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Mechanical Considerations of Myocardial
Tissue and Cardiac Regeneration

Ignasi Jorba, Milica Nikolic, and Carlijn V. C. Bouten

1 Current Regenerative Strategies Fail to Restore
the Myocardial Mechanical Environment

According to the World Health Organization, one-third of worldwide deaths are
caused by cardiovascular diseases, with an increasing trend in the recent years
[1]. Specifically, heart failure (HF) following myocardial infarction (MI) is the
most fatal cardiovascular disease with a 5-year survival rate of <50% [2]. At the
tissue level, HF as a result of MI is characterised by a gradual loss of cardiomyocytes
and, therefore, contractile tissue. The biological healing cascades following injury
trigger the fibroblasts to change their phenotype and increase extracellular matrix
(ECM) production, ultimately leading to the formation of hypo-contractile tissue
scar [3]. At the same time, the remaining cardiomyocytes try to compensate for the
loss of contractile tissue, initiating pathological cellular responses and further car-
diac remodelling. Ultimately, tissue remodelling leads to an increased myocardial
wall thickening, followed by dilation and eventually diminished cardiac function [4].

Nowadays, there is no doubt that cells actively respond to their mechanical
environment and this interaction is essential in load-bearing and continuously
contracting tissues such as the myocardium [5]. For instance, cellular contractility
and electrical stability are highly dependent on mechanical environmental cues such
as stiffness or cyclic strain [6–9]; and a more physiological, ‘healthy’ environment –
or niche – will elicit beneficial cell behaviour in contrast to the environment present
after injury. Still, this insight has been largely ignored in the design of strategies to
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repair or regenerate the myocardial tissue. For instance, cell-based therapies aim to
restore tissue contractility by injecting new (contractile) cells in the injured area
[10]. Despite promising results in in vitro settings, long-term preclinical and clinical
studies have shown that these strategies fail to regenerate myocardial tissue and
overall cardiac function [11–14]. One of the main reasons is that these studies mainly
focus on cell phenotype and function before implantation, disregarding the effects of
the highly injured ECM niche with altered mechanical properties that will be found
upon transplantation. In an attempt to induce cell adaptation to the diseased envi-
ronment prior to implantation, some studies exposed cells in vitro to mechanical or
biological environmental cues before in vivo injection [15–17]. However, the toxic
environment still caused low cell retention, high cell death and low mechanical
stability upon injection in the diseased area.
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Hence, it is difficult for the cells alone to overcome the highly destabilised
mechanical tissue present after cardiac injury. Several studies have shown that
cells upon implantation start synthesising and remodelling their own (healthy)
ECM [18, 19]. This principle is copied by scientists in the context of in vitro cardiac
tissue engineering (cTE) [20]. In vitro cTE seeks to create living myocardial tissue
by combining cardiac cells with a temporary ‘healthy’ niche prior to transplantation,
either as a patch or as an injectable gel replacing the damaged area [21]. Multiple
biomaterials, from either natural or synthetic sources, have been developed in the
form of hydrogels or scaffolds to provide for such niches [22–26]. The use of natural
source biomaterials, such as collagen or other ECM components, seems attractive, as
they can offer some of the biochemical cues present in the native tissue.
Decellularised cardiac tissue – e.g. from animals – can provide scaffolds with
appropriate mechanical, topological and biochemical properties [27–29]. On the
other hand, synthetic polymers can provide scaffolds with better tuneable mechan-
ical properties compared to the natural processed ECM but offer poor biochemical
signals with fewer cell recognition motifs if applied in pristine form. Bioactive
modification of such materials is pursued for the design of life-like materials that
can mimic both mechanical and biochemical environmental cues [30–33]. Overall,
these approaches fulfil the aim to provide new cardiac cells with a relevant
micromechanical environment.

cTE constructs, based either on natural or on synthetic biomaterials, are usually
implanted on the epicardium near the infarcted region of the myocardium and serve
to constrain and mechanically reinforce the ventricular wall in order to prevent or
halt pathological tissue remodelling [34]. However, mechanical consequences of
patch transplantation or hydrogel injection are still largely overlooked. Proper
mechanical integration of the delivered cTE constructs across length scales from
local cell-cell and cell-ECM interactions to global tissue contraction is necessary for
the success of these strategies. Mechanical mismatch will cause complications,
including heart failure and diastolic dysfunction.

More recently, in situ cTE has emerged as a promising alternative to traditional
in vitro cTE to achieve tissue regeneration directly at the functional site. In situ cTE
is built on the notion that the injection of a biomimetic acellular scaffold into the
injured myocardium stimulates endogenous repair processes [35]. However, in situ



cTE approaches are still in their infancy, and the governing processes of regeneration
are still largely unknown. These processes range from the activated immune
response in response to the biomaterial inside the body to the mechanical factors
governing de novo ECM formation and organisation. In situ cTE has major benefits
over in vitro cTE in terms of costs, availability and regulatory complexity, as it uses
an acellular scaffold to harness the regenerative potential of the native tissue. In
addition, in situ cTE does not need to account for the mechanical integration of
exogenous cells in the damaged tissue. Nevertheless, the mechanical and electrical
coupling and stabilisation at the cellular, tissue and organ level upon biomaterial
delivery need to be addressed.
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Fig. 1 Cell-based therapies cannot restore the mechanical properties of the injured myocardium. In
vitro and in situ tissue engineering strategies using hydrogels and scaffolds reinforce injured
myocardium with moderate success. The main challenges to improve the mechanical stability of
current cardiac regenerative strategies are highlighted. Partly created with BioRender.com

In summary, and with an eye to clinical translation, the design of successful
cardiac regenerative strategies should address several aspects regarding the role of
biomechanics in myocardial repair or regeneration (Fig. 1). These include questions
such as: What are the mechanical properties of native and diseased tissues at the
various length scales of the myocardium that will affect therapy outcomes? How will
these properties influence cell and tissue behaviour in vitro and upon transplantation
in vivo? How do biomechanical factors influence the remodelling of the regenerating
myocardium in damaged and remote areas? In this chapter, we first describe the
complex cardiac mechanical environment across length scales from macro to micro
level and the techniques used for characterising mechanical behaviour at these length
scales. Next, we review in vitro and in silico cardiac models to understand the impact
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of the cardiac mechanical environment on cellular behaviour and tissue regeneration.
Finally, we provide an outlook on the requisites to design the next-generation
engineering strategies for cardiac regeneration.
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2 Understanding the Multiscale Biomechanical Properties
of the Myocardium

Cardiac tissue, and especially the myocardium, is a complex tissue with multiple
interconnected length scales (Fig. 2a–c) organised into a highly structural and
functional hierarchy, ranging from whole heart biomechanics to the functional unit
of contraction (the sarcomere) inside the cardiomyocytes [40].

At the macroscale, in particular in the left ventricular (LV) myocardial wall, tissue
fibres form a right-handed helical structure close to the inner part of the wall (the
endocardium), left-handed towards the outer part of the wall (the epicardium) and a
circumferential structure in between [41, 42] (Fig. 2a). The changes in fibre orien-
tation are smooth throughout the LV wall. During systole, due to this helical
organisation, the myocardium rotates relative to the base to ensure complete blood
ejection from the left ventricle [43]. Nonetheless, this description of LV wall
organisation is a simplification because it omits other anatomical structures, includ-
ing the extensive vascular network across the whole myocardium [44]. At the
mesoscale, each of the ventricular fibres consists of an anisotropic array of cardiac
cells (cardiomyocytes and fibroblasts) in parallel alignment with the ECM fibres
(mainly collagen fibres) to ensure the coordinated contraction of the LV (Fig. 2b). At
the microscale, cardiac cells, specifically the cardiomyocytes, form aligned,
interconnected bundles that attach to ECM fibres to transduce the cellular contractile
forces throughout all myocardium and generate coordinated contraction
(Fig. 2c) [36].

The mechanical properties of the myocardium differ across length scales. How-
ever, basic mechanical concepts can be identified independently of these scales.
These include the deformation and forces present in the tissue (strain, ε, and stress,
σ), the elastic stiffness (Young’s modulus, E) and the complex G* modulus account-
ing for the viscoelastic properties (Table 1). Although they express the same physical
concept, the interpretation of the values has to be correlated with tissue physiology
and structure at each of the scales addressed.

In clinical practice, there are already established techniques to measure LV
macroscopic strain based on ultrasound (echocardiography) and magnetic resonance
imaging (MRI) [45–47]. One of the advantages of these techniques is that they are
non-invasive, allowing the assessment of cardiac mechanical properties in patients.
Echocardiography imaging is established as a gold standard technique, and it is
based on analysing the LV wall motion by tracking speckles (natural acoustic
markers) in the ultrasonic image. These acoustic markers appear physiologically in
the myocardium and can be tracked frame to frame. By post-processing software, the
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Fig. 2 Physiological structure, techniques to measure mechanical properties of cardiac tissue and
mechanical properties at the three relevant scales. (a) Differential layer organisation of muscle fibres
in the myocardium. (b) Cardiac cells (cardiomyocytes, red; fibroblasts, green) are anisotropically
oriented along ECM fibres (blue). (c) Cardiomyocytes transmit the contraction force to the ECM by
cell-ECM attachments (grey). (d) MR image of a human thorax. Red and green lines delineate the
inner and outer parts of the myocardial wall necessary to compute myocardial strain. (e) Biaxial
tensile tester setup. A porcine myocardial tissue strip is attached to four lever arms. (f) Microscopy
phase-contrast images of 12 μm thick decellularised LV mouse heart probed with AFM. (g)
Circumferential strain bull eye computed by MRI. Values are negative, depicting the contraction
of the tissue. Regions closer to the centre correspond to myocardial regions near to the apex of the
heart. (h) Representative strain-stress (σ-ε) curve measured by tensile testing. Non-linear visco-
elastic behaviour is a characteristic of the passive mechanical properties of cardiac tissue. The



geometric shift of each speckle can be calculated to assess tissue movement and, as
such, tissue strain can be computed [48]. Similarly, MRI techniques are based on
tracking features in the image over time to compute the displacement of the
myocardium and, therefore, the strain present in the tissue (Fig. 2d, g) [49]. The
information that can be extracted from these 4D images are the longitudinal,
circumferential and radial strains. Usually, the strain values are represented by
negative values as the reference deformation is set at the end of the diastole
[50]. The strain present in the in vivo myocardium accounts for the tissue distensi-
bility and gives an estimation of the overall function. After MI, strain at the affected
area diminishes compared to the healthy area [51]. However, detailed knowledge of
myocardial wall stress, particularly in humans, remains elusive. This lack of knowl-
edge is primarily because forces or stresses cannot be directly measured in the intact
myocardial wall [52]. To this end, several indirect methods, including analytical and
finite-element modelling, have been used to estimate the stress present in the tissue
[53–56]. Based on that, stress-strain relationships can be built, and the E value
calculated.
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Besides the active tissue contraction present in vivo, the passive mechanical
properties of the myocardium significantly contribute to overall cardiac function
[57, 58]. Throughout the literature, the E for soft biological tissues has physiological
values in the range of 1–100 kPa [5]. The E gives an estimation of the elastic
mechanical properties of the tissue. However, just an E value is not enough to
fully understand the mechanical behaviour of soft biological tissues. Additionally,
it is necessary to mention at which scale and with which technique the value has been
measured as this includes the information of physiological structures that are being
measured.

At the mesoscale, the mechanical properties of myocardial tissue are
characterised from small ex vivo tissue strips of a few millimetres, subjected to
uniaxial, biaxial or even triaxial tensile tests (Fig. 2e). The strips are attached to a
lever arm controlled by an electromechanical or hydraulic servo-controlled displace-
ment actuator that deforms the strip while it measures the force applied. Therefore,
the σ-ε curve can be computed by calculating the relative deformation of the strip
and the force applied per unit cross-sectional strip area (Table 1; Fig. 2h). This
process is done to normalise deformation and force for the sample size and, hence, to
allow a comparison of experimental results from strips with different sizes. The E

Fig. 2 (continued) hysteresis between mechanical loading (solid line) and unloading (dashed line)
indicates energy loss. The progressive recruitment of collagen fibres explains the non-linear
behaviour. (i) Representative force (stress) versus indentation (strain) curve acquired with AFM
on a decellularised cardiac tissue slice. Mechanical properties at the microscale are also viscoelastic
(the difference between approaching and retracting curves). The appropriate contact model
depending on the AFM tip geometry is used to fit the experimental data. (a–c, h) Adapted from
[36] and reprinted under Creative Commons (CC BY) license. (e) Adapted from [37] and reprinted
under Creative Commons Attribution 4.0 International License. (f) Adapted from [38] and reprinted
with permission from Elsevier. (i) Adapted from [39] and reprinted with permission from Elsevier
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value of the strip can easily be derived by computing the derivative of the σ-ε curve.
However, the σ-ε curve exhibits a more complex mechanical behaviour than just
elastic. The hysteresis of the curve (difference between loading and unloading curve)
depicts energy loss behaviour, typical of viscoelastic materials. The energy loss
results from frictional processes, such as tissue fluid movement, and is commonly
observed in soft biological tissues [59]. Moreover, the σ-ε behaviour of living soft
tissues is highly non-linear. This behaviour can be mainly explained by the state of
the ECM fibres inside the tissue, including the structural organisation of the collagen
fibres. At the relaxed state of the tissue (low strains), the collagen fibres are wavy. By
increasing the strain present in the tissue, the fibres start to unfold, collagen fibre
recruitment increases and the σ-ε curve becomes non-linear (Fig. 2h) [60]. This
strain stiffening effect is advantageous for a tissue as it becomes increasingly
resistant to extension in order to prevent excessive deformations and tissue
damage [61].
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Table 1 Basic mechanical concepts of viscoelastic biological tissue characterisation

Mechanical
parameter

Engineering
strain

ε Ratio of total deformation to the initial dimension of the tissue

Stress σ Normalised force applied per unit area of the tissue

Young’s
modulus

E Relationship between σ and ε in the linear region of the tissue

Complex shear
modulus

G* Ratio of σ to ε under vibratory conditions to account for viscoelastic
tissue properties
Complex G* is decomposed as G*(f) ¼ G0 + iG00 being i the
imaginary unit. The real part, G0, is the elastic modulus that
accounts for the elastic features of the sample, and the imaginary
part, G00, is the loss modulus which characterises viscous
dissipation

Loss tangent G00/G0 Ratio of the viscous modulus to elastic modulus in a viscoelastic
material. This ratio is an index of solid- or liquid-like behaviour of
the sample. For a pure elastic material G00/G’ ¼ 0. Conversely, a
pure viscous material has G00/G0

The mammalian healthy and diseased mechanical properties of the myocardium
at the mesoscale have been the subject of extensive investigation in the past two
decades [62–64]. Healthy myocardium shows anisotropic behaviour (e.g. different
mechanical properties depending on the measured direction). E of healthy myocar-
dium ranges from 1 to 10 kPa at a physiological tissue strain [65]. On the other hand,
the post-MI myocardium shows a stiffer and isotropic behaviour, correlating with the
disorganised distribution of collagen fibres found in the post-MI fibrotic scar
[66, 67]. These findings support the notion that the ECM fibre organisation domi-
nates the mechanical properties of the scar. In order to measure only the contribution
of the ECM in the fibrotic myocardial scar and exclude the cellular effect, some
studies have decellularised the samples before testing [68, 69]. Knowledge of the



mechanics of decellularised ECM will support the design of novel biomaterials for
cardiac tissue engineering.
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At the microscale, the mechanical properties are determined by individual ECM
fibres and cells. The most suitable technique to measure mechanics at this scale is
atomic force microscopy (AFM) [39]. AFM probes micromechanical properties of a
thin tissue slice (or a single cell for that matter) by indenting its surface with a
microfabricated cantilever ended with a pyramidal or spherical tip (Fig. 2f)
[70]. This technique allows the measurement of tip displacement with nanometre
resolution and simultaneous measurement of the applied force (Fig. 2i). AFM
measurements provide essential mechanical information at the scale at which cells
probe their own microenvironment. Micromechanical properties of heart tissue have
been studied utilising AFM on fresh (ECM and cells) and decellularised cardiac
slices of different species [38, 71–74]. Post-MI tissue mechanical properties showed
a dramatic increased E compared to the healthy tissues (approximately three- to
fourfold increase). Moreover, the loss tangent of G* (G”/G’, see Table 1) showed
that the viscous tissue contribution of cardiac tissue at the microscale is around ten
times lower than the elastic contribution, indicating that tissues show a solid-like
behaviour [38].

Another major contributor to tissue mechanics are the cardiac cells. Characteri-
sation of cardiomyocyte single-cell beating forces, frequency and cellular viscoelas-
ticity has been studied using AFM [75]. A major advantage of AFM to measure cell
mechanical parameters over other techniques, such as traction force microscopy or
optical tweezers, is that AFM directly measures force and deformation without
complex data processing. Different cell types largely used in cTE, such as human
embryonic stem cells (hESC)- and induced pluripotent stem cells (iPSC)-derived
cardiomyocytes, show different mechanical phenotype [76]. hESC-derived
cardiomyocytes showed a beating force twofold lower than iPSC-derived
cardiomyocytes, both showing single-cell forces in the range of nanonewton. More-
over, the most interesting fact is that cells showed an increased beating force when
cultured in clusters showing that cell-cell connectivity plays a role in overall tissue
force [76]. Additionally, cell viscoelasticity has been linked to several diseases
[77, 78]. Laminopathies are a family of genetic diseases affecting the cardiomyocyte
normal function and are caused by a mutation of the intracellular proteins called
lamins. This mutation causes a loss of structural cell integrity, showed by a
decreased E, with a lower cell-ECM adhesion affecting force generation and trans-
mission towards surrounding cells and tissues [77]. Also, using primary
cardiomyocytes from young and old rats, it was demonstrated that age correlates
with a decreased cell shortening, increased relaxation time and increased E. These
results indicate that cardiomyocytes from old animals are less deformable and
contractile and suggest that cardiomyocyte mechanical changes per se can contribute
to age-related diastolic LV dysfunction [79]. Overall, the data demonstrate that
active and passive mechanical properties of cardiomyocytes also contribute to the
overall tissue mechanics.

Obviously, mechanical data need to be handled with caution when designing
novel strategies and biomaterials to mimic the healthy and diseased cardiac cellular



niche. Additionally, there is still a lack of knowledge on the relation between cardiac
mechanical properties and cardiac mechanical function. Fundamental insights into
structure-function properties at all length scales from cell to organ are required and
should be integrated to predict the consequences of mechanical changes at the
microscale for cardiac function at the macroscale and vice versa. In the following
sections, we will review the models used to understand the impact of cardiac
mechanical properties on cell and tissue function.
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3 Mechanics-Based In Vitro Models to Understand Cardiac
Behaviour at the Micro- and Mesoscale

cTE strategies are also designed to study the effect of the mechanical cardiac stimuli
on cardiac cells. This section reviews in vitro cTE platforms mimicking the cardiac
mechanical properties at the microscale (cells) and mesoscale (microtissues).

3.1 Cardiac ECM Organisation

The healthy myocardium at the micro- and mesoscale shows highly organised,
anisotropic ECM fibres in contrast to the highly disorganised, isotropic ECM
structure found after injury. Several in vitro methods have been described to
mimic this organisation of healthy and diseased myocardium. First, a commonly
used approach is microcontact printing that serves to pattern cell culture substrates
with various ECM proteins, including fibronectin, laminin, collagen, Matrigel and
gelatin [80–87]. Microcontact printing allows recreating the microscale
two-dimensional environment by patterning the substrate with a high resolution of
just a few micrometres. By changing pattern geometry, cells are forced to adopt
specific (dis)organised alignment. A logical consequence of reproducing the highly
organised healthy myocardium is that the cardiomyocytes become elongated with an
increased contraction force compared to cells on a disorganised pattern [81, 84, 86].

At the mesoscale, the cTE gold standard technique to study cardiac in vitro
conditions is the engineered heart tissue (EHT) pioneered at the end of the last
century [88]. EHTs are cardiac microtissues composed of cell-laden and ECM
mimicking biomaterial, moulded between constraints or stretching posts. Classical
EHTs are composed of two stretching posts creating a unidirectional microtissue
mimicking ECM anisotropy of the myocardium. More recently, to mimic the chaotic
tissue organisation and force distribution after injury, EHTs were fabricated either
with uniaxial and biaxial post distribution. To this end, the organisation and
mechanical forces have been manipulated from organised to disorganised, respec-
tively [89, 90] (Fig. 3a). This mesoscale model will enable the understanding of the
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Fig. 3 Mechanical-based microscale and mesoscale in vitro models to understand cardiac cell
behaviour. (a) Mesoscale microtissue with PDMS uniaxial or biaxial constraints to manipulate
tissue organisation. The cells (red) seeded inside the collagen (green)-based hydrogels compacted
around the posts. Collagen fibres’ orientation shows an (an)isotropic distribution depending on the
uniaxially or biaxially constrained tissues. Adapted from [89] and reprinted with permission from
Oxford University Press. (b) Neonatal rat ventricular cardiomyocytes cultured on top of 1, 10 and
50 kPa PAA gels (left to right). Actin fibres (green) and contraction forces are maximised at
physiological ECM stiffness of 10 kPa. Adapted from [91] and reprinted with permission from
Elsevier. (c) Device based on a flexible membrane with cells seeded on top. The vacuum applied
underneath the membrane stretches the flexible membrane which is supported by a loading post.



principles of ECM remodelling after injury and how it can be restored towards an
organised ECM.
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3.2 ECM Stiffness

A myriad of biomaterials has been developed to simulate the stiffness of healthy and
diseased myocardium. Hydrogels from natural (non-cardiac ECM) and synthetic
sources such as gelatin methacryloyl, polyethylene glycol (PEG), alginate, poly-
acrylamide (PAA) and polydimethylsiloxane (PDMS) are regularly used due to
tuneability of E [84, 94–100]. It has been demonstrated that culturing
cardiomyocytes on substrates with a physiological E maximises their contractility
and the number of intracellular actin stress fibres, whereas increased or decreased E
disrupts their cytoskeletal structure and reduces their contractile force [84, 91]
(Fig. 3b). On the other hand, hydrogels from reconstituted natural cardiac ECM,
such as decellularised ECM, induce better biochemical activity and increased
remodelling capacity of the encapsulated cells while being able to control their
mechanical properties via chemical crosslinking of the gel [29, 101, 102].

Additionally, the viscoelastic properties of some of these materials can be con-
trolled. A recent study developed a nanostructured alginate-based hydrogel allowing
control over stress-relaxation properties without changing the E. Using this material,
the authors showed that stress relaxation affects cardiomyocyte intracellular con-
traction [103]. Another study indicated that varying the monomer and crosslinker
concentration of PAA hydrogels allows to control the viscoelastic properties [104].

Overall, the described hydrogels can mimic the mechanical properties of healthy
and diseased cardiac tissue but cannot capture the dynamics of cardiac remodelling
after injury due to the covalent crosslinking between structural polymeric fibres in
the gels. A new class of hydrogels offers control over crosslinking dynamics and
consequent manipulation of hydrogel dynamic mechanical properties. By incorpo-
rating reversible crosslink methods, the properties of such hydrogels can be changed
instantly by applying an external trigger, such as temperature, light or a chemical
agent [105, 106]. For example, PEG was modified with a photo-sensible and
reversible crosslinker that allowed to dynamically tune the viscoelastic properties
by the use of blue light. Importantly, these changes were even possible when
culturing cells inside the hydrogel [107]. Another recent example addresses a

⁄�

Fig. 3 (continued) Cardiomyocyte progenitor cells show strain avoidance behaviour depending on
their differentiation state. Adapted from [92] and reprinted with permission from Elsevier. (d)
Schematic representation of the Biowire II platform. Cell-seeded collagen-based hydrogels are
attached to uniaxially constrained wires. The system can be electrically paced with carbon elec-
trodes and using an external electrical source. Adapted from [93] and reprinted under ACS
AuthorChoice License



pH-sensitive hydrogel that enables changing the crosslinking degree by dynamic pH
changes [108].
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3.3 Strain on Cells

Cardiac tissue is constantly subjected to static (pre-stress present in the tissue) and
cyclic strain (beating), and these strains may change with disease progression.
Therefore, it is of utmost importance to investigate the mechanoresponse of cardiac
cells to the experienced strain under conditions of health and disease. Most studies
investigating strain responses make use of two-dimensional systems to apply (cyclic)
uniaxial or equibiaxial strain [109]. Commonly, the cells are seeded on top of a
flexible membrane that is stretched, transmitting the deformation of the membrane to
the cells [92] (Fig. 3c). Because study designs differ in strain magnitude and
frequencies used, comparison of study outcomes is cumbersome [110–112]. How-
ever, a common phenomenon has been observed in cardiac fibroblasts in response to
cyclic strain. This phenomenon is called strain avoidance and refers to the
re-orientation of cells perpendicular to the direction of applied cyclic strains
[113, 114]. The physiological interpretation of this behaviour is that cells turn
away from the stretch direction to experience minimal deformation on their cell
body and nucleus. In fibroblasts, strain avoidance has been observed in
two-dimensional and three-dimensional in vitro models [115–117]. However, strain
avoidance is less clear in cardiomyocytes with several studies indicating that
cardiomyocyte strain avoidance depends on the differentiation state of the cell, the
strain rate and strain duration [92]. More recently, it was demonstrated that
cardiomyocytes derived from a pluripotent stem cell source do not show strain
avoidance. However, when co-cultured with cardiac fibroblasts (with a strain avoid-
ance response), the cardiomyocytes did show strain avoidance and rotated along
with the fibroblasts [118]. Hence, the effect of strain on cardiac cell behaviour is also
influenced by the interplay between different cell types present in the tissue.

Strain generated on cardiac cells also has a significant impact on their phenotype
via mechanotransduction pathways. One of the main current challenges regarding
cell models in cTE is to obtain highly mature cardiomyocytes from pluripotent stem
cell sources resembling adult cardiomyocytes found in vivo. Mechanical factors and,
in particular, tissue strain have been shown to play a critical role in maturation
process [119]. Numerous studies have been conducted to understand how cyclic
mechanical strain affects cardiomyocyte maturation at single-cell and tissue levels
[120–124]. Most of these studies showed that cyclic strain increases sarcomere
formation, cardiac ion channel expression and contraction force and frequency of
cells and tissue. Importantly, the strain magnitude and frequency applied to the
tissues are essential to achieve better maturation [125, 126]. Cyclic strains around
10% showed to induce increased cardiomyocyte maturation compared to lower
strains of 5% [127]. On the other hand, large strains (mimicking increased afterload)



have shown to cause pathological hypertrophy in vitro with larger cardiomyocytes
but with decreased contractile function [128, 129].
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3.4 Mechanoelectrical Feedback

The highly interconnected cardiomyocyte network controls the coordinated contrac-
tion of the myocardium and whole heart rhythm. Cardiomyocytes, at the microscale,
depolarise their cellular membrane in the presence of an electrical stimulus. This
depolarisation triggers the release of intracellular calcium ions responsible for
activating the cell’s contractile machinery. In an in vitro setting, generally, the
mesoscale tissues containing mature adult cardiomyocytes start beating due to
their autorhythmic properties [89]. However, in pathophysiological conditions
these tissues often beat non-synchronously due to a lack of proper cardiomyocyte
and fibroblast organisation and cell-cell contact inside the hydrogel [130]. To over-
come the appearance of arrythmia in cTE tissues, these are generally paced by
applying an external electric field during long-term tissue culture. To this end,
several approaches have been implemented with notable success [109, 131]. As an
example, the Biowire and Biowire II platforms (Fig. 3d) have been demonstrated to
improve intracellular calcium handling, contraction force and synchronicity of
beating [93, 132].

3.5 Developing Integrated Models for Mechanical
Consideration In Vitro

In the context of designing strategies for cardiac regeneration, it is not only necessary
to understand how mechanical stimuli influence cell and tissue behaviour, but it is
also fundamental to integrate such stimuli across length scales to better recapitulate
the in vivo situation. For this purpose, the development and use of bioreactors are
pursued. A bioreactor is typically defined as a device that provides tight control of
the environmental conditions and external stimuli (biochemical and biomechanical)
that influence cell and tissue culture processes [133].

Oxygen tension is of paramount importance in affecting cardiac cellular and
tissue behaviour [134, 135]. After MI, there is a loss of perfusion in the scar region
that leads to a decreased oxygen level or hypoxia. It has been previously shown that
hypoxia enhances the migration and differentiation capacity of pluripotent stem cells
derived to cardiomyocytes [136, 137]. Moreover, low oxygen tensions stimulate the
ECM-producing phenotype of cardiac fibroblast, maintaining the presence of fibrotic
tissue after injury, having a direct impact on cardiac tissue mechanics [138]. There-
fore, the use of bioreactors capable to mimic (patho)physiological oxygen tensions is



critical to further understand the mechanical implications on the behaviour of cTE
strategies.
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Biomechanically, the main goal for cTE is to synchronise contraction with
appropriately timed mechanical or electrical stimulation to mimic ventricular filling.
Independent control over individual input signals further allows for manipulating
disease progression, e.g. via changes in the stretch (haemodynamics) and electrical
signal patterns (e.g. arrythmias). Various bioreactors have been designed for apply-
ing mechanical and electrical stimuli simultaneously [139–141]. For example, an
electromechanical bioreactor platform was able to provide static stress to
microtissues using a pneumatically driven stretch device. It consisted of a tissue
culture chamber where several tissue constructs (20 mm � 20 mm � 3 mm) were
subjected to frequencies and amplitudes of cyclic stretches and electrical pulses
matching the native tissue [142]. Moreover, it is also important to track over time the
changes in mechanical properties of the tissues inside bioreactors as a parameter
to understand tissue growth and remodelling. A recent study developed a bioreactor
to test cardiac tissues under dynamic loading together with an ultrasound system to
trace non-invasively the mechanical properties of the tissue over time [143].

4 In Silico Models to Study the Mechanics of Myocardial
Remodelling and Regeneration

The rapid development of digital technologies has enabled the development and
application of computational models in many fields nowadays. Computational
models in bioengineering, commonly referred to as in silico models, enhance the
knowledge of various biological tissues’ behaviour at different scales. Moreover, a
multiscale approach can integrate knowledge from different scales into an overall
simulation of the tissue behaviour and thus become more relevant for analysis and
predictions.

The use of in silico models for simulating cardiac tissue function has rapidly
expanded in the last years, especially for simulating drug testing and considering
chemical coupling within the tissue. The computational platforms for testing novel/
existing drugs have achieved widespread approval on different aspects – ethical,
toxicological and economic [144]. Besides the platforms for drug testing, the major
interest of in silico models lies in capturing cardiac systolic/diastolic functioning and
electrical coupling, from micro- to macroscale [145]. These models usually neglect
the biomechanics of the heart and/or miss to include the mechanical environment for
the cells [146]. Moreover, there is a gap in linking electro-mechanical coupling of
the heart to the contraction of the tissue at different length scales. Improvement of in
silico models in this area is suggested to result in models that can predict the change
of tissue mechanical function in response to tissue remodelling under conditions of
health, degeneration and regeneration. A such, these models also have to translate
basic research findings on cardiac regeneration into tissue engineering or other



regenerative strategies under pathological conditions, including their altered hemo-
dynamic, electroconductive and tissue mechanical features [147].
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Fig. 4 Scheme of in silico approach in myocardial mesoscale modelling

Current regenerative strategies fail to properly restore the cellular microenviron-
ment and aligned structural organisation after cardiac injury, relevant for coordinated
contraction and tissue mechanical homeostasis, and this is where in silico models can
be very useful in answering the questions about (changing) mechanical impact on
cardiac tissue regeneration [148]. They can be developed to replicate certain exper-
imental observations, e.g. at cell and tissue level, and be further extended to in vivo-
like conditions at the organ scale. By employing a multiscale approach, they can be
also used to investigate the effect of microscale modifications on macroscale func-
tion, much easier than experiments can do [149].

The starting point in the development of in silico models is the connection of
simulated biological processes with data from in vitro or in vivo experiment(s), or
those from the literature, since each computational model needs meaningful input
data for robust predictions (Fig. 4). In this first phase of development, model outputs
are compared with – or validated against – additional experimental findings so that
initially applied boundary conditions of the proposed in silico model are in line with
real-life data. As there are now various in silico models in cardiac research, there is a
tendency to standardise in silico cardiac models in terms of verification, validation
and uncertainty quantification of scientific software [150].

In the scheme depicted in Fig. 4, the input from an in vitro microtissue model is
used to feed the computational model at the mesoscale (tissue level). The outputs
from the in silico simulations can include, for instance, mechanical properties of the
tissue, structural organisation and mechanical contraction in response to the exper-
imental starting conditions. Once validated, the in silico model can be used to
understand and predict outputs in response to new boundary/loading conditions,
e.g. to mimic healthy/diseased states of the microtissue. The added value of such
mesoscale in silico models can be found in the enhanced understanding and



prediction of microtissue behaviour and the reduction and optimisation of further
in vitro models. An additional benefit is the possibility to integrate and translate
insights from the mesoscale level to the macroscale level using multiscale in silico
models [149], which is particularly useful for predicting the outcome of cardiac
regenerative strategies. The final advantage is the usage of in silico models as a
platform for existing/novel drug testing – as has been mentioned before. This section
aims to present current in silico models that mimic the myocardium at different
length scales and with a special reference to mechanical consideration for regener-
ative strategies. Our opinion on future directions in this area will be discussed in the
concluding section.
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In the context of cardiac regeneration, in silico models have been employed to
predict the mechanical consequences and optimise the design or placement of next-
generation cardiac patches in terms of structural organisation and mechanical prop-
erties of the myocardium and to help define the mechanical constraints invoked by
such patches that would lead to reversion or inhibition of adverse cardiac
remodelling.

Urdeitx and Doweidar developed a mesoscale finite element model to simulate
cardiac cellular behaviour such as proliferation, migration, maturation and cell-
matrix adhesion in response to mechanical and electrical cues from the environment
[151]. Cell behaviour was described as a function of cell deformation due to changes
in ECM stiffness and/or electrical stimulation. The model predicted that on soft
ECM, cell alignment and migration improved with increasing (directional) electrical
stimulation. On stiffer ECM, cells showed enhanced maturation and proliferation.
However, the mechanical impact considered in the model is limited as it only
considers changes in ECM stiffness, without incorporating the cause of ECM
stiffness changes or hemodynamic loading.

To better understand the potential of cardiac regeneration, tissue (ECM) produc-
tion and organisation by resident or newly delivered cells have been studied in vitro.
When cultured in 3D environments, such as collagen hydrogels enriched with
Matrigel, cardiac cells (both cardiac fibroblasts and cardiomyocytes) contribute to
the production and maintenance of the ECM by ECM synthesis, degradation and
cell-matrix interactions, including cell traction forces [89]. They also respond to
environmental strains by (re)orienting their cell body as well as the ECM fibres
around them (see Sect. 3.3). Mesoscale in silico models of the cardiac tissues have
been developed to successfully describe the underlying biological phenomena of
these processes of healthy tissue remodelling, where fibroblasts align their internal
cytoskeleton (stress fibres) and ECM to form an anisotropic tissue [152–156]. In
response to cardiac injury, for instance, due to ischemia, the heart’s primary response
is to create a scar-like tissue and protect the damaged tissue from rupturing by
ongoing remodelling. Under these conditions the original cell and tissue anisotropy
is lost and fibroblasts differentiate into myofibroblasts, which show a higher pro-
duction of ECM proteins (mainly collagen), leading to reduced compliance and
stiffening of the scar [157]. In silico models that can predict structural (re)-
organisation of the cells and collagen can thus predict disease development of the
tissue but are also instrumental for testing the effects of mechanical conditions



(e.g. constraints by tissue patches) that would allow the transition from an isotropic
to an anisotropic organisation. To this end, the models should describe how cardiac
fibroblasts remodel the collagenous matrix and incorporate cell-mediated traction
forces [158] under both physiological and pathophysiological conditions [154–
156]. When successfully validated, the output from an in silico model that describes
tissue structural remodelling can also be used to design engineered tissues with
optimised and load-bearing collagen organisations [159, 160].
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When modelling the mechano-response of cardiomyocytes, in vitro and in silico
models have focused on describing cardiomyocyte organisation and alignment at the
mesoscale, either or not in the presence of fibroblasts. These models show that
cardiomyocytes align with the stress direction and alongside collagen fibres in
uniaxially constrained microtissues, but show no alignment in biaxially constrained
microtissues [89, 161]. The aligned structure is essential for coordinated and
synchronised contraction and proper propagation of electrical signals. Cross-
sectional compaction of uniaxial constrained tissues further contributes to alignment
and increases with the percentage of fibroblasts present in the tissue. Forceful
contraction requires a high percentage of aligned cardiomyocytes and fibroblasts
to establish conduction and synchronised beating. Hence, next to structural
remodelling, cell ratios and alignment at the mesoscale should be incorporated
when mimicking regenerative strategies to reverse or halt remodelling of cardiac
scar tissue at the macroscale. Vice versa, the influence of hemodynamic loading
conditions as well as active and passive mechanical behaviour at the macroscale
[162] will influence cell alignment at the meso- and microscale.

Macroscopically, the myocardium is organised in differently orientated
two-dimensional anisotropic sheets that follow a helicoidal shape from the epicar-
dium to the endocardium. Hence, the local coordinate system is represented by
three axes: fibre orientation, sheet orientation and normal to the sheet orientation
to capture anisotropy of the tissue. There are two approaches to computationally
include myocardial organisation within the cardiac geometry at the macroscale:
patient-specific and numerically approximated. The inclusion of patient-specific
organisation is the ultimate goal of all predictive in silico models, since it takes
into account the real structure of the tissue, obtained by image reconstruction of
patient-specific MR images. The fibre directions can be measured from MR images
leading to the generation of patient-specific structure and geometry, which is a great
improvement in numerical modelling despite their time-consuming feature
[163]. Sometimes it can be more convenient to avoid image reconstruction for
each patient separately. By mapping fibre orientations from the geometry of one
patient to the cardiac geometry of another patient, time, money and effort can be
reduced, but this approach is less accurate [164]. To simulate generic behaviour of
the myocardium at the macroscale, including the influence of tissue organisation,
numerical approximations can be used, where myofibril helix angle changes linearly
from �60 � � 10� at the epicardium to 60 � � 10� at the endocardium side
[165]. Which approach will be selected depends on the purpose of the in silico
model.
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Cardiac in silico models describing macroscopic mechanical behaviour com-
monly model left ventricle (LV) behaviour. The LV, representing the largest shape
and volume of the four-chambered heart, experiences the highest stresses and strains,
and its function is most often and most severely affected by disease. The most
valuable output from these LV models is the quantification of myocardial mechan-
ical parameters under in vivo-like hemodynamic loading, in particular LV wall
stress, which cannot be measured experimentally but is important in disease predic-
tion since it is indicative of cardiac wall (dis)function. By changing the mechanical
properties of the LV wall at certain locations, different pathological conditions can
be simulated. For instance, when incorporating differential mechanical properties for
scarred tissue, border zone and healthy remote tissue based on patient-specific MR
images, these models can be used to predict the severity and functional consequence
of myocardial infarction [166]. Yet, the LV models generally do not account for
tissue organisation and remodelling at lower length scales, so they cannot simulate
the progression of fibrosis and functional consequences at later stages after infarc-
tion. A second disadvantage of these models is a simplified representation of
electrical conduction and electro-mechanical coupling.

The final goal of in silico models is the integration of insights obtained across
length scales (cell, tissue and organ) into multiscale models that can provide more
detailed information on cardiac behaviour, predict disease progression and improve
existing or establish novel regenerative strategies. So far, multiscale in silico models
have mainly focused on describing the effects of pharmacological agents and
electrical conduction from cell to organ, while multiscale mechanical interactions
have remained largely unexplored. Future directions in the development of in silico
myocardial models to support the improvement of existing or creation of novel
regenerative strategies lie in predicting the effects of mechanical loading/unloading
on tissue remodelling and mechanical functioning at different length scales.

Knowledge obtained from experiments and simulations at cell and tissue scale
should be translated into the in vivo situation of the whole heart to ultimately
understand how cardiac tissue will remodel under whole-organ hemodynamic load-
ing conditions and depending on (changing/heterogeneous) cardiac wall mechanical
properties. The SIMULIA Living Heart Project1 could offer the next step in the
development of more complex multiscale electromechanical cardiac models. This
project gathers some of the most prominent researchers in cardiovascular area from
different branches, with the purpose to create a multidisciplinary vision in the
development of cardiac computational models for clinical use. The project integrates
various features relevant for cardiac function, such as the detailed geometry of the
whole heart, electrophysiology, active and passive mechanical properties of the
cardiac wall, blood flow and the feedback of the circulatory system on cardiac
function. Using the available computational methods to model myocardial infarction
and tissue remodelling at the mesoscale, the macro model could, for instance, predict

1Living Heart Project | SIMULIA™ - Dassault Systèmes® (3ds.com)| SIMULIA™ - Dassault
Systèmes® (3ds.com).

https://www.3ds.com/products-services/simulia/solutions/life-sciences-healthcare/the-living-heart-project/
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how tissue-engineered epicardial patches or biomaterial injection in the cardiac wall
would influence tissue remodelling in the infarct area and subsequently how cardiac
function as a whole could be improved.
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5 Conclusion

Even though the progress in the development of cardiac regenerative strategies can
be observed, long-term clinical benefits are still to be expected. Current strategies
largely omit the mechanical consequences after implantation of cells or tissue-
engineered constructs, suggesting that more attention should be paid to mechanical
considerations in the processes of tissue formation and remodelling. The use of
in vitro and in silico models, together with a thorough mechanical characterisation of
myocardial tissue at different length scales, is required to understand and predict the
effects of the mechanical cues (e.g. loading and ECM stiffness) on cells and tissues.
In this context, it should be noted that mechanical properties of cardiac tissue are
influenced by the scale at which they are measured, highlighting the need to use the
appropriate technique at each scale. Microscale and mesoscale in vitro models need
to integrate these mechanical properties to better understand the effect on cell and
tissue behaviour. Moreover, in silico models can provide significant assistance in
simulating a multiscale cardiac response upon improvement of existent or develop-
ment of novel models. Regarding in silico models that describe mechanical behav-
iour, the literature mainly reports on models at the meso- and macroscales but does
not provide multiscale models that can simulate cardiac tissue remodelling or
regeneration based on such processes at cellular or tissue level. The development
of multiscale predictive models could illuminate native-like mechanical conditions
that can provoke remodelling of fibrotic tissue (e.g. change of mechanical loading
and change of stiffness), but more importantly translation of these conditions into the
effect of regenerative strategies, such as patches with regionally different stiffness.
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