
A Blockchain-Based Retribution
Mechanism for Collaborative Intrusion

Detection

Wenjun Fan1,4 , Shubham Kumar2 , Sang-Yoon Chang3,4 ,
and Younghee Park2,4(B)

1 School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou
215123, Jiangsu,

People’s Republic of China
wenjun.fan@xjtlu.edu.cn

2 Computer Engineering Department, San José State University, San José,
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Abstract. Collaborative intrusion detection approach uses the shared
detection signature between the collaborative participants to facilitate
coordinated defense. In the context of collaborative intrusion detection
system (CIDS), however, there is no research focusing on the efficiency of
the shared detection signature. The inefficient detection signature costs
not only the IDS resource but also the process of the peer-to-peer (P2P)
network. In this paper, we therefore propose a blockchain-based retribu-
tion mechanism, which aims to incentivize the participants to contribute
to verifying the efficiency of the detection signature in terms of cer-
tain distributed consensus. We implement a prototype using Ethereum
blockchain, which instantiates a token-based retribution mechanism and
a smart contract-enabled voting-based distributed consensus. We con-
duct a number of experiments built on the prototype, and the experi-
mental results demonstrate the effectiveness of the proposed approach.

Keywords: Blockchain · Collaborative intrusion detection ·
Retribution · Detection signature · Verification · Token

1 Introduction

A collaborative intrusion detection system (CIDS) [17] can share security infor-
mation (e.g., the intrusion signature) across multiple domains to gain a collab-
orative intelligence for intrusion detection. A CIDS can have a global view for
large networks or IT ecosystems in contrast to the standalone IDS that only
monitors the intrusion events occurring at one place. In the context of CIDS,
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there are two architectures [18]: centralized and distributed. A centralized CIDS
often applies a centralized server to collect and share the security information to
the distributed IDS, and such a centralized server is often deployed in cloud [5,7].
However, the centralized server often suffers the single point of failure, and the
cloud is also honest-but-curious. On the contrary, a distributed CIDS relies on
a peer-to-peer (P2P) network to propagate the security information. However,
the distributed CIDS has to cope with other security problems, e.g., it needs to
ensure the integrity of the data transmission and to build the trust among the
participants. For addressing those issues, several blockchain-based CIDSes have
been proposed [6,11,13,16].

The blockchain-based CIDSes often use permissioned blockchain, which
means any participant must be registered to the authority which could be a cen-
tralized CA [11,16] or a distributed PKI [6]. Also, one blockchain-based CIDS
often involves distributed consensus protocol to verify and agree the propagated
viable transmissions. Most consensuses of the CIDSes focus on resisting against
the insider attacks, e.g., a number of participants collude together (or are con-
trolled by the attacker) to issue/verify the malicious transmissions across the
whole P2P network. To address this, the blockchain P2P network can use practi-
cal Byzantine Fault Tolerance (pBFT)-based voting to achieve the n-compromise
resistance [6]. However, this research area lacks an approach to verify the effi-
ciency of the shared detection signature.

A detection signature is a malicious data pattern or attack rule that is com-
pared with current behavior to decide if is that of an intruder. The unverified
but widely adopted detection signature not only costs the CIDS resource but
also impacts the coordinated defense, because some participants may yield false
alerts due to the incorrect/inefficient detection signature.

In this paper, we propose a blockchain-based retribution mechanism to ver-
ify the propagated detection signature for CIDS. The following properties of the
blockchain typically motivate our approach: i) decentralization includes distinct
autonomous participants which is consistent with the nature of the CIDS; ii)
digital currency provides the financial nature to incentivize the participants to
contribute to donating and verifying detection signatures; iii) consensus enables
the participants of the P2P network to reach agreement based on a distributed
manner; iv) smart contract provides the programmability to create specific con-
sensus for processing certain payload of transaction; v) permissioned blockchain
controls the participation of the blockchain network.

The retribution mechanism aims to reward the participants who donate effi-
cient detection signatures and punish the participants who share inefficient detec-
tion signatures. Thus, the retribution mechanism introduces an incentive to the
participants to take part in the coordinated defense by sharing efficient detection
signatures. The contributions of this paper are summarized as follows:

– A blockchain-based retribution mechanism is proposed, which is used for
incentivizing the participants to contribute to the collaborative intrusion
detection system.
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– An Ethereum blockchain-based prototype is implemented for validating the
approach, whereby the Ethereum token is applied as the incentive.

– The corresponding experiments are conducted to show the effectiveness of the
proposed approach.

The rest of the paper is organized as follows: Sect. 2 reviews the related work;
Sect. 3 presents our models including the system network model and the threat
model that our approach builds on; Sect. 4 proposes the design of the blockchain-
based retribution mechanism; Sect. 5 presents the Ethereum blockchain-based
prototype implementation; Sect. 6 shows the experimental results; Sect. 7 con-
cludes the paper.

2 Related Work

In this section, we review the related work including the existing retribution
mechanisms in the context of blockchain P2P network and the detection signa-
ture verification methods in the IDS research area.

2.1 Retribution Mechanism

The well-known retribution mechanism in the context of Blockchain P2P network
is IKP [12], which provides an instant Karma mechanism to the distributed PKI
based on permissionless cryptocurrency blockchain. The major contribution of
IKP is that it proposes a resilient mechanism to provide incentives to the CAs to
perform correctly and to the detectors to report unauthorized certificates. IKP is
used to detect the unauthorized certificates for a domain due to CA misbehavior
in terms of certificate policies that specify automatic responses. However, IKP
still involves the mining process which is consistent with Nakamoto consensus
provides natural financial incentives for the participants in the permissionless
blockchain P2P network, in contrast to that, our approach is used for the per-
missioned blockchain without mining process.

Apart from monetary incentive based retribution mechanism, some other
approaches consider using reputation to reward or punish the participants. Thus,
we also consider the Proof-of-Reputation (PoR) as related work where the rep-
utation serves as incentive to push the nodes to participate in the distributed
consensus [8,14,19]. PoR is used to replace the Proof-of-Work (PoW) consensus
essentially to reduce the heavy computation power requirement and increase the
scalability of the blockchain P2P network, while PoR itself should resist against
the attacker whose objective is to get high reputation. The PoR-based consensus
often allows the node having the highest reputation to sign the block, or uses the
reputation to weight the vote of the node. That is different from our approach,
as we encourage every node to share the new detection signature, and also the
reputation is not used to weight the node’s vote.
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2.2 Detection Signature Verification

There are a number of solutions and research about verifying the detection sig-
nature in order to reduce the false positive in the context of signature-based
NIDS, e.g., to track and analyze the protocol status code of the response to see
if it is valid or unexpected [10]; to use the context knowledge, i.e., the protected
network and system configuration to verify the alters [4]; to correlate IDS alarm
with network vulnerability [15] using vulnerability scanning tool like Nessus [1].
Another case in point is the challenge-based approach, which evaluates a node’s
detection correctness by sending challenges and receiving the corresponding feed-
back [11]. In particular, ATLANTIDES [3] is a notable approach that uses an
automatic anomaly-based analysis of the system output, which provides useful
context information regarding the network services. In other words, it takes an
approach by correlating the anomalies detected on the output with the alerts
raised by the NIDS monitoring the input traffic, and built on that, it can discard
a number of the latter as being false positive alerts. More specifically, a commu-
nication’s incoming traffic triggers the signature-based NIDS’s alarm, and then
ATLANTIDES uses anomaly-based IDS to monitor the outgoing traffic of that
communication. If the anomaly-based IDS against outgoing traffic alarms, that
is a true positive detection signature, otherwise, that is a false positive one.

All the above approaches focus on verifying the truthfulness of the detection
signature, while out work stresses on the efficiency of the detection signature.

3 Models

This section presents the models that our approach is based on, which includes
the system network model and the threat model respectively.

3.1 System Network Model

In our approach, the P2P network is decentralized with collaborative detection
communication to gain a coordinated defense. We define the (virtual) network
boundary that comprises standalone intrusion detection engine nodes across geo-
graphical domains. Thus, the system network boundary can be considered as one
autonomous system (AS) overseeing multiple domains, or as a single-domain with
multiple networking inbound points, e.g., firewalls or security-enabled controllers
in SDN network [6]. With this definition, we assume that there is no outsider
attacks threatening the coordination communication between the participants,
e.g., the Denial-of-Service (DoS) attack making the node unable to participate
the distributed consensus [9]. Therefore, we focus on the insider attacks which
compromise the participants to share bogus information and manipulate the
consensus. Those participants will comprise a permissioned blockchain P2P net-
work, and once such a network is created, the set of peers is static within the
defined network boundary.
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3.2 Threat Model

The threat model stresses on the insider attacks rather than the outsider attack
corresponding to the system network model mentioned above. Hence, the DoS
attack from outside against the availability of the participant nodes is out of the
scope. Also, we do not consider the insider-and-outsider collusion case, whereby
an insider adversary does not share newly discovered detection signature to other
participants while inform the zero-day vulnerability to the outsider adversary so
that the outsider adversary can exploit the vulnerability.

The objective of an insider adversary is to take malicious actions to disrupt
the coordinated defense. More specifically, the insider adversary aims to deliver
inefficient detection signatures across the P2P network to enforce other partic-
ipants to download the inefficient detection signature to update their detection
rule set ineffectively. Except for the single node’s bad actions, the insider attack
often involves the network-wide compromise to manipulate the consensus. That
means the adversary has compromised enough participants and can mislead the
entire system to make a wrong decision.

The following items are the potential attack vectors that an insider adversary
can leverage, which our approach is designed to defend against:

1. Flooding: A peer keeps sending tremendous malicious/inefficient detection
signatures to other peers to waste their computation resource.

2. Malicious injection: A peer submits a malicious/inefficient detection sig-
nature to the other coordinated peers, which increases the false alert ratio.

3. Collusive verification: Multiple peers collude together to manipulate the
distributed consensus to affect the verification result. The objectives of this
vector can be i) to share and verify a malicious/inefficient detection signa-
ture (collusive injection); ii) or to defame a valid/efficient detection signature
(collusive defamation).

4 Design

This section proposes the system architecture overview, the efficiency calculation
method, the distributed verification consensus, and the retribution mechanism
as follows.

4.1 System Architecture Overview

An overview of the system architecture is presented by Fig. 1. In our approach,
the blockchain is permissioned, and a registered peer can play two alternative
roles, donor or verifier. Also, according to our system network model mentioned
in Sect. 3.1, the donor and verifiers can monitor different domains/networks.

When the peer is a donor, it submits detection signature to the P2P network;
as a verifier, the peer needs to verify the received detection signature to report
the verification result to indicate the efficiency of the detection signature. With
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Fig. 1. An overview of the architecture design: it includes n peers; when 1 peer plays
as a donor, the rest of the peers play as verifiers.

that, for each detection signature transmitted, there must be a donor and the
rest peers become verifiers in nature. We define the efficiency of a detection
signature as the presence of the detection signature across the verifiers. If a donor
circulates a detection signature, the other peers as verifiers need to examine the
presence of the detection signature separately. That means each verifier checks
its local rule-sets to see if the examined detection signature exists or not. Thus,
if a detection signature presents more times across the peers, it has the higher
efficiency. We propose a retribution mechanism (see Sect. 4.4) to incentivize the
peers to contribute to verifying the efficiency of the detection signature.

In Fig. 1, assuming there are five peers in the blockchain P2P network, when
one of them acts as a donor to push a detection signature file ID (SFID), other
peers will play as the verifiers to download and verify the new detection sig-
nature separately. It is worth noticing that in practice, people do not directly
submit the detection signature file to the blockchain, since storing big size file
(like the detection signature file) in blockchain ledger is not economical. Thus, we
employ the InterPlanetary File System (IPFS) [2] to store the raw detection sig-
nature file, whereby a SFID will be given by IPFS. Thus, the donor just submits
the SFID representing the corresponding detection signature to the blockchain,
and the verifiers can use the SFID to request to the IPFS for downloading the
detection signature for verification.

The distributed verification carried out by multiple verifilers is asynchronous,
since every domain has its own context. When a verifier gets a verification result,
it needs to report the result to the smart contract. Meanwhile, the consensus
checker of the smart contract keeps track of the reports from the verifiers. Once
the results achieve a consensus threshold, the smart contract can make the con-
sensus decision and execute the payout enforcer to perform the retribution.
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4.2 Efficiency Calculation Method

The verification method is that the verifier examines the presences of the down-
loaded detection signature in its own rule set (assuming one presence denotes
that the verifier convinces itself that the detection signature is valid by certain
checking approach like [3,4,15]). Thus, we define the peer/participant as p, the
rule set of pi as Ri, where i ∈ {1, 2, ..., 3n + 1} (when 3n + 1 is the total num-
ber of the peers participating in the P2P network to support the n-compromise
resistance), the detection signature as s, the count of the presence of s in Ri as
xi ∈ Z. Thus, if s /∈ Ri, xi = 0; if s ∈ Ri, xi � 1. Also, we define the total
number of the rules in Ri as yi, and the efficiency of s calculated by pi as fsi .
Thus, fsi can be calculated by the following Eq. (1):

fsi =
xi

yi
× 100% (1)

All the verifiers need to report the efficiency of s from their own perspectives
respectively to the smart contract. If fsi � 50%, the smart contract considers
that s is efficient for pi; whereas if fsi < 50%, the smart contract considers that
s is inefficient for pi. The smart contract counts the number of p who reports
the efficiency of s which is greater than or equal to 50%, meanwhile, counts
the number of p who reports the efficiency of s which is less than 50%. These
two counted numbers will be used to make an unanimous decision based on a
distributed consensus (see Sect. 4.3) as an overall verification result to s.

4.3 Distributed Verification Consensus

The distributed verification consensus presented here is used to ensure the dis-
tributed verification of the efficiency of the propagated detection signature, which
is different from the distributed consensus used for mining the block in permis-
sionless cryptocurrency. Hence, we use the practical Byzantine Fault Tolerance
(pBFT)-based voting to sustain the distributed verification consensus, which
provides an “n-compromise resistance” against the up to n participants compro-
mise where we have 3n+ 1 participants in total. In other words, our distributed
verification consensus is based on a majority decision, whereby even 1/3 of the
participants are compromised to perform collusive verification to make an ineffi-
cient s become efficient, the whole P2P network can still work and resist against
such an insider attack.

It is worth noting that Ethereum itself does not use pBFT as the consensus
algorithm for processing the transactions/blocks, while we use pBFT with smart
contract just for voting (and verifying) for the detection signature file proposed
by any peer. With using the pBFT-based voting for the distributed verification
consensus, the smart contract only makes the unanimous decision saying that
s is efficient when more than 2/3 of the total participants reporting that s is
efficient. Otherwise, s is judged as inefficient. Thus, our system is strict to decide
an efficient s (i.e., must have more than 2/3 participants agree) while is loose to
decide an inefficient s (i.e., only needs at least 1/3 participants agree).
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Table 1. Operations of the retribution scheme vs. the threats.

Operation Threat

Deposit (donor) Flooding

Penalty (donor) Malicious injection

Reward (donor) Malicious injection

Reward (verifiers) Collusive verification

In addition, once the consensus is done, there must be a majority group and a
minority group, unless the number of participants agreeing on the efficiency of s
equals the number of participants agreeing on the inefficiency of s. We define the
total number of verifiers which report result as nv, the number of the majority
verifiers as nmajor and the number of the minority verifiers as nminor. Thus,
nv = nmajor + nminor. In the event that s is efficient, the majority group must
includes the participants supporting the efficiency of s, and the minority group
must consist of the participants reporting the inefficiency of s. In contrast, if s
is verified as an inefficient one, the majority group and the minority group could
include either kind of participants respectively, i.e., the majority group could be
comprised of the participants supporting the inefficiency of s while the minority
group could consist of the participants supporting the efficiency of s, or vice
versa.

4.4 Retribution Mechanism

The retribution mechanism represents the reward and punishment methods
incentivizing the participants to contribute to donating and verifying the detec-
tion signature. To this end, we define three sorts of token-based operations:
deposit, penalty and reward. Table 1 summarizes these operations with the
threats (mentioned in Sect. 3.2) resisted against. These operations are detailed
as follows.

Deposit. The deposit operation indicates that one donor must deposit a number
of tokens accompany with the submission of s. We define the number of the
deposited tokens as d. Such an operation can effectively prevent the submission
flooding launched by the malicious donor, as now any donor has to deposit a
certain number of tokens for submission, meaning the submission is not free.

Penalty. The penalty operation towards the donor means that if the submitted s
turns out to be inefficient based on the consensus result reported by the verifiers,
then d will be deducted completely. Such as operation can effectively mitigate the
malicious injection including inefficient s, since if the submitted s is inefficient,
the deposit will be deducted as a penalty to the donor.

Reward (donor). The reward operation towards the donor denotes that if the
submitted s is verified as an efficient one, the donor will get the deposit back
and also get a number of extra tokens as reward for its contribution. We define
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the number of the reward tokens for the donor as rd. In our case, we specify
rd = d, which means the donor will get 2d back as reward, and that actually
awards the donor the number of tokens for one extra submission attempt. Such
an operation can incentivize the donor to submit efficient s in order to get the
deposit and the extra reward back.

Reward (verifier). Regarding the reward for the verifiers, we define the verifier
as vi where i ∈ {1, 2, ...3n} (as there is one out of the 3n+1 participants already
playing as a donor), the number of the reward tokens for all the verifiers as rv,
which equals the number of the deposited tokens from the donor, i.e., rv = d.
If the verifier belongs to the majority group, it will get a maximized reward,
defined as rv−max, and if the verifier belongs to the minority group, it will get
a minimized reward, defined as rv−min. Note that rv = rv−max + rv−min. In
addition, if nmajor = nminor, rv will be divided by nv, which then is allocated
to every vi equally, though this kind of event occurs occasionally. With that, we
define the reward per majority verifier as rper−major, the reward per minority
verifier as rper−minor, and the reward per verifier as rper−v (when nmajor =
nminor). Such an operation can incentivize the verifiers to report their verification
results, and also can resist against the collusive verification when the malicious
verifiers intend to make an inefficient s become an efficient s, unless the attacker
controls more than 2/3 verifiers of the whole P2P network1.

With the above mentioned reward operations for the verifiers, we can have
several payout cases. For example, we specify that d = rd = rv = 100, and there
∃vi reporting the verification result. Therefore, we can have the following reward
payout cases.

Case 1. When there is no vi in the minority group, i.e., nminor = 0, we specify
rv−min = 0 so that rv−max = 100. Hence, each v in the majority group will get
rper−major = 100

nmajor
tokens as reward.

Case 2. When there is vi in the minority group while nminor �= nmajor, we
specify rv−min = 1 so that rv−max = 99. Thus, each v in the majority group will
get rper−major = 99

nmajor
tokens as reward, and each v in the minority group will

get rper−minor = 1
nminor

tokens as reward.

Case 3. When nminor = nmajor, each v that reports verification result will get
rper−v = 100

nv
tokens equally as reward.

Algorithm (1) presents the verifier’s reward payout algorithm, which includes
the above three cases.

One example of the approach regarding verifying a detection signature as
efficiency is illustrated by Fig. 2. In this instance, the P2P network has 5 partic-
ipants. One p as a donor submits an SFID called “DS-file1” with 100 tokens as
deposit to the smart contract. The other four participants play as v to verify the
efficiency of the detection signature. Among these verifiers, three of them report

1 By contrast, to make an efficient s become inefficient, the collusive verification only
needs more than 1/3 verifiers of the whole P2P network. In our system, we consider
the “inefficiency becomes efficiency” more dangerous than the other way round.
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Algorithm 1. Verifier’s Reward Payout Algorithm
Require: 100 tokens deposited
Ensure: ∃vi reporting verification result
1: if nmajor == nminor then
2: rper−v = 100

nv

3: else
4: if nminor == 0 then
5: rper−major = 100

nmajor

6: else
7: rper−major = 99

nmajor

8: rper−minor = 1
nminor

9: end if
10: end if

Fig. 2. Sample interactions between the participants in our approach when a detection
signature is judged as efficiency.

the efficiency of DS-file1 greater than 50% (i.e., 65%, 70% and 55% respectively),
while one of them reports that this detection signature is inefficient since the
efficiency is only 30%. Upon that, the smart contract makes the consensus deci-
sion in terms of the majority results and judges DS-file1 as an efficient detection
signature. Thereafter, the smart contract returns the deposit 100 tokens and an
extra reward with another 100 tokens, i.e., 200 tokens altogether, to the donor
as it contributes an efficient detection signature to the whole system. Also, the
smart contract rewards the verifiers who report the verification results accord-
ing to the reward payout algorithm (see Algorithm (1)). Therefore, the smart
contract splits the 99 tokens proportionally in terms of the number of the major-
ity verifiers, i.e., 33 tokens per majority verifier, while still gives 1 token to the
minority verifier who claims that the detection signature is inefficient.

Because the design principal of the retribution mechanism is to encourage
every participant to work for verification, even though the result makes a verifier
belong to the minority group, the verifier still gets a minimized reward, but
surely the result making the verifier belong to the majority group will lead to a
maximized profit for the verifier.
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5 Implementation

This section presents the prototype including the system implementation and
the token values setup for validating the proposed approach.

For implementing the system, the participant nodes are deployed on Cloud-
Lab with the virtual machine (VM) running Ubuntu 18-64-STD by default set-
ting. On each node, we install Ethereum (Geth version 1.9.16-stable) and Solidity
(version 0.5.16) for solidity files compilation. Thus, we use those nodes to gen-
erate a real premissioned blockchain P2P network. Truffle (version 5.1.34) is
used to deploy the complied smart contracts on the locally created Ethereum
blockchain network. We also use web3.js (version 1.2.1) and truffle-contract (ver-
sion 4.0.31) to interact with the smart contract functions from our JavaScript
files. Also, we employ IPFS to physically store the real detection signature files
while only spread SFID on the blockchain.

The voting smart contract mainly consists of three functions, i.e., push SFID,
consensus, and reward payout. The push SFID function is used to allow the donor
to submit the detection signature to the blockchain P2P network, the consen-
sus function aims to tally up the verification results sent by the verifiers, and
the reward payout function is implemented in compliance with the retribution
mechanism.

Furthermore, regarding the token values setup in a permissioned blockchain,
the smart contract is initialized with a high amount of tokens to ensure that the
system has enough funds for rewarding the participants who make contribution
and in turn ensuring that the system can keep functioning for a long term.
For instance, the smart contract is initialized with 10 million tokens, and each
participant in the P2P network is credited with 1000 tokens initially by the
smart contract. The donor node has to firstly deposit 100 tokens with the smart
contract before it can write a SFID to the smart contract. Also, we specify the
extra reward for the donor as 100 tokens and the total reward for the verifiers
as 100 tokens as well.

In addition, the number of participant nodes (including donor and verifier)
could vary from 10 to 100 in our experiment setting. More details are presented
in the following experimental results.

6 Experiments

The section shows that several experiments are conducted built on the prototype
implementation, and the corresponding experimental results are presented for
evaluating our approach.

6.1 Computation Performance

First of all, we test the computation performance for carrying out different tasks
based on the prototype. Table 2 shows the computation overhead including CPU
usage, memory usage and execution time in terms of the corresponding tasks.
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Table 2. Performance of different tasks on blockchain.

Task CPU (%) MEM (MB) Exec. Time (ms)

Run geth 1.22 305.814 –

Deploy smart contracts 3.12 685.013 1683

Push SFID 4.72 68.36 144.63

Consensus 5.31 75.89 208.77

Reward payout 4.94 62.52 178.04

The blockchain network is initiated by running the Ethereum client (Geth)
and connecting the nodes with each other for forming the P2P network. This
Geth process continues running and takes 1.22% of the CPU and 305.814 MB of
the memory. Once the Ethereum nodes are initialized and connected with each
other, the smart contracts are then deployed to the blockchain network. This
process takes 3.12% of the CPU and 685.013 MB of the memory as it covers
many steps like the compilation of the smart contracts, initialization of smart
contracts, and finally deployment to the blockchain network. This process lasts
1683 ms (around 1.6 s).

The push SFID task utilizes around 4.72% of the CPU, takes 68.36 MB
of the memory, and spends around 144.64 ms for execution. Comparably, the
reward payout task utilizes around 4.94% of the CPU, takes 62.52 MB of the
memory, and spends around 178.04 ms for execution. The consensus task takes
CPU utilization of 5.31%, which is greater than the push SFID task and the
reward payout task, as the consensus task has higher complexity involved, i.e., it
has to keep track of the verification results sent by all the verifiers and maintain
the track of the participants belonging to the majority group and the minority
group respectively. The memory usage of the consensus task is also higher than
the push SFID task and the reward payout task, since the consensus task involves
maintaining the variables and array for storing the incoming efficiency results
from the verifiers, and also, it stores the information about the participant IDs
of the majority group and the minority group. Consequently, the consensus task
spends more time around 208.77 ms for execution.

6.2 Reward per Majority Verifier

We emulate the reward tokens for each majority verifier when there is no minority
verifiers and the submitted detection signature is verified as efficient. Figure 3
shows the result. It is apparent that the more majority verifiers involved, the
less reward each majority verifier can obtain. We can see that when the majority
group includes only 10 verifiers, each one can gain 10 tokens as reward, however,
when the majority group includes 100 verifiers, each one can only gain 1 token
as reward. That result informs that the deposit should be reconciled with the
scale of the P2P network, less deposit will decrease the verifiers’ incentive to
perform verification.
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Fig. 3. Reward per majority verifier.

Fig. 4. Detection file download time cost.

6.3 Detection File Download Time Cost

Figure 4 shows the time cost for downloading the detection files from IPFS. We
measure two sorts of files, i.e., one sort that the file size is 100 KB, and the other
sort that the file size is 500 KB. Note that in our system, each file just contains
one detection signature, and so the file sizes selected here are just in terms of the
typical cases in practice. When the verifier only needs to download one detection
signature file, it takes 1,445 ms for the 100 KB file size and 2,139 ms for the
500 KB file size on average respectively. It is obvious that the bigger file costs
more time for downloading. For example, when 100 verifiers go to download one
hundred 500 KB files, it takes 201,869 ms (∼202 s) altogether, by contrast, when
they go to download one hundred 100 KB files, it only takes 136,909 ms (∼137 s)
altogether. Further, according to the figure, we can see that the file-download
time for the 500 KB file size increases much faster than the 100 KB file size, as
the slope of the curve with the 500 KB file size is much steeper.
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Fig. 5. Networking overheads: Push SFID vs. Consensus vs Reward payout.

Thus, the detection signature file size should keep as small as possible, oth-
erwise it will cost more time for the whole verifiers to download it. Though
the verifiers download the detection signature file from IPFS in parallel, the
networking overhead is aggregated and increases dramatically.

6.4 Distributed Networking Overhead

Figure 5 presents the networking overheads in terms of the increasing number of
verifiers. It includes three curves, i.e., the push SFID time cost, the consensus
time cost and the reward payout time cost using average values with 95% confi-
dence interval. We can see that when there are 10 verifiers, it spends 1202.63 ms
for carrying out the push SFID task, 868.318 ms for performing the consensus
task, and 351.052 ms for taking the reward payout task. Also, when there are
100 verifiers on the P2P network, it spends 1208.6 vs. 8672.6 ms vs. 3726.28 ms,
respectively.

The push SFID task takes the largest networking overhead. This is because
during the push SFID process, the smart contract first checks whether the donor
node has enough tokens for deposit or not. After checking, it stores the SFID
value in temporary storage and emits an event notifying all the other participants
in the network that a new SFID has been pushed to the smart contract. This
further triggers the consensus process.
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The networking overhead of the consensus task is greater than the reward
payout task, as the smart contract has to keep track of the efficiency percentage
result sent by each participant. Also, in the consensus process, the smart contract
keeps track of the number of participants in both the majority group and the
minority group.

In addition, the reward payout task takes the least networking overhead,
since it utilizes the computation result calculated by the consensus function
about the participant IDs which come under either the majority group or the
minority group. The reward payout function then uses this information stored
by the consensus process to distribute the tokens among the majority group and
the minority group accordingly.

7 Conclusion

Collaborative intrusion detection system (CIDS) has a global view against the
network attack, whereby the shared security information including the detection
signature can help to build a coordinated defense. However, the existing CIDSes
often neglect the efficiency of the shared security information, which actually
not only consumes the storage resource and wastes the computational process,
but also brings security problems as the inefficient detection signature will raise
the false alert ratio. In this paper, we proposed a blockchain-based retribution
mechanism to incentivize the participants to verify the efficiency of the shared
detection signature for the CIDS. Thanks to the Ethereum blockchain financial
nature and the smart contract programmability, we facilitated the incentiviza-
tion by using Ethereum tokens and the distributed consensus with the smart
contract pBFT-based voting. The prototype and the corresponding experiments
demonstrated the effectiveness of the proposed approach.
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
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