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Abstract. Seismic imaging techniques based on two-way wave equa-
tions are computationally and data-intensive activities in the oil and
gas industry. For instance, Reverse Time Migration (RTM) migrates a
set of SEG-Y format data from the disk called a seismogram. Besides,
during execution, the RTM application needs to store the forward-
propagated wavefield (or source wavefield) on disk to build the final
seismic image. Storing the source wavefield for multiple RTMs execut-
ing in parallel is even more challenging because the storage capacity can
reach tens of Terabytes of information. Aiming to mitigate the storage
demand, we develop a 3-D RTM with source wavefield reconstruction.
The source wavefield is reconstructed by introducing a new wave equa-
tion to the problem and adjusting the initial and boundary conditions
to take advantage of random boundary conditions’ (RBC) properties.
The RBC does not suppress unwanted waves coming from the artificial
boundary enabling full wavefield recovery. We also develop a hybrid Ope-
nACC/MPI implementation for the 3-D RTM on a multi-GPU machine.
We test the RTM implementation on the 3-D HPC4E Seismic Test Suite.
The numerical experiments show that the OpenACC/MPI 3-D RTM,
which implements the wavefield reconstruction, presents the best execu-
tion times and hard disk demands.

Keywords: High performance computing · Reverse time migration ·
Wavefield reconstruction and OpenACC/MPI implementation

1 Introduction

Reverse Time Migration (RTM) is a depth migration technique that provides a
reliable high-resolution representation of the Earth subsurface, useful for seismic
interpretation and reservoir characterization [26]. RTM is based on the two-way
wave equation and an appropriate imaging condition. Generally, the two-way
wave equation is solved by numerical methods such as the Finite Difference
Method (FDM) and the Finite Element Method (FEM). Besides, imaging con-
ditions need the computational implementation of the forward-propagated wave-
field (or source wavefield) for further access in reversal order to build the seismic
image.
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Advances in wave propagation algorithms and wavefield storage develop-
ments, and hardware acceleration implementations are some of the main chal-
lenges concerning RTM [26]. For instance, the most effective non-reflecting
boundary condition, Perfectly Matched Layer (PML), demands additional par-
tial differential equations (PDEs) to be solved on artificial layers around the
domain [9,17] to deal with unwanted reflections due to truncated domains. A way
to overcome this issue is to use the random boundary conditions (RBC) proposed
by [6]. Thus, instead of suppressing unwanted waves by inserting new equations
into the problem, the methodology proposed by [6] is based on exploring low
correlations with non-coherent signals coming from an artificial boundary with
random velocities. On the other hand, the source wavefield in the RTM technique
is a bottleneck due to the amount of information that has to be stored on a disk
to build the imaging condition [26]. Strategies to diminish input/output (I/O)
related to the source wavefield storage or its reconstruction are presented by
[1,5–7,13,16,22,23]. Among them, [22] presented two strategies to reduce data
storage, where one is based on the Nyquist sampling theorem, and the second
one uses a lossless compression algorithm. In this sense, [1] studied the numerical
impact of applying lossless and lossy compression to the RTM source wavefield.
They show that the careful use of high levels of data compression can signifi-
cantly reduce the storage demand without hampering the final seismic images.
However, instead of storing the wavefield, its reconstruction is a viable possibil-
ity. This can be done by checkpoint methods [7,23], using wavefield recording
around the boundary [5,16], or by initial value reconstruction (IVR) [6,13,16].

Independent of the RTM implementation strategy, all can use HPC tech-
niques to boost their performance. [18] implemented the seismic modeling and
RTM on single and multi-GPUs using a hybrid MPI+OpenACC approach aiming
to develop portable high-level directive-based codes across heterogeneous plat-
forms for seismic imaging applications. [20] evaluated three different computa-
tional optimizations based on multicore and GPU architectures and investigated
their codes’ performance, energy efficiency, and portability. Nevertheless, the
storage demand issue remained in the RTM-based GPU implementations pre-
sented by the earlier research. For this, [15] implemented the RTM with RBC
to diminish the storage demand in migration algorithms showing that such a
strategy is beneficial for GPU implementations. The GPU computational imple-
mentation with the RBC technique was coded in CUDA and tested only for
2-D RTM applications. For 3-D environments, [2] developed a wave propagation
modeler and a RTM algorithm exploring the main RBC characteristics. It was
shown that RTM with RBCs performs better on vector processors and GPU
machines than CPU platforms.

In this context, we developed an RTM approach for 3-D environments that
explore the main characteristics of the RBC to mitigate calculations on the arti-
ficial boundaries and enable the source wavefield reconstruction. The RTM with
wavefield reconstruction takes advantage of the RBC’s non-dissipative energy
property and implements the IVR technique to build the imaging condition with
minimum storage. Our implementation is particularly suited for GPUs because
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we eliminate the need for storage for the whole source wavefield. We present
the computational times and disk storage results for two algorithmic choices
(with and without IO) in two different computational platforms: a CPU clus-
ter and a CPU-GPU cluster. We show that our computational implementations
are efficient, scalable, and portable with minimum interference on the optimized
baseline code.

The remainder of the work is organized by introducing the RTM mathe-
matical background in Sect. 2. Section 3 details the computational implemen-
tation along with optimizations for the NVIDIA V100 platform. In Sect. 4, we
present numerical experiments, where we expose the execution time require-
ments, speedups, and hard disk demand for each computational implementation,
as well as the RTM outcomes (seismic images). The paper ends with a summary
of our main findings in Sect. 5.

2 Reverse Time Migration

Reverse Time Migration (RTM) is a depth migration technique based on the
two-way wave equation, and an imaging condition [26]. Solving the wave equa-
tion twice to build the imaging condition is necessary. The first solution, called
forward-propagated wavefield (source wavefield), can be obtained by solving the
equation:

∇2p (r, t) − 1
v2 (r)

∂2p (r, t)
∂t2

= f (rs, t) , (1)

where, p is the pressure, v the velocity for the compressional wave, r the spatial
coordinates, t the time in [0, T ], and f (rs, t) the seismic source at the position
rs. The pressure p is defined in a domain Ω ⊂ R

3. The second-order differential
equation (1) needs initial and boundary conditions. A natural initial condition
is to define p (r, 0) = ∂p (r, 0) /∂t = 0 for r ∈ Ω. Lastly, we set p (r, t) = 0 on
∂Ω ∈ R

2, where ∂Ω is the domain boundary.
The second solution is obtained by solving the following equation:

∇2p̄ (r, τ) − 1
v2 (r)

∂2p̄ (r, τ)
∂τ2

= s (rr, τ) , (2)

where, p̄ is the backward-propagated wavefield (receiver wavefield), s (rr, τ) is the
seismogram recorded at the receivers positions rr, and τ = T − t is the reversal
time evolution defined as in [8], where τ ∈ [0, T ]. p̄ is also defined in Ω ⊂ R

3,
and corresponding initial, and boundary conditions should be set. Once we have
the source and receiver wavefields, the imaging condition can be calculated as:

I (r) =
∫ T

0
p (r, t) p̄ (r, τ) dt
∫ T

0
[p (r, t)]2 dt

, (3)

where I (r) is called source-normalized cross-correlated imaging condition. The
source-normalized cross-correlation image in Eq. (3) has the same unit, scaling,
and sign of the reflection coefficient [26].
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3 Computational Implementation and Optimizations

Our RTM implementation employs the explicit Finite Difference Method (FDM)
to solve the acoustic wave equation. The finite difference stencil for Eqs. (1) and
(2) are 8th-order in space and 2nd-order in time. Thus, the numerical discretiza-
tion leads to the discrete version of the velocity field, source wavefield, receiver
wavefield, seismic source, and seismograms represented by the vectors v, p, p̄,
f , and s, respectively. For the 3-D case, the vectors v, p, p̄ have the dimension
N = Nx × Ny × Nz, where Nx, Ny and Nz are the number of grid points in
each Cartesian direction. On the other hand, the seismogram is a vector of size
Nrec × (Nt + 1), where Nrec is the number of receivers, and Nt = T/Δt, with
Δt the time step. Lastly, the seismic source f has dimension Nt for each shot.

3.1 Classical Reverse Time Migration

Algorithm 1 presents the RTM implementation, which is one of the simplest
ways to build the cross-correlated imaging condition. The colors in Algorithm 1
stand for host computations (black), data transfer (blue), and GPU calculations
(red), which will be better explained in Sect. 3.3. The RTM needs as inputs a
velocity field, a seismic source, and a set of seismograms, {s1, · · ·, sNshots

} that
contains information about the medium reflectivity. The computation of the
imaging condition uses the source and receiver wavefield solutions to build the
migrated seismic section that stacks the partial results over time

(
I∑

nτ

)
, and

over the number of seismograms
(
I∑

shot_id

)
. We compute the source wavefield

by solving the wave equation with the independent term being the seismic source
and storing it in disk for further access (step 10 in red). On the other hand,
the recorded seismograms induce the computation of the receiver wavefield. At
the end of Algorithm 1, we obtain the discrete seismic image I ∈ R

N , where
the amplitude variations represent physical properties changes. Both source and
receiver wavefields can be obtained by solving the wave equation propagation
over a temporal loop (the inner loops of Algorithm 1 - lines 7 and 14) for each
shot_id (loop in line 4). The shot refers to the seismic source that starts the
wave propagation, and each one is localized in the domain represented by the
finite-difference grid.

A computational implementation of absorbing boundary conditions (ABCs)
leads to non-spurious reflections on the truncated domain. Among the several
options in the literature, the Convolutional Perfectly Matched Layer (CPML)
[9,17] and the damping factors for plane waves introduced by [4] are the most
common. Although unusual in wave propagation simulation studies, the RBCs,
first introduced by [6], can also be employed in seismic imaging methods based
on the two-way wave equation, such as the RTM and FWI [5,6,13,16].

3.2 Reverse Time Migration with Wavefield Reconstruction

Storing and accessing the source wavefield into and from the hard disk is com-
putationally demanding. For instance, the disk requirements to store the source
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Algorithm 1. Reverse Time Migration
Require: v, {s1, · · ·, sNshots}, and f
1: function rtm( vector v, vectors {s1, · · ·, sNshots}, vector f )
2: read v, f , and {s1, · · ·, sNshots}
3: initialize image condition I∑

shot_id = 0
4: for shot_id = 1 to Nshots do
5: initialize nt = 0
6: apply initial conditions for it = 0
7: for it = 1 to Nt do
8: nt = nt + it ∗ Δt
9: solve equation (1) � source wavefield

10: store pnt for all nt

11: end for
12: read sshot_id

13: initialize nτ = 0, and I∑
τ = 0

14: apply initial conditions for iτ = 0
15: for iτ = 1 to Nt do
16: nτ = Nt − (nτ + iτ ∗ Δτ) � reverse time
17: read pnτ

18: solve equation (2) � receiver wavefield
19: calculate I∑

nτ = I∑
nτ + (pnτ p̄nτ ) / (pnτ pnτ ) � imaging condition

20: end for
21: stack I∑

shot_id = I∑
shot_id + I∑

nτ � stacking
22: end for
23: I ← I∑

shot_id

24: store I
25: end function

wavefield propagation for the 3-D case is 4 × Nshots × Nt × N Bytes, where the
value 4 stands for single precision representation of a real number. Considering
a hypothetical scenario of the wavefield propagation in a grid of 200× 200× 200
grid points during 6.0 s step-wised of 0.5 ms leads to a disk storage demand of
≈ 178.81 GB per shot. Executing the same example in parallel considering 20
shots elevates the disk requirements to 3.5 TB.

Although compression techniques [1,10,11,14], decimation strategies based
on the Nyquist theory [22,25] and checkpoint methods [23] reduces persistent
storage, applications of RTM for large scale for frequencies up to 20.0 Hz is still
challenging [19]. Another way to overcome this issue, explored in this work, is
to reconstruct the wavefield from information generated during the first RTM
part, that is, forward wave propagation [16]. To reconstruct the source wavefield,
we implement the IVR methodology first explored by [7] and [23]. The IVR
proposed by [23] stores temporary states of the wavefield known as checkpoints.
Such states are after used for recursive re-computations of the source wavefield.
The complete reconstruction of the wavefield can be achieved by keeping all
energy in the system. However, unwanted signals come from the boundary due
to the absence of attenuated layers in truncated domains. This issue can be
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circumvented by generating incoherent signals coming from the boundary, as
explored in [6], by introducing boundaries with randomized velocities.

The RBC proposed by [6] is based on the idea that what matters for the cal-
culation of the RTM imaging condition is the coherent reflections coming from
the boundaries. Thus, [6] proposed to introduce a random component to the
velocity field at the boundaries. Notice that the random velocity field has to
respect the numerical stability constraint of the FDM. It is expected that the
random source wavefield coming from the boundaries does not coherently cor-
relate with the receiver wavefield. Besides, a smoother transition from the inner
domain to the boundaries is ideal. The smooth transition will avoid unwanted
immediate reflections of the randomized area. One way to build a smooth tran-
sition area is by multiplying coefficients ci to the random vector velocity v in
the normal direction to the boundaries, where the index i ∈ [1, · · ·, Na] with Na

been the boundary thickness size. The coefficients are responsible for decreasing
down the velocities values, and [21] suggested the values computed by linear and
Gaussian functions.

Further, this strategy does not impose an extra cost on the wave equation
calculation. An alternative way to avoid coherent signals coming from the bound-
aries is presented by [13], where they used an extra viscoacoustic wave equation
in the boundaries to attenuate the wavefield. In this work, we employ the strategy
presented in [21]. Details of the RBC algorithm can be observed in [6]. Here, we
will describe the modifications for Algorithm 1 aiming to eliminate the storage
requirements of the forward-propagated wavefield.

First, we need a third second-order wave equation as follows:

∇2pR (r, τ) − 1
v2 (r)

∂2pR (r, τ)
∂τ2

= 0, (4)

where pR is the reconstructed source wavefield defined in Ω ⊂ R
3. Boundary

conditions can be set as Eqs. (1), and (2), that is pR (r, t) = 0 on ∂Ω. Lastly, the
initial conditions are set as pR (r, 0) = p (r, T ), and ∂pR (r, 0) /∂t = ∂p (r, T ) /∂t
after solving Eq. 1, and τ = T − t is the reversal time.

Algorithm 2 details the RTM that implements the source wavefield recon-
struction. Again, the color pattern represents the host computations (black),
data transfer (blue), and GPU calculations (red), which will be better explained
in Sect. 3.3. We use the vector pR to represent the finite difference discretization
of Eq. (4). The first part of the RTM with wavefield reconstruction calculates the
source wavefield, and the last two instants of the wavefield are stored (line 11).
After reading the stored wavefield instants, the second part of the algorithm,
that calculates the receiver wavefield, also computes the reconstruction of the
source wavefield pR by solving Eq. (4). Thus, the modified algorithm stores only
two source wavefield panels instead of all panels for each nt. This strategy comes
with the additional cost of solving one extra wave equation.
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Algorithm 2. Reverse Time Migration with Wavefield Reconstruction
Require: v, {s1, · · ·, sNshots}, and f
1: function rtm( vector v, vectors {s1, · · ·, sNshots}, vector f )
2: read v, f , and {s1, · · ·, sNshots}
3: create a RBC as Algorithm 2 from [6]
4: initialize image condition I∑

shot_id = 0
5: for shot_id = 1 to Nshots do
6: initialize nt = 0
7: apply initial conditions for it = 0
8: for it = 1 to Nt do
9: nt = nt + it ∗ Δt

10: solve equation (1) � source wavefield
11: store pnt for Nt−1, and Nt

12: end for
13: initialize nτ = 0, and I∑

τ = 0
14: read sshot_id

15: read pNt , and pNt−1

16: apply initial conditions for iτ = 0
17: for iτ = 1 to Nt do
18: nτ = Nt − (nτ + iτ ∗ Δτ) � reverse time
19: solve equation (2) � receiver wavefield
20: solve equation (4) � wavefield reconstruction
21: calculate I∑

nτ = I∑
nτ +

(
pR

nτ
p̄nτ

)
/

(
pR

nτ
pR

nτ

)
� imaging condition

22: end for
23: stack I∑

shot_id = I∑
shot_id + I∑

nτ � stacking
24: end for
25: I ← I∑

shot_id

26: store I
27: end function

3.3 Hybrid OpenACC/MPI Implementation

The GPU programming model based on OpenACC directives aims to provide an
easier way for scientific applications coding [12,18]. Besides, compared to CUDA
and OpenCL, OpenACC programming demands less coding efforts in heteroge-
neous environments with CPU+GPU [18,20]. The OpenACC implementation
deals with three main issues: CPU (host) calculations, GPU calculations, and
communications to and from the GPU. Thus, any computational implementation
must maximize the GPU computations and prevent communications between the
host and GPU.

Algorithm 1 also details the host and GPU calculations and the communi-
cation between them. Notice that we use three different colors to represent the
host computations (black), data transfer (blue), and GPU calculations (red).
The first operations made by the host are data allocation followed by disk read-
ing and storage of the velocity field and seismic source information in the vectors
v, and f . These steps are represented in line 2 of Algorithm 1. Lines 8 and 9
show the GPU operations for the wave equation calculation once the necessary
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information is transferred and allocated. Line 10 shows that the source wavefield
needs to be moved during its calculation from the GPU to the host to be stored
on the disk. In general, storing the source wavefield in a disk is needed because
the GPU memory (or RAM) is insufficient to store it. The second part of the
RTM algorithm (lines 12 to 21) moves back the source wavefield from host to
GPU, calculates the receiver wavefield, and builds the imaging condition. The
calculation of the receiver wavefield needs the seismograms stored on the disk.
Thus, the host reads the seismogram from the disk and transfers it to the GPU.
Algorithm 1 requires two data transfers for the velocity field and seismic source,
Nshots data transfers for the seismograms, and 2 × Nt data transfers for the
source wavefield.

The OpenACC implementation based on Algorithm 2 follows the same strat-
egy presented in Algorithm 1. Remember that Algorithm 2 implements the wave-
field reconstruction, and one extra wave equation is required for that. Because of
that, its computational implementation does not fully store the source wavefield,
only the last two time-frames. The data transfer based on the OpenACC imple-
mentation occurs between the two main stages of the RTM technique and not
during the temporal loops as the Algorithm 1. Thus, Algorithm 2 requires only
four data transfers between the GPU and host for the source wavefield. We use
for both Algorithms 1 and 2 the ACC DATA COPYIN directive for transferring
the data from the host to GPU. ACC DATA COPYOUT directive transfers the
data from GPU to host. ACC DATA CREATE allocates necessary vectors in
the GPU. For parallelization, we use the ACC LOOP directive.

Message Passing Interface (MPI) library manages the execution of multiple
shots, where batches of shots are assigned to different allocated MPI processes.
We handle the set of shots per MPI process in lines 4 and 5 of the Algorithms 1
and 2, respectively. Each MPI process can be assigned to a GPU or CPU node.

4 Numerical Experiments

In this section, we present the performance analysis of the 3-D RTM using two
different computational platforms: a CPU cluster and a CPU-GPU machine.
Both belongs to the Santos Dumont system at the National Scientific Computing
Laboratory at Petrópolis/Brazil1. The CPU cluster has Intel Xeon E5-2695v2
Ivy Bridge processors with 2.4 GHZ and 24 cores per node, where the nodes
are connected by an FDR (Forteen Data Rate) infiniband network (56 Gb/s)
All the 24 cores have been used for the CPU experiments. On the other hand,
the CPU-GPU cluster has a CPU Intel Skylake GOLD 6148, 2.4 GHZ with 24
cores and 4 × NVIDIA V100 per node. In this case, the nodes are connected by
an EDR (Enhanced Data Rate) infiniband network (100 Gb/s). Both CPU and
CPU-GPU nodes are supported by a Lustre filesystem v2.12.

We have chosen the MODEL AF provided by the HPC4E Seismic Test Suite2
for the 3-D RTM experiments. Figure 1 shows the velocity field provided by the
1 https://sdumont.lncc.br/support_manual.php?pg=support.
2 https://hpc4e.bsc.es/downloads/hpc-geophysical-simulation-test-suite.

https://sdumont.lncc.br/support_manual.php?pg=support
https://hpc4e.bsc.es/downloads/hpc-geophysical-simulation-test-suite
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HPC4E benchmark defined as MODEL AF. The MODEL AF is a model designed
as a set of 15 layers with constant velocity values and flat topography. Besides,
the velocity parameter model (velocity field) covers an area of 10 × 10 × 4.5
km. We have used a 501 × 501 × 235 grid size with 25.0 m of grid space to
represent the velocity field. Notice that the grid size for the 3-D cases includes
Na = 50 and half of the finite difference stencil length at the top of the velocity
model to simulate the free surface. We used the Ricker seismic source [24] with
20 Hz cutoff frequency placed near the surface. The total acquisition time is
6.0 seconds step-wised of 1.0 ms. The experiments consist of running the RTM
implementations for a single shot and a seismic acquisition and presenting the
execution times, disk requirements, and speed-ups.

Fig. 1. 3-D velocity field provided by the HPC4E Seismic Test Suite.

Single Shot Experiment: The first experiment consists of executing the RTM
applications for a single seismic source (single shot) located at [5000, 5000] m.
The RTM follows the implementations presented in Algorithms 1 and 2. The
seismograms for the RTM are represented by the seismic signals recorded in a
seismic survey. The receiver geometry of the seismogram follows the expressions:

rx = 25.0(i − 1) + 1012.5 with i = 1, · · ·, 320, (5)
ry = 25.0(j − 1) + 1012.5 with j = 1, · · ·, 320, (6)

where, the pair [rx, ry] meters represents the receiver locations on the surface.
Table 1 shows the average time execution and the hard disk requirements for

the 3-D RTM implementations. The RTM based on Algorithm 1 requires the
full storage of the source wavefield. Nevertheless, instead of storing the source
wavefield for every time step (Δt) based on the FDM, we took advantage of the
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Nyquist theory as explored by [22] to store the wavefield at the Nyquist time step
to reduce the amount of information. The Nyquist time step Δtnyq is defined as,

Δtnyq =
1

2(fmax − fmin)
, (7)

where fmax and fmin are the highest and lowest frequency of the seismic source.
For the Ricker wavelet that we use for the RTM test case, fmax = 100.0 Hz and
fmin = 0.0 Hz. Thus, the Nyquist time step based on Eq. 7 is Δtnyq = 10.0 ms
against to Δt = 1.0 ms, 10 times bigger than the FDM time step.

Hence, Algorithm 1 which implements the wavefield storage requires 132.062
GB of hard disk for NVIDIA V100 against 0.439 GB of the wavefield reconstruc-
tion implementation (Algorithm 2). The best average execution time refers to
the RTM that implements the wavefield reconstruction. The RTM with wavefield
reconstruction is ≈ 2.11× faster than the wavefield storage implementation on
NVIDIA V100. Although the storage demand decreases drastically from 132.062
GB to 0.439 GB, the same does not occur in the total execution time. We observe
that in both Algorithms 1 and 2 the forward and backward solutions of the wave
equation take 80.0 s. In Algorithm 1, all the remaining time is spent in I/O. How-
ever, in Algorithm 2, the wavefield reconstruction takes most of the additional
execution time.

Table 1. Comparison of hard disk and time requirements for the 3-D RTM implemen-
tation with wavefield storage, and wavefield reconstruction.

Method Platform Hard disk (GB) Av. time (s) [variance (s)]

Wavefield Storage NVIDIA V100 132.062 256.166 [46.810]
Wavefield Reconstruction NVIDIA V100 0.439 121.431 [1.371]

We also compare the RTM speedups across the platforms CPU Cluster and
NVIDIA V100. For the OpenMP RTM implementation, we follow [1,3], where
we implement an MPI/OpenMP+vectorization strategy on multi-core machines.
The implementation takes advantage of OpenMP directives to explore multiple
cores parallelism, it supports Single-Instruction-Multiple-Data (SIMD) model
and memory alignment to ensure vectorization. We can see in Fig. 2 that the
OpenMP implementation speedup is 12.09, and the OpenACC implementation
speedup is 54.62. All the implementations for the platform comparisons are based
on Algorithm 2 which describes the RTM with wavefield reconstruction and
requires minimum I/O. Thus, the performance of the RTM implementation with
OpenACC is 4.52× OpenMP implementation.

Seismic Survey Experiment: The final experiments consider running the RTM
for a survey geometry with 1681 seismograms. The geometry acquisition for the
seismic survey follows the expressions:
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Fig. 2. Reverse Time Migration speedup across the platforms Santos Dumont CPU
Cluster and NVIDIA V100 for the 501 × 501 × 235 grid.

sx = 200.0(i − 1) + 1000.0 with i = 1, · · ·, 41, (8)
sy = 200.0(j − 1) + 1000.0 with j = 1, · · ·, 41, (9)

where, the pair [sx, sy] meters represents the seismic source locations near the
surface.

Firstly, we compare the total time of executing the RTM on CPU Cluster and
NVIDIA V100. For the CPU cluster, we consider 16 nodes, where each node has
24 physical cores. Considering the GPU machine, we set 4 nodes because each
one has 4 NVIDIA V100 adding up to 16 GPUs. Table 2 shows the total time of
executing the RTM with wavefield reconstruction on CPU cluster and NVIDIA
V100. We can see that the OpenACC implementation performs better than the
OpenMP implementation for the same strategy which eliminates I/O related to
the source wavefield. In this experiment, the RTM considering 16 NVIDIA GPUs
is 7.62 times faster than the RTM running on 16 CPUs nodes.

Table 2. Comparison of the total execution time or the 3-D RTM implementation
with wavefield reconstruction on CPU cluster and NVIDIA V100.

Method Platform Total time

Wavefield reconstruction CPU cluster 1259 min 22.560 s
Wavefield reconstruction NVIDIA V100 170 min 56.420 s

Figure 3 shows the stacked seismic image for one migrated shot of the 3-D
HPC4E Seismic Test Suite benchmark. We generated the observed seismogram
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by simulating the wave propagation and recording the seismic signals at the
locations following the Eqs. 5 and 6 near the surface at 25.0 m in depth. The
survey acquisition follows the geometry expressed in Eqs. 8 and 9 and takes into
account 1681 shots.

Fig. 3. Seismic image for the 3-D HPC4E Seismic Test Suite.

5 Conclusions

This work studies RTM algorithms for 3-D environments that mitigate the source
wavefield’s storage and explores hybrid architectures for speeding-up seismic
applications. We eliminate the need of storing the source wavefield by recon-
structing it through IVR based on the RBC. The RBC mitigates calculations on
the artificial boundaries simplifying coding compared to versions with damping
layers. Our algorithmic choices benefit computational architectures like GPUs.
For instance, our numerical experiments show that the RTM based on the wave-
field reconstruction performed better on the NVIDIA V100 than on Intel Xeon
multi-CPUs platforms for 3-D applications. Besides, the 3-D RTM algorithms
based on the wavefield reconstruction demand less storage and are faster than
the classical RTM storing the source wavefield. We also compare the RTM exe-
cution time with wavefield reconstruction for a seismic survey with 1681 shots.
In this case, the RTM takes advantage of multi-GPUs and multi-CPUs to run
the entire application. The RTM for multi-GPUs is 7.62 times faster than the
RTM for multi-CPUs platforms. We use high-level programming models such as
OpenACC for the NVIDIA GPU and OpenMP for the Multi-CPU for all compu-
tational implementations. The high-level programming models allow code porta-
bility and little code interference on the optimized baseline version. We point
out that the computational implementation based on the OpenACC library is
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one of the simplest ways to produce fast and portable codes maintaining high-
performance rates. Nevertheless, further performance gains can be obtained by
using tailored optimizations, sacrificing portability.
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