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Abstract. This investigation presents damage identification in thin steel beams
containing a horizontal crack using artificial neural networks. In this way, finite
elementmodeling of the cracked beam is developed to generate natural frequencies
corresponding to various horizontal cracks scenarios. Then, the artificial neural
network is used to create a predictor model for localizing horizontal cracks in
steel beams. Results of the current paper show that The proposed technique is
an effective method for detecting horizontal crack damage in steel beams. The
regression index obtained in this study is equal to 0.979.

Keywords: Structural health monitoring · Damage identification · Artificial
neural networks · Steel beams · Horizontal cracks

1 Introduction

Structural analysis and structural health monitoring are two essential issues in struc-
tural engineering from nano size to macro size [1–10]. The objective of structural health
monitoring is to prevent the failure of structures [11–14]. As a result, structural health
monitoring prevents additional costs for repairing and reconstruction of damaged struc-
tures [15–17]. In this regard, vibration-based analysis of damaged structures plays an
essential role in structural health monitoring [18–22]. Generally, there are two main
types of analysis of damaged structures: Forward analysis and inverse analysis [23–28].

The forward analysis deals with modeling damages to provide modal characteristics
of structures such as mode shapes and their corresponding natural frequencies [29–
32]. Also, the forward analysis may use to obtain dynamic responses of the damaged
structures [33–36]. In this field, much research has been conducted.

In reverse analysis, on the other hand, the goal is to obtain the position or extent of
the damage by having the vibrational properties of the system. So far, much research
has been done in this area. Some of these approaches are based on optimization, a
part of them are based on the mode shapes, the others are based on machine learning
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algorithms. In this research, one of the machine learning algorithms called the artificial
neural network algorithm is used to detect horizontal cracks in steel beams, including a
vertical crack. In this way, first, the modeling of finite components of horizontal cracks
in steel beams is described in the next section. Then the artificial neural network is
introduced, the technique proposed in this paper, and then numerical examples and
results are presented, and finally, conclusions are presented.

2 Basic Mathematical Formulations

2.1 Geometry

In order to investigate the damage identification problem, a thin isotropic beam of length
L with a rectangular cross-sectional area A, width b, and thickness h is modeled in
the same procedure as [37]. As shown in Fig. 1-b, the damaged beam is modeled by
the combination of four intact sub-beams, which is separated by a through-the-width
horizontal crack of length L2 which is located at the midplane and a distance L1 from
the left end of the beam. In this manner, each sub-beam has a length and thickness of
Li × hi(i = 1− 4) where i represents the number of sub-beams, h1 = h4 = h, L2 = L3,
and L4 = L − L1 − L2.

Fig. 1. a. The geometry of isotropic beam, b. Representation of beam into four sub-beams.

2.2 Finite Element Modeling

To study the vibration analysis of the presented beam, in this paper, the Euler-Bernoulli
beam theory is adopted to establish vibration equations. Therefore, a higher-order beam



116 A. Heshmati et al.

element as demonstrated in Fig. 2 with three nodes and six degrees of freedom, including
vertical displacement w and slope w′ is introduced.

Fig. 2. (a) Higher-order beam element. (b) intrinsic coordinate of the element

The displacement field equation for the higher-order beam element can be inter-
polated via the Hermite interpolation function and in terms of the intrinsic coordinate
as:

w =
3∑

i=1

[
w2i−1(η)wi + �2i(η)w

′
i

]
= [�]{d} (1)

where η is the intrinsic coordinate, i.e. η = x
Le

and Le is the length of the respective
element. As well, {d} indicates the vector of DOFs and �i(η) are the shape functions
associated with i th degrees of freedom which are given as:

�1(η) = 1 − 23η2 + 66η3 − 68η4 + 24η5

�2(η) = Le(η − 6η2 + 13η3 − 12η4 + 4η5)

�3(η) = 16η2 − 32η3 + 16η4

�4(η) = Le(−8η2 + 32η3 − 40η4 + 16η5)

�5(η) = 7η2 − 34η3 + 52η4 − 24η5

�6(η) = Le
(
−η2 + 5η3 − 8η4 + 4η5

)
(2)

{d} = {w1 w
′
1 w2 w

′
2 w2 w

′
3} (3)

The energy approach is utilized to obtain the element stiffness and mass matrices,
which is not described in detail here [38, 39]. Hence, the potential and kinetic energy of
an element can be stated in terms of displacement vector as follows [40]:

Ue = 1

2
{d}T [Ke]{d} (4)
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Te = 1

2

{
ḋ
}T

[Me]
{
ḋ
}

(5)

Thus, the element stiffness matrix can be obtained as:

[Ke] =
∫ 1

0
(EI)e

[
Λ,xx

]T [
Λ,xx

]
Ledη (6)

Likewise, the element mass matrix can be expressed as follows:

[Me] =
∫ 1

0
me[Λ]T [Λ]Ledη (7)

In which, me and (EI)e are the density and flexural stiffness of the typical element,
respectively.

Equations (6) and (7) give the element stiffness andmassmatrices of each sub-beams.
To obtain the total corresponding matrices [K] and [M], the stiffness and mass matrices
are assembled.Todo this, the displacement continuity conditions havebeen established at
the junction of sub-beams (1-2-3) and (2-3-4). Regarding Fig. 3, the deflection and slope
of the connecting nodes at the tips of the crack are equal. Therefore, the corresponding
entries of the stiffness and mass matrices of connected sub-beams are superposed to
constitute the whole beam’s total stiffness and mass matrices.

Fig. 3. Delamination boundaries

2.3 Solution Method

The free vibrations equation of motion for the entire structure is acquired as follows:

[M ]
{
�̈

} + [K]{�} = {0} (8)

where [�] Indicates the nodal DOFs of the whole model. Considering a general solution

of {�} = {�0}ei
∧

ωt for Eq. (8), and assuming λ = ω2 yields eigenvalue problem as:

([K] − λ[M ]){�0} = {0} (9)

Which gives natural frequencyω and corresponding mode shapes of the system {�}.
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2.4 Artificial Neural Network

This study uses a feed-forward ANN to localize damage levels in beams with horizontal
cracks. Figure 4 indicates that our MLP contains the input, hidden, and output layers.
Nodes in hidden and output layers utilize a non-linear function.

The weighted sum of input data is calculated as following [41]:

inputk =
∑n,m

i,k=1
bk + wik ∗ xi; k = (1 : m); i = (1 : n) (10)

wherewik showweight between the ith neurons and the kth neurons, bk indicates the bias
ratio of hidden layers and inputs; xi show the output in ith neurons in the input layer;
m and n are the number of the neurons in hidden layer and input layer, respectively.
Furthermore, inputk are the input of k

th neurons in the hidden layer.

Fig. 4. Architecture of an MLP [41]

In this article, after calculating the inputk of a neuronon a layer, the nonlinear function
is applied through the following relation to compute the output for the jth neuron [41]:

ouputj =
(

2

1 + 1
e2inputq

)
− 1 (11)

The function is called the Tan-Sigmoid transfer function. The diagram of such a
function is shown in Fig. 5.
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Fig. 5. Tan-Sigmoid activation function [41]

Note that, in Eq. (11), inputq is input of qth neuron in the output layer, and ouputj
denotes jth neuron related to the output layer.

3 Proposed Approach

The current study uses a machine learning-based approach to damage detection in steel
beam structures with a horizontal crack. Figure 6 shows the flowchart of the proposed
technique used in the present study. As seen, the finite element method performs prob-
lem modeling using the equivalence technique of a damaged beam with a horizontal
crack approximated with four intact beams. A database is then created to perform the
interpolation by the Artificial Neural Network.

Fig. 6. Flowchart of the proposed technique used in the present study
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In this way, the artificial neural network inputs are the first five natural frequencies.
The artificial neural network output is the location of the horizontal crack of the desired
size in the considered steel beam. In the next section, results are presented.

4 Results and Discussion

The results of this study is presented in this section. The characterisitcs of the considered
beam are presented in Table 1. Three hundred samples of the first five natural frequencies
and their corresponding crack positions are used as databases to evaluate the method’s
performance presented in this paper.

Table 1. The characterisitcs of the considered beam

Characterisitcs Values

Length 100 (cm)

Thickness 1 (cm)

Width 1 (cm)

Young modulus 200 (Gpa)

Density 7800 (Kg/m3)

Crack length 0.3 (cm)

Number of element 500

The distribution of the Artificial Neural Network outputs (horizontal crack positions)
is shown in Fig. 7. As can be seen, the distribution of artificial neural network outputs
used in this research is uniform. Also, the horizontal crack length of the beam in this
research is 0.3 cm, which is small enough to detect damage.
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Fig. 7. The distribution of artificial neural network outputs

Fig. 8. Result of training process of ANN

Result of training process is shown in Fig. 8. Also, Result of test process is shown
in Fig. 9.

Figures 8 and 9 show that the regression indices for training and testing processes are
0.954 and 0.979, respectively, demonstrating our predictingmodel’s good approximation
and efficiencies. Figure 10 shows the accuracy of the model created in this research.
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Fig. 9. Result of training process of ANN

Fig. 10. The accuracy of the model created in this research

Figure 11 presents the accuracy of the predictive ANN model for seventeen damage
scenarios. As can be seen, ANN identifies the approximate location of the damages with
sufficient certainty for the considered damages.



Damage Identification in Thin Steel Beams Containing 123

D
am

ag
e 

lo
ca

tio
n

Damage scenraios

Fig. 11. Seventeen damage scenarios for evaluating the accuracy of the predictive ANN model

Also, to imagine the quantified numerical differences between the actual location of
the crack and the location of crack detected by ANN, Table 2 is presented.

Table 2. The quantified numerical differences between the actual location of the crack and the
location of crack detected by ANN

No. Actual location of crack (cm) Location of crack detected by ANN (cm)

1 34.8745477050543 44.3000000000000

2 54.8354852050543 54.8000000000000

3 42.5893914550543 38.9000000000000

4 68.1792352050543 71.3000000000000

5 6.21048520505428 10.1000000000000

6 31.3589227050543 30.2000000000000

7 68.1792352050543 71.3000000000000

8 73.7651727050543 78.2000000000000

As listed in Table 2, the location of cracks detected by ANN is well compatible with
the actual location of cracks.

5 Conclusions

Structural health monitoring is one of the most critical efforts to prevent the failure
of the structures before it occurs. Various methods have been proposed to monitor the
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structure’s health, many of which are considered non-destructive tests. One of the most
popular non-destructive tests is vibration-based non-destructive tests. These tests are also
known as vibration-based damage detection techniques. In this research, the detection
of damage to steel beams with a horizontal crack is investigated using artificial neural
networks. In this way, first, a beam is equated with a horizontal crack with four intact
beams. In this way, the finite element method is used. After modeling, they are using
the finite element method, databases consisting of the first five natural frequencies and
the position of the horizontal crack in the steel beam are created and fed to the artificial
neural network. The results of this study show that the neural network created in this
paper can predict the crack position with acceptable accuracy by having the first five
natural frequencies.
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