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Abstract. Link prediction is a widely studied problem and receives considerable
attention in data mining and machine learning fields. How to efficiently predict
missing or hidden edges in the network is a problem that link prediction needs to
solve. Traditional link prediction only focuses on the information of network topol-
ogy and ignores some non-topological information, which makes the prediction
performance of algorithmdecline rapidlywhen encountering extremely sparse net-
work. To compensate for this deficiency, this paper proposes a joint weighted non-
negative matrix factorization model for link prediction via incorporates attribute
information.Bydesigning aweightedmatrix to process the attribute information of
each node, both the structure and attribute information fused into the nonnegative
matrix factorization framework can fully play a guiding role in the link prediction
task, thus solving the problem of structure sparsity and improving the prediction
performance of the algorithm. Extensive experiments on five attribute networks
demonstrate that the proposed model has better prediction performance than the
dozen benchmark methods and the state-of-the-art link prediction algorithms.

Keywords: Link prediction · Nonnegative matrix factorization · Attribute
networks

1 Introduction

Link prediction is a widely studied problem and receives considerable attention in data
mining and machine learning in the past decades. It aims to infer a link which is not
observed in current network or will arise in the future network [1–8]. The network
object of link prediction research is a complex topology structure abstracted from real-
world physical systems. In general, people observe the interactive system in the real-
world, extract the entities in the system as the vertices, and the interaction relationship
between entities as the edges, and construct a topological graph corresponding to the
physical system, namely complex network model. Then, the network model is taken as
the research object to explore some laws underlying the physical interaction system and
simulate their evolution mechanism. However, due to the complexity of the real physical
system, the extractive network models are often structurally incomplete. That is, there is
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always a missing situation of real information about the system in the complex network
obtained through observation. The purpose of link prediction is to infer the missing or
possible relationships in the future through this abstract complex network model, and to
further study the evolution mechanism of real physical systems [9].

Because the research of link prediction problem is of great significance for the
development of economy and society, its results are widely used in all walks of life in
the real society [3, 4]. For example, analyze the evolution mechanism of the network
[9], study the drug targeting relationship in the field of bioinformatics [10], realize
the personalized recommendation of scenic spots or recommend new friends in social
network [4, 11], and identify criminals in the field of public security [12–15].

At present, with the development of mobile Internet network, the amount of social
information increases rapidly. When this real interaction system is abstracted into com-
plex networks, the corresponding number of vertices becomes extremely large. However,
the interaction relationship between the nodes did not grow significantly with the node
scale. This phenomenon leads to exist many vertices in the extracted complex networks,
but the edges between them appear extremely sparse. The phenomenon that the number
of links known in the network is much less than the number of no links is called the
structural sparsity problem. This problem has a very large impact on the performance of
the link prediction [16, 17]. Therefore, how to solve the problem of declining prediction
performance due to structural sparsity in large-scale networks becomes a challenge for
link prediction. The motivation of this paper is to study the fusion problem of node
attributes, so as to dig out the auxiliary information that can compensate for the sparsity
of network structure, and build a multi-source information integration mode to realize
the improvement of link prediction performance.

Recently, Social platforms based on mobile Internet networks are very frequently
used, many network datasets appear with both the topology and node attribute informa-
tion. For example, a webpage (i.e., vertex) can be associated with other webpages via
hyperlinks, and it may have some inherent attributes of itself, like the text description in
the webpage. Such type of networks is known as attributed networks. Some studies have
shown that the degradation of the link prediction performance due to the sparse structure
can be alleviated to some extent by using the node attribute information [17]. Recently,
some link prediction methods are proposed based on attribute networks [18–22]. How-
ever, due to the diversity and heterogeneity of information and the variability of fusion
methods, these algorithms either have poor overall prediction, or lack sufficient migra-
tion and robustness, or have too high computational complexity to adapt to large-scale
networks. Therefore, the problem of how to reasonably integrate the structure and node
attribute information has largely not been successfully solved.

Non-negative matrix factorization (NMF) is an important technique in the field of
machine learning [23]. It can integrate heterogeneous information and promote each fac-
tor information to play a potential role [24]. In general, for a given matrix X ∈ Rn×m+ , the
NMF algorithm tries to find two non-negative factor matrices B ∈ Rn×k+ and C ∈ Rk×m+ ,
make X = X

′ ≈ BC. Where the k is called internal rank or hidden space, it satisfies
(m + n)k � m. The solution of NMF usually transforms into an optimization problem
of findingminB≥0,C≥0L(X ,BC), and the symbolL(., .) represents a certain loss function,
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such as Euclidean distance, KL divergence, or IS divergence. Given the Euclidean dis-
tance, the above optimization method can be converted to minB,C ||X − BC||2F , and the
B ≥ 0,C ≥ 0. Symbols || · ||F indicate the Frobenius norm. The F-norm of a general

matrix is usually defined as ||X ||F =
√∑

ij

∣∣xij∣∣2 =
√
tr

(
X TX

)
.

Considering the advantages of NMF models when incorporating multi-source infor-
mation. In this paper, we introduce a Joint Weighted Nonnegative Matrix Factorization
method for link prediction on attributed networks, namely JWNMF.For a given attributed
network, our method presents a mechanism by using joint-NMF to integrate the struc-
tural and attribute information. Specifically, we design two matrix factorization terms.
One is modeling the topology structure and the other is for attributes. Meanwhile, we
modify the NMF by introducing a weighting variable for each attribute, which can be
automatically updated and determined in each iteration.

Experiments are performed on five real-world attribute network datasets. The results
show the advantages of performance of JWNMFmodel comparison with the benchmark
methods and advanced algorithms.

The rest article develops as follows. Section 2 shows the related works. Section 3 is
the network description and the problem definition. Section 4 is about the establishment
of the proposed model and its optimization. Section 5 is experimental design and results
analysis. The last part contains our conclusions and prospects.

2 Related Work

As a research hotspot in the field of complex network science, link prediction has been
widely concerned by researchers in recent years. However, there are not much studies to
fuse non-topological information like node attributes with network topological informa-
tion and then realize link prediction, especially the framework based on NMF. Han et al.
[16] used the configuration files of online social-contact users and other non-topological
information, such as workplace and school to compute the attribute similarity, for count-
ing the number of attributes the users all possess and the geographic distance between
the users. Then, they proposed a prediction model based on support vector machines.
Wang et al. [17] extracted topological and non-topological information by an implicit
feature representation model, then proposed a link prediction method for missing link.
Li et al. [18] proposed a link prediction for dynamic attributed networks. Moreover,
for attribute networks with isolated nodes, the literature [17, 19–22] makes full use of
attribute information to achieve link prediction on semi-structured networks.

However, it is difficult to integratemulti-source heterogeneous information andmake
them work in experimental prediction tasks. In this respect, the method based on matrix
factorization is widely used [23, 24]. Menon et al. [25] proposed a link prediction algo-
rithm based on the matrix factorization. Pech et al. [26] proposed a matrix filling-based
link prediction method using the matrix filling principle in the field of recommendation
systems. For the network topology sparsity, Chen et al. [27] proposed a link prediction
model of robust NMF by using manifold regularization and sparse learning. To make
full use of the node attribute information, Chen et al. [28] proposed a link prediction
model incorporating node attribute information based on NMF, but the time complexity
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of their algorithm is high. Jiao et al. [29] proposed a Link predication model based on
matrix factorization. This model fused multi class organizations information of network.
They take advantage of the auxiliary information beyond the node attributes. Chen et al.
[30] proposed a novel link prediction model based on deep NMF, which elegantly fuses
topology and sparsity-constrained to perform link prediction tasks. Inspired by thematrix
perturbation principle, Wang et al. [31] proposed a perturbation-based model for NMF
link prediction. Moreover, there are also some NMF-based prediction models, they are
used in dynamic time-varying networks [32, 33].

3 Preliminary

In this section, we introduce the formalized description of the problem of link prediction,
and the network definition.

3.1 Network Representation

Given an undirected attribute network G(V ,E,A) with n nodes, where V =
{v1, v2, · · · vn} is the set of nodes and E = {(

vi, vj
)
, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j

}
is the

set of edges. The A is the set of attributes of all nodes in network. For the networkG with
n vertex, there are m attributes value for each vertex. These attributes are available to be
represented by amatrixAn×m. Each row of thematrixAn×m represents an attribute vector
of the corresponding node vi. If the node vi has the k-th attribute value, then Aik = 1,
otherwise Aik = 0. The topology structure of the attribute network is represented by
an adjacency matrix Sn×n. The element of the ith row and the jth column in the matrix
correspond to the link between nodes vi and vj in the network, where Sij = 1 if there is
a link from vi to vj and Sij = 0 otherwise. Multiple edges between two nodes and back
edges on single nodes are not allowed.

3.2 Link Prediction Problem

The purpose of link prediction is to infer the probability Pij of the existence of an edge
between any two nodes vi and vj by using the known information in the network. In
general, based on the sociological principle that “the more similar people are more
likely to be connected”, the Pij is treated as some similarity between nodes vi and vj.
The higher Pij, the more similar vi and vj are, and the more likely vi is to form a link
with vj. For a given observation networkG, the Pij probability of forming edges between
unconnected nodes is inferred through themodel proposed. The predicted values are then
arranged in descending order, and the pairs of nodes at the top are considered the most
likely to form connections. In this paper, we compute the score Pxy based on JWNMF
model.

4 Proposed Method

In this section, we will introduce our proposed method in detail, which aims to fuse the
attribute information of the nodes into the link prediction process.
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4.1 Link Prediction Model: JWNMF

Excavating the available information and constructing a reasonable information fusion
mode are the main ideas to solve the problem of network topology sparsity, and realize
the link prediction task. Therefore, the basic framework of NMF is used to fully integrate
the node attributes and network structure information to compensate for the defects of
incomplete topological information, to realize the link prediction task and improve the
performance in this paper. First, based on the basic principle of NMF, the adjacency
matrix S representing the network topology is decomposed into the product of two
non-negative factor matrices, namely S≈VVT , and the matrix A representing the node
attribute information decomposed into A≈ZUT . However, the aim of this paper is to
address information integration. Therefore, in order to enable the network structure and
node attribute information to fully integrate and play a leading role in the link prediction,
we need to attach certain constraint rules to their decomposed factor matrix. Inspired
by the methods described in ref [24], which often delivers promising results for graph
clustering, we apply the idea for attributed graph link prediction. Here, the hidden space
V after the network structure information S is decomposed is approximately equal to the
hidden space Z of the node attribute information, so that it can remain the same in the
process of model learning, so as to achieve the purpose ofmutual fusion and constraining
the network structure and node attribute information. Therefore, the partial information
of the attribute A is decomposed into the hidden space V of the structure information,
namely A≈VUT . When the two-source information is integrated in a unified framework
and uses Euclidean distance as a loss function, the overall model framework for the link
prediction task is expressed as follows:

L = minV ,U ||S − VVT ||2F + λ||A − VUT ||2Fs.t.V ≥ 0,U ≥ 0, (1)

where S ∈ Rn×n+ , A ∈ Rn×m+ , the factor matrix U ∈ Rm×k+ andV ∈ Rn×k+ represent the
hidden space that integrates topological structure and node attribute information, R+
represents non-negative real number sets. The parameter λ > 0 balance the availability
of structure and attribute information.

Since the node attributes in the network are easy to mix with noise, in order to further
reduce the impact of the noise on the prediction results, and promote the guiding role of
the attribute information in predicting the network structure information, we also intro-
duce a matrix W to assign a weight for each attribute. At this point, the decomposition
form can be expressed as AW ≈ VUT . By assigning a weight information to each node
attribute with the matrix W, the effect of similarity between the node attributes can be
uniformly integrated into the structure information to provide a promotion for the final
results of link prediction. The weight matrixW is set to a diagonal matrix, which satisfies
m∑
i=1

Wi,i = 1. After introducing the weight matrixW, the complete objective function is

expressed as follows:

L = minV ,U ||S − VVT ||2F + λ||AW − VUT ||2Fs.t.V ≥ 0,U ≥ 0, (2)
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where, the weight matrixW εRm×m+ . To ensure that theW weights are assigned to a rule
space, update operations need to be normalized to:

W = W∑m
i=1Wi,i

, (3)

4.2 Update Rules

The solution of model L is difficult to obtain the global optimal solution, but the local
optimal solution can be realized by the multiplicative iterative method. Therefore, for V ,
U andW three factor matrices, introduce their corresponding non-negative Lagrangian
multiplier α, β, γ, thus replacing the objective function Eq. (2) with an unconstrained
loss function form:

L = 1

2

(
||S − VVT ||2F + λ||AW − VUT ||2F

)
+ Tr

(
αTV

)
+ Tr

(
βTU

)
+ Tr

(
γ TW

)
,

(4)

Simplified the Eq. (4) and take the partial differentiations of L for V ,U ,W
respectively, then

∂L

∂V
= −

(
SV + STV + λAWU

)
+ 2VVTV + λVUTU + α, (5)

∂L

∂U
= −λWATV + λUVTV + β, (6)

∂L

∂W
= −λATVUT + λATAW + γ, (7)

In this regard, according to complementary relaxation condition of theKarush-Kuhn-
Tucker (KKT), we have αV = 0, βU = 0, γW = 0. Set ∂L

∂V = 0, ∂L
∂U = 0, ∂L

∂W = 0,
then the update rule for V ,U ,W is obtained.

V ← V
SV + STV + λAWU

2VVTV + λVUTU
, (8)

U ← U
WATV

UVTV
, (9)

W ← W
ATVUT

ATAW
, (10)

The above update rules Eq. (8) - Eq. (10) can be solved by element value or by
matrix form as a whole. During the model learning training, the three-factor matrix
V ,U ,W is obtained based on the convergence condition of the objective function. Then,
the approximate solution of original network topology structure is solved by using the
decomposition formula V × VT . That is, after learning the matrix V through model
training, we can obtain the similarity score between any two nodes in the network, or the
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probability Pij of exist edge between two nodes, and finally realize the link prediction
task.

In general, in the learning process, the model will seek the local optimal solutions of
V ,U ,W using the update rules. However, before implementing the update operation,
the adjacency matrix S and the attribute matrix A need to be preprocessed and given an
initial value.

S = S∑n
i=1

∑n
j=1 Si,j

, (11)

A = A∑n
i=1

∑m
j=1 Ai,j

, (12)

Note that updates the weight matrix W use Eq. (3).
The model JWNMF integrates the network structure and node attribute information

through the NMF framework, and assigns a weight constraint information to each node
attribute through the introduced diagonal matrix W, so that the network structure and
node attributes can maximize their respective roles in the model training and learning
process to serve the final prediction results. A schematic diagram of the principle of the
model JWNMF is shown in Fig. 1.

Fig. 1. A schematic diagram of the principle of JWNMF model.

In conclusion, according to the basic principles of the proposed JWNMF model, the
pseudo-code description of the algorithm is designed as follows (shown in Table 1).

The experimental environment of this paper is based on the operating system of
windows10 of x86 computer, and then the simulation experiment of link prediction is
implemented with Matlab tool programming. Here, the computational complexity is
discussed. The computational complexity of JWNMF algorithm comes mainly from the
time cost when iteratively updating the matrix V ,U ,W . For a given network G(V ,E),
the number of vertices V is n, and each vertex has m attributes. When updating V ,
U and W , to reduce the time overhead, we utilize the objective relative error as the
stopping criterion and set to less than 10−6 in experiment. Moreover, the dimension
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Table 1. Pseudo-code description of JWNMF algorithm

Algorithm Name: JWNMF

Input: : the adjacency matrix of the given network, : the auxiliary information matrix,

: number of features, : parameters.

Output: the approximate matrix of the network 

1: divide into 

2: Initialize and by using Eq. (11) and Eq. (12).

3: Initialize , and randomly.

4: do while

5:   update , and by means of Eq. (8) – Eq. (10).

6:   get after until object function convergence

7: end while

8: output 

k after the matrix decomposition is a constant. Supposing the algorithm stops after t
iterations, the overall cost for Symmetric NMF is O

(
n2kt

)
. As the objective function

adds one more linear matrix factorization term, the overall cost for updating rules is
O

(
(n2k + m2k + mnk

)
t). According to the analysis rules of the time complexity of

computer algorithms, when the scale n tends to infinity, the worst case of the time
complexity of the model can be approximated by O

(
n2

)
.

5 Experiment

This section mainly shows and analyzes the model prediction performance. Next, we
will describe the datasets, comparison methods, evaluation metrics, and discussion of
experimental results.

5.1 Datasets

This subsection mainly describes the basic topology of the datasets used in this paper,
and the method of dividing training set and testing set.

To verify the model prediction performance, five real-world attribute network
datasets widely used in the link prediction field were selected.

The basic topological properties of these network datasets are listed in Table 2.
Where the symbol N represents the total number of network nodes, E represents the
total number of existing links, < K > is the network average degree, < d > is the aver-
age shortest distance, C is the clustering coefficient, and #attributes represent dimen-
sion of node attributes. These network datasets used for the experiment can be down-
loaded from the following web sites. http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:
data:urls:index; http://snap.stanford.edu/data/. For a detailed description of the data set,
please also see the above website introduction.

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:urls:index
http://snap.stanford.edu/data/
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Table 2. Topological information of the network datasets

Network N E < K > < d > C #attributes

Lazega 71 378 10.8 2.104 0.3853 7

Facebook 228 3419 29.991 1.868 0.6162 56

Cornell 195 286 2.903 3.2 0.1568 1703

Texas 187 298 3.027 3.036 0.1937 1703

Washington 230 366 3.373 2.995 0.1974 1703

5.2 Datasets Division Method

When comparing the prediction performance of the algorithm, the given network dataset
needs to be divided according to the basic principles of machine learning. It is divided
into training set and test set. There are many methods to divide data sets, and k-fold
cross validation is used in this paper. The sample dataset was randomly divided into k
parts, one of which was selected as test set and the remaining as training set, and then
a prediction accuracy was calculated, so repeated k times. The prediction accuracy of
the algorithm on the entire network dataset is the average of k prediction accuracies. In
practical partitioning, k-taking 10 is a common method.

5.3 Evaluation Metrics

Like many existing link prediction studies, in our work adopts also the most frequently-
used metrics AUC (area under the ROC curve) and the Precision to measure the per-
formance of algorithm proposed. These metrics are viewed as a robust measure in the
presence of data imbalance, which are also one of the most popular indices of evaluation
link prediction. For more details on these two evaluation methods, readers can refer to
the literature [1–4].

5.4 Baseline Methods

To validate the predictive performance of the newly designed algorithms, people usually
select some benchmarkmethods and those representative up-to-date algorithms from the
literature as the reference objects for comparative analysis. Generally, in order to reflect
the fairness of comparison, the design principle of the comparison method selected is
usually similar to the algorithm proposed. Therefore, in the experiment, several state-
of-the-art algorithms based on NMF framework design often used in the link prediction
research field are selected as reference objects. The benchmark methods are mainly
structural similarity based classical algorithms.

We list four types of link prediction methods as the benchmark methods, including
eleven local similarity indices based on the number of common neighbours between pairs
of nodes (CN, AA, RA, PA, Salton, Jaccard, Sorenson, HPI, HDI, LHN and TSCN), four
random walk methods (ACT, CosPlus, LRW, SRW), three local path methods (LocalP,
Katz, LHN-II) and four other similarity algorithms (MFI, LNBCN, LNBAA, LNBRA).
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The mathematical expressions of these methods and their definitions can be found in
ref. [1–4].

In addition, four state-of-the-art NMF-based link prediction algorithms were used as
comparison methods in the experiment. They are the original NMF method [23], matrix
fill method (MC) [26], the attribute-based NMF method (NMF_LP) [28] and the NMF
method based on the perturbation principle (SPM_NMF) [31] respectively.

5.5 Experimental Results and Analysis

This section provides a comprehensive analysis of the predictive performance of JWNMF
model. Experiments were performed on five real-world network datasets. The predic-
tion performance of various algorithms is fairly judged by two evaluation indicators,
Precision and AUC, and show the final evaluation results. In experiment, the datasets
were divided into test set Etest and training set Etrain in different proportions. The results
of experimental simulation are analyzed by taking the overall average at each propor-
tion. Typically, the value of average prediction accuracy obtained from 100 independent
simulations via Precision or AUC are taken as the final performance results.

5.6 Model Parameter Setting

Toadjust the predictionperformanceof the JWNMFmodel to theoptimum, theparameter
λ in the model was analyzed before the start of the experiment. Figure 2 shows the
predictive performance of the model when its parameter values are in the range from 0
to 3. Through the comparative analysis, the local optimum of the parameters λ is finally
determined. In experiment, the parameter λ of JWNMF model takes a value of 0.09.

0

0.1

0.2

0.3

0.4

0.5

Precision

Cornell Facebook Lazega Texas Washington

0.5

0.6

0.7

0.8

0.9

1

AUC

Cornell Facebook Lazega Texas Washington

Fig.2. Analysis parameter λ of JWNMF model

5.7 Performance Analysis

According to the conventional way in the field of link prediction research, each experi-
mental data set is first divided by the ratio of 20% to 90%, and the step size is 10, with a
total of 8 proportions. Assuming that the total number of existent edges are |E|=m in the
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Table 3. Predictive results via AUC metrics on five network datasets

AUC Texas Cornell Washington Lazega Facebook

CN 0.5449 0.5620 0.5637 0.6675 0.8863

AA 0.5596 0.5770 0.5695 0.6816 0.9017

RA 0.5562 0.5804 0.5698 0.6808 0.9102

PA 0.6970 0.7770 0.7680 0.6440 0.8350

Salton 0.5348 0.5435 0.5544 0.6562 0.8431

Jaccard 0.5283 0.5447 0.5518 0.6575 0.8579

Sorens 0.5280 0.5560 0.5150 0.6430 0.8280

HPI 0.5330 0.5670 0.5130 0.6490 0.7870

HDI 0.5270 0.5370 0.5220 0.6580 0.8230

LHN 0.5470 0.5370 0.5270 0.6350 0.7300

TSCN 0.5390 0.5530 0.5060 0.6800 0.4300

ACT 0.5977 0.5713 0.5983 0.6295 0.8476

CosPlus 0.5080 0.5540 0.4860 0.6660 0.9020

LRW_4 0.6500 0.6580 0.6720 0.7640 0.9100

SRW_3 0.6460 0.6250 0.6220 0.7200 0.9080

LocalP 0.5870 0.6110 0.6090 0.6600 0.9020

Katz 0.6539 0.6567 0.6935 0.7093 0.4389

LHNII.9 0.5017 0.5133 0.4910 0.5093 0.6380

MFI 0.6190 0.6720 0.6100 0.7040 0.8980

LNBCN 0.6070 0.6460 0.6290 0.6930 0.8730

LNBAA 0.5940 0.6680 0.6070 0.6730 0.9060

LNBRA 0.6230 0.6300 0.5900 0.6870 0.9090

NMF 0.5521 0.4950 0.4962 0.6783 0.8290

MC 0.5235 0.4470 0.4432 0.5000 0.5005

SPM_NMF 0.6260 0.7095 0.6362 0.7223 0.8745

NMF_LP 0.6421 0.7398 0.6705 0.7551 0.7795

JWNMF 0.7080 0.8100 0.7170 0.7811 0.8880

network. It indicates that 20% of the m are used for the training set when the partition
ratio is 20%, while the remaining 80% is used as the test set.

The JWNMF model was trained on this training set together with the benchmark
and contrast methods. To judge their prediction performance, the test set is then used to
measure the effect. Each experiment needs to be run at least 100 times independently
and then averaged as the result. Although the many results generated by experiments,
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considering the universality and representativeness, Table 3 only shows the overall pre-
diction effect of each method in the data set divided by 50%, the training set and the test
set are in half each. The predictions values are shown in Table 3 by using AUC as the
evaluation criterion.

From the numerical results presented in Table 3, The JWNMFmethod led the predic-
tion performance on three datasets: Texas, Cornell and Lazega, but performed poorly on
the Washington and Facebook datasets. As the overall analysis, the proposed JWNMF
model showed good prediction performance on five datasets of attribute networks. This
also shows that when implementing the link prediction, it can mine the external informa-
tion such as the attributes of the nodes as an auxiliary, which can significantly improve
the performance of the link prediction algorithm. This is significantly better effective
than simply using structural information. Moreover, for networks with extremely sparse
structure, using this external auxiliary information is more helpful to compensate for the
insufficient performance problem caused by the sparse topological structure. Of course,
the question of how to mine this auxiliary information and which external auxiliary
information works better for the prediction is still under discussion. In order to show
the overall predictive performance of the various methods more deeply, Fig. 3 shows the
prediction effect when the data set is partitioned at 50% with Precision as the evaluation
criterion.

0.00

0.10

0.20

0.30

0.40

0.50

Texas Cornell Washington Lazega Facebook

Precision

CN AA RA Salton
Jaccard Sorens HDI LHN
TSCN ACT Katz NMF
MC SPM_NMF NMF_LP JWNMF

Fig. 3. Performance comparison based on the Precision metic

Above, we briefly mention that the network topology sparsity has obvious effects
on the prediction performance of the algorithm. To demonstrate this problem more
specifically, many experiments were deliberately designed and completed during the
study. In these experiments, the network dataset was divided from dense to sparse in a
ratio of 90% to 20%, and under each division scheme, the prediction performance of
each algorithm is verified by Precision and AUC standards, to test the impact of network
topology on the prediction results of each algorithm. Moreover, it is also used to verify
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the adaptability and robustness of each algorithm under the different degrees of sparsity
at network topology.

Taking the Facebook dataset as an example, the AUC values of each algorithm after
the different partition proportions are shown in Table 4.

Table 4. The AUC value under different partitioning of Facebook dataset

AUC 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

CN 0.9243 0.9237 0.9191 0.9069 0.8863 0.8642 0.8100 0.7041

AA 0.9355 0.9329 0.9267 0.9208 0.9017 0.8755 0.8227 0.7175

Salton 0.9260 0.9089 0.8954 0.8727 0.8431 0.8095 0.7620 0.6821

Jaccard 0.9067 0.9048 0.8927 0.8821 0.8579 0.8234 0.7674 0.6912

ACT 0.8468 0.8450 0.8462 0.8532 0.8476 0.8434 0.8344 0.8233

Katz 0.3394 0.3879 0.4147 0.3550 0.4389 0.4697 0.4002 0.2557

MC 0.8326 0.7954 0.7377 0.6458 0.5005 0.5000 0.5000 0.5000

NMF 0.9086 0.8879 0.8642 0.8527 0.8290 0.8004 0.7726 0.7419

SPM_NMF 0.9294 0.9158 0.9050 0.8907 0.8745 0.8575 0.8391 0.8059

JWNMF 0.9445 0.9369 0.9196 0.9073 0.8880 0.8614 0.8354 0.7853

From the analysis of these values, it can be seen that as the topology of the network
gradually changes from dense to sparse, the prediction performance of the algorithm
will have a significant downward trend. However, the prediction algorithm based on the
JWNMF model still performs well at all proportions. This shows when facing different
sparse degree of network topology, it can make full use of various external auxiliary
information and compensate for the lack of topological information due to structure
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Fig. 4. The AUC value under different partition of Facebook dataset
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sparsity. Thus, it basically ensures the prediction performance of the algorithm in abnor-
mal cases, and improves the adaptability and robustness of the algorithm. Figure 4 shows
this result more visually.

Similarly, with Precision as the evaluation criterion, we also compared the prediction
performance of the various algorithms at different proportions of Facebook dataset (in
Fig. 5). Although the model JWNMF is not the best under each partitioning scheme, it
still shows a good prediction effect.
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Fig. 5. The Precision value under different partition of Facebook dataset

6 Conclusion

In recent years, link prediction based on network topology has been one of the research
hotspots in the field of data mining. However, in many cases, those algorithms that use
only the information of network topology do not provide the accuracy required for link
prediction, when the network topology is in an extremely sparse state. Furthermore,
real-world networks are often sparse and contain noise, which makes the predictive
performance of the algorithm very strongly correlated with the properties of the network
itself. For these extremely sparse and noisy networks, the ultimate effect is not ideal
if only the structural information is used to complete the prediction task. At present,
with the development of mobile Internet, it is more and more convenient to obtain
the non-topological information of network. This provides a hope for link prediction
research.

In this paper, considering the advantages ofNMF that is interpretability, nonnegative,
and information fusion, we propose a link prediction model of weighted NMF. By
designing a weighted matrix w to process the attribute information of each node, both
the structure and attribute information fused into the NMF framework can fully play a
guiding role in the link prediction task, thus solving the problem of structure sparsity
and improving the prediction performance of the algorithm. Although our method can
significantly improve the performance of link prediction on sparse networks, its temporal
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complexity is relatively high. This is also a direction that we need to improve in the
future. In addition, we also consider the cold-start link prediction of complex network
in a semi-structured state as another target for future studies.
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