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Abstract. Nowadays, the application of externally bondedFRP (FiberReinforced
Polymer) material to reinforcement projects for existing buildings has become
quite usual. In the applications of masonry structures, the curved masonry mem-
bers, including arches, vaults, domes, etc., as common bearing components in
masonry structures, have also received attention. The curvature of the substrate
will introduce additional normal stress to the FRP-masonry interface, leading
to different bond behaviors according to experimental observations. This paper
attempts to reproduce the behavior of FRP strengthened curved masonry prism
under shear, under the assumption of a classical model including three parts of an
elastic FRP strip, a zero-thickness interface, and a rigid substrate. By simplifying
the interface stress-slip law into a three-stage linear relationship, i.e., the initial
elastic stage, the softening stage, and the residual strength stage, the analytical
solutions of the stress and strain along the full length of the FRP can be obtained.
The effect of the normal stress appearing along the interface is manifested by the
change in the interface relationship. The effectiveness of the analytical model is
verified by comparison with existing experimental data and numerical model. Due
to the fast and stable calculation procedure, this model can explore the influence of
various parameters on the model behavior at a small computational cost, and give
some insight into the bonding mechanism of FRP reinforced curved structures.

Keywords: FRP strengthening · Masonry · Closed-form solution · Bond-slip
model

1 Introduction

In recent years, the strengthening approach of externally applying FRP (Fiber Reinforced
Polymer) onto structure surface has been proved to be efficient and holds several advan-
tages such as fast and flexibility, small space occupation, and little effect on structure
self-weight. This composite material has also been widely applied in masonry structures
when the issues regarding material compatibility are not serious, and the reversibility
controversy regarding architectural heritages doesn’t exist. There have been many prac-
tical engineering cases and related research [1, 2]. One topic received less attention yet
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quite common is that, the reinforcement of curved structures such as arches, vaults, and
domes, which are important and common load-bearing members. When adopting an
externally bonded approach for such structures, the curvature of the substrate will bring
additional normal stress along the FRP-masonry interface, and it can be predicted that
the effect of bonding will be affected to a certain extent.

At present, an experimental approach to test the bond behavior of FRP strengthened
curved masonry structures on the basis of the classic shear test was developed [3, 4],
meanwhile loading tests directly on reinforced arches or vaults were carried out as well
[5–7]. Furthermore, some predictive models were developed, either based on the anal-
ysis model [8, 9] or using numerical modeling methods [10–12]. The single-lap shear
tests conducted by Rotunno et al. [3] can be unutilized as a starting point for model-
ing assumptions, and an approach to verify the current research. In this experimental
campaign, a modified experimental set-up (see Fig. 1) was developed to test the bond
behavior of five sets of carbon-FRP reinforced curved masonry prisms. Both internal
and external strengthening approaches were considered, and each approach was tested
with one higher and one lower substrate curvature, as well as flat prisms, were tested for
comparison. Cohesive failure (CF), interface failure (IF), prismatic failure (PF), and fiber
failure (FF) were observed during the testing. For most intrados cases, the combination
of CF (near the loading edge) and IF (near the free edge) modes occurred, it can be
explained that, the peeling effect brought by the substrate curvature became prominent
after part of the FRP strip was detached. While for extrados cases, the most common
failure mode is CF.

Fig. 1. The shear test set-ups for strengthened curved masonry prisms [3]

These experimental facts give us the opportunity to consider an FRP strip with
elastic behavior, a rigid substrate in our model, and an interface that lumped all the
non-linearities being the only position where the failure can occur. Furthermore, the
experimental results also reveal that the load-bearing capacity is promoted for the extra-
dos strengthening case, while deduced for the intrados case compared to the flat one.
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And the load-bearing capacity for extrados (intrados) cases increases (decreases) with
the curvature, indicating that the curvature of the substrate plays an important role in the
curved cases. After we lumped all the non-linearities along the interface, the influence of
curvature can be taken into account in the interfacial relationship by the effect of normal
stress on friction.

In this article, an analytical model to reproduce the bond behavior under the
first experimental approach will be introduced. Compared to some existing modeling
approaches, this approach only asks for a few simple and clearly-defined parameters
while can quickly and steadily produce results of both global and local bond behavior,
which allows for exploration of the theoretical bondmechanismwith little computational
effort. The article is structured as below: the second section will illustrate the mathemat-
ical model and analytical solutions; the third section will present the validation against
existing experimental data and numerical models; the fourth sectionwill perform a series
of sensitive analyses regarding interface and substrate parameters.; the last section will
summarize main conclusions draw in this article.

2 The Analytical Model and Solutions

2.1 The Analytical Model

A simplified mathematical model is presented in this section as sketched in Fig. 2a. It
is assumed that the external force F is applied at the end of the unbonded reinforcement
strip in a direction tangential to the strip axis. Materials and external forces are assumed
to be uniform across the width of the reinforcement. As discussed previously, the model
consists of three components: (i) a linear elastic FRP strip; (ii) a rigid and fixed masonry
substrate; (iii) a zero-thickness interface that obeys a piecewise linear tangential stress-
slip relationship dependent on the local normal stress (Fig. 2b), including three stages:
the first linear elastic stage, the second linear descending softening stage, and the third
constant residual tangential strength. It can be easily obtained by force analysis that, for
the extrados case, the interface normal stress will be compressive thus a positive factor
for friction, while the opposite for the intrados case. The mathematical expressions for
the interface law are:

⎧
⎨

⎩

τ1(s) = Ks (0 < s ≤ se)
τ2(s) = K1s + τ ∗

max(1 − K1
K ) (se < s ≤ sr)

τ3(s) = τr (sr < s)
(1)

in which τ(s) is the tangential stress at the interface, a dependent variable of the slip
of the FRP strip, s. Parameters K and K1 indicate the slope of the elastic and softening
stages, se is the maximum slip value of the elastic phase, su is the ultimate slip value for
the flat case, se and sr are the maximum slip value for the elastic and softening stages,
respectively.

The maximum bond strength τ ∗
max and the interface residual strength τr depends on

the interface normal stress σn:

τ ∗
max = τmax+σntanφ (2)
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τr = σn tan φr (3)

in which φ is the friction angle, and φr is the residual friction angle of the interface, τmax
is the maximum bond strength for the flat case. The values of these parameters usually
can be inferred and presumed from experimental data.

Fig. 2. The simplified mathematical model (a), and the interface law adopted (b).

2.2 Derivation of the ODE

For both extrados and intrados cases, an infinitesimal portion of the FRP strip is consid-
ered to gain the governing ODE. The longitudinal direction of the FRP strip is assumed
to be x1. The independent variable x (0 ≤ x ≤ L) defines the position of any point
along the glued length L, and the abscissa x = 0 identifies the position of the free edge.
The equilibrium of the infinitesimal portion of the reinforcement along the tangential
direction x1 can be written as follows for both the extrados and intrados cases:

tF
dσF

dx
=τ(s) (4)

where σF is the tensile stress of the FRP strip along its longitudinal direction. The
constitutive law for the elastic FRP material is:

σF=EFεF (5)

in which EF is the elastic modulus, and εF is the normal strain of the FRP strip. With
the assumption of the rigid substrate and subjected to no displacement, the interface slip
value is equal to the elastic displacement of the FRP, i.e.:

εF= ds

dx
(6)
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The governing ODE can be derived by substituting Eqs. (5) and (6) into Eqs. (4):

d2s

dx2
= τ(s, σn)

EFtF
(7)

To calculate the interface normal stress σ n, write the equilibrium along the normal
direction x2:

d2s

dx2
= τ(s,σn)

EFtF
(8)

With the substitution of σ n into the interface stress-slip law, Eq. (7) is a second-order
non-linear differential equation with s and the dependent variable x. The following
calculations will be given based on the extrados strengthening case, for the intrados
case, it would be easy to replace the sign of the normal stress to gain the corresponding
solutions.

2.3 The Closed-Form Solutions

To derive a closed-form solution for the previous ODE, it is necessary to assign a gradu-
ally increasing slip value s0 at the free edge, so the following Initial Condition (Cauchy)
problem can be written with the boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

d2s
dx2

= τ(s,σn)
EF tF

ds
dx

∣
∣
∣
x=0

= 0

s(0) = s0

(9)

The slip value s(x)willmonotonically increasewith x along the interface, considering
three stages of the interface law, five possible situations will arise regarding the whole
interface state: (i) only stage 1; (ii) stages 1 and 2; (iii) stages 1, 2 and 3; (iv) stages 2
and 3; (v) only stage 3. The following contents will present the closed-form solutions
under the three different interface law stages, as well as the transformation points among
different states that can be determined via the principle of continuity. The given slip value
as the free end to trigger different situations can be reversibly determined by the known
slip conditions for different interface states. Finally, the analytical procedure can be
implemented into MATLAB to realize automatic calculation via any given material and
geometric parameters. The calculation procedure will be terminated if a negative value
appeared for the slope of the s-x relationship.

The First Stage. Let us assume that the first stage is active from the free edge up to xe.
A point with abscissa x1 belonging to the elastic interface stage and its slip s1(x1) can
be obtained by solving the Cauchy problem Eq. (7) with τ (s,σ n) = Ks:

s1(x1) = s0
2

(
eγ x1 + e−γ x1

)
(0 ≤ x1 ≤ xe) (10)
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where, γ = √
K/(EFtF ). If xe ≤ L, the value of xe can be determined assuming that at

xe the tangential stress is equal to the maximum bond strength:

xe = 1

γ
arcosh(Xa) = 1

γ
arcosh

(
τmax

α1 − α2

)

(11)

in which:
⎧
⎪⎨

⎪⎩

xa = α1
α1−α2

α1 = EFtFs0γ 2

α2 = EFtFs0γ
tan φ
R

(12)

The Second Stage. The solutions at this stage can be obtained similarly:

s2(x2) = eβx2
(
C1 sin

√
αx2 + C2 cos

√
αx2

) − 1 − K1/K

K1
τmax(0 ≤ x2 ≤ xr) (13)

in which:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α = −
(
K1
K − 1

)2 tan2 φ

4R2
− K1

EF tF

β = 1
2

(
1 − K1

K

)
tan φ
R

C1 = 1√
α

[ s0
2

(
eγ xe − e−γ xe

) − C2β
]

C2 = 1−K1/K
K1

τmax + s0
2

(
eγ xe + e−γ xe

)

(14)

The constants C1 and C2 can be determined via the continuous conditions at xe:
{

s2(0) = s1(xe)
ds2
dx2

|x2=0 = ds1
dx1

|x1=xe
(15)

The Third Stage. To solve the Cauchy problem for the third stage, the following ODE
with initial conditions is considered, where x2 = xr:

⎧
⎪⎨

⎪⎩

d2s3
dx2

= τr
EF tF

s3(0) = s2(xr)
ds3
dx3

|x3=0 = ds2
dx2

|x2=xr

(16)

3 Validations

3.1 Approaches for Validation

The experimental campaign conducted by Rotunno et al. [3] and the numerical model
proposed by Milani et al. [12] were utilized for validation of the present model. The
numerical model is based on the same experimental facts and adopts a similar mathe-
maticalmodel as in this presentmodel.Only for a stable and robust calculation procedure,
the numerical model assumes a smooth exponential function for the interface law. The
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interface law also allows the incorporation of the interface normal stress, exhibiting an
infinite ductility and an asymptotic residual strength in terms of the interface behavior.

The parameters needed in the present model are selected as the same in the numerical
model proposed byMilani et al. As discussed in the literature [12], two approaches were
developed to calibrate the parameters: the first one is a manual procedure adjusted by
trial and error; the second more rigorous one is based on a least-square optimization.
The comparisons of the gained values of parameters indicate that the two procedures
provided similar results, leading to small differences from an engineering point of view.
Thus, the first manual procedure was adopted out of convenience here.

The parameters involved are listed in Table 1. For the flat case, when assuming a
large enough value for the substrate radius, the present model can be utilized as well. As
an important parameter that controls the behavior of the residual strength stage, there is
not enough experimental data to calibrate the parameter φr . In this study, it is assumed
to be equal to the friction angle φ, due to the hypothesis that the friction angle defining
the residual strength cannot be larger than that of the undamaged interface.

Table 1. Parameters adopted to validate the present model.

Label R [mm] EF [MPa] tF [mm] BF [mm] L [mm] τmax [N/mm2] se [mm] su [mm] φ [°] φr [°]

CAE 1500 250000 0.165 100 382 1.37 0.093 0.324 35 35

CBE 3000 250000 0.165 100 354

CAI 1500 250000 0.165 100 330 0

CBI 3000 250000 0.165 100 330

Flat 108 250000 0.165 100 330 - -

3.2 Results of the Analysis

Global Responses. As presented in Fig. 3, the results gained by the present analytical
model (the black lines) are compared with the numerical results (the red line) and exper-
imental data (the blue envelope). Thanks to the clear definition needed in the analytical
solutions, the different stages situation of the interface can be indicated in the global
curved via different line types. An increase after Stage 3 appeared on the interface is
clearly expressed for the extrados strengthened cases (cases CAE and CBE), due to the
non-zero residual friction strength. And this increase is more obvious under the higher
substrate radius (Case CAE), due to a higher interface normal stress.

Compared with the numerical model, the results are quite similar in terms of the
ultimate strength and slip values. The present model always exhibits slightly smaller
strength values, due to the smaller shear stress values adopted in the assumed interface
laws. And a major difference lies in the post-peak behavior, in our model, a snap-back
phenomenon can be observed. The snap-back phenomenon indicates the unloading of
the fiber strip due to the softening of the interface, which normally appears under a
sufficiently long bond length. This phenomenon requires specific experimental set-ups
to avoid the brittle sudden failure of the specimen after peak load is reached, the detail
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and typical experimental results can be found in the literature [13]. The numerical model
doesn’t exhibit such behavior since, in that model, the ODE system is solved as a BVP
(Boundary Value Problem), rather than an IVP (Initial Value Problem) in this analytical
model. One boundary condition is the increasing known load applied at the loading edge
of the FRP strip, naturally, the decrease of load and the snap-back phenomenon won’t
appear.

Comparedwith the experimental data, it can be concluded that themodeling curved is
satisfactory in terms of the trend and ultimate load, however always yield an obviously
smaller ultimate slip. This problem is identified in the numerical model. This can be
attributed to the simplifications existing in the model which ignore the ductility of the
strengthened system, for example, the possible internal slippage and damage of the FRP
strip, the damage propagation inside the substrate, the interlocking effect due to the
uneven surface around the mortar joints.

Fig. 3. Load-slip curves gained via the present model, numerical model [12], and shear tests [3]
for case CAE (a), CBE (b), CAI (c), CBI (d).

Local Responses The current analytical procedure also allows determining the stress
and displacement distributions along the interface. Take the case CAE as an example,
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the results are presented in Fig. 4. The appearances of different interface stages are also
available by the different colors and types of lines. The distinct divisions of the color
(the interface stages) in the slip distribution (Fig. 4a) give a perfect verification of the
correctness of the calculation. As can be normally observed in shear tests, the peak of the
shear stress will gradually transfer from the loading edge to the free edge (Fig. 4b), and
the stress level gradually declines towards the end of the loading procedure (Fig. 4c).

Fig. 4. Distributions of interface slip (a), shear stress (b), and normal stress (c) for case CAE.

4 Sensitive Analysis

For this present model dedicated to the curved substrate, it would be interesting to
investigate the effect of substrate curvature on the relative parameter sensitivity. In the
present model, the substrate curvature will affect the interface normal stress, and further
influence the shear stress via the friction angles φ and φr by Mohr-Coulomb law. From
common sense, when the curvature of the substrate is larger (closer to the flat case),
the normal stress along the interface is smaller, which is consistent with the trend of the
calculation results displayed in Fig. 5. And as the curvature of the substrate increases, the
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bond strength will increase; the effect of friction angles on the intrados strengthening is
smaller than that of the extrados strengthening, due to the smaller normal stress appearing
intrados case.

Fig. 5. Influences of φ (a) and φr (b) on bond strength for different substrate curvature radii.

5 Conclusions

In this article, a fast and stable analytical model was proposed to describe the bond
behavior of FRP applied on curved substrates. The mathematical model was developed
based on the shear test set-ups for FRP strengthened curved masonry prism. The non-
linearities were all lumped at the interface, and a three-section line was adopted for the
interface stress-slip law which will vary according to the interface normal stress. After
comparing with the experimental load-slip curves, it can be considered that this present
model can ideally reproduce the trend and ultimate strength. And the investigations on
the influences of the parameters showed consistency with experimental observations
as well. Moreover, compared to the numerical model solved as BVP, this model can
reproduce the snap-back phenomenon.

However, both the present model and the numerical model exhibit a smaller ultimate
strength due to the simplifications that ignored the ductility of the strengthened system.
Further studies may take into account the deformation and damage of the substrate,
or change the mathematical formula for describing the post-peak interface behavior, to
improve the ductility of the model.
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