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Abstract. The Controlled Source Electromagnetic (CSEM) combined
with seismic surveys has been used to explore new oil and gas reservoirs.
The MARE2DEM application generates as mesh that represents a resis-
tivity model of the seafloor underground. From a set of electromagnetic
readings, the application runs a data inversion (using Maxwell’s equa-
tions) along many steps to converge to a resistivity model that more
closely matches the measured data. This data inversion procedure is
very compute-bound because of the large amount of arithmetic oper-
ations involved. As consequence, the MARE2DEM application divides
the workload into smaller work grains, called refinement groups due to
the usage of Adaptive Mesh Refinement (AMR). These groups are pro-
cessed independently in a parallel fashion by a set of workers. It is known
that parallel processing suffers from delays and resource underutilization
if the load remains imbalanced. In this article, we propose an analysis of
the performance and imbalance of the MARE2DEM through source code
inspection and trace analysis. The novelty of our investigation consists
in the usage of runtime parameters to more profoundly understand and
characterize the refinement groups’ execution time and variability. Our
results show that the execution time of the refinement groups is strongly
impacted by both the number of processed nodes present on the input
mesh and the measured data associated to each refinement group.

1 Introduction

The oil and gas exploration industry has been using marine Controlled Source
Electromagnetic (CSEM) methods for the past years. CSEM data provides com-
plementary information to seismic surveys. Besides, CSEM data acquisition is
a better cost-effective alternative to new seismic surveys in areas where legacy
seismic data is already present [2]. Figure 1 depicts the CSEM data acquisition.
Firstly, stationary receivers are positioned on the seafloor above the region of
interest. Then, a particular boat towing an electromagnetic wave transmitter
(tx) navigates over the area. The receivers (rx) capture the electromagnetic
fields influenced by the materials under the seabed. The boat navigates by fol-
lowing a vertical (from south to north, crossline) or horizontal (from west to east,
inline) path that drives the data acquisition. In Fig. 1.A, we depict a crossline
(Line-01) and an inline (Line-07) captured from the receivers at different times.
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The set of measurement lines completes the final dataset that represents the
region of interest. In Fig. 1.B, we represent the Line-01 with a 2D representation
as a slice from the 3D space. Obtaining the data is only the first step in the
marine CSEM workflow. The key step relies on data inversion, where one can
obtain a resistivity model by calculating the data inversion through Maxwell’s
equations [12]. Those equations describe how an electromagnetic field diffuses
through a material depending on its resistivity [12]. And the output model
identifies potential reservoirs in the areas where resistivity values are similar
to the known oil and gas resistivity values. However, the electromagnetic fields’
inversion involves iterative and expensive math operations. In this context, the
MARE2DEM [7] application emerged as an open-source project for CSEM data
inversion. MARE2DEM is an iterative program that searches for 2.5D resistivity
models using adaptive refinement meshes.

Fig. 1. CSEM data acquisition in 3D and 2D spaces. A boat tows the electric dipole
transmitter (antenna in green). Receivers (in red) positioned on the seafloor capture
the electromagnetic fields influenced by the materials under the seafloor. Distances and
sizes were simplified for visualization. (Color figure online)

MARE2DEM receives as input a) the CSEM data described above, b) the
region’s geometry, and c) an initial resistivity model. The region’s geometry is
basically a polygon mesh that identifies the air, seawater, and seafloor areas
where the mesh granularity can vary depending on the investigation interests.
The initial resistivity model stores a resistivity value for each mesh section. A
specialist can help define the initial resistivity values by evaluating the region.
However, when resistivities are unknown, one can simply assign the same value
for all mesh sections. The application does the CSEM data inversion on each
iteration and searches for a better resistivity model than the current one. On
this search, MAREDEM calculates an error for each mesh section representing a
difference between the calculated electromagnetic fields and the measured data.
Then, it identifies the areas with the highest errors, refines them using the adap-
tive refinement strategy, and calculates new resistivity values for each refined
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region and surroundings. Furthermore, the application uses parallelization to
speed up the processing time. In this way, the code splits the domain problem
into small sections called refinement groups, and those are assigned to workers
through the coordinator-worker scheme. Each refinement group contains a copy
of the whole mesh, and the data collected by the transmitters and receivers
present in the group. However, the processing time for each refinement group
varies depending on its configuration. The significant difference in processing
time among the refinement groups leads to performance issues that make load
balancing a challenging task.

Identifying the factors leading to a load imbalance is very challenging since
MARE2DEM is a complex parallel application that relies on the Adaptive Mesh
Refinement (AMR) technique. Performance visualization has proven its value
for load imbalance characterization on the CSEM data inversion context [5]
and also in other scenarios [1,6,11]. As consequence, we apply the same perfor-
mance visualization methodology and tools to characterize the performance of
the MARE2DEM application. As far as we are aware, there are no other reported
investigation that tackles a performance analysis of the MARE2DEM applica-
tion that considers the internal operations and their runtime parameters. Thus,
an analysis of the MARE2DEM performance is proposed through the evaluation
of the execution traces and the source code of the MARE2DEM application. The
results show that the processing times of the refinement groups are guided by
the number of mesh nodes processed in the refinement mesh and by the amount
of input data mapped to each refinement group.

The article is organized as follows. Section 2 presents the dataset and appli-
cation background. Section 3 details our experimental methodology and con-
text. Section 4 presents our results, including the performance characterization
of MARE2DEM’s microkernels and of the refinement groups. Finally, Sect. 5
brings a summary of our observations and draw future work.

2 Dataset and Application Background

We present an overview of the MARE2DEM execution workflow, including its
CSEM input dataset, the application’s steps for data inversion, and the refine-
ment groups used in the domain division.

2.1 CSEM Data

We use the CSEM data from the open-source MR3D (Marlim R3D) dataset
available on [3]. The MR3D contains the geoelectric model of the Marlim field
present in the Campos Basin, it occupies an area of 257.6Km2 in a region off the
northern Rio de Janeiro coast in Brazil [10]. This model emerged as a standard
for CSEM studies of the particular turbiditic reservoirs on the Brazilian coast
[4]. The dataset contains the electromagnetic components of 25 inlines (Weast-
East) and 20 crosslines (North-South) captured at six different frequencies that
range from 0.125Hz to 1.25Hz. We selected one arbitrary line for the following
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evaluations since the application process one line at a time and we expect the
lines to have similar characteristics. Figure 2 depicts the chosen inline referenced
as Line 04Tx013a. We show the model height and length on the Y and X axis.
Figure 2.A shows the initial mesh refinement with a heavily refined rectangular
area with 64Km of length and 6Km of depth. Each inline has a length of 42Km
from the first transmitter to the last one and an additional 11Km area to the left
and right of the first and last transmitters. Figure 2.B shows a smaller area closer
to the transmitters and receivers. The blue points identify the 206 transmitters
and the red triangles identify the 20 receivers placed in the irregular seafloor.
Each transmitter is within 100m of the next.

Fig. 2. Line 04Tx013a of the MR3D dataset: the initial refinement mesh (A), where the
polygon sizes reflects the refinement degree; and the rectangular Rx/Tx area (B), where
the numbered red triangles represents the 20 receivers, and the blue points represents
the 206 transmitters. (Color figure online)

One might expect the data to have a measured electromagnetic field for each
transmitter-receiver pairs at each of the used frequencies. However, the selected
inline contains less data than the possible combinations of 206 tx, 20 rx, and the
6 frequencies due to the usage of a filter that eliminates non-relevant information.
The transmitted fields can reach receivers in three ways: guided fields, reflected
fields, and noisy fields. Figure 3 shows the field types captured by the receiver
number 10 before applying the filter. We can see that the field classification
depends on the distance between the transmitter and the receiver. When the
elements are closer, the field directly reaches the receiver without capturing
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Fig. 3. The CSEM field classification using the data registered by the received number
10 of the MarlimR3D dataset: we depict that the field type (color) depends on the
geographical distance between the transmitter and receiver (a Rx-Tx pair, the lines).
(Color figure online)

the underground material signature (the green lines on Fig. 3). On the other
hand, when the elements are far apart, the reaching field may capture undesired
signatures like the ones present in the air (the red lines). The field that we are
interested in are the ones influenced by the materials under the seabed (the blue
lines). Those are considered guided fields. This last field type occurs when the
transmitter and receiver are at a safe distance, not too close or far away. The
MarlimR3D dataset contains only guided fields.

2.2 MARE2DEM

The MARE2DEM application is an open-source project1 for 2D modeling in
the context of electromagnetic geophysics. The application generate as output
resistivity models for both CSEM (Controlled Source Electromagnetics) and MT
(Magnetotelluric) data, but we focus our analysis on the CSEM inversion. The
code is mainly written in Fortran, with some features written in MATLAB and
C. The MATLAB’s source code allows the users to create input models and
visualize the results through routines that display a MATLAB graphical inter-
face. The Fortran source code handles the bulk of compute-intensive operations,
which mainly include the data inversion operations and the parallel job distri-
bution policy. The use of Adaptive Mesh Refinement (AMR) is MARE2DEM’s
main feature. This feature removes the responsibility from the user of creat-
ing numerically accurate meshes, since it can refine an arbitrary input model’s
mesh on the regions with the highest possible errors, such as the ones closer
to receivers and transmitters. We can also highlight that MARE2DEM can be
run in parallel for large CSEM datasets. In what follows, we describe how the
application calculates the resistivity models from the input data.

1 MARE2DEM repository: https://mare2dem.bitbucket.io/.

https://mare2dem.bitbucket.io/
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The MARE2DEM application starts each iteration by calculating the misfit
between the CSEM data and the current resistivity mesh. An initial resistivity
model defined by the user is assumed as the current resistivity mesh in the
first iteration. Then, the application searches for a model with a lower data
misfit. The operation is carried out by refining the mesh on the regions with
the highest misfit errors and adapting the resistivity according to the inversion
process. The described process is repeated until a determined misfit is obtained
or when a maximum number of iterations is reached. Further information about
the behavior present on the MARE2DEM is available [7,8].
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Fig. 4. The two MARE2DEM phases as gathered on its third iteration. The refinement
groups processing is also shown for the first 25 workers (rank id) of a total of 80. The
X-axis shows the elapsed time since application’s start.

We can also explain how MARE2DEM works from the source code perspec-
tive by evaluating its function call stack. Figure 4 shows the main regions present
on the application. MARE2DEM runs the Jacobian and Smoothing phases for
each iteration (we show here the third iteration). The Jacobian phase (in red,
left) calculates the model misfit and searches for a µ value that produces a
model with a lower data misfit. Then, the Smoothing phase (in blue) seeks for
the model with the smallest roughness given the calculated µ. This step sta-
bilizes the inversion and prevents unexpected structures from appearing in the
model. The application process the filtered CSEM data on each phase by group-
ing it into refinement groups. Each refinement group contains the data from a
set of transmitters, receivers and frequencies. We show the refinement group’s
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processing on the bottom facet. The Y axis shows parallel worker ranks, the X
axis shows the time in seconds, and the labels on the orange rectangles iden-
tify each refinement group. Each phase processes all available refinement groups
(from a total of 190 in this example), however, we only show the first 25 workers
to facilitate the visualization reasons. The slowest rank determines the phase’s
processing time. The next section describes how the MARE2DEM creates the
refinement groups.

2.3 Refinement Groups

The refinement groups composition is an essential step in the application’s work-
flow, as it determines the size of the working grain that will be processed in
parallel. The user defines a triplet, prior to execution, with the maximum num-
ber of transmitters, receivers, and frequencies that should have each refinement
group. We set the application to use refinement groups with a maximum of 6
transmitters, 20 receivers, and 1 frequency. This means that each refinement
group has a maximum of 120 transmitter-receiver pairs. However, the groups
end up having fewer pairs due to the guided waves filtering of the CSEM data.
A previous analysis showed that by setting the receivers and frequencies at 20
and 1, the chosen configuration (with 6 receivers) had the shortest execution
time among the possible values for the receivers. Figure 5 shows the amount of
Rx-Tx pairs (on the Y axis) for each refinement group (on the X axis). The col-
ors identify the distinct frequencies used. We can see that all central refinement
groups (identification ranging from 50 to 150) have a higher number of Rx-Tx
pairs, and the peak appears around the refinement group 100. This behavior
happens because the number of receivers is more significant around the central
transmitters, leading to higher number of pairs in this central area. Another
observation is that refinement groups with a higher frequency (1.250Hz) have
less data when compared to a lower frequency (0.125Hz). The reason is that
lower frequencies are capable to penetrate further in the medium, resulting in
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Fig. 5. Number of Rx-Tx pairs present on each of the refinement groups. The colors
depict the CSEM frequency associated to each refinement group. (Color figure online)
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more number of pairs in the dataset. While this example has been created with
a MARE2DEM configuration setup that limits each refinement group to have
only one frequency, one can change that parameter so one refinement group can
have more frequencies. Such configurations would imply in a more elaborated
mapping from data to refinement groups.

3 Methodology and Experimental Context

We adopted a five-step methodology to characterize the MARE2DEM appli-
cation’s behavior. 1) Code inspection to select the code’s relevant regions and
parameters. 2) Code instrumentation via manual region instrumentation and
parameter-based profiling. 3) Parallel MARE2DEM execution for traces acquisi-
tion with the MR3D dataset. 4) Conversion from the OTF2 (Open Trace Format
Version 2) traces to CSV (Comma-Separated Values) files with the inspected
parameters. 5) Trace analysis and behavior characterization. These steps rep-
resent a cyclic process where step 1 may follow step 5 in a new analysis cycle.
We repeat the cycle until a sufficient number of regions and parameters allow
us to explain application behavior. In the following, we detail the software and
hardware

In the first step, we started our search for the code’s crucial regions by first
looking at the wider regions and then refining it by inspecting the functions
inside those regions. From the manager’s code, we select three relevant regions:
the application’s main function, the iteration processing and phases processing.
The other regions comes from the worker’s code inspection: the refinement group
processing, the subset-group processing, and the microkernels. The microkernels
are the most elementary functions during the refinement group processing, we
detail the worker’s stack call in the next section. Then, we fully characterize
each region by selecting a set of parameters to be collected. The parameters are
the values of the variables present at the scope of each region. We select the
following parameters for each worker’s region: the iteration number, the phase
name, the worker identification, the refinement group identification, the subset-
group identification, the number of mesh nodes processed by each microkernel,
the number of Rx-Tx pairs on each refinement group.

For steps 2 and 3, we use Score-P 7.0 for code instrumentation and trace
gathering. Score-P is a software with a set of tools to track performance-related
events such as event duration, hardware counters, communication metrics, func-
tion stack level, among others [9]. We manually instrument the MARE2DEM
source code to capture such performance events for the regions identified in
the first step. One should enclose the code’s region with Scorep special flags to
manually identify the regions of interest. Although Score-P allows to track all
functions on the source code automatically or even to filter for a set of functions
listed on a particular file, we adopted manual region instrumentation since it can
increase control over the region’s coverage and reduce instrumentation overhead
significantly. This strategy allows one to group functions together or to even
select a part of a function to be instrumented. Also, the control over the output



Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 71

trace file size increases. We also set the Score-P to collect the regions’ start and
end timestamp and the previously mentioned parameters.

In the third step, we use four computing nodes from our local cluster2 .
Each of the nodes is equipped with 2 Intel Xeon E5-2650v3 processors (20 cores,
40 threads) running at 2.3GHz with 128GB DDR4 RAM memory. The nodes
run the Debian 10 (buster) operating system with the Linux kernel 4.19.0-20-
amd64, and they are interconnected with a 1 Gbit/s local network. We configure
the MPI (OpenMPI 3.1.4) to use all the available cores on each node, leading
to 20 processes per node that were mapped into 79 MARE2DEM workers and
1 manager. For step 4, we use the otf2csv3 tool to convert the OTF2 format
to CSV and improve it to associate the parameters values with each tracked
region. For the last step, we build a mean trace as a result of four executions of
the application. Our mean trace represents the mean duration for each captured
region by using an unique key created from the captured parameters. At least
99% of the regions have a relative standard error less than 5%, therefore our
mean trace is considered representative. Furthermore, we conducted the traces
analysis using reproducible notebooks filled with experiments annotations and
R codes blocks with the Tidyverse package. We made available a reproducible
companion4 of the analysis phase associated with this article.

4 Results

We present the performance characterization by evaluating the MARE2DEM’s
elementary functions, called microkernels, and then by extending our analysis to
wider regions such as iterations and refinement groups.

4.1 Performance Characterization of the Microkernels

The refinement groups represent the workload that each worker receives to com-
pute independently. To compute each refinement group, the application needs
to calculate 30 Fourier transformations. Those transformations are grouped in
subset-groups of size 5. Figure 6 depicts the processing of the 7th refinement
group (red rectangle) for the Jacobian and Smoothing phases. We show the
elapsed time since the application’s start in the X-axis, the colored rectangles
represent the operations, and the rectangle position on the Y-axis represents the
operation’s stack level (operations on the top call the ones on the bottom). In
what follows, we identify the worker’s mesh copy as base-mesh. On each subset-
group (orange rectangles), the worker refines its base-mesh on the first subset
(blue rectangle, local_refinement). The following subsets at the same subset-
group reuse the mesh previously refined. When moving to the next subset-group,
the worker starts again by using the base-mesh. For example, in the first subset-
group that contains the subsets from 1 to 5, the worker refines the base-mesh
2 UFRGS-PCAD cluster: http://gppd-hpc.inf.ufrgs.br/.
3 otf2csv: https://github.com/schnorr/otf2utils.
4 Companion: https://github.com/Alves-Bruno/CARLA2022-companion.

http://gppd-hpc.inf.ufrgs.br/
https://github.com/schnorr/otf2utils
https://github.com/Alves-Bruno/CARLA2022-companion
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Fig. 6. Stack state of the refinement group processing (number 7) for both Jacobian
and Smoothing phases: the orange rectangle shows the subset-group processing; the
pink, green, brown, and yellow rectangles represent the microkernels. (Color figure
online)

when processing subset 1 and then reuses the resulting refined mesh in the sub-
sets 2 to 5. The operations at the bottom of each facet represent the microkernels
(pink, green, yellow, and brown rectangles). They are the most basic operations
carried out by MARE2DEM during the refinement group processing. The main
functional difference between the phases is that the derivs_comp_adj operation
is only present at the Jacobian phase.

We compare the relative time of each operation in order to determine the
impact of the operations when compared to the total execution time taken by
the application. The Table 1 resumes the operations’ impact by showing the num-
ber of calls (instances), the relative time, and the variability (minimum, mean,
and maximum durations) for each basic operation. The application spend more
than 48% of its execution time in the primal_solve, and this operation has the
highest number of instances. Thus the primal_solve is the most expensive oper-
ation. The error_estimate operation follows the primal_solve as the second
most expensive operation by occupying a significant relative time and by having
the higher mean duration. The derivs_comp_adj is a particular microkernel,
since it is only present at the Jacobian phase. Thus, it leads to a low num-
ber of instances that consume a significant amount of (relative) time. Despite
its number of instances, the derivs_comp_adj is considered expensive as the
duration mean is the second highest when compared to the other microkernels.
The lhs_gen and local_refinement represent less than 7% of the execution
time, and we exclude the local_refinement operation from the following eval-
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uations since this operation has the lowest instance number and its impact on
the execution is low.

Table 1. Microkernel’s impact on the MARE2DEM performance: the relative time,
operation’s variability (minimum, mean, and maximum durations), and number of
instances called during execution for each microkernel.

Operation Instances Relative time D. min D. mean D. max

local_refinement 43.3 K 3.14% 0.26 s 0.81 s 1.77 s
lhs_gen 304.1 K 3.86% 0.03 s 0.14 s 0.66 s
derivs_comp_adj 45.6 K 11.11% 0.03 s 2.72 s 19.01 s
error_estimate 105.3 K 33.72% 0.19 s 3.57 s 14.42 s
primal_solve 304.1 K 48.16% 0.20 s 1.77 s 8.41 s
Total → 802.4 K 100.00% – – –

Figure 7 shows the duration (Y-axis) for each instance of the microker-
nels (facets) as a function of the number of processed nodes (X-axis). We can
observe that error_estimate, lhs_gen, and primal_solve duration is strongly
impacted by the number of processed mesh nodes in both phases. However,
the derivs_comp_adj differs from the others microkernels because the num-
ber of processed mesh nodes cannot fully explain the duration. There are many
instances with the same number of processed nodes, but with different dura-
tions. To fully understand this particular microkernel, we need to also consider
the number of Rx-Tx pairs as an impacting factor. The derivs_comp_adj right-
most facet shows the number of Rx-Tx pairs with a binned color scale. Thus,
we can conclude that the derivs_comp_adj duration is impacted by both the
number of processed nodes and Rx-Tx pairs.

Fig. 7. Microkernels’ duration of the Jacobian (all facets) and Smoothing (only the
three facets from left-to-right) MARE2DEM phases as a function of the number of
processed mesh nodes and Rx-Tx pairs (note the different Y scales).
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4.2 Iterations and Refinement Groups

We now consider the previous parameters in evaluating the processing of the
iterations and refinement groups. We start by taking a closer look into the itera-
tions durations that is guided by the slowest parallel worker. Figure 8 shows (at
the left) the mean duration (Y-axis) of each MARE2DEM’s iteration (X-axis).
Previous evaluations have revealed that the iterations’ duration for both phases
increases as the application progresses, and we confirm this for the present con-
figuration. Besides that, we can observe that the Smoothing phase becomes more
expensive than the Jacobian when considering the final iterations (iterations 5
to 8). The higher execution times observed at the Smoothing phase happens
because the application may repeat the processing of all refinement groups due
to convergence conditions controlling the search of the smallest roughness value.
We show the number of repetitions needed for the Smoothing phase on each of
the iterations (numeric labels on top of each point). Still in Fig. 8 (at the right),
we show the duration as a function of the number of processed nodes. The num-
ber of processed nodes is a sum of the number of nodes present on the mesh at
each microkernel function call on a given iteration. The iteration duration during
Smoothing is completely explained by the number of processed nodes. However,
this explanation remains insufficient when considering the Jacobian phase. For
example, the iterations 3 and 5 (during Jacobian) decrease the duration from
the previous iteration despite the increase of processed nodes.

Figuring out the size of the workloads is an important step towards dis-
tributing workloads efficiently among parallel workers. In this sense, we consider
the duration of each refinement group as the size of the parallel tasks. The
Fig. 9 shows the refinement groups’ duration pattern (top-row) for the last four
iterations, as they are the most expensive ones. We also show the processed
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Fig. 8. The duration and number of processed nodes for each iteration and phase.
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nodes pattern (bottom-row). The colors represents the 6 CSEM frequencies that
reflects the Rx-Tx pairs showed on Fig. 5. The pairs count remains equal on all
iterations as they represents the collected data. Despite the differences in scale,
the pattern of processed nodes is similar for the two phases, where the central
(near to 100) and central-right groups (100 to 160) have higher values than the
side groups (0 to 25 and 175 to 206). However, the duration pattern is slightly
different in the two phases. During Smoothing, the pattern of the groups follows
the same pattern as in the bottom row. During the Jacobian, the pattern of
refinement groups reflects a mix between what is shown in the bottom-row and
the number of pairs on Fig. 5. Although the duration is strongly driven by the
amount of processed nodes, there are differences between the two phases due to
the presence of the derivs_comp_adj microkernel during the Jacobian.

Fig. 9. The signature of each refinement group’s duration and processed nodes at the
last four iterations. The colours indicate the CSEM frequency of each group. Center
and center-right groups are the ones that take longer to process. (Color figure online)

5 Conclusion

MARE2DEM is an open-source application for 2D resistivity modeling on the
context of oil and gas exploration using CSEM data. In this work, we evalu-
ated the performance of the MARE2DEM application when running with the
Brazilian MR3D dataset. The code inspection, trace evaluation and performance
visualization lead us to the following conclusions. The application spends more
than 92% of the execution time on the primal_solve, error_estimate and
derivs_comp_adj microkernels, hence those functions deserve some optimiza-
tion efforts in a eventual code review. The imbalance on the parallel tasks, iden-
tified as refinement groups in the MARE2DEM terminology, is a consequence
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of the Adaptive Mesh Refinement algorithm that refines the groups differently
depending on the configuration of the refinement group (number and placement
of receivers, transmitters, and frequencies). The variability on the refinement
groups’ duration is mainly explained by the number of processed mesh nodes for
both Jacobian and Smoothing phases. We show that the central and central-right
refinement groups have longer execution times, while side groups need shorter
execution times. In building a more efficient load distribution, one must consider
the presented duration patterns for each of the CSEM frequencies used. As future
work, we intend to conduct a wider performance analysis considering all possi-
ble configurations for the refinement groups definition during the MARE2DEM
initialization phase. Our goal would be to estimate the best MARE2DEM’s con-
figuration for a given set of compute resources.
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