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Laboratório Nacional de Computação Cient́ıfica (LNCC), Av. Getúlio Vargas 333,
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Abstract. Physics-Informed Neural Networks (PINNs) are machine
learning tools that approximate the solution of general partial differ-
ential equations (PDEs) by adding them in some form as terms of the
loss/cost function of a Neural Network. Most pieces of work in the area
of PINNs tackle non-linear PDEs. Nevertheless, many interesting prob-
lems involving linear PDEs may benefit from PINNs; these include para-
metric studies, multi-query problems, and parabolic (transient) PDEs.
The purpose of this paper is to explore PINNs for linear PDEs whose
solutions may present one or more boundary layers. More specifically, we
analyze the steady-state reaction-advection-diffusion equation in regimes
in which the diffusive coefficient is small in comparison with the reactive
or advective coefficients. We show that adding information about these
coefficients as predictor variables in a PINN results in better prediction
models than a PINN that only uses spatial information as predictor vari-
ables. Even though using these coefficients when training a PINN model
is a common strategy for inverse problems, to the best of our knowledge
we are the first to consider these coefficients for parametric direct prob-
lems. This finding may be instrumental in multiscale problems where the
coefficients of the PDEs present high variability in small spatiotemporal
regions of the domain, and therefore PINNs may be employed together
with domain decomposition techniques to efficiently approximate the
PDEs locally at each partition of the spatiotemporal domain, without
resorting to different learned PINN models at each of these partitions.

Keywords: Physics-informed neural networks · Boundary layer
problems · Multiscale methods

1 Introduction

Physics-Aware Neural Networks (NNs) are machine learning tools that approxi-
mate the solution of general partial differential equations (PDEs) by adding the
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physical laws these equations represent to some component of the neural net-
work. The PINNs [19] are likely to be the most well-known of these NNs; the
defining characteristic of a PINN is the inclusion of the strong form of a PDE
(including its boundary and initial conditions) as terms of the loss/cost function.

Most pieces of work in the area of physics-aware NNs tackle non-linear
PDEs [6,10,11,14,17]. Nevertheless, many interesting problems involving linear
PDEs may benefit from physics-aware NNs; these include parametric studies,
multi-query problems, and parabolic (transient) PDEs.

We are mostly interested in the solution of linear PDEs whose coefficients
present high variability in small spatiotemporal regions of the physical domain.
In this case, we say that the solution has a multiscale behavior. Standard numeri-
cal methods often present difficulties in approximating the solution to such PDEs
with combined quality and computational affordability. Multiscale numerical
methods (e.g. [9]) have emerged as an attractive option for dealing with such
difficulties by rewriting the original formulation of the PDE in terms of: (i) local
problems living each one in a partition of the physical domain; and (ii) a global
problem that “glues together” the solution of the local problems. The price to
pay is a potentially large number of local problems. Although said local prob-
lems are independent from one another, thus benefiting from massive parallel
computations, they may still be computationally demanding.

The purpose of this paper is to investigate the potential of physics-aware NNs
in general, and PINNs specifically, for efficiently solving local problems in mul-
tiscale numerical methods. We explore the particular case of linear PDEs whose
solutions may present one or more boundary layers. More specifically, we ana-
lyze the steady-state reaction-advection-diffusion equation in regimes in which
the diffusive coefficient is small in comparison with the reactive or advective
coefficients. We verify that adding information about these coefficients as pre-
dictor variables in a PINN results in better prediction models than a PINN that
only uses spatial information as predictor variables. Even though using these
coefficients when training a PINN model is a common strategy for inverse prob-
lems, to the best of our knowledge we are the first to consider these coefficients
for parametric direct problems. We believe this finding may be instrumental
in multiscale problems, because it opens the path for PINNs to be employed
together with domain decomposition techniques to efficiently approximate the
PDEs locally at each partition of the spatiotemporal domain, without resorting
to different learned PINN models at each of these partitions.

The remainder of this paper is structured as follows. In Sect. 2, we quickly
review the related literature. In Sect. 3, we present the problem and the methodol-
ogy for the proposed model. In Sect. 4, we examine two different cases of the target
equation and the effectiveness of the proposed model. Finally, in Sect. 5, we report
the conclusions of this work along with a discussion of future directions.

2 Related Work

In recent years, the use of algorithms that “learn” from data has caused great
impact and change in several areas of science. Algorithms using NNs have



92 A. T. A. Gomes et al.

been used in many problems governed by PDEs and presented satisfactory
results [2,15,20,21]. In particular, in [19] the methodology of PINNs was first
proposed, combining the properties of universal approximation of NNs and the
knowledge of physical laws described by PDEs. Since then, many pieces of work
have been published on this topic [3,16,18]. However, problems with complex
geometry domains have led to other methodologies based on domain decompo-
sition methods and PINNs, including Extended PINNs (XPINNs) [12], Conser-
vative PINNs (cPINNs) [11] and Variational PINNs (VPINNs) [14].

Although the aforementioned pieces of work have shown excellent results,
there are still many theoretical gaps that need to be filled. The techniques are
new and do not have a trivial application in the solution of physical problems.
For instance, a particularly complex step in formulating deep learning problems
and PINNs is the definition of the loss functional to be minimized. Additionally,
there are many hyperparameters to be configured and, although the automatic
selection of hyperparameters is possible, there is usually a large computational
cost. Interestingly, this last problem also exists somehow in a handful of multi-
scale methods with regard to their configuration parameters (e.g. [7,8]).

There is a growing number of papers relating multiscale methods and data-
driven approaches [4,5,13,22]. To the best of our knowledge, none of these pieces
of work tackle the problem the way we do, which is by training a single machine
learning model that may be parameterized for approximating the solution of a
PDE with highly variable coefficients in the spatial domain.

3 Methodology

3.1 Boundary Layer Problem

The boundary layer problem can appear in many applications, including fluid
dynamics, meteorology, atomic reactors, among others. This phenomenon occurs
when the gradient is high in the region close to the boundary and can bring
instability to the discrete solution of the problem. Next, we present an example
for this case.

Consider the case in which the reaction-advection-diffusion problem has an
exact solution which contains boundary layers. This happens when the reactive
or advective coefficient dominates the diffusive one. We consider the following
reaction-advection-diffusion problem: Find u ∈ H1(Ω) such that :

⎧
⎪⎨

⎪⎩

∇ · (−K∇u + αu) + σu = 1 in Ω,

u = 0 on ∂ΩD,

∇u · n = 0 on ∂ΩN ,

(1)

where Ω is a unit square domain, ∂ΩD corresponds to the boundaries x =
(0, y) and x = (1, y), with y ∈ (0, 1), where homogeneous Dirichlet conditions
are to be enforced, and ∂ΩN = ∂Ω\∂ΩD corresponds to the boundaries where
homogeneous Neumann conditions are to be enforced. The coefficients are such
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that α := (a, 0)T , K = kI, where I is the identity matrix and a, k, σ ∈ R. If
σ > 0, the analytical solution to this equation is:

u(x, y) =
sinh(

√
4kσ

2k
(x − 1)) − sinh(

√
4kσ

2k
x)

sinh(
√

a2 + 4kσ

2k
)

+ 1 ,

Otherwise, if σ = 0 and a > 0, then the exact solution becomes
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1
a
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We consider two experimental settings. First, in Subsect. 4.1 we will assume
σ = 1 and a = 0. So, we will explore the case in which the reactive coefficient
dominates the diffusive one. Next, in Subsect. 4.2 we will consider the case in
which the advective coefficient dominates by assuming that σ = 0 and a = 1.

3.2 Architecture Design

To solve the problem presented in Subsect. 3.1, we use the PINN depicted in
Fig. 1. A key feature of this PINN is the use of the diffusion coefficient k as
a predictor variable together with the spatial data (x, y). This way, we aim at
getting a model capable of making predictions for different diffusion coefficients.

We assume a feed-forward NN with the following structure: 4 fully connected
layers each containing 24 neurons and each followed by a hyperbolic tangent
activation function. Furthermore, we use one output layer of size 1 and a linear
activation function. These hyperparameters as well as all other configurations
not explicitly explained in the remainder of the text have been determined empir-
ically.

For the sake of comparison, we establish two scenarios for the input layer,
as will be further explained in the following section: (i) Scenario 1, with only
2 neurons, input k being taken out; (ii) Scenario 2 with 3 neurons, exactly as
shown in Fig. 1.

Also, we considered the loss function

φθ(X) := c1φ
bd
θ (Xbd) + c2φ

bn
θ (Xbn) + c3φ

r
θ(X

r), (2)

as a function of the training data, as also explained in the following section.

4 Experimental Results

In this section, we present some numerical results that show the performance of
PINNs to solve the boundary layer problem.1 In our simulations, we consider
the following scenarios:
1 The experiments presented in this paper can be reproduced in Google Colaboratory:

https://colab.research.google.com/drive/1dzzK41xIrmi5ozzO4IzBnkktGjI90j -.

https://colab.research.google.com/drive/1dzzK41xIrmi5ozzO4IzBnkktGjI90j_-
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Fig. 1. PINN architecture for Reaction-Advection-Diffusion problem.

Scenario 1 : We fix a diffusion coefficient k, train the network for some collocation
and boundary points and predict others. Therefore, the input parameters of
the network are (x, y) and the output is the solution u.

Scenario 2 : We vary the diffusion coefficient k and train the network for some
k to predict. Therefore, the input parameters of the network are (x, y, k) and
the output is the solution u.

The collocation points are given by Xr, the boundary data is in Xbd and
Xbn, where Xbd represents the data on the Dirichlet boundary ΩD and Xbn the
data on the Neumann boundary ΩN . Respectively, on those boundary points,
we have the solutions ubd and ubn. Additionally, the coefficients c1, c2 and c3
representing the weights of each loss term are hyperparameters of the model,
and their values have been chosen empirically based on the knowledge of the
authors about the behavior of Eq. 1 for different values of its coefficients.

We assume that the collocation points Xr as well as the points for the bound-
ary data Xbd and Xbn are randomly sampled from a uniform distribution.

4.1 First Setting: Reaction-Diffusion Problem

For this first problem, we began with a training data of size Nbd = Nbn = 200
and Nr = 1000, where Nbd is when we apply the Dirichlet boundary condition
and Nbn when we apply the Neumann boundary condition. We illustrate this
setting in Fig. 2.
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Fig. 2. The collocation points (red circles) and the positions where the Dirichlet bound-
ary condition (blue cross marks) and the Neumann boundary condition (green cross
marks) will be weakly imposed. (Color figure online)

Figure 3 depicts some experimental results for Scenario 1. We observe that as
we shrink the diffusive coefficient k, the solution gets worse, with some undesired
features when k = 0.0001 and k = 0.00001. (Nonetheless, we see in Fig. 6 that
the PINN is able to approximate the solution with a small error when k = 1.0,
k = 0.1, and k = 0.01.) Besides the difficulty of approximating the solution in
the case where we have a very small k, another disadvantage of this approach is
that the model needs to be retrained for each new k.

For Scenario 2, we add 20 different, randomly sampled k ∈ (0.0001, 1.0) to
the input data. First, we investigate the sensitivity of the PINN with respect to
the amount and dispersion of collocation training points in Scenario 2. In Fig. 4,
we show the exact solution and the solution field generated by a PINN with
decreasing values of k, for different amounts of collocation and boundary points.
We plot a cut for a fixed y; the exact solutions are represented by the solid lines
and the predicted PINN solutions are represented by the dotted lines.

We can observe that the proposed PINN architecture for Scenario 2 interpo-
lates quite well for values of k greater than or equal to 0.001, but for k = 0.0001
we have significant errors. Once more we see the impact of the boundary layer
problem on the predictions.
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Fig. 3. Scenario 1, reaction-diffusion setting: predicted solution vs exact solution with
respect to parameter k.

Fig. 4. Scenario 2, reaction-diffusion setting: sensitivity analysis with respect to the
size of the training data.
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In the above experiments we trained the PINNs with c1 = 2, c2 = 1 and
c3 = 0.01 as the weights of the loss terms. In Fig. 5 we show the sensitivity of
the model for Scenario 2 with respect to the loss weights.

Fig. 5. Scenario 2, reaction-diffusion setting: sensitivity analysis with respect to loss
weights.

For the cases presented in Fig. 5 we used Nbd = Nbn = 100, Nr = 240. The
results are even more impressive because the PINN algorithm in Scenario 2 is
able to reconstruct the solution field with high precision from a small number
of points used for the training, even for the case where we have a very small k.
Therefore, the results clearly show the impact of the loss weights on the training.

Finally, we compare the errors originating from Scenario 1 and Scenario 2.
We use the Relative Mean Square Error (RMSE) to compare the results of
the different scenarios, as presented in Fig. 6. We observe a significant error
increase with a decaying k for Scenario 1, whereas for Scenario 2 this increase is
much slower, specially for k ∈ (0.001, 1.0). However, the much higher errors for
Scenario 2 with larger values of k are still largely unexplained and motivates a
series of investigations as part of our future work.

Fig. 6. Quality of prediction for the reaction dominant case (log-log scale).

Now, we take advantage of the fact that we can predict for different values of
k in Scenario 2 and try to perform an extrapolation. The results are presented
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in Fig. 7, in which we plot two different cases. In Fig. 7(a), we extrapolate for
an even smaller k, where the boundary layer problem is more evident. Even so,
we still get a good approximation; we believe this is due to the fact that the
diffusion coefficient is close to the range of k used for the training. The same
does not occur in Fig. 7(b), when we try to extrapolate to a larger value of k.
(Mind, however, that we have plotted Fig. 7(b) in a different scale, to emphasize
the prediction error.) The curve for the exact solution is far from the curve that
represents the predicted solution although this case is a completely boundary
layer free problem. This result is likely an indication that the proposed method
still does not work well for extrapolations far from the set used for the training.
Also note that the error is particularly high near the Dirichlet boundary (1, y),
with y ∈ (0, 1), which shows that imposing the boundary condition weakly by
means of a loss term may be tricky.

Fig. 7. Scenario 2, reaction-diffusion setting: extrapolating for different values of k.

4.2 Second Setting: Advection-Diffusion Problem

Here, similarly to Subsect. 4.1, we will consider the same two scenarios, as well as
the same PINN architecture, and the same number of collocation points already
described. What we will change are the loss weights, now set to c1 = 1, c2 = 1.2
and c3 = 1.

Figure 8 depicts some experimental results for Scenario 1. As in the reaction-
diffusion setting, we observe that as we shrink the diffusive coefficient k, the solu-
tion gets worse. The advection-diffusion problem is nevertheless much tougher to
approximate well than the reaction-diffusion problem. The figure clearly shows
this, with completely wrong solutions when k = 0.01 and k = 0.001.

For Scenario 2, we add 20 different, randomly sampled k ∈ (0.001, 1.0) to the
input data. In Fig. 9, we show the exact solution and the solution field generated
by a PINN with decreasing values of k for this scenario. The results are again
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Fig. 8. Scenario 1, advection-diffusion setting: predicted solution vs exact solution with
respect to parameter k.

impressive; the PINN algorithm in Scenario 2 is able to reconstruct the solution
field with high precision from a small number of points used for the training,
even for the case where we have a very small k.

Lastly, Fig. 10 presents the RMSE originating from Scenario 1 and Scenario 2.
Again, for Scenario 2 the increase in the error is much slower than for Scenario
1. Nevertheless, as in the reaction-diffusion case, the much higher errors for
Scenario 2 with larger values of k are still largely unexplained and motivates a
series of investigations as part of our future work.

5 Summary and Outlook

The results presented herein clearly show the potential of PINNs for predicting
the solution of PDEs with complex geometries and highly variable coefficients.
Bringing physical coefficients into the training stage is key to avoiding the dis-
crete solution’s spurious oscillatory behavior in singularly perturbed regimes. In
addition, it allows obtaining an accurate parameterization of the discrete solution
concerning the physical coefficient in the interpolation scenario. However, when
we extrapolate, we can observe that this methodology will hardly overcome the
numerical methods to solve direct linear problems and, while automatic hyper-
parameter selection is possible, it can be expensive.
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Fig. 9. Scenario 2, advection-diffusion setting: predicted solution vs exact solution with
respect to parameter k.

Fig. 10. Quality of prediction for the advection dominant case (log-log scale).

One way to solve this problem is to combine the strengths of numerical
methods and data science by creating hybrid combinations of theory-based and
data science models. We will focus on the family of Multiscale Hybrid-Mixed
(MHM) methods [1,9] and their interaction with PINNs. The MHM methods are
attractive because of their approximation properties and massive parallelization
capability, which allows the physical properties of the model to be treated locally
and efficiently, thanks to the concept of local multiscale functions. So, we envision
PINNs being used within MHM as surrogate models to predict the shape of the
multiscale basis functions in parallel, among other possibilities. This combination
will be the subject for future work.

Other topics for future work include: (i) to explore alternatives to impose
boundary conditions strongly (e.g. as in [6]); (ii) to apply the technique to other
parametric studies, such as solutions with oscillatory behavior arising in oscilla-
tory coefficient models or wave equation propagation problems; (iii) to consider
the use of PINNs for other expensive linear problems, such as in multi-query
scenarios.
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