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Biomechanical forces play a major role in organ development, shape and function.
When exceeding the physiological range, however, they can become detrimental to
organ structure and function. This is probably best exemplified by the cardiovascular
system, with both the heart and blood vessels being continuously exposed to the
biomechanical forces exerted by the pressure and flow of blood, which not only
produce acute changes in cardiovascular function but also result in structural
changes in the cardiovascular system.

The heart is a unique organ that, in concert with the resistance to blood flow in the
pulmonary and systemic arterial beds, generates arterio-venous pressure gradients
that provide the energy for the forward flow of blood through the pulmonary and
systemic vascular beds. The constant beating of the heart together with the pressures
it generates has resulted in a highly specialised muscle of which the shape and
function are under the constant influence of the forces generated by and exerted on
the cardiac muscle in a close interaction with the vasculature to which it is coupled.

Throughout life, the mechanical loading conditions of the heart change, starting
during embryonic development, through birth and subsequently during physiolog-
ical growth of the body, and these changes stimulate the heart to ultimately reach its
adult size and shape. In the healthy heart, the sudden variations in mechanical
loading conditions, e.g. during postural changes, physical activity or emotional
stress, can be accommodated for by acute changes in cardiac function. However,
when the heart is exposed to either repeated or sustained increases in loading
conditions, it can adapt with either physiological remodeling (e.g. in response to
exercise training) or pathological remodeling as occurs, for example, in response to
chronic pressure or volume overload (e.g. due to valvular disease or hypertension) or
in response to loss of viable myocardial tissue (e.g. in acute or chronic myocardial
ischemia).

v

Foreword

The mechanisms by which all these changes occur as well as the contributions of
the various cell types in the heart remain incompletely understood. All these aspects
of cardiac mechanobiology along with many more facets of this fascinating, timely
and highly clinically relevant field of research are addressed by the various chapters
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1

Cardiac Mechanoperception
and Mechanotransduction: Mechanisms
of Stretch Sensing in Cardiomyocytes
and Implications for Cardiomyopathy

Matthias Eden, Lucia Kilian, Derk Frank, and Norbert Frey

1 Introduction

Increased myocardial distension, as a result of acute or chronic hemodynamic
pressure overload, as it occurs in settings of persistent arterial hypertension and
valvular or ischemic heart disease, is one of the most frequent challenges for the
heart [1]. From a hemodynamic point of view, the short-term adaptation to increased
cardiac load as an initial increase in systolic force generation has been described
more than 100 years ago and is still known as “Frank-Starling mechanism” [2].

But since, the ability of cardiac tissue and in particular the cardiomyocyte itself, to
respond and chronically adapt to various loading conditions throughout develop-
ment and disease, crucial to maintain hemodynamic stability and prevent circulatory
congestion or to compensate for increased wall stress, has also been extensively
studied.

In particular, it has been analyzed how cardiomyocytes that are coupled chemi-
cally, electrically, and mechanically sense active contractile forces and passive tissue
stiffness and how this affects signal transduction and gene regulation [2–5]. The
rapid development of new biochemical, genetic, and imaging techniques has allowed
us to gain even more insight in the innumerable and diverse molecular components
and signaling processes that are involved herein. These intracellular and extracellular
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processes mostly include conformational protein alterations as initial events
resulting in altered protein-protein interactions, differential protein expression, post-
translational modifications (i.e., phosphorylation), and changes in subcellular protein
localization, as well as altered ion channel functions and generation of small volatile
molecules like nitric oxide (NO) and reactive oxygen species (ROS) [3, 6–12]. Of
note, the latter are mediators that are involved in almost all mechanotransduction
processes and provide ultra-short-term mechano-electrical feedback and also enable
mechanochemical transmission [6, 13].
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Beyond these structural and signaling-based mechanisms, cardiomyocytes fea-
ture a complex network of calcium entry mechanisms and calcium storages, as well
as a large number of mitochondria, responsible for synthesizing and delivering ATP
molecules ensuring constant and proper sarcomeric contraction [2, 14–16]. Structural
and regulatory components involved in these metabolic mechanisms are closely
aligned near the cardiac sarcomere, forming important microdomains that are also
able to rapidly adapt to increased energy/metabolic and calcium demands under
pressure overload, hypertrophy, and heart failure and thus participate in muscular
mechanoperception [11, 17].

Scientific evidence is constantly growing that there are distinct cellular pathways
that mediate cardiomyocyte mechanotransduction under either pathological or phys-
iological (i.e., exercise) conditions, involving mostly different intracellular signaling
cascades [18]. To add another layer of complexity, these signaling pathways and
involved components are believed to also change upon developmental and aging
processes [4, 5, 19, 20]. In general cardiomyocyte hypertrophy, denoting initially an
adaptive cardiac response to compensate for increased wall stress, results in a
pathological maladaptive condition upon persistent activation, so there have to be
common mechanisms (and potential future therapeutic targets) dividing physiolog-
ical or adaptive cardiac hypertrophy signaling cascades from those driving intracel-
lular and extracellular processes leading to increased cardiac morbidity and mortality
[1, 5]. To precisely dissect these highly variable and complex mechanoperception
and mechanotransmission mechanisms, signaling cascades will help to design future
gene therapy-based or pharmacological strategies to improve patient outcomes.

2 The Z-Disc and Mechanotransduction

Multiple studies have identified the cardiac sarcomere with its complex assembly of
myofilament proteins as a key structure for mechanotransduction [9, 21, 22]. In
particular, the cardiac Z-disc as the lateral boundary within each sarcomere not only
consists of multiple layers of α-actinin aligned in antiparallel organization [17] but
also forms a complex protein network for sensing sarcomeric strain. The view of the
cardiac Z-disc as a mere structural sarcomeric component has extensively changed
over the years and is now believed to be the most important signaling nodal point for
strain-related downstream signal transduction [23]. Beyond carrying myofilaments,
the sarcomere connects to cardiac sarcolemma by cytoskeletal protein complexes



that link in particular the Z-disc to the integrin and dystroglycan complexes at
costameres. Indirectly, this interface can connect the Z-disc to components of the
cardiac extracellular matrix (ECM) through components containing transmembrane
domains [5, 8, 17, 24]. Among others, the intermediate filament desmin has also
been shown to connect the Z-disc to the cardiomyocyte nucleus [25, 26], while other
proteins like mink (minimal potassium channel subunit) or telethonin/TCAP are
believed to tether cardiac t-tubules to the sarcomeric Z-disc [27, 28]. Taken together,
this places the sarcomeric Z-disc within the center of multiple cardiomyocyte
signaling microdomains.
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Titin, muscle LIM protein (MLP), calsarcin 1, and filamin C are likely critical
players in force transmission and sensing within the sarcomeric Z-disc [23]. But a
constantly increasing number of Z-disc proteins (TCAP, LMCD1, ALP, ABLIM,
Cypher/ZASP/Oracle, PICOT, FHL1/2, CEFIP, muscle-specific ankyrin repeat pro-
tein (MARP), nexilin, myopalladin, myotilin) have been recently discovered and
shown to participate in complex signaling networks implicated in
mechanotransduction, hypertrophy signaling, and cardiomyocyte contractile (dys)-
function as discussed below [5, 22, 23, 28].

2.1 Strain Sensing and Mechanotransduction
at the Sarcomeric Z-Disc/I-Band

Titin is a giant protein that pervades the sarcomere from the sarcomeric Z-disc to the
center of the sarcomere at the M-band [29, 30]. Titin contains multiple distinct
protein domains that have been shown to serve as anchoring hubs for a variety of
additional proteins that are all involved in myocardial stretch responses during
cardiac hypertrophy and failure [29–31]. The overall cellular location along the
sarcomeric filaments, as well as the unique structural properties of each titin mole-
cule itself, makes titin an ideal candidate for sensing systolic or diastolic biome-
chanical forces acting on the sarcomere and those being generated by the sarcomere
itself during active contraction [29, 32]. A large variety of functional roles for titin
have been revealed, including the control of correct sarcomere assembly, sarcomere
length and stability, the generation of stretch-adapted passive sarcomeric stiffness,
and as signal transducer in response to pressure overload [16, 29–31, 33–36]. I-band
titin contains unique domains and interdomain linkers that are believed to follow a
“stepwise extension” model. Initially, upon moderate strain application, at the
sarcomeric I-band, N2BA titin is elongated by straightening their Ig interdomain
linkers [29, 37]. When this capacity is worn out upon further increase of strain
forces, the PEVK-domain and finally the N-Bus domain further extend and unfold to
expose phosphorylation and binding sites [30, 31, 34]. Taken together, titin and its
unique structural and regulatory features are thus believed to represent the potential
molecular fundament for the aforementioned Frank-Starling mechanism.
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2.2 The Z-Disc/I-Band Titin/MLP/TCAP Complex: Stretch
Sensing Within Sarcomeric Borders

The muscle LIM domain protein (MLP) is specifically expressed in all striated
muscle cells and has been implicated in a broad range of different cellular functions
[5, 21, 28]. It contains two LIM domains and thereby interacts with multiple pro-
teins, including α-actinin, titin, and TCAP at the Z-disc and other subcellular
compartments including intercalated discs and even the nucleus [21]. Of note,
MLP protein was also found at sarcomeric I-bands. At Z-discs, MLP-associated
TCAP is hereby able to weave two titin filaments at the Z-disc [5]. This protein
complex has been shown to be exceptionally resistant to biomechanical forces, due
to multiple hydrogen bonds between TCAP and titin [5, 30]. Moreover MLP is
believed to shuttle into the nucleus to promote nuclear signaling in muscle cells
(possibly via GATA4 and SRF) [21]. MLP knockout mice display a severe dilated
cardiomyopathy phenotype resulting in heart failure and premature death, whereas
in vitro, MLP deficiency resulted in abrogation of hypertrophic signaling upon
neurohumoral or strain-related activation [21, 23, 28]. The W4R-MLP polymor-
phism, found in human DCM, results in an altered MLP structure, incapable to
interact with TCAP [38]. Knock-in mice with homozygous expression of the
W4R-MLP show spontaneous cardiac hypertrophy without pressure overload pos-
sibly via alteration of elastic intrinsic properties of Z-disc titin and/or shuttling of
mutant MLP to the nucleus [28, 38]. Yet, cardiac-specific overexpression of MLP
does not protect against increased biomechanical stress due to pressure overload
[39]. In addition to the aforementioned MLP functions, it is believed to recruit the
phosphatase calcineurin to the Z-disc, a major signaling enzyme linked to patholog-
ical cardiac hypertrophy as discussed below [21] (Fig. 1).

Myopodin, also known as Synaptopodin2, was initially described as actin-
bundling protein enriched in the heart and skeletal muscle and is believed to be
responsive to cellular stress induced by heating of myoblasts to 43 °C [40]. The fact
that myopodin is also part of a Z-disc signaling complex containing alpha-actinin,
calcineurin, Ca2+/calmodulin-dependent kinase II (CaMKII), muscle-specific
A-kinase anchoring protein, and myomegalin suggests an important function in
Z-disc’s associated signaling [41]. This is further supported by the finding that
protein kinase A (PKA) or CaMKII-dependent myopodin phosphorylation mediates
its binding to the chaperone 14-3-3 and subsequent nuclear import, whereas dephos-
phorylation of myopodin by calcineurin counteracts this process. Another relation of
myopodin function to cellular tension was reported in mammalian A7r5 cells, where
tension-induced unfolding of filamin disrupted a complex of myopodin, BAG3, and
filamin which led to autophagosome formation and subsequent filamin
degradation [42].
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Fig. 1 Signaling molecules embedded in the sarcomeric Z-disc in context to the nuclear and
cellular lamina. Schematic illustration of typical multiprotein complexes involved in cardiomyocyte
mechanotransduction. At the sacromeric Z-disc, the calcineurin-NFAT pathway tethered via
calsarcin 1 onto the sarcomere is shown. NFAT as well as sarcomeric MLP is believed to shuttle
between the Z-disc and the nucleus. At the sarcomeric I-band, a titin-associated complex involving
FHL1 and 1 and MAP-Kinases Erk1/2 is displayed. ERK1/2 is also believed to shuttle in the
nucleus to promote hypertrophic gene expression via transcription factors like GATA4. GPCR G-
protein-coupled receptor, At1R angiotensin II type 1 receptor, SR sarcoplasmic reticulum, LINC
linker of nucleoskeleton and cytoskeleton
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2.3 Calcineurin as Major Player in Cardiac Stress Signaling

The calcium/calmodulin-dependent phosphatase calcineurin (CaN) and its down-
stream targets, transcription factors of the nuclear factor of activated T cells (NFAT)
family, play essential roles in cardiomyocyte signaling [10]. Calcineurin typically
forms a heterodimer expressed as three different isoforms, namely, αCaN, βCaN,
and γCaN, while the structure of each isoform shows similar features, containing a
catalytic A chain (CnA) and calcium-binding regulatory B domain (CnB1) [43]. A
direct link of calcineurin activity to mechanotransduction has initially been demon-
strated by the fact that in vivo, transgenic overexpression of constitutively active
calcineurin in mouse hearts leads to massive ventricular hypertrophy and subsequent
heart failure [44]. In contrast, mice lacking βCaN show impaired ability to induce
cardiac hypertrophy upon pressure overload [45]. Calcineurin is activated in
response to increases in local calcium concentrations as stepwise process with an
inactive, partially active, and fully activated state [43]. At basal cardiomyocyte
calcium concentrations, calcineurin remains in its inactive state, in which the
regulatory domain is folded onto the B chain binding helix, leaving CnB1 unbound.
The partially active state occurs when loose calcium ions bind to CnB1 upon
increasing concentrations, resulting in interaction of the N-terminal lobe of CnB1
to the B chain binding helix of CaN. The fully active state occurs when also
calmodulin (a calcium-sensing protein) associates to the holoenzyme, causing
calcineurin’s regulatory domain to correctly fold, thereby removing its
autoinhibitory domain from the catalytic site [43]. To ensure tightly controlled
calcineurin activity, many factors are likely involved, including the rate of rise and
fall of calcium concentrations, association with calmodulin, and regional differences
in availability of these factors in certain microdomains [46–52]. Within this global
model, cardiomyocyte calcium entry is linked to dephosphorylation, whereas in
contrast, calcium signaling is also coupled to phosphorylation through various
calmodulin-modulated kinases (CAMKs) [10]. In this interplay, these processes
offer a distinct coordination between calcium-induced calcium release and excitation
contraction coupling and phosphorylation/dephosphorylation processes affecting
signaling and gene regulation. While calcineurin is primarily located in the cytosol,
various protein binding partners, like MLP, calsarcins, and A-kinase anchoring
proteins, are believed to tether calcineurin to different subcellular signaling
microdomains, like the t-tubule-Z-disc interface as well as the nuclear envelope.
This localization in close proximity to voltage-activated L-type calcium channels
(LTCC) and transient receptor potential canonical (TRPC) channels at t-tubule
membranes and ryanodine receptors (RyR2) in the sarcoplasmic reticulum
(SR) place calcineurin in an ideal location for sensing calcium fluxes upon short-
term increases in local intracellular concentration [43–49]. The most studied sub-
strates of calcineurin are the family of nuclear factors of activated T cells (NFATs).
Desphosphorylation of these transcription factors by calcineurin in the cytosol
results in exposure of a nuclear localization signal, resulting in NFAT translocation
to the nucleus, thereby activating prohypertrophic gene expression programs
[10, 43]. Interestingly, NFATs function as heterodimers in cooperation with other



prohypertrophic transcription factors like MEF2 and GATA4, which can also be
directly activated by calcineurin-mediated dephosphorylation [10]. Because of its
crucial functions in maintaining cardiac homeostasis, calcineurin activity is tightly
regulated by multiple endogenous mechanisms. The calcineurin inhibitor CABIN-1/
CAIN interacts with calcineurin as well as acting directly as a co-repressor of the
SRF-associated transcription factor MEF2. Since CABIN-1 is a large, multidomain
protein, it is assumed to function as a calcineurin scaffold, facilitating interactions
with other regulatory proteins [10]. Carabin is another endogenous calcineurin
inhibiting protein showing reduced abundance in models of pressure overload and
in human heart failure. Knockout of carabin in vivo results in exaggerated pressure
overload-associated cardiac hypertrophy and heart failure, whereas cardiomyocyte-
specific overexpression of carabin has shown to be protective [10]. The family of
regulators of calcineurin (Rcan1, 2, and 3) consists of small proteins that can
potently inhibit calcineurin activity through a unique C-terminal calcineurin binding
domain. Of note, the expression of the cardiac Rcan1.4 isoform is regulated under
almost exclusive calcineurin/NFAT transcriptional control and thus provides a direct
feedback loop for calcineurin activity [10]. Other negative regulators of calcineurin
activity at the sarcomeric Z-disc include calsarcin 1 and the protein PICOT (protein
kinase C-interacting cousin of thioredoxin) [48, 53]. PICOT directly interacts and
colocalizes with MLP at the Z-disc and thereby disturbs the MLP-calcineurin
interaction, resulting in a concentration-dependent displacement of calcineurin
from the Z-disc [5, 10, 23]. The calsarcin family of proteins includes three known
members, all localizing specifically to the Z-disc. In this regard, calsarcin-1,
representing the only isoform expressed in the adult heart, has been shown to be a
negative regulator of calcineurin activity [5, 10, 23, 47].
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2.4 N2B Titin Controlled Mechanosensing Hubs

An I-band localized subdomain of N2B (N2Bus) titin can act as a molecular spring
element, able to unravel upon heavily increased sarcomeric strain and subsequent
diastolic distension, thereby functioning as a diastolic length sensor (see above)
[32, 36, 37]. At the N2Bus, titin interacts with 4½-LIM domain proteins, FHL1 and
FHL2, that are believed to form a unique multiprotein complex with the kinases
MAPK/ERK1/2, directly linking mechanical strain to hypertrophic signaling and
growth. Load-dependent unfolding of the N2Bus spring-like subdomain releases
activated MAPK/ERK2 and enables their active shuttling to the nucleus to promote
hypertrophy-associated gene expression [5, 23, 34]. FHL2, which is known to show
additional interactions in cardiac muscle, also connects the N2B-domain to integrins,
thereby connecting titin to the integrin-associated mechanotransduction pathway at
costameres. FHL protein-associated signalosomes gained more attention, since
recently a previously uncharacterized protein named cardiac-enriched FHL2-
interacting protein (CEFIP) was discovered. CEFIP is upregulated in



cardiomyopathy and shows a heart- and skeletal muscle-specific expression profile.
CEFIP also localizes to sarcomeric Z-discs where it interacts with FHL2, thereby
enhancing calcineurin activity [46]. Beyond FHL2 regulatory processes, titin N2Bus
can be phosphorylated by multiple cardiac kinases, including ERK1/2, PKA, and
CamKII, possibly in order to provide local adaptation of this regulatory pathway by
reducing titin/sarcomeric passive tension [5, 23, 34].
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The muscle-specific intermediate filament component desmin not only connects
nuclei and mitochondria but also intercalated discs to the Z-disc [54]. Mutations in
desmin cause a variety of cardiac diseases like dilated cardiomyopathy,
arrhythmogenic right ventricular cardiomyopathy (ARVC), and familial restrictive
cardiomyopathy (often sharing the common feature of variable associated conduc-
tion system defects) as well as skeletal myopathies [54–56]. Due to its assumed
unique elasticity, desmin is believed to sense cellular and protein complex deforma-
tions, which may trigger certain conformational changes in response to strain-related
mechanical alterations, resulting in diverse signaling events as well as structural
alterations (further discussed below) [5, 9, 23, 57].

The Z-disc protein filamin C (FLNC) is also recognized as a potential molecular
strain sensor in cardiomyocytes. Moreover, filamin C can act as a structural
crosslinker of actin rods at the sarcomeric Z-disc [22]. For all three filamins
(filamin A, B, and C), a subcellular localization at either the sarcomeric Z-disc, the
intercalated discs, cell membranes, and myotendinous junctions has been described.
It is speculated that due to its unique structural characteristics, in particular filamin A
and filamin C can also serve as a molecular interface for mechanotransduction
[22]. As it has been assumed for other proteins, filamin molecules are able to
straighten upon tension, thus changing affinities for protein-protein interactions
and subsequent signaling [22]. This seems of special interest, since at Z-discs,
filamin C interacts with various proteins implicated in mechanotransduction like
calsarcins, myotilin, myopodin, and others [23], and binds to sarcolemma via
integrin-1β and sarcoglycan-delta. Mutations in the filamin C gene have also been
linked to a variety of cardiac diseases like dilated cardiomyopathy, arrhythmogenic
right-ventricular cardiomyopathy (ARVC), familial restrictive cardiomyopathy, and
hypertrophic cardiomyopathy (sharing some important features of desmin-related
diseases like increased rates of associated cardiac conduction defects) [22].

3 Sensing of Mechanical Strain and Signal Transduction
at the Center of the Sarcomere, the M-Band

Beyond its function as a structural anchor for thick and thin filaments within the
center of the sarcomere, the M-band is a precisely organized nodal point in signaling
and has been recognized as biomechanical strain sensor and regulator of sarcomeric
force imbalances during active muscle contraction [58]. Additionally, it is involved
in transfer of these biomechanical signals into altered signal transduction and has its



role in hypertrophic signaling, cardiac protein turnover, and cardiomyocyte calcium
handling. Like the Z-disc, the sarcomeric M-band is composed of a multiprotein
structural and signaling hub with numerous interactions and associated pathways
[29–31, 33, 34].
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From a structural point of view, it has been largely accepted that regular M-band
assembly is needed for proper packaging of the thick filaments with appropriate
distances and overlap to the thin filaments at the onset of sarcomeric contraction
(termed “M-bridges”) [58]. In this context, the M-band domain of titin plays a
pivotal role besides the proteins myomesin 1 and myomesin 2 that have been
shown to directly interact with M-band titin and also function as “M-bridges.”
Myomesins are organized into antiparallel dimers to the central zone of myosins
and to the C-terminal region of titin and thereby crosslink thick filaments [58].

As outlined above, due to its elastic I-band domains and its unique filament-like
structure, titin is an ideal stretch sensing molecule and adaptable molecular spring
that can integrate various biophysical signals about acute and chronically altered
myofilament tension [30, 34]. The M-band domain of titin shows multiple interac-
tion hubs linking the M-band to the protein turnover machinery (via Nbr1/p62/
Murf2) [59]. Hence, upon inactivation in the skeletal muscle, titin kinase (TK)-
mediated conformational change results in disruption of the Nbr1/p62/Murf2 com-
plex and subsequent inhibition of SRF signaling [58]. Single-molecule analysis
experiments by atomic force spectroscopy revealed that exposure of recombinant
TK domain to stretch forces causes a conformational change required for ATP
binding and access of the autoinhibitory tyrosine, which fully activates the kinase
by removal of the carboxy-terminal autoinhibitory tail by yet unknown protein
cofactors [29, 58].

Beyond that, M-band titin interacts with myospryn, which is known to also bind
the cardiac phosphatase calcineurin, thereby indicating an SRF-independent
sarcomeric hub at the M-band for prohypertrophic or anti-hypertrophic signaling
[49]. Analyses in titin knockout mouse models revealed that specific depletion of
M-band titin leads to atrophy and preserved cardiac function, whereas depletion of
full-length titin leads to dilated cardiomyopathy and heart failure, while both phe-
notypes are associated with premature cardiac death before day 40 [35]. In line with
these results, a mouse model with a conditional depletion of the M-band-associated
titin kinase region developed dilated cardiomyopathy with altered sarcomeric archi-
tecture and dissociation of MURF1 [60]. A mouse model mimicking the human
DCM related c.43628insAT mutation, as well as a mouse model expressing the
A178D missense variant, develops a dilated cardiomyopathy phenotype that can be
aggravated under neurohumoral stimulation via prohypertrophic factors [61].

But beyond titin’s functions, the overall M-band composition varies upon differ-
ent developmental stages and under pathological conditions. Differential expression
levels of mature myomesin and an alternatively spliced embryonic (“EH”-)
myomesin isoform are thought to contribute to specific functional and structural
features at different cardiac developmental stages. Alterations of M-band assembly
with re-expression of EH-myomesins and “fuzzy”—less stiff—sarcomeres are
believed to accompany and contribute to the progression of cardiomyopathy



[58]. A similar phenomenon was described for titin itself that exists in two main
co-expressed isoforms in the mammalian heart, which are differentially expressed in
the developed and diseased heart (“titin switch” with exchange to N2BA (more
compliant) from N2B (stiffer) or vice versa) [8, 16, 30]. Another novel component of
the sarcomeric M-band is the leucine-rich repeat containing protein myomasp/
LRRC39, which binds to the rod domain of MYH7 at the M-band, and that is
downregulated upon pressure overload. Loss of myomasp in vivo results in M-band
alterations and reduced contractility associated with impaired SRF signaling,
supporting the notion that it is required for M-band integrity and associated stretch
signaling [62].
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4 Stretch Sensing Between Cardiomyocytes
and the Extracellular Matrix via the Intercalated Discs
and Costameres

The cardiac cytoskeleton can be broadly subdivided into intermediate filaments,
microtubules, myofibrils (with the sarcomere as main contractile unit), and the
intercalated discs that all are connected via multiple mechanisms involving
multiprotein complexes [5, 8, 13, 17]. Myofibrils are also attached to the plasma
membrane at adherens junctions (zonula, fascia, punctum adherens) as zonal subtype
of intercalated discs (ID), whereas in turn the sarcomeric Z-disc is anchored to the
plasma membrane at the costameres [63]. Additional specialized subtypes of cell-
cell contacts at the ID are desmosomes and gap junctions as well as adherens
junctions, all of which have been proposed to form a specific joint structure in the
heart termed “area composita” [64, 65]. All these highly specified substructures are
involved in cell-cell adhesion, cell connection to the extracellular matrix, bidirec-
tional force transmission, and electrical coupling of cardiac muscle cells [13, 63,
66]. Importantly, the extracellular matrix is not only regarded as an environmental
milieu but also organizes, connects to, and communicates with neighboring
cardiomyocytes and fibroblasts, while absorbing and transmitting biomechanical
forces through interaction with cytoskeletal networks [66, 67]. Their main compo-
nents are laminin proteins and various collagen subtypes with different levels of
molecular stiffness (collagen I stiffer than III) [68]. The main connection of the ECM
to the cytoskeleton is achieved by transmembrane receptors from the integrin family
that link the ECM with extracellular domains and also connect to macromolecular
complexes containing kindling/paxilin, talin, vinculin, focal adhesion kinase,
desmin, and VASP (vasodilator-stimulated phosphoprotein) with cytosolic domains
[8]. Integrin signaling complexes hereby transduce mechanical forces outside-in and
inside-out, a process that is tightly regulated by multiple signaling mechanisms
[63, 67]. Beta1D integrin was found to be expressed at intercalated discs as well
as costameres and binds to alpha 7B integrin, which forms a heterodimeric complex
that can phosphorylate focal adhesion kinase (FAK) at Tyr 397. This signaling



complex also includes scr/PI3K/Grb2, and has also been associated with mitogen-
activated kinase (MAP-Kinase) signaling (e.g., MEK1/2 and ERK1/2-), directly
linking ID-based mechanotransduction to hypertrophic signaling and cardiomyocyte
growth [69–72]. In addition, the protein melusin has also been shown to interact with
FAK at costameres to promote strain-related hypertrophic signaling. Melusin knock-
out mice fail to execute a hypertrophic response upon pressure overload and directly
undergo cardiac failure, emphasizing melusin’s role as additional strain sensor
[63, 67, 73, 74].
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4.1 The Extracellular Matrix: More Than Just Collagens

As it has already been outlined, the ECM is not only a static environmental milieu
interacting with cytoskeletal networks. Acute and chronic tissue biomechanical
strain in the myocardium is associated with profound and dynamic changes in the
composition of the ECM [75, 76]. Under basal conditions, quiescent cardiac fibro-
blasts are responsible for constant renewal of ECM proteins, but upon biomechanical
stress, fibroblasts are able to proliferate and convert into myofibroblasts, contractile
and matrix remodeling cells. This is one of the earliest effects upon cardiac pressure
overload, thus leading to deposition of additional collagenous matrix and expansion
of the interstitium. Together with ECM crosslinking, matrix deposition results in a
profound increase in overall myocardial stiffness [75].

Within the extracellular matrix, cardiac pressure overload is associated with a
local induction and activation of various collagenases (MMP-1, MMP-8, MMP-13),
gelatinases (MMP-2, MMP-9), stromelysins/matrilysins, and also membrane-type
MMPs. Within this context MMP induction may be mediated through activation of
proinflammatory signaling pathways like TNF-α and IL-1β. Members of the MMPs
family have been implicated in TGF-β activation and may cleave transmembrane
receptors, such as integrins or syndecans in order to modify proinflammatory or
fibrogenic cascades. MMPs may also act as intracellular and intercellular mediators,
promoting degradation of contractile proteins in cardiomyocytes or modulating
signal transduction responses in interstitial cells. In contrast to MMP activation,
rather decreasing myocardial stiffness, matrix-preserving mediators like members of
tissue inhibitors of metalloproteinases (TIMPs) control the deposition of structural
ECM proteins, thus increasing myocardial stiffness as a counter regulatory process.
Imbalances between those two regulatory systems might accompany the transition of
compensated cardiac hypertrophy to decompensated heart failure during long-term
cardiac remodeling [75–77].

Stress-induced fibroblast activation in the pressure-overloaded myocardium may
also be indirect, involving paracrine factors and interaction via cardiomyocytes and
various immune cells involving the release of fibrogenic growth factors. The most
prominent cascade is activation of the renin-angiotensin-aldosterone system (RAAS)
triggering broad inflammatory signaling and leading to downstream stimulation of
TGF-β and other associated pathways [75, 78].
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Besides those characterized local and systemic pathways, matricellular proteins
play a pivotal role in the paracrine regulation of the pressure overload-associated
stress response. Members of the matricellular protein family thereby serve as
dynamic integrators of microenvironmental changes between ECM and any other
myocardial cell type. Fibronectin deposition is believed to be crucially involved in
myofibroblast transdifferentiation and has been implicated as an important mediator
in subsequent cardiomyocyte hypertrophy. Increased myocardial load or strain
triggers marked upregulation of various splice variants of fibronectin which has in
turn been linked to TGF-β pathways promoting fibroblast to myofibroblast
conversion [75].

Further members of the matricellular family are tenascin-C; tenascin-X; SPARC;
thrombospondin-1 (TSP-1), TSP-2, and TSP-4; osteopontin; periostin; and the
members of the CCN family. All protein members of this family share the common
function that they are able to modulate fibroblast proliferation, survival, and activa-
tion and in myofibroblast conversion that they control certain subpopulations of
resident and infiltrating immune cells, directly interfere with cardiomyocytes to
control cell survival and apoptosis, and are involved in ECM crosslinking processes
[75]. This inducible paracrine repertoire offers a tissue wide adaptive control
connecting various cell types and the ECM, and also offers systemic regulatory
functions. Whereas tenascin-C can act as modulator of macrophage phenotypes in
pressure-overloaded hearts, osteopontin is present at very low levels under basal
conditions but becomes rapidly induced upon pressure overload and may act by
stimulating a fibrogenic program in cardiac fibroblasts. Beyond that, ECM fragments
(so-called matrikines) generated through protease activation are able to induce
proinflammatory cascades or activate pro-apoptotic pathways in cardiomyocytes
upon pressure overload [76, 78, 79].

But not only structural and paracrine factors are involved in ECM-based
mechanotransduction and mechanoperception. The Hippo pathway-associated tran-
scriptional complex YAP/TAZ is believed to be involved in ECM-based
mechanosensing since it plays a crucial role in adult cardiac fibroblast migration,
proliferation, and differentiation. In adult murine heart’s post myocardial infarction,
cells with nuclear YAP/TAZ localize at the infarct border zone, suggesting a prompt
response of resident stromal cells to ischemia or increased biomechanical load.

4.2 Stretch Transmission at Costameric
Integrin-Talin-Vinculin Clutches

The integrin interacting protein talin also seems to be of special interest as potential
local molecular stretch sensor, since it can undergo conformational extension upon
increased strain, unfolding a binding site for vinculin and thereby easing subsequent
actin binding [70, 80, 81]. Talin has been mainly found at costamers but is also
highly associated with intercalated discs. This integrin-talin-vinculin-actin-ECM-
cell adhesion complex hereby re-forms within seconds, representing a dynamic



transmission-like interface with constant engagement and disengagement reinforced
by cyclic vinculin binding [80, 81]. Comparable to other mechanotransduction initial
events, stepwise unfolding of talin domains represents a key feature, enabling
stabilized vinculin actin adhesions under conditions of increased tissue tension
[81, 82]. Beyond that, binding of talin to integrin per se activates integrin signaling
through open conformation stabilization [69]. Of note, talin exists in two isoforms
(talin 1 and 2), of which talin 2 represents the most prominent isoform in adult hearts.
Upon pressure overload and in human cardiomyopathy, a re-expression of fetal-like
talin 1 occurs, which is considered as rather maladaptive response [81]. Beyond that,
talins also connect costameres to the sarcomeric Z-disc via interaction with gamma-
actin and alpha-actinin [81, 82]. The intermediate filament protein desmin has also
been shown to connect costameres to sarcomeric Z-discs and serves as strain-sensing
molecule (as discussed above) and additional shock absorber in force
transduction [54].
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4.3 Stretch Signaling at Costameric Dystrophin Glycoprotein
Complexes

Besides integrin-talin signaling and desmin, the cardiomyocyte dystrophin glyco-
protein complex (DGC) is another important signaling hub for costameric
mechanotransduction, also regarded as a “shock absorber” [24]. Known members
of the core DGC complex are dystrophin, dystroglycan, and sarcoglycan-sarcospan
subcomplexes as well as dystrobrevin and syntrophin [83]. DGC also associates with
ILK/PINCH/Parvin and MLP [67]. Besides its role in absorption mechanical forces,
it has been assumed that DGC protects costameres from fragmentation during strong
contraction events as they can occur in skeletal but also cardiac muscle cells
[67, 84]. DGC-associated hypertrophic signaling mainly involves MAPK and
Rac1 [51]; additional signaling molecules include nitric oxide as highly volatile
second messengers (see below) [67]. Dystrophinopathies are a group of specific
clinical entities due to mutations in the dystrophin gene and include the Duchenne
muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked
dilated cardiomyopathy (XLDCM) [85]. In all three subforms, the heart muscle
can be affected to various degrees, depending on the precise genotype and the stage
of the disease. Mutations in the dystrophin gene thereby result in altered protein
structures, possibly affecting the function of the overall cardiac DCG, ultimately
leading to regional replacement of myocardium by fibrotic tissue or fat [86, 87]. Dur-
ing cardiac progression of dystrophinopathies, left ventricular dysfunction and
ventricular arrhythmias due to increased fibrosis can occur, ultimately leading to
heart failure and sudden cardiac death in final stages [88]. Of note, in particular
XLDCM represents a rapidly progressive myocardial disorder, starting in young
male variant carriers as dilated cardiomyopathy, leading to death from refractory
heart failure within 1–2 years after diagnosis [86]. Of further note, gene therapy for



DMD has recently been successfully applied in large animals, paving the way for
future treatment of patients affected with this severe disorder [89] (Fig. 2).
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5 Force Sensing and Transmission at Cell-Cell Contacts
in the Heart

Intercalated discs (ID) are also believed to be involved in cardiac
mechanotransduction through conformational changes in associated proteins and
in the sensing of stiffness of the ECM by various mechanisms [63]. While
costameric stretch sensing mainly involves talin proteins, ID strain sensing is highly
linked to the cadherin family of proteins on a molecular level [63, 90]. Cadherins
bind through their cytoplasmic domain to β-catenin which in turn tethers cadherin to
the actin cytoskeleton via α-catenin. Like in single talin molecules, catenins can
undergo conformational straightening upon increased biomechanical load, exposing
a vinculin binding domain and thereby facilitating vinculin binding [63]. Recruit-
ment of vinculin and metavinculin to intercalated discs is believed to rather stiffen
the whole ID complex, whereas loss of vinculin or metavinculin, as well as missense
mutations in vinculin, have been linked to development and progression of dilated
cardiomyopathy [63, 91]. Phosphorylation of vinculin protein at residue Tyr
822 occurs upon stretch and is recognized as another fine-tuning principle in
ID-based vinculin signaling [63]. At intercalated discs, the protein N-RAP
(nebulin-related-anchoring protein) is able to form another N-cadherin/integrin
signaling complex by its interaction with talin, vinculin, MLP, and alpha-actinin
and also crosslinks cadherin and integrin signaling. N-RAP is upregulated in MLP
knockout mice and dilated cardiomyopathy [63, 92], while transgenic N-RAP
overexpression in mice results in right ventricular cardiomyopathy [63], emphasiz-
ing its role in proper heart muscle function.

5.1 Stretch Signaling at Cardiac Desmosomes

The desmosome, another specific cell-cell contact structure, represents a
multiprotein complex composed of transmembrane cadherin family members
desmoglein (DSG2, which has been proposed to sense mechanical forces) or
desmocollin, whose extracellular domain interacts with opposite facing cadherin
molecules at neighboring cardiomyocytes [13, 93]. Their corresponding intracellular
domain thereby interacts with intermediate filaments via the desmosomal proteins
plakoglobin, plakophilin and desmoplakin [63]. As outlined, desmoglein is believed
to be directly involved in desmosomal strain sensing, since targeted deletion of
the extracellular domain of desmoglein in mice leads to a biventricular form of
ARVC including biventricular dilatation and dysfunction as well as sudden cardiac
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death. At the ultrastructural level, mouse hearts showed profound enlargement of
desmosomal intercellular gaps with destroyed desmosomal structure, which seemed
to coincide with visible heart lesions at the macroscopical level. Moreover, multiple
desmosomal proteins and associated cellular pathways are involved in the patho-
genesis and architectural features of arrhythmogenic right ventricular cardiomyop-
athies and the risk of sudden cardiac death. Whether altered mechanoperception or
mainly altered desmosomal architecture or conduction abnormalities and impair-
ment of cell-cell connections are key features is still under constant scientific debate.
To date adipogenic/fibrogenic gene expression and resulting ultrastructural changes
are regarded as the main hallmark of ARVC.
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6 Sarcolemmal Strain Sensing and Mechanoelectrical
Feedback via Mechanosensitive Ion Channels

Besides elements of the cardiac contractile apparatus and the cell junction system,
the sarcolemma, representing a global interface to neighboring cells and the extra-
cellular matrix (ECM), and its embedded ion channel network seem to be an ideal
subcellular structure for force sensing, conformational alterations, and downstream
regulation of ion fluxes according to differential stages of membrane strain or
increased cellular volumes [12, 15, 94]. The idea of mechanosensitive ion channels
(MCS) has been largely analyzed in non-cardiomyocytes, but moreover, even every
specific channel that is also expressed in cardiomyocytes has clearly proven its
functional relevance in cardiovascular health and disease so far [12, 94]. In general,
mechanosensitive ion channel signaling in muscle can be categorized into stretch-
activated (SAC) and volume-activated (VAC) ion channel mechanisms [12, 15,
94]. But despite a potential lack of mechanistic understanding, since the clinical
observation that a strong precordial fist thump, as well as mechanical thoracic
compression, is eventually able to alter or restore cardiac electrical activity, the
idea of a direct mechanoelectrical feedback without the need of ligands or second
messengers has emerged [12] (Table 1).

Mechanistically, besides strain-dependent conformational changes, leading to
enhanced open probabilities and increasing ion fluxes, additional modifications

Table 1 List of known
mechanosensitive cardiac ion
channels, encoding genes, and
conducted ions

Channel Encoding gene Conducted ion

Polycystin 1 PKD1 Calcium, potassium

Polycystin 2 PKD2 Calcium, potassium

TRPC1 TRPC1 Calcium, potassium

TRPC3 TRPC3 Calcium, potassium

TRPC6 TRPC6 Calcium, potassium

TREK-1/TRAAK KCNK2/4 Potassium

Piezo1 PIEZO1 Cations nonselective

Piezo2 PIEZO2 Cations nonselective



like phosphoinosite binding, phosphorylation, or altered protein-protein interactions
have been described [94]. In terms of phosphoinosite-dependent sarcolemmal stretch
signaling, the phosphatidylinositol 3-kinase (PI3K) pathway plays a pivotal role in
cardiomyocytes [95]. In response to increased cardiomyocyte mechanical strain, the
phosphoinosite-converting enzyme PI3K translocates to the plasma membrane to
locally convert phosphatidylinositol (4,5)-bisphosphate (PIP2) into
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [95]. In turn, PIP3 activates the
phosphoinositide-dependent protein kinase-1 (PDK1) through its pleckstrin- homol-
ogy (PH-) domain, and PDK1 subsequently phosphorylates and activates the serine/
threonine-specific protein kinase Akt at threonine residue 308, which is further
stabilized by additional phosphorylation of serine 473 by mammalian target or
rapamycin (mTOR). Akt activation results in a variety of prohypertrophic and
prosurvival signals, and is also believed to directly regulate the strain-dependent
titin isoform switch [95]. PIP3 accumulation also subsequently recruits gelsolin to
the plasma membrane, thereby negatively regulating its activity and pathological
actin remodeling [95]. Finally, it has been recently shown that the protein kinase Akt
together with the strain-sensitive channel polycystin-1 can stabilize sarcolemmal
LTCC levels by phosphorylation-dependent prevention of proteosomal degradation
[96]. This finding represents another important principle, directly and indirectly
linking cardiomyocyte sarcolemmal stretch sensing to calcium-induced calcium
release and excitation-contraction coupling.
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6.1 Mechanosensitive Transient Receptor Potential Channels
(Polycystins) in the Heart

Various transient receptor potential channels (TRPs), though initially and sometimes
extensively studied in non-cardiac cells, are expressed in cardiomyocytes and are
believed to play a pivotal role in mechanoelectrical feedback processes [94]. The
subfamily of transient receptor potential polycystins (TRPPs), polycystin 1 and
2 (encoded by PKD1 and PKD2 genes), are involved in sensing mechanical forces
and fluid shear stress, triggering multiple intracellular signaling pathways
[97, 98]. The notion that cardiac specific polycystin-1 knockout mice develop
spontaneous cardiomyopathy supports the concept that they are required to maintain
normal cardiac function [99, 100]. Moreover, polycystin-1-/- mice displayed
shorter action potential and shortening of QT intervals in surface ECGs, a phenotype
that has also been linked to loss of function mutations in the LTCC coding
CACNA1C gene or other mouse models of compromised LTCC function-associated
cardiomyopathies [101]. TRPP2/polycystin-2 is expressed in cardiomyocyte
endoplasmatic reticulum and has also been linked to sarcoplasmatic ryanodine
receptor 2 (RYR2) function [97, 98].
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6.2 Other Mechanosensitive Calcium Channels in the Heart

Besides TRPP channels, there are over 33 genes that encode TRP subunits, which
form a superfamily of mammalian channels, further subclassified as TRP-C, TRP-V,
TRP-M, TRP-P, TRP-ML, TRP-N, and TRP-A subfamilies [94]. Several members
of the TRPC (“C” for canonical) family channels, especially TRPC1, TRPC3, and
TRPC6, are considered to be mechanosensitive and important for accurate
cardiomyocyte function and signaling [102, 103]. TRPC1 expression has been
shown to increase in an induced rat heart hypertrophy model, while TRPC1-/-

mice seem protected from cardiac hypertrophy, which underlines its crucial function
in pathological hypertrophic signaling [104]. Most surprisingly, the functions of
these multiple TRPC channels do not seem to be redundant in cardiomyocytes,
potentially because they act through different regulatory mechanisms [105]. Mice
with heart-specific overexpression of TRPC6 develop spontaneous cardiac hyper-
trophy and pathological remodeling, whereas TRPC6 deletion or inhibition has been
shown to be cardioprotective [106, 107]. Of note, TRCPC6 channels are also
partially regulated by PI3K-dependent exocytosis.

Since it has been shown that expression of TRP cation channel, subfamily C,
member 3 (TRPC3) is increased in response to calcineurin signaling [52, 102], a
potential link from TRPC6 function to calcineurin has also been analyzed. Interest-
ingly, TRPC6 abundance was differentially upregulated in mouse hearts in response
to pressure overload and, most strikingly, in failing human hearts. Two conserved
NFAT consensus sites in the promoter of the TRPC6 gene have been discovered,
representing a potential reciprocal activation circuit in which calcineurin activation
results in increased TRPC6 expression [50, 108]. In turn, in vivo pathological
cardiac overexpression of TRPC6 was associated with enhanced calcineurin signal-
ing leading to pathologic cardiac growth and heart failure [50].

6.3 Mechanosensitive Potassium Channels in the Heart

Besides TRP channels, multiple types of mechanosensitive K+ channels are
expressed in different parts of the heart [12, 94]. TREK-1 [(TWIK)-related K+

channel], also known as potassium channel subfamily K member 2, is expressed
in both the atria and ventricles, and extensive research has shown that TREK-1 and
its human homologue TRAAK (TWIK-related arachidonic acid stimulated K+

channel) are mechanosensitive [109–112]. TREK-1 channels are aligned in longi-
tudinal stripes on the cardiomyocyte surface, which potentially facilitates bidirec-
tional strain sensing [112]. TREK-1 channels that can easily be opened by either
pipet suction or pressure in vitro have thereby been linked to arrhythmogenesis and
the onset of atrial fibrillation as well as heart failure [12, 94]. The role for TREK-1 in
arrhythmogenesis is further strengthened by the fact that several anti-arrhythmic
drugs, including lidocaine, mexiletine, propafenone, dronedarone, and vernakalant,



inhibit TREK-1 channel function. Compared to TREK-1, the human relevance of
TRAAK is less well understood [12, 94].
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Recently two newly discovered proteins, Piezo1 and Piezo2, which assemble as
transmembrane trimers, were also proposed as bona fide stretch-activated channels
with striking characteristics in sarcolemmal force sensing and potentially regulating
calcium influx [94]. Piezo1 channels are upregulated in rodent heart failure but are
downregulated and potentially delocalized in in vitro cardiomyocyte stretch models
[113]. Being largely characterized in endothelial cells and shear stress scenarios,
more research in hearts and cardiomyocytes is needed to fully clarify the role of
Piezo channels in mechanotransduction in cardiac muscle health and disease.

7 The Microtubule Network in Cardiomyocyte Stretch
Sensing: More Than Just a Skeleton

The view of the microtubule’s role in cardiac function and mechanotransduction has
experienced a fundamental change along with the availability of more sophisticated
observational and manipulative molecular techniques [114, 115]. Like with other
molecules involved in cardiac strain sensing, direct observation of dynamic micro-
tubule networks in beating myocytes also suggests a complex behavior with spring-
like functions that is additionally fine-tuned by post-translational modifications
[115]. Maybe most relevant, targeted detyrosination (dTyr) of microtubules is a
result of enzymatic cleavage of a C-terminal tyrosine residue and is thereby able to
facilitate specific interactions with intermediate filament proteins like desmin that
link microtubules to the sarcomeric Z-disc or components of the nuclear envelope
[26, 116, 117]. Beyond that, recent progress in elegant live imaging techniques has
helped to visualize growing microtubule networks in cardiomyocytes. These exper-
iments revealed that microtubules likely grow from Z-disc to Z-disc and even tend to
pause, drift, or deviate on this central sarcomeric signaling hub. Strikingly, this
growth behavior implicates local protein-microtubule interactions and possible
modifications at the sarcomeric Z-disc in affecting microtubule architecture
[115]. Modified microtubules are known to alter cardiomyocyte stiffness, resulting
in overall increased myocyte viscoelasticity conditioned by elevated detyrosination
[114]. Microtubules are also believed to modify cardiac contractility and cytoskeletal
mechanosignaling through a variety of processes involving cellular organelles like
mitochondria and the nucleus [7, 14, 25, 115]. Moreover, microtubules have been
shown to form interactions with structural components and ion channels within the
t-tubule system and sarcoplasmic reticulum, controlling ion channel membrane
trafficking and indirectly EC coupling [114, 115]. Elevated levels of dTyr microtu-
bules can be a result of elevated levels of reactive oxygen species (ROS) and levels
of nitric oxide (NO) as they occur during increased mechanical stretch in
cardiomyocytes [115]. dTyr microtubule abundance is also increased in human
cardiomyopathy, and increasing detyrosinated micotubules herein correlated with



declining systolic function [116]. Moreover, dTyr microtubules are believed to have
in particular an increased affinity to bind the intermediate filament and strain-sensing
molecule desmin [115]. In this setting, also proper positioning of organelles like
mitochondria and the cardiomyocyte nucleus involves the cardiac actin network,
desmin, and the microtubule system [26]. Alterations in all these structures
(a hallmark of heart failure remodeling) also result in impaired cardiomyocyte
mitochondrial metabolism and Ca2+ cycling as well as impaired nuclear function,
integrity, and even possible DNA damage [25, 115, 116].
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7.1 Mechanotransduction at the Cardiomyocyte’s Nuclear
Lamina

The cardiomyocyte nucleus, representing the command center of cardiomyocyte
gene regulation, is another important organelle involved in mechanoperception
[25, 26, 118]. Lamins are the main protein components of the inner nuclear lamina
and form stable filament webs inside the whole nucleus [119, 120]. Lamins are
intermediate filament proteins divided into A-type lamins, derived from alternative
splicing of the LMNA gene, and B-type lamins that are encoded by distinct LMNB1
and LMNB2 genes, respectively [121, 122]. Experimental evidence has demon-
strated that lamin structures play pivotal roles in the maintenance of normal nuclear
mechanics and cardiomyocyte mechanotransduction [119, 123]. Besides its nuclear
functions, lamins affect the mechanical properties of the cytoplasm and the organi-
zation of cytoskeletal elements as well as regulation of the overall cell shape
[119, 122, 124]. Hence, lamins are believed to interact with multiple proteins and
thereby can regulate gene expression, chromatin homeostasis, and even nuclear
positioning [124, 125]. Cells from lamin knockout mice show decreased association
of desmin at the nuclear surface and severe alterations of actin-, vimentin-, and
tubulin-based filament structures. A-type lamins, represented by lamins A and C, are
developmentally regulated proteins found in high abundance in the skeletal and
cardiac muscle. The crucial function of these proteins is emphasized by the facts that
mice deficient in lamin A and C develop severe muscular dystrophy and die
prematurely at the age of 6–8 weeks [124]. Moreover, human relevance is underlined
by a group of diseases caused by mutation variants in the LMNA gene sequence
[126, 127]. Laminopathies are usually classified into four groups, according to the
number and the types of the affected tissues. The first group represents lamin myop-
athies affecting both the skeletal and the cardiac muscles [128]. Mutations in the
lamin A gene are generally considered one of the most common mutations associ-
ated with this disease. LMNA gene defects are believed to account for almost one
third of dilated cardiomyopathy cases accompanied by atrioventricular block
[128]. Given the knowledge that cells expressing mutated A-type lamins display
histological lobulations in the nuclear envelope, loss of peripheral heterochromatin,
and anomalous nuclear pore complex distribution, two main models were



hypothesized to explain the onset of laminopathies [25, 124]: according to the
“structural model,” mutations in A-type lamins impair the nuclear resistance to
mechanical stimuli, resulting in fragility, increased stress sensitivity, and possibly
premature senescence [25, 124]. This model would explain why in particular striated
muscle tissues, which are frequently exposed to mechanical strain, are mainly
affected by “laminopathies.” The mechanistic role of lamins in cardiac
mechanotransduction is also related to their unique filamental structure and biophys-
ical behavior. Assembly of the nuclear lamin mesh starts with lamin dimer assembly
and subsequent dimer aggregation head to tail, finally forming small polymer
filaments [121].
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Under increasing cardiomyocyte tension, integrins transmit a strain-dependent
external impulse to the cytoskeleton, which then transfers the stimulus to the nuclear
lamina structure. In turn, lamins are rearranged at the molecular level, leading to
unfolding of lamin A immunoglobulin domains and/or alterations of flexible linkers
L1, L12, and L3 in the protein structure, as well as alterations in the dimer head-tail
interaction. Within these proposed “altered protein complex” models, mechanical
strain straightens the lamin proteins as well as the overall lamin-nuclear-mesh
potentially exposing protein-binding regions [128]. The global lamin-mesh
rearrangement has been correlated with a higher nuclear localization of cardiac
transcription factors (cFOS, RARG, JNK, SRF, MRTF, Yap1, and ERK), and
their specific affinity to chromatin by exposing binding sites for these transcription
factors to increase transcription of cytoskeletal components [119, 125, 128,
129]. Moreover, cardiomyocytes can modulate the nuclear biophysical properties
by changing the phosphorylation level of the lamins, thereby affecting both the
structural lamina conformation and stiffness. In this case increased force transmis-
sion results in hiding of the sites for phosphorylation. The inhibited phosphorylation
activity increases the amount of lamins at the nuclear envelope with a consequent
increase in lamina stiffness [130, 131].

7.2 Mechanotransduction by Protein Complexes Within
the Nuclear Envelope

But besides the lamin web, there are other integral parts of the nuclear envelope that
are involved in mechanotransduction like LINC complexes (LInker of
Nucleoskeleton and Cytoskeleton) that contain different nesprins, emerin, and
SUNs (named for SUN domain family members (Sad1p, Unc-84). LINC complexes
can sense and regulate myocyte-wide strain transfer to the nucleus itself [25, 26,
132]. LINC complex disruptions have been analyzed and described in cells that
typically are prone to experience high mechanical strain, such as myocytes and
cardiomyocytes. Nesprins share the common capabilities of stretch sensing mole-
cules, as they have been shown to unfold upon envelope strain, exposing binding
sites that promote either dimerization or recruitment of additional binding proteins,



facilitating complex stability and rigidity [25, 26]. In mice, deletion of nesprin 1 and
2 gene function results in cardiomyopathy and altered gene expression in response to
myocyte pressure overload [133, 134]. Linking the nucleus to the cytoskeleton,
microtubules not only can provide compressive forces on nuclei but also show
multiple interactions to nesprin 1 and 2 [135, 136]. It is speculated that loss of
desmin-nesprin-microtubule interactions or disruption of LINC in nuclear envelopes
results in nuclear membrane infolding, driven by external forces applied through
external microtubule-network compression [26]. Since correct assembly of LINC,
desmin, and the microtubule network is required for accurate nuclear shape, the
integrity, positioning, and homeostasis, nesprin-dependent regulation of LINC sta-
bility might represent another important cardiac mechanotransduction principle
[25, 26, 134–138].
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8 Mechanotransduction and Mechanosensitive Gene
Induction

Extensive gene expression profiling in cardiomyocytes using cDNA microarrays or
RNA sequencing has helped to gain more insight into strain-associated gene regu-
lation and led to the discovery of cardiac mechanosensitive gene programs [139]. In
vitro models of cardiomyocyte stretch as well as animal models of experimental
pressure overload by transverse aortic constriction (TAC) have consistently demon-
strated increased expression of natriuretic peptide genes and re-expression of a
so-called fetal gene program. Beyond that Mt1 (encoding metallothionein 1) and
various other genes encoding proteins involved in mitochondrial metabolism or the
cytoskeleton are believed to be expressed or re-expressed in a strain-dependent
manner in cardiomyocytes [140]. More cardiomyocyte genes with potentially spe-
cific mechanosensitive expression have been discovered like suppression of
tumorigenicity-2 (ST2) and the TGF-beta superfamily member growth differentia-
tion factor-15 (GDF15) [141], which subsequently have been developed as a clinical
biomarker for myocardial infarction, hemodynamic cardiac load, or heart failure
[142–145]. Myocardial gene expression can be regulated on the posttranscriptional
level by a variety of mechanisms like certain microRNAs that are also believed to be
differentially expressed in various loading conditions or that are involved in the reg-
ulation of mechanotransduction. MicroRNAs are short, non-coding RNAs that bind
complementary mRNAs to control mRNA degradation or subsequent protein trans-
lation. In an effort to identify specific microRNAs regulated through myocyte
stretch, we and others used microarrays under different experimental loading con-
ditions in cardiomyocytes in vitro. These experiments identified miR-20a as being
responsive to both stretch and simulated ischemia reperfusion and that
overexpression of miR-20a was sufficient to protect cardiomyocytes from
apoptosis [146].
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9 Translational Perspectives

The increasing insight into molecular mechanisms of mechanoperception and trans-
mission (mechanotransduction) is the potential basis for the development of new
therapeutic approaches. Biomechanical stress sensors and downstream signaling
pathways involving the above described sarcomere-associated molecules are essen-
tial for physiological cardiac function [2, 19]. Impairment or dysregulation of this
complex network is directly associated with a variety of congenital and acquired
cardiac diseases such as laminopathies, dystrophinopathies, desminopathies,
arrhythmogenic right ventricular cardiomyopathy, familial restrictive cardiomyopa-
thy (RCM), valvular and ischemic heart diseases, and dilated and/or hypertrophic
cardiomyopathy (DCM, HCM) [27, 54, 56, 58, 63].

The causes for laminopathies, dystrophinopathies, and desminopathy are known
mutations in specific genes encoding for proteins associated with sarcomeric pro-
teins, namely, lamins (LMNA), dystrophin (DMD), and desmin (DES) [55, 56, 147–
149]. In addition, dozens of mutations in genes encoding for different sarcomeric
proteins involved in mechanoperception and translation of stretch-induced signals
have been identified to contribute to different cardiomyopathies [38, 98, 150,
151]. Basic research using knockdown approaches in in vitro and in vivo models
as well as OMICs studies analyzing patient data can help to identify even more
mutations and polymorphisms as risks factors for cardiomyopathies (Fig. 3).

Besides congenital mutations, chronically increased biomechanical stress on the
ventricular myocardium, which occurs as a result of pressure overload in hyperten-
sion and valvular but also after remodeling processes in ischemic heart diseases and
dilated/hypertrophic cardiomyopathies, leads to alterations in signaling cascades
triggered by mechanotransduction and subsequently accelerates disease progression
to heart failure. A better understanding of the structural and regulatory role of
sarcomere-associated proteins in mechanotransduction has already led to tests of
new pharmaceutical approaches. In recent years especially ion channels/transporters
have come into focus as targets to block detrimental signaling induced by biome-
chanical stress in the myocardium leading to cardiac remodeling and heart failure.
Examples are cariporide treatment of patients with ischemic heart disease and in
in vivo models of cardiac hypertrophy [152], rimeporide treatment of children with
dystrophinopathy [153], and inhibition of K+ channels in models of atrial fibrillation
[154, 155]. However, further research is essential, as the inhibition often lacks
specificity and may increase the risk for side effects (e.g., strokes, as reported for
the cariporide treatment [152]), and the molecular mechanisms are still not
completely understood (e.g., association of anti-arrhythmic drugs with inhibition
of TREK-113 on the one hand but correlation of impairment of TREK-1 with
arrhythmogenesis on the other hand).

As described above, many other members of the network of cardiac
mechanoperception and mechanotransduction are currently studied in in vitro and
in vivo experiments with regard to their exact function, and further studies might
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CARDIOMYOPATHY MUTATED GENE/PROTEIN
HYPERTROPHIC CARDIOMYOPATHY Myosin binding protein C

ß-Myosin heavy chain
α-Myosin heavy chain
α-Tropomyosin
Troponin T
α-Cardiac actin
Troponin I
Titin
Myosin light chains
Junctophilin 2
Caveolin 3
RYR2
PDLIM3
Troponin C
Vinculin
Muscle LIM protein
α-Actinin 2
FHL1
Telothonin
Calsarcin 1
Vinculin
Myomesin 1
Filamin C

DILATED CARDIOMYOPATHY �-Myosin heavy chain
Desmin
N-cadherin
α-Cardiac actin
α-Tropomyosin 
Muscle LIM protein
δ-sarcoglycan
Lamin A/C
TAZ
Titin
Phospholamban
Vinculin
Troponin I
Troponin T
SCN5A
Presenilin 1 & 2
Troponin C
α-Cardiac actinin
Plakoglobin
Nexilin
Nebulette
Cypher, ZASP
ILK
FHL1
FHL2

Fig. 3 List of mostly accepted cardiomyopathy-associated genes in relation to their disease
phenotypes. Genes/proteins that are believed to be directly or indirectly involved in cardiac stretch
sensing and mechanotransduction are highlighted in red. Web access to comprehensive lists of
cardiomyopathy-associated genes and gene variants is possible via https://www.ncbi.nlm.nih.gov/
clinvar/?term=cardiomyopathy, https://www.cardiodb.org/acgv/, https://seidman.hms.harvard.
edu/?page_id=1476

https://www.ncbi.nlm.nih.gov/clinvar/?term=cardiomyopathy
https://www.ncbi.nlm.nih.gov/clinvar/?term=cardiomyopathy
https://www.cardiodb.org/acgv/
https://seidman.hms.harvard.edu/?page_id=1476
https://seidman.hms.harvard.edu/?page_id=1476
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α-Actinin 2
Calsarcin 1
Crystallin Alpha B
Myopalladin
Myotilin
RBM20
Filamin C

RESTRICTIVE CARDIOMYOPATHY Troponin I
Desmin
α-Cardiac actin
Troponin T
Tropomyosin α
Bcl2-Associated Athanogene 3
Myopalladin
Calsarcin 1
ß-Myosin heavy chain
Filamin C

ARRHYTHMOGENIC RIGHT
VENTRICULAR CARDIOMYOPATHY

Plakophilin-2

Junctional plakoglobin
Desmocollin-2
Desmoglein-2
Desmoplakin
Filamin C
Catenin A3
Lamin A/C
Titin
TGF-��B3
RYR2
Transmembrane Protein 43
Lim Domain-Binding 3
Arrhythmogenic Right Ventricular 
Dysplasia, Familial 3, 4, 6
Phospholamban
Desmin

MUSCULAR DYSTROPHY–
ASSOCIATED CARDIOMYOPATHY

Dystrophin

Sarcoglycan
Dystroglycan
Dystrobrevin

LEFT VENTRICULAR 
NONCOMPACTION

TAZ

α-Dystrobrevin
FKBP12
ß-Myosin heavy chain
α-Cardiac actin
Troponin T
Calsequestrin 2
E3 Ubiquitin Protein Ligase 1
Lim Domain-Binding 3
T-Box 20
Pr Domain-Containing Protein 16

Fig. 3 (continued)



demonstrate their potential in therapeutic approaches (e.g., titin, MLP, LMCD1,
myomasp/LRRC39, melusin, polycystin, talin, TRPC1 and TRPC6, and nesprin).
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In this context, not only the development of conventional pharmaceutics is of
interest, but also the constantly growing field of gene therapies amplifies the
potential targets and therapeutic approaches including a “personalized medicine”
approach for genetic disease.

The most promising methods for gene therapy are CRISPR/Cas-based and vector,
mostly adeno-associated virus (AAV), mediated approaches. In recent years more
and more successful gene editing in vitro and in vivo has been performed, e.g., for
removal of HIV proviral DNA sequences or host receptors to treat HIV infections,
targeting the convertase PCSK9 which is associated with high blood lipid levels to
treat cardiovascular diseases or to correct mutations causing sickle cell disease in
stem cells [156]. Although gene editing in humans is ethically controversial, first
human cells with induced disruption of genes associated with inhibition of anti-
tumor responses and introduced tumor recognition genes have been used to treat
cancer patients [157]. With regard to heart diseases, AAV9-mediated CRISPR/Cas9-
based gene editing has been used to target specific genes in cardiomyocytes in
animal models, too [156, 158]. Along these lines, a number of new animal models
for, e.g., dystrophies, cardiovascular diseases, and dilated cardiomyopathies have
been created for further research [156]. Furthermore, first in vivo corrections of
mutations which cause heart diseases have been described [156, 159], e.g., an
AAV9-Cas9-based approach to restore functional dystrophin levels in a canine
model for Duchenne muscular dystrophy [89, 156]. The potential of gene therapies
in general and for genetic and acquired cardiomyopathies in particular is immense,
as beyond correcting mutations, possible targets for CRISPR/Cas approaches to treat
cardiac diseases are discussed [159, 160]. In this context, proteins involved in
mechanotransduction are promising targets and await further research. But beyond
these potential promising possibilities of gene therapeutic approaches in genetic
cardiomyopathies, there are numerous scientific, ethic, and economic limitations
with respect to a broad bedside use in humans.

10 Conclusions

Cardiac and skeletal muscle cells bidirectionally sense and transmit (outside-in and
inside-out) mechanical forces between the extracellular matrix, the contractile appa-
ratus, and various organelles, and they consecutively respond via structural changes
and altered signal transduction, a process known as cardiac mechanotransduction.
Increases in mechanical load of cardiac myocytes lead to biochemical signals and
induce cellular hypertrophy, an initially adaptive response that, through persistent
strain exposure, ultimately leads to pathological hypertrophy, increased tissue fibro-
sis and stiffness, predisposition to various arrhythmias, and subsequent terminal
heart failure. Over the past decade, increasing scientific evidence has emerged that
sensing cardiac load involves not the “cardiac stretch sensor” but rather divergent,



different, and multiple mechanisms involving a large variety of structural and
regulatory proteins at distinct subcellular localizations. These recent scientific
advances provide better mechanistic insight into the earliest manifestations of
pathologic cardiac hypertrophy and heart failure. And beyond this, such progress
also promises future possibilities of better therapeutic interventions for diseases still
leading mortality and death rates in the Western world.
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Mechanotransduction in Heart
Development

Alexandra E. Giovou and Vincent M. Christoffels

1 Introduction

Architectural integrity of the heart is necessary to ensure efficient blood circulation
throughout the body. Cardiac structural malformations, as seen in congenital heart
disease, can lead to diverse pathologies [1, 2]. Although different parts of the heart
can be affected, including the cardiac chambers and the great vessels, a common
outcome from such defects is the loss of cardiac functionality, which requires
corrective surgery to prevent death after birth and which may ultimately lead to
heart failure and sudden cardiac death [3]. Despite the advances in surgery, the high
prevalence of congenital heart disease, and the reoccurring complications in young
adults, highlight the importance of understanding the origins of these developmental
defects. Heart development follows a series of strictly regulated processes until it
reaches its full maturation [4]. These well-orchestrated processes are established
through transcriptional regulation and molecular signaling (i.e., patterning and
morphogenesis).

In the early embryo, a simple tube is formed that contracts slowly in a unidirec-
tional peristaltic pattern, pumping fluid through the early embryo to keep it alive and
maintain growth and development. Soon after the tube has been established, it
rapidly increases in length, loops, expands dramatically in diameter at regions
where the atria and ventricles develop, and forms unidirectional valves in between
the expansions (atrioventricular valves) and at the outlet. Chamber walls form
trabeculae and increase in thickness, contraction forces and displaced volumes
increase, the vascular bed grows and increases in complexity and in its resistance,
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and the activation and contraction patterns of the chambers begin to resemble the
synchronized serial pattern of the mature heart. In mammals and birds, the ventric-
ular and atrial septa will form and close to establish parallel flows (left systemic,
right pulmonary), and the outflow tract (OFT) will transform into an aorta connected
to the left ventricle, and a pulmonary artery connected to the right ventricle [4, 5].
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Throughout development, the heart continuously contracts in a regular pattern in
order to pump blood to maintain embryonic development and growth. To facilitate
its pumping efficiency and adjust it to the demands of the growing organism, the
myocardium has to constantly adapt by modulating cardiomyocyte contractility and
its coordination with the environmental forces, including alterations in pressure and
in hemodynamics. Parallel with heart development, blood circulation also undergoes
dynamic alterations in order to match the increasing demands of the growing embryo
and fetus. Blood flow has been established as an essential modulator of heart
development, and hemodynamic alterations have an impact on cardiogenesis
[6]. Blood flow is able to instruct cardiac development not only by directly affecting
cells upon contact, but it can also trigger a response to distal cell populations within
the developing myocardium. These spatiotemporal interactions take place through
various mechanosensitive pathways, in which mechanical stimuli are converted into
a biological output [7]. Therefore, proper stage-to-stage transition, together with
precise coordination to the adjusting circulatory system, is required to ensure the
progression and stability of cardiac development. In this chapter we provide an
overview of the mechanosensitive pathways that dynamically modulate the process
of development of components of the heart.

2 Forces and Mechanotransduction in Heart Development

In the early embryo, bilateral pools of mesodermal progenitors form the cardiac
crescent, which subsequently forms the linear heart tube. The first calcium oscilla-
tions have been observed in the crescent, while the first contractions of the
cardiomyocytes have been observed prior to and during the formation of the linear
heart tube. These activities have been found to be required for cardiac differentiation
and morphogenesis [8]. Soon thereafter, blood starts to flow through the contracting
heart tube and begins to influence its morphogenesis. Specifically, hemodynamic
forces participate in the shaping of the chambers and septation, valve formation, and
maturation of the heart [9, 10]. As the endocardial cells come into direct contact with
blood flow, they are considered to be the critical mechanosensors detecting hemo-
dynamic alterations under normal or pathological conditions [11]. They sense shear
stress from blood flow through different sensors including cilia and
mechanosensitive ion channels and relay the information through
mechanotransduction pathways that in turn act through signaling pathways like
Notch, transforming growth factor beta/bone morphogenetic protein (TGFβ/BMP),
Neuregulin, and vascular endothelial growth factor (VEGF). These pathways, in
turn, direct proliferation rates, differentiation, size, and shape of the endocardium



itself and the underlying myocardium [9, 10]. Moreover, during the cardiac
activation-contraction cycle, all cardiac cells (endocardial, myocardial, mesenchy-
mal) also undergo multiple mechanical stresses caused by contractions and expan-
sion (e.g., stretch, pressure), which are also sensed and transduced, thus adding to the
complexity of how mechanical forces regulate cardiac development and
functionality [12].
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3 Hemodynamic Influence on Cardiac Looping
and Chamber Development

The linear tube elongates and loops by the addition of myocardial and endocardial cells
deriving from the second heart field. Epithelial second heart field cells in the splanchnic
mesoderm dorsal of the heart tube undergo YAP/TAZ-mediated proliferation
(yes-associated protein/WW domain-containing transcription regulator 1) and oriented
elongation and display polarized actomyosin distribution, indicating that epithelial
tension contributes to the extension of the heart tube [13]. The linear heart tube loops
rightward during its elongation, thus breaking left-right symmetry. This process is
evolutionary conserved and underlies the proper alignment of the ventricles and great
vessels and morphogenesis of the atria and sinus venosus. During gastrulation, sym-
metry is broken by rotating cilia in the left-right organizer (Kupffer’s vesicle in fish,
node in mammals), which generate a leftward fluid flow and Pkd2-dependent asym-
metric Ca2+ transients [14, 15]. This leads to asymmetric expression of nodal signaling
components [16]. A number of downstream targets including Pitx2c and other factors
independent of Pitx2c have been identified that regulate rightward rotation of the
arterial pole and left-shift of the venous pole of the tube, which results in the
asymmetric morphogenesis of the looping heart [17]. Consistent with the importance
of cilia in this process, a genetic screen in mice revealed the large contribution of
defective cilia/cilia-related genes and congenital heart defects [18].

The heart tube consists of two distinct layers, the outer myocardial and the inner
endocardial layer. The endocardial layer has multiple roles in the developing heart as
it regulates trabeculation, chamber septation, valve formation, and coronary vascu-
larization and makes a material contribution to the valves, coronary vessels, and
septa. These two cardiac layers are separated by an acellular network of extracellular
matrix (ECM) proteins also known as cardiac jelly [4]. Robust cell proliferation of
the myocardial cells at the outer curvatures of the looping tube results in the
expansion of the cardiac chambers [4]. Importantly, the initiation of the looping
process coincides with the onset of blood circulation [19]. From that stage onward,
there is a dramatic increase in heart rate, blood pressure, and blood volume
[9, 10]. Therefore, cardiac looping and chamber formation all occur under blood
flow conditions that change during the progression of heart development.

Studies in chicken and transgenic mice revealed that blood flow is required for
chamber morphogenesis [20, 21]. The underlying mechanisms have been further
explored in zebrafish (Fig. 1) [22]. Both flow and contractility appear to



independently regulate cell behavior in chamber morphogenesis in an endocardium-
dependent manner [23]. Zebrafish lacking endocardium show compromised chamber
morphogenesis [24]. Both endocardium and myocardium increase their proliferation
rates to drive chamber expansion at the outer curvature [23]. Shear stress modulates
endocardial cell characteristics. Reduction of shear stress has been shown to increase
endocardial cell size and reduce their proliferation rate [25]. Through sensed shear
stress, blood flow provides the endocardial cells with input directing
their proliferation rates, differentiation, and shape [10, 11, 19, 25]. The flow-
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responsive transcription factor KLF2 (Krüpper-like factor 2) in the endocardium
contributes to chamber formation. For example, restricted blood flow results in
decreased klf2a (zebrafish homologue of KLF2) expression, and genetic ablation of
the gene promotes an increase in cell size. In contrast, Klf2a overexpression reduces
the endocardial cell surface area [25]. Klf2 has been shown to modulate myocardial
heart wall integrity via FGF (fibroblast growth factor) signaling. Loss of function of
klf2a in zebrafish impairs myocardial wall integrity, while endocardial
overexpression efficiently reverses the observed phenotype [26].
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Micro-RNAs can be regulated rapidly in response to flow. Heartbeat- and/or
blood flow-dependent miR-143 expression impacts the process of ventricular devel-
opment by targeting different processes in the endocardium and myocardium,
including inhibiting retinoic acid signaling (raldh2 and rxrab) and adductin3
(add3), respectively, in order to drive chamber formation (Fig. 1) [27, 28]. In
addition, miR-143 may regulate endocardial cell number. It is to be expected that
future studies will identify additional mechanosensitive genes and downstream
effectors that execute the patterns of proliferation and cell behavior of the endocar-
dium and the myocardium underlying chamber morphogenesis.

Chemically blocking cardiac contraction in zebrafish embryos was shown to
promote chamber growth and cardiomyocyte enlargement [29]. On the other hand,
after reducing the blood flow by tail amputation, the hypertrophic phenotype was
partially reversed. However, in zebrafish mutants lacking endocardium, the hyper-
trophic response was not rescued, suggesting that the hypertrophy is not the result of
shear stress, but is caused by transmural pressure [29].

Hypoplastic left heart syndrome is a congenital heart disease involving an
underdeveloped (hypoplastic) left ventricle that does not support efficient circula-
tion. This puts the right ventricle under increased work load causing it to stretch
[30]. The ventricular hypoplasia has been attributed to restricted blood flow, causing
growth reduction, although cardiac cell intrinsic disturbances of particular gene
programs were found to contribute to the pathogenesis, arguing against a solely
hemodynamic origin [31]. In a recent study, miR-486 was identified as a stretch-
induced miRNA that is upregulated in the right ventricle and is able to promote
ventricular growth. Interestingly, neonatal mice treated with miR-486 showed
enhanced cardiomyocyte proliferation, suggesting that miR-486 can be beneficial
for promoting a hyperplastic response in underdeveloped ventricles caused by
hemodynamic alterations [30].

4 Chamber Development, Trabeculation,
and Hemodynamic Conditions

During chamber development, the ventricular myocardial walls form trabeculations
and a compact outer layer. Trabeculae formation is the process in which the
myocardium, covered by an endocardial layer, forms ridges that appear to protrude



into the luminal space of the ventricular chambers [4]. Functionally, the trabeculae
increase oxygen and nutrient uptake in the developing heart, prior to the establish-
ment of the coronary vasculature [32, 33]. Ectothermic animals (fish, amphibians,
reptiles) maintain the trabecular wall architecture into adulthood; endotherms (birds,
mammals) obtain a compact wall and a Purkinje fiber network derived from the
trabecules [34]. In fish, trabeculation is driven by directional migration of
cardiomyocytes toward the lumen (toward the endocardium). The cells delaminate
from the epithelial-like myocardial layer (“compact” layer) of the early developing
heart [35, 36]. In hearts that do not contract, myocardial protrusions still form, but
trabeculae do not, indicative of cardiac function being required for trabeculation
[36, 37]. Flow (shear stress) is likely to play a key role in trabeculation, as
experimental reduction of blood flow inhibits this process [36, 38–40]. Blood flow
patterns through the ventricle may instruct both the initiation of luminal protrusions
and the subsequent formation of stable trabeculae [36, 40].
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The initiation of cardiomyocyte protrusion during trabeculation appears to be
orchestrated by the Notch and Neuregulin pathways, and its progression depends on
optimal hemodynamic conditions [38, 40, 41]. For example, blood flow/contractility
is required for Nrg2a (Neuregulin2a) expression, which induces trabeculation
[41]. In addition, Neuregulin signaling activates Notch signaling in the myocardium
[42] and negatively regulates nuclear localization (activity) of the Hippo effector
Wwtr1 (otherwise known as TAZ) in order to enable trabeculation [43]. Ablation of
Notch1 in mice resulted in underdeveloped trabeculae [44]. The ventricular endo-
cardium has cilia that act as flow (shear stress) sensors (Fig. 1). Mice lacking cilia
exhibit thinner compact myocardium and impaired trabeculation [45]. Blood flow
sensed by primary cilia causes activation of notch1b in the zebrafish ventricular
endocardium, and Notch1 activation induces the expression of efnb2a (ephrin b2a)
and nrg1 (Neuregulin 1), which are both required for trabeculation [46]. Zebrafish
mutants with reduced shear stress (by gata1 knockdown to reduce blood viscosity)
also show reduced Notch signaling and attenuated trabeculation [47]. Injection of
nrg1 mRNA in these embryos rescued Notch-related expression and trabeculation.

5 Flow Forces Drive Outflow Tract Development

Abrogation of the primary cilia in mice results in abnormal OFT development,
indicating a role for mechanosensing and Hedgehog signaling in OFT morphogen-
esis [48]. Developmental expansion of the OFT in zebrafish embryos involves
accrual (proliferation and addition) of both endocardial and myocardial cells
[49]. However, in conditions of disrupted heart function, endocardial growth ceases.
The flow-sensitive receptor activin A receptor-like type 1 (Acvr1) (TGFβ receptor) is
required for the addition, but not for the proliferation of endocardial cells [49].

The establishment of the asymmetric aortic arch from the bilaterally symmetric
branchial arch arteries requires unilateral expression of Pitx2 (paired-like
homeodomain 2). Pitx2 was found to drive the asymmetric morphogenesis of the



upstream OFT, causing preferential blood supply to the left sixth branchial arch
artery. The uneven distribution of the flow of blood causes left-sided PDGFR
(platelet-derived growth factor receptor) and VEGFR2 signaling and stabilization
of the left sixth branchial arch artery, while the right counterpart regresses, thus
enabling the asymmetric remodeling of the great arteries [50].
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In a recent study, it was demonstrated that the ECM protein Thrombospondin-1
(Thbs1) is induced by mechanical stretch and involved in the remodeling of the aorta
[51]. Thbs1 was found to mediate dynamic interactions between mechanical stress
and the YAP-mediated transcriptional response in the blood vessel wall. Deletion of
Thbs1 in mice resulted in altered vascular remodeling in response to flow cessation
and pressure overload [51]. Piezo1 also impacts the development of the OFT.
Morpholino-mediated knockdown of the mechanosensitive ion channel Piezo1 in
zebrafish embryos led to loss of elnb (elastin B) expression in the OFT and structural
abnormalities with the OFT appearing constricted [52].

6 Role of Mechanical Forces in Valve Development

Within the atrioventricular canal (AVC) and outflow tract (OFT), the endocardial
cells will undergo EndoMT to form the cardiac cushions and later mature into
unidirectional cardiac valves. Cushion formation is initiated by signals deriving
from the underlying AVC and OFT myocardium. Zebrafish mutants with impaired
myocardial contractility do not develop cardiac AV cushions (endocardial ring)
[53]. This study indicated blood flow was not required for the initial steps of cushion
formation. However, obstruction of blood flow in chicken or zebrafish embryos
impairs cushion and atrioventricular valve formation [6, 37, 54, 55]. Moreover,
deletion of cardiac cilia also causes anomalies in the cardiac cushion development
[45]. These findings directly link hemodynamic alterations and shear stress to valve
morphogenesis.

Before valves develop, reversing (or oscillatory) blood flow occurs between the
atrium and ventricle due to regurgitation. The retrograde flow is particularly strong at
the AVC. Experimental reduction of the retrograde flow fraction in zebrafish resulted
in failure to develop AV valves [55, 56]. The accumulation of endocardial cells at the
AVC, which precedes AV valve formation in zebrafish, was also disrupted, indicat-
ing the retrograde, or oscillatory flow at the AVC is also required for the onset of AV
valve development [55]. The transcription factor KLF2 is expressed in the endocar-
dium overlying the developing valves and is dependent on hemodynamic forces
[57–60]. Loss of klf2a in zebrafish results in valve defects similar to those observed
with loss of flow or shear stress [55, 61, 62]. A KLF2-WNT9B signaling mechanism
conserved in zebrafish and mouse was identified by which fluid forces sensed by
endocardial cells direct heart valve development [60] (Fig. 2). Klf2 induces wnt9b in
the endocardium and canonical WNT signaling in the underlying cushion mesen-
chyme. Endocardial wnt9a expression depends on Klf2 and on shear forces and, like
klf2, is required for valve development [60]. Other targets of Klf2 include notch1b,



nrg1, and edn1 in the AV endocardium [55] (Fig. 1). In addition, Notch signaling
activity is also increased upon high shear stress and together with KLF2 signaling
controls valvulogenesis. More specifically, Notch-mediated lateral inhibition causes
Delta-like-4 positive endothelial cells to ingress into the cardiac jelly and form a
subendocardial cell population. These Dll4-positive cells ingress in response to
Wnt9a, produced in response to shear stress-activated Klf2 signaling [63]. In luminal
endocardial cells that are subjected to shear stress, two independent
mechanosensitive pathways activate Klf2a- and Notch1b-mediated signaling,
respectively, which in turn repress angiogenesis receptor Vegfr3/Flt4. As a result,
Flt4 becomes restricted to the subendocardial/abluminal EC population, which is not
subjected to fluid shear stress, where it inhibits Notch activity. Together, these
studies highlight the antagonistic activities between shear stress-activated Notch
and subendocardial Flt4 underlying localized differences in EC fate and
valvulogenesis [64]. Manipulation of klf2a expression resulted in reduced levels of
bmp4 expression in the myocardium, supporting the involvement of a shear stress-
mediated interaction of endocardium and myocardium in AVC specification and
cushion development [55]. Additionally, klf2b and egr1 (early growth response 1)
were identified as flow-responsive transcription factor-encoding genes, capable of
regulating valvugenesis, with zebrafish mutants for either gene showing valve
malformation [65].
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Fig. 2 Remodeling of cardiac cushions into valves. Hemodynamic forces activate expression of the
transcription factor Klf2 in the endocardium, which indirectly activates Wnt9b expression. Endo-
cardial Wnt9b activates canonical WNT signaling in the adjacent mesenchymal cells to orchestrate
remodeling and valve formation. During valve formation, the hemodynamic forces will change,
providing feedback information to modulate Klf2 expression, WNT signaling, and valve formation
itself. Modified from [60]

The valves originating from endocardial cells in the AVC form the valve leaflets,
a process involving coordinated endocardial tissue movements [62]. These cell
movements and tissue reorganization depend on fibronectin1b and other ECM pro-
teins. Flow and Klf2a control these movements and the expression of fibronectin1b
[62]. This illustrates how endocardial mechanotransduction and valve morphogen-
esis are linked via tissue reorganization mediated by ECM protein synthesis.
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While alterations in shear stress have been established to have an impact on the
transcriptional regulation of klf2a, the mechanisms of how the cells sense and
translate this action into a nuclear output have not been fully resolved. One proposed
mechanism involves the shear stress-mediated activation of the mechanosensitive
calcium channels rpp2 (polycystin 2, transient receptor potential cation channel) and
Trpv4 (transient receptor potential cation channel subfamily V member 4) regulating
klf2a expression (Fig. 1). Zebrafish mutants of both trpp2 or trpv4 exhibit reduced
klf2a expression and valve malformation [61]. It is hypothesized that these channels,
present on the endocardial cell surface, regulate klf2a expression by promoting the
calcium influx into the endocardial cells of the AVC, triggered by the retrograde
blood flow. A recent study in zebrafish showed that in addition to the established
TRPP-KLF2a axis, an independent shear stress-responsive mechanism is involved in
valvulogenesis. Specifically, it was shown that shear stress induces the extracellular
ATP-mediated activation of the purinergic receptor groups P2X and P2Y, in the
endocardial cells of the AVC. This triggers pulsatile calcium ion influx, which in
turn activates nuclear translocation and activation of transcription factor Nfatc1
(nuclear factor of activated T cells 1) and targets the gene program driving valve
formation (Fig. 1) [66].

In addition, blood flow causes upregulation of heg1 (heart development protein
with EGF-like domains 1), which in turn stabilizes the protein levels of Krit1
(KRIT1 Ankyrin repeat containing) [67]. Together, Heg1 and Krit1 lower the
expression levels of klf2a. In zebrafish krit1 mutants, klf2a and notch1b are
upregulated in the endocardium causing inhibition of valve leaflet formation.
Thus, a balance between flow-mediated klf2a induction and suppression mecha-
nisms drives valve leaflet morphology [67].

While the formation of the AVC and the OFT valves is generally conserved, cells
deriving from the neural crest have a unique participation in the formation of the
OFT valves [68]. These valves will form at the base of each of the great arteries, to
prevent the blood from leaking back into the ventricles. While in static culture
conditions, the vascular endothelial cells and endothelial valvular cells are morpho-
logically similar, upon subjection to unidirectional shear stress, they show differ-
ences in spatial organization [69]. Instead of the parallel alignment of the vascular
endothelial cells to the direction of shear stress, the valvular endothelial cells orient
vertically toward the blood flow [69]. With the application of shear stress, this
different spatial organization between the aortic and the aortic valvular endothelial
cells appears to be the result of focal adhesion rearrangement, which is mediated by
PI3K-dependent and PI3K-independent signaling, respectively. This finding sug-
gests that hemodynamic forces can impact the differently localized endothelial
populations by driving different molecular responses.

Endocardial loss of the mechanosensitive ion channel Piezo1 in mice impairs
cytoskeletal alignment upon shear stress [70], and haploinsufficient Piezo1 mice
present disorganized alignment of the endothelial cells, linking hemodynamic forces
to cellular morphology [71]. Moreover, lowering the mRNA levels of piezo1 in
zebrafish leads to OFT and aortic valve defects [52]. Of note, while the AVC
valvular progenitors are surrounded by myocardial cells, their OFT counterparts



contact smooth muscle cells, possibly creating differences in the impact of
mechanosensitive forces [72]. In zebrafish, upon shear stress alterations, the Piezo
channels are able to coordinate the development of the OFT valves, through distinct
mechanisms. Piezo channels together with the TRP channels can induce Klf2a and
Notch1 activity in the endothelium, while in the underlying smooth muscle cells,
Piezo modulates the localization of Yap1 [72].
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The expression of Cad11 (cadherin 11) is hemodynamic force-dependent [73],
and during cardiac maturation its expression is progressively restricted within the
endocardium of the OFT valves [74]. Genetic ablation of Cad11 results in underde-
veloped OFT valves by disrupting cellular migration [75].

Myocardial contractility also participates in the proper development of the OFT
valves. Specifically, increasing myocardial contractility in zebrafish increases shear
stress and notch1b expression and leads to OFT valve hyperplasia. By impairing
contractility, OFT valve formation was inhibited. Furthermore, solely increasing
shear stress leads to increased Notch1 signaling and OFT leaflet growth. However,
decreasing shear stress, without manipulating contractility, had no effect on leaflet
formation. These findings suggest that contractility is essential for the OFT valve
development, and by further coordinating with shear stress, it promotes OFT leaflet
growth in a notchb1-mediated manner [76].

Mechanical forces also regulate epigenetic factors and microRNAs that contrib-
ute to valve development. The histone-deacetylase HDAC5 is a negative regulator of
klf2a. Within the endocardial cells of the AVC, PKD2 (protein kinase D2) inhibits
the activity of HDCA5 and ensures the upregulation of klf2a. In endocardial prkd2
zebrafish mutants, the expression of klf2a and notch1b is decreased, and valve
formation is disrupted [77]. In addition, expression of klf2a has been described to
regulate the abundance of the ECM protein Fibronectin1b within the AVC cardiac
jelly. Expression of fibronectin1b together with endocardial cell migration into the
cushions is required for the formation of the valves. Zebrafish mutants lacking klf2a
exhibited impairment of both these two processes [62].

In zebrafish, miR-21 is expressed in the AVC and OFT endocardium, areas that
are subject to high blood flow and shear stress. The expression of pri-miR-21-1
disappears in conditions of disrupted flow (heart beat) and quickly restores when
flow (heart beat) is resumed. Flow-dependent expression of miR-21 governs valve
development by regulating the expression of targets (e.g., sprouty, pdcd4, ptenb) and
by inducing cell proliferation in the endocardium of the AVC and OFT where shear
stress is highest [78].

7 Conclusions

It is evident that heart development requires the interplay between mechanical forces
and transcriptional programs. The KLF2-WNT9B-dependent formation of the AV
valves provides a beautiful example illustrating this process. Here, AV valve
modeling is driven by a transcriptional program the activity of which is constantly
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tuned by transduced forces that change with the progression of valve development
and function itself. More in general, heart and vascular development in its entirety
depends on the dynamic interplay between transcriptional programs and spatially
and temporally dynamic forces produced by heart function. It is likely that even
minor errors in the series of precisely graded signals and transduction mechanisms
may result in coronary heart disease (CHD). Given the prevalence of CHD,
unravelling how hemodynamic and mechanical forces control molecular pathways
in a spatiotemporal manner could ultimately prove beneficial for understanding the
pathologies of CHD and open new avenues for possible therapeutic applications.
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Mechanobiology of Cardiac Growth
in Health and Disease

Gloria Garoffolo and Maurizio Pesce

1 Molecular Control of Cardiac Mechanotransduction

Cells are able to transduce mechanical stimuli deriving from their environment to
control gene expression and cell fate. The concept of “mechanotransduction” has
been extensively studied in various cell types and in several pathological contexts
[1]. Mechanical stimuli, such as extracellular matrix (ECM) stiffness, shear stress,
and pressure overload, play important roles in both tissue development and disease.
In the heart, in particular, mechanical regulation is intimately connected to cell
differentiation and organ development from embryonic to adult life [2]. Indeed,
cardiac tissue is under a constant, self-generated mechanical stress, which promotes
cardiac cell maturation and tissue homeostasis. However, altered
mechanoperception can activate intracellular signalling cascades driving cells
toward pro-inflammatory/pro-fibrotic phenotypes [3]. External cues are also impor-
tant to determine the final size of the heart. In mammals, size regulation of the heart
is biphasic. During embryo development and until shortly after birth, cardiac growth
is affected by cardiomyocyte proliferation; by contrast, at postnatal stages, the
growth is governed by myocyte hypertrophy (Fig. 1).

Even if several studies have been reported the role of growth factors and cell cycle
regulators in cardiac proliferation during cardiogenesis, recent investigators have
discovered that heart size is strictly controlled by mechanically regulated signalling.
One example is the Hippo signalling pathway, whose function has been correlated to
organ growth during fetal life [4, 5]. Hippo pathway is an organ size and growth
regulator, which is evolutionarily and functionally conserved among species. In
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keeping with these evidences, Hippo pathway component-deficient embryos have
cardiomegaly during mouse development, as a result of elevated cardiomyocyte
proliferation [6], thus suggesting an involvement of the pathway in cardiac size
regulation. In particular, it has been observed that Hippo mutations did not affect
hypertrophy of cardiomyocytes but hyperplasia [6]. Among the best-characterized
downstream effectors of Hippo signalling, there are YAP (Yes-associated protein)
and TAZ (WW-domain-containing transcription regulator 1), two transcriptional
co-activators that can partner in the nucleus with DNA-binding proteins, such as
members of the TEAD (transcriptional enhancer factor (TEA) domain) transcription
factor family, to regulate the expression of genes involved in cell proliferation and
survival [7]. YAP-TEAD transcriptional complex promotes cardiac proliferation and
growth in the embryo, without affecting cardiomyocyte size. YAP1 protein expres-
sion, found in both myocyte and nonmyocyte cells, was detected in neonatal and
juvenile mouse heart and declined with age, becoming undetectable after 12 weeks
of age [8]. Indeed, the fetal heart grows through cardiomyocyte proliferation, but by
postnatal day 4, cardiomyocytes stop increasing in number, and the growth occurs
by increasing their size due to maturation of their contractile apparatus, associated
with an increment of ECM deposition by cardiac fibroblasts [9]. Fetal YAP1
inactivation in heart development induced lethal myocardial hypoplasia and
decreased cardiomyocyte proliferation [8]. By contrast, YAP1 activation increased
fetal cardiomyocyte cell cycle activity, regulating the transcription of genes related
to cell cycle [8]. In addition, the relevance of YAP/TAZ signalling is evolutionarily
conserved in cardiac development. For example, in zebrafish, the expression of these
two ortholog genes has been described in cardiac progenitor cells, where they are
involved, in combination with the ZF TEAD ortholog, in the migration of cardiac
precursors to the midline [10].
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Fig. 1 Biphasic regulation of heart size. Neonatal cardiomyocyte is characterized by high replica-
tive activity, while adult cardiomyocyte undergoes maturation by increasing in size and in number
of organized sarcomeres

The shift from the “hyperplasia” to “hypertrophy” stages in cardiac development
occurring shortly after birth is regulated not only by multiple paracrine signals [11]
but also by changes in ECM composition and biophysical characteristics, and this
strongly affects YAP transcriptional activity and cardiomyocyte proliferation
(Fig. 2) [12]. Indeed, the reduction in tissue stiffness induced cardiomyocyte cell
cycle activity through YAP-dependent pathway and actin stability. In particular,
matrix rigidity regulated Agrin expression, a large extracellular heparin sulfate



proteoglycan, which also plays as a mechanosensitive transducer of YAP activity
[13]. In particular, Agrin suppressed cardiomyocyte maturation at neonatal stages
and promoted proliferation by inducing the disassembly of dystrophin glycoprotein
complex (DGC) (Fig. 2) [12, 14]. This complex, linking actin cytoskeleton to ECM,
is essential for cardiomyocyte homeostasis and inhibits their proliferation by seques-
tering YAP (Fig. 2) [14]. In particular, the Hippo pathway and DGC act coopera-
tively preventing YAP nuclear localization and, thus, its transcriptional activity. In
fact, YAP phosphorylation by components of the Hippo kinase pathway favors the
interaction with DGC and its sequestration (Fig. 2) [14]. The levels of Agrin decline
sharply after the first week of life, coincident with the loss of cardiac regenerative
potential (Fig. 2).
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Fig. 2 ECM stiffness regulates cardiomyocyte proliferation through the activation of dystrophin
glycoprotein complex (DGC)-mediated YAP signalling. High levels of Agrin induce the disassem-
bly of DGC, thus promoting YAP nuclear translocation and activity

Mechanical properties of the cardiac matrix affect cardiomyocyte maturation. For
example, mouse neonatal cardiomyocytes cultured on stiff substrate showed
increased myofibrillar organization and reduced cell cycle activity, reflecting
the change in the heart tissue elastic modulus from ~10 kPa to ~40 kPa observed
in the transition from neonatal to the adult stages [15] and justifying the increase in
the contraction force. In contrast, soft matrices induced cardiomyocyte dedifferen-
tiation, characterized by partial disassembly of the sarcomeres and an increased
proliferation rate [16]. ECM rigidity is able to affect also the mitochondrial archi-
tecture in cardiomyocytes [17]. These cells are one of the most metabolically active
cell types, and most of the ATP is generated by the mitochondria [18]. In early fetal
cardiogenesis, mitochondria are rare with few cristae, while, during development,
they increase in number and density, reflecting the switch between glycolysis and
oxidative phosphorylation [19]. Indeed, in neonatal rat myocytes, mitochondria are



randomly distributed throughout the cell, while, as cardiomyocytes mature, they
become tightly packed into myofibril bundles to allow an efficient delivery of ATP
to sarcomeres, favoring the metabolic switching [20]. Changes in ECM rigidity may
be responsible for this mitochondrial remodelling, affecting cell shape and thus
morphology of the mitochondrial network. Energy production depends on the total
volume of mitochondria as well as the morphology of the mitochondrial network,
which become more fragmented as ECM compliance increases [17]. Since cells
seeded on stiff substrates generate more force than cells on soft matrices, ATP
demand and production as well as basal respiration capacity are likely increased
onto substrates with high stiffness, thus reflecting the ability of cardiomyocytes to
adapt mitochondria energy production to contraction intensity demand [21]. It is
possible to speculate that decline in cardiomyocyte proliferation and regeneration
could be attributed to changes in ECM mechanical proprieties, which induce the
assembly of long and aligned sarcomeric bundles, block cardiomyocyte cell cycle
activity, and favor binucleation. In keeping with this hypothesis, disruption of
cardiomyocyte cytoskeleton using myosin inhibitor such as Blebbistatin determined
dedifferentiation of the cardiomyocyte contractile apparatus and induced cell cycle
re-entry [16].
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2 Mechanical Regulation of Primary Cardiomyocyte
Differentiation

During cardiogenesis, mechanical regulation is involved in both first and second
heart field cell migration and differentiation. In particular, for the formation of the
cardiac crescent, mechanical compliance of ECM of the endoderm is necessary to
direct the first heart field cardiac progenitors toward their appropriate anterior lateral
position caudal to the headfolds [22]. In this position, the cells of the first heart field
are exposed to various stimuli (BMP-mediated cytokines, fibroblast growth factor,
WNT inhibitors), which induce cardiac differentiation [23, 24]. As development
proceeds, the linear heart tube expands through the recruitment of additional cells,
the second heart field progenitors, which remain in a proliferative, undifferentiated
state until they enter the heart tube and give rise to myocytes and vascular cells
[25, 26]. In a fascinating hypothesis supported by experimental findings, it has been
speculated that primary differentiation of cardiomyocytes could be supported by
mechanical signalling before the onset of the coordinated beating of the primordial
heart related to electromechanical coupling [27]. This hypothesis stems from the
original observation that shortly after the beginning of cardiac looping, the myocar-
dium undergoes significant and constant stiffening, and this is predicted to affect the
contractility and the coordinated beating of cells by regulating the opening of
mechanoperceptive Ca2+ channels. Since the opening of the Ca2+ channels may
occur in a quantitatively relevant fashion beyond a low stiffness threshold, the
mechanical maturation of the extracellular matrix could represent a powerful signal



for the transition from a “shivering” phase to an organized contraction of the
myocardial primitive cells. This event might, in turn, allow “syncytial” transmission
of the contraction forces from the contracting cells to their neighbors via the
viscoelastic properties of the matrix, thus resulting in propagation of the coordinated
beating before the onset of electromechanical coupling [28]. The importance of
mechanical communication for the regulation of beating in primitive myocytes has
been also demonstrated using experimental settings able to stimulate mechanically
neonatal myocytes onto matrices with specific mechanical features and frequencies,
showing the susceptibility of the cells to adapt their contraction with respect to that
of the adjacent cells [29].
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The mechanosensitivity of cardiomyocytes is finally demonstrated by their ability
to adjust their morphology to align in perpendicular direction to strain [30]. In
particular, angiotensin II, released by cyclic stretch, induces the expression of
connexin 43 (Cx43), a gap junction protein, thus suggesting that mechanical stim-
ulation is also implicated in the formation of gap junctions between cardiomyocytes
and in the propagation of electrical signalling, once it is established in the myocardial
tissue [31]. Two signalling cues present in the myocardium, ECM and mechanical
strain, are able to affect also cardiac progenitor cell proliferation and differentiation.
In particular, cyclic strain promoted cardiomyogenesis of embryonic stem cells by
increasing cardiac-specific gene expression, both in vitro and in vivo [32], occurring
in particular through an increase in mRNA expression of MEF2C and GATA-4, two
transcription factors involved in cardiac cell differentiation [33]. ECM composition
can finally direct cardiac progenitor differentiation. For example, the commitment of
stem cells to differentiate into cardiomyocytes depends not only on ECM structure
and elasticity but also on the relative abundance of its components, such as colla-
gens, fibronectin, and laminin [34], and their post-translational modifications, which
are strictly related to its mechanical characteristics. For example, native heart ECM
drives cardiomyocyte differentiation of pluripotent cells [35]. Indeed, embryonic
stem cells seeded on native heart ECM expressed high levels of cardiac genes
(Troponin I, cardiac myosin heavy chain) compared to cells seeded on liver ECM
[35]. This result suggests that, although heart and liver share the same ECM
components and no tissue-specific component in these tissues was found, different
quantities of each ECM molecule as well as their mechanical characteristics and
geometric arrangement are crucial for instructing proper cardiac differentiation
signalling on embryonic cells [35]. The biophysical properties of the ECM can be
affected by ECM cross-linking mechanisms, which are known to promote disease
progression by altering cellular responses. Abnormalities in ECM remodeling due to
altered collagen deposition were associated with risk conditions and myocardial
injury promoting a fibrotic response. Cardiac fibrosis, the earliest hallmarks of heart
failure, is characterized by excessive deposition of ECM proteins, in particular
collagen. This accumulation is the result of increased collagen synthesis associated
with a decreased proteolytic activity due to an imbalance between the levels of
matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases
(TIMPs) [36]. These events are mediated by cardiac fibroblasts, a normally quiescent
cell population that differentiates into activated myofibroblasts following an injury



[1]. Myofibroblasts are involved in pro-inflammatory response and in excessive
ECM deposition. These reparative mechanisms are necessary to maintain the struc-
tural integrity of the heart and to prevent myocardial rupture [37]. Among the factors
contributing to this pathological condition, altered collagen cross-linking may rep-
resent a crucial contributing player (Fig. 3). In fact, a strong correlation exists
between increased collagen cross-linking and ventricular stiffness in patients with
heart failure, as well as levels of circulating lysyl oxidase (LOX), a primary collagen
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Fig. 3 Example of mechanical regulation of cardiac fibroblasts. Increased collagen cross-linking
induces myofibroblast differentiation and ECM remodelling, affecting biophysical properties of the
tissue



cross-linking enzyme [38]. The degree of collagen cross-linking determines the
solubility, the stiffness, and the resistance to degradation of the resulting ECM
[39], and this has an impact on the passive mechanical properties of the myocardium.
In particular cardiac tissue with high degree of cross-linking is stiffer than tissue with
lower level of cross-linked collagen [40] (Fig. 3).
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Not only pro-inflammatory/pro-fibrotic stimuli can alter cardiac matrix stiffness,
but also aging is able to affect ECM composition by increasing collagen synthesis
and cross-linking [41]. Indeed, hearts from autopsies of 80-year-old patients
expressed higher levels of collagen I compared to younger individuals [42]. This
limits cardiac function by decreasing the tensile strength of the heart. In addition,
aged myofibroblasts showed an impaired capacity for dedifferentiation and a resis-
tance to apoptosis, preventing the normal physiological responses to tissue injury
and promoting the progression of fibrotic disorders [43].

While the composition and mechanical characteristics of the cardiac matrix are
principally regulated by the function of cardiac fibroblasts and myofibroblasts, also
under control of mechanically activated pathways [44], cardiomyocytes also respond
to changes in ECM cross-linking by modifying their contractility. Specifically, while
cells are able to contract to a larger extent on soft surfaces [45], the maximal
contractile forces are developed on substrates with higher stiffness. Importantly,
stiffness of the ECM has an effect on maturation of the myocytes’ contractile
apparatus and even the geometry of the cells that, from irregularly shaped, acquire
the typical rod-shaped morphology [46]. The relationship between the sarcomeric
structure or cellular geometry and the mechanical properties of the ECM has finally
an important emergence in the two different forms of heart failure with preserved or
reduced ejection fraction (HFpEF and HFrEF, respectively) where the difference in
sensing the mechanical load by the cardiac matrix can alternatively affect the
sarcomeric structure or the geometry of the myocytes inducing changes in the
structure of the left ventricle [47]. At the basis of this variation in the two patholog-
ical settings is, probably, the rearrangement of the contractile units of the myocyte
cytoskeleton in response to the increased preload, such as after an ischemic
insult vs. the increase in afterload in consequence of elevated pressure. Although
these responses are far from being totally understood, the changes in the amount and
the mechanical behavior of the components of the costameres, the lateral cytoskel-
etal structures connecting the contractile apparatus to the junctional complexes, may
play a major role with consequences for variations in the structural remodelling of
the myocytes [48].

3 Conclusions

There is an intricate relationship between the mechanical properties of the heart and
its cellular and functional maturation. The evolution toward pathologic states seems
also associated to variations in mechanical sensing and translation of mechanical
cues in maladaptive remodelling processes. The understanding of this complex
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relationship is very important, not only to elaborate novel strategies to protect the
heart from acute and chronic injuries or the effect of modifiable/unmodifiable risk
conditions but also to be able some day to prevent remodelling and instruct
regeneration.
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The Role of Mechanosensitive Signaling
Cascades in Repair and Fibrotic
Remodeling of the Infarcted Heart

Claudio Humeres, Harikrishnan Venugopal, and Nikolaos G. Frangogiannis

1 Introduction

Myocardial infarction typically results from rupture of a vulnerable coronary plaque
and can lead to sudden loss of hundreds of millions of cardiomyocytes [1]. The adult
mammalian heart lacks regenerative capacity and heals through formation of a
collagen-based scar [2], which is necessary to prevent catastrophic complications,
such as ventricular rupture [3]. The massive loss of cardiomyocytes associated with a
large infarction results in significant reduction in ventricular contractile capacity,
leading to marked elevations in filling pressures. Thus, in comparison to other
organs, repair of the infarcted heart has some unique characteristics, as the injured
myocardium continues to contract and attempts to compensate to maintain the stroke
volume through remodeling. In the infarcted ventricle, repair and remodeling are
closely intertwined: faulty repair is associated with worse remodeling and progres-
sive dysfunction, leading to post-infarction heart failure [4]. Repair and remodeling
of the infarcted heart involve the cooperation of several different cell types, includ-
ing surviving cardiomyocytes, immune cells, vascular cells, and fibroblasts. All
these cell types sense biochemical and mechanical changes in their microenviron-
ment and respond by modulating their phenotype and function. In the healing infarct,
there is a bidirectional relation between mechanical forces and biochemical path-
ways: mechanical stress transduces signaling cascades, whereas the changes in the
extracellular matrix network and in the intracellular cytoskeletal and myofilament
networks regulate transmission of mechanical forces.
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This chapter deals with the role of mechanosensitive signaling cascades in repair
and remodeling of the infarcted heart. We discuss the interplay between mechanical
stress and bioactive mediators in regulating phenotypic changes of immune and
reparative cells in the healing infarct. Moreover, we examine how the dramatic
changes in the cellular and matrix environment in the healing infarct affect ventric-
ular function. Finally, we propose promising therapeutic interventions targeting
mechanosensitive pathways to attenuate adverse post-infarction remodeling.

2 The Functional Consequences of Myocardial Ischemia

Myocardial infarction results from prolonged ischemia due to sudden occlusion of a
coronary artery. Ischemia of the territory subserved by the vessel is associated with
rapid onset of systolic dysfunction. Contractile force ceases after only 60 s of
ischemia [5, 6], despite the availability of energy reserves. Early dysfunction is
caused by the rapid generation of inorganic phosphate that inhibits contractile
protein function [7, 8] and by the effects of intracellular acidosis on calcium binding
to contractile proteins [9, 10]. In addition to systolic dysfunction, myocardial
ischemia also increases ventricular stiffness, causing diastolic dysfunction. The
effects of ischemia on ventricular compliance have been attributed to edema,
triggered by generation of metabolites that increase osmolarity (such as lactate)
[11] and to the energy-requiring nature of cardiomyocyte relaxation [12].

Although the functional consequences of a brief ischemic episode are reversible,
prolonged ischemia triggers cardiomyocyte death, leading to persistent contractile
dysfunction. In large animal models, death of vulnerable cardiomyocytes in the
subendocardial area occurs after 20 min of ischemia. Longer ischemic intervals
trigger a wavefront of cardiomyocyte death [13] that extends from the
subendocardium to the less vulnerable subepicardial cardiomyocytes, eventually
leading to a transmural infarct after 6 h of coronary occlusion. It has been suggested
that during this period, the ischemic myocardium may behave as a passive elastic
material [14]. However, active relaxation requires energy, in order to export Ca2+

ions back into the sarcoplasmic reticulum against a concentration gradient and to
hydrolyze myosin-bound ATP to decrease myosin-actin cross-bridging
[12, 15]. Thus, the dramatic perturbations in myocardial energetics during ischemia
lead to the early development of diastolic dysfunction in infarcted hearts.

3 The Phases of Infarct Healing

Death of cardiomyocytes in the ischemic myocardial segments triggers an
inflammation-driven reparative response that ultimately results in formation of a
collagen-based scar. Thus, repair of the infarcted myocardium can be divided into
three distinct, but overlapping phases: the inflammatory phase, the proliferative



phase, and the maturation phase. During the inflammatory phase, cardiomyocyte
necrosis triggers systemic and myocardial inflammation, leading to recruitment of
leukocytes in the infarct. As professional macrophages phagocytose dead cells and
matrix debris, inflammation is suppressed. Release of fibrogenic mediators activates
reparative interstitial cells and marks the transition to the proliferative phase, leading
to infiltration of the infarct with activated myofibroblasts and vascular cells. Finally,
during the maturation phase, structural collagen becomes cross-linked, leading to
formation of a stable scar, populated by de-activated fibroblasts and mature vessels.
In the healing infarct, the well-orchestrated transitions between the phases ensure
timely replacement of the dead cells with scar. Although the endogenous reparative
process does not restore the contractile properties of the lost myocardium, formation
of a scar prevents catastrophic complications, such as ventricular rupture. Moreover,
the cellular and extracellular matrix compositions of the scar are key determinants of
the severity of adverse post-infarction remodeling.
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4 The Inflammatory Phase of Infarct Healing

Release of damage-associated molecular patterns (DAMPs) by necrotic
cardiomyocytes triggers toll-like receptor (TLR)-mediated innate immune responses
[16], inducing release of pro-inflammatory cytokines and chemokines and leading to
the recruitment of neutrophils and pro-inflammatory monocyte subsets in the healing
infarct. Inflammatory mediators also stimulate synthesis and activation of proteases
(such as matrix metalloproteinases (MMPs)) [17], thus degrading the collagenous
extracellular matrix network and releasing pro-inflammatory matrix fragments
[18]. A large body of evidence suggests that myocardial compliance is diminished
during the inflammatory phase of infarct healing. Several distinct mechanisms may
account for increased stiffness. First, induction of pro-inflammatory cytokines, such
as interleukin (IL)-6, has been suggested to induce a rapid increase in cardiomyocyte
passive tension [19] through modulation of the phosphorylation status of titin, a
myofilament protein that acts as a molecular spring in the cardiac sarcomere
[19]. Second, release and activation of proteases (such as MMP-2) may cleave
titin, further increasing myocardial stiffness [20]. Third, changes in the composition
of the extracellular matrix may also contribute to reduced compliance. Although the
inflammatory phase is associated with prominent degradation of the collagen matrix
network [21], disrupted organization of the matrix may have a profound impact on
the mechanical properties of the myocardium and may also perturb relaxation of
surviving cardiomyocytes.
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5 The Proliferative Phase of Infarct Healing

In the infarcted myocardium, inflammatory cells serve to clear the infarct from dead
cells and matrix debris and also set the stage for activation of reparative fibroblasts
and vascular cells. The post-infarction inflammatory reaction is tightly regulated;
after an early peak, recruitment of pro-inflammatory leukocytes is reduced, anti-
inflammatory subsets of monocytes [22] and T cells [23–25] infiltrate the myocar-
dium, and macrophages acquire a reparative phenotype. Clearance of apoptotic cells
and matrix fragments by phagocytic macrophages triggers release of anti-
inflammatory mediators (such as transforming growth factor (TGF)-βs, growth
differentiation factor (GDF) 15, and interleukin (IL)-10) [26–28] that suppress
chemokine synthesis and attenuate expression of leukocyte integrins, thus inhibiting
leukocyte recruitment. TGF-βs also exert prominent fibrogenic actions, activating
fibroblast to myofibroblast conversion [29, 30] and stimulating collagen synthesis
and deposition [31] in the infarcted heart. Tight regulation of the post-infarction
inflammatory response, and rapid activation of reparative signals, is critical in order
to prevent ventricular rupture [32], a fatal acute complication that is typically driven
by overactive leukocyte-mediated inflammation [33], or perturbed fibroblast activa-
tion [34, 35]. The cellular events involved in scar formation following infarction
require activation of mechanosensitive signaling pathways.

6 Myofibroblasts: Central Effectors of Repair
in the Infarcted Heart

Expansion and activation of matrix-producing interstitial fibroblasts that express
contractile proteins, such as α-smooth muscle actin (α-SMA), are the hallmark of the
proliferative phase of infarct healing (Fig. 1) [36, 37]. These cells are called
myofibroblasts and are the main cellular source of collagens in the healing infarct
[38]. Most infarct myofibroblasts are derived from conversion and proliferation of
resident cardiac fibroblasts. Although some investigations suggested that a wide
range of cell types, including endothelial cells [39], bone marrow-derived progen-
itors [40], and macrophages [41], may contribute to the expanding infarct
myofibroblast population through direct transdifferentiation, robust lineage
tracing-based evidence showed that the contributions from non-fibroblasts is limited
[42, 43]. In the infarcted myocardium, secreted mediators and mechanosensitive
signaling cascades cooperate to trigger formation of stress fibers and induction of
α-SMA in activated fibroblasts. The exact contribution of α-SMA to the mechanical
properties and matrix-synthetic capacity of myofibroblasts remains poorly under-
stood. Incorporation of α-SMA into the stress fibers may contribute to generation of
contractile forces by fibroblasts, thus participating in scar remodeling [44]. However,
in vitro experiments have suggested that α-SMA overexpression in cardiac fibro-
blasts populating collagen lattices is not sufficient to promote contraction of the
matrix [45]. On the other hand, α-SMA expression may have broad effects on the
fibroblast behavior, regulating proliferation [45] and motility [46].
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Fig. 1 State transitions of fibroblasts during the phases of cardiac repair. The heart contains a
significant population of resident cardiac fibroblasts. During the inflammatory phase of infarct
healing, these cells may secrete inflammatory mediators and proteases. During the proliferative
phase, secreted mediators such as TGFβ1 and angiotensin II and mechanosensitive signaling
cascades cooperate to trigger cardiac fibroblast expansion and conversion to myofibroblasts,
which incorporate contractile proteins, such as α-smooth muscle actin (α-SMA) into cytoskeletal
stress fibers. In the healing infarct, α-SMA-expressing myofibroblasts are the main cellular source
of matricellular proteins and structural extracellular matrix proteins, such as collagens. Secretion of
structural matrix proteins by activated myofibroblasts is followed by induction of matrix cross-
linking enzymes that contribute to scar maturation. As the scar matures, fibroblasts exhibit disas-
sembly of α-SMA stress fibers and markedly reduce their numbers. Current evidence suggests that
depletion of myofibroblasts from the mature scar may reflect apoptosis of fibroblasts or acquisition
of a distinct fibroblast phenotype, characterized by high expression of bone-cartilage genes, known
as matrifibrocyte

7 The Mechanisms of Fibroblast and Myofibroblast
Activation in the Infarcted Myocardium: From the Cell
Surface to the Nucleus (Fig. 2)

7.1 Neurohumoral Pathways
and the Renin-Angiotensin-Aldosterone System (RAAS)

Neurohumoral pathways (including adrenergic signaling and the RAAS) are prom-
inently involved in activation of fibroblasts in the infarcted and remodeling heart.
The bulk of in vitro and in vivo evidence supports a central role for the RAAS in
activation of infarct myofibroblasts [47]. Moreover, the clinical benefit o
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Fig. 2 Mechanosensitive signaling pathways involved in cardiac fibroblast activation in the
infarcted and remodeling myocardium. Mechanical stretch plays a major role in fibroblast activation
by promoting the release of bio-active TGF-β from the matrix-bound latent complex with the LAP
and LTBP (large latent complex), through mechanosensitive integrin-mediated actions. In addition,
mechanical stress can also trigger angiotensin II release by neighboring cardiomyocytes, activating
fibroblasts through the type 1 angiotensin receptor (AT1). Neurohumoral and mechanical stress-
mediated activation of tyrosine kinases, G-protein-coupled receptors, and integrins in cardiac
fibroblasts leads to activation of focal adhesion kinases (FAK) and Src family tyrosine kinases
that subsequently recruit Rho guanine nucleotide-exchange factors (RhoGEF). RhoGEFs catalyze
the exchange of GDP for GTP, leading to the activation of the small GTP-binding protein RhoA.
When RhoA activation by RhoGEFs is favored over its inactivation by RhoGAPs, downstream
signaling occurs through the Rho-associated coiled coil containing kinases (ROCKs). ROCK
activation results in the polymerization of globular G-actin into filamentous F-actin required for
the formation of contractile stress fibers in myofibroblasts. F-actin polymerization results in
disruption of the association of Myocardin-related transcription factor (MRTF) with G-actin and
subsequent MRTF translocation to the nucleus, where it can promote profibrotic gene expression
through its interaction with serum response factor (SRF). In addition to their effects on Rho/ROCK
pathways, mechanoreceptor activation can also promote cardiac fibroblast activation through p38
MAPK, ERK MAPK, and TAK1 signaling



pharmacologic strategies targeting the RAAS may involve inhibition of fibrosis, thus
highlighting the central role of neurohumoral cascades in the pathogenesis of post-
infarction remodeling. Mechanical stress is known to trigger angiotensin II (Ang II)
release by cardiomyocytes in vitro and in vivo [48, 49]. In the infarct border zone,
surviving cardiomyocytes are subjected to mechanical stretch that may generate
angiotensin II, thus contributing to fibrosis and cardiac hypertrophy. Angiotensin
exerts a wide range of activating effects on cardiac fibroblasts, stimulating prolifer-
ation [50], triggering a migratory response [51, 52], inducing expression of integrins
[53], promoting fibroblast conversion to α-SMA+ myofibroblasts [54], and potently
upregulating synthesis and secretion of collagens and other structural matrix proteins
[49, 55]. The activating actions of angiotensin II on fibroblasts involve the type
1 angiotensin receptor (AT1), whereas AT2 (the type 2 receptor) has been suggested
to inhibit angiotensin II-induced fibroblast proliferation and matrix synthesis
[56, 57]. Some fibrogenic angiotensin II actions are direct, whereas other effects
may require the activation of downstream mediators, such as aldosterone [58, 59] or
TGF-β [60–62]. In vitro evidence in isolated cardiomyocytes suggests that in
addition to its effects on angiotensin II release, mechanical stress may also directly
activate AT1 receptor signaling in an angiotensin II-independent manner [63];
however, the significance of this mechanism in activation of infarct myofibroblasts
remains unknown.
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7.2 The Role of Cytokines and Chemokines in Fibroblast
Activation

Cytokines and chemokines play an important role in activation of fibroblasts in the
infarcted heart, both through direct effects and by stimulating recruitment of mac-
rophages and lymphocytes with fibroblast-activating properties. The
pro-inflammatory chemokine C-C motif chemokine ligand 2 (CCL2)/Monocyte
Chemoattractant Protein (MCP)-1 plays an important role in clearance of the infarct
from dead cells and matrix debris but is also involved in the pathogenesis of post-
infarction remodeling through effects on recruitment of macrophages expressing the
C-C motif chemokine receptor 2 (CCR2). These CCR2+ macrophages secrete
fibrogenic mediators, such as TGF-β and osteopontin [64–66], thus promoting
myofibroblast activation. Although some studies have suggested direct activating
effects of CCL2 on hepatic, cutaneous, and pulmonary fibroblasts [67–69], experi-
ments in isolated cardiac fibroblasts did not identify any significant CCL2 actions on
matrix gene expression and on proliferative activity [64].

The pro-inflammatory cytokines Tumor Necrosis Factor (TNF)-α, IL-1β, and
IL-6 have also been implicated in phenotypic modulation of infarct fibroblasts and
in the pathogenesis of post-infarction remodeling. TNF-α and IL-1β do not directly
induce a matrix-synthetic program in cardiac fibroblasts but may rather decrease
collagen synthesis and inhibit myofibroblast conversion [17, 70–72]. However,



stimulation with TNF-α or IL-1β ultimately triggers myofibroblast activation and
fibrotic remodeling through indirect actions, stimulating TGF-β synthesis [73], and
accentuating the fibrogenic effects of angiotensin II, through upregulation of AT1
receptors [74]. Moreover, TNF-α and IL-1β potently stimulate MMP synthesis
[17, 75, 76], thus promoting collagen degradation. Thus, cytokine-mediated gener-
ation of matrix fragments in the infarct may further accentuate fibroblast activation
[18]. Some members of the IL-6 family of cytokines (also known as the gp130
family, in reference to their common signal transducer molecule) have also been
implicated in the activation of fibroblasts in infarcted and remodeling hearts. In vivo
studies have suggested that genetic absence of IL-6 may attenuate cardiac fibrosis
and dysfunction in a model of myocardial infarction [77]. IL-6-mediated fibroblast
activation has been attributed to signal transducer and activator of transcription
(STAT)3-dependent stimulation of collagen synthesis [78], or to induction of
TGF-β [79]. IL-11, another member of the gp130 family of cytokines, has been
suggested to play a critical role in the activation of cardiac fibroblasts [80], serving as
a downstream fibrogenic signal, stimulated by TGF-β.
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It should be emphasized that induction of cytokines and chemokines in the
infarcted heart is predominantly driven by innate immune pathways, activated by
necrotic cardiomyocytes. However, mechanosensitive pathways have also been
suggested to promote pro-inflammatory cytokine induction [81, 82]. Mechanical
strain induces CCL2 synthesis in endothelial cells [81]. In a co-culture system,
cyclical endothelial stretch activated monocytes, promoting monocyte STAT3 acti-
vation and synthesis of pro-inflammatory cytokines [83]. Moreover, stretch of
cardiac fibroblasts stimulates NF-κB activation [84], triggering IL-1β release
[82]. In human cardiac fibroblasts harvested from heart failure patients, mechanical
stress induced inflammatory pathways, and the cell culture supernatant from
stretched fibroblasts stimulated monocyte transendothelial migration [85]. Thus, in
the infarcted heart, mechanical stress may amplify the pro-inflammatory effects of
innate immune signaling, accentuating fibroblast activation.

7.3 The Role of TGF-β in the Activation of Infarct
Myofibroblasts

TGF-βs are central effectors of myofibroblast activation and have been implicated in
the pathogenesis of a wide range of fibrotic conditions, involving several different
organs [86]. The well-documented relation between mechanical stress and activation
of TGF-β signaling cascades suggests that TGF-β may be a crucial molecular link
between mechanotransduction and fibroblast activation. All three TGF-β isoforms
(TGF-β1, TGF-β2, and TGF-β3) are induced and activated in the infarcted heart,
exhibiting distinct temporal patterns of expression [27, 87]. TGF-β1 and TGF-β2 are
upregulated early, whereas TGF-β3 exhibits a late pattern of upregulation, peaking
7 days after coronary occlusion [27, 87]. Although several different cell types



(including platelets, macrophages, fibroblasts, and cardiomyocytes) can produce
TGF-βs, their relative contribution to TGF-β upregulation in the infarcted myocar-
dium is unclear. Considering the presence of significant amounts of latent, but
activatable, TGF-β in normal hearts, bound to the extracellular matrix, the signifi-
cance of de novo synthesis of TGF-β in the healing and remodeling infarct is not
known.
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TGF-βs are synthesized as proproteins that contain both the mature growth factor
and its propeptide (also known as the latency-associated peptide/LAP). In the
endoplasmic reticulum, the proprotein is linked to a member of the latent TGF-β
binding protein (LTBP) family. The complex is subsequently transported to the
Golgi, where furin cleaves the mature TGF-β from the LAP. However, TGF-β and
LAP remain tightly bound through non-covalent interactions. TGF-β secretion by
various cell types occurs in the form of the large latent complex (LLC, TGF-β/LAP/
LTBP) or the small latent complex (SLC, TGF-β/LAP) [88]. The LAP is sufficient to
confer latency, preventing TGF-β binding to its receptors [89].

In the infarcted heart, proteases, matricellular proteins, and integrins cooperate to
release the mature TGF-β dimer from the latent complexes in close proximity to the
cell surface, thus promoting TGF-β/TGF-β receptor interactions, and activation of
downstream signaling cascades. Several different families of proteases, including
calpains, cathepsins, serine proteases, MMPs, and members of the ADAM with
thrombospondin type I motif (ADAMTS) family, are capable of activating TGF-β
in vitro and, when released in the infarcted heart, may trigger TGF-β activation [90–
95]. Specialized matrix proteins, such as ED-A fibronectin (ED-A Fn) [96] and
thrombospondin (TSP)-1 [97], have also been implicated in TGF-β activation in the
infarcted heart. The TGF-β-activating effects of ED-A Fn have been attributed to
localization of activatable TGF-β in the area of injury through LTBP immobilization
into the matrix [98, 99]. On the other hand, TSP-1 may act through interactions with
the LAP, leading to release of bioactive TGF-β [100].

The biochemical pathways responsible for generation of bioactive TGF-β in
tissues can be stimulated by mechanical stress. Experimental evidence suggests
that mechanical stretch plays a major role in TGF-β activation, promoting sustained
myofibroblast activation [101, 102], predominantly through integrin-mediated
actions. αv integrins have been implicated in mediating spatially restricted TGF-β
activation in fibrotic tissues [103, 104], through protease-dependent or protease-
independent mechanisms. Protease-mediated TGF-β activation requires recruitment
of the membrane-bound metalloproteinase MMP14, which releases TGF-β from
latent complexes through proteolytic actions [105]. Non-proteolytic activation may
involve αV-integrin-mediated mechanical forces, exerted by the actin cytoskeleton,
that induce conformational changes of the latent complex, resulting in presentation
of active TGF-β to its receptors [106–108]. In vivo studies in a wide range of fibrotic
conditions support the central role of αV integrin as a mechanosensor that mediates
mechanical activation of TGF-β [109–111]. Based on this evidence, mechanical
activation of αV integrin in the infarct border zone represents a highly plausible
mechanism for TGF-β activation in healing infarcts. However, the role of the αV
integrin/TGF-β axis in myocardial infarction has not been documented in vivo.
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In addition to its effects on TGF-β activation, mechanical stress also regulates
TGF-β transcription in several different cell types, including cardiomyocytes
[112, 113] and fibroblasts [112]. It should be emphasized that in vitro studies suggest
that the composition of the extracellular matrix plays a central role in regulation of
TGF-β responses in fibroblasts. The compliance of collagen gels profoundly affects
transcription of genes encoding contractile proteins (such as α-SMA) in
TGF-β-stimulated fibroblasts. Fibroblasts populating floating collagen lattices have
low intracellular tension and exhibit low level α-SMA upregulation in response to
TGF-β stimulation. In contrast, in anchored collagen lattices (typically associated
with moderate intracellular tension), TGF-β significantly induces α-SMA expres-
sion. In fibroblasts cultured on thin films of collagen-coated plastic, intracellular
tension is high and is associated with accentuated α-SMA induction upon TGF-β
stimulation [114].

Following activation, TGF-β signals through heterotetrameric TGF-β receptor
complexes transducing cascades involving a series of intracellular effectors, the
Smads, or activating Smad-independent cascades [115, 116]. In vitro and in vivo
evidence suggests that both canonical Smad-dependent cascades and non-canonical
Smad-independent signaling contribute to fibroblast activation in fibrotic hearts. In
vivo studies have demonstrated that Smad3 signaling is critically involved in
activation of reparative fibroblasts following myocardial infarction, inducing ECM
protein synthesis, integrin transcription, and α-SMA expression [31, 117] and
contributing to the formation of an organized scar [35]. Smad3 signaling in infarct
myofibroblasts restrains cell proliferation [31, 35, 117], generating well-aligned
arrays of activated myofibroblasts that preserve the structural integrity of the
infarcted heart through activation of a reparative integrin-Reactive Oxygen Species
(ROS) axis [35]. These findings highlight the critical reparative function of activated
fibroblasts in myocardial infarction. In contrast, Smad2 does not seem to play a
major role in mediating fibroblast activation in infarcted hearts [118]. The
contrasting effects of Smad2 and Smad3 may reflect differences in their patterns of
activation and nuclear translocation following TGF-β stimulation or distinct inter-
actions with transcriptional regulators in the nucleus. On the other hand, some
actions of TGF-β on cardiac fibroblasts may involve activation of Smad-independent
p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase
(ERK) MAPK, Ras homologue gene family/Rho-associated coiled-coil containing
kinases (RhoA/ROCK), or transforming growth factor-β-activated kinase 1 (TAK1)
signaling [119–121]. However, considering the wide range of mediators that can
activate these common kinase pathways, the relative contribution of TGF-β in their
activation is unclear.

TGF-β exerts a broad range of direct effects on fibroblasts that contribute to scar-
mediated repair of the infarcted heart but can also be involved (if excessive, or
prolonged) in the pathogenesis of post-infarction fibrosis. TGF-β stimulation
potently induces myofibroblast conversion [29], and increases ECM protein synthe-
sis by activated fibroblasts [31]. Moreover, TGF-β increases expression of integrins
[35] and shifts the protease/anti-protease balance toward a matrix-preserving phe-
notype by inducing protease inhibitors, such as Plasminogen Activator Inhibitor



(PAI)-1 and tissue inhibitor of metalloproteinase 1 (TIMP1) [117, 122], and by
suppressing MMP synthesis [123]. It should be noted that the effects of TGF-β on
cardiac fibroblast proliferation are dependent on the context. For example, some
studies have reported that TGF-β stimulates proliferation of cardiac fibroblasts [124],
whereas other investigations demonstrated anti-proliferative effects [31, 125]. The
contrasting findings likely reflect the context-dependent actions of TGF-β, which
exerts distinct effects on various cell types, depending on their state of differentia-
tion, the presence or absence of other bioactive mediators, and the biochemical
composition of the matrix environment.
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In addition to the direct actions of TGF-β on transcription of fibrosis-associated
genes, some TGF-β-mediated effects on infarct myofibroblasts may be mediated
through induction of other secreted mediators, such as the matricellular protein
CCN2/connective tissue growth factor (CTGF) [126] and the gp130 cytokine
IL-11 [80]. CCN2 induction has been demonstrated in border zone cardiomyocytes
and in fibroblasts or myofibroblasts infiltrating the infarct [127]. Although CCN2 has
been suggested to mediate activating effects of TGF-β on cardiac fibroblasts [128],
experiments using both loss- and gain-of-function approaches have challenged the
in vivo significance of this pathway [129, 130]. On the other hand, studies on the
effects of IL-11 have produced conflicting results. Although infusion of recombinant
mouse IL-11 was found to aggravate fibrosis in a mouse model of myocardial
infarction [131], presumably through actions on fibroblasts, treatment with human
IL-11 was found to be cardioprotective and anti-fibrotic, through activation of
STAT3-dependent anti-apoptotic pathways [132].

The activating effects of TGF-β on cardiac fibroblasts are restrained through
induction of the inhibitory Smad, Smad7. In the infarcted heart, Smad7 is
upregulated in myofibroblasts and inhibits both Smad2/3-mediated signaling and
Smad-independent cascades, through actions downstream of the TGF-β receptors.
The anti-fibrotic effects of Smad7 play a crucial role in protecting the infarcted
ventricle from excessive fibrosis, adverse remodeling, and heart failure. Moreover,
Smad7 has TGF-β-independent actions, suppressing fibrogenic effects of receptor
tyrosine kinases, such as Erbb2 [133]. Although studies in mesangial cells showed
that mechanical stretch induces Smad7 expression [134], whether mechanosensitive
signaling is implicated in the induction of inhibitory Smads in cardiac fibroblasts is
not known.

7.4 Components of the Provisional Matrix as Regulators
of Fibroblast Activation

Changes in the extracellular matrix environment during the proliferative phase of
infarct healing play a central role in fibroblast activation. During the proliferative
phase of healing, formation of a provisional matrix, comprised of fibrin, fibronectin,
and proteoglycans, may be important for fibroblast migration, proliferation, and



conversion to myofibroblasts [135]. These matrix-bound proteins cooperate with
growth factors, such as TGF-β, to transduce signals in fibroblasts. In vitro studies
suggested that the ED-A splice variant of fibronectin is critical for TGF-β1-induced
α-SMA upregulation in fibroblasts, an indicator of myofibroblast conversion
[99]. Consistently with these findings, ED-A fibronectin loss attenuated
myofibroblast transdifferentiation in healing myocardial infarcts [96]. The specific
interactions between the ED-A segment and the TGF-β signaling cascade remain
unknown. Although formation of the fibronectin-based provisional matrix in the
healing infarct reflects extravasation of plasma fibronectin through hyperpermeable
cytokine-stimulated microvessels [136, 137], induction of cellular fibronectin and
assembly of fibronectin fibrils may be, at least in part, mechanically stimulated.
Cyclic strain in fibroblasts has been reported to upregulate fibronectin
fibrillogenesis [138].
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Hyaluronan and versican have also been implicated in myofibroblast conversion.
In vitro studies showed that pericellular hyaluronan was involved in maintenance of
a myofibroblast phenotype by TGF-β-stimulated cells [139], and in vivo experiments
suggested that CD44, the main receptor for hyaluronan, mediated collagen synthesis
in infarct fibroblasts [140]. The role of versican in activation of infarct
myofibroblasts is more speculative. In dermal fibroblasts, versican was implicated
in myofibroblast conversion [141]. Although versican is upregulated in the infarcted
myocardium [142], whether it mediates activation of infarct myofibroblasts is
unknown.

7.5 Specialized Matrix Proteins Transduce Reparative
and Fibrogenic Signals in the Infarcted Heart

In addition to the effects of provisional matrix components that originate from
extravasated plasma proteins (such as fibrinogen-derived fibrin and fibronectin),
the extracellular matrix in the infarct is enriched through de novo synthesis of
matricellular proteins [143]. These specialized matrix proteins do not play a primary
structural role but bind to the structural matrix and modulate signaling cascades,
serving to localize growth factor and protease activity in the area of injury
[144, 145]. Many matricellular macromolecules are induced in response to mechan-
ical stress, thus representing an important link between mechanical stimulation and
tissue remodeling [146]. In addition to the effects of mechanosensitive pathways
(including neurohumoral cascades), cytokines, growth factors, and oxidative stress
can also stimulate synthesis of matricellular proteins in the infarcted and remodeling
heart [147, 148].

Several members of the matricellular family (including thrombospondins,
tenascin-C, osteopontin, secreted protein acidic and rich in cysteine (SPARC), and
periostin) have been implicated in repair and remodeling of the infarcted heart



through effects on fibroblast activation (Table 1). Thrombospondin (TSP)-1 is
markedly upregulated following myocardial infarction and is selectively deposited
in the infarct border zone [97], where it may activate TGF-β, promoting fibroblast
activation while inhibiting angiogenesis through direct CD36-dependent [189]
effects on endothelial cells. Tenascin-C is also markedly upregulated in the healing
infarct [190] and may promote fibroblast migration [156] while stimulating integrin-
dependent macrophage activation [157]. Osteopontin upregulation in the healing
infarct may promote fibroblast-mediated collagen deposition [171]. Induction of
SPARC plays a role in formation of an organized scar, stimulating granulation tissue
formation and collagen maturation, and protecting from left ventricular rupture
[165]. Secretion of periostin by activated infarct myofibroblasts also plays an
important role in activation of a reparative matrix-secreting program by fibroblasts
[184], preventing cardiac rupture [184, 185], but also contributes to chronic pro-
gression of fibrosis and adverse post-infarction remodeling [185]. Although several
robust in vivo studies have documented the critical role of members of the
matricellular family in both repair and adverse remodeling of the infarcted heart,
the specific molecular mechanisms responsible for these actions remain unclear.
Matricellular proteins have several functional domains that can modulate receptor-
mediated signaling cascades or regulate availability of active growth factors and
proteases. Thus, dissection of the relative significance of specific molecular mech-
anisms and interactions is challenging.
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Moreover, it is unclear to what extent induction of matricellular proteins in the
infarct involves activation of mechanosensitive cascades. Some members of the
matricellular family, such as tenascin-C, are highly inducible upon mechanical
stimulation [147, 148]. Thus, the selective deposition of tenascin-C in the border
zone and in the remote remodeling myocardium may reflect the accentuated mechan-
ical stretch of fibroblasts and cardiomyocytes in these areas. Other matricellular
proteins may be upregulated predominantly through cytokine and growth factor-
mediated pathways, without significant involvement of mechanically activated path-
ways. For example, osteopontin is predominantly expressed in macrophages infil-
trating the infarcted heart [137, 191], and its upregulation is dependent on
stimulation by inflammatory signals [65].

7.6 Integrins

Integrins are a superfamily of cell adhesion receptors that bind primarily to extra-
cellular matrix ligands, serving as molecular links between the matrix environment
and intracellular pathways, thus modulating a wide range of cellular responses
[192, 193]. On the cell surface, integrins exist as heterodimers, comprised of
non-covalently interacting combinations of α and β subunits. Some of the integrin
subunits appear in only a single heterodimer, whereas others are more promiscuous,
forming combinations with several other subunits. For example, the α5 subunit is
present only in combination with β1; in contrast, the αV subunit has 5 different
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partners, and β1 can form combinations with 12 different α subunits. The complexity
of the integrin system reflects the wide range of roles of the superfamily in devel-
opment, homeostasis, tissue injury, and repair.
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In the healing infarct, integrins serve as key mechanosensors and function as
molecular bridges between the extracellular matrix and the cells. TGF-β and angio-
tensin II induce and activate integrins in cardiac fibroblasts [35, 53]. Subsequently,
activated integrins interact with matrix-bound binding partners (such as fibronectin,
collagens, and a wide range of matricellular macromolecules) and transduce down-
stream signaling cascades. Regardless of the mechanism responsible for their acti-
vation, integrin cascades typically involve focal adhesion kinase (FAK), Src family
tyrosine kinases, Rho/ROCK, and MAPK pathways [194]. Integrin-mediated acti-
vation plays a central role in a wide range of fibroblast responses, including
migration, proliferation, extracellular matrix protein synthesis, and myofibroblast
conversion. The effects of integrins in the infarcted heart are not limited to fibroblast
activation but also involve other cell types, such as cardiomyocytes, immune cells,
and vascular cells. β1, β2, and β3 integrins are the best-studied members of the
family in experimental models of myocardial infarction. Expression of integrin β1A
is highly expressed in fibroblasts and in leukocytes infiltrating the infarct, whereas
integrin β1D is predominantly localized in cardiomyocytes [195]. β2 integrins are
critically involved in recruitment of leukocytes in the healing infarct [196]. On the
other hand, expression of β3 integrins is localized predominantly in infarct vascular
cells [195, 197]. Cell-specific loss-of-function experiments in vivo suggested that
cardiomyocyte β1 integrin signaling exerts protective actions on the ischemic heart,
by preserving mitochondrial function [198]. In vitro studies and associative in vivo
data suggest that β1 integrin may also be implicated in fibroblast proliferation [199]
and in induction of matrix synthesis [200, 201] following infarction. Unfortunately,
robust studies examining the role of fibroblast-specific β1 integrin responses in
infarction models are lacking. αV integrin (which can associate with both β1 and
β3 chains) is also rapidly activated in response to mechanical stress and may promote
fibroblast activation through direct actions or via activation of latent TGF-β
[202, 203].

7.7 Mechanosensitive Ion Channels

Emerging evidence suggests an important role for mechanosensitive ion channels in
activation of fibroblasts in infarcted and remodeling hearts [204]. Fibroblasts express
a wide range of cation channels that enable cation flux across their membrane,
contributing to activation of downstream signaling cascades. Some of the ion
channels expressed by fibroblasts are mechanically gated, thus regulating ion con-
ductance and cellular activation in response to mechanical stress. The best studied of
these channels are the members of the Transient Receptor Potential (TRP) family
(such as TRPC6, TRPV4, and TRPM7), the potassium-selective channels TREK-1
and KATP, and Piezo1 (Fig. 3). These mechanically activated channels may serve as



direct links between mechanical stress and fibroblast activation or may participate in
transduction of signals generated by other mechanosensitive pathways. The TRP
channels have been implicated in myofibroblast conversion [205–208]. TRPC6-
mediated increases in calcium permeability were implicated in myofibroblast
transdifferentiation through activation of the calcineurin-nuclear factor of activated
T cells (NFAT) signaling pathway [205]. Experiments using a global loss-of-func-
tion model suggested that TRPV4 is implicated in adverse remodeling and in
progression of fibrosis following myocardial infarction [209]. The fibrogenic effects
of TRPV4 may also involve accentuated myofibroblast conversion through
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Fig. 3 Mechanosensitive ion channels’ role in cardiac fibroblast activation. Fibroblasts express a
wide range of cation channels that enable cation flux across their membrane, contributing to
activation of downstream signaling cascades that stimulate cardiac fibroblast proliferation, matrix
synthesis, and myofibroblast conversion. Some of these ion channels are mechanically gated, thus
regulating ion conductance and cellular activation in response to mechanical stress. Members of the
Transient Receptor Potential (TRP) family (TRPC6, TRPV4, and TRPM7) are activated by
mechanical stress and by fibrogenic mediators, such as angiotensin II and TGF-β. TRPC6 and
TRPV4 stimulate cardiac fibroblast to myofibroblast differentiation via intracellular Ca+2 increase-
dependent activation of Calcineurin/NFAT and via RhoA/MRTF pathways. The potassium selec-
tive channel TREK1 and the non-selective channel Piezo1 have also been suggested as molecular
links between mechanical stress and fibrogenic activation. Piezo1 activation in cardiac fibroblasts
has been suggested to increase expression and secretion of IL-6 via p38 MAPK pathways. TREK1
is involved in fibroblast activation through JNK activation, whereas KATP channels can act as
negative feedback mechanisms, attenuating angiotensin II-induced fibroblast proliferation and
endothelin-1 expression while also inhibiting further myofibroblast conversion



increased calcium influx and Rho-mediated nuclear translocation of myocardin-
related transcription factor A (MRTF-A) [209]. TRPM7, on the other hand, is both
an ion channel and a kinase. In vitro, TRPM7 has been implicated in myofibroblast
conversion [207] and may mediate effects of angiotensin II on cardiac fibroblast
proliferation and matrix synthesis [210] and Erk-dependent fibrogenic oxidative
responses [211]. However, in vivo, TRPM7 was found to exert anti-fibrotic effects,
which were attributed to suppression of macrophage inflammatory activity through
actions of the kinase domain [212].
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Potassium selective channels have also been implicated in cardiac fibroblast
activation. Studies using global and fibroblast-specific loss have shown that
TREK1 is involved in activation of fibroblasts in the pressure-overloaded heart
through stimulation of JNK signaling [213]. However, the role of TREK1 in
activation of reparative infarct myofibroblasts has not been investigated. Evidence
on the role of KATP channels in fibroblast activation is mostly based on in vitro data
and on associative in vivo experiments [214]. In vitro, pharmacologic inhibition of
KATP channels attenuated myofibroblast conversion [215] and inhibited angioten-
sin II-mediated cardiac fibroblast proliferation [216]. Finally, mechanosensitive
activation of the non-selective cation channel Piezo1 in cardiac fibroblasts has
been implicated in stimulation of p38 MAPK and downstream secretion of IL-6
[217]. However, the in vivo role of Piezo1 in fibrosis and remodeling of the infarcted
heart has not been investigated.

7.8 Focal Adhesion Kinase (FAK)

The tyrosine kinase FAK plays an important role in activation of matrix-synthetic
myofibroblasts in response to mechanical stress, serving as a link between integrin
activation and stimulation of a fibrogenic program [218–221]. Although the involve-
ment of FAK in activation of infarct myofibroblasts is plausible, robust documen-
tation of fibroblast-specific actions of FAK in myocardial infarction is lacking.
Administration of FAK inhibitors has been suggested to attenuate progression of
fibrosis in myocardial infarction models [222, 223]. However, FAK has broad
effects on several different cell types, including cardiomyocytes and interstitial and
vascular cells [224, 225]. Thus, any protective effects of pharmacologic FAK
inhibition on the remodeling infarcted heart may not involve exclusively attenuation
of fibroblast activity.

7.9 MAPKs

In vitro studies have documented that MAPKs are activated in cardiac fibroblasts in
response to mechanical stress [226]. Considering the broad effects of MAPKs on
many different cell types, dissecting their fibroblast-specific actions is challenging.



Moreover, fibroblast MAPKs are not activated only by mechanical stress but also in
response to a variety of biochemical stimuli, including neurohumoral mediators,
cytokines, growth factors, and matricellular proteins. p38α MAPK is the predomi-
nant MAPK isoform expressed in cardiac fibroblasts [227] and has been implicated
in myofibroblast conversion upon ischemic injury or neurohumoral stimulation.

The Role of Mechanosensitive Signaling Cascades in Repair and. . . 81

7.10 The RhoA/ROCK Pathway

Mechanical stress activates the small GTP-binding protein RhoA, stimulating down-
stream signaling through ROCKs. The RhoA/ROCK system plays an important role
in generation of actin-myosin contractility and in regulation of cytoskeletal dynam-
ics. Subsequently, stress-induced RhoA-dependent actin filament assembly triggers
nuclear translocation of MRTF, thus inducing α-SMA transcription and mediating
myofibroblast conversion [228].

RhoA/ROCK has profound effects on all cell types involved in cardiac repair,
remodeling, and fibrosis [229]. Studies in pressure overload models suggest that
pharmacologic inhibition of RhoA-ROCK, ROCK1 disruption, or ROCK2 loss
attenuates fibrotic remodeling [230–232]. Considering the paucity of data from
cell-specific interventions, whether these effects are mediated through attenuation
of fibroblast activity, or involve actions on other cell types, is unclear. In fact, studies
in pressure overload models suggested cardiomyocyte-mediated fibrogenic actions
of RhoA signaling, likely involving release of fibroblast-activating paracrine medi-
ators [233]. The role of fibroblast-specific activation of RhoA signaling in the
infarcted heart has not been investigated. The RhoA/ROCK system may be involved
in both reparative and maladaptive fibrogenic responses following infarction.

7.11 The YAP/TAZ Pathway in Mechanosensitive Activation
of Fibroblasts

Activation of the homologous transcriptional coactivators Yes-associated protein
(YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) is a central
molecular event mediating cellular responses to mechanical stress [234]. Extensive
evidence has implicated YAP/TAZ in activation of fibrotic responses in many
different tissues [235, 236]. In the myocardium, a growing body of evidence
supports the role of YAP/TAZ in regulation of fibroblast phenotype, not only in
pathologic conditions but also in homeostasis. Fibroblast-specific deletion of the
Hippo large tumor suppressor kinases (LATS1 and LATS2), which are essential
negative regulators of YAP/TAZ, caused fibrosis in the absence of injury in mice and
accentuated matrix deposition following myocardial infarction [237]. Moreover,
YAP/TAZ overexpression in fibroblasts was found to accentuate synthesis of



fibrosis-associated genes and of inflammatory mediators [238]. On the other hand,
fibroblast-specific deletion of YAP/TAZ attenuated fibrotic remodeling of the
infarcted heart and improved ventricular function [239, 240]. Thus, on the basis of
these findings, the YAP/TAZ system appears to play an important role in maladap-
tive fibrotic remodeling after myocardial infarction, without significantly affecting
the reparative response.
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7.12 Mechanosensitive Activation of MRTF in Infarct
Fibroblast Activation

Mechanical stress-induced activation of the RhoA/ROCK axis triggers F-actin
polymerization, stimulating nuclear translocation of the transcription factor MRTF.
In the nucleus, MRTF interacts with the ubiquitously expressed transcription factor
serum response factor (SRF), initiating transcription of fibrosis-associated genes,
such as α-SMA, thus leading to myofibroblast conversion [241–243]. The role of
MRTF in activation of infarct myofibroblasts has been suggested by experiments
demonstrating attenuated post-infarction fibrosis in mice with global loss of MRTF-
A [244]. Although consistent with the in vitro effects of MRTF in cardiac fibroblasts,
attenuation of fibrosis in global knockout mice may also reflect actions on other cell
types, such as cardiomyocytes and vascular cells [245, 246].

8 The Extracellular Matrix in the Maturation Phase
of Infarct Healing

Scar maturation is associated with cross-linking of the extracellular matrix in the
infarct zone and with profound changes in the cellular composition of the scar. As
the scar matures, the density of infarct myofibroblasts is markedly reduced
[247]. Although some infarct myofibroblasts may undergo apoptosis [248, 249],
the majority transition to a specialized scar-preserving type of fibroblast, which has
been termed “matrifibrocyte” [250]. These cells do not exhibit myofibroblast char-
acteristics, lacking expression of α-SMA and periostin, but synthesize genes asso-
ciated with bone, cartilage, and tendon development [250]. Although the
mechanisms responsible for myofibroblast to matrifibrocyte transition remain
unknown, it is tempting to hypothesize that changes in the mechanical properties
of the scar, triggered by the deposition and cross-linking of collagen, may play a role
in modulation of cellular phenotype. Moreover, recent studies have suggested that
the collagen in the mature scar exhibits extensive denaturation, in the absence of
protease activity, presumably related to the continuous stretch of the matrix in the
remodeling scar [251].
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The maturation phase of infarct healing is also associated with changes in
microvascular phenotype. As the scar matures, many infarct microvessels acquire
a coat of mural cells, whereas uncoated vessels regress. Microvessel coating in the
healing infarct requires activation of platelet-derived growth factor receptor
(PDGFR)-β signaling [247, 252]. Changes in the mechanical properties of the
healing infarct may play an important role in the regulation of endothelial-mural
cell interactions.

9 Mechanical Stress May Play a Major Role in Mediating
Adverse Remodeling in the Non-infarcted Myocardium

In the infarcted ventricle, the dramatic structural and morphological changes are not
limited to the infarct zone. In the presence of a large infarction, the viable myocar-
dium is subjected to pressure and volume loads, as intraventricular pressures are
significantly increased, and the chamber dilates. Moreover, surviving
cardiomyocytes become hypertrophic, attempting to compensate for the loss of
contractility. Increased wall stress generates mechanical stimuli that have been
suggested to activate macrophages [253] and fibroblasts in the non-infarcted areas,
resulting in development of interstitial fibrosis and contributing to heart failure
progression. Interstitial changes are accentuated in the infarct border zone, presum-
ably due to the increased stretch of cardiomyocytes in contact with non-contractile
scar and possibly also in response to diffusion of inflammatory and fibrogenic
mediators from the infarcted area [254, 255].

10 Translational Perspectives

10.1 Ventricular Unloading in Myocardial Infarction

Pharmacological interventions using angiotensin converting enzyme (ACE) inhibi-
tors or AT1 receptor blockers to target the RAAS may exert beneficial actions, at
least in part, through effects on hemodynamic loads. However, load-independent
mechanisms are likely to play a prominent role in mediating the protective effects of
RAAS inhibition, considering that comparable afterload reduction with other agents
(such as calcium channel blockers) provides limited or no benefit [256]. Unloading
through mechanical support is the simplest strategy to attenuate mechanical stress-
induced changes in myocardial infarction. In patients with cardiogenic shock after
myocardial infarction, early initiation of mechanical circulatory support prior to
percutaneous intervention (PCI) improves survival [257]. Although the potential
beneficial effects of primary unloading in patients without overt cardiogenic shock
have not been established, some limited clinical evidence suggests that early



circulatory support may afford lasting benefits in patients with a large myocardial
infarction. Mechanical support prior to PCI through intra-aortic balloon
counterpulsation did not affect infarct size in patients with acute anterior ST eleva-
tion MI (STEMI) but was associated with a significant reduction in the exploratory
composite endpoint of time to death, shock, or new or worsening heart failure,
assessed 6 months after the acute event [258]. Beneficial actions of ventricular
unloading may involve protection of susceptible cardiomyocytes from death through
attenuation of their metabolic activity [259], inhibition of mechanosensitive
pro-apoptotic cascades [260], or preservation of calcium handling [261]. Moreover,
reduced end-diastolic pressures may improve coronary arteriolar flow, thus enhanc-
ing myocardial perfusion and limiting infarct size [262, 263]. In addition to these
effects, unloading may exert important actions on inflammatory and fibrogenic
pathways, attenuating infiltration with injurious pro-inflammatory macrophages,
and reducing MMP activity [264]. These actions may preserve the matrix that
surrounds injured cardiomyocytes, transducing important pro-survival signals
[123]. Regardless of the underlying protective mechanism of early unloading,
prolonged mechanical support is neither practical nor justified in most patients
with myocardial infarction [265]. Thus, attempts to target mechanically activated
signals in the remodeling infarcted heart should focus on identification of specific
maladaptive mechanosensitive cascades.
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10.2 Targeting Mechanosensitive Cascades to Improve
Repair and to Attenuate Fibrotic Post-infarction
Remodeling

Targeting fibrotic remodeling of the infarcted heart poses major challenges. Because
infarct fibroblasts and myofibroblasts play both reparative and maladaptive roles,
suppression of fibrogenic pathways carries significant risks. Inhibition of the repar-
ative functions of fibroblasts would be expected to increase the risk of cardiac
rupture [35]. Moreover, excessive reduction of the collagen content of the scar
may reduce tensile strength, thus increasing ventricular dilation and worsening
adverse remodeling [35, 266]. Experimental evidence suggests that
mechanosensitive pathways are involved in both reparative and maladaptive
fibrogenic pathways following myocardial infarction. Thus, design of strategies
targeting mechanosensitive cascades to attenuate fibrotic remodeling of the infarcted
heart should take into account the temporal patterns of reparative and maladaptive
responses and the patient-specific characteristics of the fibrotic response. When
implemented after formation of a mature scar, strategies inhibiting mechanical
activation of infarct fibroblasts are unlikely to have deleterious actions on the
reparative process. However, such approaches could be beneficial, only in subjects
exhibiting prolonged or excessive fibrogenic responses. Specialized imaging
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approaches [267, 268] and suitable biomarkers [269] reflecting continuous
fibrogenic activation are needed to identify these patients.
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11 Conclusions

During repair and remodeling of the infarcted heart, cardiomyocytes, immune cells,
fibroblasts, and vascular cells sense mechanical stress. Although mechanosensitive
cascades play an important role in activation of inflammatory, migratory, prolifera-
tive, and matrix remodeling responses, dissection of the relative role of mechanical
vs soluble signals is challenging. Prolonged mechanical unloading is impractical for
most patients surviving a myocardial infarction. Identification of specific molecular
cascades stimulated by mechanical stress in fibroblasts, vascular cells, and macro-
phages is of critical significance in order to develop therapeutic targets. Dissection of
reparative and maladaptive signals triggered by mechanical stress may allow devel-
opment of therapeutic strategies that selectively recapitulate the beneficial effects of
ventricular unloading on reparative myocardial cells.
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Mechanobiology of Cardiac Fibroblasts
in Cardiac Remodeling

Luke R. Perreault and Lauren D. Black III

1 Introduction

Cardiac fibroblasts (CFs), long considered to be passive contributors to cardiac
mechanics and function, have undergone a critical reevaluation in the past two
decades. CFs are now considered to be a critical cell type within the mammalian
heart and a key source of extracellular matrix proteins and are the predominant cell
type responsible for the maintenance, remodeling, and regulation of ECM. Because
of this critical function, they contribute a great deal to the structural and biochemical
properties of heart tissue and consequently its tissue mechanics. Beyond this, CFs
are responsible for a variety of roles in cardiac tissue development [1], cell signaling
[2–4], immune support [5], and, particularly, response to inflammation [2, 6–9].

CFs are functionally and morphologically like fibroblasts from other tissues
within the body and similarly express different phenotypes depending on tissue
developmental age, mechanics, and associated biochemical and physiological cues.
Fibroblasts can be broadly defined as cells of mesenchymal origin that express and
secrete ECM proteins and are morphologically flat, spindle-like cells with multiple
protrusions, lacking a basement membrane and exhibiting a prominent Golgi appa-
ratus and rough endoplasmic reticulum [10]. Estimations of their abundance in
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cardiac tissue, depending on species and developmental age, range from 20 to 60%
of total cell count [11, 12].
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CFs play a critical, oft-underappreciated role in cardiac mechanobiology, both
through their actions mediating the tissue composition of the heart in normal
maintenance and injury repair and their own physiological sensitivity to their
mechanical environment. CFs arise early in cardiac development, proliferating
extensively and depositing ECM proteins and aiding in the formation of the heart
by forming an extensive, mechanically supportive protein network to anchor
cardiomyocytes (CMs) [4].

CF contribution to cardiac mechanobiology is perhaps most evident in the case of
cardiac injury, which induces inflammation, CM necrosis, and a cascade of cyto-
kines that signal changes in cellular behavior [3, 7, 8, 12–15]. Under these condi-
tions, CFs phenotypically “activate” into myofibroblasts, highly active, proliferative,
and invasive cells that release matrix metalloproteinases (MMPs), enzymes that
break down damaged cECM, increasing collagen turnover and leading to deposition
of fibrotic scar tissue. This, in turn, can lead to progressive stiffening of cardiac
tissue and reduction of tissue compliancy that impedes heart contractility. This
progressive remodeling can lead over time to heart failure [7, 16–19]. Conversely,
CFs exhibit phenotypic plasticity arising from sensitivity to their mechanical envi-
ronment. Increased substrate stiffness can drive CFs to transition to myofibroblasts
and perpetuate the fibrotic process, leading to excessive matrix deposition and
functional tissue loss [20, 21].

In the following chapter, the significance of fibroblasts in cardiac
mechanobiology and cardiac remodeling will be elucidated further. Specifically,
CF roles in cardiac development and, more broadly, the role of mechanical signaling
in heart formation will be discussed, along with CF responses and contributions to
the cardiac injury and disease. Last, therapeutic approaches directed at modulating
mechanotransduction of (and by) CFs will be explored in detail, both in the context
of ECM effects and impacts on CFs, CMs, and other cell types.

2 Overview of Cardiac Fibroblasts

The role of cardiac fibroblasts in the heart is predominantly that of regulators of
ECM, maintaining its structure and function. They are responsible for the production
of growth factors, cytokines, MMPs, and ECM proteins that are all necessary to
maintain a balance between the degradation of ECM and synthesis of new compo-
nents and work in concert with immune cells and processes to regulate cardiac tissue
degradation and repair in injury and disease. As a result, CFs play a critical role in
regulating tissue mechanics across developmental ages and disease states and are in
turn impacted by mechanobiological cues that motivate the expression of these
various biological components [12, 22–25]. This section will go into detail on the
developmental origin and contribution of cardiac fibroblasts to heart formation and
their general function and physiology as it pertains to tissue mechanics.
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2.1 Cardiac Fibroblasts in the Context of Cell and Tissue
Development

The roles of CFs in heart development are like their homeostatic role in the adult
heart: synthesis of ECM and crosstalk with other resident cardiac cells [26, 27]. CFs
are derived from a mesenchymal lineage originating in the proepicardial organ,
assisting in developing a compact myocardial tissue via interaction with early
cardiomyocytes [28]. These mesenchymal cells contribute to the continued forma-
tion of the proepicardium and later differentiate into interstitial fibroblasts through
epithelial-mesenchymal transition (EMT) [4]. This is not the only origin for CFs,
however: they appear to possess several different lineages, and evidence suggests
some may originate from progenitor stem cells in circulation and within the heart
[12, 29]. Endothelial cells (ECs) can also differentiate into a CF phenotype in
response to inflammatory signals [30, 31], further complicating the developmental
origin of this cell type. Fibroblast lineage has also been shown to be location-
dependent, with fractions derived from endothelial and epicardial lineages and a
subset mostly localized to the right atrium derived from the neural crest [32]. In all,
CFs are extensively heterogeneous in their developmental origin, complicating their
identification in culture and their experimental study due to a lack of a definitive
marker [32].

Several soluble factors contribute to the establishment of a fibroblast phenotype,
including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF),
and TGF-β1 [4, 33]. Embryonic CFs then degrade components of ECM to migrate
through the epicardium to the mesenchymal layer and help to form the endocardial
cushions, transient structures critical to the formation of the functional heart
[34]. CFs then proliferate extensively, depositing ECM proteins and aiding in the
formation of the cardiac organ and following birth aid in the remodeling and
transition to a more mature cECM, depositing an array of collagens, fibronectin,
and vitronectin to form an extensive, mechanically supportive protein network [4].

Embryonic cardiac fibroblasts appear to express a phenotype geared toward
cardiac tissue growth and development: in addition to the fact that they express a
different array of ECM components compared to adult cardiac fibroblasts (e.g.,
increased Col4, Col6, fibrillin-2, and periostin, among others [35]), they appear to
motivate the actions of other cells throughout development. A study by Ieda et al.
(2009) showed evidence that embryonic CFs promote CM proliferation and ventric-
ular compaction, via a β1 integrin signaling pathway, versus adult CFs, which
appeared to promote CM maturation and hypertrophy in the same study [26]. Addi-
tionally, a study comparing neonatal and adult CF transcriptomes appeared to
identify transcriptomic changes that were concomitant with CM maturation
[36]. In the context of cardiac mechanobiology, the maturation of cardiac tissue
and shift in ECM from a developmental to a homeostatic protein composition is
correlated with increased mechanical strength and elasticity [4, 16, 37, 38].

These effects also appear to extend to work involving engineered cardiac tissues.
In studies of CF and CM interplay in engineered tissues, it was shown that adult CFs



negatively affect engineered tissue growth and tissue properties, deteriorating elec-
tromechanical function and downregulating genes associated with calcium handling
and contraction, whereas fetal CFs improved or did not appreciably change the same
parameters [39]. Taken together, the data above lends critical evidence that not only
do CFs guide the deposition and remodeling of cECM throughout development, but
age-dependent signaling from cardiac fibroblasts is a crucial driver cardiac develop-
ment and maturation.

104 L. R. Perreault and L. D. Black III

2.2 Cardiac Fibroblasts in ECM Maintenance
and Remodeling

In their role as ECM regulators in the heart, CFs produce growth factors, cytokines,
MMPs, and ECM proteins. These functions work in concert to maintain a balance
between degradation of ECM and synthesis of new components [12]. CFs are
sensitive to both mechanical and biochemical changes within the myocardium and
readily adapt their phenotype in response to these cues. These phenotypic responses
can have significant impacts on the mechanobiology of heart tissue.

This is most prevalent in cardiac injury: injury to heart tissue induces inflamma-
tion, CM necrosis, and a cascade of cytokines that signal changes in cellular
behavior [3, 7, 8, 12–15], inducing CFs to activate to a myofibroblast phenotype,
characterized by high activity, proliferation, and increased migration.
Myofibroblasts release an array of MMPs, break down damaged ECM, and increase
collagen turnover to ultimately facilitate the deposition of stiff, noncompliant fibrotic
scar tissue, representing a major reduction in myocardial elasticity and macroscopic
tissue mechanics in the heart [7, 16–19].

A variety of cues signal CFs to transition to myofibroblasts, including the β1-
integrin-mediated response to increased substrate stiffness [2, 40, 41], the cytokine
PDGF [17, 42], DAMPs [43], and TGF-β1 [14, 17, 40, 42, 44]. Of critical impor-
tance to the CF-to-myofibroblast transition is TGF-β1, which appears to be neces-
sary for myofibroblast activation both in vivo and in vitro [14, 17, 21, 45–47].

In addition to the marked upregulation of collagen and MMPs, the myofibroblast
phenotype is characterized by upregulated expression of α-smooth muscle actin
(αSMA), a protein critical in cellular traction force on ECM: this upregulation
facilitates myofibroblast roles in collagen remodeling and wound contraction after
an injury. Inclusion of αSMA within stress fibers represents a key step in
myofibroblast activation and the cell response to adverse ECM alterations
[22, 48]. However, CFs can begin to express actin stress fibers apart from αSMA
when exposed to mechanical tension or stiff substrates. This represents a “proto-
myofibroblast” phenotype and can be a precursor to full differentiation to a
myofibroblast [20, 49] (Fig. 1). Myofibroblasts release an array of MMPs degrading
fibrillar collagen, enabling migration and active proliferation into the site of a wound
area, enabling invading immune cells to remove necrotic cell debris, and later
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facilitating fibrotic stabilization of the wound bed, via collagen deposition and
wound contraction that increases the stiffness of cardiac tissue [12].
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It is critical to note that CFs within the injured heart can activate and assume a
range of myofibroblast phenotypes that exhibit extensive functional variation. An
extensive review by Michelle Tallquist (2020) [50] describes the range of functional
roles CFs can assume upon activation. Myofibroblasts can assume proinflammatory,
proangiogenic, or profibrotic roles, among others, and these population subsets can
be distinguished experimentally via single-cell RNA-seq. Hinz and Lagares (2020)
[48] extend this discussion to senescent myofibroblasts within damaged tissue,
which acquire this phenotype and evade apoptosis in response to pro-survival
biomechanical and signaling factors (activation of pro-fibrotic TGF-β1, β1
integrin-mediated changes in gene expression, etc.).

This phenotype continues to deposit and remodel ECM well beyond what is
required for repair and may play a critical role in the development of pathological
fibrosis. To compensate for the noncompliance of the scar, viable CMs are forced to
undergo pathological hypertrophy to adapt to the needs of the restructured myocar-
dium, but ultimately reducing the contractile strength and integrity of cardiac tissue.
CFs additionally contribute to hypertrophy by releasing paracrine signals that assist
in triggering this response in CMs [51].

2.3 Cardiac Fibroblasts in Vitro

Despite broad importance in cardiac research, in vitro study of cardiac fibroblasts
remains a distinct challenge, particularly with respect to their positive identification
in assays due to a lack of a definitive fibroblast-specific marker and maintenance of
their phenotype in conventional tissue culture, the latter in large part due to their
aggressive sensitivity to changes in environmental mechanics.

With respect to potential markers, it is necessary to evaluate the expression of two
or more markers to identify a fibroblast population. Candidates include fibroblast-
specific protein-1 (FSP-1), which appears to be expressed on hematopoietic and
endothelial cells in the heart, vimentin, and periostin (specifically expressed in
myofibroblasts), in addition to genes Pdgfra and Tcf21 [10, 52, 53]. One promising
marker is discoidin domain receptor 2 (DDR2), a surface collagen receptor
expressed in fibroblasts [54] but also fibrocytes, a mesenchymal-lineage cell found
in blood with evidence of being a fibroblast precursor. The absence of a definitive
marker due to the heterogeneity of CFs represents a critical limitation in cardiac
research and remains an area of active study and exploration [15].

Fig. 1 (continued) remodeling post-injury can lead to pathological remodeling, characterized by
inflammation, aggressive matrix degradation, excessive deposition of collagen, and increased tissue
stiffness. Figure made with Biorender
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Fig. 2 ECM composition and stiffness contribute to activated fibroblast phenotypic heterogeneity.
Low, homeostatic stiffness is associated with a quiescent fibroblast phenotype expressing genes
associated with ECM deposition, regulation, and non-pathological remodeling. High collagen
content and subsequent increase in substrate stiffness can lead to persistent activation and a
myofibroblast phenotype associated with high contractility and increased fibrotic collagen expres-
sion. Figure made with Biorender

The phenotypic plasticity of CFs and their sensitivity to their mechanical envi-
ronment presents major in vitro culture challenges as well. The effects of high
substrate stiffness and extensive passaging, conditions found on conventional tissue
culture plastic in a 2D culture environment, can lead fibroblasts to begin to undergo
the activation process toward a myofibroblast phenotype and increase their expres-
sion of αSMA [4, 18, 55], rendering long-term 2D culture of these cells challenging
without significantly altering their phenotype.

There are two critical reasons for this: first, culture plastic represents a high-
stiffness substrate, which is on the order of GPa [22], and is exponentially higher
than conventional cardiac tissue, which is about 8–11 kPa [56], and therefore culture
plastic represents a substrate not physiologically relevant. High stiffness is well-
established to induce phenotypic changes in CFs, inducing a myofibroblast pheno-
type and increased αSMA expression (Fig. 2). A study of fibroblasts in 2D and 3D
in vitro cancer models of tumor-stromal cell interactions established that the 3D
model increases production of paracrine factors that can drive cancer transition to an
invasive phenotype [57]. These factors were largely absent in 2D culture,
underscoring not only the importance of 3D culture in producing physiologically
relevant models but the risks of drawing broad scientific conclusions strictly from
observation of cells in vitro within 2D models.

A recent study by Walker et al. took this view a step further, establishing that
aortic valve fibroblasts cultured on hydrogels capable of softening varied in their
phenotype post-softening depending on the extent of time they were cultured in a
stiff microenvironment. Myofibroblasts cultured on stiff substrates for an extended



period (7 days) remained persistently activated, versus those cultured for shorter
periods (1–3 days), which appeared to deactivate and return to a quiescent phenotype
[55]. Consequently, conventional 2D culture on high-stiffness tissue culture plastic
presents major unsolved challenges in the growth and evaluation of cardiac fibro-
blasts without significantly modifying their phenotype and must be considered when
evaluating results.
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3 Cardiac Fibroblasts Facilitate, and Respond to,
Age-Dependent Alterations in Cardiac Mechanics

The natural process of aging leads to progressive alterations in cardiac tissue
mechanics, which are largely mediated by CFs. The cause of this is two-pronged:
first, CF phenotype and ECM expression alter considerably with respect to devel-
opmental age and facilitate alterations in ECM and tissue mechanics [5, 43, 58]. Sec-
ond, aging and senescing cardiomyocytes and other cardiac cells, in addition to
progressive, lifelong ECM alteration and age-related ECM degradation, impact CF
function and can trigger a fibrotic phenotype [59–63].

Studies of cardiac development and ECM alterations have indicated that, versus
young developmental age (i.e., fetal, neonatal) CFs, CFs from aging cardiac tissue
can drive cardiac hypertrophy-like phenotypes in engineered cardiac tissues,
representing an adverse mechanical remodeling response [58, 64]. Similarly, a
single-cell RNA-seq study established that transcriptome differences in mouse CFs
from a neonatal to adult state are tied to CM maturation, implying CF protein
expression may help drive cardiac tissue maturation and consequently contractility
and tissue function [36]. A study by our lab (2021) also provided evidence of
age-related changes in CF inflammatory response. In an RNA-seq analysis of rat
CFs, in adult CFs versus fetal and neonatal CFs, we observed an upregulation in
inflammatory mediators (Il-1β, Il-6) and chemokines such as Ccl3 and Ccl4 [65].

With advancing age, some CF structural and compositional changes of the cECM
are associated with decreased wound healing effectiveness and functional loss. A
study of induced HF in young (~18 months) and old (>8 years) sheep by Horn et al.
(2012) indicated that significant differences in matrix remodeling in response to HF
could be observed in the two developmental ages. Whereas an increase in collagen
accumulation was observed in young sheep, older sheep had an increase in collagen
degradation, an increase in ECM-degrading enzyme expression, and increased
cardiac hypertrophy leading to functional loss [61]. A similar study by Lindsay
et al. (2005) in young and old mice indicated cECM of hearts of older mice had an
increased degradative capacity, greater wall thickness, and blunted cardiac fibroblast
proliferation and functional capacity [62].

Studies have tied this increase in adverse mechanical remodeling and functional
loss to both the effects of cardiomyocyte senescence and CF senescence on the
ECM-remodeling functions of CFs. Senescent and injured CMs undergo apoptosis



and cell death and in aging tissue are left predominantly not replaced by new,
functional CMs. This can lead to an increase in inflammation and production of
reactive oxygen species, which can drive CFs to a persistent myofibroblast pheno-
type and upregulate ECM deposition, negatively impacting cardiac mechanics
[5, 63, 66, 67]. Further, a study by Zhu et al. (2013) showed evidence that
P53-mediated senescent CFs contributed to an increase in adverse cardiac matrix
degradation and remodeling, which can lead to cardiac rupture [59].
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4 Mechanobiology of Fibroblasts in Cardiac Injury
and Disease

Coronary heart disease (CHD) is an endemic problem in the United States with
approximately 720,000 Americans experiencing a new coronary event (defined as a
first hospitalized MI or CHD death) and 325,000 experiencing a recurrent event this
year alone [68]. The primary etiology for the development of MI is an occlusion of
the coronary artery due to the embolization of arterial plaque. This induces rapid
hypoxia in the myocardium perfused by the artery, and consequently the most
effective method of treatment for MI is rapid intervention to restore the blood supply
and mitigate ischemia-induced necrosis of CMs [69–71].

Cardiac fibroblasts play a critical role in these processes. The adult mammalian
heart has little regenerative capacity, and consequently healing is primarily depen-
dent on CF ECM deposition to synthesize a collagen-based scar to stabilize the
damaged tissue. This inevitably leads to a loss of cardiac function due to critical
alterations in tissue mechanics: specifically, the noncompliance of the fibrotic scar
tissue. This necessitates functional remodeling of the heart to adapt, which over time
can lead to alteration in cardiac function, arrhythmia [72], and ultimately heart
failure [14, 60]. Similarly, conditions such as hypertension and increased cardiac
pressure, diabetic cardiomyopathy, and age-related ECM alterations such as accu-
mulation of collagen can all promote and contribute to fibrosis [73, 74]. The section
below will highlight the major contributions of CFs to disease and injury progression
in cardiac tissue and the mechanical changes produced therein.

5 CFs Role in Pathophysiology

The response of the CFs to pathophysiological environments is often specific to the
type of trauma or injury inflicted on the organ. Even as the specific properties of the
pathological environment may vary, the majority of cardiac pathologies result in
some form of myocardial fibrosis, which can lead to both systolic and diastolic
dysfunction of the heart. Excessive fibrosis hinders contraction by inhibiting the
electrical and mechanical coupling of neighboring CMs with one another, and this is



often evidenced by a decrease in ejection fraction even in the absence of other
obvious injuries [75]. In addition, the increased stiffness of the myocardium
decreases the force generated by individual CMs during contraction as CMs are
tuned to optimize contraction at specific substrate stiffnesses [76]. The overall
decrease in tissue compliance also leads to diastolic dysfunction by impeding
relaxation of the CMs which in turn significantly reduces diastolic ventricular filling
[77]. Fibrosis, broadly, can be organized into reparative and reactive fibrosis.
Reparative fibrosis is a characteristic response to ischemia and CM death and is
required to stabilize large regions of myocardium and protect against rupture during
systole. Reactive fibrosis, which can occur as a response to physical stressors, is
often dispersed in regions surrounding viable CMs. A more detailed accounting of
CF-specific responses to broad categories of cardiac injury is detailed in the sections
that follow.
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5.1 Congenital Heart Disease

The more severe congenital heart defects present clinically with defects of the
compact layer of ventricular myocardium, including both thinning and a lack of
the region altogether [78–80]. Considering that epicardial-myocardial signaling has
been indicated as a critical factor in CF development, alterations in myocardial
thickness in CHD likely impact development and differentiation of epicardial
derived precursor cells into CFs [81]. Whether the origination of CFs is affected
by CHDs is an active area of research. Downregulation of PDGF and FGF has been
observed in rodent models of left heart hypoplasia on day 22 of development
[82]. These factors are implicated in EMT, which is required for CF dispersal
through developing myocardial tissue. However, the impacts CHD-affected CF
populations may have on CMs in vivo, and their influence on disease progression,
remain ambiguous and require further study.

Many CHDs are associated with fibrosis initiated as a response to cardiac
hypertrophy. A PCR microarray analysis of patients with Tetralogy of Fallot (TF),
a combination of four different structural defects in the heart, showed upregulation
of the ECM proteins fibronectin and collagen I 12 months after birth. In contrast,
genes associated with ECM proteolysis were unaffected, implying synthesis of ECM
proteins by CFs is increased due to exposure to the altered mechanical loading
caused by CHD-related structural abnormalities [83].

Patients with CHDs often experience pressure overload (PO) or volume overload
(VO) (because of altered blood flow), depending on the type of defect present in their
pathology. PO is often a characteristic of TF, septated right ventricle, and aortic or
pulmonary arterial stenosis—all examples where the ventricles are exposed to
abnormally high pressures. Conversely, VO may be symptomatic of aortic or
pulmonary regurgitation, as well as atrial septal defects. In a study by Chaturvedi
et al., biopsies were taken from the right and left ventricular tissue from patients
presenting PO or VO, which manifested due to congenital defects. These tissues



were analyzed with respect to passive ECM stiffness, which indicated that tissue
strips isolated from CHD patients with PO were stiffer than those isolated from
patients with VO. Increased tissue stiffness was not related to alterations in the
composition of the myocardium, as VO patients had a higher collagen content per
gram of tissue than did PO patients.
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While more work is needed to understand this discrepancy between ECM com-
position and tissue stiffness, potential explanations could be related to alterations in
matrix cross-linking or within the gross structure and alignment of the ECM, both of
which could impact uniaxial tension measurements. Regardless, these studies high-
light how CHDs induce CFs to alter the extracellular environment [84].

5.2 Pressure Overload

PO occurs in the heart, when blood flow through the respective outflow tract is
impeded via a blockage or due to some other increase in vascular resistance, which
induces an increase in ventricular wall stress during systole. Chronic PO usually
initiates CM hypertrophy or fibrosis (or both). CFs have critical compensatory roles
within PO, but their phenotype is also significantly altered during the early stages of
PO prior to the initiation of secondary signaling cascades. In particular, CF-ECM
interactions are altered as CFs increase α1 integrin expression, promoting more
extensive adhesion to collagen and laminin. However, they do not initiate significant
remodeling of matrix proteins. Further, migration—but not proliferation—is
increased in response to increased pressure [85]. Over time, prolonged stimulation
can induce activation of hypertrophic signaling pathways.

In a pulmonary artery banding model of PO, CFs demonstrated an increase in
total collagen expression 2 weeks post-banding, likely as an effort to respond to the
initial mechanical stress. When the pressure overload becomes chronic at 4 weeks,
the cell response is altered, and CFs begin to increase insoluble collagen production,
which ultimately leads to increases in end-diastolic pressure, representing how
dynamic CF responses to injury and alterations in environmental mechanics can
influence whole organ function [86].

5.3 Hypertrophy

Hypertrophy of cardiomyocytes in the heart can be a response to both physiological
and pathological cardiac remodeling in response to increased mechanical stressors.
Physiological hypertrophy is beneficial and reversible and occurs when CMs
increase size to increase their functional capacity and enhance cardiac function.
CFs appear to play a largely homeostatic role in this process, as indicated in an
exercise-induced model of physiological hypertrophy: CFs cultured in vitro
displayed increased migration when seeded on fibronectin but decreased migration



with collagen. In a similar vein, α5 integrin subunit expression, which binds to the
RGD sequence in the III10 domain on type III fibronectin on, increased, while
expression of the α1 and α2 integrin subunits was reduced. Further, cells did not
alter collagen gel compaction, suggesting alterations to ECM remodeling were
minimal [87].
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Pathological hypertrophy, the compensatory remodeling to adapt to functional
decreases due to stress or injury, is functionally adverse and effectively irreversible.
A study by Burgess et al. used an animal model of early hypertension caused by
aortic constriction, which indicated CF-ECM interactions were altered via adhesion,
but not through remodeling. This was demonstrated through an increase in β1
integrin expression (associated with collagen binding) and a decrease in α1, α2,
and α5 integrin subunit expression. Isolated CFs cultured in vitro displayed reduced
migration on both collagen and fibronectin coatings when compared to CFs isolated
from untreated animals but showed no significant variation in collagen gel compac-
tion. This conclusion was expanded upon by Stewart et al., in a study that indicated
that aortic constriction resulted in pathological hypertrophy and modified CF behav-
ior. Cellular proliferation and migration were increased 7 days following constric-
tion, and this alteration was sustained over time. The variations in CF response to
different hypertrophy mechanisms reinforce knowledge of CF-CM communication,
as they indicate that CF responses to acute and chronic pathological stimuli are
associated with CM reaction to the altered biophysical environment [85].

5.4 Myocardial Infarction and Heart Failure

CFs are integral in the pathophysiological events that proceed following an acute
myocardial infarction. Immediately following coronary artery occlusion, CFs
respond to hypoxia by deploying chemokines that recruit neutrophils to the damaged
tissue. Inflammatory mediators signal CFs to initiate matrix remodeling as tissue
necrosis progresses, replacing infarcted tissue with a fibrotic scar that is predomi-
nantly composed of dense collagen fibers. Remodeling begins thereafter, as CFs
upregulate their expression of matrix metalloproteinases and accelerate degradation
of the existing collagen matrix, accommodating the deposition of newly synthesized
proteins [88]. This response is reflected in in vitro work evaluating CF responses to
oxidative stress by stimulating them with delivery of H2O2. The CFs react by
increasing MMP expression and decreasing synthesis of collagen fibers [89],
which is followed by a shift to excessive, progressive collagen I, collagen III, and
fibronectin deposition [90].

Immediately post-MI, CFs and a slew of other cell types including endothelial
cells, neutrophils, and macrophages are recruited to the injury site by cytokines,
liberated intracellular contents, ECM fragments, and reactive oxygen species (ROS)
[14, 74, 91–93]. This rapid inflammatory response marks the beginning of the
cardiac repair process, which can be broken down into three overlapping phases:
the inflammatory phase, proliferative phase, and maturation phase. Proinflammatory



cytokines, such as IL-1β, tumor necrosis factor (TNF), and IL-6, are vital to the
progression of the early inflammatory phase and are consistently upregulated in
experimental MI models. These cytokines contribute to the progression of inflam-
mation by triggering cellular upregulation of inflammatory genes, extravasation of
immune cells and platelets into the infarct region, activation of CFs, and production
of MMPs and chemokines [66, 74, 93, 94].
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The signaling of neutrophils, macrophages, and lymphocytes into the ischemic
zone begins within hours of injury, peaks several days later, and marks the initiation
of significant structural remodeling. Inflammatory cells, CFs, and necrotic CMs
secrete a variety of MMPs to degrade cell and matrix tissue and assist in macrophage
phagocytosis. In the absence of a mechanically robust ECM matrix, granulation
tissue consisting of fibrin, fibronectin, laminin, and glycosaminoglycans is depos-
ited, providing provisional mechanical support until myofibroblasts begin
upregulating deposition of collagen [95].

The proliferative, or fibrotic, phase of wound healing ensues and lasts one to
several weeks. This phase is dominated by the action of myofibroblasts, which
increase their concentration in the infarct zone via aggressive migration from
surrounding myocardium, proliferation, and differentiation from a variety of other
cells types including endothelial cells and fibrocytes [43, 95–98]. If infarct size is
large, or ongoing myocardial stress factors such as hypertension or cardiomyopathy
are present, production of inflammatory cytokines and influx of immune cells can
fail to resolve, resulting in chronic inflammation and persistent cardiac remodeling,
which can lead to heart failure [93, 99].

Inflammatory cell expression of MMPs decreases, coinciding with myofibroblast
upregulation of collagen (predominantly type I and III), markedly increasing the
collagen content of the cECM in the infarct region, necessary to support and stabilize
the damaged myocardium [4, 95, 100]. Following this is the maturation or
remodeling phase, during which myofibroblast numbers reduce within the fibrotic
scar and collagen content begins to stabilize, and collagen cross-linking further
strengthens the resultant scar tissue [4, 95, 100].

To stabilize the damaged tissue with newly synthesized ECM proteins, CFs are
required to proliferate rapidly, and the doubling time subsequently decreases by 50%
as compared to CFs isolated from control animals [101]. While some remodeling is
required to stabilize the thin and unstable ventricle wall, the CFs are often unable to
regulate the extent of fibrosis, and subsequent excessive remodeling disrupts normal
heart function. Atomic force microscopy of the left ventricle 30 days following
injury in a mouse model of MI reveals a nearly three-fold increase in the elastic
modulus of the scar region as compared to the neighboring non-infarcted region
[102]. Alterations in scar mechanics are dependent upon collagen content and
organization within the infarct as demonstrated by Fomovsky et al. Biaxial mechan-
ical testing revealed an increase in the elastic modulus of the infarcted myocardium
as a function of time from 1 to 6 weeks post-MI [103]. This increased stiffness was
primarily caused by an increase in overall collagen content and not alterations in
cross-linking as previously described. Interestingly, the collagen orientation in the
rat infarct model used by Fomovsky et al. was isotropic, which was in contrast to



larger animal models that show alignment of the remodeled collagen scar in the
circumferential direction of the heart. In a follow-up study, they demonstrated that
location of the infarct is the primary determinant of the scar fiber orientation as this
effects the directionality of the stress placed on the healing infarct [104]. In partic-
ular, infarcts located near the equator of the heart were stretched more
circumferentially and thus were circumferentially aligned, while infarcts located
near the apex are stretched isotropically, and thus their fiber orientation is isotropic.
More recently, our own group has assessed the structure-function relation of the
ECM as a function of remodeling time following myocardial infarction and demon-
strated that while there are increases in overall collagen content, the maturity of
the collagen, the degree of cross-linking of the collagen, and the overall stiffness of
the ECM are significantly reduced as compared to healthy ECM [105]. Indeed, the
decrease in cross-linking and mechanics is significantly correlated, indicating that
while there is an overabundance of collagen, at the cellular level, the structure is
actually weaker which may have important implications for continued remodeling of
the infarct region after stabilization.
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While CFs are responsible for these changes to the matrix, it is important to
consider how this altered environment influences CF function through secondary
feedback mechanisms. For example, CFs respond to increasing matrix stiffness by
enhancing their rates of migration [106]. This correlates to studies which have
demonstrated an increase in CF migration rate by over 170% following MI
[107]. Therefore, with enhanced migration, remodeling is rarely localized to the
region of the scar, but occurs globally throughout the heart [108].

The disruption of the electrical and mechanical continuum of the myocardium
following MI prevents efficient pumping of blood systemically throughout the body
[109]. To compensate for the impedance generated by the scar, viable CMs undergo
pathological hypertrophy to meet the altered needs of the organ [110]. CFs help
initiate this transition via the release of paracrine signals. While it is clear that the
initiation of pathological hypertrophy may be detrimental, it is actually required for
survival and potentially indicates a role for CFs as a stress sensor to neighboring
CMs [51].

Although the development of pathological hypertrophy allows the heart to adapt
to the altered environment, the heart will eventually be unable to compensate and
enter a state of congestive heart failure. CFs isolated from a failing left ventricle have
an altered integrin profile primarily marked by integrin shedding, which occurs in
cardiac disease states [111, 112]. While β1 adhesion is decreased by over 50%,
adhesion to collagen is still increased, and α1, α2, α5, and β3 integrin expression is
unchanged. Cells remodel the existing matrix by releasing MMPs and increasing the
deposition of fibrillar collagen by over 130%. Moreover, the CFs further mature to
adopt a fully differentiated myofibroblast phenotype illustrated by an increase in
intracellular expression of vimentin [101].
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6 Conclusions and Critical Outstanding Questions

CF contributions to cardiac mechanobiology represent critical areas of research in
cardiac tissue mechanics, physiology, and potential cardiac therapeutics. Fibroblasts
are major drivers of cECM composition, structure, and function in various contexts,
including cardiac development, cardiac homeostasis, injury repair, and inflamma-
tion. This makes them an attractive target for therapeutics aimed at modulating
adverse changes in cardiac tissue that negatively impact mechanics, such as exces-
sive fibrosis after an infarction event. However, key questions in both in CF
physiology and in vitro CF research remain crucial to elucidate. We suggest some
critical areas for consideration here: first, a deeper understanding of signaling
pathways and biochemical and mechanical stimuli that drive fibroblast phenotype
and activation to myofibroblasts is necessary and would likely provide a pathway to
determining targets to modulate CF behavior therapeutically. Additionally, more
research must be done in determining viable markers for fibroblasts and
myofibroblasts, as the lack of a definitive marker severely limits the efficacy of CF
research and therapeutic potential. Lastly, development of cell culture systems
beyond conventional 2D growth of tissue culture plastic represents a vitally neces-
sary improvement to CF research. CF sensitivity to environmental mechanics and
their phenotypic plasticity hinder research into CF phenotype, mechanical and
biochemical signaling, and generation of CF-targeting therapeutics.
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The heart is the first fully developed organ during mammalian development, and its
function is essential for supplying the entire body with oxygen and nutrients. To
achieve this, electrical signals delivered via the conduction system are interpreted by
co-ordinated contraction of the four different chambers of the heart. The heart is able
to do this job with such efficiency thanks to its sophisticated design, which is only
achieved fully after birth and which guarantees maximal force output with minimal
electrical misfiring. However, this intricate organisation comes at a price, which is
the loss of any significant regenerative potential in the mature heart. Thus, challenges
that are imposed on the heart either by endogenous factors such as cardiomyopathy-
causing mutations or by exogenous factors such as hypertension or loss of contractile
tissue caused by a myocardial infarction cannot be simply met by a readily available
extensive stem cell population, but are handled at the level of the cardiomyocyte. In
addition to humoral signals, these challenges for the cardiomyocytes are often of a
mechanical nature, where altered overall dynamics of the contractile tissue or
changes in its consistency (e.g. increased fibrosis) are directly sensed by the cells.
In this review we will discuss the cellular responses in the heart to mechanical stress
at the level of the cardiomyocyte and highlight which multiprotein complexes and
signalling pathways could be interesting drug targets to halt maladaptive responses.

The bulk of the ventricular tissue is made up by rod-shaped cardiomyocytes
(Fig. 1), which are connected to each other at their bipolar ends, by specialised types
of cell-cell contacts called the intercalated discs (for review see [1]). Laterally the
strands of cells are ensheathed in extracellular matrix and make up a kind of
contractile cable, where electricity only flows in a longitudinal direction, but is
insulated from the cable next to it. This arrangement is necessary to prevent
arrhythmias. One of the challenges of attempts to regenerate heart tissue following
myocardial infarction is to re-establish this kind of organisation, and while several
strategies were published that can trigger proliferation in cardiomyocytes or
repopulate heart tissue with injected cardiomyocytes, arrhythmias are often the
fatal consequence [2]. The cardiomyocytes interact with the insulating material
directly, via costameres, which are vinculin-containing cell-matrix attachment sites
at the level of the Z-disc of the myofibril [3]. The electrical signals at the plasma
membrane are fed into the interior of the cardiomyocytes by regular invaginations
also at Z-disc level, the T-tubules, which together with the sarcoplasmic reticulum
(not shown in Fig. 1) make up the dyads that govern EC (excitation-contraction)



coupling [4]. This complex plasma membrane arrangement is only achieved after
birth and characterises mature mammalian cardiomyocytes following physiological
hypertrophy. Adult zebrafish cardiomyocytes that display a long and slim shape do
not require this kind of organisation [5] and retain their proliferative and regenerative
potential following myocardial injury [6]. The majority of the cytoplasm of the
cardiomyocytes is made up by the myofibrils, which are integrated with each other
by the intermediate filament protein desmin at the level of the Z-discs. The basic
contractile unit of a myofibril is called a sarcomere and defined as the region between
two Z-discs. Contraction is brought about by the tightly regulated interaction
between actin (in the thin filaments) and myosin (in the thick filaments), and the
paracrystalline assembly of these proteins to sarcomeres is due to longitudinal and
transversal linking proteins. In the longitudinal direction, the link is provided by
titin, with individual titin molecules stretching from the N-terminus in the Z-disc to
their C-terminus in the middle of the sarcomere in a structure called the M-band
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Fig. 1 Schematic representation of an isolated rod-shaped mature cardiomyocyte. Cell-cell con-
tacts (intercalated discs) are restricted to the bipolar ends and shown in green. The myofibrils
(shown in grey, with only the Z-discs of the sarcomeres indicated with black lines) are aligned in a
paracrystalline fashion along the longitudinal axis of the cell. At the sides the cells are ensheathed in
extracellular matrix (not shown), and lateral contacts between the myofibrils and the ECM are
mediated by the costameres (dark green) at the level of the Z-disc. T-tubules are regularly spaced
plasma membrane invaginations that together with the sarcomplasmic reticulum (not shown) make
up the dyads required for EC coupling. Microtubules (orange) stretch mainly longitudinally
between the myofibrils but are also concentrated around the nucleus and over the Z-discs.
Intermediated filaments and mitochondria were omitted from the scheme for reasons of simplifica-
tion. Yellow thunderbolts indicate potential focal points of mechanosignalling in the cells, i.e. at the
intercalated disc, within the sarcomere (mainly mediated via titin), at the T-tubules (mediated via
Piezo1) and at the nuclear lamina (mediated via the LINC and changes in nuclear pore size upon
mechanical stress) that are expanded on later in the article



(Fig. 2). There, titin is integrated with the myosin filaments via dimers made up by
the protein myomesin, while in the Z-disc one of the main crosslinking proteins is
the sarcomeric isoform of alpha-actinin [1]. Mitochondria are present in regular rows
in-between the myofibrils (not shown in Fig. 1). In addition, microtubules stretch
predominantly along the longitudinal axis of the cells (shown in orange in Fig. 1),
but also show a concentration round the nucleus and horizontal extensions in the
Z-disc regions [7]. Human cardiomyocytes often have one nucleus, while rodent
cardiomyocytes are usually binucleated, but nuclei number varies dependent on
species [8].

124 T. Randall and E. Ehler

Fig. 2 Schematic representation of changes at the level of the sarcomere in cardiomyopathy.
Simplified sketches of a single sarcomere, as delineated by the two Z-discs (in black), are shown.
The thin (actin) filaments are shown in green, the thick (myosin) filaments are shown in blue, the
titin (elastic) filaments are shown in red and the principal component of the M-band, myomesin, is
shown in purple. In HCM (hypertrophic cardiomyopathy), a switch of the isoforms of contractile
proteins to a more embryonic variant (shown in a lighter shade) is observed, while in DCM (dilated
cardiomyopathy) this re-expression of embryonic isoforms is more prevalent for proteins that make
up the sarcomeroskeleton such as titin and myomesin

1 What Happens at the Cellular Level in Hypertrophic
Cardiomyopathy (HCM) Versus Dilated
Cardiomyopathy (DCM)?

The cytoarchitecture of the healthy cardiomyocyte is perfectly adapted to get the job
done with maximum efficiency and minimal electrical noise. However, a variety of
reasons can pose a challenge onto the heart and lead to heart disease. For reasons of
simplicity, we will mainly consider hypertrophic (HCM) and dilated cardiomyopa-
thy (DCM) in this review while being aware that these designations are by no means
as strict as textbook wisdom would suggest. Usually, HCM is characterised by a
thickening of the ventricular myocardium and a reduction in ventricle diameter. It



can be caused by hypertension or by mutations in cardiac proteins, with the majority
of cases being due to mutations in the MYH7 or the MYBPC3 gene, encoding for
beta-myosin heavy chain or cardiac Myosin Binding protein-C, respectively [9]. The
cardiomyocytes become bulkier and also often show myofibrillar disarray, which is a
misalignment of myofibrils. This disarray can translate to the histological level as
myocyte disarray and is often taken as bona fide proof of a HCM phenotype
[10]. Currently the origin of the disarray is not very well understood, but a very
elegant explanation proposes that varying levels of expression of mutant proteins
between individual cardiomyocytes (usually adult cardiomyopathies are heterozy-
gous) lead to force imbalances that eventually result in this organisation [11]. In
addition to the disarray, HCM cardiomyocytes also lose the regular T-tubule invag-
inations [12] and the restriction of intercalated discs to the bipolar ends of the cell.
Adherens junction proteins as well as gap junction proteins such as connexin-43,
which make up intercellular ion channels, are found in aberrant localisations on the
lateral surface of the cardiomyocytes, and this probably contributes together with
T-tubule loss to the arrhythmic events, which are the main killers in HCM [13–
15]. Both the microtubule network and the extent of the intermediate filaments made
up of desmin tend to be increased in hypertrophic cardiomyopathy (reviewed in
[16]), and in particular an increase in detyrosinated microtubules that bind more
strongly to desmin was observed recently [7]. This stiffer cytoskeletal network
impairs contractility, and any approach to break it up by depolymerising microtu-
bules or interfering with detyrosination improves the contractile kinetics of failing
cardiomyocytes [17].
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DCM is described as a ballooning heart, with an increase in ventricle chamber
diameter and a thinning of the ventricular walls. It is often accompanied by a
pronounced elongation of the individual cardiomyocytes but can also be due to a
general loss of size control, both in mouse models for DCM and in human patient
samples [18, 19]. At the histological level, DCM can appear relatively unchanged
compared to healthy heart [10], and thorough subcellular analysis was required to
identify the intercalated disc as the subcellular area of major alterations, with an
increased presence of actin-anchoring proteins and reduced expression of connexin-
43 [20]. These initial observations from several mouse models for DCM were later
confirmed also in human patient samples [19]. Investigations from other researchers
suggest that a co-ordinated stoichiometry of intercalated disc proteins is crucial and
that decreased or increased levels of one component often result in a DCM pheno-
type [21–25]. The other region of the cell that is dramatically affected in DCM is the
costameres, which, instead of displaying a regular striated appearance on the surface
of the cardiomyocytes, are arranged in a punctate fashion in isolated cardiomyocytes
[20]. Within the last decade, it was shown that between 10 and 30% of mutations that
lead to DCM are found in the titin gene, with a majority leading to a truncating
variant [26]. As described above, titin molecules are central for sarcomere assembly
and in addition to this structural role were also demonstrated to act as a signalling
hub both in the I-band and the M-band, potentially also being responsive to
mechanical signals. This was directly demonstrated for the titin kinase domain,
where opening up via stretch leads to the exposure of a binding site for



autophagosomal receptors such as Nbr1 and p62 (also called SQSTM1), part of a
multiprotein signalling complex that also involves MURF2 (muscle-specific RING
finger-2). Mechanical inactivity leads to the dissociation of this complex from the
myofibril, its transfer to the nucleus, and the downregulation of SRF (serum response
factor)-mediated gene expression [27]. Within the I-band, there are two multiprotein
signalling complexes that were shown to be affected by mechanical stress, FHL1 and
MARP mediated, although the direct mechanisms are less well understood at the
moment (reviewed in [28]). Thus, reduced expression levels of titin due to truncating
mutations are expected to impair these mechanosignalling pathways. For several
years truncated titin molecules remained elusive, and their existence was only very
recently demonstrated in the hearts of human patients with DCM mutations.
Pioneering work demonstrated truncated titin in patient material as well as in
cardiomyocytes derived from induced pluripotent stem cells (iPSC-CM), but the
molecules fail to incorporate into the sarcomeres and instead associate with the
cellular degradation machinery [29]. Previously it had been shown that iPSC-CM
with titin-truncating mutations had less efficient sarcomere assembly and an
impaired response to mechanical and beta-adrenergic stress [30].
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2 Returning to Old Concepts: HCM Is a Disease of Force
Production and DCM Is a Disease of Force Transmission?

More than 20 years ago, it was suggested in a review that HCM is solely due to
hereditary mutations in proteins that make up the myofibrils, while DCM is caused
by hereditary mutations in cytoskeletal proteins [31]. The advance of next-
generation sequencing and the ensuing wealth of mutations that were attributed to
either HCM or DCM have revealed that the case is more complex and not as clear-
cut as initially assumed. However, looking at the bigger picture of cellular responses
in cardiomyocytes to HCM and DCM and especially at alterations in sarcomere
composition indicates that a general separation into HCM as a disease of force
production and DCM as a disease of force transduction may still be a valid starting
point. The sarcomere is the basic unit of a myofibril and defined as the region
between two neighbouring Z-discs. It serves for the paracrystalline arrangement of
the contractile proteins, actin and myosin, into thin and thick filaments (Fig. 2). To
aid this integration, additional cytoskeletal proteins are required, which are titin,
which stretches as elastic filaments from the Z-disc along the sarcomere to its
middle, the M-band, where it links the thick filaments with another cytoskeletal
protein called myomesin, which provides the main crosslink in a transversal direc-
tion. Other M-band proteins help to fine-tune this machinery [32]. As mentioned
above, HCM is characterised by myofibril disarray, but ultrastructurally the individ-
ual sarcomeres are not much altered, at least in the electron microscope. This picture
changes, when the isoform composition of the myofibrils is analysed, since the
upregulation of the expression of embryonic isoforms of contractile proteins



(e.g. beta- instead of alpha-myosin heavy chain in mouse myocardium and
upregulation of alpha-smooth and alpha-skeletal actin instead of alpha-cardiac
actin) is taken as a marker for an HCM phenotype [33] (see left-hand side of
Fig. 2). In contrast, in DCM, the myofibrils are affected much more subtly, with
little evidence for disarray in the light microscope but a loss of distinctive M-bands
in the electron microscope [20, 34]. This is due to the upregulation of a more elastic
version of myomesin, EH (embryonic heart)-myomesin, which is usually character-
istic for the embryonic heart and for slow twitch skeletal muscles [35, 36], both types
of muscle that display a slightly less paracrystalline arrangement and tolerate mis-
alignments of the contractile filaments better [37]. The upregulation of the transverse
connector, myomesin, to a more elastic isoform is also accompanied by an
upregulation of expression of a more elastic variant of the longitudinal connector,
titin, that is more similar to its foetal isoform [38] (right-hand side of Fig. 2). This
suggests that at the level of the sarcomere, whichever the molecular mutation that
causes the disease phenotype is, the responses to HCM and DCM are distinct with an
attempt to improve contractile function by upregulating more “tolerant” versions of
actin and myosin in HCM, while in DCM the focus is not so much on contractile
output but on providing more elasticity both longitudinally and transversally by a
more compliant sarcomeroskeleton. However, it has to be taken into account that
these isoform changes do not necessarily translate into a more elastic ventricular
wall, because especially in the case of titin, they are counteracted by posttransla-
tional modifications [39]. In addition, interstitial fibrosis and the stiffer intercalated
discs will contribute to an overall phenotype that is less flexible [19].
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3 The Intercalated Disc: The Epicentre for Postnatal
Cardiomyocyte Growth and Maladaptive
Mechanosignalling?

The intercalated disc is the specialised type of cell-cell contact between
cardiomyocytes that is responsible for anchoring the ends of the myofibrils in the
adherens junctions, mechanical stabilisation via the desmosomes and intercellular
communication via the gap junctions (reviewed in [40] and more recently in [41]).
Apart from its direct involvement in cardiomyopathies such as arrhythmogenic
cardiomyopathy [42], which is usually regarded as a disease of the desmosome
and in DCM (see above), within the last decade, this subcellular region has attracted
the attention of researchers as the most likely site in the cardiomyocyte for the
insertion of new sarcomeres during postnatal cell growth. The myofibrils are
anchored into adherens junctions at the plasma membrane of the intercalated disc
via the barbed end of the actin filaments [43], like thin filaments which are anchored
via their barbed ends into the Z-discs of the sarcomere. This means that the last
sarcomere is actually a hybrid with a proper Z-disc at the end facing inwards but a
kind of Z-disc “light” with a continued actin filament running through it at the end



facing the plasma membrane. This Z-disc “light” has been termed the transitional
junction by Bennett and colleagues [44] and contains classical Z-disc proteins such
as sarcomeric alpha-actinin but lacks FATZ (filamin, actinin and telethonin binding
protein of the Z-disc), CapZ and telethonin [45]. Telethonin is seen as the final glue
that sticks titin N-termini to each other and makes the complex one of the most stable
complexes that has been analysed [46, 47]. Therefore, insertion of additional sarco-
meres into a Z-disc within a myofibril is probably an unfavourable event, and the
transitional junction looks like a much better site to do this. Indeed, it was shown by
Yoshida and coworkers that rabbit hearts respond to volume overload by repeated
cycles of broadening and narrowing of the signal for the intercalated disc protein
N-cadherin and one sarcomere can be inserted per day in this way [48]. Sarcomere
lengths correlate exactly with membrane convolution in the healthy heart, and this
correlation is lost in DCM [34]. Very recently another piece was added to the puzzle,
when it was found that microtubules deliver mRNA encoding for sarcomeric pro-
teins (alpha-cardiac actin, sarcomeric myosin) as well as ribosomes to peripheral
regions of cardiomyocytes where sarcomere addition occurs [49]. It had been known
for a while that depolymerisation of the microtubule network in neonatal rat
cardiomyocytes resulted in smaller cells [50], and the recent data provide a mech-
anistic explanation for this observation. Taken together this suggests that the inter-
calated discs present the main site in the cardiomyocyte where new sarcomeres can
be added following a mechanical challenge and that the microtubule transport
system is necessary to provide the templates (i.e. the mRNA) as well as the
production machinery (i.e. the ribosomes).
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In cardiomyocytes in situ, microtubules also control the extremely regular spac-
ing of ribosomes, flanking either side of the Z-disc [49]. This is probably needed for
efficient protein turnover in the sarcomeres. The half-life of most proteins that
associate with the sarcomere (troponin complex, tropomyosin, myosin light chain)
was shown to be between 3 and 10 days [51], although more recent studies indicate a
longer half-life for proteins such as titin and myosin heavy chain that are tightly
integrated to make up the thick filaments [52]. When protein dynamics was inves-
tigated under experimental conditions in cultured cardiomyocytes, FRAP (fluores-
cence recovery after photobleaching) experiments have underlined the possibility for
relatively rapid exchange of Z-disc components [53], and even the giant protein titin
displays surprising rates of exchange within a couple of hours [54]. It is mind-
boggling, how the mRNA that encodes for a 3000 kDa protein would be transported
through a densely packed muscle cell, so ribosome location at the Z-disc, where the
titin N-terminus is anchored and a reservoir of titin mRNAs there is a more efficient
way to deal with replacement issues. These may be caused by potential damage due
to the forces that are experienced during muscle contraction and necessitate a
replacment of titin molecules. Maintaining proteostasis in cells that are subjected
to high levels of mechanical stress such as striated muscle cells is a complex process
that involves in particular the CASA (chaperone-assisted selective autophagy)
machinery [55]. BAG3, which is at the centre of CASA, is downregulated in heart
failure and is required for the turnover of proteins that are central to sarcomere
assembly such as alpha-actinin, myomesin, desmin and MyBP-C [56]. Increasing



BAG3 levels using the AAV9 (adeno-associated virus) system is sufficient to rescue
CASA activity in failing hearts and has also beneficial effects on contractile function
[56]. A failure to cope appropriately with the disposal of malfunctioning missense
mutant proteins is often the biochemical basis of hereditary cardiomyopathy [57–
59], so controlled protein synthesis and turnover are not only crucial for the
maintenance of the healthy heart but even more so in the mechanically challenged
heart.
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Fig. 3 Schematic representation of changes at the level of the cell-cell contacts (intercalated discs)
and the cell-matrix contacts (costameres) in healthy versus stressed cells. Mechanical stress either
caused by endogenous factors (i.e. cardiomyopathy mutations, activation of pathological signalling
pathways) or by extracellular factors (e.g. stiffening of the environment from 20 kPa to 100 kPa)
leads to alterations in cytoarchitecture with increased plasma membrane convolution at contact sites
and more pronounced actin fibres and actin attachment sites. At the costameres, mechanical stress
leads to the activation of integrin signalling, followed by downstream activation of talin, vinculin
(vinc) and FHOD1. Activation of kinases such as PKCalpha, MLCK and ROCK mediates between
stretch sensing and downstream cytoskeletal and transcriptional responses

The two opposing plasma membranes at the intercalated disc get more convoluted
as animals age [40], most likely due to long-term coping with mechanical stress at
this site (Fig. 3). Electron microscopy from DCM samples also showed that the
increase in adherens junction proteins that is observed by confocal microscopy is not
due to a thicker protein coat but due to increased plasma membrane convolution
suggesting that the stresses experienced by the DCM intercalated disc accelerate its
ageing process [20, 34]. The expanded coat of adherens junction proteins that lines
these convoluted membranes is accompanied by an increased signal for F-actin at the
intercalated disc [20]. The additional increased expression of a formin, FHOD1
(formin-homology domain-containing protein 1), at the intercalated discs in DCM



[60], indicates that it might be responsible for the excessive actin filament formation.
FHOD1 was proposed to be solely an actin bundling protein with no nucleation
activity [61]; however more recent data shows that FHOD1 can nucleate actin, but
prefers cytoplasmic actin isoforms to the striated muscle actin that is conventionally
used in nucleation assays [62]. Since beta-cytoplasmic actin appears to be the
predominant actin in the microfilaments that insert into the intercalated disc [63],
this would fit well with FHOD1’s biochemistry, although formal proof that FHOD1
indeed polymerises additional actin filaments at stressed intercalated discs is still
lacking (Fig. 3). In the DCM samples from mouse models and from human patients,
only adherens junction proteins were upregulated in their expression, while proteins
that constitute the desmosomes were unchanged [20]. Recently it could be shown in
cardiomyocytes in culture that excessive beta-adrenergic stimulation, which also
accompanies stress in the heart, leads to an increase in adhesion between the cells,
which was mainly attributed to an increased extent and organisation of desmosomes
[64]. Again, this supplies more evidence for the intercalated disc as a stress-sensitive
element in the heart, with the precise time courses and molecular pathways still
needing better definition. This stress-sensing role of the intercalated disc does not
restrict itself to a changed composition of its cytoskeletal proteins but also affects the
presence of notorious signalling molecules in cardiomyopathy. For example, it was
shown that PKCalpha (protein kinase C), which is one of the many kinases to show
increased activity in cardiomyopathy [65], is concentrated at the intercalated discs in
failing hearts by a multiprotein complex that involves the scaffold protein CARP1
(cardiac ankyrin repeat protein 1) and that breaking up of this complex leads to
decreased PKCalpha and the rescue of the functional phenotype in a mouse model
for DCM [66]. PKCalpha needs lipids for its activation [67], and its proximity to the
plasma membrane is likely to result in a constitutively active signalling molecule
(Fig. 3). Currently, the exact nature of PKCalpha’s downstream targets at the
intercalated discs is unclear, although several candidates, such as PKP2 (Plakophilin
2), were suggested [68]. A recent review discusses the molecular basis for
mechanosignalling of different intercalated disc components in more detail
[69]. Increased mechanical stress at cell-cell contacts is not really a satisfactory
explanation for the proposed mechanosensing of cardiomyocytes of their environ-
ment, which is expected to increase from a stiffness of 20 kPa in the adult heart tissue
to beyond 100 kPa in fibrosis ([70]; Fig. 3). Because of the complex arrangement, the
mechanoresponse of costameres, which link the cardiomyocytes laterally to the
extracellular matrix, has not been studied in great molecular detail. A very nice
substitute in this respect is to assume that the focal adhesions that cultured
cardiomyocytes use to attach to the matrix they are grown on share similar charac-
teristics to costameres that extend beyond their molecular composition, which
includes proteins such as talin and vinculin. A recent study has linked the response
of cardiomyocytes to increased matrix rigidity to talin activation and increased
presence of phosphorylated MLC (myosin light chain), which is usually taken as a
readout for non-muscle myosin assembly and activation (Fig. 3). Again, this is
accompanied by increased filamentous actin and the activation of FHOD1,
suggesting that similar mechanisms might be at play in the costameres as at the
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intercalated disc, at least as far as actin filaments are concerned [71]. For a while it
looked like the cardiac isoform of vinculin, metavinculin, might be at the centre of
DCM signalling because missense mutations were detected in DCM patients
[72, 73]; however recent data from metavinculin knockout mice failed to detect
any dramatic phenotype in the heart [74].
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4 Mechanical Stress and Channel Regulation

The sequential activity of ion channels defines the cardiac action potential, and
impairments are known to accompany cardiomyopathies (for review see [75]).
Several of these ion channels are known to be mechano-gated (volume-activated
or stretch-activated) or mechano-modulated (voltage-gated potassium, calcium and
sodium channels); however, their exact mechanism of activation in the heart is
poorly understood (reviewed in [76]). The significant lag time of activation suggests
the involvement of the cytoskeleton, e.g. actin filaments; however in some cases
(e.g. TEK), actin is inhibitory, while in others (Piezo1) actin is thought to be required
for activation [77, 78].

Most of these channels are not randomly distributed over the plasma membrane,
but are preferentially associated with the T-tubules, leading to a striated appearance
in immunostainings [76]. This kind of location was also shown for Piezo1, which is a
mechanosensitive channel that was recently demonstrated to convert mechanical
stretch into calcium and ROS (reactive oxygen species) signalling in cardiomyocytes
with a lack of response in cardiac-specific Piezo1 knockout mice [79]. Upregulation
of Piezo expression was detected in human hypertrophic cardiomyopathy and in rat
hearts following myocardial infarction [79, 80]. Currently it is thought that the
Piezo1 response may initially be beneficial and that it is a dysregulated activation
that eventually leads to decompensation or accompanies cardiomyopathies. How-
ever, overexpression studies in cell lines have shown extremely rapid and complete
inactivation of Piezo1 channels, so clearly more work is required to understand the
exact mechanism of its regulation (reviewed in [81]).

5 How Are These Stress Signals Conveyed into Changes
in Gene Expression?

While a lot of stress signals were characterised at cell-cell or cell-matrix contacts as
well as emanating from within the sarcomere [82–84], how these signals would
affect gene expression is not very well understood so far. It has been shown that the
mechanosensor in titin’s I-band region, CARP1, can translocate to the nucleus,
where it may act as a negative regulator of cardiac gene expression [85]. Lack of
mechanical inactivity affects the signalosome at titin’s kinase domain and leads to



the nuclear export of SRF, which is likely to affect the transcription of genes
encoding for thin filament proteins in a negative way [27]. Whenever
mechanosignalling is explored in other tissues, the Hippo pathway is often found
at its core, so it is of little surprise that recently its relevance was also shown for heart
development and disease (reviewed in [86, 87]). Yap/Taz (Yes-associated protein;
TAZ transcriptional co-activator with PDZ-binding motif) are the transcription
factors that mediate Hippo signalling, and their entry into the nucleus was shown
to be triggered by mechanical stimuli that lead to an increased nuclear pore size by
activation of the interaction between filamentous actin filaments and nesprin proteins
(Fig. 4), which are known to be able to bind to actin and microtubules as well as to
provide a link to the nuclear envelope by binding to the LINC (linker of
nucleoskeleton and cytoskeleton) complex [88]; for recent review of LINC, see
[89]. There seems to be an intricate force balance between the different types of
cytoskeletal filaments in the healthy cardiomyocytes. During stress this is lost, and,
for example, microtubules can push against the nuclear envelope and lead to
invaginations and stretching of the nuclear envelope. These imbalances in the
dynamic behaviour of microtubules, their interaction with the nesprin and desmin
cytoskeleton and the ensuing effect on the nuclear envelope will then translate to the
LAD (lamin-associated domains) inside [90], which are usually assumed to play a
repressive role in gene expression [91]. Interfering with this interaction by
depolymerisation of the microtubules or disrupting the nesprin-LINC complex
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Fig. 4 Mechanosignalling between the cytoplasm and the nucleus may affect gene transcription in
stressed cardiomyocytes. In a healthy cardiomyocyte, there is an intricate force balance between the
cytoskeletal filament systems (pushing dynamic microtubules, filamentous actin pulling on nesprin
and links from the myofibrils via desmin intermediate filaments). In stressed cardiomyocytes, this
control gets lost, and dynamic microtubules can push towards the nuclear envelope, leading to
invaginations of the nuclear lamina and an altered arrangement of LAD (lamin-associated domains).
Increased cytoskeletal forces also pull on the nuclear envelope via nesprin and LINC-mediated
interactions and lead to a stretching of nuclear pore diameter, which enables YAP/TAZ transcription
factors to diffuse into the nucleoplasm



prevents disruption of the nuclear lamina, DNA damage and disease-associated
transcriptional changes [90] Fig. 4). There may also be a link from intercalated
disc sensed stress towards the nucleus via Yap. Cardiomyocytes that lack all alpha-
catenin isoforms display increased nuclear localisation of Yap and increased prolif-
erative behaviour in the neonate [92]. In conclusion, mechanolinks via cytoskeletal
proteins from the plasma membrane to the nuclear envelope will affect gene tran-
scription, which is in part due to the Hippo signalling pathway.
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6 Will the Future Bring Drugs That Interfere
with Mechanosignalling?

A better understanding how exactly mechanosignalling works from the
cardiomyocyte surface to changes in gene expression is extremely likely to yield
exciting drug targets that may help to attenuate maladaptive signalling in the future.
The first pathway that was explored a while ago was interference with ROCK
(Rho-associated kinase) signalling, which controls the assembly and activity of
non-muscle myosin as well as leads to the activation of formins such as FHOD1.
It was shown that a commonly used ROCK-inhibitor, Y-27632, could prevent the
development of cardiomyopathy induced by hypertension in Dahl-sensitive rats [93]
and also the interference with PKCalpha signalling has been employed for a short-
term rescue in animal models of cardiomyopathy [94, 95]. Obviously ubiquitously
expressed signalling molecules such as ROCK and PKCalpha are not very attractive
drug targets, since their roles are not restricted to the heart and a plethora of side
effects are likely. A more targeted attempt was to disrupt the signalling axis between
the cytoskeleton and the LINC complex in the nuclear lamina by AAV9-mediated
overexpression of a dominant negative LINC component [96]. AAV9 predominantly
targets to heart tissue, and a prevention of a lamin mutation-induced cardiomyopathy
was reported. An even more exciting avenue appears to be to tackle detyrosinated
microtubes. As reported above, loosening up the microtubule network by drugs or
interfering with detyrosination improved cardiac output [17], and very recently a
kinase was identified, MARK4 (microtubule-affinity regulating kinase), that appears
to be crucially involved in this process [97]. MARK4 expression is increased in the
heart following myocardial infarction, and it exerts its effect on microtubules by
phosphorylating MAP 4 (microtubule-associated protein 4), which in turn facilitates
the access of the tubulin carboxypeptidase VASH2 (Tubulinyl-Tyr-carboxypepti-
dase 2) to polymerised microtubules and favours detyrosination. Interfering with this
process by MARK4 downregulation improves contractile function following a
mechanobiological insult [97]. Another interesting approach that addresses the
turnover of mechanically damaged sarcomere proteins, which lead to impaired
contractile function, is to stimulate CASA activity by overexpressing BAG3 using
AAV9 [56].



134 T. Randall and E. Ehler

The mechanosensor at the T-tubules, Piezo1, can be specifically activated by
Yoda1 and inhibited by GsMTx4, a spider toxin [81]; however the latter seems to
have distinct effects depending on the species and was demonstrated to be beneficial
in a mouse model of cardiomyopathy but lacking any effect in a swine model [98].

XMU-MP1 was shown to inhibit the Hippo signalling pathway by blocking the
activity of the upstream kinase Mst1/2, and this was shown to have cardioprotective
effects in mice [99]. Treatment reduced apoptosis following pressure overload,
which fits well with one of the better understood roles of Yap/Taz signalling, but
had no effect on the proliferation of adult cardiomyocytes. Still, careful timing and
limited administration must be considered for translation to humans, to ensure that
no tumours develop in other tissues than the heart as a side effect.

Recent developments in gene therapy using CRISPR/Cas9-mediated repair look
like an extremely exciting strategy for the future [100] and were shown to be
extremely useful for the generation of missense mutated or corrected iPSC lines
[29, 30]. However currently there are hindrances regarding delivery, for example,
conventionally used Cas9 is too big for the most commonly used delivery vehicle,
AAV9, and there is always the concern about potential off-target effects. In general,
despite gene therapy and small molecule administration showing a lot of promise in
small animal models, they often fail to translate effectively to humans, partly due to
differences in physiology but mainly caused by the challenge of a much larger size of
the heart that is to be repaired [101, 102]. Therefore, while scaling up from mouse
models to larger animals will be the next challenge, these are exciting observations
that are likely to result in translational approaches also for human patients. However,
also a better understanding of mechanosignalling via the intercalated disc and the
costameres is bound to increase our arsenal of heart failure drug targets beyond the
current conventional strategies of mainly alleviating symptoms and not addressing
causes as much.

7 Conclusion

In this review we have discussed the four epicentres of mechanosignalling in
cardiomyocytes, the sarcomere, the intercalated disc, the plasma membrane in
particular with regard to T-tubules and the nuclear lamina (see thunderbolt symbols
in Fig. 1). It is clear that these do not act in isolation, but that crosstalk between them
results from detection of mechanical stress to transmission of a stress signal to
changes in gene expression. A more thorough understanding of these
mechanosignalling pathways is likely to improve our arsenal of drugs that can
slow down a cardiomyopathy phenotype.
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Biophysical Stretch Induced Differentiation
and Maturation of Induced Pluripotent
Stem Cell-Derived Cardiomyocytes

Jiabin Qin, Alain van Mil, and Joost P. G. Sluijter

1 Introduction

The growing burden of cardiovascular disease, particularly due to ischemic heart
disease as one of the leading causes of death and disability worldwide [1], gave rise
to many efforts to improve our insights into post-myocardial infarction
(MI) processes and to develop novel therapeutic interventions. Although progress
has been made, still much effort is needed to translate research findings into clini-
cal practice. Especially, the roles of the immune system [2], non-coding RNAs [3],
extracellular vesicles [4], cardioprotection [5], and sex-specific effects [6] need to be
further explored. Additionally, improved evaluation [7] and standardization of
preclinical imaging [8] and specific influence of other non-cardiomyocyte cell
types that are involved in the diseased heart need to be understood [9]. One major
potential confounding factor for clear clinical translation [10] is the lack of proper
human in vitro models to study cardiac disease, as intrinsic profound differences in
electrophysiology and pharmacokinetics exist between cells of different
species [11].

Induced pluripotent stem cell (iPSC) technology is attracting considerable interest
in every major biomedical field since Takahashi et al. introduced the embryonic
transcription factors Oct3/4, Sox2, Klf4, and c-Myc into adult human fibroblasts to
convert them into pluripotent stem cells [12]. Due to the different physiology,
disease progression, and possible immunogenicity, CMs derived from non-human
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PSCs [13, 14] may potentially limit human cardiac disease understanding and
therapeutic discovery; moreover, the limited availability and difficulty of adult
CMs to be isolated from other sources and species hampered cardiovascular
research. Human iPSCs (hiPSCs) are comparable to human embryonic stem cells
(hESCs), in which they can differentiate into a variety of organ-specific cell types
and can thus be utilized to build up human patient- and disease-specific cell models
at a scalable level. Due to the failure of postnatal CMs to reenter the cell cycle
in vivo, the difficulty in obtaining large numbers of primary CMs, and the ethical
concerns linked to hESCs, hiPSC-derived CMs (hiPSC-CMs) have provided an
intriguing and alternative option to replace primary CMs and provide a compelling
source for cardiac regeneration, particularly for remuscularization after myocardial
infarction [15–17]. Several groups, led by pioneering work of Eschenhagen have cre-
ated powerful hiPSC-derived engineered heart tissues (EHT) to improve cell therapy
endurance and efficacy when implanted onto the surface of infarcted hearts [15, 18–
20]. Moreover, the advent of CRISPR/Cas9 technology promotes establishing
genetically defined hiPSC-CMs and further facilitates specific in vitro disease
modeling, allowing potential therapeutic drugs to be tested on a personalized level
[21–23]. Beyond cell therapy application or drug screening, in vitro progression of
CM maturation from PSCs to fully differentiated CMs also provides insights into
underlying mechanisms of heart development [24, 25]. In the last decade, significant
progress has been achieved to differentiate bona fide CMs from iPSCs by generating
embryoid bodies (EBs) in suspension [26] and modulating several critical signaling
pathways in monolayered 2D-cultures, providing a CM population with high purity
[27, 28]. Additionally, by conducting a simple modulation that includes synergistic
Wnt signaling activation and reduced cell-cell contact, it is now possible to obtain
hiPSC-CMs on a theoretically unlimited scale [29]. hiPSC-CMs differentiated by
current protocols, on the other hand, display fetal instead of adult phenotypes,
characterized by small-size, underdeveloped myofibrils, inadequate electro-
conduction, and dependency on glycolysis-mediated metabolism [30, 31]. Conse-
quently, applications of hiPSC-CMs have been hindered in the preclinical stage, and
improving the maturity has become an acute interest. Many different directions and
approaches, other than biophysical cues, including long-term culture [32], electrical
stimulation [33, 34], metabolism modulation [35–39], 3D culture, co-culture with
non-cardiomyocyte populations [40], and combined stimulation, have been investi-
gated to enhance hiPSC-CM maturity [30, 41].
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One of the earliest functional organs to develop in the human embryo is the heart,
which starts beating and pumping blood to support circulation around 3 weeks after
fertilization [42]. The whole cardiac embryogenesis indicates that myocardial
growth and remodeling can occur consistently in dynamic mechanical environments.
Proper cardiac cell coupling and interaction with the extracellular environment are
required for myocardium formation. Vice versa, abnormal heart function during
pathological conditions is associated with changes in the mechanical loading of the
organ, resulting in altered mechanical stress on CMs. Various extracellular forces
affecting CMs, including ECM properties, heart rhythmic stretch, and blood flow
induced shear stress, have been shown to influence heart morphological and



functional developments [43–47]. The potential maturation effects of mechanical
stimulation were investigated on neonatal rat ventricular myocytes (NRVMs). Sub-
strate stiffness comparable to rat myocardium was reported to promote NRVMs with
improved morphology and elevated cardiac-associated protein expression [48–
50]. Besides, mechanically loaded NRVM-based EHT, developed by Zimmermann
et al. [51, 52], exhibited cardiac muscle bundles comparable to adult instead of
immature native rat tissue. All this mounting evidence indicates that biophysical
cues, which aim to mimic the natural myocardial mechanical environment, have the
valuable potential to achieve CM differentiation and, more importantly, maturation
in vitro, and these strategies have been utilized to enhance intercellular connection
and improve functionality of hiPSC-CMs, both in two-dimensional (2D) and three-
dimensional (3D) culture.
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Research on mechanical cues on PSC-derived CMs may help to identify novel
targets for improving their maturity and consequent functionality, enhancing their
potential in cardiac cell therapy and for drug screening. This chapter will discuss the
effects of state-of-the-art methods employing passive and dynamic biophysical cues
to improve hiPSC-CM maturity. An overview of the hallmarks of the primary adult
CM phenotype and how they differ from hiPSC-CMs is given, after which the
methods and effects of external mechanical stimulation and mechanical properties
are discussed, as well as the future perspectives of this field.

2 Changes in Cardiomyocyte Characteristics During
Myocardial Development

In the native myocardium, CMs and other non-CM populations interact with the
ECM to compose a sophisticated network. The ECM allows for mechanical integrity
and acts as a structural conductor that dynamically transduces and facilitates bio-
chemical and biophysical signals within the heart [53]. Due to its pivotal role,
choices of suitable ECM for in vitro culture of CMs are primarily considered.
Collagen is one of the predominant structural units in cardiac ECM, and laminin
links CMs to their adjacent ECM acting as an adhesive protein [54, 55]. Therefore,
Matrigel, which is a basement membrane preparation from mouse sarcoma primarily
containing laminin and collagen IV [56], is the most generally used ECM coating for
iPSC differentiation and iPSC-CM maintenance. On the other hand, the ECM
acquired from decellularized hearts (dECM) can offer many distinct advantages.
The dECM largely retain cardiac-specific ECM micro-architectures and mechanical
properties which are difficult to reproduce in the petri dish. The preserved ECM
components also provide chemical and biological cues to act as a native-like
microenvironment. All these characteristics constitute a complicated combination
of biochemical and mechanical cues that may enhance cell attachment, proliferation,
survival, and cardiovascular differentiation during later recellularization [57, 58].



144 J. Qin et al.

2.1 Differences Between Native Myocardial and 2D-Cultured
Cardiomyocytes

During human heart development and upon birth, CMs experience a series of
intracellular modifications [41]. In the prenatal stage, heart growth is primarily
dependent on CM proliferation. More than half of the CMs in the heart withdraw
from the cell cycle after birth to become polyploid cells [59, 60] and stop prolifer-
ating progressively with a remaining 0.5% turnover [59, 61]. Therefore, the
non-proliferative state of postnatal adult CMs has been universally accepted.

Adult CMs have an elongated shape with an anisotropic sarcomere and cell
alignment, and they interact with adjacent CMs via intercalated disks, thereby
allowing efficient electroconduction and formation of the electromechanically
coupled myocardial tissue. Due to the lack of these dynamic, mechanical, and
environmental stimuli in 2D cell culture, cultured neonatal CMs are hypothesized
to be unable to develop further to reach their physiologically hypertrophic size and
build functional structures, as seen in adult CMs [62]. Similarly, hiPSC-CMs
differentiated in standard 2D culture do not fully mature and display random
alignment, disorganized sarcomeres, no multinucleation, absence of transverse
tubules (T-tubules), and vary largely in shape [30]. Understanding the developmen-
tal pathways that trigger and stimulate further maturation throughout cardiac devel-
opment will enhance and improve the generation of adult-like CMs derived from
hiPSCs, while insights gained during hiPSC-CM derivation will improve our
insights into human myocardial cell development [63]. Here, we outlined the
major differences between native adult human CMs and their 2D-cultured
counterparts.

2.2 Cell Morphology

As the contractile function of the heart requires a specific coordinated cellular
movement, adult CMs need to be anisotropically localized in the myocardium to
electromechanically allow efficient coupling and contraction. However, hiPSC-CMs
from standard 2D culture lack a defined direction in the petri dish, resulting in poor
cellular and sarcomere alignment. At the cellular level, adult CMs have a rod-like
shape with a large surface area, ranging from 10,000 to 14,000 μm2, a length-to-
width aspect ratio close to 7: 1 [64, 65], and sarcomere length of about 2.2 μm in
diastole [66]. This specific morphology allows the development of long myofibrils
and laterally aligned sarcomeres. Compared to adult CMs, the immature hiPSC-CMs
are at least tenfold smaller, with a surface area between 1000 and 1300 μm2 [65, 67],
a 3: 1 aspect ratio, and disorganized, shorter sarcomeres (around 1.65 μm) [31, 62,
68]. Sarcomeres are distinct structures in muscle cells and are composed of repeated
myofibril subunits [66, 69]. The formation and organization of sarcomeres are
dependent on the expression and organization of myofibril proteins like myosin



heavy chain (MYH), myosin light chain 2 (MLC2), and troponin I (TNNI), which
switch from fetal to adult isoforms during maturation due to transcriptional changes
or alternative splicing [70]. MYH7, MLC2V, and TNNI3 are primarily expressed in
adult CMs, but MYH6, MLC2a, and TNNI1 are the major isoforms in hiPSC-CMs
[71–73]. In addition to changes in protein subtypes, the sarcomere structure of adult
CMs and iPSC-CMs differs dramatically. Sarcomeres in highly aligned adult CMs
display a Z-disc structure with a uniform width that can be observed histologically,
while iPSC-CMs only form sarcomeres with randomly aligned Z-discs and variable
width [74]. The shortening of CM sarcomeres results in contraction and force
generation. In adult human papillary muscle strips, adult ventricle CMs are electri-
cally quiescent and only beat when stimulated and can produce contractile forces of
40–80 mN/mm2 [75]. Conversely, hiPSC-CMs beat spontaneously, providing an
easy readout for successful CM differentiation, but the contractile force is substan-
tially weaker, varying from 0.22 ± 0.70 to 11.8 ± 4.5 mN/mm2 [76–79]
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2.3 Electrical Signal Conduction

Adult CMs are longitudinally interconnected through intercalated discs comprising
specific protein structures, such as desmosomes, N-cadherin-based adherent junc-
tions, and gap junctions (containing Connexin-43 (Cx43)) [30, 80, 81]. These
protein structures allow ions and low-weight molecules to transduce among CMs,
facilitating rapid electrical propagation and preventing cell separation and ripping
under stretch. Because of the anisotropic alignment of adult CMs, N-cadherin and
Cx43 are predominantly localized in the intercalated discs, instead of the latitudinal
edges of CMs. However, in hiPSC-CMs, N-cadherin and Cx43 are distributed
circumferentially throughout the cell membrane [82, 83]. The CM action potential
(AP) is regulated through voltage-gated ion channels embedded in the CM plasma
membrane, but several ion channel proteins show significant differences in expres-
sion levels between the adult CMs and hiPSC-CMs [84–88]. These differences,
together with the absence of clear intercalated discs, result in an immature electro-
physiological phenotype in hiPSC-CMs. For example, the resting membrane poten-
tial of mature ventricular CMs is approximately –90 mV, whereas immature hiPSC-
CMs are less hyperpolarized, reaching about -60 mV [89, 90]. In addition, the
conduction and upstroke velocities in mature ventricular CMs are around 60 cm/s
and 150–350 V/s, respectively. Lack of ion channel expression, as well as the less
hyperpolarized membrane potential on hiPSC-CMs, leads to slower conduction and
upstroke velocities of 10–20 cm/s and 10–50 V/s, respectively [88, 91, 92].

With the aid of T-tubules and a well-developed sarcoplasmic reticulum (SR), the
rhythmic beating of adult CMs is regulated by intracellular Ca2+ transition and
duration. T-tubules are specific invaginations in the CM plasma membrane that
facilitate a fast Ca2+ transition from the membrane to the SR. In adult CMs,
T-tubules and SR are well-organized and allow for Ca2+-induced Ca2+ release and
rapid excitation-contraction coupling. Two proteins play a critical role in regulating



SR Ca2+ release: sarco/endoplasmic reticulum calcium ATPase 2a (SERCA2a) and
the ryanodine receptor (RyR2). In hiPSC-CMs, hardly any T-tubules are present, and
an underdeveloped SR is generally found with standard 2D differentiation protocols,
resulting in poor calcium handling [93–95].
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2.4 Metabolism

Cellular metabolism shifts dramatically from the prenatal to the postnatal heart. The
uterine environment is hypoxic during the fetal phase; therefore, carbohydrates,
particularly lactate, are the primary energy source, and the anaerobic glycolysis
produces the energy in CMs [96, 97]. After birth, the oxygen-rich environment
progressively stimulates CMs to switch their metabolic substrate from carbohydrates
to long-chain fatty acids [98]. β-oxidation of fatty acids becomes the primary energy
production pathway in adult postnatal CMs and provides about 80% of total energy
[99, 100]. The glycolytic pathway, however, is the primary metabolic pathway for
energy production in hiPSC-CMs [101, 102]. In addition to energy generation, the
number, morphology, and localization of energy-producing mitochondria vary
between adult CMs and hiPSC-CMs. The mitochondria only account for a small
fraction of the cell volume in hiPSC-CMs (<5%), whereas 20 to 40% of the cell
volume in adult CMs is occupied by mitochondria [103]. Mitochondria in the hiPSC-
CMs show an immature morphology with poorly developed cristae. In adult CMs,
cristae are dense and show a great extension of their surface area for oxidative
respiration [104]. Because of the high energy consumption in adult CMs, mitochon-
dria are explicitly distributed in areas with high energetic loads like the SR and
T-tubules, whereas mitochondria are located perinuclearly in iPSC-CMs [105].

Taken together, major differences exist between native cardiac-derived
cardiomyocytes and their hiPSC-derived derivatives. CM maturation is a sophisti-
cated and intricate process, involving multiple developmental pathways to allow
morphological, functional, and metabolic changes, as detailed and illustrated in
Table 1 and Fig. 1.

3 Biophysical Cues for iPSC-CM Maturation

3.1 Matrix Stiffness and Surface Topography
in 2D-Culturing

The elastic modulus, also known as Young’s modulus E, enables the calculation of
material stiffness (unit in Pa) [106]. The stiffness of the myocardium changes during
both heart development and various cardiac diseases. For instance, the stiffness of
the myocardium in rats ranges between 10 and 15 kPa during cardiogenesis,



15–20 kPa in healthy adult myocardium, and 35–70 kPa in the infarcted myocar-
dium [107, 108]. Collagens are the key players in determining tissue stiffness due to
their ability to form rigid, thick, and long fibrils [109]. The difference in stiffness
between the neonatal and adult heart may be attributed to the total amount of
collagen, the ratio of collagen type I to collagen type III [110], and the amount of
fibril crosslinking.
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Table 1 Comparison between adult cardiomyocytes and monolayer hiPSC-CMs phenotype

Adult iPSC-CM

Morphology Shape Rod-like Round

Alignment Anisotropic Random

Cell area 10,000 to 14,000 μm2 1000 to 1300 μm2

Length-to-
width aspect
ratio

7:1 3:1

Sarcomere
length in
diastole

2.2 μm 1.65 μm

Sarcomere
banding

Z-disc structure with a uniform
width

Randomly aligned
Z-disc with variable
width

T-tubules
presence

Yes No

Contractility Myofibril pro-
tein subtypes

MYH7 MYH6

MLC2V MLC2a

TNNI3 TNNI1

Force
generation

40–80 mN/mm2 0.22 ± 0.70 to 11.8 ±
4.5 mN/mm2

Electrophysiology Resting mem-
brane potential

-90 mV -60 mV

Conduction
velocity

60 cm/s 10–20 cm/s

Upstroke
velocity

150–350 V/s 10–50 V/s

Metabolism Metabolic
pathways

Fatty acid based β-oxidation Glycolysis

Mitochondria 20 to 40% cell volume <5% cell volume

Well-developed cristae Poorly developed
cristae

Distributed around sarcoplas-
mic reticulum and T-tubules

Perinuclear

The effects of substrate stiffness that is comparable to the prenatal myocardium (~
10 kPa) have been extensively investigated in neonatal rat ventricular myocytes
(NRVMs)[48–50, 111–113] and were optimal to induce NRVM maturation, as
evidenced by matured cell structures and protein expression. As such, PSC-CM
maturation with similar experimental settings has been studied, as highlighted in



Table 2. To determine the impact of substrate stiffness on human PSC-CM matura-
tion, a polyacrylamide (PA) hydrogel with tunable stiffness was used for short-term
culture up to 5 days. In comparison to hESC-CMs on a 4 kPa PA hydrogel, 16 kPa
PA hydrogels improved intercellular alignment with clearly defined sarcomeres,
induced whole-cell distribution of SERCA2a expression, and enhanced calcium
handling. Pharmacological inhibition of integrins and associated downstream
RhoA/ROCK pathways suggested their involvement in SERCA2 redistribution
and the enhancement of calcium handling [114]. Additionally, the contractile stress
of iPSC-CMs was positively correlated to the substrate stiffness (4.4 to 99.7 kPa)
within 3 days of culture, whereas this functional change was not associated with the
improvement of beating rate [115]. However, Körner et al. pointed out that murine
iPSC-CMs displayed the best contractility, intercellular connection, and calcium
handling when grown on a soft PDMS substrate (1.5 kPa) when studying the
stiffness effects ranging from 1.5 kPa to 25 GPa (rigid glass) [123]. These rather
different results may be due to species differences. Other studies have used Matrigel
to determine substrate stiffness effects on hiPSC-CMs. A thick layer of (0.4- to 0.8-
mm) concentrated Matrigel (Matrigel mattress) with 5.8 kPa stiffness promoted
iPSC-CM morphological and electrophysiological maturation compared to control
1:60 diluted Matrigel-coated wells (<0.1-mm thick), which gives essentially the
same rigidity as the underlying tissue culture plastic, ranging from 0.5 to 1 MPa
[30, 116, 124]. Notably, hiPSC-CMs grown on the Matrigel mattress showed
comparable contractile properties to freshly isolated rabbit CMs. Likewise, hiPSC-
CMs cultured on a soft Matrigel-coated PDMS membrane showed a higher
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Fig. 1 Cardiomyocyte maturation characteristics. Cardiomyocytes experience a series of changes
during maturation in vivo. Adult CMs are rod shaped with well-organized myofibrils. hiPSC-CMs
are more rounded in shape and contain disorganized sarcomeres, with no multinucleation, and
absence of T-tubules. Because of different energy requirements between hiPSC-CMs and adult
CMs, the mitochondrial network is located perinuclearly in iPSC-CMs, and distributed around the
SR and T-tubules in adult CMs. This work was created with BioRender.com

http://biorender.com
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binucleated population and better upstroke and conduction velocity, which might be
attributed to increased Cx43 expression [117].
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To improve sarcomere alignment in hiPSC-CMs, researchers have employed
culture substrates with specific micro- or nano-scaled patterns to anisotropically
guide CM growth. Initially, studies using NRVMs grown on micropatterned laminin
surfaces [125], micro-groove scaffolds [126], or nanopatterned PEG hydrogels [127]
showed improved CM alignment and sarcomere organization. Given these studies,
micro- or nano-scale structured culture substrates that resemble native myocardial
ECM organization of 100 nm collagen fibers in diameter [128] have been applied to
stimulate hiPSC-CM maturation. hiPSC-CMs grown on uniaxial microgroove sub-
strates showed better cell alignment and electrophysiological functionality, such as
lower resting membrane potential, increased upstroke velocity, and anisotropic
conduction velocity [118, 121, 129]. Of note, it was found that the more mature
electrophysiological performance was not associated with changes in related gene
expression [121], and Cx43 localization in iPSC-CMs did not shift along with the
well-aligned sarcomeres to the short axis of the cells, as observed in adult CMs
[118]. When fatty acid was introduced to represent the primary energy source,
hiPSC-CMs replated on a micropatterned surface (20 μm grooves) displayed more
robust structural and functional improvements in sarcomere arrangement and con-
tractile stress [119]. In addition, when seeded on a 15° chevron micropattern,
Napiwocki et al. found that hiPSC-derived cardiac fibroblasts could improve
hiPSC-CM performance with faster upstroke velocity and enhanced contraction
stress when co-cultured [120]. Like micropatterning methods, nano-topographic
substrates with an 800 nm width induced optimal effects on hiPSC-CM maturation
by cellular alignment, elongated cell shape, and sarcomere organization
[122, 130]. Larger nanogroove substrates performed better to advance iPSC-CM
maturation compared to the 100 nm in vivo physiological size, which might be
attributed to the limited contact that iPSC-CMs have with their substrates in 2D
culture.

Overall, these observations indicate the beneficial effects of matrix stiffness and
micro- or nanogroove patterns which simulate the native mechanical properties and
architecture, thereby improving hiPSC-CM morphological and functional matura-
tion. The underlying mechanisms for these stiffness-induced effects remain unclear,
but integrin-mediated and ROCK signaling pathways, either directly or indirectly
[108, 117, 131–133], have been implicated. Although it is challenging to mimic the
well-aligned and uniaxial bundles of in vivo fibers, testing different types of sub-
strates provides a useful means to explore the surface topographic role in CM
development.

3.2 3D-Culturing via Improved Scaffold Design

Due to the limiting conditions of 2D culture for hiPSC-CM development, in which
crucial cell-cell and cell-matrix interactions cannot be recapitulated sufficiently,



researchers have shifted to 3D cell culture to study these interactions in a more
representative model. The earliest 3D EHT was introduced more than two decades
ago utilizing embryonic chick CMs [134] and NRVMs [51]. Since then, 3D cardiac
construct development has advanced significantly by using a wide range of
ECM-mimicking synthetic or native dECM scaffolds, inducing more adult-like
CM morphology and functionality.
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Wanjare et al. fabricated microfibrous polycaprolactone (PCL) scaffolds with
random or parallel orientation [135], although these anisotropic PCL scaffolds were
stiffer (1.81 MPa) than human myocardium (0.02–0.5 MPa) [136–139]. On the
parallel fibers, seeded hiPSC-CMs showed enhanced cellular and myofibril align-
ment with increased length (≈1.6 μm), increased MYH7 gene expression level, and
higher contraction velocity when compared to the randomly aligned scaffolds.
Similarly, synthetic scaffolds with defined uniaxial orientation were also discovered
to promote CM alignment and intercellular sarcomere organization, both in NVRMs
and mouse ESC-CMs [102, 140]. Moreover, advanced printing technology, like melt
electrowriting (MEW) and direct laser writing (DLW), has been introduced to
fabricate 3D structures. hiPSC-CMs seeded on hexagonal PCL fiber scaffolds
printed by MEW displayed enhanced sarcomere density and alignment with
upregulated sarcomere, AP, calcium handling, and OXPHOS-related gene expres-
sion, as compared to rectangular fiber scaffolds [141], and additionally provided
better mechanical properties upon force exposure. The effects of DLW-printed
rectangular-shaped micro-scaffolds on single murine iPSC-CMs were evaluated by
Silbernagel et al. [5]. Structural analysis revealed reorganized myofibrils with highly
parallel alignment and the formation of sarcolemmal T-tubule-like structures on the
cell membrane. Structural remodeling in murine iPSC-CMs tremendously impacted
Ca2+ transient kinetics, along with enhanced clusters of Ca2+ handling protein
expression (L-type Ca2+ channels and ryanodine receptors) [142].

Because of several intrinsic features of synthetic scaffolds, such as the lack of
clear cell-adhesion points, the incapability to be remodeled by cells, and the potential
activation of immune responses during graft-host integration, many groups have
started exploring the use of scaffolds derived from decellularized heart tissue scaf-
folds. Compared to synthetic scaffolds, dECM scaffolds can largely preserve the
native ECM composition and intricate structures [58, 143], providing a natural
myocardial environment to support iPSC-CMs and promote their maturation. So
far, dECM scaffolds from various mammalian species seeded with hiPSC-CMs have
emerged as a promising method for making 3D cardiac tissues and evaluating
hiPSC-CM maturation. In 2016, Guyette et al. decellularized a small part of the
LV free wall of a donated human heart as a non-perfused cardiac scaffold [143]. The
cardiac matrix induced alignment of hiPSC-CMs with an improved striated pheno-
type and enhanced force generation, when compared to cardiac slices in 2D culture.
In addition to human dECM scaffolds, orthologous sources from porcine have also
been investigated recently [144, 145]. Circular porcine dECM slices, with 12 mm
diameters of 300 μm in thickness, induced elongated hiPSC-CM morphology and
enhanced sarcomere organization [144]. When comparing wild-type (WT) and
hypertrophic cardiomyopathy (HCM) swine dECM, hiPSC-CMs displayed higher



force generation but worsened calcium handling on the stiffer HCM scaffold (±
4.5 kPa vs. WT scaffold 8.05 ± 2 kPa). Moreover, the expression of calcium
handling genes was elevated (ATP2A2, CACNA1C, and PLN) in iPSC-CMs grown
on the WT scaffold, whereas reduced calcium handling ability was observed on the
HCM scaffold [145].
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Next to using complete decellularized heart tissue as a scaffold, some studies also
investigated the maturation effects of 3D hydrogels made of dECM powder on
hiPSC-CMs. Interestingly, dECM derived from tissues of different ages showed
different mechanical properties. Adult bovine dECM hydrogel was shown to contain
more collagen fibers with increased width and was approximately tenfold stiffer than
fetal dECM (67.5 Pa vs. 7.2 Pa) [146]. Comparably, dECM hydrogel from adult
mice is more rigid but less elastic than neonatal dECM [147]. Studies on EHTs or
cardiac microtissues generated by combining hiPSC-CMs and dECM hydrogels
showed significant maturation, as indicated by enhanced cell architecture, contrac-
tility, and calcium handling [146–148]. On aged mice ECM it was found that hiPSC-
CMs showed accelerated senescence and overgrowth, with sarcomere length above
the upper physiological limit [147]. As a result, the age factor for dECM application
in the clinic should be considered.

Excitation-contraction coupling is important for heart development and function,
and electrical stimulation has become a vital approach to mature CMs in vitro. When
PSC-CMs were stimulated on the “Biowire” device with progressively increasing
electrical pacing from 1 to 6 Hz over the course of 1 week, indicative maturation was
shown with respect to sarcomere reorganization, calcium handling, and a more
negative resting membrane potential [33]. Another stimulation scheme (termed as
“intensity training”), in which the hiPSC-derived EHTs were trained with a regular
fluctuating electrical pacing showed a remarkable morphological maturity with
adult-like size and T-tubule presence [34]. Electroconductive materials, such as
carbon nanotubes and graphene oxide (GO) [149, 150], were also utilized to couple
with dECM to advance the electrophysiological maturation of hiPSC-CMs. iPSC-
CMs cultured with adult sheep dECM hydrogel with carbon nanotubes exhibited
a higher Cx43 expression level and improved calcium handling [151]. Similarly,
hiPSC-CMs cultured on a dECM-reduced GO hydrogel, with stiffness (17.5 ± 0.5
kPa) comparable to native rat myocardium, also displayed dramatically increased
twitch force (23.61 ± 2.62 μN), enhanced contraction amplitude and upstroke
velocity, and increased gene expression levels related to contractility (TNNT2,
TNNI3, TTN, and N2B) and electrophysiological function (CACNA1C, ATP2A2,
and SERCA2, 166].

Taken together, the maturation effects of synthetic scaffolds, dECM scaffolds,
and dECM hydrogel reveal that substrate guidance cues supported by various
topographies have an impact on hiPSC-CM morphology and function (Table 3).
Particularly, dECM scaffolds from different ages exhibited inconsistent mechanical
properties (ECM protein composition, scaffold rigidity, maximum displacement)
and different effects on hiPSC-CMs, such as higher beating frequency and better
calcium kinetics on young scaffolds, but impaired cardiac function on aged scaffolds
[147]. Therefore, generating a standard evaluation for dECM scaffolds is necessary
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before proceeding with future clinical trials. Alternatively, dECM from different
ages could be applied to cardiac disease modeling to reproduce a pathophysiological
myocardial condition related to age.
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3.3 Mechanical Loading and Stretch

Passive static stress on CMs can be induced by attaching contractile tissues between
two posts, where the distance between the two posts is correlated to the force of static
stress. Simple static stretching by using two fixed ends [153, 154], flexible stretching
with one moveable post [155, 156], and altering the distance between posts
[19, 157–159] have all been shown to induce structural, functional, and molecular
maturation of 3D hiPSC-CMs-derived tissues (more details are shown in Table 4).

It is noteworthy that when combining electrical pacing with static stretch, 3D
cardiac constructs showed an additional increase in contractile stress with
upregulated protein expression of RYR2 and SERCA2 compared to tissue
maintained at a fixed length, suggesting more mature excitation-contraction coupling
[153]. However, when training EHTs with one flexible post to mimic afterload,
an upregulation ofGLUT4 expression and downregulation ofCPT1B expression was
shown, indicating more effective glycolysis but decreased fatty acid usage
[156]. This outcome suggested that, while structural and electrophysiological mat-
uration were observed with increasing afterload, the afterload was not effective in
inducing mature oxidative metabolism. Thus, it is important to also assess the
metabolism transition when evaluating other maturation effects. More recently,
fibroblasts have been included in 3D cardiac tissues, showing that these cells provide
a critical component in maintaining and improving CM function through secreting
growth factors [166], aiding in electrical impulse propagation [167], and modulating
ECM properties [168]. Engineered human myocardium (EHM), trained by dynamic
stretch using flexible silicone holders [158, 169], displayed the maximal contractile
forces when coupled with equivalent biopsy-derived fibroblasts under defined,
serum-free conditions [19] and advanced hiPSC-CM sarcomere organization, con-
tractility, and cardiac-associated gene expression as compared to parallel monolayer
condition. For example, hiPSC-CMs in the EHM showed distinguishable sarcomeric
M bands which were hardly visible under standard differentiation and prolonged
culture [32]. Functionally, hiPSC-CMs in the EHM not only displayed stronger
twitch force (6.2±0.8 mN/mm2 at 1.5 Hz) than human infants (1 mN/mm2 at 1 Hz)
[170], albeit weaker than adult myocardium (25 mN/mm2 at 1 Hz) [171], but also
exhibited dramatic upregulation of fetal to adult CM gene expression upon global
transcriptome profiling.

Providing cyclic stretch with a given frequency resembles the rhythmic blood
filling in the ventricles during diastole. Simulating this type of mechanical stimuli on
hiPSC-CMs would provide cues more comparable to the native mechanical cardiac
environment. Most studies carried out uniaxial cyclic stretching with a frequency of
1 to 2 Hz (60 to 120 cycles/min) and a displacement from 0 to 20% to recapitulate the
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mechanical preload in vivo. Varieties of cellular effects induced by cyclic stretch on
NVRMs, both in 2D and 3D culture, have been observed, including highly organized
sarcomeres, Cx43 polarization [52, 172], higher twitch force [101, 173, 174], and
impacts on focal adhesion kinase (FAK) activation that might involve hypertrophic
and adhesive responses [175–177]. At the 2D level, iPSC-CMs seeded on an ECM
protein cocktail and cultured under cyclic stretch (1 Hz, 15%) displayed overall
enhanced sarcomere alignment, which reoriented them to more striated and parallel
patterns compared to hiPSC-CM without cyclic stimulation (0% strain), and approx-
imately doubled force generation with concurrently elevated protein expression of
MYH7 [160]. In contrast, Ovchinnikova et al. observed increased cell stiffness on
hESC-CMs, less expression of ion-channel genes upon RNA-seq analysis, and
essential traits of cardiac hypertrophy [161], when subjected to the same mechanical
stimulation. These two studies suggest that the cyclic stretch may induce CM
hypertrophy other than maturation. Aside from cyclic stretch, blood flow-induced
pulsatile laminar shear stress also plays a critical role in heart development
[43]. Despite major effects on endothelial cells, Shen et al. showed that pulsatile
flow (1.48 mL/min) with cyclic strain (5%) can influence hESC-CM maturation
synergistically [164]. Within 20 days of stimulation, hESC-CMs exhibited improved
sarcomere structure and increased contractility and electrophysiology-related gene
expression, when compared to the static culture condition. Additionally, a lower
β-catenin level was observed in hESC-CMs subjected to shear and cyclic stretch,
indicating an involvement and inhibition of the Wnt/β-catenin signaling pathway. In
2020, Kolanowski et al. utilized a microfluidic system, which can provide
homodynamic pressure in the physiological range, to study the cyclic pulsatile
hemodynamic forces on hiPSC-CMs [165]. Compared to hiPSC-CMs cultured in
static conditions for 1 week, the cyclic pulsatile flow clearly enhanced alignment of
beating hiPSC-CMs, increased surface area, and facilitated mitochondrial density
and network development. These morphological changes were also validated at the
molecular level, like higher TNNI3/TNNI1 ratio and increased expression of mito-
chondrial marker genes (MT-CO1, OPA1). In 3D cardiac constructs, elongated and
hypertrophic CMs with enhanced Cx43 protein expression were found, both at 1 Hz
[154, 162] and 1.25 Hz cyclic stretch [163], indicating more efficient
electroconduction when compared to unstretched conditions. hiPSC-CM within
the cardiac tissue also exhibited upregulation of CM maturation-related genes
(MYH7, cTnT, SERCA2A, cTnI, and MLC2v)[162]. In contrast to hiPSC-CMs,
hESC-CMs in gelatin-based scaffolds subjected to 1.25 Hz cyclic stretch displayed
a faster Ca2+ cycle frequency and a lower Ca2+ cycle duration period, suggesting
more rapid calcium cycling and thereby a higher beating frequency [163]. However,
Kensah et al. observed that imposing cyclic stretch (10%, 1 Hz) for a week on
murine iPSC-CM 3D aggregates did not improve tissue morphology and maximum
active force [76], but beneficial effects could be found through applying stepwise
growing static stretch, thereby stimulating prolonged sarcomere length, improved
sarcomere organization, and better CM alignment.

Biophysical Stretch Induced Differentiation and Maturation of. . . 161
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4 Underlying Mechanisms of Biomechanical Stimulation

External biophysical cues are translated into intracellular biochemical stimuli by the
bridge constructed between the cell cytoskeleton and ECM through focal adhesive
contacts and ligand-receptor signaling transduction. CMs can adapt to the substrate
stiffness variation and cyclic stretch and exhibit the mechanical force effects by
activation or inhibition of a few specific signaling pathways, as illustrated in Fig. 2.

Integrins are transmembrane receptors that transduce mechanical signals to cells
and bridge the environmental stimulation and intracellular events [132, 178, 179]. β1
integrin receptors, abundantly expressed in the rat adult heart [180], in combination
with following FAK activation [181], have been shown to regulate the structural
maturation of iPSC-CMs, like increasing the cTnI protein level [117]. Furthermore,
activated PKC located at integrin adhesion sites, along with the downstream Src,
FHOD1, and non-muscle myosin activation, has been reported to be involved in the
CM rigidity sensing mechanism [112].

The RhoA/ROCK pathway has been found to modulate a wide range of funda-
mental cellular functions, including contraction, proliferation, and apoptosis
[182]. Improper activation of the RhoA/ROCK pathways could likewise contribute

Fig. 2 Underlying molecules and pathways activated upon biophysical stimulation. Substrate
stiffness influences CM maturation through RhoA and FAK. RhoA/ROCK pathways are involved
to facilitate CM morphology, contraction, and calcium handling [50, 114, 117]. β1 integrin receptor
activation, coupled with FAK activation, was reported to regulate sarcomere structure maturation
[117]. Cyclic stretch induces phosphorylation of AKT, ERK1/2 and GSK3β, and ERK1/2 pathways
can upregulate Cx43 expression [5]. Additionally, ESC-CMs showed a decreased β-catenin level
when subjected to cyclic stretch and shear stress, indicating enhanced maturity [164]. This work
was created with BioRender.com.

http://biorender.com


to major cardiovascular disorders [183]. Substrate stiffness has been shown to
facilitate NRVM morphology, contraction, and calcium handling, in which the
RhoA/ROCK and integrin-mediated pathways are incorporated to modify these
mature phenotypes [50, 112, 114, 117]. RhoA/ROCK was discovered to be involved
in the adaption of NRVMs to substrate stiffness changes, which led to myofibrils and
focal adhesion development and allowed for a positive correlation between contrac-
tion force and substrate stiffness, according to Jacot et al. [50]. Also, in hESC-CMs,
pharmacological blockade of the RhoA/ROCK pathway was reported to abolish the
whole-cell spreading of SERCA2 and impaired the related calcium handling [114].

Biophysical Stretch Induced Differentiation and Maturation of. . . 163

It is further known that ERK1/2, AKT, and GSK3β are highly involved in
myocyte stretch [184]. Salameh et al. observed phosphorylation of these three signal
transduction proteins when stimulating NRVMs with cyclic stretch (1 Hz, 10%),
showing activation of ERK1/2 and AKT, but inhibition of GSK3β. Additionally,
they showed that the ERK1/2 pathways, rather than PKA and PKC, were the main
controllers of Cx43 upregulation and polarization in NRVMs [172].

Wnt/β-catenin signaling pathways have been reported to influence cardiogenesis
through either activation or inhibition [167]. Wnt/β-catenin signaling is required for
cardiac lineage cell development in the early phase, and late-stage CM differentia-
tion is promoted through β-catenin downregulation [185]. When hESC-CMs were
subjected to cyclic stretch and shear stress, a lower β-catenin level was detected,
compared to cells without dynamic mechanical stimulation, suggesting that stimu-
lated hESC-CMs became more mature [164]. This intriguing phenomenon con-
firmed the involvement of Wnt/β-catenin signaling pathways, and β-catenin
protein level variation could be utilized as a generic marker to reflect the derived
CM maturation status.

So far, there is insufficient knowledge about the molecular mechanisms involved
in CM maturation, both in primary and PSC-derived cells, as most studies have
mainly focused on characterizing maturation-related morphology and functionality.
However, understanding the underlying molecular mechanisms contributing to CM
maturation is critical for generating more adult-like CMs in vitro, providing
researchers with more insights into CM development, and pathophysiological devel-
opment in cardiac disease modeling.

5 Conclusion

Throughout this chapter, we have described the differences between adult CMs and
hiPSC-CMs, as well as the effects of several biophysical strategies (topographies,
substrate stiffness, passive and dynamic stretch) on hiPSC-CM morphological and
functional maturation. The collective data revealed that hiPSC-CMs can sense
microenvironmental biophysical cues and adapt by altering their structure and
function. Even though hiPSC-CMs displayed improved maturity over their controls
when subjected to mechanical stimulation, it should be highlighted that the level of
maturity does not yet fully represent the adult phenotypes.
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It is challenging to determine which strategy is the most effective to promote
hiPSC-CM maturation because of the inherent restrictions when performing a
horizontal comparison between studies with varying experimental setups. Firstly,
the stimulation period and starting point of hiPSC-CM age differed from study to
study. The duration of hiPSC-CM culture has been reported as a critical factor in
maturation [32]. Thus, using aged hiPSC-CMs may have already resulted in the
presence of more mature characteristics. Regarding 3D cardiac tissue constructs,
different groups have established their own optimal protocols to generate cardiac
constructs with different types of non-cardiomyocyte populations and cell inocula-
tion ratios. Because of the heterogeneity in 3D cardiac constructs, directly comparing
maturation effects of mechanical stimulation among these studies is difficult. Next, it
is acceptable that not all maturation-related features are investigated in each strategy.
Most studies focus on morphological, contractile, and electrophysiological changes,
but pay less attention to metabolic alterations. Next to maturation, a potential
concern is the heterogeneous populations when employing iPSC-CMs as a research
platform, since the majority of studies used mixed hiPSC-CM populations, com-
prising ventricular-like cells, as well as small numbers of pacemaker- and atrial-like
cells, thereby posing an obstacle to cell therapy and disease modeling studies. It is
possible that mixed myocyte types may influence the outcomes of cardiovascular
disease modeling in vitro as well as change the graft performance in vivo. How-
ever, progress has been made to define the molecular barriers among various types of
cardiac myocytes when differentiating them in vitro [186, 187]. It is critical to
establish differentiation strategies that induce the production of each of these
cardiomyocyte subtypes in order to treat and simulate illnesses that affect specific
parts of the heart. Although biophysical cues are able to induce hiPSC-CM matura-
tion, few studies have moved forward to dig into the underlying mechanisms.
Several studies have shown the role of RhoA/ROCK, integrin, ERK1/2, and
Wnt/β-catenin pathways in initiating biophysical responses, but they were performed
on NRVMs and 2D PSC-CMs. More concrete answers could be found in the native
development process. Consequently, it is crucial to understand the role of natural
mechanical stimulation and delineate molecular mechanisms in native CMs during
growth and maturation, especially in terms of timepoints, intensity, and order.
Enhanced knowledge on the underlying mechanisms will allow for generating
CMs with more adult-like phenotypes and a better understanding of CM develop-
ment in a physiological or pathophysiological environment.

From the literature gathered, the more physiological-like the strategy, the more
mature traits the hiPSC-CMs could acquire. Nevertheless, CM maturation is an
extremely sophisticated process that necessitates well-orchestrated management of
multiple signaling pathways in the cells as well as external stimuli. One could
imagine that fully matured iPSC-CMs would be achieved if all related stimulations
corresponding to native CM development could be ideally simulated in vitro. How-
ever, this would be extremely laborious since natural CM development takes at least
10 months. Perhaps it is necessary to better define the minimal maturity requirements
of iPSC-CMs for each application. Prior studies on in vivo transplantation showed
that injected adult CMs in the injured area did not survive long term [188], but that
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the in vivo environment can promote transplanted iPSC-CM maturation
[189]. Thereby, for the purpose of therapeutic remuscularization after myocardial
infarction, it is practical to induce iPSC-CM maturation in the recipient’s native
environment. On the other hand, determining the “minimal” maturity of iPSC-CMs
for disease modelling, drug screening and toxicology research is critical to prevent
false positives and negatives and allow predictive modelling. Finally, by elucidating
the heart development biophysical molecular mechanisms, e.g. through transcrip-
tionally mapping PSC-CM differentiation and maturation [190], and by using single-
cell RNA sequencing (scRNA-seq) technology [191, 192] on CM developmental
samples researchers could pinpoint and potentially activate the critical pathways to
further induce iPSC-CMs maturation.
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Mechanical Considerations of Myocardial
Tissue and Cardiac Regeneration

Ignasi Jorba, Milica Nikolic, and Carlijn V. C. Bouten

1 Current Regenerative Strategies Fail to Restore
the Myocardial Mechanical Environment

According to the World Health Organization, one-third of worldwide deaths are
caused by cardiovascular diseases, with an increasing trend in the recent years
[1]. Specifically, heart failure (HF) following myocardial infarction (MI) is the
most fatal cardiovascular disease with a 5-year survival rate of <50% [2]. At the
tissue level, HF as a result of MI is characterised by a gradual loss of cardiomyocytes
and, therefore, contractile tissue. The biological healing cascades following injury
trigger the fibroblasts to change their phenotype and increase extracellular matrix
(ECM) production, ultimately leading to the formation of hypo-contractile tissue
scar [3]. At the same time, the remaining cardiomyocytes try to compensate for the
loss of contractile tissue, initiating pathological cellular responses and further car-
diac remodelling. Ultimately, tissue remodelling leads to an increased myocardial
wall thickening, followed by dilation and eventually diminished cardiac function [4].

Nowadays, there is no doubt that cells actively respond to their mechanical
environment and this interaction is essential in load-bearing and continuously
contracting tissues such as the myocardium [5]. For instance, cellular contractility
and electrical stability are highly dependent on mechanical environmental cues such
as stiffness or cyclic strain [6–9]; and a more physiological, ‘healthy’ environment –
or niche – will elicit beneficial cell behaviour in contrast to the environment present
after injury. Still, this insight has been largely ignored in the design of strategies to
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repair or regenerate the myocardial tissue. For instance, cell-based therapies aim to
restore tissue contractility by injecting new (contractile) cells in the injured area
[10]. Despite promising results in in vitro settings, long-term preclinical and clinical
studies have shown that these strategies fail to regenerate myocardial tissue and
overall cardiac function [11–14]. One of the main reasons is that these studies mainly
focus on cell phenotype and function before implantation, disregarding the effects of
the highly injured ECM niche with altered mechanical properties that will be found
upon transplantation. In an attempt to induce cell adaptation to the diseased envi-
ronment prior to implantation, some studies exposed cells in vitro to mechanical or
biological environmental cues before in vivo injection [15–17]. However, the toxic
environment still caused low cell retention, high cell death and low mechanical
stability upon injection in the diseased area.
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Hence, it is difficult for the cells alone to overcome the highly destabilised
mechanical tissue present after cardiac injury. Several studies have shown that
cells upon implantation start synthesising and remodelling their own (healthy)
ECM [18, 19]. This principle is copied by scientists in the context of in vitro cardiac
tissue engineering (cTE) [20]. In vitro cTE seeks to create living myocardial tissue
by combining cardiac cells with a temporary ‘healthy’ niche prior to transplantation,
either as a patch or as an injectable gel replacing the damaged area [21]. Multiple
biomaterials, from either natural or synthetic sources, have been developed in the
form of hydrogels or scaffolds to provide for such niches [22–26]. The use of natural
source biomaterials, such as collagen or other ECM components, seems attractive, as
they can offer some of the biochemical cues present in the native tissue.
Decellularised cardiac tissue – e.g. from animals – can provide scaffolds with
appropriate mechanical, topological and biochemical properties [27–29]. On the
other hand, synthetic polymers can provide scaffolds with better tuneable mechan-
ical properties compared to the natural processed ECM but offer poor biochemical
signals with fewer cell recognition motifs if applied in pristine form. Bioactive
modification of such materials is pursued for the design of life-like materials that
can mimic both mechanical and biochemical environmental cues [30–33]. Overall,
these approaches fulfil the aim to provide new cardiac cells with a relevant
micromechanical environment.

cTE constructs, based either on natural or on synthetic biomaterials, are usually
implanted on the epicardium near the infarcted region of the myocardium and serve
to constrain and mechanically reinforce the ventricular wall in order to prevent or
halt pathological tissue remodelling [34]. However, mechanical consequences of
patch transplantation or hydrogel injection are still largely overlooked. Proper
mechanical integration of the delivered cTE constructs across length scales from
local cell-cell and cell-ECM interactions to global tissue contraction is necessary for
the success of these strategies. Mechanical mismatch will cause complications,
including heart failure and diastolic dysfunction.

More recently, in situ cTE has emerged as a promising alternative to traditional
in vitro cTE to achieve tissue regeneration directly at the functional site. In situ cTE
is built on the notion that the injection of a biomimetic acellular scaffold into the
injured myocardium stimulates endogenous repair processes [35]. However, in situ



cTE approaches are still in their infancy, and the governing processes of regeneration
are still largely unknown. These processes range from the activated immune
response in response to the biomaterial inside the body to the mechanical factors
governing de novo ECM formation and organisation. In situ cTE has major benefits
over in vitro cTE in terms of costs, availability and regulatory complexity, as it uses
an acellular scaffold to harness the regenerative potential of the native tissue. In
addition, in situ cTE does not need to account for the mechanical integration of
exogenous cells in the damaged tissue. Nevertheless, the mechanical and electrical
coupling and stabilisation at the cellular, tissue and organ level upon biomaterial
delivery need to be addressed.
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Fig. 1 Cell-based therapies cannot restore the mechanical properties of the injured myocardium. In
vitro and in situ tissue engineering strategies using hydrogels and scaffolds reinforce injured
myocardium with moderate success. The main challenges to improve the mechanical stability of
current cardiac regenerative strategies are highlighted. Partly created with BioRender.com

In summary, and with an eye to clinical translation, the design of successful
cardiac regenerative strategies should address several aspects regarding the role of
biomechanics in myocardial repair or regeneration (Fig. 1). These include questions
such as: What are the mechanical properties of native and diseased tissues at the
various length scales of the myocardium that will affect therapy outcomes? How will
these properties influence cell and tissue behaviour in vitro and upon transplantation
in vivo? How do biomechanical factors influence the remodelling of the regenerating
myocardium in damaged and remote areas? In this chapter, we first describe the
complex cardiac mechanical environment across length scales from macro to micro
level and the techniques used for characterising mechanical behaviour at these length
scales. Next, we review in vitro and in silico cardiac models to understand the impact
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of the cardiac mechanical environment on cellular behaviour and tissue regeneration.
Finally, we provide an outlook on the requisites to design the next-generation
engineering strategies for cardiac regeneration.
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2 Understanding the Multiscale Biomechanical Properties
of the Myocardium

Cardiac tissue, and especially the myocardium, is a complex tissue with multiple
interconnected length scales (Fig. 2a–c) organised into a highly structural and
functional hierarchy, ranging from whole heart biomechanics to the functional unit
of contraction (the sarcomere) inside the cardiomyocytes [40].

At the macroscale, in particular in the left ventricular (LV) myocardial wall, tissue
fibres form a right-handed helical structure close to the inner part of the wall (the
endocardium), left-handed towards the outer part of the wall (the epicardium) and a
circumferential structure in between [41, 42] (Fig. 2a). The changes in fibre orien-
tation are smooth throughout the LV wall. During systole, due to this helical
organisation, the myocardium rotates relative to the base to ensure complete blood
ejection from the left ventricle [43]. Nonetheless, this description of LV wall
organisation is a simplification because it omits other anatomical structures, includ-
ing the extensive vascular network across the whole myocardium [44]. At the
mesoscale, each of the ventricular fibres consists of an anisotropic array of cardiac
cells (cardiomyocytes and fibroblasts) in parallel alignment with the ECM fibres
(mainly collagen fibres) to ensure the coordinated contraction of the LV (Fig. 2b). At
the microscale, cardiac cells, specifically the cardiomyocytes, form aligned,
interconnected bundles that attach to ECM fibres to transduce the cellular contractile
forces throughout all myocardium and generate coordinated contraction
(Fig. 2c) [36].

The mechanical properties of the myocardium differ across length scales. How-
ever, basic mechanical concepts can be identified independently of these scales.
These include the deformation and forces present in the tissue (strain, ε, and stress,
σ), the elastic stiffness (Young’s modulus, E) and the complex G* modulus account-
ing for the viscoelastic properties (Table 1). Although they express the same physical
concept, the interpretation of the values has to be correlated with tissue physiology
and structure at each of the scales addressed.

In clinical practice, there are already established techniques to measure LV
macroscopic strain based on ultrasound (echocardiography) and magnetic resonance
imaging (MRI) [45–47]. One of the advantages of these techniques is that they are
non-invasive, allowing the assessment of cardiac mechanical properties in patients.
Echocardiography imaging is established as a gold standard technique, and it is
based on analysing the LV wall motion by tracking speckles (natural acoustic
markers) in the ultrasonic image. These acoustic markers appear physiologically in
the myocardium and can be tracked frame to frame. By post-processing software, the
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Fig. 2 Physiological structure, techniques to measure mechanical properties of cardiac tissue and
mechanical properties at the three relevant scales. (a) Differential layer organisation of muscle fibres
in the myocardium. (b) Cardiac cells (cardiomyocytes, red; fibroblasts, green) are anisotropically
oriented along ECM fibres (blue). (c) Cardiomyocytes transmit the contraction force to the ECM by
cell-ECM attachments (grey). (d) MR image of a human thorax. Red and green lines delineate the
inner and outer parts of the myocardial wall necessary to compute myocardial strain. (e) Biaxial
tensile tester setup. A porcine myocardial tissue strip is attached to four lever arms. (f) Microscopy
phase-contrast images of 12 μm thick decellularised LV mouse heart probed with AFM. (g)
Circumferential strain bull eye computed by MRI. Values are negative, depicting the contraction
of the tissue. Regions closer to the centre correspond to myocardial regions near to the apex of the
heart. (h) Representative strain-stress (σ-ε) curve measured by tensile testing. Non-linear visco-
elastic behaviour is a characteristic of the passive mechanical properties of cardiac tissue. The



geometric shift of each speckle can be calculated to assess tissue movement and, as
such, tissue strain can be computed [48]. Similarly, MRI techniques are based on
tracking features in the image over time to compute the displacement of the
myocardium and, therefore, the strain present in the tissue (Fig. 2d, g) [49]. The
information that can be extracted from these 4D images are the longitudinal,
circumferential and radial strains. Usually, the strain values are represented by
negative values as the reference deformation is set at the end of the diastole
[50]. The strain present in the in vivo myocardium accounts for the tissue distensi-
bility and gives an estimation of the overall function. After MI, strain at the affected
area diminishes compared to the healthy area [51]. However, detailed knowledge of
myocardial wall stress, particularly in humans, remains elusive. This lack of knowl-
edge is primarily because forces or stresses cannot be directly measured in the intact
myocardial wall [52]. To this end, several indirect methods, including analytical and
finite-element modelling, have been used to estimate the stress present in the tissue
[53–56]. Based on that, stress-strain relationships can be built, and the E value
calculated.
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Besides the active tissue contraction present in vivo, the passive mechanical
properties of the myocardium significantly contribute to overall cardiac function
[57, 58]. Throughout the literature, the E for soft biological tissues has physiological
values in the range of 1–100 kPa [5]. The E gives an estimation of the elastic
mechanical properties of the tissue. However, just an E value is not enough to
fully understand the mechanical behaviour of soft biological tissues. Additionally,
it is necessary to mention at which scale and with which technique the value has been
measured as this includes the information of physiological structures that are being
measured.

At the mesoscale, the mechanical properties of myocardial tissue are
characterised from small ex vivo tissue strips of a few millimetres, subjected to
uniaxial, biaxial or even triaxial tensile tests (Fig. 2e). The strips are attached to a
lever arm controlled by an electromechanical or hydraulic servo-controlled displace-
ment actuator that deforms the strip while it measures the force applied. Therefore,
the σ-ε curve can be computed by calculating the relative deformation of the strip
and the force applied per unit cross-sectional strip area (Table 1; Fig. 2h). This
process is done to normalise deformation and force for the sample size and, hence, to
allow a comparison of experimental results from strips with different sizes. The E

Fig. 2 (continued) hysteresis between mechanical loading (solid line) and unloading (dashed line)
indicates energy loss. The progressive recruitment of collagen fibres explains the non-linear
behaviour. (i) Representative force (stress) versus indentation (strain) curve acquired with AFM
on a decellularised cardiac tissue slice. Mechanical properties at the microscale are also viscoelastic
(the difference between approaching and retracting curves). The appropriate contact model
depending on the AFM tip geometry is used to fit the experimental data. (a–c, h) Adapted from
[36] and reprinted under Creative Commons (CC BY) license. (e) Adapted from [37] and reprinted
under Creative Commons Attribution 4.0 International License. (f) Adapted from [38] and reprinted
with permission from Elsevier. (i) Adapted from [39] and reprinted with permission from Elsevier
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value of the strip can easily be derived by computing the derivative of the σ-ε curve.
However, the σ-ε curve exhibits a more complex mechanical behaviour than just
elastic. The hysteresis of the curve (difference between loading and unloading curve)
depicts energy loss behaviour, typical of viscoelastic materials. The energy loss
results from frictional processes, such as tissue fluid movement, and is commonly
observed in soft biological tissues [59]. Moreover, the σ-ε behaviour of living soft
tissues is highly non-linear. This behaviour can be mainly explained by the state of
the ECM fibres inside the tissue, including the structural organisation of the collagen
fibres. At the relaxed state of the tissue (low strains), the collagen fibres are wavy. By
increasing the strain present in the tissue, the fibres start to unfold, collagen fibre
recruitment increases and the σ-ε curve becomes non-linear (Fig. 2h) [60]. This
strain stiffening effect is advantageous for a tissue as it becomes increasingly
resistant to extension in order to prevent excessive deformations and tissue
damage [61].
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Table 1 Basic mechanical concepts of viscoelastic biological tissue characterisation

Mechanical
parameter

Engineering
strain

ε Ratio of total deformation to the initial dimension of the tissue

Stress σ Normalised force applied per unit area of the tissue

Young’s
modulus

E Relationship between σ and ε in the linear region of the tissue

Complex shear
modulus

G* Ratio of σ to ε under vibratory conditions to account for viscoelastic
tissue properties
Complex G* is decomposed as G*(f) ¼ G0 + iG00 being i the
imaginary unit. The real part, G0, is the elastic modulus that
accounts for the elastic features of the sample, and the imaginary
part, G00, is the loss modulus which characterises viscous
dissipation

Loss tangent G00/G0 Ratio of the viscous modulus to elastic modulus in a viscoelastic
material. This ratio is an index of solid- or liquid-like behaviour of
the sample. For a pure elastic material G00/G’ ¼ 0. Conversely, a
pure viscous material has G00/G0

The mammalian healthy and diseased mechanical properties of the myocardium
at the mesoscale have been the subject of extensive investigation in the past two
decades [62–64]. Healthy myocardium shows anisotropic behaviour (e.g. different
mechanical properties depending on the measured direction). E of healthy myocar-
dium ranges from 1 to 10 kPa at a physiological tissue strain [65]. On the other hand,
the post-MI myocardium shows a stiffer and isotropic behaviour, correlating with the
disorganised distribution of collagen fibres found in the post-MI fibrotic scar
[66, 67]. These findings support the notion that the ECM fibre organisation domi-
nates the mechanical properties of the scar. In order to measure only the contribution
of the ECM in the fibrotic myocardial scar and exclude the cellular effect, some
studies have decellularised the samples before testing [68, 69]. Knowledge of the



mechanics of decellularised ECM will support the design of novel biomaterials for
cardiac tissue engineering.
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At the microscale, the mechanical properties are determined by individual ECM
fibres and cells. The most suitable technique to measure mechanics at this scale is
atomic force microscopy (AFM) [39]. AFM probes micromechanical properties of a
thin tissue slice (or a single cell for that matter) by indenting its surface with a
microfabricated cantilever ended with a pyramidal or spherical tip (Fig. 2f)
[70]. This technique allows the measurement of tip displacement with nanometre
resolution and simultaneous measurement of the applied force (Fig. 2i). AFM
measurements provide essential mechanical information at the scale at which cells
probe their own microenvironment. Micromechanical properties of heart tissue have
been studied utilising AFM on fresh (ECM and cells) and decellularised cardiac
slices of different species [38, 71–74]. Post-MI tissue mechanical properties showed
a dramatic increased E compared to the healthy tissues (approximately three- to
fourfold increase). Moreover, the loss tangent of G* (G”/G’, see Table 1) showed
that the viscous tissue contribution of cardiac tissue at the microscale is around ten
times lower than the elastic contribution, indicating that tissues show a solid-like
behaviour [38].

Another major contributor to tissue mechanics are the cardiac cells. Characteri-
sation of cardiomyocyte single-cell beating forces, frequency and cellular viscoelas-
ticity has been studied using AFM [75]. A major advantage of AFM to measure cell
mechanical parameters over other techniques, such as traction force microscopy or
optical tweezers, is that AFM directly measures force and deformation without
complex data processing. Different cell types largely used in cTE, such as human
embryonic stem cells (hESC)- and induced pluripotent stem cells (iPSC)-derived
cardiomyocytes, show different mechanical phenotype [76]. hESC-derived
cardiomyocytes showed a beating force twofold lower than iPSC-derived
cardiomyocytes, both showing single-cell forces in the range of nanonewton. More-
over, the most interesting fact is that cells showed an increased beating force when
cultured in clusters showing that cell-cell connectivity plays a role in overall tissue
force [76]. Additionally, cell viscoelasticity has been linked to several diseases
[77, 78]. Laminopathies are a family of genetic diseases affecting the cardiomyocyte
normal function and are caused by a mutation of the intracellular proteins called
lamins. This mutation causes a loss of structural cell integrity, showed by a
decreased E, with a lower cell-ECM adhesion affecting force generation and trans-
mission towards surrounding cells and tissues [77]. Also, using primary
cardiomyocytes from young and old rats, it was demonstrated that age correlates
with a decreased cell shortening, increased relaxation time and increased E. These
results indicate that cardiomyocytes from old animals are less deformable and
contractile and suggest that cardiomyocyte mechanical changes per se can contribute
to age-related diastolic LV dysfunction [79]. Overall, the data demonstrate that
active and passive mechanical properties of cardiomyocytes also contribute to the
overall tissue mechanics.

Obviously, mechanical data need to be handled with caution when designing
novel strategies and biomaterials to mimic the healthy and diseased cardiac cellular



niche. Additionally, there is still a lack of knowledge on the relation between cardiac
mechanical properties and cardiac mechanical function. Fundamental insights into
structure-function properties at all length scales from cell to organ are required and
should be integrated to predict the consequences of mechanical changes at the
microscale for cardiac function at the macroscale and vice versa. In the following
sections, we will review the models used to understand the impact of cardiac
mechanical properties on cell and tissue function.
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3 Mechanics-Based In Vitro Models to Understand Cardiac
Behaviour at the Micro- and Mesoscale

cTE strategies are also designed to study the effect of the mechanical cardiac stimuli
on cardiac cells. This section reviews in vitro cTE platforms mimicking the cardiac
mechanical properties at the microscale (cells) and mesoscale (microtissues).

3.1 Cardiac ECM Organisation

The healthy myocardium at the micro- and mesoscale shows highly organised,
anisotropic ECM fibres in contrast to the highly disorganised, isotropic ECM
structure found after injury. Several in vitro methods have been described to
mimic this organisation of healthy and diseased myocardium. First, a commonly
used approach is microcontact printing that serves to pattern cell culture substrates
with various ECM proteins, including fibronectin, laminin, collagen, Matrigel and
gelatin [80–87]. Microcontact printing allows recreating the microscale
two-dimensional environment by patterning the substrate with a high resolution of
just a few micrometres. By changing pattern geometry, cells are forced to adopt
specific (dis)organised alignment. A logical consequence of reproducing the highly
organised healthy myocardium is that the cardiomyocytes become elongated with an
increased contraction force compared to cells on a disorganised pattern [81, 84, 86].

At the mesoscale, the cTE gold standard technique to study cardiac in vitro
conditions is the engineered heart tissue (EHT) pioneered at the end of the last
century [88]. EHTs are cardiac microtissues composed of cell-laden and ECM
mimicking biomaterial, moulded between constraints or stretching posts. Classical
EHTs are composed of two stretching posts creating a unidirectional microtissue
mimicking ECM anisotropy of the myocardium. More recently, to mimic the chaotic
tissue organisation and force distribution after injury, EHTs were fabricated either
with uniaxial and biaxial post distribution. To this end, the organisation and
mechanical forces have been manipulated from organised to disorganised, respec-
tively [89, 90] (Fig. 3a). This mesoscale model will enable the understanding of the
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Fig. 3 Mechanical-based microscale and mesoscale in vitro models to understand cardiac cell
behaviour. (a) Mesoscale microtissue with PDMS uniaxial or biaxial constraints to manipulate
tissue organisation. The cells (red) seeded inside the collagen (green)-based hydrogels compacted
around the posts. Collagen fibres’ orientation shows an (an)isotropic distribution depending on the
uniaxially or biaxially constrained tissues. Adapted from [89] and reprinted with permission from
Oxford University Press. (b) Neonatal rat ventricular cardiomyocytes cultured on top of 1, 10 and
50 kPa PAA gels (left to right). Actin fibres (green) and contraction forces are maximised at
physiological ECM stiffness of 10 kPa. Adapted from [91] and reprinted with permission from
Elsevier. (c) Device based on a flexible membrane with cells seeded on top. The vacuum applied
underneath the membrane stretches the flexible membrane which is supported by a loading post.



principles of ECM remodelling after injury and how it can be restored towards an
organised ECM.
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3.2 ECM Stiffness

A myriad of biomaterials has been developed to simulate the stiffness of healthy and
diseased myocardium. Hydrogels from natural (non-cardiac ECM) and synthetic
sources such as gelatin methacryloyl, polyethylene glycol (PEG), alginate, poly-
acrylamide (PAA) and polydimethylsiloxane (PDMS) are regularly used due to
tuneability of E [84, 94–100]. It has been demonstrated that culturing
cardiomyocytes on substrates with a physiological E maximises their contractility
and the number of intracellular actin stress fibres, whereas increased or decreased E
disrupts their cytoskeletal structure and reduces their contractile force [84, 91]
(Fig. 3b). On the other hand, hydrogels from reconstituted natural cardiac ECM,
such as decellularised ECM, induce better biochemical activity and increased
remodelling capacity of the encapsulated cells while being able to control their
mechanical properties via chemical crosslinking of the gel [29, 101, 102].

Additionally, the viscoelastic properties of some of these materials can be con-
trolled. A recent study developed a nanostructured alginate-based hydrogel allowing
control over stress-relaxation properties without changing the E. Using this material,
the authors showed that stress relaxation affects cardiomyocyte intracellular con-
traction [103]. Another study indicated that varying the monomer and crosslinker
concentration of PAA hydrogels allows to control the viscoelastic properties [104].

Overall, the described hydrogels can mimic the mechanical properties of healthy
and diseased cardiac tissue but cannot capture the dynamics of cardiac remodelling
after injury due to the covalent crosslinking between structural polymeric fibres in
the gels. A new class of hydrogels offers control over crosslinking dynamics and
consequent manipulation of hydrogel dynamic mechanical properties. By incorpo-
rating reversible crosslink methods, the properties of such hydrogels can be changed
instantly by applying an external trigger, such as temperature, light or a chemical
agent [105, 106]. For example, PEG was modified with a photo-sensible and
reversible crosslinker that allowed to dynamically tune the viscoelastic properties
by the use of blue light. Importantly, these changes were even possible when
culturing cells inside the hydrogel [107]. Another recent example addresses a

⁄�

Fig. 3 (continued) Cardiomyocyte progenitor cells show strain avoidance behaviour depending on
their differentiation state. Adapted from [92] and reprinted with permission from Elsevier. (d)
Schematic representation of the Biowire II platform. Cell-seeded collagen-based hydrogels are
attached to uniaxially constrained wires. The system can be electrically paced with carbon elec-
trodes and using an external electrical source. Adapted from [93] and reprinted under ACS
AuthorChoice License



pH-sensitive hydrogel that enables changing the crosslinking degree by dynamic pH
changes [108].
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3.3 Strain on Cells

Cardiac tissue is constantly subjected to static (pre-stress present in the tissue) and
cyclic strain (beating), and these strains may change with disease progression.
Therefore, it is of utmost importance to investigate the mechanoresponse of cardiac
cells to the experienced strain under conditions of health and disease. Most studies
investigating strain responses make use of two-dimensional systems to apply (cyclic)
uniaxial or equibiaxial strain [109]. Commonly, the cells are seeded on top of a
flexible membrane that is stretched, transmitting the deformation of the membrane to
the cells [92] (Fig. 3c). Because study designs differ in strain magnitude and
frequencies used, comparison of study outcomes is cumbersome [110–112]. How-
ever, a common phenomenon has been observed in cardiac fibroblasts in response to
cyclic strain. This phenomenon is called strain avoidance and refers to the
re-orientation of cells perpendicular to the direction of applied cyclic strains
[113, 114]. The physiological interpretation of this behaviour is that cells turn
away from the stretch direction to experience minimal deformation on their cell
body and nucleus. In fibroblasts, strain avoidance has been observed in
two-dimensional and three-dimensional in vitro models [115–117]. However, strain
avoidance is less clear in cardiomyocytes with several studies indicating that
cardiomyocyte strain avoidance depends on the differentiation state of the cell, the
strain rate and strain duration [92]. More recently, it was demonstrated that
cardiomyocytes derived from a pluripotent stem cell source do not show strain
avoidance. However, when co-cultured with cardiac fibroblasts (with a strain avoid-
ance response), the cardiomyocytes did show strain avoidance and rotated along
with the fibroblasts [118]. Hence, the effect of strain on cardiac cell behaviour is also
influenced by the interplay between different cell types present in the tissue.

Strain generated on cardiac cells also has a significant impact on their phenotype
via mechanotransduction pathways. One of the main current challenges regarding
cell models in cTE is to obtain highly mature cardiomyocytes from pluripotent stem
cell sources resembling adult cardiomyocytes found in vivo. Mechanical factors and,
in particular, tissue strain have been shown to play a critical role in maturation
process [119]. Numerous studies have been conducted to understand how cyclic
mechanical strain affects cardiomyocyte maturation at single-cell and tissue levels
[120–124]. Most of these studies showed that cyclic strain increases sarcomere
formation, cardiac ion channel expression and contraction force and frequency of
cells and tissue. Importantly, the strain magnitude and frequency applied to the
tissues are essential to achieve better maturation [125, 126]. Cyclic strains around
10% showed to induce increased cardiomyocyte maturation compared to lower
strains of 5% [127]. On the other hand, large strains (mimicking increased afterload)



have shown to cause pathological hypertrophy in vitro with larger cardiomyocytes
but with decreased contractile function [128, 129].
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3.4 Mechanoelectrical Feedback

The highly interconnected cardiomyocyte network controls the coordinated contrac-
tion of the myocardium and whole heart rhythm. Cardiomyocytes, at the microscale,
depolarise their cellular membrane in the presence of an electrical stimulus. This
depolarisation triggers the release of intracellular calcium ions responsible for
activating the cell’s contractile machinery. In an in vitro setting, generally, the
mesoscale tissues containing mature adult cardiomyocytes start beating due to
their autorhythmic properties [89]. However, in pathophysiological conditions
these tissues often beat non-synchronously due to a lack of proper cardiomyocyte
and fibroblast organisation and cell-cell contact inside the hydrogel [130]. To over-
come the appearance of arrythmia in cTE tissues, these are generally paced by
applying an external electric field during long-term tissue culture. To this end,
several approaches have been implemented with notable success [109, 131]. As an
example, the Biowire and Biowire II platforms (Fig. 3d) have been demonstrated to
improve intracellular calcium handling, contraction force and synchronicity of
beating [93, 132].

3.5 Developing Integrated Models for Mechanical
Consideration In Vitro

In the context of designing strategies for cardiac regeneration, it is not only necessary
to understand how mechanical stimuli influence cell and tissue behaviour, but it is
also fundamental to integrate such stimuli across length scales to better recapitulate
the in vivo situation. For this purpose, the development and use of bioreactors are
pursued. A bioreactor is typically defined as a device that provides tight control of
the environmental conditions and external stimuli (biochemical and biomechanical)
that influence cell and tissue culture processes [133].

Oxygen tension is of paramount importance in affecting cardiac cellular and
tissue behaviour [134, 135]. After MI, there is a loss of perfusion in the scar region
that leads to a decreased oxygen level or hypoxia. It has been previously shown that
hypoxia enhances the migration and differentiation capacity of pluripotent stem cells
derived to cardiomyocytes [136, 137]. Moreover, low oxygen tensions stimulate the
ECM-producing phenotype of cardiac fibroblast, maintaining the presence of fibrotic
tissue after injury, having a direct impact on cardiac tissue mechanics [138]. There-
fore, the use of bioreactors capable to mimic (patho)physiological oxygen tensions is



critical to further understand the mechanical implications on the behaviour of cTE
strategies.
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Biomechanically, the main goal for cTE is to synchronise contraction with
appropriately timed mechanical or electrical stimulation to mimic ventricular filling.
Independent control over individual input signals further allows for manipulating
disease progression, e.g. via changes in the stretch (haemodynamics) and electrical
signal patterns (e.g. arrythmias). Various bioreactors have been designed for apply-
ing mechanical and electrical stimuli simultaneously [139–141]. For example, an
electromechanical bioreactor platform was able to provide static stress to
microtissues using a pneumatically driven stretch device. It consisted of a tissue
culture chamber where several tissue constructs (20 mm � 20 mm � 3 mm) were
subjected to frequencies and amplitudes of cyclic stretches and electrical pulses
matching the native tissue [142]. Moreover, it is also important to track over time the
changes in mechanical properties of the tissues inside bioreactors as a parameter
to understand tissue growth and remodelling. A recent study developed a bioreactor
to test cardiac tissues under dynamic loading together with an ultrasound system to
trace non-invasively the mechanical properties of the tissue over time [143].

4 In Silico Models to Study the Mechanics of Myocardial
Remodelling and Regeneration

The rapid development of digital technologies has enabled the development and
application of computational models in many fields nowadays. Computational
models in bioengineering, commonly referred to as in silico models, enhance the
knowledge of various biological tissues’ behaviour at different scales. Moreover, a
multiscale approach can integrate knowledge from different scales into an overall
simulation of the tissue behaviour and thus become more relevant for analysis and
predictions.

The use of in silico models for simulating cardiac tissue function has rapidly
expanded in the last years, especially for simulating drug testing and considering
chemical coupling within the tissue. The computational platforms for testing novel/
existing drugs have achieved widespread approval on different aspects – ethical,
toxicological and economic [144]. Besides the platforms for drug testing, the major
interest of in silico models lies in capturing cardiac systolic/diastolic functioning and
electrical coupling, from micro- to macroscale [145]. These models usually neglect
the biomechanics of the heart and/or miss to include the mechanical environment for
the cells [146]. Moreover, there is a gap in linking electro-mechanical coupling of
the heart to the contraction of the tissue at different length scales. Improvement of in
silico models in this area is suggested to result in models that can predict the change
of tissue mechanical function in response to tissue remodelling under conditions of
health, degeneration and regeneration. A such, these models also have to translate
basic research findings on cardiac regeneration into tissue engineering or other



regenerative strategies under pathological conditions, including their altered hemo-
dynamic, electroconductive and tissue mechanical features [147].
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Fig. 4 Scheme of in silico approach in myocardial mesoscale modelling

Current regenerative strategies fail to properly restore the cellular microenviron-
ment and aligned structural organisation after cardiac injury, relevant for coordinated
contraction and tissue mechanical homeostasis, and this is where in silico models can
be very useful in answering the questions about (changing) mechanical impact on
cardiac tissue regeneration [148]. They can be developed to replicate certain exper-
imental observations, e.g. at cell and tissue level, and be further extended to in vivo-
like conditions at the organ scale. By employing a multiscale approach, they can be
also used to investigate the effect of microscale modifications on macroscale func-
tion, much easier than experiments can do [149].

The starting point in the development of in silico models is the connection of
simulated biological processes with data from in vitro or in vivo experiment(s), or
those from the literature, since each computational model needs meaningful input
data for robust predictions (Fig. 4). In this first phase of development, model outputs
are compared with – or validated against – additional experimental findings so that
initially applied boundary conditions of the proposed in silico model are in line with
real-life data. As there are now various in silico models in cardiac research, there is a
tendency to standardise in silico cardiac models in terms of verification, validation
and uncertainty quantification of scientific software [150].

In the scheme depicted in Fig. 4, the input from an in vitro microtissue model is
used to feed the computational model at the mesoscale (tissue level). The outputs
from the in silico simulations can include, for instance, mechanical properties of the
tissue, structural organisation and mechanical contraction in response to the exper-
imental starting conditions. Once validated, the in silico model can be used to
understand and predict outputs in response to new boundary/loading conditions,
e.g. to mimic healthy/diseased states of the microtissue. The added value of such
mesoscale in silico models can be found in the enhanced understanding and



prediction of microtissue behaviour and the reduction and optimisation of further
in vitro models. An additional benefit is the possibility to integrate and translate
insights from the mesoscale level to the macroscale level using multiscale in silico
models [149], which is particularly useful for predicting the outcome of cardiac
regenerative strategies. The final advantage is the usage of in silico models as a
platform for existing/novel drug testing – as has been mentioned before. This section
aims to present current in silico models that mimic the myocardium at different
length scales and with a special reference to mechanical consideration for regener-
ative strategies. Our opinion on future directions in this area will be discussed in the
concluding section.
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In the context of cardiac regeneration, in silico models have been employed to
predict the mechanical consequences and optimise the design or placement of next-
generation cardiac patches in terms of structural organisation and mechanical prop-
erties of the myocardium and to help define the mechanical constraints invoked by
such patches that would lead to reversion or inhibition of adverse cardiac
remodelling.

Urdeitx and Doweidar developed a mesoscale finite element model to simulate
cardiac cellular behaviour such as proliferation, migration, maturation and cell-
matrix adhesion in response to mechanical and electrical cues from the environment
[151]. Cell behaviour was described as a function of cell deformation due to changes
in ECM stiffness and/or electrical stimulation. The model predicted that on soft
ECM, cell alignment and migration improved with increasing (directional) electrical
stimulation. On stiffer ECM, cells showed enhanced maturation and proliferation.
However, the mechanical impact considered in the model is limited as it only
considers changes in ECM stiffness, without incorporating the cause of ECM
stiffness changes or hemodynamic loading.

To better understand the potential of cardiac regeneration, tissue (ECM) produc-
tion and organisation by resident or newly delivered cells have been studied in vitro.
When cultured in 3D environments, such as collagen hydrogels enriched with
Matrigel, cardiac cells (both cardiac fibroblasts and cardiomyocytes) contribute to
the production and maintenance of the ECM by ECM synthesis, degradation and
cell-matrix interactions, including cell traction forces [89]. They also respond to
environmental strains by (re)orienting their cell body as well as the ECM fibres
around them (see Sect. 3.3). Mesoscale in silico models of the cardiac tissues have
been developed to successfully describe the underlying biological phenomena of
these processes of healthy tissue remodelling, where fibroblasts align their internal
cytoskeleton (stress fibres) and ECM to form an anisotropic tissue [152–156]. In
response to cardiac injury, for instance, due to ischemia, the heart’s primary response
is to create a scar-like tissue and protect the damaged tissue from rupturing by
ongoing remodelling. Under these conditions the original cell and tissue anisotropy
is lost and fibroblasts differentiate into myofibroblasts, which show a higher pro-
duction of ECM proteins (mainly collagen), leading to reduced compliance and
stiffening of the scar [157]. In silico models that can predict structural (re)-
organisation of the cells and collagen can thus predict disease development of the
tissue but are also instrumental for testing the effects of mechanical conditions



(e.g. constraints by tissue patches) that would allow the transition from an isotropic
to an anisotropic organisation. To this end, the models should describe how cardiac
fibroblasts remodel the collagenous matrix and incorporate cell-mediated traction
forces [158] under both physiological and pathophysiological conditions [154–
156]. When successfully validated, the output from an in silico model that describes
tissue structural remodelling can also be used to design engineered tissues with
optimised and load-bearing collagen organisations [159, 160].
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When modelling the mechano-response of cardiomyocytes, in vitro and in silico
models have focused on describing cardiomyocyte organisation and alignment at the
mesoscale, either or not in the presence of fibroblasts. These models show that
cardiomyocytes align with the stress direction and alongside collagen fibres in
uniaxially constrained microtissues, but show no alignment in biaxially constrained
microtissues [89, 161]. The aligned structure is essential for coordinated and
synchronised contraction and proper propagation of electrical signals. Cross-
sectional compaction of uniaxial constrained tissues further contributes to alignment
and increases with the percentage of fibroblasts present in the tissue. Forceful
contraction requires a high percentage of aligned cardiomyocytes and fibroblasts
to establish conduction and synchronised beating. Hence, next to structural
remodelling, cell ratios and alignment at the mesoscale should be incorporated
when mimicking regenerative strategies to reverse or halt remodelling of cardiac
scar tissue at the macroscale. Vice versa, the influence of hemodynamic loading
conditions as well as active and passive mechanical behaviour at the macroscale
[162] will influence cell alignment at the meso- and microscale.

Macroscopically, the myocardium is organised in differently orientated
two-dimensional anisotropic sheets that follow a helicoidal shape from the epicar-
dium to the endocardium. Hence, the local coordinate system is represented by
three axes: fibre orientation, sheet orientation and normal to the sheet orientation
to capture anisotropy of the tissue. There are two approaches to computationally
include myocardial organisation within the cardiac geometry at the macroscale:
patient-specific and numerically approximated. The inclusion of patient-specific
organisation is the ultimate goal of all predictive in silico models, since it takes
into account the real structure of the tissue, obtained by image reconstruction of
patient-specific MR images. The fibre directions can be measured from MR images
leading to the generation of patient-specific structure and geometry, which is a great
improvement in numerical modelling despite their time-consuming feature
[163]. Sometimes it can be more convenient to avoid image reconstruction for
each patient separately. By mapping fibre orientations from the geometry of one
patient to the cardiac geometry of another patient, time, money and effort can be
reduced, but this approach is less accurate [164]. To simulate generic behaviour of
the myocardium at the macroscale, including the influence of tissue organisation,
numerical approximations can be used, where myofibril helix angle changes linearly
from �60 � � 10� at the epicardium to 60 � � 10� at the endocardium side
[165]. Which approach will be selected depends on the purpose of the in silico
model.
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Cardiac in silico models describing macroscopic mechanical behaviour com-
monly model left ventricle (LV) behaviour. The LV, representing the largest shape
and volume of the four-chambered heart, experiences the highest stresses and strains,
and its function is most often and most severely affected by disease. The most
valuable output from these LV models is the quantification of myocardial mechan-
ical parameters under in vivo-like hemodynamic loading, in particular LV wall
stress, which cannot be measured experimentally but is important in disease predic-
tion since it is indicative of cardiac wall (dis)function. By changing the mechanical
properties of the LV wall at certain locations, different pathological conditions can
be simulated. For instance, when incorporating differential mechanical properties for
scarred tissue, border zone and healthy remote tissue based on patient-specific MR
images, these models can be used to predict the severity and functional consequence
of myocardial infarction [166]. Yet, the LV models generally do not account for
tissue organisation and remodelling at lower length scales, so they cannot simulate
the progression of fibrosis and functional consequences at later stages after infarc-
tion. A second disadvantage of these models is a simplified representation of
electrical conduction and electro-mechanical coupling.

The final goal of in silico models is the integration of insights obtained across
length scales (cell, tissue and organ) into multiscale models that can provide more
detailed information on cardiac behaviour, predict disease progression and improve
existing or establish novel regenerative strategies. So far, multiscale in silico models
have mainly focused on describing the effects of pharmacological agents and
electrical conduction from cell to organ, while multiscale mechanical interactions
have remained largely unexplored. Future directions in the development of in silico
myocardial models to support the improvement of existing or creation of novel
regenerative strategies lie in predicting the effects of mechanical loading/unloading
on tissue remodelling and mechanical functioning at different length scales.

Knowledge obtained from experiments and simulations at cell and tissue scale
should be translated into the in vivo situation of the whole heart to ultimately
understand how cardiac tissue will remodel under whole-organ hemodynamic load-
ing conditions and depending on (changing/heterogeneous) cardiac wall mechanical
properties. The SIMULIA Living Heart Project1 could offer the next step in the
development of more complex multiscale electromechanical cardiac models. This
project gathers some of the most prominent researchers in cardiovascular area from
different branches, with the purpose to create a multidisciplinary vision in the
development of cardiac computational models for clinical use. The project integrates
various features relevant for cardiac function, such as the detailed geometry of the
whole heart, electrophysiology, active and passive mechanical properties of the
cardiac wall, blood flow and the feedback of the circulatory system on cardiac
function. Using the available computational methods to model myocardial infarction
and tissue remodelling at the mesoscale, the macro model could, for instance, predict

1Living Heart Project | SIMULIA™ - Dassault Systèmes® (3ds.com)| SIMULIA™ - Dassault
Systèmes® (3ds.com).

https://www.3ds.com/products-services/simulia/solutions/life-sciences-healthcare/the-living-heart-project/
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how tissue-engineered epicardial patches or biomaterial injection in the cardiac wall
would influence tissue remodelling in the infarct area and subsequently how cardiac
function as a whole could be improved.
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5 Conclusion

Even though the progress in the development of cardiac regenerative strategies can
be observed, long-term clinical benefits are still to be expected. Current strategies
largely omit the mechanical consequences after implantation of cells or tissue-
engineered constructs, suggesting that more attention should be paid to mechanical
considerations in the processes of tissue formation and remodelling. The use of
in vitro and in silico models, together with a thorough mechanical characterisation of
myocardial tissue at different length scales, is required to understand and predict the
effects of the mechanical cues (e.g. loading and ECM stiffness) on cells and tissues.
In this context, it should be noted that mechanical properties of cardiac tissue are
influenced by the scale at which they are measured, highlighting the need to use the
appropriate technique at each scale. Microscale and mesoscale in vitro models need
to integrate these mechanical properties to better understand the effect on cell and
tissue behaviour. Moreover, in silico models can provide significant assistance in
simulating a multiscale cardiac response upon improvement of existent or develop-
ment of novel models. Regarding in silico models that describe mechanical behav-
iour, the literature mainly reports on models at the meso- and macroscales but does
not provide multiscale models that can simulate cardiac tissue remodelling or
regeneration based on such processes at cellular or tissue level. The development
of multiscale predictive models could illuminate native-like mechanical conditions
that can provoke remodelling of fibrotic tissue (e.g. change of mechanical loading
and change of stiffness), but more importantly translation of these conditions into the
effect of regenerative strategies, such as patches with regionally different stiffness.
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Mechanobiology of Exercise-Induced
Cardiac Remodeling in Health and Disease

William K. Cornwell III and Peter Buttrick

Abbreviations

ARVC Arrhythmogenic right ventricular cardiomyopathy
DCM Dilated cardiomyopathy
ECG Electrocardiogram
EICR Exercise-induced cardiac remodeling
HCM Hypertrophic cardiomyopathy
LV Left ventricle
MRI Magnetic resonance imaging
RBBB Right bundle branch block
RV Right ventricle
Qc Cardiac output
VO2 Oxygen uptake

1 Introduction

Structural changes in the hearts of athletes were initially described in the late
nineteenth century [1, 2]. Using auscultation and a physical examination, Henschen
[1] described the heart of Nordic skiers and, around the same time, Darling [2]
evaluated collegiate rowers to similarly demonstrate enlarged cardiac dimensions.
Since these initial reports, numerous studies over the past century have repetitively
demonstrated the impact of repetitive exposure to intense exercise on cardiac
structure and function among athletes. With advances in technology, heart size and
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function were evaluated in athletes and controls using imaging-based analyses, that
while now somewhat outdated (biplane X-ray and echocardiography), at the time,
provided great insight into the athletic heart [3, 4]. The process of cardiac
remodeling, termed exercise-induced cardiac remodeling (EICR) [5], involves
unique physiologic adaptations based on the type of exercise discipline, leading to
varying degrees of ventricular myocardial hypertrophy as well as dilatation of the
atria and ventricles. This chapter provides an overview of the impact of these
different types of exercise on cardiovascular structure and function, as well as the
essential characteristics of EICR present among different types of athletes.
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2 Cardiovascular Function During Exercise

During exercise, the cardiovascular system delivers oxygenated blood from the
lungs to the musculoskeletal system to support the increase in metabolic demand
that is necessary to sustain work. The Fick equation describes the relationship
between cardiac output (Qc), oxygen extracted from the blood by peripheral tissue,
i.e., the a-vO2 difference (arterial-venous oxygen difference), and pulmonary oxygen
uptake (VO2), according to the following relationship:

VO2 =Qc × a‐VO2 difference

Regardless of age and gender, there is an inviolate relationship between Qc and
VO2 such that Qc increases by 5–6 L/min for every 1 L/min increase in VO2 during
exercise, assuming normal hemoglobin concentration and red cell mass [6–8]. Heart
rate (HR) augmentation during exercise is in direct proportion to exercise intensity,
results from both vagal withdrawal and sympathetic activation, and is responsible for
most of the increase in Qc during exercise. During exercise, the arterial baroreceptor
operating point is reset to operate at a higher blood pressure (BP) [9]. The degree of
resetting is in direct relation to the intensity of exercise and occurs to regulate HR
and BP as effectively during exercise as under resting conditions. Resetting of the
baroreceptors is mediated by both feedforward (central command) and feedback
mechanisms from skeletal muscle afferents (exercise pressor reflex) [10]. Maximal
stroke volume of the left ventricle (LV) during exercise occurs at a relatively low
level of exercise intensity, typically around 50% of maximal oxygen uptake (V  O2

max) in large part due to decreased peripheral vascular resistance with onset of
exercise. Pericardial constraint limits LV end-diastolic volume and prevents further
increases in stroke volume (SV) during exercise [11].

While considerable overlap exists, different types of exercise impose differing
chronic loads on the heart. Using echocardiography, Morganroth et al. [12] were the
first to demonstrate how different types of exercise impact cardiovascular structure
and function. Specifically, Morganroth et al. found that athletes participating in
isotonic or endurance types of exercise (e.g., running, swimming) had increased
LV end-diastolic volume and mass, whereas athletes involved in strength training



component

(e.g., shot-putting, wrestling) had normal LV end-diastolic volumes but increased
wall thickness and mass [12]. This initial observation led to the concept that isotonic/
dynamic exercise leads to eccentric remodeling of the heart, similar to what may be
seen in response to conditions of chronic volume overload, while static/isometric
types of exercise lead to concentric remodeling, similar to what is observed in
response to chronic pressure overload [12, 13]. Building on these initial observa-
tions, exercise is generally divided into two broad categories: dynamic and static
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Table 1 Classification of sports and exercise (adapted from Mitchell et al. [80])

Static

Dynamic component

Low Medium High

(<40% V  O2 max) (40–70% V O2 max) (>70% V  O2 max)

Low Billiards Baseball/softball Badminton

(<20% MVC) Bowling Fencing Cross-county skiing

Cricket Table tennis Field hockey

Curling Volleyball Orienteering

Golf Race walking

Riflery Running (long distance)

Soccer

Tennis

Medium Archery American football Basketball

(20–50% MVC) Auto racing Field events (jumping) Ice hockey

Diving Figure skating Cross-country skiing

Equestrian Rodeoing Lacrosse

Motorcycling Rugby Running (middle-
distance)

Running (sprint) Swimming

Surfing Team handball

Synchronized
swimming

High Bobsledding Body building Boxing

(>50% MVC) Field events
(throwing)

Downhill skiing Canoeing/kayaking

Gymnastics Skateboarding Cycling

Martial Arts Snowboarding Decathlon

Sailing Wrestling Rowing

Sport climbing Speed-skating

Water skiing Triathlon

Weight lifting

Windsurfing

Classification of sports and exercise, based on Mitchell et al. [80]. This classification scheme
provides a general description of different exercises according to the degree of static vs. dynamic
exercise incorporated. Herein, specific exercises are stratified according to the relative dynamic
component according to degree of oxygen uptake (VO2) achieved, resulting in an increasing cardiac
output, as well as a static component according to degree of maximal voluntary contraction (MVC)
achieved, resulting in an increasing blood pressure component



(Table 1) [14, 15]. Dynamic exercise (e.g., running, cycling, swimming) involves
sustained increases in Qc along with reduced total peripheral resistance and imparts a
volume load on the heart. In contrast, static exercise (e.g., weight lifting, strength
training) imposes a pressure load on the heart and involves increases in total
peripheral resistance. Static exercise may lead to very large increases in BP during
exercise. For example, among young (22–28 years old) healthy weight lifters, a leg
press with both legs at 95% of one-rep maximum weight led to an average BP of
320/250 mmHg [16]. Even a single arm curl continued to failure led to an average
BP of 255/190 mmHg [16].
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It is important to emphasize that (1) there is considerable overlap since most types
of exercise incorporate varying degrees of both dynamic and static exercise and
(2) the hemodynamic response and degree of cardiac remodeling vary and depend on
the intensity of endurance/dynamic exercise relative to V O2 max, as well as the
intensity of isometric/static exercise relative to maximal voluntary contraction.

3 The Athletic Heart

3.1 Structural Remodeling of the Left Ventricle

LV size and morphology may vary between individuals according to several factors,
including overall level of fitness, as well as the type, intensity, and duration of
exercise undertaken [17, 18]. Since the initial report by Morganroth et al. [12],
numerous other studies have demonstrated that LV hypertrophy is a hallmark of the
athletic heart. Two landmark meta-analyses characterized the changes that occur in
the heart of different athletes. Fagard found that compared to nonathletic controls,
LV mass was 64% greater in cyclists, 48% greater in runners, and 25% greater in
strength-trained athletes [19]. Pluim et al. [13] further characterized changes in LV
structure by analyzing data from 59 studies, encompassing data from 1451 male
athletes engaging in one of three types of exercise patterns: purely dynamic (e.g.,
running), purely static (e.g., weight lifting), or combined dynamic and static exercise
(cycling, rowing) vs. nonathletic controls [13]. LV mass among controls (174 g) was
significantly lower than LV mass of endurance-trained athletes (249 g), strength-
trained athletes (267 g), and combined endurance/strength-trained athletes
(288 g) [13].

Historically, it was postulated that endurance- and strength-based exercise modal-
ities led to one of two distinctly different ventricular phenotypes (Fig. 1). While data
indicate that there may be significant overlap [13, 19, 20], the majority of human
data support Morganroth’s initial findings, and in fact the same physiologic distinc-
tions have been seen in large and small animals subjected to distinct training
protocols. However, strength training may not lead to overt concentric hypertrophy.
Spence et al. [21] randomly assigned 23 healthy untrained individuals to
endurance vs. resistance exercise for 6 months. Participants underwent cardiac
magnetic resonance imaging (MRI) prior to and following the intervention.



Endurance-trained individuals showed evidence of eccentric hypertrophy, with
increases in LV mass (112.5 ± 7.3 vs. 121.8 ± 6.6 g) and LV end-diastolic volume
(by 9.0 ± 5.0 mL), but interventricular wall thickness did not increase following
6 months of resistance training [21].
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Fig. 1 Sport-specific changes in ventricular structure. While overlap exists between specific types
of sport, endurance training generally imposes a volume load on the heart, while strength training
imposes a pressure load on the heart. Chronic/repetitive exposure to these types of exercise leads to
development of morphologic adaptations characteristic of exercise-induced cardiac remodeling.
Modified from Weiner et al. [5]

3.2 Right Ventricular Remodeling Among Athletes

In response to endurance exercise, right ventricular (RV) enlargement occurs sim-
ilarly to LV enlargement, supporting the concept of what has been referred to as
“balanced dilatation” [5, 18]. Multiple investigations have found that the RV
diameter generally is greater among endurance athletes than nonathletic controls
[22–25]. In a study of elite endurance athletes (N = 127) participating in either
orienteering, cross-country skiing, or middle-distance running, athletes had enlarged
RV chamber sizes compared to historical controls [26]. Similar findings were
described in an analysis incorporating cardiac MRI in endurance athletes (N = 21)
and nonathletic controls [22]. In this analysis, RV mass (77 ± 10 vs. 56 ± 8 g) and
RV end-diastolic volume (160 ± 26 vs. 128 ± 10 mL) were significantly greater
among athletes vs. controls [27].
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In contrast, static types of exercise (i.e., strength training) do not appear to impact
RV size, perhaps not surprising since the stimulus to hypertrophy is largely reflective
of increased afterload on the LV. In one analysis, collegiate athletes engaging in
endurance (rowing, N = 40) or strength athletes (football players, N = 40) were
longitudinally evaluated by echocardiography prior to and following 3 months of
exercise training [28]. Compared to the pre-exercise assessment, rowers demon-
strated increased RV size (pre vs. post end-diastolic area:
1460 ± 220 vs. 1650 ± 200 mm/m2), while strength-trained athletes had no change
in RV size.

3.3 The Impact of Exercise on the Interventricular Septum

Exercise training leads to changes in thickness of the interventricular septum, which
may make it difficult to differentiate an athletic heart from a pathologic heart, such as
hypertrophic cardiomyopathy (discussed in detail below) [29]. In a meta-analysis of
1451 athletes from 39 different studies, nonathletic controls had a smaller septum
than athletes who engage in strength training, endurance training, or combined
strength-endurance training [13]. Further, endurance exercise may lead to scar
formation within the interventricular septum. Among 40 athletes competing in
endurance events of 3–11 h duration, 5 participants displayed evidence of delayed
gadolinium enhancement on cardiac MRI, located within the interventricular septum
and near the RV attachment points [30]. Interestingly, in this analysis, athletes with
evidence of scarring had been competing in endurance events for longer periods of
time and also had evidence of RV structural remodeling [30]. The distribution of
scarring seen in athletes is similar to descriptions of scarring observed among
patients with pulmonary hypertension, suggesting that scarring results, at least in
part, from repetitive (in the case of athletes) or chronic (in the case of pulmonary
hypertension) exposure to increased pulmonary arterial pressures, increasing RV
myocardial wall stress [30–32].

3.4 Atrial Remodeling and the Risk of Atrial Fibrillation

Numerous studies have demonstrated that the left atrium may be enlarged among
competitive athletes [22, 33]. In a study of 1777 competitive athletes, 347 (20%) had
echocardiographic evidence of left atrial enlargement [34]. On multivariable analy-
sis, left atrial enlargement was explained by a dilated left ventricle as well as
participation in endurance sports, such as cycling and rowing [34]. In an analysis
of 370 endurance athletes and 245 strength-trained athletes, the left atrial volume
index was greater in endurance athletes vs. strength-trained athletes
(29.1 ± 9.1 vs. 26.4 ± 8.4 mL/m2) [35]. Among collegiate endurance athletes



(rowers), 90 days of rowing led to a significant increase in left atrial volume index
(pre vs. post training: 28.9 ± 5.7 vs. 31.3 ± 6.2 mL/m2) [28].
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Routine exercise reduces the risk of incident atrial fibrillation and also reduces the
time spent in atrial fibrillation for individuals with established disease [36–38]. How-
ever, there is a U-shaped curve that describes the dose-dependent relationship
between habitual exercise and risk of atrial fibrillation [38–42]. While routine
physical activity reduces the risk of incident atrial fibrillation [36], among highly
trained persons, the risk increases and approximates that of the general population.
Multiple physiologic responses to exercise may account for this association between
exercise and risk of atrial fibrillation [43]. During exercise, increases in systemic BP
and pulmonary arterial pressures predispose to increased intra-atrial pressure
[43]. However, consistent with the hemodynamic effect of exercise on the ventricles,
chronic exposure to exercise—particularly dynamic exercise—repetitively exposes
the atrium to volume overload, leading to atrial dilatation. Interestingly, the lifetime
dose of exercise may, in part, determine left atrial size [44]. For example, 60 athletes
completing the 2010 Grand Prix of Bern, a 10 mile race, were stratified according to
lifetime hours of training into a low (<1500 h), medium (1500–4500 h), or high
(>4500 h) amount of lifetime training. The P-wave duration on ECG increased, and
left atrial volume increased in concert with hours of lifetime training [44]. Atrial
dilatation, a hallmark of the athlete’s heart [18, 45], is a well-recognized factor that
predisposes to atrial fibrillation [46]. At the same time, inflammation occurs in a
dose-dependent fashion with the intensity and duration of exercise [47, 48]. In
addition, pro-fibrotic biomarkers, increased among athletes compared to healthy
control populations, may promote atrial fibrosis [49–52]. Together, these factors
contribute to the development of atrial fibrillation in athletes.

The impact of exercise duration on clinical atrial fibrillation among athletes has
been reported. The incidence of atrial fibrillation and stroke was compared with
~209,000 Swedish cross-country skiers competing in the Vasaloppet and a matched
sample of ~500,000 non-skier controls. Overall, very well-trained men had a higher
incidence of atrial fibrillation than less trained men, but the incidence was compa-
rable to that observed in the general population (HR 0.98, 95% CI 0.93–1.03)
[53]. Female skiers had a lower incidence of arrhythmia than female non-skiers
(HR 0.55, 95% CI 0.48–0.64), and overall, skiers of either sex had a lower incidence
of stroke than non-skiers (HR 0.64, 95% CI 0.60–0.67) [53].

4 Impact of Exercise on Ventricular Function

In response to dynamic exercise, afterload of both the RV and LV increases
progressively as workload intensity increases [32, 54]. In addition, volume on both
sides of the heart increases acutely, at least until an individual approaches his/her
ventilatory threshold [55]. This combination of volume and pressure load applied to
the heart, particularly at higher intensities of exercise, creates an environment that is
favorable to cardiac remodeling in response to repetitive exposure to this stimulus



[17]. In a study of 12 healthy sedentary individuals, 1 year of endurance exercise
training increased LV and RV mass to levels observed in elite endurance athletes
[56]. In this study, participants underwent cardiac MRI prior to initiation of exercise
training, as well as at 3, 6, 9, and 12 months of training. This unique study design
shed new light on the differential responses of the RV and LV to endurance exercise
training. Specifically, the RV responded to endurance training with progressive
eccentric remodeling throughout all timepoints of training. In contrast, the LV
initially responded with concentric remodeling during the first 6–9 months of
training, but then dilated to restore the baseline mass/volume ratio at the 12-month
follow-up assessment [56]. In a similar study, among healthy middle-aged but
previously sedentary individuals, 2 years of dynamic exercise training increased
LV end-diastolic volume (measured by echocardiography), along with reductions in
LV stiffness constants and a down/rightward shift in the diastolic limb of the
pressure-volume loop, indicative of improved LV compliance [57]. In addition,
there was an upward shift in the LV Frank-Starling relationship, indicative of
increased SV for a given filling pressure [57]. These findings demonstrate that
exercise prevents age-related stiffening of the LV and may also protect against the
development of heart failure with preserved ejection fraction, a disease characterized
by marked LV stiffness compared to the normal heart [58, 59]. The impact of
strength training on LV compliance has been less well studied. However, in one
study of collegiate strength-trained athletes (American football players), there was
imaging evidence of impaired diastolic relaxation, with reductions in echocardio-
graphic indices of early and late LV diastolic tissue velocities [28].
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The RV, a thin-walled and highly compliant structure—at least when compared
to its left-sided counterpart—has historically been referred to as a “passive conduit”
[60] and a “mere bystander” [61], with questionable relevance to overall cardiovas-
cular function. However, in a study of nine healthy adults undergoing invasive
cardiopulmonary exercise testing with conductance catheters inserted into the RV
to generate real-time pressure-volume analysis, it was found that the RV has
substantial contractile reserve, with an approximate fourfold increase in metrics of
contractility, as well as metrics of myocardial energy production and utilization,
from rest to peak exercise of short-term duration (Fig. 2) [62]. However, prolonged
dynamic exercise disproportionately stresses the RV compared to the LV [30, 32,
63–65]. In a study of 39 endurance athletes and 14 nonathlete controls, RV wall
stress—defined by the Law of Laplace—was lower among athletes vs. controls
under resting conditions, but, during exercise, increased more among
athletes vs. controls (125% vs. 14%, P < 0.001) [32]. In another study of 40 athletes
competing in endurance races of 3–11 h duration, RV volumes increased and metrics
of RV systolic function (ejection fraction, tricuspid annular plane systolic excursion,
strain) declined following completion of the race compared to baseline, whereas no
change in LV volumes or function was observed [30]. Interestingly, a dose-response
relationship was observed between exercise duration and degree of reduction in RV
systolic function, such that individuals completing ultratriathlon races of 11 h had
greater decrements in RV systolic function compared to athletes completing shorter
events, such as a marathon (3 h) or endurance triathlon (5.5 h) [30]. These reductions



in RV function following completion of endurance events typically normalize after
about a week of recovery [30, 64].
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Fig. 2 Pressure volume analysis of right ventricular function during exercise. Real-time right
ventricular pressure volume analysis during invasive cardiopulmonary exercise testing on upright
cycle ergometry from a healthy 26-year-old man. Black represents resting condition; red and blue
represent two levels of submaximal exercise below the ventilatory threshold and gold represents
peak exercise. With progressive increases in external work, right ventricular stroke volume
increases substantially, as evidenced by a progressive increase in the width of the pressure volume
loop. Loops obtained from the corresponding author’s laboratory and published in J. Physiology
2020; 598 (13): 2575–2587 [62]

Similar results were found in a meta-analysis of 14 studies evaluating longitudi-
nal changes in LV and RV function following at least 90 min of exercise. Following
completion of exercise, LV function remained stable, but there were significant
reductions in metrics of RV function, including a decline in RV fractional area
change by 5.78% (4.46–7.09%), RV ejection fraction by 7.05% (1.8–12.3%), and
tricuspid annular plane systolic excursion by 4.77 mm (1.24–8.3 mm) [65].



220 W. K. Cornwell III and P. Buttrick

5 Variations in the Electrocardiogram Among Athletes

Physiological changes to exercise occur among athletes who routinely exercise
4–8 h/week [66]. Long-term participation in exercise at this level leads to unique
changes on the electrocardiogram (ECG), which result from an increase in vagal tone
[67, 68], as well as structural remodeling (i.e., increased cardiac chamber sizes)
[5, 69]. Several ECG findings occur in response to these changes among athletes that
are considered normal physiologic adaptations to exercise (Table 2) [66]. As a result
of increased vagal tone, individuals may have early repolarization, sinus bradycar-
dia, and enhanced sinus arrhythmias. In addition, athletes may have an ectopic or
junctional escape or first-degree or Mobitz I second-degree atrioventricular
block [66].

In one study, 12-lead ECG was analyzed in 510 competitive athletes, of whom
44 (9%) were found to have an incomplete RBBB and 13 (3%) had complete RBBB.
These individuals had a larger RV end-diastolic diameter and RV end-diastolic area
than those without complete or incomplete RBBB. In addition, individuals with
complete RBBB had reduced RV fractional area change (metric of RV systolic
function) at rest compared to those without complete RBBB, as well as
interventricular dyssynchrony on echocardiogram. However, neither complete nor
incomplete RBBB was associated with pathologic cardiac disease, suggesting that
complete and incomplete RBBB are markers of physiologic cardiac remodeling and
reflect a triad of RV dilatation, reduction in resting RV systolic function, and
interventricular dyssynchrony [24].

The increase in chamber size and cardiac mass that occurs as a physiologic
response to exercise means that many athletes display voltage criteria for left
ventricular hypertrophy. In addition, increased right ventricular size may lead to
ECG evidence of right ventricular hypertrophy and an incomplete right bundle
branch block [70].

Table 2 Changes on the electrocardiogram that are normal variants for an athletea

Increased QRS voltage

Incomplete right bundle branch block

Early repolarization

Black athlete repolarization variant

Juvenile T wave pattern

Sinus bradycardia

Sinus arrhythmia

Ectopic atrial rhythm

Junctional escape rhythm

First-degree atrioventricular block

Mobitz type 1 (Wenckebach) second-degree atrioventricular block
aDrezner JA, et al. Br J. Sports Med 2017; 51: 704–731
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6 Inherited and Acquired Cardiomyopathies

Considerable overlap exists between structural changes observed with EICR and
cardiomyopathies. It is important to determine the underlying cause of these
changes, since some cardiomyopathies—specifically, hypertrophic cardiomyopathy,
dilated cardiomyopathy, and arrhythmogenic right ventricular dysplasia—have
shared features with the athletic heart and, when present, may increase the risk of
sudden cardiac death. Considerable attention has been given to identifying param-
eters that delineate the athletic heart from a true cardiomyopathy [29, 71, 72].

Genetic analysis may be performed in attempt to identify athletes at increased risk
of sudden cardiac death. Unfortunately, genetic analysis may be limited by multiple
factors [73, 74]. First, there may be high variability in clinical phenotype in patients
with the same pathologic variant, even when analyzing patients within the same
family tree. Second, penetrance and expressivity may vary [73, 74]. In the Cardiac
Arrest Survivors with Preserved Ejection Fraction Registry (CASPER) [75], 375 sur-
vivors of cardiac arrest completed genetic testing. Prior syncope and a family history
of sudden death were independently associated with the presence of a pathogenic
variant on testing [75]. However, pathologic variants were identified in a minority of
individuals (N = 29, or 17% of the total registry), and the most common variants
identified were channelopathy-associated or cardiomyopathy-associated, and vari-
ants of unknown significance were identified in 18% of individuals [75]. Thus, the
ability to identify individuals at risk for sudden cardiac death from genetic testing
may be limited by several factors.

6.1 Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac
death among individuals in the United States less than 35 years of age, accounting
for at least one third of deaths in this demographic [76, 77]. HCM is a common
inherited cardiomyopathy, generally affecting about 1 in 500 individuals, and may
result from over 1500 mutations in 11 major genes that encode proteins of the
cardiac sarcomere, Z disk and calcium handling machinery [71]. While morphologic
variations exist, HCM classically involves LV hypertrophy without chamber dilata-
tion. In non-athletes, the upper limit of normal for septal wall thickness is 12 mm by
echocardiography. Athletes may have a wall thickness exceeding 12 mm, and a
“gray-zone” [29] may exist where it is particularly difficult to distinguish an athletic
heart from HCM when the wall thickness is 13–15 mm. Evaluation may require
cardiac MRI, exercise testing, genetic testing, and possibly detraining to distinguish
etiologies of hypertrophy.
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6.2 Dilated Cardiomyopathy

Among endurance athletes, particularly those with dilated LV and a low/reduced
ejection fraction, it may be important to rule out an underlying dilated cardiomyop-
athy. The ejection fraction among trained athletes may decline to as low as 45%
[78]. However, patients with dilated cardiomyopathy have limited ability to augment
cardiac output during exercise and, as such, will demonstrate reductions in exercise
capacity and V  O2 max on cardiopulmonary exercise testing.

6.3 Arrhythmogenic Right Ventricular Cardiomyopathy

For patients with a disproportionately enlarged RV, arrhythmogenic right ventricular
cardiomyopathy (ARVC) should be ruled out. Formal criteria exist to appropriately
diagnose ARVC [79]. These criteria consist of imaging criteria demonstrating severe
enlargement of the RV, as well as tissue diagnosis from endomyocardial biopsy,
ECG abnormalities, presence of arrhythmias, and a family history suggesting
inherited cardiomyopathy [79].

7 Conclusions

Participation in vigorous sport and exercise, for either professional or recreational
purposes, is increasingly popular [5]. Understanding the impact of EICR on cardio-
vascular morphology and function has multiple clinically relevant applications.
First, training programs can be tailored to enhance cardiovascular adaptation and
overall performance during sports. In addition, clinicians can more appropriately
discriminate between EICR and inherited or acquired cardiomyopathies which,
when present, may increase the risk of adverse cardiovascular events. Uncertainty
remains as to whether the structural and functional adaptations to exercise—hall-
marks of EICR and the athletic heart—are entirely benign or also carry some
associated risk, especially in the subgroup of extreme athletes. Additional research
is necessary, given the multiple beneficial effects of exercise on the human body for
improving cardiovascular health, overall lifespan in general, and quality of life and
well-being.
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1 Introduction

To carry out its vital function, the heart itself needs to be properly perfused with
blood [1]. For this purpose, it is equipped with larger conduit arteries, i.e., the right
and left coronary arteries with their tributaries lined with a monolayer of
macrovascular endothelial cells, and a large number of small arteries and arterioles
that distribute the blood within the myocardium. Chief function of the subsequent
dense network of capillaries is the supply of the cardiomyocytes with nutrients, and
oxygen in particular, because their energy metabolism is strictly aerobic. These
capillaries are so small that their lumen is encircled by 1–2 microvascular endothelial
cells only. Capillary density in the normal myocardium is quite high, with about
3000–4000 capillaries/mm2 tissue [2]. Recent estimates indicate that microvascular
endothelial cells represent the most abundant non-myocyte cell type in the heart,
amounting to 60–65% of the non-myocyte cells or about 50% of all cells in the heart
[3]. This number seems quite realistic considering that virtually all cardiomyocytes
are provided with their individual capillary to ensure their adequate supply of
oxygen and nutrients. Another purpose of this dense capillary network is the
exchange of small molecules, such as peptides, proteins, micro-vesicles, and
microRNAs [4] between endothelial cells and cardiomyocytes.

Heart failure, a pathology among the leading causes of morbidity and death
worldwide [5], is characterized by the inability of the heart to pump blood to the
body in amounts needed [6]. Symptoms include dyspnoea, peripheral oedema,
arrhythmia, fatigue, and stress-induced syncope. The portion of blood present in
the ventricle at the end of diastole that is ejected with every heartbeat is termed
ejection fraction. Its reduction by about half indicates a clinically significant impair-
ment of systolic force and is commonly referred to as manifest heart failure with
reduced ejection fraction (HFrEF). The condition where diastolic filling and relax-
ation is compromised while ejection fraction and other functional systolic parame-
ters remain largely unchanged is characterized as heart failure with preserved
ejection fraction (HFpEF) [7]. HFrEF, which was the dominant variant of heart
failure in the past, has now been surpassed by HFpEF as the more prevalent
pathological condition [8–11]. This may in part be attributed to better and earlier
diagnosis, improved treatment options as well as a shift in ejection fraction thresh-
olds, as can be inferred from the introduction of an intermediate type of heart failure
with a mild or moderate reduction of ejection fraction [12]. Maintaining a sufficient
stroke volume, especially during exercise [1], where diastole, due to the increase in
heart rate, is shortened, requires an increase in filling pressure, i.e., a larger
end-diastolic volume in the ventricle. This is achieved through an increase in renal
salt and water retention by disinhibiting the sympathetic nervous system as well as
by upregulating activity of the renin-angiotensin-aldosterone system (RAAS). This,
however, also results in arterial hypertension and, consequently, pressure overload
of the left ventricle.

Pressure overload due to arterial hypertension or aortic valve stenosis followed by
left ventricular hypertrophy and eventually failure is, after ischemic heart disease,



the second-most common cause of heart failure worldwide and especially prevalent
among the elderly [13]. Although the exact sequence of events has not been
elucidated yet, it is clear that pressure overload causes an initial hypertrophic
remodelling of the left ventricle [14]. This has long been viewed as a compensatory
mechanism to increase wall thickness and thereby, according to the law of Laplace,
reduce wall stress of the left ventricle [15]. Since the cardiomyocytes grow in length,
their speed of contraction, referred to as fractional shortening, is significantly
impaired, which is viewed as the first step in the transition from left ventricular
hypertrophy to heart failure [15]. This initial remodelling process is accompanied by
a stiffening of the extracellular matrix (ECM) [16] eventually leading to
cardiomyocyte stiffening [17–19], which aggravates diastolic dysfunction in
HFpEF [17, 20, 21]. ECM stiffening also causes cardiomyocyte loss due to apoptosis
[22] or anoikis [22–24], mainly occurs in HFrEF [25], reinforces replacement
fibrosis, and, upon rupture of this scar tissue, leads to dilated cardiomyopathy
(DCM) and manifest (left ventricular) heart failure [26]. If left untreated, it will
inevitably lead to global heart failure [5]. Risk factors for this condition are age,
(arterial) hypertension, (type 2) diabetes, and renal dysfunction, which may be the
consequence of hypertension and/or diabetes [8, 27, 28].
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2 Pressure Overload

Pressure overload describes a situation in which the left ventricle has an increased
afterload to compensate for ejecting the stroke volume, as in arterial hypertension, or
as a consequence of aortic valve stenosis, resistance in the outflow tract (proximal
aorta) is substantially increased. However, pressure overload initially, and predom-
inantly, leads to left ventricular diastolic rather than systolic dysfunction [29]. When
faced with chronic pressure overload, concentric left ventricular hypertrophy ensues
resulting in a decrease of left ventricular volume, which is referred to as inward
remodelling. In contrast, volume overload, which can also be caused by obesity [30–
32] or chronic kidney disease [33], causes eccentric left ventricular hypertrophy that
rather corresponds to an outward remodelling process [34]. Persistent pressure
overload can thus cause decompensation of the concentrically remodelled left
ventricle with HFpEF as the consequence, whereas decompensation of an eccentri-
cally remodelled left ventricle after chronic volume overload rather ends up in
HFrEF [29].

Pressure overload not only causes hypertrophy of the left ventricular wall but also
provokes chamber dilation [35]. Accordingly, cardiomyocytes throughout the whole
heart may switch their phenotype [36], reinforcing cardiac hypertrophy
[37, 38]. Moreover, hypertrophied cardiomyocytes are prone to undergo apoptosis,
which in turn may have diverse pathological consequences [39–44] among which
cardiac fibrosis features rather prominently [39, 45]. Ultimately, persistent pressure
overload results in dilated cardiomyopathy and HFrEF [29].
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Interestingly, although heart failure develops because of sustained high blood
pressure, in some patients one result of this condition can be a drop in blood pressure
back to or even below normal. This phenomenon, known as “decapitated hyperten-
sion”, is a consequence of the impaired pumping capabilities of the heart and hence a
reduction in cardiac output. There are several studies in this context suggesting that
in patients with heart failure, a higher systolic blood pressure is associated with
better survival [46–52].

3 Cardiac Fibrosis

One step in the course from pressure overload to a failing heart is the development of
cardiac fibrosis (see Fig. 1). The ECM network surrounding the cells of the heart [53]
normally serves as a scaffold for structural support and facilitates force transmission
throughout the heart muscle. It is also in close contact with myocardial cells in form
of the basement membrane [54], another type of pericellular matrix. In addition, the
cardiac ECM serves as a hub for signals and signalling pathways to the
cardiomyocytes [55].

As mentioned above, sustained pressure overload leads to concentric remodelling
of the left ventricle, i.e., an increase in wall thickness, while ventricular volume is
either maintained or decreased. Consequently, the ratio between left ventricular mass
and volume increases, too. This development is paralleled by the activation of
resident (cardiac) fibroblasts to myofibroblasts and the initiation of matrix synthesis
programmes [56, 57], resulting in the production of excessive amounts of ECM. This
surplus in ECM increases myocardial stiffness and reduces ventricular compliance.
While initially preserving cardiac integrity and function to some extent [58], even-
tually a dramatic reduction of cardiac function ensues [59].

In contrast, after myocardial infarction/volume overload-induced remodelling,
which is accompanied by cardiomyocyte necrosis/apoptosis, disruption and/or deg-
radation of the ECM can be observed, which in part is triggered by the necrotic/
apoptotic cardiomyocytes themselves [57, 60]. Since the heart has virtually no repair
mechanism and a very limited regenerative capacity, the only way to preserve a
certain level of structural and functional integrity is the replacement of necrotic or
apoptotic cardiomyocytes by scar tissue, which further exacerbates cardiac
fibrosis [57].

Accordingly, two types of fibrosis can be distinguished: replacement fibrosis,
which normally occurs after myocardial infarction [61] and comprises the replace-
ment of apoptotic cardiomyocytes by connective tissue, and reactive fibrosis, which
is often further subdivided into an interstitial and a perivascular type [61]. While
interstitial fibrosis is characterized by deposition of cross-linked collagen fibres in
the interstitium [62, 63], which widens the distance between individual
cardiomyocytes, thereby impacting their electrical coupling [64], perivascular fibro-
sis increases the distance between cardiomyocytes and capillary endothelial cells and
thus limits the supply of the cardiomyocytes with oxygen and nutrients [65, 66]. In



either case, in response to a pathological stimulus, first a release of pro-inflammatory
cytokines and pro-fibrotic factors is observed [5], then myofibroblasts secrete colla-
gens and other ECM proteins, such as fibronectin, laminin, and proteoglycans [67].
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Fig. 1 Direct and indirect intercellular pathways in the heart leading to fibroblast to myofibroblast
differentiation and/or myofibroblast activation. For details refer to the text. Abbreviations used:
ECM, extracellular matrix; RAAS, renin-angiotensin-aldosterone system; ROS, reactive oxygen
species; TGFβ, transforming growth factor β. The grey arrows indicate important functional
consequences. The small black arrows point to the release of biologically active factors, and the
small double-lined arrows point to the cell type that is affected by these factors

Although fibrosis is a maladaptive response, cardiac fibrosis after pressure
overload is not maladaptive per se, as it initially helps to maintain structural integrity
and contractile capacity as well as electrical conductivity of the left ventricular
myocardium [64, 68]. But upon its progression, cardiac function dramatically
deteriorates due to the increased stiffening of the myocardium, resulting in contrac-
tile dysfunction accompanied by a gradual loss of mechano-electrical coupling, and
ultimately arrhythmia and death [60]. In the perivascular space, inflammation and



fibrosis reduce or even completely block the diffusion of oxygen and nutrients from
the microvasculature, further aggravating the pathological situation in the failing
myocardium [60]. Myofibroblasts in the fibrotic tissue or scar can be subjected to
stimuli such as cell-cell or cell-matrix contacts, tensile stress [69, 70] or growth
factors and cytokines [71], which act as survival signals prolonging their lifespan.
This, in turn, results in the continuous release of pro-inflammatory and/or
pro-hypertrophic factors that can induce cardiomyocyte apoptosis or necrosis, events
that both trigger the onset of replacement fibrosis [5].
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Despite initial beneficial aspects, fibrosis is an adverse and maladaptive process;
this becomes more apparent considering that the degree of ECM expansion itself can
serve as a predictor of a worse outcome for patients with HFpEF and HFrEF [72, 73],
although it is not clear whether this is a causal or correlative relationship [60].

The predominant building blocks of the cardiac ECM are collagen I, which forms
thick, rod-shaped fibres, and collagen III, forming a fibrillary network around the
myocardial cells [74]. Depending on the species, normally a collagen I to collagen III
ratio of about 8:1 is found [75, 76]. After pressure overload, synthesis of both
collagens I and III is upregulated. Other, non-fibrillar collagens, such as collagen
IV, which normally is located in the basement membrane, have also been reported to
be upregulated after pressure overload [77, 78], while collagen VIII, which is only
found at low levels in the adult heart, can be reduced during later stages of disease
progression [79]. Interestingly, HFpEF and HFrEF are characterized by different
changes in ECM composition, and cardiomyocytes can sense these differences
[80]. In HFpEF, large amounts of collagen I are synthesized while at the same
time the flexible collagen III is reduced, which leads to cardiac stiffening [81, 82]. In
HFrEF, on the other hand, cardiac fibrosis triggered by cardiomyocyte death causes
impairment of contractile force generation [83]. For a near all-encompassing review
about cardiac collagens and their regulation during cardiac remodelling, see
Frangogiannis [60]. These changes in collagen composition are accompanied by
alterations of other ECM components such as glycosaminoglycans, fibronectin,
glycoproteins, and proteoglycans. In addition, liberation of growth factors and
proteases from the ECM could be affected as well [84], and a disturbed protease-
protease inhibitor balance leads to degradation of the ECM [85]. Table 1 recapitu-
lates what is currently known about changes in ECM composition in replacement
versus reactive cardiac fibrosis.

The main modulators of the ECM are matrix metalloproteinases (MMPs) that
degrade ECM proteins, and tissue inhibitors of metalloproteinases (TIMPs), which
control activity of the MMPs [100]. In various settings of heart failure, depending on
the underlying cause, differential expression of MMPs and TIMPs have been
described [101–104]. However, expression levels of these proteases and their inhib-
itors do not always correlate with activity, and in vitro data do not necessarily reflect
the situation in vivo. Nevertheless, the different types of cardiac fibrosis also seem to
require a specific profile of MMPs and TIMPs. In interstitial or perivascular fibrosis,
mainly occurring in HFpEF or in the later phases of HFrEF, an upregulation of
TIMP-1 and TIMP-2 has been reported [105] that seemed to correlate with the
degree of interstitial fibrosis. However, in another study [106], an increased



expression of MMPs 1, 2, 3, 9, 13, and 14 has been observed in these settings. This
finding must not be counterintuitive per se, as there is not simply an excessive build-
up of ECM molecules but also a profound remodelling of the ECM involved. In
replacement fibrosis, which is found rather early in HFrEF, e.g., after myocardial
ischemia, upregulation of MMP-7 has been associated with a protective effect while
that of TIMP-1 rather seemed to be detrimental [107]. Other MMPs and TIMPs have
also been found to be differentially expressed [101, 108], but were not associated
with the type and degree of fibrosis in the myocardium.
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Table 1 Comparison of changes in ECM components as they occur during replacement or reactive
fibrosis. Current knowledge on relevant cellular and molecular changes in the different types of
fibrosis

Replacement fibrosis

Mainly HFrEF, especially follow-
ing MI

Reactive fibrosis

HFpEF and HFrEFOccurrence

Main trigger Cardiomyocyte apoptosis or
anoikisa

TGF-β, pro-inflammatory cytokinesa

Consequences
for

– Cellular
composition

Loss of cardiomyocytes, infiltra-
tion by fibroblasts and immune
cellsa

Infiltration of immune cells into the
perivascular spacea

– ECM
proteins

Mass production of collagens I
and III to replace dead
cardiomyocytesb

Upregulation of collagen III fol-
lowing MIc

Increased synthesis, mainly of collagen Id,
e

– ECM
crosslinking

Enhanced crosslinking f,g Enhanced crosslinking, upregulation of
lysyl oxidased,h,i

– MMPs/
TIMPs

Upregulation of MMP-2, MMP-9, and TIMP-1j,k

Upregulation of TIMPl following MI
(TIMP-1 is pro-fibrotic, TIMP-2, 3, and 4 are anti-fibroticm)

–
Matricellular
proteins

TSP1—upregulated after MI (in border zone), preventing adverse remodelling
after MI and POn

Osteopontin—upregulated after both MI and PO, generally pro-fibrotic and
pro-hypertrophic, slightly protective following MIn

Periostin—upregulated after both MI and PO, activates cardiac fibroblasts,
protective in acute phase following MIn

– Other
mediators

Downregulation of MCP1a Upregulation of MCP1o

Loss of MCP1 protects from fibrosisp

Integrins α1, 2, and 3 as well as β1
and 3 are upregulated after MIq

Integrins α1, 2, and 5 are down-regulated
in hypertension but upregulated after PO,
β1 is upregulated by bothq

MI, myocardial infarction; PO, pressure overload
References: a [18], b [86], c [87], d [82], e [81], f [88], g [89], h [90], i [91], j [92], k [93], l [94], m [95],
n [96], o [97], p [98], q [99]

However, counteracting fibrosis by degrading the ECM may not be beneficial per
se as ECM fragments are also able to trigger pro-inflammatory pathways and recruit



inflammatory cells [109], ultimately leading to cardiomyocyte dysfunction and
death. As mentioned before, myofibroblasts surviving in the fibrotic scar for a
long time can not only continuously produce pro-inflammatory cytokines, and thus
induce cardiomyocyte death, but also constantly stimulate the production of ECM
components [110], which would further aggravate cardiac fibrosis.
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4 Signalling Pathways in Cardiac Fibrosis

Some of the multiple signalling pathways involved in the onset and course of cardiac
fibrosis are well-established (see Fig. 2), while others are still subject to debate.
Hitherto, transforming growth factor (TGF)-β1 is the best-known inducer of cardiac
fibrosis [111, 112]. The TGF-β family consists of three isoforms encoded by
different genes [113], of which isoform 1 is the predominant cytokine. During
cardiac fibrosis, levels of TGF-β1 rise [114], activating cardiac fibroblasts to differ-
entiate into myofibroblasts [115] mainly through the Smad2/3 pathway [57, 116,
117]. However, TGF-β1 not only stimulates the production of ECM molecules and
other pro-fibrotic factors [118] but also controls ECM degradation by enhancing the
expression of TIMPs [119], which inhibit the activity of certain ECM-degrading
MMPs. Mouse models using either TGF-β1 [114] or pan-TGF-β neutralizing anti-
bodies [120] or blocking TGF-β1 signalling through inhibition of TGF-β receptor II
[121] or vice versa reinforcing [122] TGF-β1 signalling show, consistent with data
from humans, less or more fibrosis, respectively. In addition to its effects on
fibroblasts and fibrosis, TGF-β1 can also induce cardiomyocyte hypertrophy [123].

Another potent inducer of fibrosis is angiotensin II (Ang II), which has been
verified in various animal models by administering the peptide through repeated
injections or via implantation of osmotic minipumps [76, 124, 125]. Direct proof for
an involvement of Ang II in fibrosis was obtained by pharmaceutical targeting of its
main receptor through corresponding type 1 Ang II (AT1) receptor antagonists such
as losartan, which has been shown to potently inhibit cardiac fibrosis [126]. Ang II
also plays a major role in the control of blood pressure as part of the RAAS.
Moreover, it promotes the conversion of cardiac fibroblasts to myofibroblasts, and
induces synthesis of ECM molecules [127] as well as cardiomyocyte hypertrophy
[128]. Some of these effects of Ang II, however, were shown to be mediated through
TGF-β1 signalling [129]. In fact, Ang II induces the expression of TGF-β1 not only
in vitro in cultured cardiomyocytes, cardiac fibroblasts as well as myofibroblasts
[130–132] but also in vivo, and this relationship was even found to be causal [133].

Endothelin-1 is known as a powerful vasoconstrictor. However, it can also induce
proliferation of cardiac fibroblasts and promote their differentiation into
myofibroblasts as well as trigger the synthesis of collagens I and III
[134, 135]. Blocking one of its receptors, the ETA receptor, inhibits TGF-β1-
stimulated collagen synthesis by cardiac fibroblasts [136].

Connective tissue growth factor (CTGF) is another cytokine that appears to be
involved in fibrosis. It is expressed ubiquitously in the foetal myocardium, whereas



in adults it is restricted to the atria and larger blood vessels [137]. CTGF levels are
increased after myocardial infarction and subsequent heart failure [138, 139] where
it is expressed predominantly in the fibrotic area. Under these conditions, its
expression seems to be induced by TGF-β1 and/or Ang II [140]. However, it is
still unclear whether CTGF is required for fibrosis alongside other pro-fibrotic
mediators, or whether it can even induce fibrosis on its own [141].
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Fig. 2 Major signalling pathways involved in the differentiation of cardiac fibroblasts to
myofibroblasts. Pressure overload or mechanical stress is referred to as stretch. TGFβ receptor I
(TGFβRI) signals via TGFβ-activated kinase 1 (TAK1), mitogen-activated kinase (MAPK) kinase
(MKK) and p38-MAPK to promote nuclear translocation of MRTF-A and serum response factor
(SRF) while TGFβ receptor II (TGFβRII) signals via phosphorylation of Smad2/3 leading to
recruitment of Smad4 and translocation of the heterodimer to the nucleus. Transient receptor
potential 6C (TRPC6) is activated by stretch acting upon a Gq/11-coupled receptor (without any
agonist), which in turn results in phospholipase Cβ-mediated diacylglycerol (DAG) formation. As a
consequence of the secondary influx of extracellular calcium, nuclear factor of activated T-cells 1–4
(NFAT) is dephosphorylated by calcineurin, enabling its translocation to the nucleus. Angiotensin
II (Ang-II) binding to the AT1 receptor causes activation of the small G-protein RhoA, which in turn
activates Rho kinase (ROCK) that again enables MRTF-A and SRF to translocate to the nucleus.
The RhoA-ROCK pathway is also activated by stretch-dependent changes in the cortical actin
dynamics

The aforementioned stimuli transmit their signals through various intracellular
pathways or factors. In the TGF-β1/Smad pathway, after binding of TGF-β1 to its
receptor, different Smad proteins get phosphorylated forming heterodimers,
depending on the type of receptor, capable of translocating to the nucleus and act
as pro-fibrotic transcription factors [142] stimulating the expression of several genes,
mainly those coding for the TGF-β family members and their receptors [143]. The



AMP-activated protein kinase (AMPK)-α pathway is also activated by pro-fibrotic
stimuli such as pressure overload, ischemia, TGF-β1 or Ang II. Upregulation of
AMPK-α seems to decrease the ensuing pro-fibrotic response, although this finding
is still under debate [143]. Members of the Wnt family, known to regulate processes
such as body axis formation during embryogenesis, cell proliferation, migration, and
fate determination, seem to be involved in the onset and regulation of cardiac fibrosis
as well via stimulating proliferation and transformation of cardiac fibroblasts and
possibly also by enhancing epithelial-to-mesenchymal transition [143].
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Other transcription factors involved in the transmission of pro-fibrotic signals are
peroxisome proliferator-activated receptor (PPAR)-γ, activator protein 1, nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB), activating transcrip-
tion factor 3, myocardin-related transcription factor (MRTF) A/serum response
factor (SRF) and nuclear factor of activated T-cells (NFAT); their effects range
from decreasing to increasing fibrosis [143]. Of note, MRTF-A/SRF signalling has
been shown to mediate cell adhesion and cell shape-stimulated differentiation of
cardiac fibroblasts into myofibroblasts [144], and to upregulate expression of
MMP2, 9 and 14 [145] as well as that of collagen Iα2 [146], thereby promoting
cardiac fibrosis. Accordingly, MRTF-A deficient mice show reduced cardiac fibrosis
after ischemia/Ang II treatment [146], clearly indicating a pro-fibrotic role of MRTF-
A/SRF. In cardiac fibroblasts, NFAT can be activated by mechanical stress (stretch)
and increased Ca2+ levels [143]. It then regulates the expression of collagen III and
MRTF [147], and can also induce the differentiation of cardiac fibroblasts to
myofibroblasts [148].

5 Cardiac Fibroblasts

Cardiac fibroblasts are responsible for the production of ECM components in the
heart. Early estimates suggested that they are the most abundant cell type in the heart,
but newer and more precise analyses show that they contribute less than 20% to its
cellular composition [3, 149]. Irrespective of their exact number, cardiac fibroblasts
play an important physiological role in the homeostasis of the ECM. In certain
conditions, such as post-myocardial infarction or pressure overload, or in response to
other pro-fibrotic stimuli, such as TGF-βs [57, 150–152], cardiac fibroblasts can be
activated to differentiate into myofibroblasts [153, 154]. Several other sources of
myofibroblasts have been discussed, including, most obviously, resident fibroblasts
but also epicardial epithelial [155–157] or cardiac vascular endothelial cells [158],
haematopoietic cells [158, 159] and circulating progenitor cells [158].

Most of these studies, however, have based their conclusions on partially ambig-
uous markers [160], mainly using Tie1 and fibroblast-specific protein 1 (FSP1) to
label endothelial cells and myofibroblasts, respectively. Both markers, however, are
known to not exclusively label either cell type, since they can also be expressed by
various subpopulations of immune cells [161]. Using Tie2 to trace the lineage of
endothelial cells and a collagen1α1-GFP fusion protein as a reporter for



myofibroblasts, Moore-Morris et al. [162] concluded that the myofibroblast popu-
lation formed in the heart upon pro-fibrotic stimulation is derived from two sub-
populations of fibroblasts which are already present in the myocardium, where they
have accumulated during cardiac development through epithelial-to-mesenchymal
transition (EMT) and endothelial-to-mesenchymal transition (EndMT), respectively.
However, Tie2 also seems to lack absolute endothelial specificity, and as it is active
during early development, other cell types originating from such a common progen-
itor could also be labelled and hence mistaken for endothelial cells [163–165],
leaving the question of the cellular source for the myofibroblasts still not satisfyingly
answered.
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Myofibroblasts not only produce large amounts of ECM proteins, they also
acquire the ability to express contractile proteins such as α-smooth muscle actin
[166]. This underscores their role not only in maintaining tissue integrity after a
pathological event, but also, to a certain degree, in tissue function, i.e., contractility,
when they replace cardiomyocytes as the regular contractile cell type. Myofibroblast
activation can also be triggered by altered mechanical stress. Cardiac fibroblasts can
sense the increased load [154] which causes activation of surface integrins [167],
syndecans [168] and mechanosensitive ion channels [169], each feeding into intra-
cellular signalling cascades such as the RhoA-Rho kinase-MRTF [170], focal
adhesion kinase [171] and mitogen-activated protein (MAP) kinase [153] pathways
that upregulate TGF-β1 expression [172], and result in myofibroblast formation. As
a consequence, the synthesis of integrins [173] and matrix proteins is upregulated,
and a general ECM-preserving programme is turned on [56, 57]. Furthermore,
pressure overload activates the RAAS. Ang II, through its AT1 receptor on
myofibroblasts, can stimulate these cells to proliferate and synthesize ECM mole-
cules. Synthesis of ECM components can also be exacted via pressure overload-
dependent expression of microRNA-21, which in turn disinhibits the extracellular
signal regulated kinase (ERK)-MAP kinase pathway in cardiac fibroblasts
[174]. However, indirect activation via other mechanosensitive cells in the heart,
such as immune cells, vascular cells or cardiomyocytes, which are affected by the
increase in mechanical stress, may serve as another mechanism to spur differentia-
tion of cardiac fibroblasts into myofibroblasts [60].

6 Endothelial Cells

The endothelium is an important regulatory element of the vasculature. It not only
shields vessels from the flowing blood but also maintains and regulates the perme-
ability of the vessel wall as well as the vascular tone [175]. Because of their special
position in the vessel wall, at the interface between the circulating blood and the
surrounding tissue, endothelial cells are subjected to unidirectional shear stress
exerted on the luminal surface [176, 177]. This biomechanical force, to which solely
endothelial cells are constantly exposed, governs the release of nitric oxide
(NO) [178, 179], a gaseous mediator with an astonishing array of biological effects,



primarily in resistance-sized small arteries and arterioles. In these vascular beds,
endothelial cell NO release in response to shear stress counterbalances neurogenic
[180] and myogenic [181] vasoconstriction, and thus governs total peripheral resis-
tance [175]. In addition, the shear stress-driven constant release of NO from
the endothelial cells ensures that the underlying vascular smooth muscle cells in
the tunica media are kept in a quiescent contractile state [182, 183], and that the
endothelial cells themselves maintain their anti-thrombotic and anti-inflammatory
properties [184–186].
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Furthermore, the constant exposure to unidirectional shear stress is of paramount
importance for continuous expression of endothelial nitric oxide synthase (eNOS)
[177, 187–189], the enzyme that produces NO. Any disturbance in laminar flow,
hence unidirectional shear stress, as it occurs, e.g., at atherosclerosis predilection
sites, i.e., bifurcations or curvatures of the large conduit arteries [177, 190–193],
may impact the capacity of endothelial cells to fulfil the aforementioned tasks and
give rise to or spur atherosclerosis [194, 195]. This may be further aggravated by
enabling, instead of preventing, atherothrombosis as well as the diapedesis of
pro-inflammatory leukocytes [196]. Also, endothelial-to-mesenchymal transition
may be the consequence of a decline in unidirectional shear stress acting on, and
hence NO released from, endothelial cells [197].

The other biomechanical force to which endothelial cells are exposed is tensile
stretch [198], primarily affecting the endothelial cell-to-cell contacts [199]. Changes
in tensile stretch are typically brought about by (blood) pressure-dependent disten-
sion or (active) vasodilation, which both increase circumferential wall tension, and
thus strain, on the endothelial cell-to-cell contacts. Osmotic stress leading to a
swelling of endothelial cells, on the other hand, does not play a major role in the
living organism, whereas an increase in wall tension, namely in the left ventricle of
the heart due to pressure overload, will affect the endocardial endothelial cells in a
similar way as their vascular counterparts [200, 201]. Typically, enhanced tensile
stretch will have a very different impact on mechanosensitive endothelial cell gene
expression and phenotype compared to a decrease in unidirectional shear stress (see
above), although there may be some overlap. One striking example for this differ-
ential control of gene expression in endothelial cells by the aforementioned biome-
chanical forces is the LIM-domain protein zyxin, which acts as a mechanotransducer
and transcription factor in endothelial cells [202–204]. Translocation of zyxin from
focal adhesions to the nucleus only occurs when the endothelial cell-to-cell contacts
are strained, but not in response to an increase in unidirectional or oscillatory shear
stress [202], presumably due to the much smaller magnitude of this particular
biomechanical force (see below) which normally needs to be amplified by a
mechanosensory complex located at the endothelial cell-to-cell contacts [205] to
have an impact on endothelial cell gene expression and hence function.

Typically, unidirectional shear stress ranges from 5 to 20 dyn/cm2 in resistance-
sized small arteries and arterioles in humans under normal physiological conditions,
but can rise to 40 dyn/cm2 or more in larger arteries during increased cardiac output
or hypertension [206]. Circumferential tensile stretch in arteries ranges from 5 to
10% under physiological conditions, but can attain up to 20% in hypertension



[207]. Assuming a wall thickness of 0.1 cm, these changes in circumference translate
into a change in wall stress of ~600,000 to ~1,200,000 (~2,400,000) dyn/cm2, i.e.,
the pressure-induced tensile stretch as a biomechanical force is approximately five
orders of magnitude greater than (fluid) shear stress. In addition to its direct effects
on the endothelial cell phenotype, an increase in circumferential tensile stretch can
sensitize and/or activate the corresponding mechanosensing and transduction mech-
anisms in endothelial cells [208, 209].
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In the heart, the integrity of the vascular endothelial cell monolayer is vital both
functionally and mechanically. Disturbances may result mainly in a reduced pro-
duction/release of NO [25], or in an impairment or even loss of the endothelial
barrier function [196]. Consequences of this endothelial cell dysfunction include
cardiomyocyte hypertrophy [210], increased myocardial stiffness [211] and/or car-
diac fibrosis [212]. In addition, recruitment and diapedesis of circulating
pro-inflammatory cells, namely monocytes differentiating into pro-inflammatory
macrophages, may occur more often due to the increased expression of chemokines
and adhesion molecules by the dysfunctional endothelial cells [213].

6.1 Macrovascular Versus Microvascular Endothelial Cells

Arteries in the body range in size from the largest diameter in the aorta to the smallest
in pre-capillary arterioles. They are subject to a wide variety of environmental
influences. The vascular endothelium has adapted to these specific environment
variables expressing distinct and differing characteristics in endothelial cells of
large conduit and resistance-sized small arteries and arterioles, i.e., macrovascular
and microvascular endothelial cells, respectively. As a result, certain pathologies
occur, only or predominantly, at specific sites within the arterial tree (see above). The
disturbed blood flow at these sites, which leads to a decline of unidirectional shear
stress, hence NO release, in combination with low or no flow zones at the arterial
vessel wall allows circulating leukocytes, namely monocytes, to interact with the
endothelial cells. This is reinforced by an increased adhesion and activation of
circulating platelets via the CD40-CD40 ligand dyad [214–217], which, in turn,
release chemokines that greatly facilitate diapedesis of the recruited monocytes.

Furthermore, endothelial cells possess primary cilia that seem to be utilized to
sense blood flow and which have been shown to be implicated in TGF-β-signalling
[218–220], atherosclerosis and EndMT [221, 222]. However, they seem to be
present only in blood vessels with low flow conditions and not in high flow areas
[221], adding another layer of distinction between endothelial cells depending on
their local environment. Moreover, due to reflections of the pulse wave, endothelial
cells are exposed to cyclic tensile stress that causes their enhanced production of
reactive oxygen species [223], namely superoxide anions, which, by way of neu-
tralization [224], adds to the much-decreased bioavailability of NO at the aforemen-
tioned predilection sites.
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Problems like these, arising from the described alterations of these two main
biomechanical forces, may be exacerbated by known primary risk factors of athero-
sclerosis such as hypertension, diabetes, or dyslipidaemia. Cardiac macrovascular
and microvascular endothelial cells have been shown to possess different secretory
profiles for MMPs and their inhibitors, TIMPs [225], too. When exposed to oxidized
low-density lipoprotein, they respond with differential expression of adhesion mol-
ecules [226]. Known risk factors for coronary heart disease, such as hypertension or
chronic inflammatory diseases, are likely to affect macrovascular and microvascular
endothelial cells to a differing degree. One open question among others is whether
the epicardial coronary arteries, the bifurcations of which represent important pre-
dilection sites for atherosclerosis, and the small arteries and arterioles in the heart
contain different subtypes of endothelial cells, or if the same endothelial cell type,
depending on its location/environment, reacts differently to a given stimulus, such as
disturbed blood flow [227].

6.2 Cardiac Microvascular Endothelial Cells

Cardiac microvascular endothelial cells also have a broad spectrum of functions
crucial to the regulation of cardiac activity in response to environmental cues. They
possess an elaborate sensing capacity for biomechanical stress, such as tensile
stretch, for the metabolic state of the cardiomyocytes affected by the accumulation
of metabolites like ADP or carbon dioxide, as well as for changes in local pH and/or
pO2 [189, 228–234]. In addition, they are equipped with receptors for a whole slew
of intercellular mediators such as serotonin, prostaglandins, bradykinin, tumour
necrosis factor (TNF)-α or vascular endothelial growth factor (VEGF) [235], to
name just a few. Cardiac microvascular endothelial cells translate these stimuli
through the subsequent formation and/or release of other factors such as NO, Ang
II, endothelin-1, or interleukin-6, among many others, into various signals for
targeting cardiomyocytes, fibroblasts, or immune cells. This way, they affect
cardiomyocyte contractility, growth, death, ECM composition through cardiac
fibroblast differentiation into myofibroblasts, or the degree of the primarily innate
immune response in the heart [235].

When exposed to pressure overload, cardiac microvascular endothelial cells
respond at the transcriptional, metabolic and functional level by upregulating,
among many others, TGF-β-induced genes that play a major role in the composition,
and hence mechanical properties, of the ECM [36]. They also seem to transition, in a
continuous and reversible manner [236], towards a more pro-fibrotic profile, with
increased fatty acid oxidation and the synthesis of proline, one of the main building
blocks of collagen and pro-collagen I. Consequently, microvascular endothelial cells
isolated from left ventricle biopsies of patients with aortic stenosis revealed a lower
pro-angiogenic (sprouting) ability than unaffected control cells isolated from the
right atrium of these patients. In a nutshell, in conditions of pressure overload,
microvascular endothelial cells in the heart seem to switch from an oxygen-



supplying, pro-angiogenic to a pro-fibrotic, collagen I secreting phenotype (see
Fig. 3) that is frequently associated with excessive cardiac fibrosis [36].
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During the development of the heart, cardiac microvascular endothelial cells
undergo a very similar phenotypic switch. In fact, this physiological cellular trans-
differentiation process of endothelial-to-mesenchymal transition was first described
for embryonic heart valve development [237, 238]. Endothelial cells undergoing
EndMT acquire a fibroblast-like mesenchymal profile and subsequently invade the
so-called cardiac jelly, where they produce large amounts of ECM molecules,
thereby forming the valve tissue [239]. In the adult heart, however, EndMT has
not been shown to contribute to heart valve repair or regeneration [240].

The classic toxicology maxim credited to Paracelsus, that it is the dose that makes
the poison, seems to hold true also in the context of EndMT. As a crucial mechanism
in embryonic development, it has to be delicately controlled, since impaired EndMT
may lead to the formation of failing heart valves, whereas excessive EndMT may
result in valves that are too thick, rendering them too rigid and functionally inade-
quate [237]. Similarly, EndMT in response to an acute pathological stimulus may
initially serve to recruit endothelial cells for cardiac fibrosis, which could be seen as
some sort of repair mechanism where fibrosis, e.g., following myocardial infarction,
at first delays the loss of structural and functional stability, thereby maintaining an,
albeit reduced, myocardial function. Sustained pathological conditions such as
pressure overload or a significant loss of cardiomyocytes, on the other hand, could



turn EndMT into an exaggerated and hence maladaptive response [237]. In fact,
recent studies provide credible evidence that EndMT may play a role in several
pathologies, such as atherosclerosis and cardiac fibrosis [241], impairing cardiac
mechanics and eventually leading to heart failure [242].
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During EndMT, endothelial cells lose their connections with neighbouring cells,
change their morphology from a cobblestone-like to a more elongated, spindle-like
shape [241], increase their rate of proliferation, and acquire the ability to migrate and
invade the surrounding tissue. Along with these phenotypic changes, EndMT causes
a certain degree of vascular leakiness, thereby diminishing the barrier function of the
endothelium [243, 244]. This is a process known from epithelial-to-mesenchymal
transition (EMT), in which epithelial cells downregulate the expression of cadherins
and other proteins involved in the formation of adherens junctions [245]. In EndMT,
a similar process is observed, indicating that regions of the vessel wall subjected to
this phenotype switch lose integrity and stability and become more permeable for
(pro-inflammatory) cells infiltrating from the blood.

At the molecular level, EndMT is characterized by downregulation of endothelial
markers such as PECAM-1, von Willebrand factor, VE-cadherin, VEGF receptor
2, endothelial NO synthase, Tie-1, Tie-2, and collagen IV [246, 247] while mesen-
chymal markers such as α-smooth muscle actin, vimentin, fibronectin, collagens I
and III, N-cadherin or FSP1 are upregulated [246–248]. However, the transition can
manifest itself as a continuum with varying degrees of expression of either marker
and, in addition, may be regulated at the epigenetic level [247, 249]. Altogether, this
data indicates that notably microvascular endothelial cells contribute to the popula-
tion of myofibroblasts that form and get activated in response to pressure overload in
the left ventricle. One should keep in mind, though, that the aforementioned,
apparently contradictory conclusions could be based on the detection of markers,
which are characteristic for different time points along the process of transition, and
that each study may have captured only part of the spectrum of changes in marker
gene expression [243]. Therefore, more research is necessary to elucidate the full
extent of the contribution of EndMT to cardiac fibrosis.

6.3 Effects of Pro-fibrotic Signals on Endothelial Cells

Regardless of their disputable contribution to cardiac fibrosis via EndMT, the
endothelial cell phenotype can be influenced by many factors favouring a
pro-fibrotic environment. Thus, TGF-β has not only been shown to activate fibro-
blasts but endothelial cells as well. However, depending on the composition and
structure of the ECM [250], TGF-β seems to affect the phenotype of endothelial cells
differently, with effects ranging from pro-inflammatory to anti-inflammatory [251],
pro-angiogenic to anti-angiogenic, growth-promoting to anti-proliferative [252], or
pro-migratory to anti-migratory [253, 254]. Pro-inflammatory cytokines released by
immune cells, mainly tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β),
have also been shown to induce EndMT in the brain [255], the vasculature [256], and



the heart [257]. Moreover, extravasating monocytes differentiating to
pro-inflammatory macrophages can also change the microenvironment to an
EndMT-favouring state by releasing the membrane type 1 matrix metalloproteinase
(MT1-MMP or MMP14) [257].
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There are distinctions to the source of inflammation, and the corresponding tissue
change. Local cardiac inflammation caused by either viral, microbial, or non-viral
stimuli, such as MI [264], lead to HFrEF because the local inflammatory response
primarily results in the infiltration of neutrophils releasing pro-inflammatory cyto-
kines such as TNFα, IL-1β or IL-6 that trigger cardiomyocyte death and degradation
of the ECM [265, 266]. The lost cardiomyocytes are replaced by fibrotic material
[267, 268], thereby negatively impacting LV compliance and EF. A more general
systemic inflammation, by contrast, mostly triggered by diseases such as type
2 diabetes, obesity, or hypertension, is associated with HFpEF (rather than HFrEF)
because the pro-inflammatory signals mainly affect the microvascular endothelial
cells, which in turn recruit (pro-inflammatory) monocytes from the blood that
eventually also stimulate myofibroblast formation and hence fibrosis [269], but
without a substantial loss of cardiomyocytes or reduction in EF. Besides TGF-β
and the aforementioned pro-inflammatory cytokines, biomechanical stress and other
environmental cues are also capable of inducing EndMT and/or endothelial cell-
mediated (cardiac) fibrosis. This has been shown for a decline in unidirectional shear
stress [196, 197, 258, 259], for an increase in tensile stretch [208, 258, 260] as well
as for the composition [261] and stiffness of the surrounding ECM [262, 263].

7 Anti-fibrotic Therapies

So far, there is no cure for heart failure. Several therapeutic approaches exist, and a
few of them seem to reduce severity of the disease, but none can prevent or reverse
exacerbation of the maladaptive pro-fibrotic remodelling process. A major obstacle
is the difficulty to select patients to be enrolled in studies or clinical trials, as early
(asymptomatic) stages of heart failure are hard to detect. Therefore, a precise and
timely diagnosis would greatly improve the selection and classification of subjects
for such studies [270]. This would also help to determine whether certain treatment
regimens only had the wrong timing or wrong target(s), or both. To date, strategies
either aim at acute fibrosis, myofibroblast activation, EndMT or other underlying
mechanisms such as overstimulation of the RAAS. Existing therapeutic approaches
and those that are currently being developed have already been comprehensibly
summarized in previous review articles [76, 271–273], hence only a very short
overview is provided here.

A more generalized approach could aim at passivating the pro-inflammatory
environment that strongly reinforces cardiac fibrosis. This could be achieved by
providing anti-inflammatory drugs like Saikosaponin A [274], which has been
shown to exert cardioprotective effects. As the differentiation of cardiac fibroblasts
to myofibroblasts is a pivotal step in the development of cardiac fibrosis, therapeutic



approaches mostly target cardiac fibroblasts and/or their activation. Naturally,
aiming at TGF-β1 and/or its effectors shows strong anti-fibrotic effects [275]. How-
ever, interpretation of the efficacy and primary mechanism of action of anti-TGF-β
therapies has been shown to be rather difficult. Most notably, this is due to the
ubiquitous nature of expression and maturation of this cytokine as well as its context-
depending effects on processes such as the synthesis of ECM components, cell
proliferation, apoptosis, angiogenesis, and immune cell function [276, 277]. In
addition, there is a rather complex interplay of TGF-β with members of its antago-
nistic stirps, the bone morphogenetic proteins (BMPs), namely BMP-2 and BMP-9,
in the control of fibrosis initiation and progression [278, 279]. Several studies have
been carried out (see below), and all encountered strong toxic side effects of
whatever kind of drug used at doses sufficiently high to attenuate cardiac fibrosis.
Lower doses, on the other hand, that were tolerated better in terms of side effects, had
no definite impact on cardiac fibrosis [76].
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Components of the TGF-β signalling pathway targeted so far include TGF-β1
itself (via neutralizing antibodies) [114], the type 1 [114, 280] or type 2 TGF-β
receptor [121], and downstream elements involved in TGF-β signalling such as
various kinases [281], SMAD3 [282] or SMAD4 [283]. They all resulted in high
mortality rates in animal models, with the few survivors frequently exhibiting left
ventricular dilation [283], widespread pro-inflammatory responses, and eventually
multi-organ failure [284, 285]. Therefore, global inhibition of TGF-β signalling and
its downstream targets does not seem to be a feasible approach [286]. However, local
targeting through nanoparticles was recently shown to present a possible way to
reduce endothelial cell-dependent TGF-β signalling [246].

Another possible candidate is angiotensin II (Ang II). As it is a long-standing
candidate for anti-hypertensive treatment regimens [287], many therapeutics have
been developed that are commonly used. Prototypic are two classes of drugs directed
either at the formation of Ang II from Ang I via angiotensin-converting enzyme
(ACE) or its effects mediated through the AT1 receptor. In the treatment of HFrEF,
these drugs have proven to be very effective over several decades [287, 288]. Unlike
patients with HFrEF, targeting the RAAS had no discernible effects in patients with
HFpEF, most likely due to aiming at different Ang II-independent pro-fibrotic
pathways [289–292]. Like Ang II, aldosterone causes or reinforces cardiac fibrosis
by upregulating pro-fibrotic gene expression [293] or MAP kinases that are relevant
in Ang II signalling [294, 295]. Thus, antagonizing the mineralocorticoid receptor
has been shown to reduce excessive ECM synthesis and to improve left ventricular
function in experimental animals [296–299] but, so far, not in trials with human
patients [300, 301].

Atrial and brain natriuretic peptides (BNP) released by cardiomyocytes in
response to pressure or volume overload [302, 303] can counteract the development
of cardiac fibrosis in experimental animals [304]. In patients with heart failure,
however, administration of BNP did not elicit any beneficial effect
[305, 306]. This could be due to its short half-life (< 20 min), as natriuretic peptides
are metabolized by neprilysin, which is widely expressed in the body [307]. Inhibi-
tion of neprilysin itself has been reported to be helpful in patients with HFrEF,



especially in combination with antagonizing Ang II [308–310]. In patients with
HFpEF, however, a minor effect was observed solely in women [306].
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If EndMT could reliably be shown to occur in response to pressure overload or
similar stimuli, thereby demonstrating that microvascular endothelial cells are a
significant source of myofibroblasts in the heart, attenuating EndMT would be
beneficial [311] and an appropriate target. Possible therapeutic approaches would
have to be restricted to selectively affecting the non-developmental, excessive
variant of EndMT. Alternatively, enhancing or substituting for the cardioprotective
effects of endothelial cell-derived NO could be an option, since NO has been shown
to exert a strong protective effect in the heart by preventing adverse remodelling
[312]. Accordingly, NO donors such as organic nitrates or nitroprusside, adminis-
tered in combination with hydralazine to prevent side effects such as nitrate tolerance
or superoxide anion formation [313], are beneficial in the treatment of cardiac
fibrosis [211]. Likewise, enhancing endothelial cell NO formation via stimulation
of the type 1 sphingosine-1-phosphate receptor showed cardioprotective
effects [314].

NO activates the soluble guanylate cyclase, thereby increasing intracellular
cGMP levels and activating cGMP-dependent protein kinases. This can also be
achieved by inhibiting the cGMP-specific phosphodiesterase-5 (PDE-5), which
blocks the conversion of cGMP to GMP. Maintaining cGMP at an elevated level
may lead to an improvement of endothelial cell function [315] and thus attenuate left
ventricular remodelling [210]. PDE-5 inhibition may not help, though, if cGMP
production in the endothelial cells is already impaired [316].

Therefore, another option would be to activate or stimulate soluble guanylyl
cyclase [316]. Initially, this approach was shown to cause strong hypotension, but
various stimulators of the enzyme are currently being evaluated in clinical trials to
assess their usefulness in this regard [316].

8 Conclusion(s)

Ischemic heart disease, the most important cause of death worldwide, and hyperten-
sive heart disease have in common that they ultimately lead to HFrEF through a
maladaptive remodelling process in the myocardium that comprises excessive inter-
stitial fibrosis as a pivotal intermediary step. In response to the loss of
cardiomyocytes due to ischemia, triggering replacement fibrosis, or pressure
overload, which requires reinforcement of the ECM in addition to cardiomyocyte
hypertrophy, cardiac fibroblasts differentiate into myofibroblasts, which synthesize
large amounts of ECM molecules. This newly formed scar tissue, however, is prone
to rupture. Microvascular endothelial cells that, upon inadequate biomechanical
stimulation, i.e., enhanced tensile stretch or exposure to pro-inflammatory and/or
pro-fibrotic mediators such as TGF-β signalling, may transdifferentiate into
myofibroblasts, therefore pose as another possible source of this
ECM-synthesizing cell type in the diseased heart. Apart from HFrEF, excessive
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cardiac fibrosis also leads to a stiffening of the myocardium, which is thought to play
a pivotal role in the development of HFpEF, a variant of heart failure that is as
frequent as HFrEF. Systematic unravelling of the underlying signalling mechanisms
in the cardiac fibroblasts and microvascular endothelial cells undergoing endothelial-
to-mesenchymal transition, which have been reviewed herein, will facilitate the
development of effective therapeutic approaches to stop or prevent excessive cardiac
fibrosis and thus all-cause heart failure.
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Cellular and Subcellular Mechanisms
of Ventricular Mechano-Arrhythmogenesis
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1 The Cardiac Mechano-Electric Regulatory Loop

The function of the heart is to provide the driving forces needed for the circulation of
blood to meet the metabolic demand of the body. This is achieved through an elegant
coordination of cardiac electrical excitation and mechanical pumping action. The
body’s haemodynamic state is continuously adapting, being modulated, for instance,
by breathing, postural changes, exercise or circadian oscillations in blood pressure.
To facilitate the matching of blood output from the heart to changes in systemic
demand, an auto-regulatory system has evolved that intrinsically tethers electrical
and mechanical function of the heart through feed-forward (‘excitation-contraction
coupling’, ECC) [1] and feed-back (‘mechano-electric coupling’, MEC) pathways
[2–7]. Together, ECC and MEC form the cardiac mechano-electric regulatory loop,
which allows the heart to acutely sense and respond to physiological changes in its
intrinsic and external environment and to maintain adequate pump function [1, 5]. In
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physiological settings, MEC can have anti-arrhythmic properties, for instance, by
reducing dispersion of repolarisation across the ventricles [8, 9]. However,
MEC-mediated response to pathophysiological mechanical perturbations, disease-
related alterations in the active or passive mechanical state of the heart or changes in
factors driving MEC can destabilise cardiac rhythm and contribute to
arrhythmogenesis [7, 10–17].
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This chapter considers how pathophysiologically altered MEC, combined with
changes in the cardiac mechanical environment, contributes to mechanically induced
alterations in ventricular electrophysiology that can lead to arrhythmias (hereafter
referred to as ‘mechano-arrhythmogenesis’). It then discusses cellular and subcellu-
lar components of MEC in ventricular cardiomyocytes (CM) that may contribute to
ventricular arrhythmogenesis, including mechano-sensitive ion channels (MSC),
biophysical signal transmitters (i.e. microtubules, MT) and mechano-sensitive bio-
chemical signalling pathways (i.e. changes in cytosolic free calcium concentration,
[Ca2+]i, or reactive oxygen species, ROS). Finally, it describes clinical manifesta-
tions of these cellular and subcellular MEC mechanisms in a local (acute regional
myocardial ischaemia) and a global (hypertension) pathophysiological setting. Of
note, this chapter will not address mechanical modulation of contractility (mechano-
mechanical coupling) [18] or stretch effects on sinus rhythm [19, 20], atrial arrhyth-
mias [21] or tissue conduction [22], as the focus is on MEC in ventricular CM.

2 Clinical Evidence and Experimental Studies
of Ventricular Mechano-Arrhythmogenesis

Ventricular mechano-arrhythmogenesis requires a sufficiently large and critically
timed mechanical stimulus that directly or indirectly activates MSC, and that may be
modulated by mechano-sensitive biophysical transmission or biochemical signals.
This can be influenced by pathological changes in ventricular MEC, which alter the
likelihood that a given stimulus will overcome the threshold for AP induction in CM
[5]. While this chapter is focused on CM, it warrants noting that mechano-
arrhythmogenesis also involves hetero-cellular interactions with electrotonically
coupled cardiac non-myocytes [23] that also express MSC [24]. The contribution
of hetero-cellular coupling will be enhanced upon disease-related changes in
non-myocyte levels and phenotypes (e.g. myofibroblast conversion), which increase
hetero-cellular interactions (for instance, through enhanced intercellular connectivity
by increased fibroblast connexin expression) [25] or affect their MSC expression or
function [26, 27].
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2.1 Clinical Evidence

One of the most dramatic clinical examples of ventricular mechano-
arrhythmogenesis is Commotio cordis, during which a non-contusional external
impact, usually to the precordium, results in rhythm disturbances of variable nature,
including ventricular fibrillation [28]. In fact, mechanically induced ventricular
fibrillation is one of the leading causes of sudden cardiac death among young
athletes and has been one of the primary reasons for which, in many countries,
automated external defibrillators are now increasingly located at sporting facilities
where potentially deadly impacts to the chest are most likely to occur [29, 30]. Ven-
tricular mechano-arrhythmogenesis is also common during clinical procedures in
which contact of medical instruments (e.g. cardiac catheters) with the myocardium
causes local tissue deformations that may lead to ectopic excitation and
arrhythmogenesis [31–42]. As with precordial mechanical stimulation [43, 44],
such device-tissue contact can also revert pre-existing arrhythmias to normal sinus
rhythm [5]. Arrhythmogenic changes in ventricular electrophysiology are addition-
ally seen during acute increases in ventricular mechanical load, such as that occur-
ring with balloon valvuloplasty [45] or during surgical manipulations [46–49].

The risk of an abnormal mechanical stimulus triggering an arrhythmia can
be enhanced by cardiovascular disease. In patients with established structural heart
disease, acute fluctuations in ventricular volume or pressure are more likely to result
in premature excitation and sustained tachyarrhythmias [7, 17, 50]. Indeed, arrhyth-
mia incidence in these patients is affected by blood pressure alterations, including
those caused by pharmacological interventions [50], circadian oscillations [51] or
day-to-day variations [52], such that acute increases in ventricular load (both preload
and afterload) are associated with higher rates of arrhythmogenesis. There is also
evidence suggesting that local changes in myocardial mechanics play a role in
mechano-arrhythmogenesis, as wall motion abnormalities in patients with ischaemic
heart disease are associated with an increased prevalence of premature excitation
during acute fluctuations in load [16]. Interestingly, this effect also works in reverse:
in patients suffering from chronic ventricular volume overload and tachyarrhyth-
mias, acute ventricular unloading can result in termination of ventricular tachyar-
rhythmias, but alas, often only for as long as the reduction in load can be maintained
[53–57].

2.2 Experimental Studies

Existing clinical evidence of ventricular mechano-arrhythmogenesis has been cor-
roborated in experimental studies that have helped to elucidate potential mecha-
nisms. For instance, in the case of Commotio cordis, a pig model of baseball impacts
to the chest has confirmed historic observations [58, 59] on critical factors for the
induction of ventricular fibrillation (such as pre-cordial location and impact with



small and hard projectiles) while adding new information on the link between impact
timing and electrophysiological outcomes: while single extra beats can be triggered
in diastole, ventricular fibrillation is seen only for impacts in a narrow time-window,
~15–30 ms before the peak T wave of the ECG [60–62]. Isolated heart experiments
[63] and computational modelling [64, 65] have further shown that ventricular
excitation, induced by a focal mechanical stimulus [66], depends on the degree of
myocardial tissue deformation and that it is a local phenomenon (i.e. triggered at the
contact site, rather than resulting from the impact-induced intraventricular pressure
surge). If a mechanically induced focal excitation overlaps with the trailing wave of
the previous regular excitation, it may initiate ventricular fibrillation, highlighting
the critical spatio-temporally defined nature of the vulnerable window for mechano-
arrhythmogenesis [63].
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In addition to elucidating mechanisms of Commotio cordis, experimental studies
have demonstrated the possibility for acute changes in ventricular load to lead to
premature excitation and tachyarrhythmias. Transient increases in intraventricular
volume during diastole cause cellular depolarisation, which triggers excitation if
supra-threshold [67–84]. Ectopic excitation has also been observed in experiments
involving rapid increases in ventricular pressure (due to an acute increase in
afterload) [85–87], which has been suggested to be a consequence of enhanced
late-systolic myocardial deformation [88]. When an acute ventricular load is applied
during systole, it tends to heterogeneously alter repolarisation and refractoriness,
furnishing an arrhythmogenic substrate [68–70, 89–111]. In fact, in the isolated
heart, an acute increase in intraventricular pressure has been shown to be as
arrhythmogenic as the substrate created by the catecholamine-rich milieu and elec-
trical remodeling associated with heart failure [112]. It is important to note that,
while changes in intraventricular volume or pressure affect the entire ventricle
(whether applied in diastole or systole), the response is generally spatially hetero-
geneous [113]. This is presumed to be related to variations in myocardial stiffness
across the ventricle, such that stretch and the resulting electrophysiological changes
are non-uniform [83, 90], with excitation originating from areas of the largest stretch
(for instance, in the right ventricular outflow tract) [67, 83, 90].

3 Cellular and Subcellular Mechanisms of Ventricular
Mechano-Arrhythmogenesis

Ventricular mechano-arrhythmogenesis in the whole heart arises out of a complex
interplay of intra- and intercellular MEC-mediated effects. This next section is
focused on the intracellular effects—the cellular and subcellular mechanisms of
MEC in ventricular CM, including MSC [24], biophysical signal transmitters
[114–116] and biochemical signals [117–121]—and how they shape the effects of
MEC at the tissue and organ level.
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In ventricular CM, stretch occurring during the resting phase of the cardiac cycle
(‘electrical diastole’) depolarises the sarcolemma. If depolarisation is
supra-threshold, this will result in excitation (i.e. it will trigger an action potential,
AP). On the other hand, stretch occurring during the AP (‘electrical systole’) can
alter the plateau or affect repolarisation dynamics. As a result, depending on stretch
timing, MEC will hasten early phase 3 repolarisation, delay later repolarisation or
cause early or delayed afterdepolarisation-like events [68, 69, 89, 90]. Importantly,
pathophysiological changes in CM mechanics, electrical activity or factors contrib-
uting to MEC may alter this timing dependence while also enabling smaller mechan-
ical stimuli to initiate electrical disturbances [5].

3.1 Mechano-Sensitive Ion Channels

Most acute effects of stretch on ventricular tissue- and CM-level electrophysiology
(e.g. diastolic depolarisation, excitation or altered repolarisation) can be explained
by MSC [24, 122]. While stretch activated channels (SAC) have been defined
exclusively as channels whose activity is directly activated by a mechanical stimu-
lus, MSC also include ion channels whose current is primarily activated by another
mechanism (e.g. ligand- or voltage-activated channels), but whose activity can also
be mechanically modulated [24, 122]. In fact, it has been suggested that all channels
whose opening and closing mechanisms involve changes in their in-plane dimension
within the lipid bilayer are MSC and may therefore contribute to MEC [123]. While
the exact molecular identity of many MSC in the heart remains a topic of debate,
they are generally divided into two groups based on their principal ion permeability.
These groups include cation non-specific MSC (MSCNS, which cause depolarisation
or altered repolarisation) and potassium (K+)-selective MSC (MSCK, which will
promote repolarisation [5, 24] and conceivably cause hyperpolarisation in patholog-
ical states that are associated with depolarised resting membrane potential, such as
ischaemia). There are additional MSC, conducting chloride (Cl-) ions, which are
activated by changes in cell volume (for instance, with osmotic swelling, MSCswell)
rather than stretch. They are not believed to contribute to acute MEC-mediated
responses, due to a pronounced lag-time in their activation (~ 1 min) and the
presumed conservation of cell volume during externally applied deformations of
CM [24]. However, in disease states associated with changes in cell volume, such as
during cell swelling (e.g. in ischaemia and reperfusion) [124] or CM hypertrophy
(where Cl- channels have been shown to be constitutively active) [125], the
contribution of cell volume-sensitive MSC to mechano-arrhythmogenesis may
become relevant, for example, by acting as modifiers of the electrophysiological
background upon which MEC operates.
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3.1.1 MSCNS

With a reversal potential (EREV) between -20 and 0 mV [24], the timing of stretch
stimuli (causing MSCNS activation) relative to the AP [122] determines whether
MSCNS pass an ‘inward’ depolarising current (at membrane potentials< EREV of the
MSC) or an ‘outward’ re-/hyperpolarising current (at membrane potentials > EREV)
[70, 126, 127]. Accordingly, MSCNS can depolarise resting CM. Even though
experimental and computational evidence demonstrates stretch-induced
depolarisation and AP-induction [67, 71–74, 122], which can be prevented by
pharmacological block of MSCNS [69, 73, 75, 76, 92, 128], no single channel
patch clamp recordings of MSCNS have been reported in adult ventricular
CM. This is possibly due to localisation of MSC in membrane folds (including
caveolae and transverse tubules) or at the Z-disc, locations where their direct
measurement by the patch clamp method is difficult [24]. It may also relate to a
dependence of MSC activation on cytoskeletal elements, the required deformation of
which is not engaged in the available experimental systems (i.e. by negative patch
pressure) [129]. While this has hindered identification of MSCNS in adult ventricular
CM, two groups of ion channels are thought to make important contributions: Piezo
and Transient Receptor Potential (TRP) channels [5, 24].

The discovery of Piezo channels generated a great deal of excitement as a
potential key MSCNS in CM [130], because Piezo channel kinetics match macro-
scopic functional observations [24, 131]. However, while it appears that Piezo
channels are expressed in macrophages [132] and cardiac fibroblasts [26, 133],
only small amounts of Piezo mRNA have been found in cardiac tissue (from mice)
[130], and (at the time of writing) no functional Piezo channels have been shown in
ventricular CM from any species. Therefore, there is no direct evidence at present for
a role of Piezo in ventricular mechano-arrhythmogenesis.

TRP channels are a ubiquitously expressed group of ion channels comprised of
six subfamilies, many of which are found in the heart [27]. These channels have
garnered interest regarding their role in the pathological progression of hypertrophy,
heart failure and ischaemia, as well as in arrhythmogenesis [134, 135]. As TRP
channels can pass inward or outward currents at physiological membrane potentials,
and some have been shown to be inherently mechano-sensitive [136] (although this
is not uncontested [137]), they may yet be found to play an important role in
ventricular mechano-arrhythmogenesis.

3.1.2 MSCK

The identity of several MSCK in the heart is well established. TREK-1 and 2 are
outwardly rectifying K+ channels [24]. Being K+-selective, they pass repolarising
currents at all membrane potentials that are naturally experienced by
CM. Accordingly, they do not trigger stretch-induced excitation, and their relative
contribution to global cardiac MEC phenomena in physiological conditions is



generally believed to be low compared to MSCNS [5]. However, in some diseases,
additional mechano-sensitive K+ currents become available for mechanical activa-
tion, making contributions of MSCK more relevant as the ‘net reversal potential’ of
mechanically induced whole cell current will depend on the relative contributions of
MSCNS and MSCK. In ischaemia, for example, mechano- and adenosine triphos-
phate (ATP)-sensitive K+ channels (KATP) are pre-activated by the reduction in ATP
(and increase in ADP) and thus alter MEC-mediated effects on cardiac electrophys-
iology (considered further in Sect. 4.1) [5, 138–140].
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3.2 Biophysical Signal Transmitters

Biophysical signal transmitters, such as MT, relay mechanical cues across the cell,
affecting mechano-sensitive cellular components, including MSC and elements
responsible for the release (e.g. Ca2+ from the sarcoplasmic reticulum, SR, via
ryanodine receptors, RyR [118], and from mitochondria [141–145]) or production
(e.g. ROS by NADPH oxidase 2, NOX2 [120, 121]) of biochemical signals, which
elicit and/or modulate electrophysiological responses [114, 116]. In ventricular CM,
MT are particularly important for mechanical transmission [114–116, 118, 120, 146,
147] (although sarcomeric proteins and other cytoskeletal elements not discussed
here, such as titin, focal adhesion proteins or integrins, will also be involved
[148, 149]).

MT form physical links at the Z-disc through interactions with membrane-
associated and intermediate proteins (e.g. desmin) [114]. These links create a rigid
scaffold, conferring structural integrity to ventricular CM and facilitating their
re-lengthening after contraction [116], as illustrated by transient buckling of MT dur-
ing cell shortening [150]. MT mechano-transmission is enabled by their load-bearing
ability, which is enhanced by their lateral reinforcement [151]. MT load-bearing
involves interactions between the intermediate protein desmin and detyrosinated MT
[150, 152]. Detyrosination is a post-translational modification that confers MT
stability, simultaneously preventing MT degradation and promoting the formation
of tight junctions with desmin, resulting in a shift from low-energy sliding to energy-
costly buckling of MT during cell contraction [150]. Other, less explored post-
translational modifications, such as acetylation, also increase the load-bearing capa-
bilities of MT [146, 153]. Acetylation confers resistance to MT breakage during
repetitive mechanical stimulation, resulting in more long-lasting (‘aged’) MT, which
are then available for further post-translational modification [147, 154]. Thus, a
denser, more detyrosinated (physically anchored) and/or acetylated (aged) MT
network would be expected to enhance mechano-transmission in CM. Indeed,
increased detyrosination and acetylation have been shown to enhance mechano-
dependent biochemical signalling, such as an increase in the stretch-induced release
of Ca2+ from the SR (i.e. Ca2+ sparks) and NOX2-dependent ROS production
[115, 155]. Thus, MT network properties (including post-translational



modifications) warrant exploration for their role in mechano-arrhythmogenesis
(explored in Sect. 4.2).
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3.3 Mechano-Sensitive Biochemical Signals

Mechano-sensitive biochemical signals are by-products of intracellular mechano-
transmission and modulate the electrophysiological response of CM to a mechanical
stimulus [117, 119, 121]. Principal mediators known to be important for ventricular
MEC include mechano-sensitive changes in [Ca2+]i, which is determined by
(1) trans-sarcolemmal Ca2+ in-/efflux [156, 157]; (2) Ca2+ release from/re-uptake
into the SR [118, 158, 159]; (3) cytosolic Ca2+ buffering (such as by dissociation
from/binding to troponin C, TnC [160, 161], or release from/re-uptake into mito-
chondria [142–145]); and (4) mechano-sensitive changes in ROS [120, 121]
(although other important factors exist [119]).

These biochemical signals modulate the activity of ion channels, including TRP
ankyrin-1 channels (TRPA1) [162, 163] and K+-selective Ca2+-dependent channels
of big conductance (BKCa) [26, 164] or other trans-sarcolemmal ion flux pathways,
such as the sodium/calcium (Na+/Ca2+) exchanger (NCX) [156, 157]. At the same
time, biochemical signals also affect post-translational modification of MT
(e.g. acetylation) [165], which will then affect mechano-transmission (see above)
[155]. In this way, whether through interactions with MSC, other trans-sarcolemmal
ion flux pathways or biophysical signal transmitters, biochemical signals can mod-
ulate ventricular MEC.

3.3.1 Mechano-Sensitive Ca2+ Handling

In ventricular CM, the total amount of intracellular Ca2+ is affected directly by
mechano-sensitive trans-sarcolemmal Ca2+ flux or secondarily by the effects of
trans-sarcolemmal Na+ flux on NCX activity [156, 157]. ‘Free’ cytosolic [Ca2+]i is
additionally affected by the mechano-sensitivity of intracellular Ca2+ handling. For
instance, increases in [Ca2+]i occur with mechanically induced Ca2+ release from
mitochondrial stores (which is independent of sarcolemmal MSC or NCX-mediated
Ca2+ influx) [142, 143, 145], through a process that is dependent on MT integrity. As
a result, MT disruption leads to mitochondrial disorganisation, irregular Ca2+ prop-
agation and arrhythmogenic Ca2+ waves (which may also involve Ca2+ release from
the SR) [144]. During contraction, [Ca2+]i is affected by the mechanical modulation
of the affinity of TnC for Ca2+, which is increased during stretch (such that more
Ca2+ binds to myofilaments) [160]. Upon release of stretch, the rapid dissociation of
Ca2+ from TnC can cause an arrhythmogenic surge of [Ca2+]i [161]. In diastole,
stretch causes an acute increase in Ca2+ spark rate through a MT-dependent mech-
anism (reduced byMT disruption [118, 158]), suggesting that RyR themselves are in
fact (non-sarcolemmal) MSC. This stretch-induced increase in Ca2+ spark rate would



be diminished upon cell shortening during contraction and hence result in a negative-
feedback mechanism that aids initiation and termination of ECC [166].
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In physiological conditions, mechano-sensitive Ca2+ handling processes interact,
presumably synergistically, and control [Ca2+]i. However, pathological alterations in
these processes, such as in RyR open probability (for instance, due to oxidation or
nitrosylation) [120, 167–169] or in myofilament Ca2+ binding affinity [170], may
disturb the control of [Ca2+]i, resulting in Ca2+-mediated arrhythmogenesis. This is
particularly relevant for diseases associated with altered mechanics [171] or Ca2+

overload, such as acute regional ischaemia [156, 172] and hypertension (considered
in Sect. 4) [115, 155].

3.3.2 Mechano-Sensitive ROS Production

The stretch-induced increase in Ca2+ spark rate is modulated by another mechano-
sensitive biochemical signal: ROS [120]. In the context of ventricular MEC, ROS
(and any ROS-mediated Ca2+ release) is dependent on MT, as increasing MT
stability enhances mechanically induced ROS production [115]. This makes it
difficult to distinguish between direct and indirect roles of the MT in mechanical
modulation of RyR-mediated Ca2+ release [118, 120].

Mechanically induced ROS production is graded by stretch magnitude and is
more responsive to cyclic than static stretch, which is in keeping with a role during
regular cardiac activity [173]. This contributes to the intracellular tuning of Ca2+

signalling in response to stretch [120] and to complex intercellular adjustments of
contractility (mechano-mechanical coupling [18]) that has been observed in paired
muscle (“duplex”) studies [174]. This duplex research showed that stretch effects on
cellular Ca2+-balance enable CM to adjust their contractility to changes in external
demand. It is conceivable that (at least some of the) MEC-mediated responses are a
‘side-effect’ of this autoregulation of CM mechanical performance. In any case,
physiological (e.g. transmural) or pathophysiologically exacerbated heterogeneity in
ventricular electro-mechanics (e.g. during ischaemia) may promote
arrhythmogenesis via effects on Ca2+-dynamics [175]. For example, a pathological
(including mechanically induced) increase in ROS production could contribute to
mechano-arrhythmogenesis by sensitising MSC [162, 163] and promoting RyR
Ca2+ leak [120] while also stabilising MT (through an increase in acetylation)
[165]. The latter may be part of a compensatory response (as stiffer CM will be
stretched less), but this would come at a cost (requiring higher forces for
contraction).
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4 Ventricular Mechano-Arrhythmogenesis in Cardiac
Disease

One critical determinant of mechano-arrhythmogenesis, as highlighted in Sect. 2, is
the spatial nature of a mechanical disturbance. To illustrate this point, we consider
two cardiac disease states with spatially divergent alterations in electro-mechanics
and different effects on cellular MEC: (1) acute regional myocardial ischaemia,
which is focal in nature and involves acute metabolic, electrophysiological and
ionic changes that directly alter MEC, and (2) chronic hypertension, which is global
in nature and involves chronic cellular remodelling, with secondary effects on MEC.

4.1 Acute Regional Myocardial Ischaemia

Acute regional myocardial ischaemia is a mismatch between the supply and demand
of blood in a localised area of the heart, for example, due to occlusion of a coronary
artery. Ischaemia is characterised by three hallmark pathophysiological changes to
the cellular milieu that drive pro-arrhythmic electrophysiological changes and
MEC-mediated responses: (1) reduced interstitial oxygen content (hypoxia);
(2) increased extracellular K+ concentration (hyperkalemia); and (3) decreased intra-
cellular pH (acidosis). This ischaemic milieu (and reduced or lack of blood flow)
causes a cardiometabolic shift, which leads to metabolite accumulation and
increased osmotic pressure (Fig. 1) [176]. During progression of acute regional
myocardial ischaemia, arrhythmias occur in a bi-modal fashion in periods termed
‘phase 1a’ (up to ~10 min following artery occlusion) and ‘1b’ (~15–60 min after
occlusion).

The arrhythmias occurring in phase 1a appear to be re-entrant in nature and relate
to cellular hyper-excitability. This hyper-excitability is driven by diastolic mem-
brane depolarisation secondary to hyperkalemia, combined with stretch of ischaemic
tissue (clinically evident as paradoxical segment lengthening) [177], which activates
MSCNS, driving further depolarisation and contributing to premature excitation
[176, 178]. In phase 1b, excitability is reduced below normal levels in the central
ischemic zone [176, 178], which at the same time begins to stiffen and, thus, resist
stretch [179–183]. The particularly high incidence of arrhythmias in this phase has
been suggested to instead involve systolic stretch of myocardium at the border
between the stiffened ischaemic core and healthy contractile tissue, causing
MSCNS and KATP channel activation [179–183]. In low-flow ischaemia, activation
of volume-sensitive MSC through cell swelling caused by increased osmotic pres-
sure may also contribute to electrophysiological changes that promote
arrhythmogenesis in both phases (Fig. 1) [124, 125].



Cellular and Subcellular Mechanisms of Ventricular Mechano-Arrhythmogenesis 275

Fig. 1 Cellular and subcellular mechanisms of ventricular mechano-arrhythmogenesis during
acute regional myocardial ischaemia. Following coronary artery occlusion, key metabolic, electro-
physiological and ionic changes include hypoxia, acidosis and hyperkalemia (black borders, top
panel). These changes lead to altered myocardial mechanics through (1) decreased contractility of
ischaemic tissue, resulting in stretch of the ischaemic region in phase 1a and of the ischaemic border
in phase 1b, and (2) metabolite accumulation, resulting in osmotic swelling (blue borders, middle
panel). Stretch activates cation non-specific and potassium (K+)-selective mechano-sensitive ion
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4.1.1 Metabolic, Electrophysiological and Ionic Changes

Hypoxia

Following coronary artery occlusion, reduced blood flow results in tissue hypoxia,
causing an increase in anaerobic glycolysis that is concomitant with reduced mito-
chondrial pyruvate oxidation [26, 184, 185]. This metabolic change leads to an
increase in lactate production, metabolite accumulation and a gradual decrease in
ATP availability (following exhaustion of cytosolic phosphocreatine reserves that
are engaged to initially buffer this change) [186–189] with a simultaneous increase
of adenosine diphosphate (ADP). The resulting decrease in the ATP:ADP ratio
removes inhibition of mechano-sensitive KATP channels (Fig. 1) [176]. This has
two effects: depolarisation of CM resting membrane potential as a consequence of
hyperkalemia and APD shortening due to an increase in outward repolarising K+

currents. Osmotic swelling, secondary to metabolite accumulation, may also activate
volume-sensitive MSC, such as Cl- channels [124, 125], leading to further resting
membrane potential depolarisation and APD shortening. The APD shortening is
more pronounced than the reduction in Ca2+-transient duration that also occurs
during ischaemia [178], resulting in a period in late repolarisation during which
[Ca2+]i is still high when CM have repolarised. This can facilitate Ca2+-induced
re-excitation [13, 190–192]. The degree of APD shortening will be spatially hetero-
geneous, due to differences in expression [193] and stretch-induced activation of
KATP across the heart [138–140], resulting from regionally differing ventricular
mechanics (discussed in more detail below).

Extracellular K+ Accumulation

The combination of KATP activation, reduced wash-out of the extracellular space and
decreased activity of the Na+/K+-ATPase results in hyperkalemia (Fig. 1) [176]. This
increase in extracellular K+ causes a shift in EREV for K+ toward less negative values,

Fig. 1 (continued) channels (MSCNS and MSCK, including ATP-sensitive K
+ channels, KATP) and

alters mechano-sensitive calcium (Ca2+) handling processes, leading to an increase in free cytosolic
Ca2+ concentration ([Ca2+]i). At the same time, osmotic swelling activates cell volume-sensitive ion
channels (MSCswell). Combined, these mechano-sensitive elements contribute to arrhythmogenic
triggering (red borders or shading) and/or sustaining (green borders or shading) effects. Key
changes in intracellular Ca2+ handling are summarised in the bottom panel. In phase 1a, ATP levels
are relatively preserved, so despite increased Ca2+ flux into the cytosol, [Ca2+]i is maintained by
normal ATP-dependent extracellular Ca2+ extrusion and intra-organelle Ca2+ uptake. In phase 1b,
ATP levels decrease, so cytosolic Ca2+ efflux can no longer balance influx, and there is an increase
in [Ca2+]i, which can also trigger and/or sustain arrhythmias. ADP, adenosine diphosphate; ICa,L,
L-type Ca2+ current; INa, fast sodium current; [K+]o, extracellular potassium concentration; LTCC,
L-type Ca2+ channel; mNCX, mitochondrial NCX; NCX, sodium-Ca2+ exchanger; NHE, sodium-
hydrogen exchanger; O2, oxygen; RyR, ryanodine receptors; SERCA, sarcoendoplasmic reticulum
ATPase; SR, sarcoplasmic reticulum; TnC, troponin C



resulting in depolarisation of the resting membrane potential of CM. Hyperkalemia
also occurs in a bimodal fashion, as in phase 1a, the initial preservation of Na+/K+-
ATPase activity partially counteracts the KATP-mediated K+ efflux. During this
period, CM become hyper-excitable, as their slight depolarisation brings the resting
membrane potential closer to the threshold for activation of the fast Na+ channels
that underlie AP initiation.
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Progressive ATP reduction in phase 1b, however, interferes with Na+/K+-ATPase
activity, resulting in a greater, secondary rise in extracellular K+. This leads to further
membrane depolarisation, which partially inactivates fast Na+ channels, thereby
reducing cell excitability and prolonging the effective refractory period
(‘post-repolarisation refractoriness’) [178, 194]. In the regionally ischaemic whole
heart, the level of extracellular K+ accumulation differs between the ischaemic core
and healthy tissue, due to gradients in extracellular wash-out and in oxygen avail-
ability, but in part also due to heterogeneous stretch-induced activation of KATP in
the ischaemic tissue [177]. This gradient results in injury currents that flow from the
depolarised ischaemic tissue to the (still electrotonically coupled) healthy tissue,
reducing the electrical sink in this region (by shortening the gap between the resting
and threshold potential of the electrically coupled healthy myocardium) and con-
tributing to hyper-excitability of tissue at the ischaemic border zone [195, 196].

Intracellular Acidosis

The hypoxia-induced metabolic shift to anaerobic glycolysis, combined with ongo-
ing fatty acid beta-oxidation, enhances proton accumulation and leads to intracellu-
lar acidosis. As a result, an initial compensatory efflux of hydrogen through the Na+/
H+-ATPase (while ATP levels are still sufficient) causes an increase in intracellular
Na+, which reduces Ca2+-extrusion by NCX (or even causes it to operate in reverse
mode), leading to intracellular Ca2+ accumulation. At the same time, acidosis causes
inhibition of fast Na+ and L-type Ca2+ channels [178, 195], along with closure of gap
junctions (Fig. 1) [197].

Electrophysiological Changes

At the cellular level, the effects of hypoxia, hyperkalemia and acidosis (as well as
osmotic swelling-induced increases in Cl- currents [124, 125]) manifest as
arrhythmogenic changes to the AP: (1) shortened plateau and more rapid
repolarisation (resulting in decreased APD and AP triangulation); (2) less negative
resting membrane potential; and (3) reduced AP amplitude and upstroke rate
[176, 178]. In the regionally ischaemic heart, changes in APD are spatially hetero-
geneous, with an additional increase in beat-to-beat variability of repolarisation
within the peri-infarct region compared to remote, healthy myocardium
[198]. This results in dispersion of cell excitability, refractoriness and repolarisation
timing, which increases the vulnerability to re-entrant arrhythmias [178, 195, 198].
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This arrhythmic risk is further enhanced by increasing the ‘excitable gap’, i.e. the
distance between activation wave-front and wave-end. This occurs though a reduc-
tion in APD, and it is enhanced by slowed conduction (due to reduced intercellular
coupling and decreased fast Na+ channel availability). Ventricular conduction may
be further slowed by stretch effects, which result in an increase in membrane
capacitance [199, 200], caused by the unfolding of membrane invaginations,
T-tubule deformation and the incorporation of caveolae into the surface and
T-tubule membranes [201, 202].

Alterations in Ca2+ Handling

In ischaemia, there is a net increase in cytosolic [Ca2+]i driven by several mecha-
nisms, including (1) reduced forward-mode NCX activity secondary to the acidosis-
induced increase in intracellular Na+ via the Na+-H+ exchanger or stretch-induced
(see below) Na+ entry (and in extreme cases, reverse-mode NCX activity causing
Ca2+ influx); (2) decreased Ca2+ (re-)uptake by the sarco-endoplasmic reticulum
ATPase due to reduced ATP levels; (3) an increase in Ca2+ leak from the SR, driven
by an increase in the open probability of RyR [194]; and (4) stretch effects on Ca2+

handling (considered in Sect. 3.3.1). The increase in RyR opening is a result of
several effects [176], including Ca2+-induced opening [203], stretch [118, 158] and
increased ROS [120]. This overall net gain in intracellular Ca2+leads to an increase
in SR Ca2+ load. As ischaemia progresses, any compensatory effect of this Ca2+

sequestration into the SR is exhausted, further promoting Ca2+ leak through RyR and
increased [Ca2+]i (Fig. 1).

4.1.2 Stretch of Ischaemic Myocardium

Altered metabolic, ion channel and Ca2+ handling activity in CM during acute
regional ischaemia affect myocardial contractility, resulting in regions of diastolic
and systolic tissue stretch (Fig. 1).

In phase 1a, there is general stretch of weakened tissue in the central ischaemic
region, with additional stretch during mechanical systole. In phase 1b, however, the
central ischaemic tissue stiffens, and its stretch is reduced, resulting in stretch of
weakened tissue at its border by contraction of adjacent healthy tissue [179–
183]. The mechano-arrhythmogenic relevance of ischaemic myocardial stretch is
supported by the correlation between wall motion abnormalities and the incidence of
ventricular fibrillation seen in patients with coronary artery disease [16]. Experimen-
tally, it has been shown that the onset of tissue stretch and ventricular fibrillation in
phase 1a of acute regional ischemia is related [204] and that the degree of tissue
stretch is a strong predictor of ventricular fibrillation occurrence [10–12, 177].

In phase 1b, arrhythmia incidence is ventricular load-dependent [13, 14, 80], and
aberrant excitation tends to originate at the ischaemic border, where experimental
evidence [13, 14] and computational modelling [205] suggest an involvement of



stretch-induced depolarisation mediated by MSCNS. Mechanically induced arrhyth-
mias arising from the ischaemic border will be facilitated by heterogeneous slowing
of conduction, due to more pronounced gap junction uncoupling within the
ischaemic core than at the ischaemic border [197].
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Changes in mechano-sensitive biochemical signalling during ischaemia further
facilitate mechano-arrhythmogenesis. For instance, the stretch-induced increase in
Ca2+ spark rate [118] and ROS production [120] that occurs in healthy tissue is
enhanced by ischaemia [172], a response potentially caused by an ischaemia-
induced increase in SR Ca2+ load [194] or RyR sensitivity [120, 168] or a deficit
in the antioxidant capacity of CM [206] (for instance, due to a reduction in the key
antioxidant glutathione [207]). In fact, enhancement of mechano-sensitive biochem-
ical signalling in regions of stretched myocardium has been shown to cause focal
Ca2+ waves [208], which, if occurring at the ischaemic border where the injury
current tends to reduce the excitation threshold [195], may contribute an additional
trigger or serve as a substrate for sustained mechano-arrhythmogenesis.

4.1.3 Tissue-Level Considerations for Mechano-Arrhythmogenesis
in Acute Regional Ischaemia

Mechano-arrhythmogenesis in acute regional ischaemia involves the localised inter-
action of ischaemia- and stretch-induced electrophysiological effects on CM, gen-
erating regionally heterogeneous changes in tissue excitability, refractoriness and
electrical conduction. As the acute outcome of myocardial stretch is dependent on its
magnitude and timing relative to the background electrical and mechanical activity
of CM, ischaemic effects that alter CM electrophysiology—for example, shortening
of APD—increase the likelihood that stretch will occur during a period of cellular
excitability and, thus, provoke an arrhythmia.

In addition to the MEC effects driven by localised tissue stretch during ischaemia
described above, there is also evidence for an increase in MEC itself. This includes
an increase in mechano-sensitive biochemical signals (Ca2+ sparks, ROS) [172],
increased RyR sensitivity (and ensuing Ca2+ release) [206] and pre-activation of
mechano-sensitive KATP channels [138–140]. Heterogeneous stretch may therefore
lead to regionally differing changes that furnish arrhythmogenic triggers and
enhance the substrate for arrhythmia sustenance [162, 163, 209]. The heterogeneous
expression of mechano-sensitive [139, 140] KATP channels [193] (or other MSCK

[210]) across the heart will additionally drive dispersion of repolarisation or cause
conduction block [211], favouring re-entrant electrical activity. Finally, mechano-
arrhythmogenesis in ischaemia may involve heterogeneous changes in the relative
dynamics of membrane voltage and Ca2+ transients, which facilitate Ca2+-mediated
arrhythmias during late repolarisation [13, 190–192].
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4.2 Chronic Hypertension

Chronic hypertension, defined as a sustained increase in systolic (≥130 mmHg) or
diastolic (≥80 mmHg) blood pressure [212], results in increased ventricular afterload
(i.e. the load against which ventricular CM must contract) [213]. This increase in
afterload results in an increase in systolic intraventricular pressure (which maintains
ejection), but may also lead to an increase in ventricular preload (i.e. intraventricular
volume) if ejection is reduced. The elevated mechanical load experienced by ven-
tricular myocardium in hypertension results in the stimulation of compensatory CM
remodelling (although sustained overload ultimately results in decompensated heart
failure) [214, 215], which may enhance MEC and contribute to increased mechano-
arrhythmogenesis.

Enhanced MEC, secondary to structural and functional remodelling of CM in
hypertension, is thought to contribute to the increased incidence of ectopic ventric-
ular excitation in hypertensive patients [17] that occurs during acute fluctuations in
ventricular load, including circadian [51] or pharmacologic [50] modulation of blood
pressure. This increase in arrhythmogenic triggers may interact with remodelled
myocardium, which acts as an arrhythmia-sustaining substrate, contributing to
sustained tachyarrhythmias and/or sudden cardiac death [112, 216–221]. Further,
mechano-arrhythmogenesis may be enhanced when hypertensive hypertrophic
remodelling is complicated by diffusely distributed ischaemic regions (due to wall
thickening and microvasculature remodelling [222]) involving mechanisms
described in the previous section.

4.2.1 Structural Remodelling

Tissue-level remodelling in hypertension is characterised by concentric thickening
of the ventricular wall (hypertrophy), which counteracts the increase in systolic wall
stress caused by an increase in systolic intraventricular pressure with elevated
afterload. The benefit of this change in chamber geometry is explained by
Laplace’s law: (P ~ [T × m]/R). An increased intra-ventricular peak pressure
(P) can result either from an increase in CM force production (thus raising tissue
tension, T)—which, within normal physiological limits, will be afforded by length-
dependent activation of force generation (Frank-Starling law of the heart [223])—or
from an increase in ventricular wall thickness (m, hopefully in the absence of an
increase in chamber radius, R, which would worsen the situation). Increases in
sarcomeric force production are limited in scope, so in pathological settings the
increase in ventricular wall thickness accounts for the necessary increase in intra-
ventricular pressure (P). This is the result of the parallel addition of sarcomeres in
CM, thereby increasing cell diameter, as opposed to their addition in series—which
would increase cell length and increase chamber radius (although with prolonged
hypertension this may also occur)—or the addition of new cells (CM division is
exceedingly uncommon in the adult mammalian heart [224]). The degree of



concentric hypertrophy thus scales with the increase in pressure, resulting in a
normalisation of wall stress, along with an increase in the ratio of wall thickness to
inner chamber diameter [214, 215].
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Microtubule Network

In addition to ventricular wall thickening, chronic hypertension is associated with
remodelling of the cytoskeleton, characterised by changes in the density (via poly-
merisation) and stability (via post-translational modifications, altered intermediate
protein linkages and changes in expression of MT-associated proteins) of the MT
network [225, 226]. These changes to the MT network may work to reduce CM
stretch, which would occur if ventricular preload is increased.

While clinical observations [227, 228] and experimental models [229, 230] have
demonstrated that an increase in MT density occurs in hypertension, it has remained
unclear whether MT proliferation begins during compensatory hypertrophy or is a
consequence of the transition to decompensation (discrepancies in published reports
may relate to inconsistencies between hypertensive models used, both in terms of
species and method to induce hypertension) [231]. Regardless of the moment of
onset, the MT network has been consistently shown to become denser and more
stable in hypertension [227–230, 232, 233]. MT network remodelling appears to
contribute to altered CM shortening and relaxation: hyper-polymerisation of MT in
healthy cells decreases contraction and relaxation, while MT de-polymerisation in
failing CM results in an improvement [116, 234, 235]. The relative contribution of
an increase in the rate of MT polymerisation (which would present as an overall
increase in tubulin content) versus an enhanced stability of existing MT (which
would manifest as post-translationally modified ‘aged’ MT) to these effects remains
to be clarified [114, 116, 153, 228].

Microtubule Post-Translational Modifications

During contraction, MT buckle at wavelengths corresponding to the distance
between adjacent sarcomere units [150]. This process, which also enhances visco-
elastic resistance, is dependent on the level of detyrosination, a post-translational
modification of α-tubulin that involves the removal of the C-terminal tyrosine, which
exposes a glutamate at the newly formed C-terminus [146, 236]. This suggests that
the load-bearing (and, by extension, contribution to mechano-transmission) and
re-lengthening (which is resisted by viscous forces) [116] of MT are affected by
detyrosination, rather than MT density alone. Therefore, pathological increases in
the level of MT detyrosination in hypertension may have profound effects on
chamber relaxation (which would affect passive ventricular filling during early
diastole) [237, 238], ventricular MEC and, as a result, mechano-arrhythmogenesis.

MT detyrosination confers stability to the MT network by preventing the break-
down of existing MT and by facilitating cross-linking with intermediate proteins



[114, 239, 240] (e.g. desmin [150, 152]). This results in a shift from low resistance
MT sliding to high-energy buckling during contraction, which modulates the effect
of MT on mechano-transmission and segment re-lengthening (by increasing visco-
elastic resistance) [116, 150, 228]. In human [228] and murine CM [115], inhibition
of detyrosination increases the wavelength and disrupts the organisation of MT
buckling (suggesting an attenuation of their resistance to compression and load-
bearing capability), which is associated with an increase in the velocity of cellular
contraction and relaxation, presumably due to reduced viscoelastic resistance. Con-
versely, enhancing detyrosination (without a change in MT density) increases both
cell stiffness and viscosity, with an associated decrease in contraction and relaxation
velocity [115, 150]. This suggests that in ventricular CM subjected to pressure
overload, enhanced detyrosination, rather than enhanced MT density, accounts for
increased stiffness and impaired contraction and relaxation kinetics. Indeed, in
addition to the overall increase in MT detyrosination in failing human CM, there
is upregulation of a gene encoding a pre-detyrosinated tubulin [228], as well as of the
detyrosination promoting MT-associated protein 4 (MAP4) [241]. As a conse-
quence, suppression of detyrosination in CM from pressure overload patients
improves contractile and relaxation function, and the degree of such improvement
scales with initial CM stiffness [150, 228].
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MT detyrosination is promoted by interactions with MT-associated and interme-
diate proteins, such as MAP4 [228, 241, 242] and desmin [150, 152]. In pressure
overload, there is upregulation of MAP4 (which occurs early in hypertrophy and
stabilises MT by preventing their degradation [241]) and desmin, both of which
contribute to the pathologic increase in detyrosination levels. Desmin is known to
bind specifically to detyrosinated tubulin and facilitate its buckling behaviour
[150, 152]. The increase in desmin expression in pressure overload, however, is
partially comprised of an isoform prone to misfolding and aggregation [228], which
probably explains observations of MT and desmin misalignment [114, 228,
243]. Such MT disorganisation would contribute to decompensated heart failure,
including detrimental effects on trafficking of sarcomere precursors, thereby limiting
compensatory hypertrophy [114, 244–246].

4.2.2 Proposed Mechanisms of Mechano-Arrhythmogenesis
in Hypertension

One function of the MT network is the transmission of mechanical signals across
CM [116], which is enhanced by increases in its density or stability (e.g. through
detyrosination or acetylation) [114]. Pathophysiological alterations in the MT net-
work may be arrhythmogenic if they modulate MSC activity (which has been
demonstrated experimentally by modulation of detyrosination [115] and acetylation
[155]), by changing the degree of mechanical stimulation MSC experience (either by
reducing the dampening effect of the MT or by enhancing mechano-transmission)
[24, 129, 247] or by sensitising MSC [134, 162, 163] (through an increase in
MT-dependent biochemical signal production [115, 155]).
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In hypertension, remodelling of the CM cytoskeleton results in a laterally
reinforced MT network (via interactions between detyrosinated tubulin, desmin
and MAP4) [114]. Increased lateral reinforcement facilitates the load-bearing and,
thus, biophysical signal transmission capability of the MT network [151]. The
remodelled cytoskeleton will thus increase MEC, through an increase in mechano-
sensitive biochemical signal production with increased levels of detyrosination [115]
and contribute to the constitutive activation of volume-sensitive Cl- channels
following transition to failure [248]. An increase in MEC would be expected to
reduce the magnitude of CM stretch needed to cause excitation and trigger an
arrhythmia. A role for MT in increased mechano-arrhythmogenesis has been cor-
roborated in several experimental models, including one in which an acute pharma-
cologically induced rise in MT proliferation and detyrosination in the whole heart
(with paclitaxel) was associated with an increased prevalence of acute volume pulse-
induced mechano-arrhythmogenesis [81]. However, it should be noted that in this
study, potential confounding effects of increased peak intraventricular pressure,
associated with volume injections into stiffened ventricles, cannot be excluded
(relevant data was not reported).

Enhanced mechanically induced ROS production in hypertension, promoted by
elevated levels of detyrosination [115], would be further increased by upregulation
of NOX2 [249]. This elevated level of ROS may promote an arrhythmogenic
intracellular milieu (i.e. elevated [Ca2+]i levels) through, for example, increased
Ca2+ leak from the SR [120, 169]. ROS and Ca2+ also modulate the activity of
MSC, [162, 163] whose intracellular trafficking and stretch activation may be
affected by alterations of the MT network in hypertension [24]. As such, patholog-
ical remodelling of biophysical signal transmitters and the resultant effect on ven-
tricular MEC may contribute to formation of arrhythmic triggers and a substrate for
mechano-arrhythmogenesis in hypertension.

5 Conclusion

The heart is an electrically controlled mechanical pump with intricate feedback
mechanisms that dictate the heart’s response to acute changes in its mechanical
environment. At the cellular level, these MEC effects involve mechano-sensitive
components, including MSC [24], biophysical signal transmitters (e.g. the MT
network [114]) and mechano-sensitive biochemical signals [117, 119, 121]
(e.g. intracellular ROS and Ca2+ [118, 120]). In this chapter, we have discussed
how these cellular and subcellular components of MEC in ventricular CM contribute
to tissue-level ventricular mechano-arrhythmogenesis.

The potential for a mechanical change to elicit an electrical response depends on
the timing of the associated mechanical stimulation relative to the AP and on its
magnitude and rate of rise [5]. Therefore, disease states in which regional
(e.g. ischaemia [172]) or global (e.g. hypertension [114, 236]) mechanical alterations
occur and which are associated with changes in AP dynamics (altering the relative



duration of systolic and diastolic periods [13, 134]) or changes in MEC (altering the
threshold for stretch-induced excitation [7, 15, 17, 112]) may make the heart more
prone to mechano-arrhythmogenesis. In these cases, mechanically induced excita-
tion constitutes an arrhythmogenic trigger, which interacts with a disease-mediated
pro-arrhythmic substrate and converts into sustained arrhythmic activity [17, 134].
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The nature of metabolic, electrophysiological and ionic changes, as well as MT
network remodelling affecting MEC, will vary across cardiac diseases. When con-
sidering the relative contribution of cellular and subcellular mechanisms to ventric-
ular mechano-arrhythmogenesis identified in this chapter, it is essential to assess the
precipitating factors of the disease being studied, as well their structural and func-
tional manifestations. Comparison of diseases with differences in mechanical load-
ing (e.g. ventricular volume versus pressure overload) or structure-function
remodelling (heart failure with preserved versus reduced ejection fraction) will
provide critical insight into how disease-induced alterations in cellular MEC drive
ventricular mechano-arrhythmogenesis.

For instance, while pressure overload is characterised by densification and
increased detyrosination of the MT network, resulting in an increase in MEC, in
volume overload there is a reduction in detyrosination-desmin interactions and a
disruption of cytoskeletal integrity [243], such that the influence of the MT network
on MSC and biochemical signals may be attenuated. Effects of volume overload on
MEC may in fact more closely resemble those seen in acute ischaemia (tissue
stretch- [177] and osmotic CM swelling-induced [124, 125] MSC activation), but
over the entire ventricle (globally), rather than regionally varying (local). In both
cases it would be attractive to determine whether a stretch-induced increase in
biochemical signalling (i.e. Ca2+ sparks and ROS production) involves alterations
in post-translational modifications of MT and whether this increases MSC
sensitivity.

In failing human CM, both contraction and relaxation are improved by suppres-
sion of MT detyrosination [228]. CM from patients with heart failure with preserved
ejection fraction, however, show a greater improvement than those with reduced
ejection fraction, suggesting there is a greater contribution of detyrosination to the
reduced mechanical function in those cells. Thus, it would be informative to
compare MEC and mechano-arrhythmogenesis between those two forms of heart
failure.

In summary, this chapter has discussed cellular and subcellular mechanisms
contributing to mechano-arrhythmogenesis in ventricular CM, with a focus on two
disease states that highlighted local (e.g. acute regional ischaemia) and global
(e.g. hypertension) pathological manifestation relevant for MEC. The intricate
interaction between the various components of ventricular MEC contribute to for-
mation of both triggers and substrate for arrhythmogenesis. Understanding the
precise interactions of these components is necessary to facilitate the development
of a mechanistic framework for understanding how therapies targeting MEC may
contribute to the prevention of ventricular mechano-arrhythmogenesis.
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1 Introduction

Heart failure (HF) is a complex disease causing enormous social and economic
burden worldwide, with some of the most recent estimations pointing to a prevalence
of 64.34 million cases and costing 346.17 billion dollars in the United States alone
[1]. This disease results from structural or functional abnormalities impairing the
ability of the heart to pump blood and deliver sufficient oxygen and nutrients to meet
the body’s metabolic needs. As HF progresses, the heart changes or “remodels,”
affecting cardiac function over time. These changes are both macroscopic, with
changes in mass and shape, and microscopic, with changes in the cellular structure
and the distribution and density of the ionic channels. It is also possible that the heart
reverts to a less pathological phenotype over time, a process known as “reverse
remodeling.” This positive progression is usually inferred clinically using surrogate
markers such as a reduction in ventricular volume and mass, as well as improve-
ments in the contractile function of the heart. In Yu et al. [2], the authors showed the
existence of a positive correlation between reverse remodeling and better therapeutic
outcomes for patients.

In a healthy heart, an electrical wave spreads throughout the atria and passes
slowly through the atrioventricular (AV) node, before rapidly spreading through the
bundle of His, down through the right and left bundle branches and into the Purkinje
fibers to synchronously activate the normal ventricular myocardium. In left bundle
branch block (LBBB), as per the name, an electrical blockage occurs along the left
bundle branch, causing a delay in the activation of the left ventricle and consequently
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dyssynchronous activation of the ventricles. This is shown in an ECG with a
prolonged QRS duration. In such cases, some of the largest clinical trials
(REVERSE, MADIT-CRT, or RAFT) have shown how cardiac resynchronization
therapy (CRT) can be an effective treatment and promote reverse remodeling for
patients with mild to severe HF [3–5].
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In CRT, the heart is artificially paced in the right atrium (RA), right ventricle
(RV), and left ventricle (LV) to resynchronize the electrical activation and subse-
quent mechanical contraction of the heart. The time delay between activation at the
atria and at the ventricles (AVD) as well as the time delay between the ventricles
(VVD) can be set by the clinicians. Optimization of the AVD can improve the left
atrial contribution to LV filling, stroke volume, and cardiac output and thus is an
important factor in CRT response [4, 6, 7]. Despite the benefits of CRT, within the
cohort of HF patients that are indicated for an implant, there remains 40–50% of
patients that do not respond positively to (conventional epicardial) CRT [8, 9]. To
address this issue, novel alternative methods of CRT delivery have been explored in
recent years, such as multisite pacing (MSP), endocardial pacing, His bundle pacing,
or left bundle branch pacing.

MSP stimulates multiple LV sites via leads placed in several CS tributary veins
(multiple leads) or with a multipolar LV pacing lead (single lead with two or more
electrodes). Although preliminary studies have shown MSP can improve CRT
response in both the acute [10–15] and chronic timescales [16, 17], more recent
work in porcine models [18] and human patients [19] found that MSP does not
significantly improve acute CRT response. For a more definitive answer as to the
benefits of MSP, one would have to wait for the results of larger randomized trials
such as the SMART multisite pacing sub-study [20].

One of the main disadvantages of conventional epicardial CRT and MSP is that
potential LV pacing locations are restricted, as leads are implanted within the
coronary sinus veins while avoiding phrenic nerve stimulation. In contrast, endo-
cardial pacing is unconstrained by venous anatomy, allowing for targeted pacing at
non-scarred, latest activation locations. Initial studies of endocardial pacing have
reported that 47% of patients that do not respond to conventional CRT showed a
positive response to endocardial CRT [21]. Novel wireless endocardial pacing
systems have also been shown to reliably deliver pacing and improved responses
in patients that do not respond to conventional therapy [22].

As opposed to conventional CRT and MSP, where electrical activation spreads
from the LV epicardium to the endocardium, His bundle pacing and left bundle
branch pacing aim to restore synchronous activation prior to the block by pacing the
ventricular fast conducting system [23, 24]. These methods have been shown to be
superior or comparable to standard CRT in resynchronizing the electrical activation
of the ventricles [25] [26], although left bundle pacing required AV delay optimi-
zation to prevent delayed activation of the RV [27, 28].

In any of its modalities, the goal of CRT is to stop or reverse the progression of
HF by resynchronizing the electrical activation and mechanical contraction of the
ventricles leading to a functional improvement in the pumping of blood throughout
the circulatory system. Previous studies have found that one of the main reasons for



the high number of non-responders is that the device settings or the lead positions
were suboptimal [29]. Computer models of the heart have thus been used to identify
the optimal lead location and pacing settings of the heart to predict the response of
the heart to CRT, as well as to better understand the underlying pathologies that give
rise to cardiac dyssynchrony [28, 30–36]. Moreover, advances in cardiac computa-
tional modelling now provide platforms for performing in silico clinical studies
[37, 38].
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Cardiac models can be used to simulate the electrical activity of the heart from the
cellular level through to the tissue level (electrophysiology models [39]), giving rise
to contraction of the ventricles (mechanical models [40]), as well as the pumping of
the blood throughout the cardiac system (circulatory models [41]). These modeling
methods have been used to provide insight into the mechanisms behind LBBB
dyssynchrony and reverse remodeling due to CRT, to optimize lead location and
device settings, to investigate the efficacy of new pacing technologies, as well as to
predict clinical outcomes for patients. Shape analysis can also be used to link specific
parts of the anatomy (whether from images directly or using 3D models) directly to
clinical outcomes, thereby skipping the simulation step required in electrophysiol-
ogy, mechanical, or circulatory models [42].

The relationship between cardiac electromechanics models and their inputs and
outputs is shown in Fig. 1. Medical images and prior knowledge are used as inputs to
generate anatomical models of the heart that are patient- or subject-specific. Patient-
specific anatomical models can be used to study pathological changes in shape and
electromechanics of the heart. If available, electrical measurements can be used to
parameterize and validate the electrophysiology models of the heart, while func-
tional measurements are used as inputs to the circulatory and mechanical models.
Prior knowledge from literature such as fiber characteristics are used to constrain the
models to simulate physiologically plausible conditions. The outcomes from the
models include changes in the mechanical, electrical, hemodynamic, and anatomical
responses to LBBB and CRT. In this review, we will focus on the contribution of
electrophysiology, mechanics, and circulatory computer models of the heart to
understanding mechanisms underlying electrical and mechanical dyssynchrony
and CRT response.

2 Modelling Anatomy

2.1 Geometry

Idealized shape models of the heart were first used to investigate the
electromechanics of the heart under LBBB and CRT conditions [43]. Generic
shape models are still regularly used as they can provide mechanistic insight into
CRT response. These models allow for the investigation of the underlying substrate
[44], the importance of scar location [45] and total scar burden [46, 47], pacing
device settings, and pacing lead locations [34]. In more recent years, there has been a



shift towards personalized shape models for in silico simulations of the
electromechanics of the heart. Segmentations of noninvasive anatomical medical
images (CT, MR, X-ray, and echo) of the heart have been used to build subject-
specific canine models [48, 49] or patient-specific models [19, 33, 50–52]. Compu-
tational meshes built from segmentations of the heart can be used for shape analysis
alone [53] or electrophysiological and mechanical simulations [30].
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Fig. 1 Schematic of the modelling pipeline for biophysical simulations of LBBB and CRT
response. Patient data and prior knowledge can be used to create and parameterize the anatomical,
electrophysiological, biomechanical, circulatory, or growth models of the heart. The model outputs
can be used to infer and integrate information regarding the diseased heart, generate hypotheses, and
predict responses to LBBB and CRT. The current state of the art models does not encompass this
entire theoretical framework, but rather only aspects of it depending on the availability of data,
computational resources, and the clinical question of interest

Warriner et al. [53] used statistical shape analysis on pre-implant LV meshes of
patients undergoing CRT. This technique allowed the authors to create an “average”
heart from 50 patients and find the anatomical remodeling pattern that best discrim-
inates between responders and non-responders. They found that not simply size, but
an asymmetric thickening in the pre-implant LV shape, is an independent predictor
of a positive response to CRT.

Lee et al. [54] used the same CRT cohort as in Warriner 2018 and over 1,000
healthy subjects to assess the impact of LV size on QRS duration disaggregating by
sex. Using electrophysiology simulations and statistical shape models, the authors
found that LV size is a mechanistic explanation for sex differences on CRT response.



Moreover, the simulations revealed that lower QRS duration thresholds for females
in CRT guidelines could benefit diagnosis and response.
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Patient-specific models simulating the electrical and mechanical activation of the
heart have typically been focused on the ventricles [55–57]. Recently, there has been
increased interest in the role that the atria and ventricular filling play in CRT
response optimization [58]. Therefore, in future studies, the importance of atria
and other cardiac structures, such as the pericardium [40, 59, 60], valves, and
blood vessels, in simulating CRT and LBBB will need to be determined.

2.2 Fibers

The mechanical and electrical properties of the heart are highly dependent on the
orientation of the fibers within the cardiac tissue. Studies have found that electrical
activation spreads two to seven times faster along the direction of the fibers rather
than across them [61–63]. Mechanical stiffness is also affected by the fiber orienta-
tion, with biaxial tests showing an increase in stiffness along the fiber directions of
cardiac tissues [64], while the force from active contraction acts primarily along the
fiber directions. For these reasons, a physiological representation of the local micro-
structure organization of the myocardium is fundamental.

Heart biomechanics models [31, 33, 43, 44, 51, 52, 65–71] have typically used
rule-based methods [65] based on diffusion tensor MRI (DT-MRI) or histological
studies to define fiber orientation. Personalization of the fiber orientation through
in vivo [72, 73] and ex vivo DT-MRI [74, 75] have also been investigated.

In vivo DT-MRI has been successfully performed on human volunteers [76–78]
and patients with hypertrophic cardiomyopathy [79], requiring multiple breath holds
to acquire an averaged signal for each image slice. While DT-MRI shows promise as
a method for subject-specific fiber orientation personalization, technical challenges
remain to be overcome before this method can be applied outside of the research
space. Low signal to noise ratio, the bulk motion of the heart obfuscating the fiber
orientation measurements, as well as multiple breath holds to acquire averaged
imaging data remain as challenges to be overcome before this method can be used
widely to incorporate personalized fiber orientations in patient-specific computer
models of the heart. Studies have found that the electrical activation in models using
rule-based methods is comparable to DT-MRI-based fiber orientations in both rat
[80] and canine ventricular models [65]. Therefore, to date rule-based methods for
determining the fiber orientation remain the norm in the cardiac ventricular models.
Rule-based methods are also available to define fiber orientation on atrial meshes.
Using the universal atrial coordinates (UACs), it is now possible to map atrial fiber
measurements from ex vivo DTMRI onto atrial meshes [81].
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2.3 Scar

Scar has been found to have a detrimental effect on CRT response, with both the
pacing within scar regions’ location [82] and the total scar burden [83] being
correlated with negative CRT response. Scarred regions have been found to be
associated with fiber orientation disorder, which can lead to both an increase in
mechanical stiffness and a reduction in the electrical conductivity of the cardiac
tissue [84, 85]. In models simulating HF and LBBB, scar tissue has been represented
with reduced anisotropy in the material laws, increasing the passive stiffness of the
cardiac tissue, altering the active tension models with a decrease in the contraction
force, as well as reducing the electrical conductivity to slow the spread of electrical
activation within scarred regions [47, 68, 71, 86]. In silico studies have found that the
location of scarred regions can also influence the optimal pacing site [45]. In more
recent studies, electrophysiology models incorporating scar were used to investigate
the risk of ventricular tachycardia associated with pacing in proximity to scar during
epicardial [32] and endocardial pacing [87]; it was found that epicardial pacing in
proximity to scar increased VT risk, in agreement with clinical studies [88].

Scar regions are generally identified using signal intensity thresholding tech-
niques on contrast-enhanced cardiac MRI. Typically, the ventricular wall is seg-
mented, and the grayscale intensity values within the myocardium are used to
differentiate between scar and normal tissue. Full-width-half-maximum (FWHM)
[89] and standard deviation [90] methods are the most widely used. FWHM iden-
tifies scars as regions in the image where the signal intensity is greater than 50% of
the maximum intensity of the pixels that lie within the wall. In the standard deviation
method, the user manually delineates a region of healthy myocardium, from which
mean and standard deviation values are computed, and scar tissue is then defined as
the voxels where signal intensities are beyond 2 or 3 standard deviations above the
mean value. While there is a lack of consensus on the optimal strategy for
segmenting scar from contrast-enhanced MRI [91], FWHM method has been
shown to be more robust to subjective bias as it does not require user selection of
regions of healthy tissue [92].

Contrast-enhanced MRI typically has low out-of-plane resolution (6–20 mm),
which may give rise to uncertainties in the scar segmentation. In Ukwatta et al. [93]
an interpolation method to reconstruct high-resolution scar geometry from
low-resolution MRI datasets was proposed to deal with this issue. Different scar
segmentation methods yield differences in scar size, shape, and distribution [91],
which could affect CRT modelling studies. The location of the scarred regions has an
important effect on the optimal pacing location as studies have shown that pacing
within or proximal to scar has a detrimental effect on response to CRT [94]. Accurate
scar localization may therefore be important in accurate optimal pacing site selec-
tion. The quantitative differences between scar segmentation methods on simulation
outcomes are yet unknown, as a comparison study has not yet been done.

An outline of a typical workflow for generating the anatomical models used in
electrophysiology and electromechanical cardiac simulations is shown in Fig. 2.



Subject-specific geometry of the cardiac structures (such as the atria and ventricles)
is identified from image segmentations of anatomical medical images (such as MR or
CT). Anatomical meshes are generated from the segmentations and can then be used
for electrophysiological or mechanical modelling. Scarred regions can be segmented
from contrast-enhanced MRI and incorporated into the models via image registration
between the anatomical and contrast-enhanced MR images. Fiber orientations in the
meshes can be assigned typically with rule-based methods or potentially from
DT-MRI.
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Fig. 2 A schematic of a workflow for the generation of a patient-specific anatomical model of the
heart from medical images. Segmentations of the anatomical image are used to generate patient-
specific meshes. Scar segmentations (from contrast-enhanced MR) and fiber information (from rule-
based or image-based methods) can then be mapped onto the mesh

3 Clinical Measurements

3.1 Electrical Measurements

In order to provide useful information in a clinical setting, electrophysiology models
need to replicate the activation of the patient’s heart and how it changes in response
to CRT. Routinely, heart dyssynchrony is diagnosed by looking at the QRS duration
and morphology on 12-lead electrocardiograms (ECG), which are then used to
indicate whether the patient would benefit from CRT. However, because the
12 leads are located on the torso far away from the heart, ECGs have limited
capability of capturing local activation of the heart. Nevertheless, QRS duration is
often used to approximate ventricular total activation time and to personalize the
electrophysiology model by fitting the conduction velocity [31, 33, 35, 66–68, 95].
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As opposed to 12-lead ECGs, which measure heart activation from a small
number of locations, noninvasive body surface potential mapping (BSPM) can
provide more detailed information by measuring electrical signals on the whole
torso with a multi-electrode vest (with commercial versions recording up to
256 ECGs). Despite its potentially greater diagnostic value compared to 12-lead
ECG [96, 97], BSPM is more expensive, not readily available, and harder to
interpret. This has limited its widespread clinical use for CRT patients. In order to
make torso signals easier to interpret, BSPM can be used in combination with
electrocardiographic imaging (ECGi) reconstruction to recover unipolar electro-
grams (EGMs) on the epicardium of the heart. EGMs can then be used to compute
local activation and repolarization times [98–100]. Activation maps derived from
ECGi have been used on small numbers of CRT patients to investigate electrical
synchrony induced by pacing [25, 101] and were used to determine electrophysiol-
ogy model parameters [102].

More direct and accurate measurement of ventricular activation is provided by
invasive electroanatomical maps (EAM) of the LV endocardium and the coronary
veins. However, EAM can only be used intra-procedurally, meaning that only acute
response can be quantified, with no long-term information available. At present,
QRS duration and/or EAM are still the most widely used clinical data to fit
electrophysiology models for CRT [19, 31, 33, 35, 52, 66, 68, 95, 103], with only
one research group using BSPM to determine electrophysiology parameters [19, 31,
33, 35, 52, 66, 68, 95, 103, 104].

3.2 Functional Measurements

Because electromechanical models simulate heart deformation and pressure tran-
sients as well as electrical activation, they also need to reflect the functional changes
due to LBBB and CRT response. Large deformations that the heart undergoes
throughout a cardiac cycle can be measured with noninvasive imaging (cine MRI
or echocardiography). Global metrics such as LV volume transient, end-diastolic and
systolic volumes, ejection fraction, and LV mass and LV motion dyssynchrony
indices and local metrics such as regional strains can be derived from imaging.
Furthermore, tagged MRI can provide wall motion quantification, which can be used
to validate deformations predicted by the model [66, 105].

Both invasive intra-procedural LV pressure and noninvasive arterial pressure
measurements can be used together with volume transients to adapt the geometry
parameters in the circulatory models [105–107] and to determine the active and
passive material parameters in the biomechanical models [31, 33, 52, 66, 67, 71] of
the heart.
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4 Electrophysiology Models

Patient-specific anatomical models may be combined with electrophysiological
models to simulate activation sequences and study a patient’s electrical response
to CRT. A typical workflow for electrophysiology personalization is shown in Fig. 3.
Different types of electrophysiology models have been employed in CRT studies,
such as the monodomain and bidomain models, the eikonal model, cellular autom-
aton models, and surface source models. Clinical electrical measurements (ECG,
EAM, or BSPM) are typically used to (1) personalize the parameters within the
model and/or (2) assess the accuracy of the model.

4.1 Models of Cardiac Electrophysiology

Two of the most widespread multi-scale models of cardiac electrophysiology are the
monodomain and bidomain models. Both models act on two scales: at the cellular
scale, they describe the electrical activity, where action potentials are generated, and
at the tissue scale, they describe how action potentials propagate from one cell to
another. The main difference between the two is that the bidomain model includes

Fig. 3 A schematic representation of the electrophysiology models is shown. Personalized shape
models of the heart and electrical measures, such as the ECG, electroanatomical maps (EAM), or
body surface potential maps (BSPM), are used as inputs into multi-scale electrophysiology models
of the heart to simulate the electrical activation times across the ventricles. The model outcomes can
be evaluated in terms of clinical measures such as ECG traces and QRS duration



the extracellular domain, while the monodomain model does not (only describes
propagation in the intracellular space). Most CRT studies employ the monodomain
model [44, 68, 70, 95, 108] since it is computationally cheaper.
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The eikonal model has been developed to make simulations faster, since solving
the monodomain model still requires high spatial and temporal resolutions. This
model describes the location of the activation upstroke without resolving the com-
plex action potential kinetics, rendering it computationally very efficient, and has
also been used in CRT modelling studies [37, 109] to simulate activation sequences.

With a similar goal, cellular automaton models [110] have also been employed in
CRT studies [111–113]. In this model, instead of explicitly solving the complex
current flow interaction between the intracellular and extracellular domains, action
potentials are pre-calculated based on ionic current equations. These are then stored
and applied as a set of rules allowing fast computation of ventricular activation and
repolarization sequences.

A type of surface source model called the equivalent dipole layer model, which
computes body surface potentials from the transmembrane potential on the myocar-
dial surface (source) based on the bidomain formulation [114, 115], has also been
employed in CRT studies [116].

4.2 Purkinje System or Fast Endocardial Conduction?

At the organ scale, the cardiac bioelectric behavior is controlled by a cardiac
conduction system. This system is typically referred to as the Purkinje system
(PS) in the ventricles and is composed of the bundle of His, the left and right bundle
branches, and an extensive Purkinje network, which connects to the myocardium at
the Purkinje-ventricular junctions. Propagation in the PS is three to six times faster
than in the myocardium, allowing for rapid electrical activation at the endocardium
and ensuring ventricular synchrony [117, 118]. Thus, when modelling the activation
sequence at the organ scale, it is important to include the PS properties in the model,
as it significantly affects the activation pattern in the heart.

The PS has been modelled as a tree of one-dimensional elements coupled to the
myocardium in CRT models of realistic ventricular anatomy [70, 109, 119] or as a
fast-conducting endocardial layer, which approximates the PS by assigning tissue
conductivities to the endocardium that match the conduction velocity in the PS
[44, 108]. Models with the PS represented as a tree of one-dimensional elements
have been used to investigate the effect of AVD on the distribution of activation
times in the myocardium during CRT and demonstrated that a 30 ms AVD yields an
activation pattern more similar to healthy activation than a 0 ms AVD [109]. In this
study, the atria were not included in the model, so the AVD was approximated as a
timed delay between activation at the AV node and the ventricular pacing locations.
In a recent study, a fractal tree representation of the His-Purkinje tree [120] has been
used to show that left bundle pacing requires AVD optimization to ensure short RV
activation times, leading to a comparable response to His bundle pacing [28].
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A similar approach was used to investigate the role of electrical conduction in the
PS during CRT pacing in failing hearts [70]. Motivated by experimental evidence of
retrograde activation in the PS [121, 122], Romero et al. [70] compared a realistic PS
represented by a tree of one-dimensional elements with a fast endocardial layer.
Their results show that retrograde conduction in the PS is key to accurately estimate
VVD and that a fast endocardial layer cannot accurately capture this effect
[70]. However, a fast endocardial layer was employed in a biventricular (BiV)
model to study the effect of endocardial versus epicardial pacing during CRT and
showed good agreement with experimental results [44]. Their results demonstrated
that early access to fast-conducting endocardial tissue reduces ventricular activation
time during endocardial pacing, providing a physiological explanation for the
observed benefit of endocardial pacing compared with epicardial pacing
[123, 124]. In a more recent study, fast endocardial layer was also found to be the
most important factor for recovering epicardial activation patterns from QRSd and
anatomy for CRT patients [54].

The effect of CRT on electrical activation in the presence of ECG characteristic of
LBBB has been studied using in silico models of the heart [95]. LBBB can be caused
by conduction block in the left branch of the His bundle due to damage to the His
fibers or due to myocardial uncoupling caused by reduced expression of connexins
(gap junctions) in its vicinity. This study showed that a LBBB ECG pattern can be
replicated in the models with myocardial uncoupling. In addition, they showed that
CRT improves ventricular activation in the presence of LBBB but not in the case of
myocardial uncoupling mimicking LBBB.

4.3 Lead Optimization

Electrophysiology models also offer the opportunity to carry out in silico automatic
CRT optimization. Briefly, the approach consists of simulating electrical activation
in a BiV anatomy for different AVD and VVD as well as several different lead
locations. Then the error between the obtained activation sequences for each case
and a simulated synchronous activation is minimized to determine which option
yields the best acute response to CRT [112, 113, 125, 126]. Such models have
demonstrated that patient-specific optimization of lead location and AVD and VVD
can improve CRT efficacy and impact treatment success [69, 113, 126] and that the
use of body surface potential maps can further improve in silico CRT optimization
[127]. This technique has also been used recently to establish the optimal electrode
configuration in quadripolar leads taking into account how this configuration
changes with reverse remodeling [37].
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4.4 ECG Simulations

In terms of ECG simulation, ECGSIM is a program to simulate ECG based on the
equivalent dipole layer model [128]. This program was used by van Huysduynen
et al. [116] to investigate the effects of CRT on repolarization. The model incorpo-
rated heart and thorax geometry (based on MRI), conduction heterogeneity, and
transmural dispersion of repolarization (TDR). In this study, the authors investigated
if BiV pacing in CRT increases TDR in comparison with conventional RV pacing.
Their results show that TDR during BiV pacing is not significantly larger than during
RV pacing. The main consequence is that increased TDR does not explain the
possible proarrhythmic effects of CRT.

Computational models of electrophysiology involve a high number of parameters
that need to be fitted, a complex task to be done so they represent accurately a
patient’s electrophysiology. Different parameters have a different impact on the
models, so in some cases, the parameter fitting step can be reduced to the most
influential parameters. For instance, in Sanchez et al. [108], the authors investigated
the role of myocardial properties in the activation sequence on the LV endocardial
surface and the ECG morphology in HF patients. They showed that the effects of
changes in tissue properties vary between ECG leads, whereas ionic changes entail
similar effects in all ECG leads.

5 Mechanical Models

When the electrical activation of the heart is dyssynchronous, mechanical
dyssynchrony emerges. Clinical studies have demonstrated that improvements in
electrical synchrony do not imply improved mechanical synchrony [129–
131]. Therefore, it is desirable for the model to account for mechanical deformation
as well. Figure 4 shows a typical workflow for an electromechanical model of the
heart. Mechanical deformation of the heart can be simulated by solving continuum
mechanics on idealized or personalized shape models of the heart with mapped fiber
orientation (from rule-based or image-based methods). Structural and functional
heterogeneities (from regions such as scar) can be included to account for differences
in local mechanical properties of the tissue [132].

A multi-scale model for cardiac electromechanics needs to have the following
three elements, in addition to the anatomical mesh and boundary conditions: (1) a
passive constitutive law to represent how the myocardium reacts to external loads;
(2) an active contraction model to compute active tension along myofibers generated
by the myocytes once they are activated; and (3) a coupling method between the
electrophysiology simulation and the mechanics simulation.
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5.1 Passive Mechanical Models

The internal stresses developed by the myocardium depending on its deformation are
typically represented with a hyperelastic formulation [132]. A strain energy function
is defined to quantify the internal energy of the material as a function of local strains.
Shear tests on samples of mammalian myocardium showed that the myocardium
presents different stiffnesses in the local fiber, sheet, and normal to sheet direction
[133]. Therefore, orthotropic [134–136] rather than simplified transversely isotropic
[137–141] material laws are more suitable for cardiac electromechanics models. In
patient-specific models, parameters of the constitutive equation are fitted and vali-
dated using functional clinical measurements, such as the passive pressure-volume
relationship during ventricular filling [68]. Because orthotropic models require more
parameters to be fitted, leading to a more complex optimization problem, trans-
versely isotropic laws are still widely used.

5.2 Electromechanics Modeling

Excitation-contraction coupling describes the process from which the electrical
activation of the myocardium gives rise to the mechanical contraction and relaxation
of the heart [142]. At the cellular level, the myocytes depolarize, giving rise to a
calcium signal that activates the sarcomeres; this allows the myocytes to generate
tension and contract, which then translates to the macro-scale cardiac motion
pumping the blood in the heart around the body. While the electrical activation
affects the mechanical contraction of the heart, there is also feedback from the
mechanical contraction of the heart to the electrophysiology of the cardiac cells.
This process, known as mechano-electric feedback (MEF) [143], occurs due to the
presence of elements such as stretch-activated ion channels [144, 145] changing the
ionic currents in the cell.

5.3 Active Contraction Models and Mechano-Electric
Feedback

Active tension describes the contractile force generated along the myofibers from
cellular excitation during systole. Active tension is typically incorporated into the
mechanics model as an additional tension component along the fiber orientations.
There are three ways to model ECC in electromechanics models: phenomenological,
weakly, and strongly coupled methods. Phenomenological coupling [68, 146] and
weakly coupled models [146, 147] are based on the common assumption that
electrophysiology affects the mechanical contraction of the heart through ECC, but



that MEF is unimportant and can be ignored. In contrast, limited work has been done
with strongly coupled models which take into account the MEF [148–150].
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To the best of our knowledge, computer models simulating CRT and LBBB have
been implemented with weakly coupled or phenomenological models. The lack of
studies incorporating strongly coupled electromechanical models is likely due to the
large computational costs of implementing strongly coupled models. In personalized
models, clinical measurements of the systolic cardiac function (such as systolic
pressure, volume transients, or cardiac motion) are used to define the parameters
used to describe the active tension transient. The simulated mechanical deformation
of the heart models can then be further analyzed to determine mechanical and
hemodynamic response outcomes.

5.4 Cardiac Myocyte Growth Models

Cardiac myocyte growth models can be used to predict the pattern of cardiac growth
due to changes in mechanical loading conditions. For a broader perspective on
cardiac myocyte growth laws, we refer the reader to an article by Witzenburg and
Holmes [151], a comparison study of eight published phenomenological cardiac
myocyte growth laws. Nonetheless, these models are not usually incorporated into
LBBB or CRT models, therefore ignoring the effects of remodeling, whether
pathological or reverse. In a study by Kerckhoffs et al. [152], the effects of myocyte
shape changes in response to the strain on the cell were investigated in a canine
model of LBBB. A later study by Gurev et al. [153] investigated the effect of growth
models on a human model with myocardial infarction. If growth models are not
incorporated, a typical approach is to model the effects of remodeling, for instance,
with an increase in LV mass and LV dilation or a reduction in EF. However, cardiac
remodeling also encompasses changes to the electrics, mechanics, and function of
the heart, as well as volumetric changes, and these should also be investigated in
future studies. In a recent study, the chronic effect of reverse remodeling on
quadripolar leads was investigated by modeling reverse remodeled hearts using
healthy (asymptomatic) subjects [37]. However, reverse remodeling effects associ-
ated with CRT still need to be determined to model the chronic effects of CRT
response.

5.5 Acute Hemodynamic Response

Acute hemodynamic response (AHR), given as the maximal rate of increase in the
rise of systolic LV pressure, has been shown to correlate with long-term CRT
response, and therefore the optimization of the AHR is one strategy for optimizing
CRT response [154, 155]. Electromechanical models of the dyssynchronous failing
heart have been used to investigate AHR optimization. However, prior to achieving



the lofty goal of translating the biomechanical models of the heart to the CRT clinic,
models need to demonstrate their ability in, accurately and robustly, simulating
clinical measurements. Extensive and rich clinical datasets have been used to
develop patient-specific biomechanical models of the heart under LBBB and CRT
conditions. These models were used to predict the AHR with varied pacing protocols
with the predictions showing good agreement with clinical measurements of the
AHR [19, 30, 31, 33, 67, 71, 156]. While these results are promising, low patient
numbers (1–9 subjects) mean that any conclusions drawn from these studies are
limited. The requirement for extensive data including, but not limited to, invasive
LV pressure recording and EAM, in addition to the large computational costs in
creating and parameterizing personalized biomechanical models of the heart has
restricted these modeling studies to the research domain, and clinical translation
remains unrealistic. The parameterization of personalized biophysically based car-
diac models requires multiple simulations with different input parameters to be run.
Supercomputing resources allow for the simulation of cardiac electrophysiology at
clinical timescales, allowing for the simulation of a single heartbeat within seconds
[157] or minutes [158]. However, the computational costs of these simulations are
high, requiring up to 1.6 million cores to run each simulation, limiting this method to
the research field. As an alternative, techniques such as Gaussian process emulators
can accelerate the process of parameter fitting, with the use of surrogate models
calibrated with a large number of simulations, as applied in LV models of aortic-
banded rats [159] and healthy human volunteers [160]. Nonetheless, this technique
has yet to be used in models for CRT patients.
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5.6 Lead Location Optimization

CRT response is influenced by LV pacing lead location with suboptimal LV lead
placement identified as a cause in 21% of CRT non-responders [161, 162]. Optimiz-
ing the LV pacing lead location has been one of the goals of CRT electromechanical
modeling with studies using canine [34, 163] and patient-specific [31, 66] models to
identify the optimal LV pacing site. In these electromechanical modeling studies of
CRT, the optimal LV pacing location was found to be in the lateral LV free wall in
agreement with experimental canine [162, 164] and clinical [161, 165] studies. The
optimization metric for LV pacing lead location placement to improve CRT response
has been varied across studies, including AHR maximization [31, 34, 66], stroke
work maximization [34], electromechanical delay minimization [163], or LV elec-
trical activation time reduction [66].
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5.7 Device Setting Optimization

Device setting optimization has been shown to improve CRT response, with acute
measures of the hemodynamic response, cardiac output, and echocardiographic
indexes showing improvement with AVD/VVD optimization in the clinical setting
[29, 166–169]. Optimization of the device settings using electromechanical models
has focused on measures of mechanical synchrony [31, 156]. The intrinsic electrical
activation of the heart passes from the atria to the ventricles via the atrio-ventricular
node, before traveling through the Purkinje system to activate the ventricles. In
ventricular models where the atria were not explicitly modelled, AVD can be
simulated by altering the timings between the intrinsic activation that is set off by
atrial pacing and the activation at the ventricular lead pacing locations.

In agreement with clinical studies [167, 170], in silico electromechanical simu-
lations have found that the optimal AVD/VVD is highly personalized [66, 69, 156]
and dynamic, with chronic CRT requiring a different set of optimal AVD/VVD in
comparison to the acute timepoint [31]. Although AVD/VVD optimization can
improve response to CRT, in real-world practice, patients may be left with
suboptimal device settings post-CRT due to a lack of time and qualified staff
[29, 171]. In silico personalized biomechanical models of the heart potentially
allow for a systemic evaluation of the optimal AVD/VVD on a patient-specific
basis outside of the clinic.

5.8 Multisite Pacing

In addition to using models to optimize CRT response to existing treatment methods,
computer models of the heart have also been used to evaluate emerging technologies
for delivering pacing to the heart [19, 31, 156]. MSP is one such novel technology,
where multiple sites on the LV are able to be stimulated. In Lee et al. [31],
personalized biophysical models of three MSP CRT patients were created at both
acute and chronic timepoints. These models were used to assess how the optimal
pacing site would change with reverse remodeling. It was found that optimal device
and lead location settings remained consistent with chronic CRT. While this implies
there is diminished benefit in the post-implant optimization of the pacing location
that MSP allows, it also emphasized the importance of the acute optimization of the
LV lead pacing location which may potentially be easier with MSP in contrast to
conventional CRT.

While many preliminary studies have shown an improved acute CRT response
with MSP [10–15], a more recent study found that MSP had no improvement in
contrast to CRT. These clinical observations were confirmed using idealized LV
electromechanical models [19].

Patients with ischemia have an improved response to MSP CRT in comparison to
conventional CRT, according to computational electromechanical studies



[156]. MSP CRT is therefore a promising new technology for improving response
rates to CRT since this subgroup of patients is one with the poorest response rate to
conventional CRT [172].
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5.9 Endocardial Pacing

Endocardial pacing has also emerged as a potential alternative for patients who do
not respond to conventional epicardial CRT [173, 174]. Experimental canine studies
have found that endocardial pacing has a higher efficacy for CRT in comparison to
conventional epicardial CRT [175]. The mechanisms for this difference in epicardial
vs endocardial pacing have been explored using computer models of the heart. Hyde
et al. [44] found that endocardial pacing recruits the faster conducting endocardial
layer early, allowing for a faster total activation time of the ventricles. Similar to
epicardial pacing studies, biophysical models have also been used to identify target
endocardial pacing location at the latest activating regions [176] while avoiding
scarred locations in endocardial pacing studies [87].

5.10 His and Left Bundle Pacing

His bundle pacing and left bundle pacing are also promising novel CRT delivery
methods. Computational electrophysiology models have been used in the past to
simulate electrical activation on 24 patient-specific geometries [28] and a rabbit heart
inclusive of PS [177] during His bundle and left bundle branch pacing. These models
showed a relation between the effectiveness of left bundle branch pacing and AVD
optimization.

5.11 Limitations of Electromechanical Models

In the heart, the time delay between the atria and ventricular electrical activation
allows for the atrial contribution to the ventricular preload. However, most of the
electromechanical models looking at AVD settings do not include atrial structures
[31, 156]. Some studies on canine heart modeling included the atrial contribution to
the ventricular preload via alterations of a lumped parameter model of the circulatory
system [178]. Even in models like this one, the anatomical effects of the atria on the
activation pattern are still disregarded.

The change in the atrial contribution with AVD optimization is currently not
evaluated in the human models, and the consequence of neglecting the effects of the
atria will need to be investigated in future studies. Four-chamber heart models



[40, 59, 179], containing the atria and ventricles, have the potential to address this
problem.
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Most published electromechanical models predicting CRT response have used
the AHR as an outcome measure. AHR can be measured acutely and is predictive of
reverse remodeling [180]. However, earlier clinical studies have shown poor repro-
ducibility of AHR due to biological variability, especially when only measured once
[181]. In the study by Whinnett et al. [181], it was suggested that repeated measure-
ments (six or more) and relative measurements improve the reliability of AHR
measurements. Increasingly, models have adopted the prediction of the more reliable
relative measure of AHR; however, few clinical groups are making recordings with
six repeats due to the inherent constraints in the clinic [182, 183]. Other measures of
acute improvement such as diastolic parameters and pressure-volume loop have also
been proposed. However, unlike AHR, which has been shown to predict reverse
remodeling 6 months post-CRT [180], they have yet to be linked to long-term
clinical response [184, 185].

Ventricular models have tended to focus on the simulation of a single beat with
boundary conditions being represented by Windkessel models. Contraction models
connected to the circulatory models [163, 186, 187] have linked organ-scale models
to closed-loop cardiovascular models. As the heart operates as two pumps in series,
the blood leaving the RV must equal the blood entering the LV with each beat. To
account for these hemodynamic effects requires modeling not only the ventricles but
also the closed-loop circulatory system within which the heart operates. In a later
study, additional growth models were further incorporated into the models described
in [186] to investigate the long-term effects of LBBB [152]. The changes observed in
the model were in line with experimental observations of the pathological
remodeling effects of the progression of LBBB, such as LV dilation, reduction in
LV ejection fraction, and occurrence of septal flash [188].

6 Circulatory Models

Three-dimensional electromechanics models offer a detailed representation of com-
plex multi-scale mechanisms, ranging from sub-cellular to the whole-organ scale.
The complexity of these models leads to high computational costs, therefore limiting
their clinical translation. Furthermore, simulations are often restricted to the cardiac
chambers and one single heartbeat, even though the interaction between the atria, the
ventricles, and the circulatory system is likely to play a role in the afterload and the
preload of the ventricles, which are important aspects for CRT response and
optimization.

One way to solve this issue is to use zero-dimensional models, discarding or
significantly simplifying the patient’s anatomy. This approach has the benefit of fast
simulations, with computational times reduced from hours to seconds/minutes,
allowing to simulate the whole circulatory system represented as a closed loop for
several cardiac cycles [189–191].
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6.1 CircAdapt Model

As mentioned above, zero-dimensional models do not include anatomical informa-
tion in favor of faster simulations. To make up for the loss of spatial information that
three-dimensional anatomy provides, additional parameters need to be estimated.
The CircAdapt model [106] partially addresses this issue by adapting the geometry
parameters based on known physiological adaptation rules to match target values of
circulatory pressure and flow. A schematic representation of CircAdapt is shown in
Fig. 5. The model simulates the atria and ventricles coupled to the systemic and
pulmonary circulations through cardiac valves. CircAdapt provides fast simulations,
requires fewer parameters to be estimated, and allows for quantification of anatom-
ical remodeling and global indices for cardiac function, such as cardiac output and
ejection fraction [106].

Fig. 5 A schematic representation of the CircAdapt model, together with the TriSeg and the
MultiPatch models as its extensions are given in the orange box. Known physiological adaptation
rules are used to adapt geometry parameters with the aim to match clinical measurements for mean
systemic pressure and flow given in input to the model. The model gives in output hemodynamic
and anatomical responses in the form of geometry parameters as a consequence of adaptation and
pressure-volume relationships. When extended to the MultiPatch model, local electrical activation
is needed as an additional input to provide information about stress, strain, and work within
ventricular walls



Computational Biomechanics of Ventricular Dyssynchrony. . . 319

6.2 TriSeg Model

Although CircAdapt is a very flexible framework, it cannot account for
interventricular interaction, because the ventricles are modelled as two shells one
inside the other, but other than that they act independently. However, interaction
mechanisms between the right and the left ventricles influence CRT and HF, as the
function of one chamber directly affects the other [192–195]. CircAdapt was there-
fore extended to the TriSeg model to capture the heterogeneity of activation times
and wall tension of the left and right ventricular free walls and intraventricular
septum [107], as shown in Fig. 5. Thanks to this improvement compared to
CircAdapt, the TriSeg model allowed to investigate how ventricular function is
affected by LBBB [196]. The observations reported by this computational study
are in agreement with clinical observations on dyssynchronous hearts and provide
valuable information about LBBB consequences on the circulatory system. For
instance, the model was able to associate mitral valve regurgitation with LBBB,
again consistently with clinical observations [197].

In some patients, LBBB has been found to be associated with abnormal septal
motion (septal flash), whereby the mechanical dyssynchrony in the heart manifests
in a pre-ejection shortening of the interventricular septal wall followed by a rebound
stretch; septal flash has been found to be a predictor of CRT response [198]. The
TriSeg model was used by [199] to investigate different types of septal deformation
patterns in CRT and to understand the underlying mechanisms of these patterns.
Clinical measurements in this study indicated that in addition to septal flash, there
were other patterns of motion linked with LBBB patients, with a distinct pattern of
motion associated with patients with LV scar. Computer models were able to
simulate a septal flash pattern with the imposition of a time difference between the
septum and the LV free wall. Imposing a reduction of contractility in this model
recreated the pattern of motion for patients with scar, consistent with the under-
standing of the effect of scar on cardiac tissue.

6.3 MultiPatch Model

The MultiPatch model represents a further improvement based on the TriSeg model,
to account for the heterogeneity of electrical activation within one ventricular
segment and to provide information about local stresses and work [105]. To this
aim, the LV free wall, the RV free wall, and the septum were divided into different
sections (or patches), assigned with different activation times provided by EAM
measurements. Additional to the whole circulatory system, the model then solves for
changes in local stress distribution induced by different activation patterns. Thanks
to its more comprehensive representation, the MultiPatch model is more suitable for
CRT simulations compared to simpler CircAdapt and TriSeg models. Indeed,
Lumens et al. used this framework to show that, despite the differences in activation



achieved with BiV and LV only pacing, these methods result in similar improved
cardiac function [200]. This was due to an equivalent increase in myocardial work
and its linear relation with LV systolic function.
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As already mentioned, the MultiPatch model allows accounting for heterogeneity
in electrical activation within one wall segment. This heterogeneity can be extended
to mechanical properties as well, to simulate areas with increased stiffness and
decreased contractility, such as scar [45]. Using this framework, Huntjens et al.
were able to show that, in ischemic hearts with LBBB, the LV lead should be placed
as far away from the car as possible, in agreement with previous clinical studies
[45, 174, 201]. The MultiPatch model has been used to investigate more sensitive
indices to classify responders and non-responders to CRT based on different elec-
trical and mechanical substrates [202]. Combined with clinical input and animal
measurements, the MultiPatch model was also able to assess how both ventricles
respond to different pacing delays [7, 36, 203] and to quantify contributions of inter-
and intraventricular dyssynchrony in response to CRT [204]. In Jones et al. [7], it
was found that the AVD is an important mechanism for CRT response. In a more
recent study, it was found that optimizing AVD has a positive impact on the LV
preload and leads to a reduction in diastolic mitral regurgitation, thus improving the
hemodynamic CRT response [203].

Although the CircAdapt model, the TriSeg model, and the MultiPatch model
have been used to provide mechanistic insight into LBBB and CRT, these frame-
works still lack a representation of microscopic mechanisms, although these might
be important for CRT and HF. Thanks to its modular structure, the CircAdapt model
is suitable for coupling with more complex three-dimensional electromechanics
models [60, 205] and sarcomere contraction [206]. Kuijpers et al. coupled the TriSeg
model with cellular models for myocyte electrical excitation and sarcomere contrac-
tion and used this extended framework to analyze how microscopic mechanisms
affect macroscopic cardiac function. The model was run for several beats, thanks to
its efficiency, providing insight into both acute and sustained mechanisms because of
LBBB, together with CRT delivery [206].

To conclude, the CircAdapt model and its extensions provide an efficient alter-
native to more complex and computationally expensive three-dimensional
electromechanics models. Their modular structure facilitates the coupling with
more detailed models that can be used to represent specific dynamics, depending
on the clinical question. The lack of representation of local mechanisms in the
ventricles is partially overcome by TriSeg and MultiPatch, making them more
suitable for LBBB and CRT simulations. The efficient simulations provided by
CircAdapt have led to faster clinical translation compared to three-dimensional
models for cardiac electromechanics. In future work, the coupling between three-
dimensional electromechanics and CircAdapt together with clinical data could
provide an invaluable tool to improve our understanding of changes induced by
LBBB and reverse remodeling due to CRT in HF patients.
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7 Challenges, Opportunities, and Future Directions

The electromechanical models discussed in this review require extensive clinical
information, oftentimes including invasive measurements. Future work requires the
development of pipelines that allow for the autogeneration of models and parameters
from noninvasive data, as well as methods to reduce the computational costs or
improvements in the parallel scalability of the simulations.

Patient-specific models for CRT are often very complex with many free param-
eters. At the same time, the large patient variability in the CRT patient populations
motivates personalizing model parameters to each patient. However, efficiently and
uniquely constraining model parameters remains a significant challenge in model
creation. The inability to uniquely constrain parameters using available clinical data
will, in some cases, limit the predictive ability of the model. However, in biological
systems, not all parameters will have an equal impact on all model predictions [207],
allowing some parameters to be set at representative values, without compromising
the model’s predictive capacity. Further, when models fail to make accurate pre-
dictions, we can identify important parameters that were not well constrained by
available measurements. We can then use this information to identify measurements
that need to be made to achieve better predictions for future patients. Finally, as
models move from research techniques to clinical tools, there will need to be a
greater emphasis placed on uncertainty quantification so that the effect of unknown
or poorly constrained parameters on model predictions can be included in estimated
confidence intervals that can in turn guide a clinician in the reliability of the model
predictions.

This is especially true in light of the heterogeneous patient population within a
standard CRT cohort, where questions remain unanswered regarding the accuracy
and reliability of model predictions. The uncertainties inherent in the models due to
reliability and robustness of data measurements (such as AHR) and modeling
assumptions need to be addressed upfront when presenting biophysical models of
the heart to clinicians. Computational modeling offers an additional tool to make
clinical decisions; however, diagnostic and treatment decisions based on model
simulations need to be made with the full knowledge of the errors and confidence
in the models.

The use of machine learning (ML) methods to predict CRT response in patients
has been increasingly explored in recent years [208]. Cardiovascular disease is a
complex problem with a multitude of factors determining the best clinical outcome
for patients, while ML methods allow for the analysis of different features to identify
which ones have the most impact. ML algorithms to predict CRT response have
considered clinical data from ECGs (QRSd, 12 wave ECG morphology) [209, 210],
medical images (anatomical, strain analysis, and scar) [209, 211, 212], demo-
graphics (NYHA stage, age, sex) [213], and other comorbidities (AF, ischemia)
[210, 212] to predict CRT response. In future studies, information from biophysical
models of the heart could also be implemented in ML methods to predict CRT
response.
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As discussed in this chapter, one of the strengths of biophysical models is the
ability to predict outcomes and states of cardiac tissue with in silico simulations. In
Sánchez et al. [214], biophysically based computer models of the cardiac substrate
were used to train and validate a ML classifier for fibrotic regions in atrial fibrillation
patients, while in Shade et al. [215] EP simulations of personalized LA models were
used in a ML classifier to predict atrial fibrillation recurrence post-procedurally. ML
classifiers have similarly been applied to personalized ventricular models to predict
the risk of sudden cardiac death in patients with cardiac sarcoidosis [216]. For a more
in-depth review on the application of ML in cardiac electrophysiology and arrhyth-
mia to date, we refer the reader to Trayanova et al. [217]. In future work, a similar
approach could be made where biophysical cardiac models for CRT patients could
be combined with ML techniques to improve classification methods.

The current state of the computational modeling of LBBB and CRT patients relies
on expertise in image processing, numerical analysis, mesh generation, cardiac
electrophysiology, mechanics, and circulatory response which presents another
barrier to clinical translation. The development of user-friendly tools that allow the
non-expert to model the electrical, functional, and anatomical response of the patient
to CRT within a clinically useful timeframe remains a challenge for the community.
The development of these tools requires close collaboration and feedback from
clinical stakeholders.

8 Conclusion

In this book chapter, we have reviewed some of the most relevant cardiac computer
models used to investigate LBBB and CRT. Electrophysiology, electromechanical,
and circulatory models have been used to identify optimal pacing location and
intracardiac timings in CRT. These models have also proved to be useful to
investigate the cardiac substrate (endocardial layers or scar burden or location) to
provide insight into the pathophysiology causing electrical and mechanical
dyssynchrony in LBBB and response to CRT. Lastly, computational models can
also be used to study novel technologies such as MSP, endocardial LV pacing, or
conduction system pacing.

Several lines of future work remain open. These include using in silico models to
examine interventions, aiding clinicians with prognosis and diagnosis of new treat-
ments, predicting which patients will most benefit from CRT (thus reducing the need
for unnecessary procedures), or providing a noninvasive testing ground for emerging
technologies.
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Therapeutic Innovations for Heart Failure

Anca Remes, Derk Frank, and Oliver J. Müller

1 Basic Mechanisms of Heart Failure

Pressure overload, triggered by valvular disease or hypertension, is a frequent cause
of heart failure [1]. In response to pressure overload, cardiac tissue responds with
ventricular remodeling, characterized by cardiomyocyte hypertrophy, extracellular
matrix deposition, and intense alterations in metabolic function [2]. Although these
processes are initially adaptive in a quest of preserving cardiac output, their chronic
activation leads to decompensated disease. Another fundamental mechanism asso-
ciated with cardiac dysfunction in late stages of the disease is myocyte apoptosis,
strongly linked to a reduction in contractile function and development of
arrhythmias [3].

On the molecular level, pathological hypertrophy is accompanied by re-activation
of fetal genes involved in cardiac contractility and calcium handling and a concom-
itant downregulation of the expression levels of their adult isoform [4]. Furthermore,
various cytokines and growth factors were demonstrated to play key roles in left
ventricular growth during remodeling. For example, placental growth factor induces
tissue necrosis factor-α (TNF-α) activation by increasing TIMP3 expression [5]. The
understanding of neurohormonal activation in conditions of heart failure has opened
the path to the major pharmacological treatments that improve the rates of mortality
and morbidity in patients [6]. The most well-characterized compensatory homeo-
static pathways activated during cardiac hypertrophy are the sympathetic nervous
system and the renin–angiotensin–aldosterone system [6].
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Calcineurin-nuclear factor of activated T cells (NFAT) pathway has been inten-
sively studied in regard to pathological alterations in heart failure and links distur-
bances in Ca2+ signaling to pro-hypertrophic gene program. The first description of
its role in the development of the disease has been established in transgenic mice,
which present with cardiac hypertrophy that transitioned to decompensated heart
failure early in age [7]. Consistently, inhibition of the pathway by administration of
inhibitors such as cyclosporin A or FK506 ameliorated myocardial remodeling in
various mouse models of heart failure [8, 9]. Calcineurin also regulates the expres-
sion of main transcription factors proven to be critical in disease progression and
upregulation of fetal genes in pathological conditions.

Recent studies have underlined the main transcription factors involved in cardiac
hypertrophy and heart failure and implicated in abnormal gene expression in dis-
eased myocardium. GATA4 is one of the first transcription factors expressed in
cardiomyocytes during development, regulating genes such as atrial natriuretic
peptide (ANP), brain natriuretic peptide (BNP), cardiac troponin C and I, and
α-myosin heavy chain [10]. Moreover, in vitro studies show that GATA4 is required
for induction of brain natriuretic peptide (BNP) expression upon adrenergic stimu-
lation [11]. Interestingly, stimulation with isoproterenol led to enhanced NFAT–
GATA4 interaction and subsequent activation of fetal genes [12]. Additionally,
myocyte enhancer factor 2 (MEF2) family of transcription factors has been identified
to be important in calcium signaling in heart failure by activating Ca2+-binding
proteins, calmodulin, calmodulin kinases, and calcineurin, thereby inducing
myocyte hypertrophy [13]. Moreover, MEF2 binding activity was shown to be
enhanced in cardiac dysfunction due to volume or pressure overload [14]. MEF2
also interacts with other transcription factors involved in triggering the hypertrophic
gene program, such as GATA4 [15] and NFAT [16]. An extensive characterization
of the main transcription factors involved in the development of cardiac hypertrophy
and its transition to heart failure is described elsewhere [17]. NFAT has been
intensely studied in the context of heart failure. The dephosphorylated form of the
protein is translocated into the nucleus and interacts with other transcription factors
such as MEF2, GATA4, and activator protein-1 to drive pathological gene expres-
sion through multiple pathways [18]. Likewise, NFATc2 was demonstrated to be a
necessary inducer of cardiac hypertrophy and heart failure [19].

Inflammation and oxidative stress have been shown to dramatically impair
cardiac function during progression to heart failure. Clinical studies point towards
a direct correlation between the concentration of circulating pro-inflammatory cyto-
kines and the severity of the disease [20] and demonstrate that their levels can act as
reliable prognostic factors in patients [21]. Inflammatory mediators induce cardiac
dysfunction by triggering cardiac myocyte apoptosis, impairing intracellular calcium
transport, and driving the activation of fibroblasts [22]. For example, TNF-α is a
potent inducer of cardiomyocyte hypertrophy and upregulates matrix
metalloproteases, leading to ventricular fibrosis [23]. Inflammation of the coronary
microvascular endothelial cells causes a drop in nitric oxide (NO) bioavailability
[24]. Growing evidence suggests that NO manifests a positive effect on cardiac
contractility by decreasing titin-based hyperphosphorylation and hence stiffness



[25]. NO was also demonstrated to blunt pathological left ventricular remodeling
after myocardial infarction [26]. The feasibility and efficacy of various anti-
inflammatory based therapies in management of heart failure due to pressure
overload are described in a separate section of the chapter.
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2 Pharmacological Treatment of Heart Failure

The main objectives of the current pharmacological therapy for heart failure are
reducing symptom severity and improving cardiac function and contractility, hence
reducing the rate of hospitalization and associated mortality.

Chronic pathological activation of the neurohormonal system exerts a negative
effect on cardiac function and was shown to be a hallmark of heart failure [6]. Hence,
the main strategies to improve the clinical outcome of patients diagnosed with heart
failure are the use of diuretics to attenuate edema, and neurohormonal antagonists,
proven to reduce the rates of hospitalization and improve the mortality of affected
patients [27]. Angiotensin-converting enzyme inhibitors (ACEi) [28] and beta-
adrenergic blocking agents [29] are the main class of compounds used for the
management of heart failure [30]. The treatment aims to target two major pathways
driving disease progression, namely renin–angiotensin–aldosterone system (RAAS)
and the sympathetic nervous system.

The beneficial effect of beta-blockers relates to reduction in heart rate, subsequent
decrease in cardiac oxygen need, and marked decline in the occurrence of
arryhthmias and sudden cardiac arrest. On the other hand, blockage of other adren-
ergic signaling pathways, such as alpha adrenergic receptor did not exert beneficial
effects in patients with heart failure [31].

Additionally, mineralocorticoid receptor antagonists (MRAs) are recommended
for patients who remain symptomatic despite being subjected to ACEi, angiotensin
AT1 receptor blockers, or beta-blockers therapy [32]. Inhibition of mineralocorticoid
receptor affects pathological myocardial remodeling and decreases the degree of
inflammation in diseased myocardium. Combined treatments with the above-
mentioned drugs presented with the highest reduction in mortality and rate of
hospitalization [33]. Application of the angiotensin receptor neprilysin inhibitor
(ARNi) sacubitril/valsartan in rats subjected to experimental pressure overload
revealed a superior cardioprotective effect of sacubitril/valsartan over the angioten-
sin AT1 receptor antagonist valsartan alone against oxidative stress, mitochondrial
dysfunction, and cardiac fibrosis, while there was no reduction in cardiac hypertro-
phy [34]. A similar study in rats subjected to pressure overload reported no differ-
ence in fibrosis but a small difference in antihypertrophic response in the sacubitril/
valsartan group compared to valsartan alone which was independent from blood
pressure [35]. Further studies are necessary to confirm whether sacubitril/valsartan
has an effect on cardiac hypertrophy independent from blood pressure.

Recently, sodium-glucose co-transporter 2 (SGLT2) inhibitors empagliflozin
(EMPEROR-Reduced) [36] and dapagliflozin (DAPA-HF) [37] showed a clear



improvement in mortality, rate of hospitalization, and improvement of the quality of
life when administered in parallel with standard therapies in patients with and
without diabetes. However, studies from mice subjected to transverse aortic con-
striction showed no consistent effect on left ventricular remodeling. While one study
suggests that treatment with empagliflozin did not prevent cardiac hypertrophy
despite improving left ventricular function [38], another study showed attenuation
of the hypertrophic response to pressure overload [39].
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3 Anti-inflammatory Therapy

Taking into account the major role of TNF-α in disease development [40], modu-
lating its activity has been intensely studied in large animal models and patients.
Although TNF-α signaling was shown to be highly detrimental in experimental heart
failure, clinical studies failed to reproduce these observations. The RENEWAL
(Randomized Etanercept Worldwide Evaluation) trial, aiming the administration of
a TNF-α decoy receptor in patients diagnosed with congestive heart failure, found
that the strategy did not improve clinical outcome, but unexpectedly there was a
trend toward a harmful effect of the therapy [41]. Consistently, ATTACH (Anti-TNF
therapy against congestive heart failure) study demonstrated that high doses of a
chimeric monoclonal antibody, infliximab adversely affected the clinical parameters
of treated patients and increased the risk of hospitalization [42]. These effects could
be explained by infliximab-induced cytotoxicity, observed in other cell types [43].

Dysfunctional IL-1 signaling contributes to cardiac dysfunction through various
mechanisms. IL-1 is a main mediator in both acute and chronic stages of inflamma-
tion and induces the expression of further secondary cytokines [44]. Similarly, IL-1α
induces a deleterious effect on mitochondrial function in cardiomyocytes
[45]. Anakinra, an IL-1 receptor antagonist improved coronary flow and contractility
in patients with rheumatoid arthritis [46]. Likewise, IL-1 inhibition by subcutaneous
administration of anakinra over a period of 12 weeks led to a significant increase in
peak VO2 in patients with decompensated heart failure [47]. Importantly, the rate of
hospitalization was also decreased in patients receiving the antagonist [47]. Simi-
larly, the administration of a human antibody targeting IL-1β (canakinumab) as an
adjuvant therapy to statins significantly reduced the risk of cardiovascular death by
15% as compared to placebo (CANTOS clinical trial) [48]. Interestingly, CANTOS
study proved that patients who achieved a reduction of C-reactive protein (CRP)
below 2 mg/L benefited from the designed treatment, while those who presented
with higher values of CRP did not. In addition, exploratory analyses of the CANTOS
study pointed out that patients with mutations in TET2 gene present not only with
increased risk of cardiovascular disease, but also with a higher response to
canakinumab therapy [49].

Other immunomodulatory-based therapies have been recently described. One of
the most important targets for such approaches is C-chemokine receptor type 2–C-
chemokine ligand 2 (CCR2-CCL2) axis, specifically affecting monocyte infiltration



into the myocardium. Most well-established examples include the use of CCR2
antagonists [50, 51] or antibodies against CCR2 [51]. Despite positive results in
preclinical trials, so far no CCR2-modulating approach has been approved for use in
patients.
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Several other non-specific drugs with anti-inflammatory effects have been tested
within Phase III clinical trials for patients with heart failure with reduced ejection
fraction, including statins, oxypurinol, and n-1 polyunsaturated fatty acids
[52]. Additionally, in case of autoimmune cardiac diseases, administration of pep-
tides binding to autoantibodies against β-adrenergic receptor showed a beneficial
effect in several studies; however, Phase III randomized clinical trials are
pending [53].

Furthermore, other classes of anti-inflammatory drugs proven effective for other
diseases have been repurposed for the treatment of heart failure and tested in various
small clinical trials. Low-dose colchicine was demonstrated to reduce the chance of
death from cardiovascular complications and decrease the hospitalization rate after
myocardial infarction (COLOT trial) [54]. Interestingly, colchicine has been known
for decades to improve left ventricular function in a large animal model of pressure
overload [55]. Mechanistically, colchicine application targets the increased micro-
tubule network density observed in hypertrophic cardiomyocytes under pressure
overload conditions by microtubule depolymerization [55, 56].

4 Gene Therapy

Despite the approval of more than 20 gene therapy-based products on the market for
other diseases [57] and development of a multitude of gene therapy clinical trials, at
the present moment there is no available option for cardiac complications. However,
with a wide variety of targets recently identified, gene therapy can still be a valuable
strategy for the treatment of cardiovascular complications and heart failure. A list of
gene therapy targets is depicted in Fig. 1.

Adeno-associated viruses (AAVs) represent the gold standard delivery approach
for cardiomyocyte gene transfer. In strong contrast to adenovirus-based vectors [58],
AAVs offer long-term, non-immunogenic gene expression. Additionally, recent
studies focused on the design of highly specific AAV capsids and promoters with
effective liver de-targeting [59, 60]. This is of major importance, taking into account
that high-dose AAV-mediated liver expression of transgenes can trigger activation
of an immune response and hence hepatic toxicity [61–63]. Another approach that
led to the development of cardiac-specific AAV variants is the choice of a selective
regulatory sequence that provides cardiomyocyte gene transfer with reduced liver
transduction [64, 65]. On the other hand, cardiac-specific promoters might exert
reduced efficiency during disease progression, as fetal gene expression is reactivated
[66]. This challenge could be resolved by using a heart failure-specific B-type
natriuretic peptide promoter with low levels of expression under basal conditions
but increased under pathological conditions [67]. As no reports are available on



lacking or reduced efficiency of promoter sequences currently used for cardiac gene
in heart failure models, downregulation of promoters remains rather still a theoretical
consideration, which however should be addressed experimentally in future studies.
Along these lines, sustained overexpression of distinct proteins by constitutively
active promoters in cardiomyocytes may cause stress in the endoplasmic reticulum
and unfolded protein response as well as the autophagy lysosomal pathway or other
protein degrading pathways resulting in unexpected side effects. An impressive
example of the potentially deleterious consequences of sustained therapeutic gene
expression was recently reported: persistent overexpression of microRNA-199a in a
porcine model of cardiac ischemia resulted in increased mortality due to arrhythmia
after initial beneficial effects [68]. Thus, novel regulatory systems are required. For
example, drug-inducible promoters may be developed, enabling discontinuation of
gene expression in case of unwanted side effects.
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Fig. 1 Cardiac mechanobiology in physiology

The route of administration is another critical factor influencing the degree of
cardiomyocyte transduction. The most common and direct strategy is represented by
intramyocardial injection or by less invasive percutaneous catheter-based applica-
tion methods ranging from intracoronary injection to retrograde injection via the
cardiac veins with transient block of arterial flow, which are less invasive and hence
more easily translated into clinical use [69, 70]. Most preclinical trials performed in
animal models focus on prophylactic AAV injection in healthy controls in order to
allow efficient transgene expression prior to disease induction. However, transition
to heart failure involves deposition of extracellular matrix in perivascular and



interstitial areas, which might hinder cardiomyocyte transduction. Therefore, addi-
tional experiments assessing the efficiency of gene delivery in diseased myocardium
should be performed for translation purposes. In addition, extracellular matrix
deposition developed during transition to heart failure might hinder the degree of
AAV transduction in target cardiac cells. Hence, gene therapy approaches focusing
on reducing fibroblast proliferation is a valuable strategy to improve myocardial
contractility and reduce phenotypic changes associated with decompensated heart
failure [71, 72].
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The first Phase I/II clinical trial for heart failure was based on the upregulation of
SERCA2a by adeno-associated virus 1 (AAV1) delivery into cardiac tissue (CUPID
study [73]) and showed that this approach is safe. It opened the path to a Phase II,
blinded, randomized multicenter trial involving patients with advanced heart failure
[74]. The trial proved that the intracoronary administration of a high dose of
SERCA2a-overexpressing AAV1 can improve cardiac function and time of hospi-
talization in the 39 patients enrolled [74], hence setting up the basis for a larger trial
(CUPID 2), including 250 patients with heart failure of predominantly ischemic
cause, but in 4% also caused by hypertension [75]. Intriguingly, CUPID 2 failed to
meet its primary endpoint and there was no evidence of improvement in the clinical
course of patients diagnosed with severe heart failure with both ischemic and
non-ischemic etiologies [75]. The main reason behind this observation could be
the low transduction efficiency within the cardiac tissue following AAV1 transduc-
tion [75]. Regardless of the negative results, the CUPID clinical trial points out the
crucial issue of efficiency of AAV delivery into the myocardium and underlines the
importance of the choice of therapeutic target to be overexpressed [76].

A recently started clinical trial, NAN-CS101 is addressing the effects of
overexpression of a constitutively active form of inhibitor-1 c (I-1c) in patients
with class II heart failure (NCT04179643). In failing myocardium, I-1 levels are
significantly reduced, accordingly leading to diminished SERCA2a activity by
increased phospholamban phosphorylation [77]. Consistently, AAV-mediated
gene transfer of I-1 in preclinical models of heart failure led to rescue of cardiac
phenotype, improved contractility, and reduced cardiomyocyte apoptosis [78–
80]. Although mice with either transgenic or adenoviral overexpression of I-1c
resulted in improved left ventricular function when subjected to pressure overload
[81], AAV-mediated expression of I-1c in mice subjected to transverse aortic
constriction (TAC) resulted in even more cardiac hypertrophy and worsening of
left ventricular function [82]. However, expression of I-1c using lower doses of
AAV vectors in rats with pressure overload induced heart failure, improved left
ventricular function, and prevented remodeling [83]. Thus, there remains a challenge
of identifying the appropriate dose at least for an application in heart failure due to
increased afterload.

Overexpression of the N-terminal fragment of histone deacetylase 4 (HDAC4),
derived by proteolytical cleavage by cAMP-dependent protein kinase A has been
proven to exert beneficial effects on cardiac function under pathological stress
[84]. Mechanistically, the peptide was shown to inhibit the activity of MEF2 without
affecting other pro-hypertrophic transcription factors. Interestingly, mice subjected



to physiological stress presented with significantly higher levels of proteolytically
cleaved HDAC4 [84]. Similar results were obtained through AAV-mediated
overexpression of abhydrolase domain containing 5 (ABHD5), a serine protease
that cleaves HDAC4 leading to production of the protective N-terminal polypeptide
of the histone deacetylase [85]. Specifically, reintroduction of ABHD5 in
cardiomyocytes prevented TAC-induced cardiac hypertrophy and heart failure in
mice [85].
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5 RNA-Based Methods for Heart Failure

Understanding the structure and role of RNAs within a cell has dramatically changed
during the last decade, making them powerful targets for the treatment of cardiac
complications. RNA-based strategies include RNA interference (RNAi), aiming to
silence particular genes, and miRNAmodulation, which alters complex gene expres-
sion pattern.

Phospholamban downregulation by RNAi was proven to improve cardiac func-
tion in the aortic banding mouse model of heart failure [86]. Treated animals
presented with reduced left ventricular hypertrophy and decreased extracellular
matrix deposition compared to controls [86].

Over the last few years, miRNAs have been proven to be powerful tools for
induction of cardiac regeneration and hence recovery of its function after a patho-
logical insult such as myocardial infarction. Indeed, miR-302-367 cluster, physio-
logically expressed in embryonic stem cells and playing a major role in maintaining
their pluripotency, effectively induced cardiomyocyte proliferation in mice
[87]. Additionally, other miRNA clusters, first identified to lead to cancer cell
proliferation [88], are required and sufficient to trigger adult heart regeneration and
blunt cardiac dysfunction in a mouse model of myocardial infarction [89]. An
elegant method to deliver therapeutic miRNAs is by means of AAV vector trans-
duction, which shows high efficiency and cardiac tropism. AAV-mediated delivery
of miRNA-199 in mice [90] and pigs [68] successfully triggered cardiac regenera-
tion and markedly improved cardiac function in these models. A significant chal-
lenge of this approach is the persistent expression of a pro-regenerative molecule,
which could lead to abnormal proliferation of cardiac myocytes and hence develop-
ment of arrhythmias as shown by overexpression of microRNA-199a in a porcine
model of cardiac ischemia. As discussed above, AAV-mediated overexpression of
microRNA-199a was associated with increased mortality due to arrhythmia after
initial beneficial effects on cardiac function [68]. To overcome the problem of
sustained gene expression with viral vectors, various lipid nanoformulations were
employed to deliver miRNAs and non-coding RNAs, which could be delivered to
the myocardial tissue through percutaneous coronary intervention or by direct
myocardial injection. While all the aforementioned approaches have been studied
in rodent and large animal models, there is still an unmet need to establish the
feasibility and efficacy of nanoparticle delivery into the clinical situation.
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Other miRNA clusters have been shown to be associated with several cardiovas-
cular complications, including heart failure, and may be used as therapeutic targets.
Recently, a wide range of oligonucleotides blocking miRNA function has been
established and evaluated in preclinical models. Specifically, these sets of miRNAs
are implicated in different cellular mechanisms driving cardiac disease, such as
apoptosis, necroptosis, cellular hypertrophy, and autophagy [91]. For instance,
treatment with miR-22 anti-miRs triggers autophagy in cardiomyocytes, therefore
preventing remodeling in case of myocardial damage after infarction [92]. Similarly,
prompting autophagy by miR-99a overexpression led to an increase in mTOR
pathway activation and hence improved cardiac function and survival in a large
animal model for myocardial infarction [93]. Likewise, inhibition of miR-132 family
rescued cardiac function and decreased left ventricular hypertrophy in transverse
aortic constriction model in mice [94]. Interestingly, the response to some miRNA
therapy has been demonstrated to be gender specific, which needs to be taken into
account for further translation into patients [95].

Long non-coding RNAs (lncRNAs) have emerged as valuable molecules
involved in cardiomyocyte physiology and pathophysiology [96] (Fig. 1). For
example, Mhrt, a cluster of lncRNA belonging to Myh7 loci has a cardioprotective
role under stress, and restoring its levels in a mouse model for pressure overload-
induced hypertrophy blunts pathological myocardial remodeling [97]. Furthermore,
cardiomyocyte-specific overexpression of the lncRNA repressor of NFAT (NRON)
in vitro and in vivo led to exacerbation of the pro-hypertrophic response, while its
deletion led to normalization of the phenotype [98]. Additionally, lncRNA profiling
enabled the characterization of cardiac hypertrophy-associated transcript (Chast) as
a key molecular player in pathological cardiac hypertrophy. Chast expression was
found to be significantly upregulated upon TAC, whereas its viral-overexpression was
sufficient to prompt cardiomyocyte hypertrophy by impairing autophagy
[99]. LncRNAs were demonstrated to be deregulated not only in cardiomyocytes,
but also in cardiac fibroblasts upon pressure overload-induced hypertrophy, leading to
cellular activation, enhanced proliferation, and extracellular matrix deposition [100].

Recent studies point out that RNA-based technology can be successfully used to
target abnormal activation of transcription factors involved in induction of cardiac
hypertrophy. AAV9-mediated expression of a hairpin RNA containing the consen-
sus binding site of NFAT markedly reduced transcription factor activation, leading
to decreased cardiomyocyte hypertrophy in vitro and in vivo [101]. This approach
could potentially be translated for targeting other transcription factors involved in
pathological remodeling under pressure overload.

6 Conclusion and Future Perspectives

Considering the limited efficiency of current therapies for tackling heart failure due
to pressure overload, there is a high need to identify novel target structures and
develop appropriate therapeutic strategies. Actual pharmacological approaches
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Additionally, gene therapy approaches remain immensely valuable perspectives
for the treatment of heart failure. Regardless of the negative outcomes pointed out by
CUPID 2 trial, we learned important lessons regarding tissue transduction efficiency,
mode of AAV delivery, and choice of the therapeutic target to be investigated.
Moreover, preclinical studies aim to establish novel AAV variants with improved
cardiomyocyte transduction and immune evasion.
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