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Abstract. As a newly emerged strengthening material, FRCM (Fiber Reinforced
Cementitious Matrix) has attracted the attention of many engineers and scholars
due to the higher compatibility of the cementitious matrix with masonry structures
compared to traditional organic matrix. Different from FRP (Fiber Reinforced
Polymer) material that similarly can be externally applied onto the structures for
strengthening, FRCM exhibits more complex failure modes due to the weaker
performance of the matrix. To investigate the complex failure mechanism, the
tensile test on FRCM coupon is a simple and intuitive method commonly used,
in which the failure of both material and interface can be observed. In this article,
an analytical model was proposed to reproduce the tensile behavior of FRCM,
with the possibility to consider all the failure modes. A simplified mathematical
model consisting of the components of the mortar layer, the fiber layer, and a
zero-thickness interface gives the basis of force analysis, and from which the
ODE system presenting the model behavior can be deduced and solved. This
model was then validated against existing experimental results in terms of the
global stress-strain relationships. It can be concluded that the proposed model is
fast and stable, while able to reproduce the failure mode, global and local behavior
of FRCM under tension.
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1 Introduction

For many existing masonry buildings, due to various damages caused by natural and
human factors, as well as the poor seismic performance of the masonry structure itself,
intervention and strengthening are often necessary. As a new strengthening strategy, the
external application of composite materials to components can improve the load-bearing
capacity and seismic performance of the structure without greatly increasing the weight
of the structure and occupying space. Among them, FRCM (Fiber Reinforced Cement
Matrix) has attracted attention in recent years in the area of masonry structure reinforce-
ment. This is because, unlike the organic matrix used in FRP (Fiber Reinforced Polymer)
strengthening systems, the inorganic matrix of FRCM ensures better compatibility with
masonry materials, and facilitates the discharge of salt and moisture. For building her-
itages, an important advantage of FRCM is the reversibility of the interventions. An
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important issue about the application of FRCM is the complex failure modes, not only
failure will appear as the matrix-substrate debonding, but in the FRCM composite itself.
That is, the mortar may crack, the fiber strip may slip inside the mortar, and even the
fiber strip may break, due to the lower strength of the mortar matrix.

The tensile test is widely used as a simple and intuitive test [1–4], which can well
characterize the various failure modes that FRCM may appear, although the test set-up
and specimen preparation may have a large impact on the results. Therefore, in the case
of limitations in comparing data from different experimental campaigns [2], the devel-
opment of reasonable prediction models can be very meaningful, which can provide
insights into explaining some experimental phenomena from a theoretical perspective.
Numerical models have been developed specifically to describe the behavior of FRCMs
under tension, such asmodeling using finite elementmethods [4–6], or springs to charac-
terize the interaction between materials [7]. In contrast, the model proposed in this paper
has a faster calculation speed, and stable output due to the use of analytical solutions,
while asking for only a few parameters.

To describe the FRCMcoupon under classical tensile tests, a simplifiedmathematical
model is established, including three parts, meaning the mortar layer, the fiber strip,
and a zero-thickness interface. Three cases are separately considered to investigate the
influence of failure for different components: 1) Case 1, which only considers the failure
of mortar; 2) Case 2, which only considers the failure of the interface bond; 3) Case 3,
in which both failures of mortar and interface will be considered. Then the situations
where failures of both mortar and interface will appear can be discussed based on these
two cases. The analytical approach is based on the closed-form solution of the ODE
system derived from the equilibrium conditions of an infinitesimal part of the coupon,
as well as the constitutive and geometric relationships. At different analysis moments
and failures of components, different boundary conditions can be obtained to derive the
closed-form solutions. This approach is then validated against existing experimental data
for all cases considered. Good agreement can be found in terms of the global stress-strain
relationship and bond strength. The occurrence of mortar cracking can also be presented
by the model, however, due to the inhomogeneity of mortar mechanical properties and
specimen geometry, manufacturing quality, etc., the location of cracks in the experiment
cannot be exactly simulated.

2 The Analytical Model and Solutions

2.1 The Analytical Model

The analytical model is expected to describe the typical non-linear behavior of FRCM
under tension. Based on the experimental phenomena, a simplified mathematical model
was proposed, including three parts: (i) the mortar layer characterized by a perfectly
elastic-brittle behavior; (ii) the fiber strip characterized by a fully elastic behavior
throughout the analysis procedure; (iii) the zero-thickness interface characterized by
a perfectly elastic-brittle shear stress-slip relationship which takes into consideration of
the residual strength.

To assume that thematerial properties (mechanical and geometry) distributions along
the width of the coupon are uniform, considering the symmetric loading conditions, we
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can take only a quarter of the whole FRCM coupon for analysis at the beginning of
the simulation as shown in Fig. 1 (a). Take an infinitesimal part of the FRCM for force
analysis, according to the equilibrium condition we can write:{

tf
dσf
dx = τ(s)

tm
dσm
dx =−τ(s)

(1)

in which tm is the thickness of themortar layer, tf is half of the thickness of the fiber strip.
The tensile stress of mortar and fiber are denoted by σm and σ f respectively. The shear
stress along the mortar-fiber interface is denoted by τ (s), we assume an elastic-brittle
behavior with a constant residual strength:{

τ=Ki · s (s ≤ τm/Ki)

τ=τr (s>τm/Ki)
(2)

in which Ki is the initial elastic stiffness assumed for the interface, τm and τ r are
the maximum and residual shear strengths of the interface. And s is the difference of
displacements between mortar (um) and fiber (uf ):

s = uf − um (3)

The constitutive laws of the materials at the elastic stage yield:{
σf = Ef

duf
dx

σm = Em
dum
dx

(4)

in which Em and Ef are Young’s moduli of the mortar and fiber respectively. The ODE
system can be obtained by combining Eq. (4) and Eq. (1).

Fig. 1. The simplified mathematical model (a), and force analysis for the infinitesimals (b)

We will consider two moments to highlight in the global response the occurrence of
unloading when crack generating:

1) Moment A, at which the tensile stress inside mortar reaches its maximum tensile
strength;

2) Moment B, at which a crack appears at the same position mortar just gained its
maximum strength, and the tensile stress at this position shifted to zero.
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After the mortar cracks, we can take the uncracked mortar segment as a new object
for analysis. And considering whether the model components enter the plastic stage,
three cases might occur in each analyzed segment:

InCase 1, the interface behaves fully elastic untilmortar cracking. Since it is assumed
that the interface maintains elasticity before and after cracking, the same analytical
method can be adopted for all the uncracked mortar segments under symmetrical con-
ditions. At moment B, displacement translation will be performed to make the displace-
ment of the new symmetric center (the center of the new uncracked segment) zero, thus
making it possible to always take a quarter part of the segment for analysis.

In Case 2, the interface behaves fully plastic before mortar cracking. This situation
may occur when the mortar length is too small, and the residual friction distributed along
the interface is not able to provide enough energy to fracture the mortar. Thus, in Case
2, no further analysis will be performed, and the tensile procedure will be terminated
when the fiber fractures. Two interface models with (Case 2-b) and without (Case 2-a)
residual strength were considered in Case 2, to investigate the influence.

For Case 3, where both failures of mortar and interface will occur, the symmetric
condition will no longer exist due to the interface entering partially before mortar crack-
ing, and it is not possible for the failed interface to return elastic. The calculations will be
more complex but still the same methodology to solve the ODE system. The simulation
will be terminated when the fiber fractures, normally before this happens, Case 2 will
appear for the mortar section without enough long length.

2.2 The Closed-Form Solutions

Case 1. In this case, we assume that the mortar matrix and the interface all behave as
elastic before mortar cracks. We take the analysis for intact FRCM coupon as step i =
1; after the first crack appears in the middle, we denote the next analysis on the half
segment as step i = 2, and so on. Combining Eq. (4) and Eq. (1), the following ODE
system can be obtained:

⎡
⎢⎢⎢⎣

duf
dx
dσf
dx
dum
dx
dσm
dx

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1
Ef

0 0
Ki
tf

0 −Ki
tf

0

0 0 0 1
Em

−Ki
tm

0 Ki
tm

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
uf
σf

um
σm

⎤
⎥⎥⎦ (5)

The general solution of the ODE system can be obtained as below:

⎡
⎢⎢⎢⎣
uf
σf

um
σm

⎤
⎥⎥⎥⎦ = C1

⎡
⎢⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎥⎦ + C2

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎥⎦x +

⎡
⎢⎢⎢⎣

0
Ef

0
Em

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ + C3

⎡
⎢⎢⎢⎣

−tmα

−tm/tf
tmβ

1

⎤
⎥⎥⎥⎦eλ3x + C4

⎡
⎢⎢⎢⎣

tmα

−tm/tf
−tmβ

1

⎤
⎥⎥⎥⎦eλ4x (6)
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in which: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ3 =
√
Ki(

1
Emtm

+ 1
Ef tf

)

λ4 = −
√
Ki(

1
Emtm

+ 1
Ef tf

)

α =
√

Emtm
Ef tf Ki(Ef tf +Emtm)

β =
√

Ef tf
EmtmKi(Ef tf +Emtm)

(7)

For determining the constants of integration, the boundary conditions of describing
moment A are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf |x=0 = 0

um|x=0 = 0

σm|x=0 = ftm

σm|x=Li = 0

(8)

in which Li is the length of the quarter of the coupon under analysis, and we have Li =
L/2i for step i.

After displacement translation, for moment B we can write the following boundary
conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf |x=0 = −uiAfLi

uf |x=Li = 0.5uiAfLi

σm|x=0 = 0

σm|x=Li = 0

(9)

in which uiAfLi is the fiber displacement at the loading edge solved in moment i-A.

Case 2. In this case, we assume that the mortar will not break, while the interface will
enter the plastic stage before the fiber fractures. Assume the local abscissa of the point at
which the interface transforms from elastic to plastic stage is xr , which will be assigned
gradually from Li to 0, to simulate the procedure of increasing interface slip until the
fiber fractures.
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For the elastic range (0 ≤ x ≤ xr), the ODE system is the same as Eq. (5), which can
be solved with different boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf |x=0 = 0

um|x=0 = 0

(uf − um)|x=xr = se

σm|x=xr = τr(Li−xr)
tm

(10)

For the plastic range (xr < x ≤ Li), the displacements of fiber and mortar at a certain
point along the plastic range are:

uf = uf |x=xr + x∫
xr

σf

Ef
dx (11)

in which σf is the tensile stress of fiber at x. The equilibrium condition of the plastic
section gives:

σf = σf |x=xr + τr(x − xr)

tf
(12)

Combining the constitutive laws of mortar and fiber, the integration of Eq. (11) gives
the solutions along the plastic range:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uf = ftf
Ef
x + τr

Ef tf
( 12x

2 − Lix)

σf = ftf − τr(Li−x)
tf

um = τr
Emtm

(Lix − 1
2x

2)

σm = τr(Li−x)
tm

(15)

3 Validation

In this section, the experimental results of the FRCM coupon under the tensile test
provided by Bertolesi et al. [4] were adopted to verify the reliability of the developed
analyticalmodel. In this experimental campaign carried out at the PolytechnicUniversity
ofMilan, the FRCMcoupon cast by cementitiousmortar on thePBOfiber gridwas tested,
as well as the geometrical and mechanical properties of both two components, giving
the possibilities to assume the parameters for validation as listed in Table 1.

It is now generally accepted that the constitutive behavior of FRCM composites in
tension can be idealized as a trilinear relationship [5, 8]. In the first stage, the material is
not cracked and the stiffness of the composite should ideally be the stiffness of themortar.
In the second stage, multiple cracks began to form, and the load-displacement (or stress-
strain) curve oscillated multiple times. In the third stage, the cracks will propagate until
the fibers fracture, the mortar layer has almost failed and the composite should ideally
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Table 1. Parameters adopted to validate the present model.

Em [MPa] tm [mm] f tm [MPa] EF [MPa] f tf [MPa] tF [mm] BF [mm] L [mm] τm [N/mm2] K [N/mm3] τ r [N/mm2]

6000 5 3.65 215900 3397 0.035 40 280 2.5 166.67 0.35

reproduce the elastic modulus of the dry fibers. The results in terms of the global coupon
stress-strain curves obtained by the present model and experimental data are compared
in Fig. 2. It can be concluded that the results generated by the present model are in
good agreement with the experimental results in terms of trend and range, fitting into
the generally recognized three-stages constitutive model. Similar ultimate strength and
strain can be gained, as well as the beginning of the second stage, which should ideally
be the moment mortar reaches its tensile strength.

Fig. 2. The stress-strain relationships until fiber fracture for Cases 1 and 3 (a), and Case 2 (b)
gained via the present model and experimental tests

The proposed analytical method can also provide the local behavior of FRCM under
tension, including stress and displacement distributions of fibers and mortar along the
length of the specimen. Due to the limitation of the length of the article, here only gives
an example of the tensile stress distribution of the mortar until the specimen fails (the
fibers fracture), as shown in Fig. 3. For Cases 1 and 3, the solid line represents the
mortar stress at moment A (the mortar reaches its maximum tensile strength), while
the dashed line represents moment B (the mortar breaks). While For case 2, the graphs
in Fig. 3-c and Fig. 3-d show the distribution of mortar tensile stress with the increase
of external force, the difference lies in the residual friction along the interface after
interface failure. For Case 1 in Fig. 3-a, a clear symmetry pattern can be identified,
thanks to the assumption of material and geometry symmetries, and the calculation
process of constantly changing the symmetric center. For Case 3, the distribution of
mortar stress is no longer symmetrical regarding the cracks, due to interface debonding
that occurs first at the loading edge.
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Fig. 3. Distribution of mortar tensile stress until fiber fracture for Case1 (a), Case 3 (b), Case 2-a
(c), and Case 2-b (d)

4 Conclusions

This study presents an analytical model which can consider all the failure modes of the
FRCM coupon under tension. A classical mathematical model which consists of the
mortar and fiber layers and zero-thickness interfaces was considered. A multi-segment
linear relationship was chosen to describe the interface relationship, allowing us to gain
the solutions analytically. This method can satisfactorily reproduce the tensile behavior
of the FRCM coupon with little calculation effort and few parameters. The obtained
results are in good agreement with the experimental results in terms of range and trend,
fitting into the generally accepted trilinear constitutive law. Moreover, the local behavior
of the entire system can be determined, as well as the locations of mortar cracking.
But except for the one crack appearing at the center of the specimen, the locations of
mortar cracking in the actual specimen is rather random due to internal flaws or eccentric
loading.

Acknowledgments. Yu Yuan would like to acknowledge the financial support provided by the
Chinese Scholarship Council (CSC) for performing her Ph.D. program at the Technical University
of Milan, Italy.



252 Y. Yuan and G. Milani

References

1. de Felice, G., et al.: Mortar-based systems for externally bonded strengthening of masonry.
Mater. Struct. 47(12), 2021–2037 (2014). https://doi.org/10.1617/s11527-014-0360-1

2. D’antino, T., Papanicolaou, C.C.: Comparison between different tensile test set-ups for the
mechanical characterization of inorganic-matrix composites. Constr. Build. Mater. 171, 140–
151 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.041

3. Arboleda, D., Carozzi, F.G., Nanni, A., Poggi, C.: Testing procedures for the uniaxial tensile
characterization of fabric reinforced cementitious matrix (FRCM) composites. J. Compos.
Constr 20, 04015063 (2016). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000626

4. Carozzi, F.G., Poggi, C.: Mechanical properties and debonding strength of Fabric Reinforced
Cementitious Matrix (FRCM) systems for masonry strengthening. Compos. B Eng. 70, 215–
230 (2015). https://doi.org/10.1016/j.compositesb.2014.10.056

5. Bertolesi, E., Carozzi, F.G., Milani, G., Poggi, C.: Numerical modeling of Fabric Reinforce
CementitiousMatrix composites (FRCM) in tension. Constr. Build.Mater. 70, 531–548 (2014).
https://doi.org/10.1016/j.conbuildmat.2014.08.006

6. Nerilli, F., Marfia, S., Sacco, E.: Micromechanical modeling of the constitutive response of
FRCM composites. Constr. Build. Mater. 236, 117539 (2020). https://doi.org/10.1016/j.conbui
ldmat.2019.117539

7. Grande, E., Milani, G.: Numerical simulation of the tensile behavior of FRCM strengthening
systems. Compos. B Eng. 189, 107886 (2020). https://doi.org/10.1016/j.compositesb.2020.
107886

8. Hartig, J., Jesse, F., Schicktanz, K., Häußler-Combe, U.: Influence of experimental setups on
the apparent uniaxial tensile load-bearing capacity of textile reinforced concrete specimens.
Mater. Struct. 45(3), 433–446 (2012). https://doi.org/10.1617/s11527-011-9775-0

https://doi.org/10.1617/s11527-014-0360-1
https://doi.org/10.1016/j.conbuildmat.2018.03.041
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000626
https://doi.org/10.1016/j.compositesb.2014.10.056
https://doi.org/10.1016/j.conbuildmat.2014.08.006
https://doi.org/10.1016/j.conbuildmat.2019.117539
https://doi.org/10.1016/j.compositesb.2020.107886
https://doi.org/10.1617/s11527-011-9775-0

	An Analytical Model for Describing Tensile Behavior of FRCM
	1 Introduction
	2 The Analytical Model and Solutions
	2.1 The Analytical Model
	2.2 The Closed-Form Solutions

	3 Validation
	4 Conclusions
	References




