
Functionality Testing in the Automation
of Scientific Application Workflows in an HPC

Environment

Felipe de Jesús Orozco Luna, Jesús Manuel Alemán González,
and Veronica Lizette Robles Dueñas(B)

University of Guadalajara (CADS Data Analysis and Supercomputing Center), Zapopan,
Jalisco, México

{forozco,lizette}@cads.udg.mx, felipe.orozco@academicos.udg.mx,

jesus.aleman4182@alumnos.udg.mx

Abstract. This paper presents the results obtained in performance tests of task
automation in the supercomputing cluster of the University of Guadalajara (CADS
Data Analysis and Supercomputing Center).

The main objective was to design an automated workflow process to take
advantage of high computational performance in scientific applications, routines
in R, Python or shell that by nature consume only one core, and that by the volume
of data to be processed could allow the execution of multiple tasks at once in a
supercomputing cluster environment, or even in the cloud, for an efficient use
of the infrastructure. In addition to using Singularity containers to encapsulate
applications or scripts to be used in workflows.

The following tools were tested: Snakemake as a tool for workflow automa-
tion and scaling, as well as Singularity container technologies for application
encapsulation and SLURM for managing resource usage in the cluster.

The results are presented as well as the experience gained in using these
technologies.

Keywords: Automation · Snakemake · Singularity containers · Scaling ·
Reproducibility · Supercomputing cluster · Parallelization

1 Introduction

We are currently faced with the need to process large amounts of data with tools that
use a single processing core, which makes scalability and automation difficult.

This problem is very common in the scientific context, asmany scientific applications
use a single processing core for a large amount of data. For this reason, and because
of the computational resources required, these applications are candidates for use in a
processing flow that enables scalability and automation.

To address this issue, tests were conducted to quantify the performance and scaling of
the parallelized tools. These tests were performed by creating a container in Singularity
with a scientific application.

We test the functionality and performance of the tools required for workflow
automation, scaling, and reproducibility. The following themes motivate our study:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 220–232, 2022.
https://doi.org/10.1007/978-3-031-23821-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_16


Functionality Testing in the Automation of Scientific Application 221

• Framing within an automated processing flow with containers. Within containers,
scientific applications that require only a processing core or routines in R, Python, or
shell.

• Create a suitable environment for executing tasks, many of which cannot inherently be
parallelized but require large amounts of data and information processing and storage
capacity.

• Create processing workflows that are scalable and automated.
• Design and test workflows with parallelized tasks for optimal use of resources
provisioned in the supercomputing cluster.

• Use Python scripts integrated as processing boxes (one core per job) in these
processing flows.

The present study helped us to test and design processing flows with different sce-
narios of tools and cluster capacities, testing since one compute node using partially all
available cores (up to 36 cores per node), and performance tests using a maximum of 28
compute nodes.

Parameters to be tested included the scalability and automation capabilities of a
workflow to make the best use of the supercomputing cluster resources.

An additional motivation is to gain experience using these processing schemes for
CADS and supercomputing users who wish to leverage the use of processing in these
work scenarios that inherently lack scalability and parallelization capabilities.

2 Infrastructure Used

The Data Analysis and Supercomputing Center (CADS) is a space created by the Uni-
versity of Guadalajara, located in the facilities of the University Center for Economic
and Administrative Sciences, in Zapopan Jalisco, México.

Within the CADS is the University of Guadalajara Supercomputer, associated with
large processing, storage and communications capabilities, whose purpose is to enable
and accelerate scientific research and technological development of the university
community.

Up to 28 compute nodes of the Leo ATROX Supercomputing equipment were used
for these tests, each with the following characteristics:

2 Xeon-6154 (SKYLAKE) processors with 18 cores at 3.0 Ghz Between 188 -
392 GB RAM

3 Tools Used

3.1 Slurm

Slurm is an open source tool used in supercomputing environments that handles the
management and allocation of resources within the cluster. It is based on a configuration
file where you can specify the amount of resources to use along with the routines or
commands for processing your work.



222 F. de Jesús Orozco Luna et al.

Slurm’s operation is based on queue management, where each job is assigned an
identifier and given a priority for execution. Slurm is in charge of managing the job
contention in the cluster, since it has the ability to send jobs in parallel. Due to this
operation, Slurm allows to start, stop and monitor the jobs in a very simple way, so that
the user knows at all times in which state his job is.

3.2 Singularity

Singularity is an open source platform for the management, creation and execution of
containers within local and supercomputing environments. It was created primarily for
the encapsulation of computationally demanding projects, therefore, it has become an
ideal tool to be installed in an HPC environment.

Compared to other container platforms, Singularity offers greater security, scalability
and reproducibility, in addition, it allows transforming Docker images to its format to
be used and executed with Singularity. Last but not least, Singularity can communicate
perfectly with other tools that allow you to improve the development of your project and
optimize aspects of it.

3.3 Snakemake

Snakemake is a workflow management system for creating scalable and reproducible
data analysis. It is based on Python because it is so simple and easy for humans to
understand.

Snakemake creates a workflow based on rules that contain the input files to be
processed to create the final output files, as well as the scripts or commands needed to
process the workflow.

Snakemake also lets you adjust the amount of computing resources needed to run the
workflow. This allocation depends heavily on the project and the amount of resources
the user has on their machine. However, Snakemake is excellent for supercomputing
environments, for running projects with high computational requirements.

Automation, reproducibility and scalability are the words that sum up Snakemake.
Finally, Snakemake adapts to many tools. For example, you can use Singularity, Kuber-
netes andSlurm in yourworkflow,making the extension and combination of technologies
even more powerful.

Summary of tools used and their versions. See Table 1.

4 Design of the Processing Flow for Testing

Several processing flows were designed for these performance tests:

• A Singularity container was used by taking a Docker image with a scientific tool used
for high-energy particle simulation.

• In addition to Python routines for NumPy data processing.

Additional considerations are:



Functionality Testing in the Automation of Scientific Application 223

Table 1. Versioning used for testing.

Tool Version Source

SLURM 20.11.3 https://slurm.schedmd.com/

Singularity 3.6 https://docs.sylabs.io/guides/3.6/user-guide/

Snakemake 6.15.5 https://snakemake.readthedocs.io/en/v6.15.5/getting_started/installat
ion.html

Centos OS 8.2 https://www.centos.org/

• A processing box is defined as a routine application, script, or library that can execute
inside or outside a container, generally receiving input, performing processing, and
returning output.

• The tests consist of two stages of processing. The first stage uses a processing box
in a Singularity container with the capacity to execute a large number of tasks simul-
taneously and without dependencies on each other; and the next stage uses Python
processing boxes that depend on the output data from the previous stage to perform
the tests, see detail in Fig. 1.

• In both processing boxes mentioned above, only one computational core was
consumed per task.

• The tests were performed with 360, 720 and 1,000 files as output data for data
processing.

• The maximum number of compute nodes used for the performance test was 28.

5 Analysis of Possible Cases

5.1 Running Python Script

The benefits of using tools like Snakemake to automate and scale work processes in a
supercomputing cluster with containers like Singularity can be seen in Table 2, which
shows the different tool scenarios.

It is important to note that the grid above the diagonal was not included to avoid
repeating the scenarios.

The above leads me to answer the premise with which the tests began: How can
I fully exploit the capabilities of a supercomputing cluster in a container environment
and/or Python routines? The answer is as follows: Use Snakemake as a tool that supports
reproducibility and automation of tasks that result in less time spent running a large
number of jobs and using the installed infrastructure.

5.2 Running Python Script with SLURM and Singularity

In the case of using tools such as Snakemake, whether or not using tools such as SLURM
or Singularity, we can see the possible processing scenarios. See Table 3.

https://slurm.schedmd.com/
https://docs.sylabs.io/guides/3.6/user-guide/
https://snakemake.readthedocs.io/en/v6.15.5/getting_started/installation.html
https://www.centos.org/


224 F. de Jesús Orozco Luna et al.

Fig. 1. Details of the designs used in the tests. The number of input files for each test, The number
of processing steps executed, At each processing step, a routine may be encapsulated in python, r,
shell, or a scientific application that uses only one processing core. The output files, the number
of files expected as a result of the processing.

Table 2. Possible capabilities per scenario using Python routine.

Capabili es possible when running Python scripts vs. Tools

Python Script
Without 
SLURM SLURM Snakemake Singularity

Without SLURM A single core - - - 

SLURM NA A single core - - 

Snakemake Multiple nodes Multiple nodes Multiple nodes -

Singularity A single core A single core Multiple nodes A single core

5.3 Running a Singularity Container with Snakemake Using SLURM

This table analyzes the case of using a scientific tool for data processing, running on
a single processing core within a Singularity container, and how to make its use more
efficient with massive processing and data in the supercomputing cluster. See Table 4.

5.4 Notes for Tables 2, 3 and 4

Single core: Only uses one processing core.



Functionality Testing in the Automation of Scientific Application 225

Table 3. Possible capabilities using Python routines inside a container.

Possible Python scrip�ng capabili�es 
inside a container

Snakemake Without 
SLURM SLURM

Singularity A single node Multiple nodes

Table 4. Capacities using singularity containers.

Send to run APP in container 

Snakemake Without 
SLURM

SLURM

Singularity A single no-
de

Mul�ple nodes

Single node: It can only run on one node, using from 1 to 36 cores per node.

Multiple nodes: Ability to run on multiple compute nodes, using multiple cores.

6 Results of Executions

6.1 Case 1:

The following data were used for the first test:

• 360 initial input files, using Snakemake.
• Maximum of 10 compute nodes.
• Using two stages of processing using a Singularity container and Python script to
process data in NumPy.

The results of the first test can be seen in Fig. 2, where 360 files were processed. The
test started with 36 cores and the processing time was 2,222 s; when the 360 cores were
used, the time dropped to 322 s.

Figure 2 shows that while the applications and scripts used only consume one pro-
cessor core. However, with tools to automate the processing flow such as Snakemake and



226 F. de Jesús Orozco Luna et al.

a reasonable amount of data, a large number of tasks can be run simultaneously, making
the processing time more efficient. It is worth noting that thanks to the functionalities of
Snakemake and SLURM, the use of multiple computing nodes is achieved.

Fig. 2. Processing 360 files. This figure shows that applications scale better from node 1 to node
4, the more cores, the less processing time. From node 5 to node 8, there is no improvement
in performance. And from node 9, performance improves again. This behavior is related to the
number of processing steps and the routines that are processed in each step.

It is important to note that we want to demonstrate the benefit and advantage of
automating applications that do not scale natively and how they can take advantage of
the supercomputing cluster infrastructure (Table 5).

6.2 Case 2:

The following data were used for the second test:

• 720 initial input files, using Snakemake.
• Maximum of 20 compute nodes.
• Using two stages of processing using a Singularity container and Python scripts to
process data in NumPy.

The results obtained in the second test can be seen in Fig. 3, where 720 files were
processed, the test started with 36 cores and the processing time was 5156 s, when using
the 720 cores, the time dropped to 447 s.



Functionality Testing in the Automation of Scientific Application 227

Table 5. Detail of processing times of 360 files.

Processing time for 360 files

Number of cores Time in seconds

36 2222

72 1053

108 842

144 648

180 495

216 493

252 496

288 523

324 432

360 322

Fig. 3. Processing of 720 files.



228 F. de Jesús Orozco Luna et al.

6.3 Case 3:

The following data were used for the third test:

• 1000 initial input files, using Snakemake.
• Maximum of 28 computational nodes.
• Use of two processing stageswith a Singularity container and Python scripts to process
the data in NumPy.

The results of the second test can be seen in Fig. 4. When processing 1,000 files,
the test was started with 36 cores and the processing time was 6,567 s; when using the
1,008 cores (28 compute nodes), the time dropped to 567 s.

Fig. 4. Processing of 1000 files.

When comparing performance, varying the number of files to process in Fig. 5 shows
similar trends of lowering processing time by increasing the number of processing cores.

A comparison of the efficiency of the three runs with different numbers of files is
made and compared to an ideal efficiency based on processing per compute node. See
Fig. 6.

In this figure, an interesting result can be seen: When testing with 720 files, using 5
to 6 nodes produced an efficiency that is slightly higher than the ideal efficiency.

It should benoted that at the timeof submitting jobs to theSlurmqueue to be executed,
these jobs depend on the handling and management of Slurm on the processing cores,
as well as the high demand and utilization of the cluster by other users. This therefore
affects the performance of the workflow tasks and causes performance spikes and dips,
as can be seen in Fig. 6.

It is assumed that efficiency can be affected by the amount of RAM in each node,
although this depends on the applications running in the workflow.



Functionality Testing in the Automation of Scientific Application 229

Fig. 5. Performance comparison Scale the processing flow not the application.

7 Discussion of Results and Conclusions

There are important considerations in discussing the results, as these tests and their
results compare the improvements in execution times in a framework of parallelizing
and automation of a particular use of processing using processing boxes. The first using a
tool that consumesonly oneprocessing corewithin a singularity container, and the second
processing step using aPython routine that consumes a single processing core.Reviewing
the benefits that can be achieved in an automation and parallelization framework in a
supercomputing cluster.

Based on the above considerations, it is not intended to serve as a basis for subse-
quent performance comparisons, but rather to demonstrate the benefits of sharing these
applications.

These performance tests should serve as a reference for those who need to build
robust automation and parallelization frameworks, even if their tools do not inherently
allow parallelization.

Based on the tests carried out with the combination of the 3 technologies used, the
following results and observations were obtained:

7.1 Testing Time

For the analysis, the times of Snakemake were used, since it is the tool that manages
the entire workflow, from the input files to the generation of the output files, and also
the processing times of Slurm. It is worth noting that Slurm manages its own processing
times. For this reason, it may happen that Slurm completes a series of files and releases
the used resources, but the job queue still appears as a busy node because Snakemake is
trying to complete the workflow for that series.



230 F. de Jesús Orozco Luna et al.

Fig. 6. The ideal efficiency shows the same ratio, in the increase of compute nodes with efficiency
gains.

7.2 Duration of Tests

From the design of the processing sequences, the construction of the test container, the
design of the automation scripts, as well as the execution of the scripts, up to the analysis
of the results, about 3 months were needed.

7.3 What Limitations There Were

Although it is possible to integrate several scientific applications that only consume a
processing core, or use R, Python or shell scripts, it will not always be beneficial to
integrate them into a processing flow, since there will be the limitation of the volume of
data and how they are processed.

One of the observations that had the most impact on the tests and the results of the
different scenarios to be run was the management and the amount of cluster resources
available, since in some cases resources (compute nodes) have to be shared with other
users because the resources that should be used are not provided due to the high demand
of users using the cluster.



Functionality Testing in the Automation of Scientific Application 231

This resource sharing limitation can occur at any time and is something that we as
users cannot control, since Slurm is responsible for resource allocation. For this reason,
it is ideal to run the operations in a custom working partition that contains the set N
amount of resources to be used, for example not in a general partition where many users
use the same resources.

7.4 Learning

In cases where better execution efficiency has been shown, the number of nodes is
chosen to match the number of processing cores with the number of jobs to be processed
simultaneously, i.e., if 360 files are sent for execution, it would be ideal to take 10
nodes since the infrastructure has 36 cores per node to execute 360 processing cores
simultaneously.

This results in greater optimization of the total job duration. Using a large number
of nodes is not always the best solution, as this depends on the SLURM queues and the
amount of processing in the cluster.

Better performances were shown using the total number of cores per node.

7.5 Conclusions and Benefits

Scaling capabilities were tested with Slurm, Snakemake, and Singularity technologies
and found to have parallelization capabilities that can be applied to projects that require
large processing capacities and data volumes and are limited by their applications that
do not have parallelization capabilities.

Glossary

• NumPy: Python language library used for the creation of vectors and matrices along
with the collection of mathematical functions.

• Python: High-level programming language for developing applications of all kinds.
• Container: Technology used for the encapsulation of projects (work environments).
• Docker: Open-source platform for managing and creating containers.
• Kubernetes: Open-source platform for container and microservices management.

References

1. Mölder, F., et al.: Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021)
2. How to Manage Workflow with Resource Constraint on HPC. https://www.sichong.site/wor

kflow/2021/11/08/how-to-manage-workflow-with-resource-constraint.html
3. GitHub smk-simple-slurm, smk-simple-slurm. https://github.com/jdblischak/smk-simple-

slurm
4. Slurm Workload Manager. https://slurm.schedmd.com/documentation.html
5. Snakemake. https://snakemake.readthedocs.io/en/v6.15.5/
6. Singularity. https://docs.sylabs.io/guides/3.6/user-guide/

https://www.sichong.site/workflow/2021/11/08/how-to-manage-workflow-with-resource-constraint.html
https://github.com/jdblischak/smk-simple-slurm
https://slurm.schedmd.com/documentation.html
https://snakemake.readthedocs.io/en/v6.15.5/
https://docs.sylabs.io/guides/3.6/user-guide/


232 F. de Jesús Orozco Luna et al.

7. Sokolov, S., Idiriz, O., Vukadinoff, M., Vlaev, S.: Scaling and automation in cloud deploy-
ments of enterprise applications. J. Eng. Sci. Technol. Rev. Special Issue on Telecommuni-
cations, Informatics, Energy and Management (2019)

8. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Association for Computing Machinery.
SIGCOMM Comput. Commun. Rev (2011)

9. Caragnano, G., et al.: Scalability of a Parallel Application in Hybrid Cloud. IEEE Computer
Society (2014)

10. Sarkar, S., Abdulla, P.P., Ramaswamy, S.: Analysis, evaluation, and assessment for con-
tainerizing an industry automation software. In: 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 1972–1979 2020. https://doi.org/10.1109/SMC
42975.2020.9282840

https://doi.org/10.1109/SMC42975.2020.9282840

	Functionality Testing in the Automation of Scientific Application Workflows in an HPC Environment
	1 Introduction
	2 Infrastructure Used
	3 Tools Used
	3.1 Slurm
	3.2 Singularity
	3.3 Snakemake

	4 Design of the Processing Flow for Testing
	5 Analysis of Possible Cases
	5.1 Running Python Script
	5.2 Running Python Script with SLURM and Singularity
	5.3 Running a Singularity Container with Snakemake Using SLURM
	5.4 Notes for Tables 2, 3 and 4

	6 Results of Executions
	6.1 Case 1:
	6.2 Case 2:
	6.3 Case 3:

	7 Discussion of Results and Conclusions
	7.1 Testing Time
	7.2 Duration of Tests
	7.3 What Limitations There Were
	7.4 Learning
	7.5 Conclusions and Benefits

	References




