
Word Embeddings for Fake Malware
Generation

Quang Duy Tran and Fabio Di Troia(B)

San José State University, San Jose, USA

fabio.ditroia@sjsu.edu

Abstract. Signature and anomaly-based techniques are the fundamen-
tal methods to detect malware. However, in recent years this type of
threat has advanced to become more complex and sophisticated, making
these techniques less effective. For this reason, researchers have resorted
to state-of-the-art machine learning techniques to combat the threat of
information security. Nevertheless, despite the integration of the machine
learning models, there is still a shortage of data in training that prevents
these models from performing at their peak. In the past, generative mod-
els have been found to be highly effective at generating image-like data
that are similar to the actual data distribution. In this paper, we lever-
age the knowledge of generative modeling on opcode sequences and aim
to generate malware samples by taking advantage of the contextualized
embeddings from BERT. We obtained promising results when differen-
tiating between real and generated samples. We observe that generated
malware has such similar characteristics to actual malware that the clas-
sifiers are having difficulty in distinguishing between the two, in which
the classifiers falsely identify the generated malware as actual malware
almost 90% of the time.

Keywords: BERT · GAN · Malware · Malware detection · Word
embedding

1 Introduction

The term malware refers to software that is created with the intention of causing
damage to computer data [2]. According to Statista, a total of 5.6 billion malware
attacks took place worldwide in 2020 [15]. These attacks target many small and
large industries, such as finance, transportation, healthcare, manufacturing, or
professional, which can cause immeasurable damage. For this reason, malware
prevention has become a vital part of information security.

Recently, machine learning approaches have been utilized in the malware
detection area to combat these threats. The common method of training
intelligent models is by collecting the malware characteristics such as opcode
sequences, API calls, and bytes vectors, among others [3]. Despite the promis-
ing results from machine learning techniques, there are still significant obstacles

c© The Author(s) 2022
L. Bathen et al. (Eds.): SVCC 2022, CCIS 1683, pp. 22–37, 2022.
https://doi.org/10.1007/978-3-031-24049-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24049-2_2&domain=pdf
http://orcid.org/0000-0003-2355-7146
https://doi.org/10.1007/978-3-031-24049-2_2


Word Embeddings for Fake Malware Generation 23

to overcome, such as adversarial machine learning to deceive machine learning
models [17], malware code obfuscation [5], and the shortage of publicly available
training datasets [28].

In this research, we build realistic fake malware samples from seven distinct
malware families by applying Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP). To build such realistic samples of a malware
infection, it is crucial to identify the distinctive features of each malware fam-
ily [33]. In general, malware samples belonging to the same family share many
characteristics with one another, yet they differ from those belonging to other
families. These unique characteristics of a malware sample can be quantified
by word embeddings, which can be generated by many Natural Language Pro-
cessing (NLP) models, including BERT. Thus, the focus of this study is on
the effectiveness of word embeddings developed in the context of creating mal-
ware samples. We employ a variety of machine learning classification techniques,
including One-Class Support Vector Machine (OCSVM), Isolation Forest, and
Local Outlier Factor, to assess this effectiveness by differentiating between real
and generated samples.

The rest of the paper is structured as follows. Section 2 reviews earlier and
related work. In addition, it provides a brief overview of the machine learning
techniques and concepts employed in this study. Section 3 explains our method-
ology, including our malware creation pipeline, and the training and evaluation
procedure. Section 4 discusses the actual implementation and our experimental
setup. Section 5 contains the analysis and results of our experiments. Finally, in
Sect. 6, we present the conclusions and future directions of this paper.

2 Background

In this section, we discuss related work in applying Generative Adversarial Net-
works (GANs) to generate malware samples. Also, we briefly introduce the
machine learning techniques used in this research.

2.1 Selective Survey of Related Work

Creating images from malware executable files and utilizing them to perform
malware detection and classification is a current trend in modern malware
research. This enables the use of image-analysis techniques, as well as the oper-
ations of strong deep neural networks that function well with images. Many
researchers utilized malware images to produce malware samples for generative
models, since it allows them to add more samples to the pool and even to perform
data augmentation on real data. For instance, in [21] the authors applied Vari-
ational Auto Encoder (VAE) and GANs to expand the training dataset using
malware as images, resulting in 2% and 6% increase in accuracy, respectively.
Another similar study [29] implemented GAN for the same purpose and obtained
a 6% increase in accuracy when trained ResNet-18 model on malware data.



24 Q. D. Tran and F. Di Troia

Although treating malware as images and perform augmentation has gained
popularity, we should not ignore the drawback of this technique, which requires
huge computational resources. Additionally, training and testing deep convo-
lutional networks can be computational expensive and time-consuming. Under-
standing the disadvantages, the authors in [31] proposed another approach based
on generating mnemonic opcode sequences by applying and comparing Hidden
Markov Models and three different GAN architectures. They were able to fool
the classifiers in distinguishing between real and generated malware with a 76%
detection/accuracy score when using WGAN-GP. Their main goal, however,
was to experiment with various generative modeling techniques when building
mnemonic opcode sequences to represent fake malware. In this work, we push
further the previous study by introducing word embedding generation. The main
difference between our study and [31] is that we utilize word embedding tech-
nique to generate realistic malware. Even though our approach is very similar
to [31], we will not compare our results to theirs because our evaluation method
is different.

Natural Language Processing (NLP) techniques can extract rich information
from sentences in a language, known as word embeddings. These embeddings
are able, for instance, to capture the meaning of a phrase, construct sentences
with similar meaning, or fill in the blanks within a sentence. NLP models extract
information about a word’s relationship to every other word in a phrase. The
model then clusters words with similar meanings together in a higher dimen-
sional space. This information assists NLP models in performing classification
and prediction tasks. In the realm of malicious malware, the models are uti-
lized to build embeddings for malware samples. For example, a research [25]
was conducted on detecting malware samples by applying NLP to mnemonic
opcode sequences. The results, derived by utilizing word embeddings generated
by Word2Vec, HMM2Vec, ELMo, and BERT, prove that NLP based models can
extract rich features that assist with classification accuracy. In particular, word
embeddings generated by BERT consistently achieved a superior classification
accuracy compared to other NLP techniques, with an accuracy of around 96%.

We see that there is a gap in the literature when it comes to utilizing word
embeddings to assist GAN to generate realistic malware. As a result, we con-
duct a study on this subject by introducing the usage of BERT in generative
modeling. In summary, we extract mnemonic opcodes from malware files, apply
BERT transformer to obtain embeddings, and train generative models to gener-
ate malware embeddings.

2.2 Machine Learning Techniques

In this section, we discuss the key elements of this paper, that is, the generative
and NLP models. The generative model that we implemented is Wasserstein
GAN with Gradient Penalty (WGAN-GP), while the NLP model is BERT.

Wasserstein GAN with Gradient Penalty. Ishaan Gulrajani et al. intro-
duced WGAN-GP in 2017 [32]. The fundamental goal of this design is to surpass



Word Embeddings for Fake Malware Generation 25

WGAN’s disadvantage by applying gradient norm penalty with Wasserstein loss
formulation to achieve Lipschitz continuity. The authors provide Corollary 1,
which states that the optimum critic in WGAN has a gradient norm of 1 and is
1-Lipschitz continuous. Taking advantage of this, a “penalty” is placed on the
critic if the norm of its gradient deviates from the value 1. WGAN-GP training
method is similar to the WGAN algorithm, with the exception of the weight clip-
ping and the inclusion of the gradient penalty [32]. More details about WGAN
can be found in [26].

BERT. Bidirectional Encoder Representations from Transformers (BERT) is
a transformer-based NLP model that has shown to be successful in difficult
language-based tasks such as masked word prediction and sentiment classifica-
tion. The model is capable of creating contextualized word embedding by taking
the context in which the individual words are used into account. BERT model
finds word relationships via attention, a method that aids in the retention of
long-term dependencies in sentences of up to 512 words, as shown in Fig. 1. In
general, a normal language phrase does not exceed 512 words, but the opcode
sequences in a malware sample can surpass this limit. In our testing, the first 400
opcodes from each malware file were adequate to obtain satisfactory outcomes
while using less computational resources. Further details on the architecture
and attention mechanism of BERT can be found in [16], while an analysis of its
attention heads is covered in [7].

Fig. 1. Trained BERT components

DistilBERT. Despite the fact that BERT has grown more common in Natural
Language Processing, running these huge pre-trained models with tight compu-
tational training or inference budgets remains difficult. DistilBERT, a computa-
tionally efficient and lightweight version of BERT, was proposed to overcome this
challenge. DistilBERT model was constructed using the knowledge distillation



26 Q. D. Tran and F. Di Troia

during the pre-training phase to shrink a BERT model by 40%, while preserving
97% of its language comprehension skills and being 60% faster [4]. This model,
similar to its larger counterparts, is also capable of being fine-tuned with good
performances on a wide range of tasks. Seeing the advantages the model offers, we
utilized DistilBERT in our study to create contextualized malware embeddings.
The DistilBERT model that we used is hosted and open sourced by HuggingFace
team [6], and was pre-trained on the English language. In this study, the model
was neither trained nor fine-tuned on malware samples. More details about the
model can be found in [4].

3 Methodology

This section provide details on the dataset, as well as the training and evaluation
procedure we followed in our experiments.

3.1 Dataset

The dataset that we used for all of our experiments consists of seven malware
families with more than 1000 samples (shown in Table 1).

Table 1. Dataset summary

Malware family Type Samples

WinWebSec Rogue 4360

VBInject Worm 2694

Zbot Information Stealer 2136

Renos Trojan Downloader 1568

OnLineGames Password stealer 1513

BHO Trojan 1405

Zeroaccess Corrupting Devices 1305

To begin with, we looked into the Malicia dataset [18], which has over 50
malware families, and selected Winwebsec, Zbot, and Zeroaccess since they
have over 1000 samples each. The remaining four families were obtained from
VirusShare [30]. There are over 120, 000 malware executables in this 100 Giga-
bytes dataset, from which four extra families were selected, namely, VBInject,
Renos, OnLineGames, and BHO. These families are in top 5 most sample counts,
where each has more than 1300 samples. Winwebsec and Zbot are also provided
in the VirusShare dataset. However, we use the ones from Malicia dataset because
they have almost double the sample size.

We utilized objdump, sed, and cut, the command-line utilities included in the
GNU Binary Utilities package for Unix-like operating systems. Using objdump,



Word Embeddings for Fake Malware Generation 27

executable files can be disassembled into Assembly code, thus allowing them
to be extracted as mnemonic opcodes. Then, sed and cut can be used to filter
and transform text to remove all the excessive information, such as registers or
addresses.

Here is a short description of our selected malware families.

Winwebsec: a trojan that creates fictitious problems and claims to have solu-
tions that are authentic anti-virus software [8].

Zbot: a trojan that breaches into Microsoft Window computers and steals con-
fidential information [9].

Zeroaccess: a trojan that infects Window computers and exploits them for
malicious purposes such as corrupting devices [10].

BHO: performs a wide range of harmful behaviors as directed by an attacker
[14]

OnLineGames: steals users’ login credentials and records keystroke activity
[12]

Renos: pretends that the machine is infected with malware and demands money
to remove the non-existed spyware [13]

VBInject: packed malware that obfuscates its content to conceal other malware
and itself from detection [11]

3.2 Training Procedure

Figure 2 depicts an example of our WGAN-GP training process. Tokenizers are
applied to the original malware dataset before turning into BERT inputs that
generate word embeddings. These embeddings are then directly used to train
the generative model. After training, WGAN-GP is able to generate fake mal-
ware embeddings as outputs. We rinse and repeat this entire process through all
malware families.

Fig. 2. WGAN-GP training process

3.3 Evaluation Procedure

Figure 3 shows an illustration of our WGAN-GP evaluation procedure. The ini-
tial set up is partially the same as the training procedure, where we generated
real malware embeddings from malware opcodes using DistilBERT model. Fol-
lowing, we apply 5-fold cross-validation and split the data into 80% training
and 20% validation set. Test data contains malware embeddings generated by
WGAN-GP, and is split into five subsets to participate in 5-fold cross-validation.
After, we construct three new classifiers (One-Class SVM, Isolation Forest, and
Local Outlier Factor) inside each fold to train and assess on the validation and



28 Q. D. Tran and F. Di Troia

test dataset. At the end of each fold, we obtain train, validation, and test accu-
racy. Next, we calculate the average of the 5 folds as the final results for that
WGAN-GP model. We cycle over all generative models that were trained on
that same malware family, and compare their results to determine which model
has the lowest test accuracy score. The lowest score indicates that the model
was the most successful in generating fake samples able to confuse the detec-
tion algorithms. Such model is, thus, selected as the best generative model for
that particular malware family. This same process is repeated for all malware
families.

Fig. 3. WGAN-GP evaluation process

4 Implementation

In this section, we discuss the techniques we applied to extract embeddings using
BERT model. Moreover, the parameters used for the generative and classification
models are also provided.

4.1 Feature Extraction

The classification tokens (CLS) gather information about the entire sentence
and are used to express sentence-level classification results. In the instance of
a malware sample, the CLS token collects all of the sample’s information. This
information can be used to aid the learning of WGAN-GP. Therefore, among the
768 hidden units of BERT, the first column (that represents the CLS tokens)
is selected. Furthermore, leveraging image scaling from image processing, we
applied the same principle to BERT embeddings to help ease the learning of
WGAN-GP. The embeddings were also scaled to fit into the range of −1 and
+1. This technique simplifies BERT embeddings, which allows the generative
models to convert faster.



Word Embeddings for Fake Malware Generation 29

4.2 WGAN with Gradient Penalty

In our study, we took WGAN-GP into consideration because the network has
been shown to perform well in [31]. We were influenced by the study of the
authors in [31], and used the same parameters in our experiments. Adam opti-
mizer was used with the following parameters:

Adam(lr = 0.0001, β1 = 0.5, β2 = 0.9)

Each WGAN-GP model was trained for 100, 000 epochs. The critic network
consists of three hidden Conv1D layers with 64, 128, and 256 filters and a kernel
size of 3. Similarly, a kernel size of 3 and three Conv1D layers with 64, 32, and
16 filters were utilized in the generator network. LeakyReLU is the activation
functions for the hidden layers of Conv1D.

In the generator, the output layer consists of a fully connected Dense layer
with 768 neurons. The reason to use exactly 768 neurons is to match the output
size of BERT. The activation function for the generator is TanH, while there is
none for the critic network. The authors in [31] decided to not implement neither
Batch Normalization nor Layer Normalization in the critic network. But in the
generator, Batch Normalization is still applied.

The penalty coefficient, λ, is set to 10. The parameter “n critic”, which rep-
resents the number of critic iterations per generator iteration, is set to 100. In
other words, for each epoch, the generator was only updated after training the
critic for 100 iterations. Table 2 shows all the parameters and their values used
in the generator and critic.

Table 2. Generator and Critic parameters

Parameter Value

Generator activation TanH

kernel size 3

Conv1D layer filter 1 64

Conv1D layer filter 2 32

Conv1D layer filter 3 16

Conv1D padding same

BatchNorm momentum 0.8

Critic activation LeakyReLU

kernel size 3

Conv1D layer filter 1 64

Conv1D layer filter 2 128

Conv1D layer filter 3 256

Conv1D padding same



30 Q. D. Tran and F. Di Troia

4.3 Evaluation Implementation

Because GAN are most commonly used in the image domain, the two popu-
lar metrics Inception Score [22] and Fréchet Inception Distance (FID) [27] are
used to evaluate the quality of the generated images. In addition, generated
images are saved every few hundred epochs, such as 500, before being examined
visually. However, our dataset consists of opcode sequences, which are impossi-
ble to be inspected visually. Hence, we applied a different metrics to evaluate
GAN performance. Reading about the two scores, we realized that the similarity
between them is that they are calculated using the inception-v3 model. More-
over, inception-v3 was trained on more than a million images from the ImageNet
database, and attained a greater than 78.1% accuracy on the same dataset [1].
The key point here is that, when evaluating against GAN, the inception-v3 net-
work has neither seen nor learned about the generated images. Therefore, we
decided to not include generated data, but only malware data, into our training
set. We then use three classification models, that is, One-Class SVM (OCSVM)
[23], Isolation Forest [20], and Local Outlier Factor (LoF) [24], which are based
on the idea of anomaly detection, to evaluate GAN’s performance.

Anomaly detection can be branched off into outlier and novelty detection.
To decide which one to use, we have to look into the difference between the
two. Outlier detection is used when there are outliers in the training data, which
are observations that are different from the rest of the data [19]. On the other
hands, novelty detection is used when the training data is not contaminated with
outliers, and we are interested in determining if a new observation is an outlier
[19]. Since our train data only contains malware opcodes, novelty detection is
selected in our evaluation. Our test dataset, which only contains generated data,
will be considered as new observations to be determined if it is anomaly.

In our study, we saved the generative model at every 500 epochs. We then
generated fake samples from all saved generative models, and classified if they
are outliers or not using the three classification models. Afterwards, we tuned
all three classifiers using sklearn GridSearchCV [34] on each malware family to
achieve the highest train and validation accuracy. Upon training on the real mal-
ware data using 5-fold cross validation, these classifiers will be evaluated against
the generated data. Accuracy score is then computed to see how similar the gen-
erated data is when compared to the real malware data. Lastly, we compared the
score across all our generative models and pick out the best model. Note that our
goal is to achieve as low accuracy score as possible. High accuracy shows that
the three classifiers classified generated data as outliers, which is not similar to
real malware data. And vice versa, low accuracy means the classifiers classified
generated samples as inliers, which is similar to real malware data. Table 3, 4
and 5 below are the summary of the tuned parameters we used for the classifiers.



Word Embeddings for Fake Malware Generation 31

Table 3. One-class SVM parameters

Malware family Parameters

nu kernel gamma

Winwebsec 0.5 sigmoid 0.1

Zbot 0.01 sigmoid 0.001

Zeroaccess 0.01 sigmoid 0.001

VBInject 0.01 poly 0.3

BHO 0.01 rbf 0.3

Renos 0.01 rbf 0.01

OnLineGames 0.01 poly 0.3

Table 4. Isolation forest parameters

Malware family Parameters

contamination max samples n estimators bootstrap

Winwebsec 0.01 auto 1 False

Zbot 0.01 auto 1 True

Zeroaccess 0.01 auto 1 True

VBInject 0.01 auto 1 True

BHO 0.01 0.5 1 True

Renos 0.01 auto 0.8 True

OnLineGames 0.01 auto 1 True

Table 5. Local outlier factor parameters

Malware family Parameters

p contamination leaf size n neighbors algorithm novelty

Winwebsec 2 0.01 2 50 auto True

Zbot 1 0.01 2 30 auto True

Zeroaccess 1 0.01 2 30 auto True

VBInject 1 0.01 2 5 auto True

BHO 1 0.01 2 30 auto True

Renos 1 0.01 2 5 auto True

OnLineGames 2 0.01 2 5 auto True



32 Q. D. Tran and F. Di Troia

5 Results

This section provides the classification results of our experiments followed by a
detailed analysis.

5.1 Evaluation Score

The author in [32] suggested that the critic’s loss, which is used to assess WGAN-
GP’s performance, should start at a high negative value and then converge to
zero. The generator’s loss, on the other hand, can fluctuate and, hence, is not
intuitive. Therefore, we start by looking at the loss curves and then the classifi-
cation results.

The critic loss curves for seven families presented a similar pattern to the one
in [31]. In our experiments, they all started at around −10, then quickly spiked
up to around −27 during the first 50 epochs, and slowly converted to around
−0.19 after 10, 000 epochs. In other words, our model was trained properly when
it exhibited this behavior. Figure 4 below shows the ranking (from worst to best)
of critic loss on all malware families at the end of training.

Fig. 4. Ranking of critic loss on malware families

The best test accuracy scores were selected independently from all genera-
tive models, the seven malware families, and the three types of classifiers. Our
parameters for each classifier were the same as those discussed in Table 3, 4,
and 5. The average training accuracy score across seven families was roughly
99.1%. The average validation accuracy score was roughly the same as train-
ing accuracy, about 99%. However, the test accuracy score is consistently low,
achieved the highest score of 38.8% with BHO, and the lowest score of 0.00%



Word Embeddings for Fake Malware Generation 33

with Renos. The average of the test score across all families was 15.6%. One-
Class SVM showed to perform better than Isolation Forest and Local Outlier
Factor in terms of classifying between the real and generated malware data.
Most of the test accuracy scores obtained by OCSVM were over 0.00%, except
for Renos family.

The Isolation Forest Classifier obtained an average training accuracy of
99.4%. The average validation accuracy score was around 99.4%, which was sim-
ilar to the training accuracy. However, unlike OCSVM, Isolation Forest obtained
lower average test accuracy score (about 2.5%). There are a few more families
having the test accuracy scores closer to zero compared to OCSVM.

The average of training and validation accuracy scores of Local Outlier Fac-
tor are 99.4% and 98.9%, respectively. There are more families that fooled the
classifier that could not distinguish between real and generated malware data.
BHO, however, obtained the highest test accuracy in all three classifiers (38.8%
for OCSVM, 14.4% for Isolation Forest, and 75.7% for Local Outlier Factor).
The complexity and lack of samples for the BHO family could be a big con-
tributing factor to this result. Having the second least amount of samples, 1405
data points, WGAN-GP was not able to adequately learn the distribution of
this family. This is further supported by having the highest negative critic loss
(−0.247) in the training procedure compared to other families. We computed the
average accuracy from all test score, and obtained a 12.12% average accuracy.
Table 6 summarized the comparison of the accuracy score between each family
and classifier. We see that the majority of the families were recreated correctly
by our BERT-GAN approach, with the exception of the BHO family for which a
considerable number of samples were still classified as fake by LoF and OCSVM.

5.2 Further Analysis

To understand the importance of the accuracy score, we should take a look at
its formula:

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative

In our case, Positive represents real malware and Negative represents gen-
erated malware. Since our test dataset only contains generated malware, True
Positive is always 0, that is, cases that are correctly classified as real malware.
Similarly, False Negative is always 0. Hence, the formula simplified as follow:

Accuracy =
TrueNegative

TrueNegative + FalsePositive

The new formula measures the true negative rate, which is the classifiers’
ability to predict a true negative of each category available. Thus, when we
achieved 12.12% average accuracy, this tells us that the classifiers are only able
to correctly identify generated malware 12% of the time. In other words, if we
run the evaluation to classify between real and generated malware 100 times,



34 Q. D. Tran and F. Di Troia

Table 6. WGAN with gradient penalty scores.

Malware Family
One Class SVM Isolation Forest Local Outlier Factor

Train Val Test Train Val Test Train Val Test

Winwebsec 0.995 0.995 0.044 0.998 0.998 0.0 0.993 0.992 0.0

Zbot 0.991 0.990 0.125 0.992 0.996 0.006 0.992 0.991 0.081

Zeroaccess 0.989 0.989 0.163 0.998 0.996 0.0 0.992 0.989 0.0

BHO 0.983 0.981 0.388 0.992 0.992 0.144 0.994 0.994 0.756

OnLineGames 0.994 0.994 0.219 0.992 0.99 0.006 0.996 0.989 0.438

VBInject 0.993 0.992 0.156 0.995 0.995 0.006 0.995 0.989 0.0

Renos 0.99 0.99 0.0 0.994 0.994 0.013 0.998 0.983 0.0

the classifiers will falsely classify generated malware as actual malware 88 times.
Low true negative rate shows that generated malware has such similar character-
istics to actual malware that the classifiers are having difficulty in distinguishing
between the two. Moreover, the results of the experiments look promising since
we applied k-fold cross validation to reduce the effects of overfitting.

6 Conclusions and Future Work

In this paper, we aimed at taking advantage of contextualized embeddings cre-
ated by BERT to generate fake malware embeddings. The generative model we
utilized was Wasserstein Generative Adversarial Networks with Gradient Penalty
(WGAN-GP).

In previous studies, GANs have been shown to generate fake malware opcode
sequences. In term of generating malware embeddings, however, there exists a
gap in the literature.

We explored that gap in our study by training the generative models on
malware embeddings and assess them with three classification models, namely,
One-Class SVM (OCSVM), Isolation Forest, and Local Outlier Factor (LoF).
The results obtained in our experiments show that WGAN-GP can generate
malware embeddings that can closely match the real data distribution. This
demonstrates that WGAN-GP algorithms can be successfully applied to pro-
duce malware embeddings in addition to generating image data. In some cases,
generative models could help increasing the number of data samples for families
with limited sample size. This new approach improves the quality of the fake
malware generated by GAN algorithms, and creates more encouraging opportu-
nities to apply such data to enhance malware datasets used to train supervised
machine learning models.

For future work, this paper may be taken in a variety of different directions.
The dataset, for example, may be expanded, and the experiments can include a
greater number of malware families. A multi-class generative model can also be
explored instead of training distinct WGAN-GP models for each family. Another
possible application is to use many different word embeddings techniques to



Word Embeddings for Fake Malware Generation 35

support WGAN-GP training, such as Word2Vec, ELMo, or different version of
BERT. Training BERT model on malware dataset before generating embeddings
could also be considered, which may possibly boost the learning of generative
models. Finally, because stateful networks can produce intriguing results, exper-
iments using LSTM-GAN can be performed.

References

1. Advanced guide to inception V3, Google. https://cloud.google.com/tpu/docs/
inception-v3-advanced

2. Aycock, J.: Computer Viruses and Malware. Springer, New York (2006)
3. Dhanasekar, D., Di Troia, F., Potika, K., Stamp, M.: Detecting encrypted and

polymorphic malware using hidden Markov models. In: Parkinson, S., Crampton,
A., Hill, R. (eds.) Guide to Vulnerability Analysis for Computer Networks and
Systems. CCN, pp. 281–299. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92624-7 12

4. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108 (2019)

5. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE
Secur. Priv. 9(5), 41–47 (2011). https://doi.org/10.1109/MSP.2011.98

6. Hugging Face. Distilbert. https://huggingface.co/transformers/model doc/
distilbert.html

7. Clark, K., Khandelwal, U., Levy, O., Manning, C.: What does BERT look at? an
analysis of BERT’s attention. In: Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, Florence, Italy,
August 2019, pp. 276–286. Association for Computational Linguistics (2019)

8. Microsoft Security Intelligence. Winwebsec (2010). https://www.microsoft.com/
security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec

9. Microsoft Security Intelligence. Zbot (2010). https://www.microsoft.com/en-us/
wdsi/threats/malware-encyclopedia-description?name=win32%2Fzbot

10. Asher-Dotan, L.: What is zero access malware, cybereason i cybersecurity software
to end cyber attacks, 16-May-2016. https://www.cybereason.com/blog/what-is-
zeroaccess-malware

11. Microsoft Security Intelligence. VBInject (2010). https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/
VBInject%26ThreatID=-2147367171

12. Microsoft Security Intelligence. Onlinegames (2008). https://www.microsoft.com/
en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32
%2FOnLineGames

13. Microsoft Security Intelligence. Renos (2006). https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:
Win32/Renos&threatId=16054

14. Microsoft Security Intelligence. BHO (2020). https://www.microsoft.com/en-us/
wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO

15. Johnson, J.: Number of malware attacks per year 2020, Statista, 20-Aug-
2021. https://www.statista.com/statistics/873097/malware-attacks-per-year-
worldwide/

16. Vaswani, A., et al.: Attention is all you need (2017). https://arxiv.org/abs/1706.
03762

https://cloud.google.com/tpu/docs/inception-v3-advanced
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://doi.org/10.1007/978-3-319-92624-7_12
https://doi.org/10.1007/978-3-319-92624-7_12
https://doi.org/10.1109/MSP.2011.98
https://huggingface.co/transformers/model_doc/distilbert.html
https://huggingface.co/transformers/model_doc/distilbert.html
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fzbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fzbot
https://www.cybereason.com/blog/what-is-zeroaccess-malware
https://www.cybereason.com/blog/what-is-zeroaccess-malware
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-2147367171
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-2147367171
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-2147367171
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO
https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


36 Q. D. Tran and F. Di Troia

17. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58 (2011)

18. Nappa, A., Rafique, M.Z., Caballero, J.: The MALICIA dataset: identification and
analysis of drive-by download operations. Int. J. Inf. Secur. 14(1), 15–33 (2015).
https://doi.org/10.1007/s10207-014-0248-7

19. “novelty and outlier detection”, scikit-learn. https://scikit-learn.org/stable/
modules/outlier detection.html

20. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. Eighth IEEE Int. Conf. Data Min.
2008, 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17

21. Burks, R., Islam, K.A., Lu, Y., Li, J.: Data augmentation with generative mod-
els for improved malware detection: a comparative study. In: 2019 IEEE 10th
Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON), pp. 0660–0665 (2019). https://doi.org/10.1109/UEMCON47517.
2019.8993085

22. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs (2016)

23. Bounsiar, A., Madden, M.G.: One-class support vector machines revisited. In:
International Conference on Information Science & Applications (ICISA) 2014,
pp. 1–4 (2014). https://doi.org/10.1109/ICISA.2014.6847442

24. Pokrajac, D., Lazarevic, A., Latecki, L.J.: Incremental local outlier detection for
data streams. In: IEEE Symposium on Computational Intelligence and Data Min-
ing 2007, pp. 504–515 (2007). https://doi.org/10.1109/CIDM.2007.368917

25. Kale, A.S., Pandya, V., Di Troia, F., et al.: Malware classification with Word2Vec,
HMM2Vec, BERT, and ELMo. J. Comput. Virol. Hack. Tech. (2022). https://doi.
org/10.1007/s11416-022-00424-3

26. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)
27. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs

trained by a two time-scale update rule converge to a local Nash equilibrium. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS 2017, pp. 6629–6640. Curran Associates Inc. (2017)

28. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for detection and
classification of malware: research developments, trends and challenges. J. Netw.
Comput. Appl. 153, 102526 (2020). https://doi.org/10.1016/j.jnca.2019.102526,
https://www.sciencedirect.com/science/article/pii/S1084804519303868

29. Lu, Y., Li, J.: Generative adversarial network for improving deep learning based
malware classification. In: 2019 Winter Simulation Conference (WSC), pp. 584–593
(2019). https://doi.org/10.1109/WSC40007.2019.9004932

30. Roberts, J.M.: VirusShare.com - Because Sharing is Caring (2011). http://www.
virusshare.com

31. Harshit, T.: Fake malware opcodes generation using HMM and different GAN algo-
rithms (2021). Master’s Projects. 1001. https://doi.org/10.31979/etd.eq6a-twvq,
https://scholarworks.sjsu.edu/etd projects/1001

32. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of wasserstein GANs (2017)

33. Basole, S., Di Troia, F., Stamp, M.: Multifamily malware models. J. Comput. Virol.
Hacking Tech. 16(1), 79–92 (2020). https://doi.org/10.1007/s11416-019-00345-8

34. sklearn. Gridsearchcv. https://scikitlearn.org/stable/modules/generated/sklearn.
model selection.GridSearchCV.html

https://doi.org/10.1007/s10207-014-0248-7
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/outlier_detection.html
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/UEMCON47517.2019.8993085
https://doi.org/10.1109/UEMCON47517.2019.8993085
https://doi.org/10.1109/ICISA.2014.6847442
https://doi.org/10.1109/CIDM.2007.368917
https://doi.org/10.1007/s11416-022-00424-3
https://doi.org/10.1007/s11416-022-00424-3
https://doi.org/10.1016/j.jnca.2019.102526
https://www.sciencedirect.com/science/article/pii/S1084804519303868
https://doi.org/10.1109/WSC40007.2019.9004932
http://www.virusshare.com
http://www.virusshare.com
https://doi.org/10.31979/etd.eq6a-twvq
https://scholarworks.sjsu.edu/etd_projects/1001
https://doi.org/10.1007/s11416-019-00345-8
https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


Word Embeddings for Fake Malware Generation 37

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Word Embeddings for Fake Malware Generation
	1 Introduction
	2 Background
	2.1 Selective Survey of Related Work
	2.2 Machine Learning Techniques

	3 Methodology
	3.1 Dataset
	3.2 Training Procedure
	3.3 Evaluation Procedure

	4 Implementation
	4.1 Feature Extraction
	4.2 WGAN with Gradient Penalty
	4.3 Evaluation Implementation

	5 Results
	5.1 Evaluation Score
	5.2 Further Analysis

	6 Conclusions and Future Work
	References




