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Abstract. Training Graph Neural Networks (GNNs) has become time
consuming as the graphs grow larger. Thus, many works have been
proposed to accelerate GNN training on multi-GPU platforms. Though
GPUs feature high computation power, training GNNs on GPU suffers
from low resource utilization. We propose to accelerate GNN training
on a CPU+Multi-FPGA heterogeneous platform. By utilizing the cus-
tomizable hardware resources on the FPGAs, we instantiate multiple
hardware kernels with optimized data access pattern and memory orga-
nization. The optimized hardware kernels can efficiently access graph-
structured data and thus achieve high training performance. However,
training GNN with multiple FPGAs also leads to high FPGA-to-FPGA
communication overhead and workload imbalance. We develop optimized
graph partitioning techniques to minimize FPGA-to-FPGA data commu-
nication, and develop a task scheduler to balance the workload among the
FPGAs. Compared with the state-of-the-art GNN training implementa-
tion on a multi-GPU platform, our work achieves up to 24.7× bandwidth
efficiency; this superior efficiency enables our work to achieve up to 3.88×
speedup and 7.18× energy efficiency using much less compute power and
memory bandwidth than GPUs.
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1 Introduction

Graph Neural Networks (GNNs) have facilitated many applications such as social
recommendation system [21], molecular property prediction [9], and traffic pre-
diction [12], etc. Despite the usefulness of GNNs, training a GNN model on a
large-scale graph using a single GPU is time-consuming. Thus, there has been
an increasing interest in using multi-GPU platforms [7,18] to accelerate GNN
training. Although these works accelerate GNN training using multiple GPUs,
some challenges remain: (1) inefficiency: GNN training underutilizes the avail-
able resources because traditional cache policies fail to capture the data access
pattern in GNN training, resulting in high cache miss rate [11,20]. In addition,
each data element goes through multi-level caches before being computed, which
incurs high latency. Due to the aforementioned reasons, most of the training time
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is spent on reading and writing data from/to the GPU global memory, instead of
the actual computation; (2) power consumption: though GPU features superior
peak performance, it also comes with high power consumption. Power consump-
tion is an essential consideration for cloud service providers like Amazon Web
Service (AWS) and Microsoft Azure since it directly relates to the operating cost
of the data centers.

Recently, Field Programmable Gate Array (FPGA) has emerged as a pop-
ular platform to accelerate GNN inference [16,25] and training [17,22]. This is
because FPGAs are highly customizable; this allows developers to customize
their hardware kernels, datapath, and memory hierarchy. In contrast, in CPUs
and GPUs, the datapath, memory controller and memory hierarchy are all fixed.
Utilizing the customized hardware designs, previous works [16,17,22,25] achieve
high performance and energy-efficient GNN computations on a single FPGA
platform. Cloud platforms like AWS F1 [1], Azure NP-series [2], and Intel Dev-
Cloud [3] are all equipped with FPGAs, making FPGAs easily accessible to
researchers and developers.

Motivated by the challenges of training GNN on GPU platforms and the
emergence of FPGAs, we propose to accelerate GNN training on a CPU+Multi-
FPGA heterogeneous platform; such a platform consists of a multi-core CPU
processor, connected to multiple FPGAs. We utilize the flexibility of CPU to per-
form control-intensive tasks such as graph preprocessing, mini-batch sampling
and task scheduling. We exploit customizable hardware resources of FPGAs
to develop kernels with optimized memory organization and data access pat-
tern to reduce the communication overhead during GNN training. In addition
to efficient data access, training GNNs with application-specific architecture on
FPGAs allows us to achieve superior energy efficiency. Though a CPU+Multi-
FPGA heterogeneous platform provides more hardware resources and memory
bandwidth than a single FPGA platform, it is challenging to achieve a scalable
speedup due to the complex data dependency of graph-structured data. In par-
ticular, during GNN training, the input graph is partitioned and distributed to
each FPGA and trained in parallel. However, a straightforward graph partition-
ing would lead to significant FPGA-to-FPGA communication overhead [7] since
each FPGA may need to read significant amount of data from other FPGA local
DDR memory. To overcome this issue, we use METIS [13] to partition the input
graph; METIS graph partitioning can minimize edge-cut between graph parti-
tions and thus minimize data communication among the FPGAs. However, since
each graph partition contains different number of vertices and edges, the work-
load of each partition is different. Thus, we develop a task scheduler to handle
the workload imbalance among the FPGAs. Though we exploit multi-level paral-
lelism and various optimization techniques, none of them alter the GNN training
algorithm; thus, we achieve the same training accuracy and convergence rate as
in training on a multi-GPU platform. We summarize our contributions as follows:

– We accelerate GNN training on a CPU+Multi-FPGA heterogeneous plat-
form. We demonstrate the acceleration of GNN training using two well-known
GNN models on three widely-used datasets.
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– We develop hardware kernels with optimized memory organization and data
access pattern, which reduce the data access overhead in GNN training.

– We develop several optimizations, including: (1) graph partitioning, and (2)
workload balancing to improve the training performance on our target plat-
form.

– Compared with a state-of-the-art GNN training framework on a multi-GPU
platform, our implementation on a CPU+multi-FPGA platform achieves up
to 24.7× bandwidth efficiency, 3.88× speedup, and 7.18× energy efficiency.

2 Background

2.1 GNN Models

Given an input graph G(V, E ,X), where V, E , and X is the vertices, edges, and
vertex features of the graph, a GNN model is specified by:

– L: number of layers.
– Vt: a set of target vertices to be inferred.
– f l: hidden dimension in layer l (1 � l � L).
– A mechanism of constructing mini-batches, including:

• The mechanism to construct V l: the set of vertices in layer l (0 � l � L).
|V l| denotes the number of vertices in layer l. Moreover, VL = Vt.

• The mechanism to construct Al ∈ R
|Vl−1|×|Vl|: adjacency matrix for fea-

ture aggregation in layer l (1 � l � L). Al defines the inter-layer connec-
tivity between V l−1 and V l.

– Aggregate() function that is used by each vertex to aggregate information
from its neighbors.

– Update() function including an one-layer multi-layer perceptron (MLP) and
an activation function σ() that is used to perform feature update.

– W l ∈ R
f l−1×f l

: weight matrix of layer l (1 � l � L) that is used in update
function to perform linear transformation of vertex features.

– X ∈ R
|V|×f l

: input feature matrix.
– hl ∈ R

|Vl|×f l

: the vertex matrix in layer l (0 � l � L). Moreover, h0 = X.

GNNs learn to generate low-dimensional vector representation (i.e., node embed-
ding) for a set of target vertices Vt. We illustrate the above process in Fig. 1 with
an example of a L-layer GNN model. Starting from layer 1, the GNN model com-
putes the feature vector of each vertex in V1 by aggregating and updating the
feature vectors of its neighbor vertices in V0; this process is repeated L times
until the node embedding of the target vertices Vt (which is VL) is derived.
The derived node embedding capture the structural information A and vertex
features X of the input graph and can be used to facilitate many downstream
applications as mentioned in Sect. 1.
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Fig. 1. GNN computation abstraction

Fig. 2. Full-graph vs. Mini-batch

2.2 Mini-Batch GNN Training

GNNs can be trained in full-graph [15], or in a mini-batch fashion [9,23]. The
former approach uses the entire graph to compute the node embeddings of all
the vertices; the latter approach first samples a set of vertices and edges and
only utilizes the sampled vertices and edges to compute the node embeddings
of the target vertices. Mini-batch GNN training demonstrate advantages com-
pared with full-graph training in terms of accuracy, and scalability for large-scale
graphs [9,23]; thus, this work focuses on accelerating mini-batch GNN training.
We illustrate the difference between the two approaches in Fig. 2, the blue-colored
vertices are selected to compute the node embedding of the target vertex (labeled
with the letter “T”). Note that there are various mini-batch sampling algorithms
[19], Fig. 2 only depicts the Neighbor Sampling algorithm [9] for simplicity. It
is also worth noticing that the numbers labeled on the vertices in Fig. 2 are in
random order since graph-structured data is non-Euclidean. Since accessing the
vertices in random order incurs random memory access, GNN training suffers
from high communication overhead. The mini-batch training process consists of
five stages [9,23]: sampling, forward propagation, loss calculation, back propaga-
tion, and weight update. In the sampling stage, a set of vertices and adjacency
matrices are sampled from the input graph topology G(V, E). We use V l to denote
the vertices sampled from V in layer l. Al denotes the sampled adjacency matrix,
which describes inter-layer connections (edges) between V l−1 and V l within the
mini-batch. A mini-batch consists of target vertices Vt, sampled vertices for each
layer {V l : 0 � l � L−1}, and sampled adjacency matrices {Al : 1 � l � L−1}.
In the forward propagation stage, the mini-batch is processed layer by layer as
in Fig. 1. The node embeddings in the last layer {hL

i : vi ∈ VL} are compared
with the ground truth for loss calculation. The calculated loss is used for back-
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propagation, which performs a similar computation as forward propagation but
in a reverse direction. At last, the gradients of W l in each layer are derived and
used to update the weights.

Algorithm 1. Mini-batch GNN Training Algorithm
1: for each iteration do
2: Sampling(G(V, E)) � Derive mini-batches
3: for l = 1...L do � Forward Propagation
4: for vertex v ∈ V l do
5: al

v = Aggregate(hl−1
u : u ∈ Ns(v), u ∈ V l−1)

6: hl
v = Update(al

i,W
l, σ())

7: end for
8: end for
9: CalculateLoss({hL

i : vi ∈ VL})
10: BackPropagation( ) � Derive gradient of W l

11: WeightUpdate( )
12: end for

We show the steps of GNN training in Algorithm 1, Ns(v) denotes neighbors
of v in V l−1 that are specified in Al.

2.3 Related Work

Hardware Acceleration for GNN Training. GraphACT [22] accelerates
GNN training on a CPU-FPGA heterogeneous platform by exploiting both task-
level parallelism and data parallelism. It adopts a redundancy reduction tech-
nique to reduce the number of memory access; however, the technique can only
be applied to graphs with binary edge weight. Thus, GraphACT cannot sup-
port certain GNN models such as Graph Convolutional Network (GCN) [15]
with non-binary edge weight. HP-GNN [17] proposes a general framework that
is able to accelerate various GNN models. Given a sampling algorithm, GNN
model, and platform metadata, the framework automatically generates a GNN
training implementation that runs on a CPU-FPGA heterogeneous platform.
Though HP-GNN is able to accelerate various GNN models on a CPU-FPGA
platform, it does not support CPU+Multi-FPGA heterogeneous platform which
needs to address the high FPGA-to-FPGA communication overhead and tackle
the workload imbalance issue.

GNN Training Using Multiple CPUs or GPUs. DistDGL [26] acceler-
ates GNN training on a cloud platform with multiple CPU instances. It shows
that GNN training on multiple instances with synchronous stochastic gradi-
ent descent (SGD) quickly converges to almost the same accuracy as training
on a single machine. In addition, DistDGL proposes to use graph partition-
ing to reduce the communication overhead among different nodes and achieve
high training performance. PaGraph accelerates GNN training on a multi-GPU
platform. PaGraph partitions the input graph using a greedy algorithm that
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Fig. 3. CPU+Multi-FPGA heterogeneous Platform

Fig. 4. GNN training on a CPU+Multi-FPGA heterogeneous platform

balances the workload among partitions. In addition, it caches vertex feature
of high out-degree vertices since these vertices are expected to be frequently
accessed. Utilizing multiple CPUs or GPUs, these works improve GNN training
performance compared with a single CPU or GPU. However, as mentioned in
Sect. 1, training GNNs using general-purpose processors with fixed data access
patterns and complex memory hierarchy suffers from inefficiency; this motivates
us to accelerate GNN training on a CPU+Multi-FPGA heterogeneous platform,
which is not yet explored by any previous work.

3 GNN Training on CPU+Multi-FPGA Platform

We illustrate a CPU+Multi-FPGA Heterogeneous Platform in Fig. 3. The plat-
form consists of a multi-core CPU connected to the CPU memory via DDR
memory channel. The CPU is connected to multiple FPGAs via PCIe. Each
FPGA has a local DDR memory.

We depict the workflow of GNN training on a CPU+Multi-FPGA heteroge-
neous platform in Fig. 4. The training algorithm on a CPU+Multi-FPGA het-
erogeneous platform is similar to Algorithm 1, but with two additional stages:
graph preprocessing and gradient synchronization. We assign the CPU to per-
form graph preprocessing since the preprocessing is well-supported by existing
library1. Thus, we store the input graph G(V, E ,X) in the CPU memory for the
CPU to perform graph preprocessing. Note that the preprocessing overhead can
be amortized since the graph partitioning is a one-time cost. During the graph
processing phase, the input graph G(V, E ,X) is partitioned and distributed to

1 https://github.com/KarypisLab/METIS.

https://github.com/KarypisLab/METIS
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each FPGA, we use Xi to indicate the vertex features stored in the ith FPGA
local DDR memory. We use different colors to indicate that the vertices are
assigned to different FPGAs in Fig. 4. When the graph preprocessing is done, the
five stages in Algorithm 1 are performed. We assign the CPU to perform mini-
batch sampling because it is flexible to support various sampling algorithms.
The sampler samples from each graph partition, and assigns the mini-batches to
each FPGA. Note that it is possible to sample vertices from different graph par-
titions as shown in the mini-batches of Fig. 4; because the edges crossing graph
partitions are preserved in a graph partition, so the sampler might sample some
vertices in other partitions via the partition-crossing edges. Although access-
ing vertices in other graph partitions incurs FPGA-to-FPGA communication,
preserving the edges crossing different partitions is necessary since removing
them would affect the training accuracy. After the mini-batches are produced
and distributed, each FPGA performs forward propagation, loss calculation, and
back propagation in parallel; we assign FPGAs to perform the GNN operations
because the optimized hardware kernels can efficiently deal with the irregular
data access patterns in GNNs. Thus, we store the mini-batch topology V l, Al,
and selected vertex features Xi in the FPGA local DDR memory to perform
GNN operations. Finally, we assign the CPU to perform gradient synchroniza-
tion and weight update since it’s easier to synchronize using the CPU.

We perform GNN training using synchronous stochastic gradient descent
(SGD) [8], which is widely used in related works that accelerate GNN training
on a multi-GPU platform. We accelerate the GNN computations but do not
alter the training algorithm; thus, the convergence rate and the accuracy are the
same as training on a multi-GPU platform using synchronous SGD.

4 Optimizations

4.1 Graph Partitioning and Workload Balancing

Assume there are p FPGAs on the target platform, we partition the input graph
into p partitions, and store each partition in one FPGA local DDR memory.
During feature aggregation (Algorithm 1), the vertex features of the neighbor
vertices are fetched and aggregated. If the vertex required resides in the same
graph partition, the vertex feature can be fetched directly from the local DDR
memory; otherwise, the vertex feature needs to be fetched from another DDR
memory, which incurs high overhead FPGA-to-FPGA communication.

To minimize the FPGA-to-FPGA communication overhead, we utilize
METIS [13] algorithm to perform graph partitioning. METIS can minimize
cross-partition edge connection and thus reduce FPGA-to-FPGA communica-
tion overhead. However, each graph partition consists of a different number of
vertices and edges; thus, the workload of training on each graph partition is also
different. We develop a task scheduler to balance the workload among FPGAs.
Figure 5 illustrates the idea with an example of 4 FPGAs. First, a Mini-batch
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Fig. 5. Workload balancing scheduler

Fig. 6. Data structure

Sampler samples a mini-batch from each graph partition in a round-robin fash-
ion. Each circle in the figure represents a mini-batch, the labeled number indi-
cates the order that each mini-batch is produced, and the color indicates from
which graph partition it is sampled. 4 mini-batches is executed in each train-
ing iteration, and then a synchronized SGD is performed to update the model
weights. In iteration 2, all the mini-batches in partition 3 have been executed.
Thus, the sampler continues to sample another mini-batch to produce 4 mini-
batches. By default, mini-batch 8 should be computed by FPGA 1 according
to the graph partitioning, which causes workload imbalance. Our task scheduler
addresses the workload imbalance by assigning the additional mini-batches to
idle FPGAs. For example, on the right side of Fig. 5, mini-batch 8 is assigned
to FPGA 3. Similarly, in iteration 3, an additional mini-batch is sampled from
partition 2 and is then assigned to FPGA 3. Note that this workload balancing
technique does not alter the algorithm. As we can see in Fig. 5, the mini-batches
being computed in each iteration are the same in both scheduling strategies.

4.2 Optimized GNN Kernels

As mentioned in Sect. 2.2, each GNN layer performs two major steps: feature
aggregation and feature update. The aggregation kernel fetches the feature vec-
tors of source vertices, performs an aggregation function which depends on
the GNN model, and then writes the result to the destination vertices; the
update kernel performs a multi-layer perceptron, which can be implemented
using matrix multiplication, to update the feature vectors of the destination
vertices. In this subsection, we focus on the optimizations done in the aggregate
kernel since it is the bottleneck of GNN training; for the update kernel, we adopt
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a systolic-array-based design to perform matrix multiplication of feature matrix
hl and weight matrix W l.

Data Structure. GNN training suffers from poor data reuse, resulting in fre-
quent accesses to the FPGA local DDR memory, which is much slower than
accessing on-chip memory like Block RAMs (BRAMs). To exploit data reuse,
we store the graph edges in coordinate (COO) format, sorted by the source ver-
tices; this allows our kernels to maximize the opportunity for data reuse. We
illustrate the idea in Fig. 6 with a toy example. During GNN training, the aggre-
gation kernel first fetches the feature vector of v0 from the local DDR memory,
a Feature Duplicator will then duplicate the feature vector and store it inside
each PE’s register. In the meantime, each PE reads an edge to compute. If the
source value of the edge matches the feature vector stored inside the PE register
(e.g., the first three PE in Fig. 6), then the PE proceeds with its computation of
multiplying edge weight with feature vector; if a mismatch occurs (e.g., the 4th

PE), the PE stalls and waits for the next feature vector (e.g., feature vector of
vertex 1) to compute. Using the proposed data structure and hardware design,
the feature vector of each source vertex only needs to be fetched once from the
DDR memory, which reduces the communication cost from O(|A1|) to O(|V0|).

Memory Organization and Datapath. Sorting the graph edges by source
vertices allows us to exploit data reuse, but also incurs random memory write
since the destination vertices are in random order. To mitigate the overhead
of random memory write, the aggregate kernel buffers the intermediate results
on-chip instead of writing them back to the DDR memory; this allows the inter-
mediate results to be stored in one cycle. After the aggregation is done, the
aggregated results are directly transferred to the update kernel. Similarly, after
the update is done, the updated results are directly transferred to the aggregate
kernel for the computation of next layer. After all L layers are executed, the
final results are written back to the local DDR memory sequentially. Utilizing
the FPGA on-chip memory to buffer the intermediate results, we reduce the
overhead of the random memory access; the datapath design allows the kernels
to directly read input data in one cycle since the data do not need to travel
through a complex memory hierarchy. In addition, the datapath avoids frequent
access to the local DDR memory because it does not need to write back the
intermediate results.

5 Experiments

5.1 Experimental Setup

Environments. We run our experiments on a dual-socket server. For the multi-
GPU platform, we equip the server with 4 GPUs; and for the CPU-Multi-FPGA
heterogeneous platform, we equip the server with 4 FPGAs. The GPUs or
FPGAs are connected to the host CPU via PCIe. We list the information of
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Table 1. Specifications of the platforms

Platforms CPU

AMD EPYC 7763

GPU

Nvidia RTX A5000

FPGA

Xilinx Alveo U250

Technology TSMC 7nm+ Samsung 8 nm TSMC 16nm

Frequency 2.45GHz 2000MHz MHz 300MHz

Peak performance 3.6 TFLOPS 27.8 TFLOPS 0.6 TFLOPS

TDP power 280W 230W 225W

On-chip memory 256 MB L3 cache 6 MB L2 Cache 54 MB

Memory bandwidth 205 GB/s 768 GB/s 77 GB/s

Table 2. Statistics of the datasets and GNN-layer dimensions

Dataset #Vertices #Edges f0 f1 f2

Reddit (RD) 232,965 23,213,838 602 128 41

Amazon (AM) 1,569,960 264,339,468 200 128 107

ogbn-products (PR) 2,449,029 61,859,140 100 128 47

the host CPU, GPUs, and FPGAs in Table 1. Note that the peak performance
and memory bandwidth of FPGA is significantly lower than GPU; thus, the
speedup of our work highly relies on our optimizations. We develop our hard-
ware kernels using Xilinx Vitis HLS v2021.2, and implement the host program
using C++14 with the openCL library. We implement the multi-GPU baseline
using Python v3.6, PyTorch v1.11, CUDA v11.3, and PyTorch-Geometric v2.0.3.

Measurements. We use the built-in time2 library to measure the GNN training
time on the multi-GPU platform. We build a cycle-accurate simulator to measure
the GNN training time on the CPU-multi-FPGA heterogeneous platform. To
verify the simulator, we implement the host program and GNN kernels, measure
the program execution time on the CPU and post-synthesis execution time on
the FPGA using the time library, and then tune our simulator according to the
data we collected from the actual hardware. We use the Vitis Analyzer [14] to
obtain the power consumption of the FPGAs. Vitis Analyzer creates a power
trace report, and the power consumption can be calculated using the report.
We use Nvidia System Management Interface (SMI) [5] and PowerTop tool [6]
to monitor the power consumption of GPUs and CPUs, respectively; these two
tools only monitor the power usage instead of providing a power trace report.
Thus, we create a script to trace the power consumption to manually obtain the
power trace report. Since the sample period of Nvidia SMI is between 1/6 to
1 s, we set our script to read the power consumption from SMI every 0.1 s. In
all of our experiments, we measure the data by training 10 epochs and taking
the average of the measured value. In our experiments, the observed variation
for each epoch is approximately the same (relative standard deviation less than

2 https://docs.python.org/3/library/time.html.

https://docs.python.org/3/library/time.html
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5%), so measuring the values from 10 epochs is similar as measuring the values
from all the epochs that it takes for the model to converge.

GNN Models and Datasets. We run our experiments using two well-known
GNN models: GraphSAGE (GSG) [9] and GCN [15]. We use a 2-layer model
with a hidden feature size of 128 for all the tasks since this is a widely-used
setup [9,24]. We choose three datasets with over 10 million edges for evaluation,
namely the Reddit dataset (RD), Amazon dataset (AM) [23], and ogbn-products
(PR) [10]. We use the Neighbor Sampler [9] to produce mini-batches; we set the
size of target vertices |Vt| as 1024, the neighbor sampling size of each layer is 25
and 10, and the learning rate is 0.01. Note that under the setup of synchronized
SGD, training 4 mini-batches of size 1024 in parallel is equivalent to training a
mini-batch of size 4096 on a single GPU or FPGA. Details of the datasets and
the GNN-layer dimensions are shown in Table 2.

5.2 Hardware Parameter Selection and Resource Utilization

There are two parameters in our kernel design. We use n and m to denote the
parallelism of the aggregate kernel and update kernel, respectively. In particular,
n indicates the number of processing elements (PEs) in the aggregate kernel.
Figure 6 shows an example of n equals 4. m indicates the number of multiply-
and-accumulate (MAC) units in the systolic-array-based kernel design.

Given a GNN model, we aim to find a set of parameters that optimizes the
throughput. We first assign an initial value for n and m, evaluate its performance
on the three datasets (Sect. 5.1), and observe which kernel is the bottleneck.
Then we increase the parallelism of the bottleneck kernel and re-evaluate the
performance. We repeatedly increase the parallelism of the bottleneck kernel in
each iteration until we saturate the available hardware resources. Both the GCN
model and the GraphSAGE model lead to the same set of parameters when the
hardware resources are saturated. We show the selected parameters and resource
utilization in Table 3.

Table 3. Hardware parameters and resource utilization

Parallelism (n, m) LUTs DSPs URAM BRAM

(8, 2048) 72% 90% 48% 40%

5.3 Performance Metrics

– Epoch time: the time it takes to train one epoch (seconds).
– Throughput: we define the training throughput as the Number of Vertices

Traversed Per Second (NVTPS).
– Bandwidth efficiency: throughput divided by available memory bandwidth

of the target platform (NVTPS/(GB/s)). Since the bandwidth varies on dif-
ferent platforms, normalizing the throughput with the available bandwidth
provides a clear indication of the effectiveness/efficiency of the accelerator.
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Table 4. Comparison with multi-GPU platform

RD AM PR Geo. Mean

GCN [15] Epoch time GPU 1.21 4.04 4.61 –

This work 0.57 1.05 2.81 –

Throughput GPU 25.3 M 27.6 M 106 M 42.0 M (1×)

This work 53.8 M 107 M 175 M 100 M (2.38×)

BW efficiency GPU 7.71 K 8.42 K 32.5 K 12.8 K (1×)

This work 105 K 208 K 340 K 195 K (15.2×)

Energy efficiency GPU 0.47 1.58 1.80 1.10 (1×)

This work 0.12 0.22 0.59 0.25 (4.40×)

GSG [9] Epoch time GPU 1.25 4.16 4.89 –

This work 0.71 1.78 4.27 –

Throughput GPU 24.4 M 26.8 M 100 M 40.4 M (1×)

This work 42.9 M 62.7 M 115 M 67.6 M (1.67×)

BW efficiency GPU 7.46 K 8.17 K 30.6 K 12.3 K (1×)

This work 83.6 K 122 K 224 K 132 K (10.7×)

Energy efficiency GPU 0.49 1.63 1.91 1.15 (1×)

This work 0.15 0.38 0.90 0.37 (3.10×)

– Energy efficiency: the energy consumption of training one epoch on the target
platform (kJ/epoch).

5.4 Comparison with Multi-GPU Platform

Performance. We compare the performance of our design on a CPU+Multi-
FPGA heterogeneous platform, with a state-of-the-art GNN training
implementation using PyTorch-Geometric on a multi-GPU platform. Both the
multi-GPU baseline and our work adopts the METIS algorithm for graph pre-
processing. In our work, we overlap the sampling stage and GNN operations in
each training iteration since they are performed on CPU and FPGAs, respec-
tively. We use the performance metrics defined in Sect. 5.3 to compare with
the multi-GPU baseline. We list the results in Table 4. As noted in Sect. 5.1,
we obtain the experimental results by training 10 epochs and then average the
measured values. The measured values from each epoch are very close to each
other: the maximum relative standard deviation in our experiments is 3.3%. We
use GPU to indicate the multi-GPU baseline, and use This work to indicate
our work which runs on the CPU+Multi-FPGA heterogeneous platform. We
achieve 2.38× and 1.67× speedup on the GCN model and GraphSAGE model,
respectively; this is because (1) our task scheduler balances the workload on each
FPGA which reduces the parallel execution time; and (2) our optimized GNN
kernels effectively reduce the memory access overhead.

Note that GPUs have much higher peak performance and memory band-
width than FPGAs; thus, to illustrate the effectiveness of our optimizations, we
further compare the bandwidth efficiency on both platforms which normalized
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Fig. 7. Throughput scales linearly w.r.t. number of FPGAs on the target platform

the throughput with the available bandwidth on the platform. We achieve up
to 24.7× bandwidth efficiency than the multi-GPU baseline; in other words,
our design is able to achieve up to 24.7× throughput given the same memory
bandwidth. While the workload balancing technique can also be applied to the
multi-GPU platform, the GNN kernel optimizations are specific for FPGAs. If we
apply the same data structure to the multi-GPU baseline, we are able to exploit
some data reuse with the GPU cache since the edges are sorted by the source
vertices; however, we can not mitigate the random memory write overhead since
we have no control over the datapath and on-chip memory on a GPU platform.
On an FPGA platform, we overcome this issue by utilizing the abundant on-
chip memory to buffer the intermediate results; we also design a datapath to
avoid any unnecessary write to the local DDR memory during GNN training
(Sect. 4.2). Thus, even if we speed up the memory read phase on the multi-GPU
platform, the memory write bottlenecks the performance.

In addition, unlike our kernels which can access the data in one cycle (3.3
ns), GPUs require multiple cycles to access the data in multi-level caches. Taking
Nvidia RTX 3090 as an example, the L2 cache latency is over 130 ns [4]. Note
that we use Nvidia RTX A5000 for our experiments, which uses the same GPU
architecture (GA102) as Nvidia RTX 3090, so we expect similar cache latency
on both GPUs. Finally, our work achieves up to 7.18× energy efficiency than
the multi-GPU baseline. This is because our dedicated hardware designs can
efficiently perform GNN training, while GPUs launch massive amount of CUDA
cores with low utilization.

Convergence. As mentioned in Sect. 3, our work does not alter the original
training algorithm; thus, the convergence rate of our work is the same as the
serial training algorithm.

5.5 Scalability

We evaluate the scalability of our work using the three datasets on a two-layer
GCN model. As shown in Fig. 7, our work achieves a scalable speedup as we
increase the number of FPGAs. We do not consider cases with more than 16
FPGAs since it exceeds the number of PCIe channels on our target platform.
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Fig. 8. Throughput improvement due to optimizations

5.6 Impact of Optimizations

We evaluate the two optimizations of workload balancing (WB) and optimized
GNN kernels (OGK) described in Sect. 4 on a two-layer GCN model. We first
measure the throughput of the baseline implementation with no optimizations,
and then incrementally apply the two optimizations. The throughput in Fig. 8
is normalized with the baseline design. Both optimizations increase the GNN
training throughput and can deliver up to 2× improvement in total.

6 Conclusion

In this work, we accelerated GNN training using a CPU+Multi-FPGA heteroge-
neous platform. We developed several techniques to efficiently accelerate GNN
training on our target platform. Using much less compute power and memory
bandwidth than GPUs, our work achieved up to 2.38× speedup and 4.40× energy
efficiency compared with the multi-GPU baseline due to the 24.7× bandwidth
efficiency. In the future, we plan to extend our work to a general framework that
can automatically map GNN training on any given CPU+Multi-FPGA platform.
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