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Abstract. RNA sequencing has become an increasingly affordable way
to profile gene expression analyses. Here we introduce a scientific work-
flow implementing several open-source software executed by Parsl par-
allel scripting language in an high-performance computing environment.
We have applied the workflow to a single-cardiomyocyte RNA-seq data
retrieved from Gene Expression Omnibus database. The workflow allows
for the analysis (alignment, QC, sort and count reads, statistics gen-
eration) of raw RNA-seq data and seamless integration of differential
expression results into a configurable script code. In this work, we aim
to investigate an analytical comparison of executing the workflow in Solid
State Disk and Lustre as a critical decision for improving the execution
efficiency and resilience in current and upcoming RNA-Seq workflows.
Based on the resulting profiling of CPU and I/O data collection, we
demonstrate that we can correctly identify anomalies in transcriptomics
workflow performance which is an essential resource to optimize its use of
high-performance computing systems. ParslRNA-Seq showed improve-
ments in the total execution time of up to 70% against its previous
sequential implementation. Finally, the article discusses which workflow
modeling modifications lead to improved computational performance and
scalability based on provenance data information. ParslRNA-Seq is avail-
able at https://github.com/lucruzz/rna-seq.
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1 Introduction

RNA-Seq is a recently developed approach to transcriptome profiling that uses
deep-sequencing technologies. In transcriptomics, the modeling, execution, and
analysis of RNA Sequencing (RNA-Seq) experiments represent a challenge for
managing the complexity and large volumes of biological and computational
data. Differential gene expression (DGE) analysis is one of the most common
applications of RNA-seq data, which allows for studying the behavior of a set of
transcripts of differentially expressed genes across two or more conditions, such
as a cell in a given physiological and developmental conditions or cancer. Despite
technological advances, we still face many challenges in producing high-quality,
reliable, and comparable DGE data [1].

Systems biology, omics technologies, artificial intelligence, machine learning,
data science, data mining, and high-performance computing develop biological
applications in RNA-Seq of differentially expressed genes from RNA-Seq and
functional enrichment results. In addition, there is still no universal methodol-
ogy that combines those approaches; then, bioinformaticians must develop their
scripts to call several different approaches in the same code. However, scripting
codes are not a guarantee that shows how large and complex RNA-Seq data
affects the computational performance of execution and the data analytics of
transcriptomic data.

Scientific workflows represent the flow of activities of an experiment [3], which
makes it possible to establish better modeling, execution management, and anal-
ysis that will reinforce the experiment’s reproducibility, reliability, and scalabil-
ity. Scientific Workflows Management Systems (SWfMS) based on the web, such
as Galaxy1 and Statistical packages of R and Bioconductor (EdgeR, DESeq2)
are used in DGE studies. Related to task automation, using distributed and
parallel languages or SWfMS such as Nextflow, Tavaxy, Kepler, Pegasus, Swift,
and Parsl are promising strategies [2].

The present work presents ParslRNA-Seq scientific workflow, its architec-
ture and the validated performance by computational analysis, and discussions
about transcriptomics DGE. The current implementation is composed of six
main activities, where the formal modifications have been made to use the new
update of the HTSeq program, which allows the partitioning of two input data
for distribution and parallel executions in multiples cores [4]. Executions of the
current implementation of ParslRNA-Seq reach a gain in computational time of
up to 70%. The high-performance computing (HPC) environment used our tests
is the Santos Dumont2 (SDumont) supercomputer.

The remainder of this manuscript is structured as follows. Section 2 presents
related works. Section 3 introduces terminology used throughout this paper.
Section 4 describes the experimental framework used to evaluate the performance
of the ParslRNA-Seq workflow algorithms. Section 5 describe the dataset, experi-

1 https://galaxyproject.org/.
2 https://sdumont.lncc.br/.

https://galaxyproject.org/
https://sdumont.lncc.br/
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ment setup and computational environment. Section 6 describes the performance
results of the workflow executions. Finally, Sect. 7 presents our conclusions

2 Related Works

Cruz et al. (2020) [4] traces the modeling and performance analysis of ParslRNA-
Seq executed in the SDumont environment. The analyses involve Parsl manage-
ment for the efficient use of two computational resources and a better exploration
of the Bowtie2 multithread parameter, which significantly improves workflow
performance. Other works for DGE analyses include the seveaseq pipeline man-
aged by scripts and second as our investigations executed serially. RSEM is a
package for identifying and quantifying transcripts in RNA-Seq analyses; it does
not use reference genomes, uses Bowtie2 and a RSEM algorithm to calculate
abundance; it was optimized in HPC environments.

WorkflowHub [13], an evolution of myExperiment, is a community framework
that provides a collection of tools for analyzing workflow execution traces and
simulating workflow executions. It follows an open-development model per FAIR
principles to facilitate the discovery and re-use of workflows in an accessible and
interoperable way. Galaxy is a web-based platform that features various RNA-
Seq workflows, with parallelization options integrated with Taverna (Tavaxy).
It is more similar to our ParslRNA-Seq, which has been intensively explored in
supercomputing environments. Among other tools, we have Tximeta, Salmon,
Sailfish, and featureCounts [5].

Bioworkbench [11] is a framework for collecting provenance and runtime
information from workflows implemented in the Swift parallel scripting system
[12], a predecessor of Parsl. The framework allows for executing queries on prove-
nance data and predicting total workflow execution time and storage space used
using machine learning techniques.

Wratten et al. [14] highlight the concepts that will become essential for data-
driven research and applications in high-throughput biology. They introduce
the advantages of workflow managers compared with traditional pipelines and
compare some of the existing approaches. They review pipeline repositories that
provide curated collections of pipelines to avoid re-implementing best-practice
analysis workflows.

3 Background on Differential Gene Expression Analysis

Next-Generation Sequencing (NGS) technology revolutionizes the field of
genomic and transcriptomic analysis due to massively large-scale sequencing.
The technique known as RNA-Seq is based on the analysis of the DGE using
statistical modeling tools of the data relating to the number of transcripts. RNA-
Seq studies have facilitated the study of alternative splicing, Single Nucleotide
Polymorphisms (SNPs), post-transcriptional modifications, and changes in gene
expression over time or between treatment groups or disease progression. DGE
analyses allow to elucidate the level of expression between different experimental
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conditions and establish whether there is a significant difference between them.
Conducting studies of DGE indicates the formalization of a flow of activities
that can be represented by the use of different software, being essential to verify
a biological correlation for the resulting statistical results.

The sequence alignment of transcriptomic data is the task of determining the
location in the reference genome that corresponds to each sequenced read. Given
a file with aligned sequencing reads and a list of genomic features, a common task
is to count how many reads map to each feature. DGE analysis is based in the
detection and counting of RNA-seq data. Count data are stored in a tabular form
with each sample related to the number of sequence fragments assigned to each
gene. An important analysis issue is the quantification and statistical inference
of systematic changes between conditions compared to variability within con-
ditions. The DESeq2 package provides methods for testing the DGE by using
negative binomial generalized linear models; the scatter and log shift estimates
incorporate past data-based distributions.

4 ParslRNA-Seq: Workflow for DGE Analysis

4.1 Improvements in the Previous Implementation of the Workflow

Bowtie2 and HTseq are software activities that respectively aligns and counts
sequencing reads and spend most of their time computing the CPU-bound pro-
cesses. We assume that exploring multithreading and multiprocessing thread
scaling in those critical activities are potential points for improvements the per-
formance of the workflow. Bowtie2 and HTseq are the most representative CPU
and time-consuming software of the workflow executed in SDumont and they
were the main focus in our case studies. DESeq2 analyzed the DGE from the
matrices of the counts of the alignment and the mapping of the sequences against
the reference genome. These arrays (GTF file) contain the number of reads that
were uniquely aligned (columns) with the exons of each gene in the samples
(columns).

The previous implementation of the workflow cited in [4] is the first tentative
of automating RNA-Seq processes in a structured scientific workflow. It was
modeled with Parsl and presents three activities Bowtie2, HTSeq, and DESEq,
as shown in Fig. 1(a). Parsl manages the execution of the script on clusters,
clouds, grids, and other resources; orchestrates required data movement; and
manages the execution of Python functions and external applications in parallel.
The Parsl library can be easily integrated into Python-based gateways, allowing
for simple management and scaling of workflows [8].

Bowtie2 calls a node and sets the “-p/–threads NTHREADS” performance
option that launches the number of parallel search threads to process each FastQ.
Bowtie2 threads option run on separate processors and synchronize the output
alignments, which increases the alignment throughput by approximately a mul-
tiple of the number of threads. Users can set “-p” to increase Bowtie2 memory
footprint making the execution highly parallel and the speedup close to linear
[6]. As Parsl scales to hundreds of threads better than single processed workflows
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or pipelined approaches, we raise three modes of execution calling both Bowtie2
and Parsl to better understand if there is some kind of competition in the call of
the numbers of threads by both of them. Our tests use: (a) The higher default
buffer threshold for serialization Parsl with the Bowtie2 multithread option. (b)
The Bowtie2 serial option with the Parsl multithread option. (c) The double
parallelization of both Parsl and Bowtie2 multithreads options.

4.2 Multithreading and Multiprocessing

Multiprocessing (MP) is a system with more than one or two processors that
assigns separate memory and resources for each of the processes. Multithread-
ing (MT) is a program execution technique that allows a single process to have
multiple code segments; then helps to create multiple threads inside a single pro-
cess to increase computing throughput. We detect that modifications in some
ParslRNA-Seq activities (mainly Bowtie2 and HTseq) can be exploited as poten-
tial points to MT or MP thread scaling, as they can increase the computing speed
of the system.

The ParslRNA-Seq workflow code3 shows the software command lines. While
Bowtie2 creates MT processes, HTSeq “–nprocesses” (MP argument) only works
to process different BAM files in parallel, i.e., htseq-count on one file is not
parallelized. For instance, let us consider the following context in our ParslRNA-
Seq processes. While we focus on making the best use of threads in a single
process, an alternative is to run multiple simultaneous processes, possibly with
many threads each. ParslRNA-Seq consumes six input FastQs, each deployed in
parallel in an independent node.

For each node, Bowtie2 sets the performance option “-p/–threads
NTHREADS” to launch the number of parallel search threads (default: 1) to
process each FastQ. The threads will run on separate processors/cores and
synchronize when parsing reads the output alignments, increasing alignment
throughput by approximately a multiple of the number of the threads (linearly).
The Split Picard’s option “SplitSamByNumberOfReads” splits an input query-
grouped SAM or BAM file into multiple (e.g., 24) BAM files while maintaining
the sort order to parallelize alignment. The HTSeq “–nprocesses” processes those
BAM files.

MP can suffer from load imbalance as some batches take longer to execute
than others, and the job’s duration is determined by the longest-running batch.
Merge HTSeq suffers this impact whereby some lock-holding threads are slow
to finish their works (and release the lock) due waiting threads are using its
resources. Finally, DESeq2 should wait for Merge HTSeq finishes to be executed.

4.3 The Current Implementation of the ParslRNA-Seq Workflow

Bowtie2 multithreading was provided in the previous implementation of work-
flow; still with more improvements, we’ll get to explore HTSeq in the current

3 https://github.com/lucruzz/RNA-seq/blob/master/RNA-seq.py.

https://github.com/lucruzz/RNA-seq/blob/master/RNA-seq.py
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workflow implementation. HTSeq executes as default each file in an entire node,
yet files are not parsed and no MT or MP strategies for execution were applied.
The insertion of extra activities was required in the ParslRNA-Seq workflow
modeling to (1) parse a SAM file in 24 blocks; (2) pass HTSeq the execution of
a task for each SAM block in a thread; (3) manage the parallel distribution of
tasks in CPU cores, applying in MP and MT approaches performed by Parsl.

The current implementation of the ParslRNA-Seq workflow presented
in Fig. 1(b) is composed of six activities, including Sort, Split Picard, and
Merge HTSeq that aim to improve performance over HTSeq. ParslRNA-Seq
receives as input the reference genome of Mus musculus, the GTF (Gene Transfer
Format) file with genomic metadata, and the sequencing files in FASTQ format.
A CSV format file was created to relate the FASTQs and the experimental
conditions: three control FASTQs and three Wnt condition FASTQs (Wingless
pathway, Wnt transcriptional signaling metabolic pathway).

Fig. 1. Conceptual modeling of the scientific workflow ParslRNA-Seq.

Activity 1 runs the program Bowtie2 which maps and compares the genome
readings character by character. Activity 2 runs the program Samtools version
1.10 which sorts the readings. Activity 3 runs the program Picard version 2.25.0
used for manipulation and division of read files. Activity 4 runs the HTSeq
program htseqcount from HTSeq version 0.13.5 to count the number of reads
mapped by each gene. With n read files mapped, HTSeq sends each one to
n cores, generating a single output file with n + 1 columns, where the first
column represents the gene and the other columns represent counts performed
on each file. Activity 5 (HTSeq-Merge) is a script in Python that merges the
data generated by running HTSeq multicore, joining all the counts performed in
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a single column. Activity 6 runs the DESeq2 package that applies DGE statistics
on the experimental conditions.

5 Methods and Infrastructure

5.1 Experiment Dataset

Maladaptive cardiac remodeling has been reported in the activation of the evo-
lutionarily conserved Wnt pathway but the function of Wnt-transcriptional acti-
vation in the adult heart is yet unknown. RNA was isolated from mice cardiac
tissue and RNA libraries were prepared for sequencing using standard Illumina
protocols. The data belongs to a real RNA-Seq experiment4, extracted from the
public repository, Gene Expression Omnibus5 (GEO) database. Data was divided
into: (1) the control group: SRR5445794, SRR5445795, SRR5445796 and (2) the
Wnt pathway condition group: SRR5445797, SRR5445798, SRR5445799. The
organism is Mus musculus and the GEO.ID is GSE97763 (Illumina HiSeq 2000
Platform - Mus musculus). Sequence reads were aligned to the mouse reference
assembly (UCSC version mm9) using Bowtie2. For each gene, the number of
mapped reads was counted using htseq-count and DESeq2 was used to analyze
the DGE. Mus musculus GEO.ID is GSE97763 [7].

5.2 Experiment Setup

The transcriptomics software used in experiments are Bowtie26 program, Sam-
tools7 program version 1.10, Picard8 program version 2.25.0, HTSeq9 framework
version 0.13.5 with the htseq-count script, HTSeq-Merge Python homemade-
script, and DESeq210 package. All software, libraries and dependencies, Parsl and
Python components, Intel VTune Profiler11, and Darshan12 tool were deployed
at the top of the Santos Dumont environment.

5.3 Computational Environment Setup

The SDumont is among the 500 most powerful machines in the world. It has a
processing capacity of 5.1 Petaflop/s, with 34,688 multi-core CPUs distributed in
1,132 computational nodes that are interconnected by an Infiniband FDR/HDR
interconnect network. The compute nodes have two Ivy Bridge Intel Xeon E5-
2695v2 CPUs (12c @2.4 GHz) and 64 Gb of RAM and an Nvidia K40 GPU. The
4 https://sfb1002.med.uni-goettingen.de/production/literature/publications/201.
5 https://www.ncbi.nlm.nih.gov/geo/.
6 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml.
7 http://www.htslib.org/doc/samtools.html.
8 http://broadinstitute.github.io/picard/.
9 https://htseq.readthedocs.io/.

10 https://bioconductor.org/packages/DESeq2/.
11 http://intel.ly/vtune-amplifier-xe.
12 https://www.mcs.anl.gov/research/projects/darshan/.

https://sfb1002.med.uni-goettingen.de/production/literature/publications/201
https://www.ncbi.nlm.nih.gov/geo/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.htslib.org/doc/samtools.html
http://broadinstitute.github.io/picard/
https://htseq.readthedocs.io/
https://bioconductor.org/packages/DESeq2/
http://intel.ly/vtune-amplifier-xe
https://www.mcs.anl.gov/research/projects/darshan/
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executions were performed on compute nodes of two Intel Xeon E5-2695v2 Ivy
Bridge CPUs, 24 cores (12 per CPU) and 64 GB of RAM. Software, algorithms,
bioinformatics dependencies of Bowtie2, Samtools, Picard, HTSeq, DESeq2 and
Parsl components were installed in the SDumont environment.

6 Experimental Results

This section analyzes the experimental results depicting workflow performance
and scalability in the SDumont supercomputer environment. Besides the com-
putational results, we also present some biological data showing the breakdown
of RNA-Seq data, DGE analysis, and Multidimensional Scale Analysis.

6.1 Performance and Scalability Analyses

In order to understand workflow performance and scalability, Fig. 2 presents the
execution time of different workflow versions (previous and current implemen-
tations), where we vary each execution from one to 24 threads in the SDumont
environment. Although there is no substantial performance gain when increasing
the number of threads beyond 12, we observe a noteworthy gain with the newly
executed implementations depicted below.

Performance of the previous workflow implementation: improvements
with Bowtie2. The Bowtie2 task implemented employs one of the three follow-
ing strategies. (a) The higher default buffer threshold for serialization Parsl with
the Bowtie2 multithread option. (b) The Bowtie2 serial option with the Parsl
multithread option. (c) The double parallelization of both Parsl and Bowtie2
multi-threads option. Using n number of threads of Parsl and n number of
threads of Bowtie2 led to a double parallelization.

Option (c) performs better than other strategies, and the Total Execution
Time (TET) decreased from 643 min (1 node) to 75 min (6 nodes), which refers
to 88.34% of improvement in terms of TET and 8,57 of speedup-after that,
increasing the number of nodes does not show a significant improvement in
TET. The double parallelization in both Parsl and Bowtie2 in Option (c) was
the chosen strategy to be coupled into the current implementation of ParslRNA-
Seq workflow.

Performance of current implementation of the ParslRNA-Seq work-
flow: Improvements with HTSeq. The workflow calls the most up-to-date
version of the HTSeq activity that allows the multicore parallelization of inputs.
Each entry was partitioned into 24 sub-entries so that each sub-entry was allo-
cated and executed on a single SDumont CPU core. This strategy decreased
the computational time of this activity from 305.3283 to 30.4161 min, represent-
ing approximately 90% of improvement in terms of TET and 10,03 of speedup
(Table 1). The other activities of the workflow did not present any execution bot-
tlenecks. Bowtie2 and Samtools use multi-threads parameters; besides Picard,
HTSeq-Merge and DESeq are low-time and computationally expensive.
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Fig. 2. Scalability of the previous implementation of the workflow with three activities.
Performance is based on Bowtie2 TET in minutes.

Table 1 presents the results of serial execution of ParslRNA-Seq. Both
ParslRNA-Seq versions, previous and current, were executed with the same con-
figuration of libraries, software, number of cores, and type of CPU architectures.
The TET of the previous workflow implementation was 326.07 min compared to
the TET of 95.64 min of the current workflow implementation, representing a
decrease in the TET of 70.67%. This result demonstrates that the gain is three
times greater, even with the inclusion of the three activities: Sort, Picard, and
HTSeq-Merge. Only, HTSeq improvements in ParslRNA-Seq of up to 90, 04%
decreased the TET from 305,33 to 30,42 min in 24 cores.

Table 1. Total Execution Time in minutes of the previous and current implementation
of the ParslRNA-Seq workflow.

Workflow Bowtie2 Sort Split HTSeq Merge DESeq TET

Previous implementation 19,27 – – 305,33 – 1,48 326,07

Current implementation 5,88 38,56 30,42 0,04 95,64

6.2 I/O Performance Results Using Darshan

The workflow was executed with the Darshan profiler to investigate the I/O
behavior of each step. Figure 3 presents the distribution of step execution time—
Bowtie2 on the top and Sort on the bottom—with two input sizes: 1.8 and 3 GB.
Each bar plot presents the percentage of that step’s execution time spent on each
activity: POSIX read (in read, on the bottom of each bar), write (in green, in
the middle), and others (in pink, on the top). The other steps—HTSeq, Split,
DESeq2, and Merge HTSeq—were omitted because they spent less than 10% of
their time doing I/O. For both applications, increasing the input size increases
the proportion of the execution time spent on I/O. That indicates that the I/O
limits the scalability of these codes: as more data is treated, most time is spent
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on I/O, and thus the CPU-focused optimizations presented earlier may have less
impact on performance [9,10].

Fig. 3. Distribution of execution time of Bowtie2 and Sort, by activity, as reported by
Darshan. (Color figure online)

I/O Analysis for Bowtie2. Changing the input from 1.8 to 3 GB increases
the run time from 152 seconds (80% on write operations) to 263 seconds (90%
on writes). This increase was only due to I/O, with the write time increasing
practically linearly with the input size. The output size was 6 and 11 GB.

I/O Analysis for Sort. Time increased from 41 s (5% on reading and 15% on
write operations) to 91 s (70% on reads and 10% on writes). While the writing
time remained relatively constant (output size was 657 MB and 1.1 GB), the
reading time of Sort increased over 30 times by doubling the input size, which
indicates the reading portion of this code is a limiting factor for its performance.

HTSeq, Split, DESeq2, and Metge HTSeq spend less than 10% of their
time in I/O.

6.3 Performance Results Using SSD

To further improve the ParslRNA-Seq workflow’s performance, we select the two
most I/O intensive workflow tasks (Bowtie2 and Sort) as targets for improve-
ments. Usually, all intermediate files, that are created by one task and consumed
by the following one, are written to Lustre. Hence we decided to write inter-
mediate files to Solid State Drive (SSD) storage devices, available in each of
SDumont’s compute nodes, instead.
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We investigated different strategies for doing this, such as (i) to decouple the
DESEq activity from the workflow since it gets only executed after the Merge
activity has processed all data. The next was (ii) to use, in an isolated way, a
compute node (and its SSD) to execute a workflow pipeline, now composed of:
Bowtie2, Sort, Split, HTSeq, and Merge. In this way, the input data is copied
from the Lustre to the SSD, and the workflow pipeline is executed only after
that. When the pipeline execution finishes, the output data is copied back to
Lustre. In this way, all raw I/O goes through the SSD during all tasks that
present relevant I/O times (Fig. 4).

It should be noted that the DESEq activity will read data from Lustre and
is still dependent on completing all launched pipelines. However, in distributed
parallelism, the dependency is on the pipeline processing the most significant
data. For this reason, in Fig. 4 two pieces of information are presented: one
about the execution doing I/O to the SSDs and the other using Lustre.

Fig. 4. Modelling of the current implementation of the ParslRNA-Seq workflow for
I/O executions in SSD and Lustre.

Comparatively, in Table 2, which disregards the copy time, the execution
time of the workflow decreased on average from 17 minutes to 15 minutes when
using the SSDs for the intermediate files. This shows this idea of using node-local
storage to avoid accessing the parallel file system is a promising one. Another
approach, under development, is to not make copies from Lustre to the SSD and
vice versa, but to have the Bowtie2 activity reading directly from Lustre and
the Merge writing its output directly to the remote file system as well (while
keeping the intermediate files in the SSDs).

6.4 Biological Results of RNA-Seq Data

The results of the analysis for the selection of differentially expressed genes
under DESeq2 are presented in Fig. 5 (MA-Plot), Fig. 6 (MDS graph), and Fig. 7
(heatmaps). The comparative analyses of the Figures demonstrate that there is
no evidence of difference in biological results obtained with the execution of the
previous or current implementations of the ParslRNA-Seq workflow.
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Table 2. Total execution time of the current implementation of the ParslRNA-Seq
workflow in SSD and Lustre.

Executions using SSDs

File Size (GB) Total execution time (min) Avg. Std. dev.

SRR5445797 1.8 10,07 10,03 10,08 10,20 10,08 10,09 0,06

SRR5445796 3.0 15,86 15,90 15,58 15,70 16,12 15,83 0,20

Executions using lustre

File Size (GB) Total execution time (min) Avg. Std. dev.

SRR5445797 1.8 11,62 12,08 11,95 12,07 11,57 11,86 0,25

SRR5445796 3.0 17,60 17,40 17,77 17,77 17,63 17,63 0,15

Fig. 5. Average normalized of the log2foldChange gene/change counts.

DGE Analysis. DESeq2 uses the Negative Binomial probabilistic model for
normalization to perform GDS analyses. DESeq2 normalizes data by estimating
sample size and dispersion, fits data to a negative binomial Generalized Linear
Model (GLM), and verifies the GDS using Wald’s parametric test. DESeq2 calcu-
lates the functions baseMean (average of normalized readings); log2foldChange
(proportion of readings as a function of log2); lfcSE (standard error); stat
(Wald); pvalue and padj (adjusted p and p values from DE transcripts).

In Fig. 5, the differentially expressed genes appear in red and the others in
black. Some considerations are: (1) There will be differentially expressed genes
(in red) above and below the line that delimits the log2foldChange values. The
genes above had more counts in the Control condition than in the Wnt condition,
and the points below the opposite. (2) The higher the average counts (further
to the right of the graph), the differentially expressed genes will be closer to the
limit line, influenced by log2foldChange, that the higher the averages, although
they are different, the logarithm will be less different and therefore the threshold
for determining that a gene is differentially expressed will be lower. (3) There
is a tendency for there to be no differentially expressed genes to the left of the
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graph. The further to the left of the graph, the lower the counts observed for the
genes, and when there are almost no counts, almost no difference can be shown.

MA-Plot plots the average of the normalized readings of each gene against
the log2 of the doubled change (Fig. 5). Points corresponding to genes identified
as differentially expressed (adjusted p value less than 0.05) are highlighted in red.
Points outside the window are plotted as open triangles pointing up or down,
depending on whether the value of logFC is greater than 2 or less than −2,
respectively.

Multidimensional Scale Analysis (MDS Graph). It is a multivariate tech-
nique that allows visually analyzing the proximity between samples from the
same study, placing them in certain dimensions. In an MDS plot, the first dimen-
sion represents the magnitude of the initial change that best separates the sam-
ples and therefore explains the greatest proportion of variation in the data. The
MDS plot of Fig. 6 shows the relationship between samples to detect GDS. What
is most striking in the graph is the separation between the two groups. The Wnt
samples (in red) are generally with higher positive values on the X-axis than
the samples in the control group (in blue). The approximation between some
groups may be due to effects such as the gender of the mouse (male/female),
but without affecting the general condition of the experiment.

Fig. 6. Multidimensional scale of distances from the relationship between samples.(a)
Previous workflow implementation. (b) Current workflow implementation. (Color figure
online)

Heatmaps. The dendrogram in Fig. 7 allows viewing the grouping of samples
based on a hierarchical group along with the expression levels of individual genes.
The variance in each of the lines of the log2−CPM matrix was previously calcu-
lated and the number of genes to be displayed was established. The selection of
the 1000 most variable genes grouped the samples according to the experimental
group. The overexpressed genes are represented in red, downregulated genes in
blue, and the white color indicates the absence of expression change. Each row
of the grid represents a gene and each column a sample.
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Fig. 7. Heatmaps of the 1000 most variable genes. (Color figure online)

7 Conclusion

In this work, we have presented a real-world workflow analysis for data-intensive
transcriptomics applications to enable performance optimization of HPC sys-
tems. We introduce a current implementation of the ParslRNA-Seq workflow
tailored to the needs of tracking a workflow execution and identifying potential
issues to improve performance. Our experiments demonstrate that this optimized
workflow can accurately orchestrate computation resources, helping to pinpoint
relevant metrics to help identify performance problems. Our results show per-
formance improvements of up to 70.67% from 326.074 min with the previous
implementation of the ParslRNA-Seq workflow to 95.64 min with the current
implementation of the ParslRNA-Seq workflow, both executed in 24 cores. This
result demonstrates that the gain is three times greater, even with the inclusion
of the three activities: Sort, Picard, and HTSeq-Merge.

Additionally, we characterized the Bowtie2 improvements in the previous
implementation of the ParslRNA-Seq workflow of up to 88.34% decreased the
TET (8,57 of speedup) from 643 min (1 node) to 75 min (6 nodes) with a double
parallelization option. HTSeq improvements in the current implementation of the
ParslRNA-Seq workflow of up to 90, 04% decreased the TET (10,03 of speedup)
from 305,33 to 30,42 min in 24 cores. Further, we characterized the I/O behavior
of the workflow components, identifying I/O problems in two of them, which
will be the focus of future optimization efforts.

The next steps involve performance analyses of massive (terabytes datasets)
RNA-Seq data in parallel and distributed executions of the optimized ParslRNA-
Seq. The code will be made available to the scientific community through sci-
entific gateways as Bioinfo-Portal13, hosted at LNCC, aimed at strengthening
research in the bioinformatics community.

13 https://bioinfo.lncc.br/.

https://bioinfo.lncc.br/
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