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Abstract. Forest fires and environmental disasters that are rarely avoided due to
Forest fires are environmental disasters is a crucial problem to resolve with High
Performance Computing (HPC) due to the real-time need to avoid the reaction
of the control agencies and the community. One of the strategies to support early
warnings related to forest fires is using space technology and realtime image treat-
ment. However, the large amount of data given by the satellite images, the cost
of the satellite technology, and the difficulty of accessing remote places infor-
mation make it challenging to deal with the problem. This project presents the
development of a solution that fights fires through identification supported using
artificial intelligence (AI), mainly Convolutional Neural Networks (CNN) and
Computer Vision (CV). Space technology captures images in various spectral fre-
quency ranges by optical instruments onboard artificial satellites. In addition, the
solution deploys on a low-cost and easily accessible open-source embedded sys-
tem, which allows its scope to be extended for use on mobile device applications
such as robots, and uncrewed aerial vehicles, among others. This paper reflects
the progress achieved within the project, mainly the creation of an open-source
dataset of satellite images for fire classification, the election, conditioning, and
training of the CNN.

Keywords: Satellite images · Computer vision · HPC embedded system ·
Artificial intelligence · Data analytics · Convolutional neural networks ·
Open-source

1 Introduction

The exponential development of the hardware required to execute algorithms and com-
putational techniques has enabled the use of technologies such as Computer Vision (CV)
orMachine Learning (ML) for solving specific problems [1]. These problems are notable
for their intensive data handling in processes with high computational costs. However,
advances in micro and nano electronics promote the use of compact (embedded) devices
with low monetary cost and energy consumption as support for the solution to these

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 103–115, 2022.
https://doi.org/10.1007/978-3-031-23821-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_8&domain=pdf
http://orcid.org/0000-0001-9354-7360
http://orcid.org/0000-0002-3227-8651
http://orcid.org/0000-0003-1373-6044
https://doi.org/10.1007/978-3-031-23821-5_8


104 J. D. P. Arguello et al.

problems [2]. One of these embedded systems, the NVIDIA Jetson Nano card [3], is
widely used in prototyping and academic projects due to its good quality/price ratio.

One of these problems is finding fires fromorbit. Although there are tools for this task
[4], its identification continues to develop due to continuous improvements in algorithms,
image processing, available instruments, and satellite communication.

Free access images from various satellites that observe the Earth at different wave-
lengths are used during this research. A dataset was created in which forest fires were
observed fromwhen theywere small conflagrations until they became large fires. Finally,
various characteristics are identified in the images, which using CNN and Computer
Vision algorithms in embedded systems, allow the identification of said fires.

This paper presents the progress achieved in creating an alternative fire classification
model to the current solutions, as an early warning so that the pertinent organisms act
and evaluate the damage. For this, in the next Related Works section, a state of the art
and some similar projects are exhibited resalting application goals, in this case, satellite
imagery. The results section shows the creation of a dataset using images from the VIIRS
sensor of the NOAA-20 and S-NPP satellites in which forest fires were analyzed from
when they were small until they became large conflagrations, and later the performance
of the CNNs in training with these images is shown. Finally, some conclusions and
further work are presented.

2 Related Works

This section shows, firstly, a project that proposes a workflow for the identifying objects
in satellite images with the help of machine learning technology, and secondly, a project
to create small CNNs that reduce the computational load, useful to be deployed on
embedded systems.

2.1 Satellite Imagery Multiscale Rapid Detection With Windowed Networks

Detecting small objects over large areas is a significant challenge in satellite imagery
analysis. The main problems they face are a large number of pixels (more than 250
million), the geographical extension (more than 64 Km2), or the tiny size of the objects
of interest (less than 10 pixels). For which this research proposes a workflow called
Satellite Imagery Multiscale Rapid Detection with Windowed Networks (SIMRDWN)
[5], which evaluates satellite images of an arbitrarily large size at native resolution at
speed greater than or equal to 0.2 km2/s.

The SIMRDWN pipeline includes and compares the performance of some frame-
works, where a version known as YOLT [6] is found, along with the TensorFlow object
detection API models: SSD [7] and FASTER R-CNN [8]. This allows objects of very
different scales to be quickly detected with relatively little training data across multiple
sensors.
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2.2 Lapped Convolutional Neural Networks for Embedded Systems

CNN has made numerous advances in many artificial intelligence applications. How-
ever, its complexity is quite relatively, usually requiring an expensive GPU (Graphics
ProcessingUnit) [9] or FPGA (Field Programmable LogicGateArray) [10] implementa-
tion, which is not cost-effective for many embedded systems. In this project, a new CNN
or Lapped CNN (LCNN) architecture is developed that is suitable for resource-limited
embedded systems [11].

The network is designed so that it can be decomposed into two or more stages. A
hardware module can implement each with low complexity and low-resolution input.

Fig. 1. Lapped convolutional neural networks.

Figure 1 show that the original input image is divide into some sub-images of the
same size, with correctly designed overlaps with each other. The hardware module
that implements the first stage of the CNN processes these sub-images sequentially.
The outputs of different sub-images are merge and processed in the following low-cost
hardware CNN module.

The result is the same as applying a larger-scale CNN to the entire image with
higher resolution. Therefore, a lower-cost, larger-scale CNN system can be achieve
by reusing inexpensive hardware CNN modules. Experimental results demonstrate the
performance of the proposed scheme. This approach enables more cost-effective CNN
solutions for some embedded systems. It is well suited for applications where basic deep
learning capabilities are required but where constraints on computational cost and power
consumption must also be met.

This proposal is in the convergence of the recognition of objects in satellite images
with the deployment of CNNs in embedded systems. It seeks to present another solution
to the identification of forest fires that contains the union of said technologies following
an implementation methodology shown in the following section.
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3 Workflow

The methodology used in this research work is based on the AI life cycle [12], grouping
19 development stages into 4 phases as seen in Fig. 2.

Fig. 2. Project development methodology.

Figure 2 shows the methodology implemented in this research project. It begins with
the elaboration of a dataset of images acquired from a public platform. It continues
with the selection of the most relevant object classification deep learning algorithm to
implement on the JETSON Nano embedded development board. The next stage is the
training of the neural network with the structured data set. The last activity corresponds
to the validation of the model through its deployment in the embedded system.

3.1 Dataset Elaboration

The satellite images that make up the dataset were obtained from NASA’s public access
platform calledWORLDVIEW[13],which shows photographs of the eEarthin a timeline
with different wavelengths. From there, 1100 images were downloaded in various com-
binations of spectral bands generated by an optical sensor called VIIRS [14], present in
satellites of the National Oceanic and Atmospheric Administration-20 (NOAA-20) [15]
and theNational Program ofAssociation in Suomi Polar Orbit (S-NPP) [16]. These com-
binations of spectral bands are identified as “M3-I3-M11” [17], and their characteristics
can be observed by analyzing the bands captured by the VIIRS sensor.

We chose the satellite images with this spectral combination due to the high contrast
generated by the color of the thermal radiation of the fire, concerning the rest of the
image and of the smoke given off by the fire for the clouds and other aerosols, allowing
a more efficient identification with the algorithms used in this project (Fig. 3).
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Fig. 3. Bands M3-I3-M11 left. Bands True Color, right.

The 1,100 images were divided into two packages. The first of 1000 images are used
for the neural network training process, 500 with forest fires and 500 without fires. The
second of 100 images are used for the classification process with the algorithms, 50 with
forest fires and 50 without fires. The characteristics of these images are as follows:

• Training images size: 224 × 224 pixels
• Identification images size: 2048 × 2048 pixels
• Spatial resolution: 125 m
• Altitude: 200 km (Average altitude for microsatellites)

For the training images, 80% (800) were designated for training and 20% (200)
for validation. Due to the low number of images and as a recommended practice in
convolutional neural network training, a technique is applied to the first set of images
(800) that allows us to increase our training data set caled “Data Augmentation” [18].
With this technique, we apply transformations to the original images, generating others
with the reflected changes. The modifications applied in this case are Flip and Rotation.
As a result, the 800-image set now has 2,230 images, and adding this with the 200-image
validation set, leaves 2,430 images for the entire neural network training process.

3.2 Algorithm Selection

Two CNN models were chosen for training and evaluation to identify forest fires in
satellite images: Inception V3 [19] and Mobilenet V2 [20]. These models are selected
for their affinitywith the project purposes,which implicitly entails generating aminimum
expenditure of resources without losing effectiveness in the classification process.
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The first model is inception V3 [21], which focuses mainly on consuming less
energy and computational resources bymodifying the previous models.We find factored
convolutions, regularization, dimension reduction, and parallel calculations within the
techniques used to optimize performance.

On the other hand, we have the mobilenet V2 model [22], designed for deployment
on mobile devices; therefore, one of its characteristics is the low computational and
energy consumption required for its operation. This model retains many of the features
of its predecessor model, mobilenet V1 but introduces two new advances, such as linear
bottlenecks between layers and shortcut connections between jams.

Regardless of the neural network model chosen to perform an classification process,
good training performance requires a large number of images. Due to the difficulty of
construction and the time needed to consolidate a large dataset, it is necessary to rely
on a specific technique for these situations called transfer learning [23]. This technique
take advantage of the knowledge acquired from previously trained models to train new
models, which do not necessarily need to have a large number of images. For this project,
it is necessary to carry out transfer learning using the pre-trainedweights in the twoneural
models of the ImageNET image dataset [24].

The Inception V3 model used in this project is adapted from a development that
detects fire in images capturedby indoor andoutdoor security cameras.On the other hand,
the Mobilenet V2 model is adapted from a tutorial created by Tensorflow developers
[25] and modified in the Roboflow platform [26] for flower classification. Data of this
experiment are available for reproducibility in the project’s GitHub repository [27].

4 Results

Now, the results obtained in the third methodological phase are presented below. In
addition, the evaluation metrics that will be used are shown, although the model has not
been validated on the embedded system.

4.1 Artificial Learning

This process beginswith loading the structured dataset corresponding to the firstmethod-
ological stage. The pre-trained CNN is also loaded, which works as a feature extractor
by stacking the upper classification layers. Then the model is trained with our dataset
and the parameters are saved as an “h5” file that will be used as input in the inference
algorithm. The training results for each model were as follows:

In Fig. 4, the Inception V3 model in training shows an increase from approximately
83% to over 95% accuracy after five (5) epochs and oscillating between 94 and 96% in
the remaining fifteen (15) epochs. The validation stage, the level of precision is between
90 and 93%.

Figure 5 shows that the inception V3 model during training presents a descending
level of loss in a staggeredmanner fromapproximately 80% to10%after eight (8) epochs,
then stay there. In the validation stage, the level of loss always fluctuates between 20
and 30%.
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Fig. 4. Accuracy inception.

Fig. 5. Loss inception.

As can be seen in Fig. 6, the mobilenet V2 model in training presents a rectilinear
ascent fromapproximately 87% to 96%accuracy after two (2) epochs, and then continues
with a shallow ascending parabola until reaching 99% during the four (4) and following
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Fig. 6. Accuracy mobilenet.

fourteen (14) epochs. In the validation stage, the precision level also draws remains at
95% for six (6) epochs, and after an ascending parabola until reaching approximately
99%.

Fig. 7. Loss mobilenet.
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Figure 7 shows that the mobilenet V2 model during training presents a level of loss
through a descending curve from approximately 23% to 3% during six (6) epochs, to
later mark a fluctuating line between 2 and 4%. In the validation stage, the level of loss
draws a curve starting at 10%, rising to 16% for five (5) epochs, then falling and staying
at 3% approximately.

For these two models, it is observed that the beginning of the precision is high
because the training is supported by the characteristics extracted from the pre-trained
model with the previous weights thanks to transfer learning. The same happens when
we analyze the loss, although in the mobilenet model the training and validation start
with higher percentages than in the inception model.

It is also observed that the increase in epochs in training and validation allows us to
see more continuous values in the precision and loss metrics, as reflected in the curve of
the mobilenet model, contrary to what is shown in the inception model.

4.2 Evaluation Metrics

4.2.1 Reliability

Reliability within the evaluation process allows determining the consistency level of
the model through consecutive measurement events. For this, the Confusion Matrix
will be used, which shows us the crossing of the true results with those obtained after
the execution of the algorithm. Making use of the aforementioned prediction lists, the
confusion matrix is created for each algorithm.

The results thrown by the confusion matrix are divided into 4 variables that reflect
what happens when comparing the expected or real results with those received or
generated by the algorithms (see Table 1).

Table 1. Confusion matrix result.

Real/Predicted Positive Negative

Positive TP FN

Negative FP TN

Where:

• TP - true positive: is real positive and predicted positive.
• FN - false negative: is real positive and predicted negative.
• FP - false positive: is real negative and predicted positive.
• TN - true negative: is real negative and predicted negative.

Based on these variables, the metrics that will allow evaluating the reliability of the
algorithm are structured.

Precision: It is the resulting index between the true positives and the total positives
generated by the algorithm.

TP/(TP + FP)
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Accuracy: It is the resulting index between the successes, both positive and negative,
and the total results generated by the algorithm.

TP + TN / (TP + FN + FP + TN)

Recall: It is the resulting index between the true positives and the total of real
positives.

TP/(TP + FN)

F1-Score: Allows comparing two metrics into one, sensitivity and precision, and is
widely used when the classes within the dataset are unequal.

2 ∗ (Recall ∗ Accuracy) / (Recall + Accuracy)

4.2.2 Efficiency

The different ML techniques require a large amount of computational and energy
resources for their deployment, for this reason, in the development of this type of model,
it is important to evaluate the consumption of said resources and, if possible, reduce it.
This approach is called Algorithmic Efficiency. Although it is true that in any situation
the saving of resources is a matter of great attention, in this particular case it is evenmore
so, due to the limitations presented by embedded systems or integrated architectures.

The metrics to consider with the project models are:

• Energy Consumption: Measured in milliwatts (mW) and corresponds to the average
consumption of the embedded card during the test with each algorithm.

• RAMconsumption:Measured inmegabytes (MB). The JetsonNano card shares RAM
with the GPU, that is, it is not separated.

• Device Temperature: Measured in degrees centigrade (°C) and corresponds to the
temperature recorded by the entire card during the elapsed time.

• GPU consumption: Measured in percentage (%) and corresponds to the use of the
GPU in its processing.

5 Conclusion

The results obtained in the progress of this research show that with a small dataset,
adequate training of a convolutional neural network can be carried out, allowing an
alternative proposal to be proposed as support in the surveillance of forest fires.

In addition, a dataset of 2430 satellite images with spectral bands M3-I3-M11 was
structured, captured, and conditioned from within the WORLDVIEW platform. This
dataset is available to the academic or scientific community in the respective repository.

The training through transfer learning of the CNNs used in this project facilitated
the implementation process of the development, due to the decrease in time and data
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that these networks needed in their preparation compared to those carried out right from
the start.

However, preparing an image dataset and building a model with convolutional neu-
ral networks presents several challenges for researchers, for example, the time spent
developing prototypes that allow evaluating the behavior of a model, the reuse of these
prototypes in other applications, and the adaptation of the resulting models to run on
hardware with more limited specifications.

6 Future Work

Different proposals follow the outcomes of this project. First, the customization of the
method to develop several fire classifications models, searching low-cost implementa-
tion, accuracy, and computing efficiency. Second, the growth of open access data sets
to help researchers and agencies in the fire early aware forecasting. Finally, this project
is under development and implementation for real use inside the Space Mission as A
ServiceModel or SMMAS, anHPC-cloud computingmodel to space projects developed
by the High Performance and Scientific Computing Center of the Universidad Industrial
de Santander (SC3UIS),1 and some of the following steps to be executed are:

• Execution Execution of the CNNs using minimal resources on the embedded system
for inference with the images acquired.

• Measurement of the resources consumed during the execution process of the models
on the embedded system to systems performance evaluation and characterization of
the resources.

• Evaluation of the implementedmodels in the classification by aminimum expenditure
of resources.
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