-
ures: (i) runtime requirements of k-PFPMiner increases almost proportionally
as database size grows. (ii) memory requirements of k-PFPMiner where we can
observe same as 4a.

Discovering Top-k Periodic-Frequent Patterns 209

0.2 0.4 0.6 0.8 1
·106

10

20

30

40

50

Numberoftransactions

R
u
n
ti
m
e(
se
co
n
d
s)

k-PFPMiner

(a) Runtime

0.2 0.4 0.6 0.8 1
·106

7.2

7.4

7.6

7.8

8

8.2

8.4

·108

Numberoftransactions

M
em

or
y
(b
y
te
s)

k-PFPMiner

(b) Memory

Fig. 4. Scalability of k-PFPMiner

6 Conclusions and Future Work

In this paper, we have proposed an efficient depth-first search algorithm, called
top-k Periodic-frequent Pattern Miner (k-PFPMiner), to find all desired pat-
terns in big temporal databases. We have solved the open research problem of
setting maxPer and minSup constraints by introducing a novel upper-bound
measure named dynamic maximum periodicity. With the help of a novel pruning
technique, we have reduced the best and worst-case time complexity of iden-
tifying whether a pattern is a periodic or aperiodic pattern to O(1) and O(n),
respectively. An in-depth examination of the proposed k-PFPMiner approach on
four synthetic and real-world databases revealed that its memory consumption
and runtime are efficient and highly scalable. As for future work, we will work
on discovering top top-k periodic-frequent patterns in uncertain databases.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD, pp. 207–216 (1993)

2. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-K periodic-frequent pat-
tern from transactional databases without support threshold. In: Papasratorn, B.,
Chutimaskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp.
18–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10392-6 3

3. Anirudh, A., Kiran, R.U., Reddy, P.K., Kitsuregawa, M.: Memory efficient mining
of periodic-frequent patterns in transactional databases. In: 2016 IEEE Symposium
Series on Computational Intelligence, pp. 1–8 (2016)

4. Fournier-Viger, P., Yang, P., Kiran, R.U., Ventura, S., Luna, J.M.: Mining local
periodic patterns in a discrete sequence. Inf. Sci. 544, 519–548 (2021)

5. Fournier-Viger, P., Yang, P., Lin, J.C.-W., Kiran, R.U.: Discovering stable periodic-
frequent patterns in transactional data. In: Wotawa, F., Friedrich, G., Pill, I.,
Koitz-Hristov, R., Ali, M. (eds.) IEA/AIE 2019. LNCS (LNAI), vol. 11606, pp.
230–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22999-3 21

6. Kiran, R.U., et al.: Discovering fuzzy periodic-frequent patterns in quantitative
temporal databases. In: FUZZ-IEEE 2020, pp. 1–8 (2020)

7. Kiran, R.U., Kitsuregawa, M.: Novel techniques to reduce search space in periodic-
frequent pattern mining. In: DASFAA, pp. 377–391 (2014)

https://doi.org/10.1007/978-3-642-10392-6_3
https://doi.org/10.1007/978-3-030-22999-3_21

210 P. Likhitha et al.

8. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering recurring pat-
terns in time series. In: Proceedings of the 18th International Conference on
Extending Database Technology, pp. 97–108 (2015)

9. Kiran, R.U., Venkatesh, J., Toyoda, M., Kitsuregawa, M., Reddy, P.K.: Discovering
partial periodic-frequent patterns in a transactional database. J. Syst. Softw. 125,
170–182 (2017)

10. Luna, J.M., Fournier-Viger, P., Ventura, S.: Frequent itemset mining: a 25 years
review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(6) (2019)

11. Ravikumar, P., Likhitha, P., Venus Vikranth Raj, B., Uday Kiran, R., Watanobe,
Y., Zettsu, K.: Efficient discovery of periodic-frequent patterns in columnar tem-
poral databases. Electronics 10(12) (2021)

12. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-
frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul,
B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–
253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 24

https://doi.org/10.1007/978-3-642-01307-2_24

	Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases
	1 Introduction
	2 Related Work
	3 Proposed Model: top-k Periodic-Frequent Patterns
	4 Our Algorithm
	4.1 Basic Idea: Dynamic Maximum Periodicity
	4.2 k-PFPMiner

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Evaluation of Algorithm by Varying only k
	5.3 Scalability Test

	6 Conclusions and Future Work
	References

