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Abstract. Several forms of non-HPC clusters named cluster of worksta-
tions and cluster of virtual machines have become available in universities
and research institutions as cost effective solutions for scientific comput-
ing. With the need to characterize the cluster computing systems that
are traditionally used to run high-performance computing applications
and those that are not, the terms tightly- and loosely- coupled clusters
were adopted. However this qualitative characterization of clusters does
not provide further characterization of non-HPC systems, and does not
reveal real insights into their capacity to tackle many scientific applica-
tions. As a consequence, researchers who use these computing systems do
not have the tools to make informed decisions about what type of appli-
cations better fits the capacity and capabilities of every kind of non-HPC
cluster. In this work, we propose the cluster performance profile. This
profile enables the quantitative characterization, initially, on non-HPC
clusters in order to support decisions in the use and development of these
clusters.

Keywords: Cluster computing · High-performance computing ·
Cluster overhead · Cluster coupling · Cluster benchmarking

1 Introduction

Although supercomputers have been considered as the de facto computer archi-
tectures for the execution of high-performance computing (HPC) applications,
their operation and maintenance costs have increased at higher rates [9] when
compared to other forms of cluster architectures. These increasing rates have
led the scientific community into the development of emerging and low-cost
non-HPC clusters such as cluster of workstations (COW), cluster of desktops
(COD), and cluster of virtual machines (COV), which are commonly found in
research laboratories and institutions.

In non-HPC clusters, researchers have sought to give answers to the follow-
ing questions. First, what kind of cluster better fits the needs of a given scien-
tific application (HPC and non-HPC). Second, which is a common and recur-
ring question made among scientists when considering the execution of scientific
applications on these clusters, what configuration (nodes, and processors) of these
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clusters render the best performance for a given scientific application. In order
to give answers to the above-mentioned research questions, we propose the clus-
ter performance profile, this profile summarizes the performance obtained for
a variety of scientific applications in strong scaling benchmarking experiments.
From these performances, we derive further cluster specific metrics named clus-
ter overhead and cluster coupling, based on a previously proposed methodology
[14]. The cluster performance profile that includes the applications performance
metrics, the cluster overhead, and cluster coupling enables the characterization
of not only non-HPC, but also HPC clusters by quantifying their strengths and
weaknesses when executing well-known scientific computing kernels such as the
seven dwarfs of scientific computing. The seven dwarfs of scientific computing
exhibit a variety of communication and computation patterns common to many
scientific applications, they enable further characterization of the capacity of
clusters under different kinds of workloads.

Research questions are addressed as follows in this research paper. Section 2
presents related work on characterizing scientific computing clusters and evalu-
ating their capacity for the execution of scientific applications. Section 3 presents
a background on cluster overhead, cluster coupling and the proposed cluster per-
formance profile. Section 4 presents the performance evaluation of four clusters
and the calculation of their cluster performance profiles. Section 5 discusses our
findings on these cluster profiles and provides answers to the proposed research
questions. Conclusions on the use of the cluster performance profile and future
directions are drawn in Sect. 6.

2 Related Work

The quantification of the capacity of scientific computing clusters for the exe-
cution of high-performance computing applications is a common and ongoing
research problem, named performance evaluation and benchmarking. These eval-
uations provide to some extent an estimate of the performance that computers
can deliver for specific applications. On non-HPC clusters, related works have
been conducted in virtual clusters built on top of containers or virtual machines
over cloud [1,6,8,10,12], IoT [3,11], workstations [2], and desktops [4] infrastruc-
tures. Bare-metal cluster deployments on top of workstations [7] and desktops
[13] have also been considered. Furthermore, those related works usually esti-
mate the capacity in terms of the metrics delivered by the traditional compute-
intensive benchmarks such as high-performance Linpack (HPL), NAS Parallel
Benchmarks (NPB), or HPC Challenge Benchmark (HCB).

Most related works that estimate the capacity of virtual and container-
ized clusters concentrate their efforts in the determination of the computation
and communication overhead these technologies pose on the performance of
HPC applications. These works usually compare the capacity (given in FLOPS,
latency, bandwidth, and related metrics) of the bare-metal host system with the
same system when hosting containers or virtual machines. On the other hand,
related works that estimate the capacity of bare-metal deployments, such as clus-
ters of workstations and desktops use the capacity estimated in supercomputers
as base line to determine if the system under study has a satisfactory capacity.
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In this work we extend the state of the art in performance evaluation and
benchmarking of scientific clusters in the following directions: (i) we extend the
performance analysis commonly conducted in strong scaling analyses by includ-
ing the cluster performance profile that comprises the traditional performance
metric, and our previously proposed metrics (cluster overhead and cluster cou-
pling [14]), finally (ii) we provide a quantitative characterization of four small
size scientific computing clusters and demonstrate the validity of this character-
ization, the characterization being summarized in a cluster performance profile
per cluster.

3 Background

Here we define the concepts that are relevant for the quantitative characteriza-
tion of scientific computing clusters; namely, cluster overhead, cluster coupling,
and the cluster performance profile.

3.1 Cluster Overhead and Coupling

Cluster distributed systems have been categorized as loosely- or tightly-coupled
according to the storage, interconnection, processing technology and the com-
ponents packing strategy employed in their development. In addition, the speed
and reliability of the interconnection channel have been considered as the criteria
for this classification [5]. Nevertheless, the loosely- and tightly-coupled classifi-
cation does not provide quantitative information about how coupled these differ-
ent computing systems are. Accordingly, in [14] we proposed a methodology to
quantitatively estimate the coupling of clusters using a metric we called cluster
overhead.

The cluster overhead is estimated by determining how similar a given clus-
ter is to its tightly-coupled counterpart, assumed to be a single node. Figure 1
depicts the performance for a single node of a cluster (Ph(1)) and the per-
formance for the same cluster with n computing nodes (Ph(n)), for the high-
performance computing application building block h. This figure also depicts
P ′

h(1) and P ′
h(n) serving as linear approximations of Ph(1) and Ph(n) respec-

tively. Then, the cluster overhead with respect to h is given by the following
formula.

α = �P ′
h(1) P ′

h(n) (1)

Although computers’ performance does not have linear behavior, linear approx-
imations led us to derive properties of lines that allow further understanding of
cluster’s performance. For instance, in the formula, the angle (α) between the
segments P ′

h(1) and P ′
h(n) stand as the performance loss also known as the clus-

ter overhead, this measured in degrees. Note that there is an inverse relationship
between the cluster overhead and coupling, as shown in Fig. 2. In Fig. 2, large
values for α stand for large overhead, resulting in a poor similarity between a
node and the whole cluster, this being rendered in a loose cluster coupleness.
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On the other hand, small values for α stand for small overhead, resulting in
a higher similarity between a node and the whole cluster, this being rendered
in a tightly cluster coupleness. Then, the cluster coupling is defined by the
following formula, where α stands for the cluster overhead.

c =
1
α

(2)

Fig. 1. Cluster overhead

Fig. 2. Cluster coupleness

Note that the performance measure used for the calculation of coupling and
overhead metrics variates according to the specific application being used for the
measurement; for instance, NAS Parallel benchmarks use the MOP/s (millions
of operations per second) as the standard to deliver benchmark performance, the
type of operation OP variates according to the specific benchmark. Benchmarks
such as FT, MG and CG use as an operation unit the Float Point whilst EP use
Random Numbers Generated.

3.2 Cluster Performance Profile

Table 1 presents the cluster performance profile for an hypothetical cluster. This
profile summarizes the properties of segments such as P ′

h(1) and P ′
h(n) that
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are of interest for clusters characterization. These properties are: the slope (m),
the angle between a segment and the x-axis (θ), the cluster overhead (α) that
is calculated with respect to another segment, and the coupling (c) which is
derived from the cluster overhead. In the cluster performance profile, m and θ
bring information about how fast the performance increases when considering a
segment established between points (p, P ′

h(p)) and (p + 1, P ′
h(p + 1)), where p

is the number of processors considered and P ′
h(p) is the performance of h when

considering p processors of the cluster. If we think in terms of a line segment,
m is the segment’s slope and θ the angle formed between the x-axis and the
segment, both m and θ are directly proportional. In a similar way, α describes
how close the performance of a cluster being represented by a segment is to a
tightly-coupled instance being represented by another segment.

The baseline for the cluster performance profile is a single node. Since this
is supposed to be a tightly-coupled instance, when compared to itself, the clus-
ter overhead is defined to equal zero, α = 0. As the number of computational
resources (processors, nodes) used in computing h increases, performance will
tend to drop due to the parallel overhead. This also may affect the performance
growth rate being estimated by m and θ, increases the cluster overhead α, and
decreases the system coupling. However, although the above is the expected
behavior, different computation and communication patterns might differ from
this behavior for different settings of nodes and processors. These differences are
intended to be caught in the cluster performance profile.

Table 1. Cluster performance profile

Application Nodes (p, Ph(p)) m θ α c

h 1 (1, Ph(1)) (4, Ph(4)) m1 θ1 0 c1

2 (1, Ph(1)) (8, Ph(8)) m2 θ2 > 0 < c2

4 (1, P ′
h(1)) (16, Ph(16)) m3 θ3 >> 0 << c3

4 Performance Evaluation

Five scientific computing dwarves (spectral methods, sparse linear algebra,
unstructured meshes, structured meshes and monte carlo) represented in four
NAS parallel benchmarks (FT, CG, MG and EP) are used to evaluate the per-
formance of three non-HPC clusters Cw1 , Cw2 , Ccov and one HPC cluster Chpc

which is used for validation purpose. The resulting performance delivered by the
applications in a strong scaling evaluation is then used to the elaboration of a
cluster performance profile per cluster, according to the methodology proposed
in Sect. 3.2. The findings on these profiles are further discussed in Sect. 5.
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4.1 Experimental Setup

The experiment comprises a strong scaling performance evaluation on dedi-
cated clusters Cw1 , Cw2 , Ccov and Chpc whose technical details are shown in
Table 2. Chpc is the university high-performance computing system; Ccov is a
Microsoft Hyper-V-based cluster of virtual machines whose cluster computing
nodes were deployed on different servers at the university datacenter, although
virtual machines are dedicated, the datacenter is not; Cw1 and Cw2 are clusters
of workstations differing in their network bandwidth and latency capabilities.
The FT, CG, MG, and EP benchmarks are executed over the only-MPI execu-
tion scheme. Here, we increased the number of MPI processes and the number
of nodes. The Class C of NAS parallel benchmark problem sizes is considered
and remains fixed through experiments. The MPI processes mappings consid-
ered for the experiment are described in Table 3. In Table 3, ppn stands for MPI
processes per node and tp for the total number of processes in the cluster.

Table 2. Clusters specifications

Specs Chpc Ccov Cw1 Cw2

# of nodes 4 4 4 4

CPU(s) 28 4 4 4

CPU model Intel(R) Xeon(R) CPU E5-2690 v4 Intel(R) Xeon(R) CPU E5-2680 v4 Intel(R) Core(TM) i7-4790 Intel(R) Core(TM) i7-4790

CPU clock speed 2.60 GHz 2.40 GHz 3.60 GHz 3.60 GHz

Thread(s) per core 2 1 2 2

Core(s) per socket 14 1 4 4

Socket(s) 2 4 1 1

NUMA node(s) 2 1 1 1

Network bandwidth 40 Gb/s 4x QDR 10 Gb/s 100 Mb/s 1 Gb/s

Network latency 1.3 us ∼77 us ∼380 us ∼81 us

Table 3. Processes mappings

# of nodes 1 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4

ppn 1 2 4 8 16 32 1 2 4 8 16 1 2 4 8 16

tp 1 2 4 8 16 32 2 4 8 16 32 4 8 16 32 64

4.2 Threats to Validity

The performance exhibited by a cluster is susceptible to a countless number of
software parameters. To name a few: the problem size, the parallelization scheme,
the supporting numerical libraries and the algorithms. Given the actual difficulty
in providing an accurate measure of overall computers performance, our estima-
tion considers a simplified version of the problem. Here, we consider small-scale
clusters, and well-known scientific computing kernels with fixed problem sizes
and execution schemes; these in order to validate our methodology. Regarding
the execution scheme, in the HPC cluster we do not use all the physical cores
in order to be able to use only powers of 2 number of processors, then this must
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be considered when performing comparisons between clusters. Also although
experiments were executed three times, we observe no significant variations that
lead to errors in our estimations of performance. In this regard, results are well
supported by theory.

Finally, note the performance is a compound metric that measures the appli-
cation and computing system performance, not the computing system in iso-
lation, the former is what we mean when referring to the performance of the
cluster.

4.3 Results

Figures 3, 4, 5 and 6 describe the performance achieved for clusters Chpc, Ccov,
Cw1 and Cw2 in the FT, CG, MG and EP benchmarks, respectively. These figures
compare the performance achieved in the clusters for the different settings of
nodes and processors considered for the computations.

Fig. 3. FT - fast Fourier Transform - spectral methods
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In FT, Fig. 3, Chpc achieves strong scalability when compared to the other
clusters, as expected. However, this cluster exhibits a particular performance
behavior which is the divergence in the performance seen on different settings of
nodes from 16 processors. This divergence is explained by the NUMA memory
architecture commonly present in high-performance computing cluster nodes.
Here the performance attained for one, two, and four nodes is similar until the
number of processors used per node cross the processors’ capacity of a single
socket or NUMA domain. This suggests intra-node communication issues being
rendered in the node performance degradation. Note that these issues are solved
when we distributed 16 processes in two or four nodes, that is, by considering
2n ∗ 8p and 4n ∗ 4p settings, respectively. Regarding the non-HPC computing
systems, although Ccov, Cw1 and Cw2 achieve strong single node scaling, Ccov

outperform the multi-node performance of Cw1 and Cw2 . Finally, even though
Ccov exhibits better inter-node communication capabilities, better overall per-
formance is achieved for a single node in either Cw1 or Cw2 clusters.

Fig. 4. CG - Conjugate Gradient - sparse linear algebra and unstructured meshes
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In CG, Fig. 4, Chpc also demonstrates an upward trend in performance when
increasing the number of nodes and processors; however, the effect of the NUMA
memory architecture substantially hurts the performance of this computing ker-
nel. For example, for 32 processors, the 4n ∗ 8p nodes-processors setting outper-
forms the 2n ∗ 16 setting, since in the former setting, the eight processors per
node do not cross the boundaries of a single node socket. The above-mentioned
NUMA effect is also seen for 64 processors, but here the increasing performance
tendency dramatically drops. Concerning the non-HPC computing systems, all
sustain scalable performance for a single node; however, Ccov exceeds the multi-
node performance of its counterparts. In addition, Ccov achieves the best overall
performance in four nodes. If we compare the maximum performance achieved in
the whole Ccov cluster and the maximum performance achieved in a single Chpc

node, Ccov just reaches 54.29% of the Chpc single node capacity. Moreover, if we
compare the maximum performance achieved in Cw2 against the one achieved
in Ccov, a single Cw2 node reaches 74.79% of the whole Ccov cluster capacity.

Fig. 5. MG - Multi Grid - structured meshes
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In MG, Fig. 5, Chpc demonstrates the same upward scaling pattern seen in
the FT computing kernel. This similarity suggests the same communication and
computation pattern. Both kernels solve the Poisson equation and employ short-
and long-distance communication operations, but MG, unlike FT, is a memory-
intensive kernel [14]. In the non-HPC computing systems, this computing kernel
reports poor scalability in Ccov, and no scalability is seen in the Cw1 and Cw2

clusters. In particular, the lack of scalability in Cw1 and Cw2 might be attributed
to the memory-intensive nature of MG, suggesting a memory bandwidth issue.
Conclusively, for the MG computing kernel, Ccov outperform clusters Cw1 and
Cw2 in all node settings, namely one, two and four nodes. Finally, when com-
pared to Chpc, the whole Ccov cluster reaches only 41.75% of a single Chpc node
capacity.

Fig. 6. EP - Embarrassingly Parallel - Monte Carlo

In EP, Fig. 6, clusters Chpc, Ccov, and Cw1 demonstrate strong scalability as
expected. Note that Cw2 was not considered since it will achieve roughly the
same performance of Cw1 as computing nodes are the same, but variate in the
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inter-nodes interconnection. When considering the non-HPC computing systems,
the overall performance achieved in cluster Cw1 outperforms the performance
achieved in Ccov. Here, Ccov just reaches 69.40% of the overall performance of
Cw1.

4.4 Clusters Performance Profiles

Tables 4, 5, 6 and 7 provide four performance-derived metrics for the clusters
under study; namely slope, θ, α, and coupling. These metrics characterize the
clusters under study with respect to the four fundamental computing kernels:
FT, MG, CG, and EP. Note that unlike the previous section where application
performance was analyzed per node and per processing unit, here the perfor-
mance is described for the clusters as whole entities.

Table 4 depicts the characterization computed for the Chpc cluster. The slope,
as mentioned in Sect. 3, describes the rate of growth in the performance deliv-
ered by an application for a given processors and computing nodes setting. A
downward trend is expected in this rate as the number of computing nodes and
processors climb due to the parallel overhead. This pattern is being exhibited
by FT, MG, and EP. CG, on the contrary, describes a particular behavior. Here
the rate attained when considering a two-nodes Chpc cluster is higher than the
one achieved for one and four nodes Chpc clusters. This is explained by the
increasing performance tendency seen in two nodes, Fig. 4a, that is contrary to
that observed for one and four nodes. Note that the slope also tells us the per-
formance cost of increasing the number of computational resources (processors
and nodes). In the case of Chpc, the increase in cost tends to be linear in all
applications except for CG.

Chpc proof consistency in the cluster overhead and coupling when considering
the expectation that the overhead might tend to increase as more computing
resources are added for the computation; as a consequence, the resulting coupling
might decrease at the same extent. Note that this expectation is consistent in
all applications except for CG which proof a negative −0.0501 cluster overhead.
This means that instead of having overhead, the application is exhibiting a
performance rate (slope) that surpasses the single node rate. Since the trend
seen in two nodes Chpc cluster surpass the one exhibited by a single node that
was considered as the tightly coupled instance of the cluster for the computation
of coupling, −19.9600 can’t represent the coupling of the two nodes Chpc cluster;
because a single node is not any more a tightly coupled instance of the cluster.
Another particular behavior seen in Chpc is the one exhibited for FT. Here
the performance rate in FT decreases significantly from two to four nodes; this
suggests scalability issues of FT for many computing nodes. Lastly, in general,
Chpc exhibits a cluster overhead close to zero and higher degree of coupling, being
this a characteristic of high-performance computing systems. However, cluster
overhead and coupling will really make sense when we are able to compare these
values with the ones obtained from other clusters.

Table 5 depicts the characterization computed for the Ccov cluster. Here, the
slope decreases significantly describing a polynomial behavior, except for CG
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Table 4. Cluster performance profile Chpc

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,1762.41) (16,16184.33) 961.4613 89.9404 0.0000 –

2 (1,1762.41) (32,28131.62) 850.6197 89.9326 0.0078 128.7781

4 (1,1762.41) (64,19124.67) 275.5914 89.7921 0.1483 6.7427

MG 1 (1,3810.23) (16,36541.11) 2182.0587 89.9737 0.0000 –

2 (1,3810.23) (32,68435.4) 2084.6829 89.9725 0.0012 815.3292

4 (1,3810.23) (64,134120.4) 2068.4154 89.9723 0.0014 693.1671

CG 1 (1,406.55) (16,5991.34) 372.3193 89.8461 0.0000 –

2 (1,406.55) (32,17519.91) 552.0439 89.8962 −0.0501 −19.9600

4 (1,406.55) (64,22721.68) 354.2084 89.8382 0.0079 127.0909

EP 1 (1,46.94) (16,666.79) 41.3233 88.6137 0.0000 –

2 (1,46.94) (32,1318.02) 41.0026 88.6029 0.0108 92.2507

4 (1,46.94) (64,2540.23) 39.5760 88.5526 0.0612 16.3457

where there is a linear decrease in slope. Regarding cluster overhead, this cluster
keeps consistency in the expectation that the overhead might tend to increase as
more computing resources are added for the computation; as a consequence, there
is also a consistency in the resulting coupling. Note that the values for cluster
overhead and coupling on this cluster can be compared to the ones achieved in
Chpc; however, when doing this comparison, we need to consider that Chpc was
evaluated up to 16 processors while Ccov only considered four. If we consider
Chpc as a base line, we can conclude that Ccov exhibits the characteristics of a
loosely coupled computing system; these are higher cluster overhead and lower
coupleness.

Table 5. Cluster performance profile Ccov

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,1535.95) (4,4731.63) 1065.2267 89.9462 0.0000 –

2 (1,1535.95) (8,2307.81) 110.2657 89.4804 0.4658 2.1468

4 (1,1535.95) (16,3611.28) 138.3553 89.5859 0.3603 2.7753

MG 1 (1,3428.22) (4,11388.69) 2653.4900 89.9784 0.0000 –

2 (1,3428.22) (8,10229.9) 971.6686 89.9410 0.0374 26.7567

4 (1,3428.22) (16,15256.62) 788.5600 89.9273 0.0511 19.5825

CG 1 (1,449.58) (4,1718.61) 423.0100 89.8646 0.0000 –

2 (1,449.58) (8,2611.97) 308.9129 89.8145 0.0500 19.9891

4 (1,449.58) (16,3252.4) 186.8547 89.6934 0.1712 5.8417

EP 1 (1,44.35) (4,175.16) 43.6033 88.6862 0.0000 –

2 (1,44.35) (8,304.24) 37.1271 88.4571 0.2291 4.3656

4 (1,44.35) (16,600.7) 37.0900 88.4556 0.2306 4.3363

Table 6 show the performance derived metrics computed for the Cw1 cluster.
Although we expected a downward trend in slope as we increased the number of
computing nodes and processors, Cw1 depicts an unexpected trend. We observe



Quantitative Characterization of Scientific Computing Clusters 59

negative slopes for the communication intensive computing kernels, this being
the rates of performance degradation. We also observe that for the FT and MG
computing kernels the performance degradation rate is greater in the two nodes
setting than in the four nodes setting, whereas in GC the major degradation
rate takes place, as expected, in the four nodes setting. We attributed the higher
degradation in the two nodes setting to the poor network capacity of this cluster,
this degradation seems to be compensated by the amount of computing proces-
sors used in the four nodes cluster setting. The equivalent behavior seen in FT
and MG obeys the similarity these computing kernels have in terms of com-
putation and communication. Finally, the negative slope renders higher cluster
overheads, thus poor cluster coupling.

Table 6. Cluster performance profile Cw1

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,2261.71) (4,6264.74) 1334.3433 89.9571 0.0000 –

2 (1,2261.71) (8,363.13) −271.2257 −89.7888 179.7458 0.0056

4 (1,2261.71) (16,500.53) −117.4120 −89.5120 179.4691 0.0056

MG 1 (1,4544.48) (4,5920.05) 458.5233 89.8750 0.0000 –

2 (1,4544.48) (8,2924.32) −231.4514 −89.7525 179.6275 0.0056

4 (1,4544.48) (16,3539.47) −67.0007 −89.1449 179.0200 0.0056

CG 1 (1,670.57) (4,2408.03) 579.1533 89.9011 0.0000 –

2 (1,670.57) (8,644.73) −3.6914 −74.8425 164.7436 0.0061

4 (1,670.57) (16,458.49) −14.1387 −85.9543 175.8554 0.0057

EP 1 (1,57.69) (4,217.92) 53.4100 88.9274 0.0000 –

2 (1,57.69) (8,436.51) 54.1171 88.9414 −0.0140 −71.3638

4 (1,57.69) (16,865.55) 53.8573 88.9363 −0.0089 −112.2702

Table 7 contains the performance derived metrics computed for the Cw2 clus-
ter. This cluster demonstrates the same performance degradation rate pattern

Table 7. Cluster performance profile Cw2

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,2023.55) (4,6031.51) 1335.9867 89.9571 0.0000 –

2 (1,2023.55) (8,368.31) −236.4629 −89.7577 179.7148 0.0056

4 (1,2023.55) (16,508.38) −101.0113 −89.4328 179.3899 0.0056

MG 1 (1,4550.05) (4,5934.79) 461.5800 89.8759 0.0000 –

2 (1,4550.05) (8,2940.89) −229.8800 −89.7508 179.6266 0.0056

4 (1,4550.05) (16,2982.86) −104.4793 −89.4516 179.3275 0.0056

CG 1 (1,671.32) (4,2432.56) 587.0800 89.9024 0.0000 –

2 (1,671.32) (8,679.92) 1.2286 50.8560 39.0464 0.0256

4 (1,671.32) (16,515.7) −10.3747 −84.4943 174.3968 0.0057
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seen in Cw1 , since clusters computing nodes are the same except for the nodes
interconnection. Although the negative slopes, cluster overhead and cluster cou-
pling metrics are similar on Cw1 and Cw2 for FT and MG, there are subtle
improvements in these metrics due to the improvement in the interconnection
network in the Cw2 cluster. In addition, the network enhancement improved the
coupling of the cluster in terms of the CG computing kernel.

5 Discussion

A scalability analysis and the one focused on cluster overhead and coupling
metrics, were conducted on four scientific computing clusters in order to quan-
titatively characterize their capacity to execute scientific applications. The scal-
ability analysis suggests memory bandwidth issues in Cw1 and Cw2 that might
prevent the scalability of memory intensive computing kernels such as MG. In
addition, the analysis demonstrates the negative effect of the NUMA memory
architecture, established in Chpc cluster nodes, that can slightly affect the scala-
bility of scientific applications exhibiting computing patterns similar to FT and
MG; being these spectral methods and structured meshes. But the NUMA archi-
tecture substantially hurts the scalability of sparse linear algebra and unstruc-
tured meshes computations such as the ones exhibited in CG for the Chpc cluster.
Finally, when considering the non-HPC clusters, Cw1 and Cw2 demonstrate best
overall performance for FT in one node and EP in four nodes whilst Ccov demon-
strate best overall performance in CG and MG in the four nodes setting.

The cluster performance profile reveals numerous cluster specific behaviors
that might be considered, first, for the selection of clusters for specific scientific
applications, and, second, to guide architectural design decisions on the devel-
opment of these clusters. In the first matter, when considering the non-HPC
clusters, under the experimental conditions, the workstations based clusters Cw1

and Cw2 best fits the needs of FT and EP workloads, for the given problem
size and the only-MPI parallelization scheme. On the other hand, the virtual
machines based cluster Ccov best fits the need of CG and MG workloads.

In the second matter, for instance, the performance rate of most comput-
ing kernels executed in Chpc decreases linearly when increasing the number of
computing resources. In contrast, Ccov exhibits polynomial decrease in this rate
and Cw1 and Cw2 exhibit negative performance rates. Note that these perfor-
mance rates can be improved by cluster designers by considering enhancements,
for example, in the nodes interconnection as demonstrated when improving the
interconnection of Cw1 in Cw2 .

6 Conclusion

In this work we proposed the cluster performance profile, this profile comprises
performance related metrics for specific computing kernels and cluster specific
metrics derived from the performance exhibited on these computing kernels. This
profile was introduced to support both researchers running scientific applications
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on HPC and non-HPC clusters and cluster designers mainly developing low cost
scientific computing clusters.

In this regard, the profile delivers two main benefits for researchers; first, serve
as a guide for non HPC experts to determine what kind of scientific applications
would strong scale, in a given cluster, when increasing the number of computing
resources and which might not; second, as this profile is based on well-known
building blocks seen in many scientific applications, it can be considered as a first
glance when determining the appropriate cluster for the execution of applications
developed by the combination of these building blocks. In addition, the cluster
performance profile also serves as a guideline for cluster designers that will be
able to perform improvements led by metrics such as the cluster overhead and
coupling on scientific computing clusters.

Future work may involve the use of the cluster performance profile in large
scale scientific computing clusters to fulfill two main objectives; first, determine
the validity of the proposed quantitative characterization in this type of clus-
ters; then, determine how this profile constructed on well-known building blocks
executed on large scale clusters can anticipate the performance that could be
achieved from applications made by the combination of well-known scientific
computing building blocks.
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