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Abstract. Abdominal multi-organ segmentation is fast becoming a key
instrument in preoperative diagnosis. Using the results of abdominal CT
image segmentation for three-dimensional reconstruction is an intuitive
and accurate method for surgical planning. In this paper, we propose a
stable three-stage fast automatic segmentation method for abdominal 13
organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gall-
bladder, esophagus, aorta, inferior vena cava, right adrenal gland, left
adrenal gland, and duodenum. Our method includes preprocessing the
CT data, segmenting the multi-organ and post-processing the segmen-
tation outputs. The results on the test set show that the average DSC
performance is about 0.766. The average time and GPU memory con-
sumption for each case is 81.42 s and 1953 MB.
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1 Introduction

Abdominal multi organ segmentation is of great significance in medical diag-
nosis and research. Through pixel level segmentation of CT or MRI and three-
dimensional reconstruction of the segmentation results, doctors can obtain more
intuitive information of patients’ abdominal organs [3,4,10,17,20]. In recent
years, medical image automatic segmentation algorithm has made a great break-
through. Methods based on deep learning has achieved excellent performance in
this task [9,12,18,19]. The deep learning technology based on neural networks
can achieve fast segmentation, and effectively solve the problem of low accu-
racy and long time-consuming image segmentation [8,15]. The research in recent
years mainly focuses on the network structure and segmentation framework. At
present, the most widely used network structure is the encoding-decoding shaped
structure similar to U-Net [14], such as 3D U-Net [1] and V-Net [13], and nnU-
Net [7] has also achieved excellent results in the field of segmentation framework.
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For example, in the MICCAI challenge 2019 kits19 competition, the accuracy of
nnU-Net using 3D U-Net in the task of kidney segmentation is very close to that
of human, but the required time to complete a segmentation is far less than that
of manual segmentation. The deep learning-based methods not only surpass the
traditional algorithms, but also approach the accuracy of manual segmentation.
However, previous published studies are limited to be used on low-configuration
devices.

In this paper, we propose a stable three-stage automatic segmentation
method for abdominal 13 organs: liver, spleen, pancreas, right kidney, left kid-
ney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal
gland, left adrenal gland, and duodenum. Our method can complete the segmen-
tation task, including preprocessing the CT data, segmenting the multi-organ
and finally post-processing the segmentation outputs, with low GPU memory
occupation.

2 Methods

2.1 Preprocessing

In the preprocessing stage, we first standardize the spacing of CT. Due to the
amount of available GPU memory, the patch size that can be processed in 3D
CNNs is typically quite limited. Thus, the target spacing, which directly impacts
the total size of the images in voxels, also determines how much contextual
information the CNN can capture in its patch size. We reshape all the data with
the voxel spacing of 4.4 × 2.5 × 2.5 mm for the first step and 3.0 × 1.6 × 1.6
mm for the second step. After spacing standardization, we set the maximum
in-plain resolution to 128 × 176 pixels for the first step and 230 × 300 pixels for
the second step, so as to prevent data with high original spacing from being too
large after the standardization of spacing and resulting in a significant increase
in segmentation time.

2.2 Proposed Method

To verify the impact of segmentation pipeline strategy on the results, we used an
improved 3D U-Net as the segmentation network. The network architecture is
illustrated in Fig. 1. The network includes an encoding path and a decoding path,
each of which has four resolution levels. Each level of the encoding path contains
two 3× 3× 3 convolution layers, and the convolution layers followed by a ReLu
layer and a 2×2×2 Maximum pool layer with step size of 2. In the decoding path,
each level also contains two 3 × 3 × 3 convolution layers , and the convolution
layers followed by a ReLu layer and an upsampling layer.The summation between
Dice loss and cross entropy loss is chosen as the loss function. We used adaptive
moment estimation (Adam) as the optimizer. The batch size was set to be 2.
The networks were initialized using Kaiming normal initialization. We set the
learning rate to be 1e-3 and reduced the learning rate by a multiplier of 0.99
after every 5 epochs until it reached 1e-6.
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Fig. 1. The network architecture. Gray cuboids represent feature maps. The number
of channels is denoted next to the feature map.

The pipeline of our method consists of three stages: global locating, organ
locating and organ segmentation. Each stage of our method will generate a
segmentation result for the complete CT, and the operation of the second and
the third steps are based on the previous result. As shown in Fig. 2, in the global
locating stage, we first cut the original CT into several ROIs, and then segment
each ROI with the first trained neural network. In the organ locating stage,
we first locate the region of abdominal organs in the whole CT according to the
results of the first step, and then we save this region with a higher resolution and
segment it with the second trained network. In the stage of organ segmentation,
we locate and crop each organ according to the results of the second step, and
then use the corresponding network to fine segment each organ. Finally, we
superimpose the segmentation results of each organ to the corresponding position
and then generate the feature map of final segmentation result.

In order to further improve the robustness of the network on different data,
we adopt the training strategy of semi-supervised learning.Since no research has
proved that more unlabeled data in semi supervised learning is better, we set the
unlabeled data as much as the number of labeled data. In the training process,
we use 40 labeled data and 50 randomly selected unlabeled data as the training
set used in the stage of global locating and organ locating. We use the labeled
data to train the model in the first 50 epochs, and then introduce the unlabeled
data.We use the trained model to segmentation the unlabeled dataset after each
five epochs, and we use the results as the label for training. As the first two
stages are the segmentation of complete CT, which is different from the third
stage, we only use the semi-supervised learning strategy for the first two stages.



226 Y. Lv et al.

Fig. 2. The pipeline of our proposed method.

2.3 Post-processing

In the post-processing stage, we splice the results of the network segmentation.
We keep the region with the largest volume and remove the rest to eliminate
isolated incorrectly predicted labels. To improve the segmentation efficiency of
our method, we clear the cache and delete the used feature map and the model
from the GPU after each step. Finally, the maximum GPU memory we use is
1953MB.

3 Experiments

3.1 Dataset and Evaluation Measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [16], KiTS [5,6], AbdomenCT-1K [11],
and TCIA [2]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.
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3.2 Implementation Details

Environment Settings. The environments and requirements are presented in
Table 1.

Table 1. Environments and requirements.

Windows/Ubuntu version Windows 10

CPU AMD Ryzen 7 5800X
RAM 8GB × 4
GPU (number and type) One RTX8000 48G
CUDA version 10.2
Programming language Python 3.7.9
Deep learning framework Pytorch(Torch 1.8.0, torchvision 0.9.0)
Average inference time 81.42s
GPU memory consumption 1953 MB

Training Protocols. The Training protocols are presented in Table 2.

Table 2. Training protocols.

Network initialization Kaiming normal initialization

Data augmentation methods Scaling, rotations, brightness, contrast, gamma
Batch size 8
Patch size 64× 128× 176

Total epochs 100
Optimizer Adam
Initial learning rate (lr) 0.01
Lr decay schedule multiplied by 0.99 every 5 epochs
Training time 5.9 h
Number of model parameters 1.328M
Number of flops 33.263 G
Loss function Combination of Dice loss and WCE loss

3.3 Resource Consumption

The Resource consumption during inference is presented in Table 3.
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Table 3. Resource consumption during inference.

Total Running Time on Validation Set 67.85 mins

Maximum RAM consumption < 8 GB
Maximum GPU memory consumption 1953 MB

4 Results and Discussion

As the accuracy metrics, the average DSC between the predicted mask and the
ground truth mask were employed. Assume A and B are two masks, the metric
is given by (1).

DSC =
2(A ∩ B)
A+B

(1)

4.1 Quantitative Results on Validation Set

Table 4 compares the experimental data on the segmentation results on 13 organs
in the three stages. In the stage of global locating, organ locating and organ seg-
mentation, our method achieves average DSC of 0.63, 0.73 and 0.77 respectively.
The highest DSC between the three stages are highlighted in Table 4. It is appar-
ent from this table that the DSC results in stage 3 is significantly higher than
the previous stages.

Table 4. Comparison on 13 Structures on official validation and testing results.

Official Validation Testing
Stage 1 Stage 2 Stage 3 Result

Liver 0.902 0.868 0.903 0.866

Right Kidney 0.798 0.864 0.896 0.885

Spleen 0.802 0.898 0.926 0.910

Pancreas 0.497 0.708 0.683 0.676

Aorta 0.837 0.911 0.930 0.915

Inferior Vena Cava 0.710 0.802 0.846 0.836

Right Adrenal Gland 0.490 0.600 0.653 0.695

Left Adrenal Gland 0.354 0.528 0.610 0.653

Gallbladder 0.393 0.463 0.562 0.569

Esophagus 0.573 0.652 0.671 0.666

Stomach 0.672 0.780 0.799 0.807

Duodenum 0.379 0.577 0.593 0.589

Left Kidney 0.789 0.856 0.867 0.893

Average 0.630 0.731 0.765 0.766
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As the models used in the first and the second stage were semi-supervised
trained with unlabeled data, we also test the effect of unlabeled data. Table 5
shows the DSC comparison of our method with and without using unlabeled
data. It can be observed that the accuracy of our method using unlabeled data
has been improved.

Table 5. Comparison of our method with and without using unlabeled data.

Average DSC Standard Deviation of DSC

With Unlabeled Data 0.731 0.142
Without Unlabeled Data 0.678 0.186

4.2 Qualitative Results on Validation Set

Figure 3 shows three examples with good segmentation results on CT slices in
validation set. Figure 4 shows the results with voxel-based rendering from three
examples in the validation set. In these results, the performance of our method
is generally stable.

Fig. 3. Three examples with good segmentation results on CT slices.

As shown in Fig. 5, there also have examples with bad segmentation results
on CT slices in validation set. In the first case of the bad results, part of the right
kidney tumor and pancreas were not correctly recognized. This is because there
is not much data with kidney tumors in the training set, and the characteristic
boundary between pancreas and surrounding tissues is not particularly obvious.
In the second case, our method performs bad on spleen and stomach. The gray
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Fig. 4. Segmentation results with voxel-based rendering from three examples in the
evaluation dataset. For each example, the ground truth and the segmentation results
are given for visual comparison.

value of stomach is abnormally high in CT image, which not only led to the
wrong recognition of the stomach, but also covered the correct label of spleen.
In the third case, a typical liver recognition error occurred. Due to the rarity of
such features in training data, the network habitually takes the lung boundary
as the criterion for judging the region of liver.

Fig. 5. Three examples with bad segmentation results on CT slices.

5 Conclusion

We propose a three-stage automatic segmentation method for abdominal 13
organs based on improved 3D U-Net. The results show that the average dice
of our method is 0.77 on the official validation leaderboard. The results show
that the accuracy of our method on massive organs is better than that for small
organs. The speed of three-stage method is fast, but it is difficult to achieve
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higher accuracy due to the limitation of feature map size. Future work will focus
on promoting accuracy based on less stage methods, in which the segmentation
speed can be further improved.
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