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Abstract. This paper contributes towards better understanding the energy con-
sumption trade-offs of HPC scale Artificial Intelligence (AI), and more specif-
ically Deep Learning (DL) algorithms. For this task we developed benchmark-
tracker, a benchmark tool to evaluate the speed and energy consumption of DL
algorithms in HPC environments. We exploited hardware counters and Python
libraries to collect energy information through software, which enabled us to
instrument a known AI benchmark tool, and to evaluate the energy consumption
of numerous DL algorithms and models. Through an experimental campaign, we
show a case example of the potential of benchmark-tracker to measure the com-
puting speed and the energy consumption for training and inference DL algo-
rithms, and also the potential of Benchmark-Tracker to help better understanding
the energy behavior of DL algorithms in HPC platforms. This work is a step for-
ward to better understand the energy consumption of Deep Learning in HPC, and
it also contributes with a new tool to help HPC DL developers to better balance
the HPC infrastructure in terms of speed and energy consumption.
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1 Introduction

The current direction in Artificial Intelligence, and more specifically Deep Learning
(DL), is clearly to orders of magnitude more compute [14], reaching High-Performance
Computing (HPC) scale. That means more energy, which comes from sources such
as fossil fuels, nuclear power, water dams, wind, etc. Fossil fuel is the main source,
contributing to 36%1 in the total energy sources mix. Fossil energy emits a significant
amount of CO2 into the environment. Under all of these observations, it is therefore
important to monitor the energy consumption of DL, to master its energy demand and
attenuate its contribution to climate change.

1 https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-3b.html?lang=en.
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Typical DL research focuses mainly in the quality of the predictions of a trained
DL model. As Deep Learning being a significant part of AI, understanding DL and
its energy consumption will build us the path to better balance computing and energy
resources needed for its proper operation, and thus being less energy demanding.

This paper is a step towards building this path. It addresses the following challenges:

– For Deep Learning running in HPC platforms, how much energy are the current
popular and widely used DNNs consume?

– Is it accurate to say that: More complex models will cost more energy?
– Does the model give higher accuracy, more energy will be consumed?

In this work, we instrumented a Deep Learning benchmark with a software energy mea-
surement tool to output the Benchmark-Tracker, which tracks the energy consumption
of DNN models inside the DL benchmark. The results from running experiments with
the developed instrument give us a better understanding of today’s energy consumption
for the widely used DNN models. From those insights, we can expand to further and
more in-depth future studies on energy consumption issues. The available version of
Benchmark-Tracker is on GitHub2.

We organized the remaining of this paper in the following manner: Sect. 2 presents
the related work. In Sect. 3 we present some preliminary background information.
Section 4 briefly presents the instrumentation details to implement Benchmark-Tracker,
and Sect. 5 present some preliminary results of our tool. Finally, in Sect. 6 we present
our concluding remarks and our planned future works.

2 Related Work

2.1 AI and Climate Change

Climate change is a crucial issue for people all over the world. According to experts
in the field, AI has the potential to accelerate the process of environmental degrada-
tion. For example, large-scale natural language processing models – specifically trans-
former [16] models – have a huge carbon footprint [13]. Alternatively, “There is a real
need to think about how you’re building these systems. Are you training a needlessly
complex algorithm? How frequently are you retraining?” [13]. In order to understand
energy consumption grounds, firstly, we have entered the background detailed in [8].
Secondly, we have to understand that not only using electrical energy to train an DNN
creates CO2, but also collecting and storing data. As DL becomes more complex, data
centers are essential for storing large amounts of data needed to power DL systems,
but require significant energy. “Data centers are going to be one of the most impactful
things on the environment” [10]. Additionally, training advanced artificial intelligence
systems, including deep learning models, may require high-powered GPUs running for
days at a time and GPUs that use much power to run machine learning training have
contributed to significant CO2 emissions [3].

2 https://github.com/phamthi1812/Benchmark-Tracker.

https://github.com/phamthi1812/Benchmark-Tracker
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2.2 Energy-Aware AI

Many practical aspects were attempted by numerous works [6,7,12,15]. Besides focus-
ing on reducing energy consumption in the training process, one of the possibilities is
that we can have better energy management once its energy consumption can be mod-
eled and predicted. Chen et al. [5] proposed the idea of using deep learning to model
energy consumption. In technical points, the hardware provider has also tried to give
the better compatible hardware or especially GPU, which gives the best performance in
[17].

As some ideas have been outlined above, there are numerous efforts to better con-
trol energy consumption, but they still do not reduce the development and power of
Deep Learning. We can consider when training models, such as controlling the num-
ber of parameters in the model or finding a better efficient way to store data which has
mentioned in [2] or [11].

2.3 AI Benchmarks

There are many benchmarks available today for AI, for example, AI Benchmark3 works
for both mobile devices and desktops, Dynabench4 mainly works on Natural language,
Sentiment Analysis, or Cloud-Based AutoML5, which can enable developers with lim-
ited machine learning expertise to train high-quality models specific to their needs. Each
tool is developed with an emphasis on a fixed factor, notably the quality of the models’
predictions.

2.4 Energy Measurement Tools

There are several tools based on three methodology points: Estimation from hardware
characteristics (Green algorithms, ML CO2 Impact), External measures from outside
the hardware (Wattmeters), or Software power models from hardware performance
counters (CodeCarbon, Experiment-Impact-Tracker [8], CarbonTracker, Energy Scope
[9]).

2.5 Positioning of This Paper

Our paper situates in two fronts: (i) Our paper bridges AI benchmarks and energy mea-
surement tools, giving an out-of-the-box tool to help HPC DL developers to better bal-
ance the HPC infrastructure in terms of speed and energy consumption, and (ii) we
go beyond only evaluating the prediction quality of AI models and algorithms, but we
also evaluate the energy/complexity/performance trade-offs of popular AI models and
algorithms, taking into consideration several HPC hardware.

3 https://ai-benchmark.com/alpha.
4 https://dynabench.org/.
5 https://cloud.google.com/automl/.

https://ai-benchmark.com/alpha
https://dynabench.org/
https://cloud.google.com/automl/


134 D. Carastan-Santos and T. H. T. Pham

3 Background

In this section we present information about the used tools. We start by bringing details
about the AI Benchmark Alpha. We then bring some details about measuring/estimat-
ing the energy consumption and CO2 emissions of HPC platforms, and we finish by
presenting details about the Experiment-Impact-Tracker tool.

AI Benchmark Alpha. The AI Benchmark Alpha is an open-source6 library, for eval-
uating the AI performance of various hardware platforms, including CPUs, GPUs, and
TPUs. The benchmark relies on the TensorFlow [1] machine learning library and pro-
vides a precise and lightweight solution for assessing inference and training speed for
widely used and popular Deep Learning models.

AI Benchmark treats the training and inference of the models as tests. The
tests cover all major Deep Learning models and algorithms. They include: Classi-
fication (MobileNet-V2, Inception-V3, Inception-V4, Inception-ResNet-V2, ResNet-
V2-50, ResNet-V2-152, VGG-16), Image-to-Image Mapping (SRCNN 9-5-5, VGG-
19, ResNet-SRGAN, ResNet-DPED, U-Net, Nvidia-SPADE), Image Segmentation
(ICNet, PSPNet, DeepLab), Image Inpainting (Pixel-RNN), Sentence Sentiment Anal-
ysis (LSTM), and Text Translation (GNMT).

Energy Consumption and Carbon Emissions in HPC Platforms. When we measure
the energy consumption for training an AI model running in HPC platforms, we also
have to consider the additional power used to run the platform that is not directly related
to computing, such as cooling. We call this power overhead as Power Usage Effective-
ness (PUE), which is a number that depends on the HPC platform cooling efficiency
and is often slightly larger than 1, and acts as a multiplicative factor for the measured
energy consumption of the computing nodes.

From the energy level consumed obtained at the computing nodes, and multiplied
by the PUE, we can calculate the corresponding CO2 emissions released into the envi-
ronment as follows:

Emissioncarbon = Energycomputing × Intensitycarbon

The intensity of carbon is the number of grams of carbon dioxide (CO2) that it takes to
make one unit of electricity a kilowatt per hour (kWh).

6 https://pypi.org/project/ai-benchmark/.

https://pypi.org/project/ai-benchmark/
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The quantity of carbon emission is just as substantial as the energy consumption
because the higher the carbon intensity, the more polluting the energy consumption.
The carbon intensity of electricity generation depends on the energy sources mix, and
it varies from region to region7. For our experiments we adopted 55g CO2/kWh, which
relates to France’s typical carbon intensity8.

The Experiment-Impact-Tracker. The Experiment-Impact-Tracker is a software
tool9 that provides a simple plug-and-play solution for tracking your system’s energy
use, carbon emissions, and compute utilization. It records: power consumption from
CPU and GPU, hardware information, and projected carbon emission information on
Linux computers with Intel CPUs that implement the Running Average Power Limit
(RAPL) and NVIDIA GPUs.

Through the following example, we see how one can track the energy consumption
by covering the process with the Experiment-Impact-Tracker:

from e x p e r im e n t _ imp a c t _ t r a c k e r . c ompu t e _ t r a c k e r import Impac tT r a cke r
from e x p e r im e n t _ imp a c t _ t r a c k e r . d a t a _ i n t e r f a c e import Da t a I n t e r f a c e
os . mkdir ( " g i v e _ a_p a t h " )
t r a c k e r = Impac tT r a ck e r ( " g i v en_pa t h " )
t r a c k e r . l a un ch_ impac t _mon i t o r ( )
Pu t _You r_P roce s s_he r e ( )
t r a c k e r _ r e s u l t s = {}
d a t a _ i n t e r f a c e = D a t a I n t e r f a c e ( [ " g i v e n_p a t h " ] )

The Experiment-Impact-Tracker launches a separate Python process that gathers the
energy consumption information in the background. Also, we can then access the infor-
mation via the DataInterface. Moreover, like we mentioned before about how useful
this Tracker is because of this context management, as illustrated in the listing below:

expe r imen t 1 = t emp f i l e . mkdtemp ( )
expe r imen t 2 = t emp f i l e . mkdtemp ( )

wi th Impac tT r a cke r ( expe r imen t 1 ) :
do_someth ing ( )

w i th Impac tT r a cke r ( expe r imen t 2 ) :
do_ some t h i ng_e l s e ( )

The combination of the AI Benchmark Alpha with the Experiment-Impact-Tracker
that we did to produce Benchmark Tracker, which is used for running the experiments
to understand the energy behavior of AI algorithms, is presented in the following sub-
section.

7 https://app.electricitymap.org/map.
8 https://app.electricitymap.org/map.
9 https://github.com/Breakend/experiment-impact-tracker.

https://app.electricitymap.org/map
https://app.electricitymap.org/map
https://github.com/Breakend/experiment-impact-tracker
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4 Benchmark Tracker

The essence of Benchmark-Tracker is in the instrumentation of the AI Benchmark
Alpha with Experiment-Impact-Tracer, to also measure the energy consumption. For
this task, we identified the code regions where AI Benchmark runs for each model’s
training and inference. From there, we instrumented the Experiment-Impact-Tracker in
these code regions, intending to be able to measure not only the hardware benchmark
from the AIBenchmark but also the energy consumption of each model running in this
benchmark. We can control which process we would like to run in the primary run file.
The process goes as follows:

1. Benchmark runs and starts calling the corresponding tests for each model.
2. The Experiment-Impact-Tracker is activated and starts measuring energy during the

training process of that model.
3. The Tracker is turned off, and data logging occurs.
4. The inference process of the same model happens (if we run this tool for both train-

ing and inference).
5. Another test is called up to continue the process.

The inference process is shortly presented as follows:

f o r s ubTe s t in ( t e s t . i n f e r e n c e ) :
os . mkdir (PATH)
wi th Impac tT r a cke r (PATH ) :

<<TRACKED_CODE>>
t racke r_ INFERENCE_resu l t s = {}
d a t a _ i n t e r f a c e = D a t a I n t e r f a c e ( [PATH] )

The advantage of using experiment-impact-tracker becomes evident, since we can
easily instrument a code section using the Python context management (i.e., the with
statement). In the case above, «TRACKED_CODE» refers to the code commands for an
inference task. The same instrumentation procedure holds for the training tasks.

With the AI benchmark’s dataset and our evaluated hardware (see Sect. 5.1), the
AI benchmark runs approximately 60 s for one model. The Experiment-Impact-Tracker
provides inaccurate estimations when the processing time is too short (in the order
of 60 s). With this in mind, we artificially increase the size of the dataset to increase
the processing time, and have accurate energy measurements. Artificially increasing
the size of the dataset invalidate the accurate computed at the training tasks. That is
why in the next section we compare the model’s accuracy in terms of their reported
accuracy in ImageNet10. We plan to release a new version of Benchmark-Tracker with
an appropriate dataset in future work (see Sect. 6).

10 https://ai-benchmark.com/tests.html.

https://ai-benchmark.com/tests.html
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5 Results

5.1 Experimental Setting

For the experiments, we used Grid’500011 High-Performance Computing test-bed. We
used the Chifflet node (Model: Dell PowerEdge R730, CPU: Intel Xeon E5-2680 v4,
Memory: 768 GiB, GPU: 2 x Nvidia GeForce GTX 1080 Ti (11 GiB)).

5.2 Experimental Results

We ran Benchmark-Tracker 10 times to achieve the below statistical results. The bar
plots below represent an estimate of the central tendency for energy consumption with
the height of each rectangle. It provides some indication of the uncertainty around that
estimate using error bars. Intuitively, we see that the confidence intervals bar graph
shows a slight error between 10 sets of the outcomes. It is also essential to remember
that a bar plot shows only the mean value.

Let recall the definition of Training and Inference. We can say Training and Infer-
ence are the norm in DL. They are two key processes associated with developing and
using AI:

– Training is “teaching” a Deep Neural Network (DNN) to perform the desired AI task
(such as image classification or converting speech into text). We can express that it
fits a model for training data. During the DL training process, the data scientist is
trying to guide the DNN model to converge and gain the expected accuracy.

– The inference uses a trained DNN model to make predictions against previously
unseen data and perform decision-making. The DL training process involves infer-
ence, because each time an image is fed into the DNN during training, the DNN
tries to classify it. Given this, people usually deploy a trained DNN for inference.
For example, one could make a copy of a trained DNN and start using it “as is” for
inference.

Therefore, the results are grouped into training and inference phases.
With AI tasks, created DNN models can be large and complex, with dozens or

hundreds of layers of artificial neurons and millions or billions of weights linking them.
Normally, the bigger the DNN, the more computing, memory, and energy are consumed
to execute it, and the longer will be the response time (or “latency”) from when you
input data to the DNN until you obtain an outcome.

Without losing generality, to better focus the analysis we only access the results of
the classification task. It is important to remind that, thanks to AI Benchmark Alpha,
Benchmark-Tracker also evaluates other kinds of tasks, such as (Classification, Image-
to-Image Mapping, Image Segmentation). Table 1 presents the classification models’
complexity, measured in the number of parameters.

11 https://www.grid5000.fr/w/Grid5000:Home.

https://www.grid5000.fr/w/Grid5000:Home
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Table 1. Image classification model complexity, measured as the number of parameters [4]

Model Number of parameter (M: millions)

MobileNet-V2 5M

Inception-V3 25M

Inception-V4 35M

Inception-ResNet-V2 60M

ResNet-V2-50 30M

ResNet-V2-152 70M

VGG-16 150M

Also, to give the reader an impression of the connection between the structure of the
DNNs and the energy consumption, we briefly present the main ideas of the evaluated
models for the image classification task:

– MobileNet-V2: Depth wise Separable Convolution which dramatically reduces the
complexity cost and model size of the network.

– Inception-V3: Factorizing Convolutions, which reduces the number of connections/-
parameters without decreasing network efficiency, helps realize computational effi-
ciency and fewer parameters.

– Inception-V4: A more uniform, simplified architecture and more inception modules
than Inception-v3. It uses asymmetric filters.

– Inception-ResNet-V2: Use a part of Inception-V4 and replace connection by residual
links.

– ResNet-V2-50: It introduces skip connection (or shortcut connection) to fit the input
from the previous layer to the next layer without any modification of the input. This
version has 50 layers and uses residual links.

– ResNet-V2-152: Same idea with ResNet-V2-50, but this one has the maximum num-
ber of layers 152. ResNet is the Winner of ILSVRC 2015 in image classification,
detection, and localization, as well as Winner of MS COCO 2015 detection, and
segmentation.

– VGG-16: by using 3 × 3 filters uniformly, VGG-16 reduces the number of weight
parameters in the model significantly. It helps in reducing the complexity of com-
puting.

We describe the results in inference belonging to each type of model. Additionally, the
rectangle’s color shows the reported accuracy on ImageNet for each of the evaluated
models12.

12 https://ai-benchmark.com/tests.html.

https://ai-benchmark.com/tests.html
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Figure 1 presents the energy consumption in the inference process per image for
classification, which shows us the amount of energy it will cost each time we input
one more image into the trained relative model. The small number of parameters and
the simple model structure are the main contributors to MobileNet-V2 having the low-
est power level. However, this entails that it also has almost the lowest accuracy. The
increase in the number of parameters increased the power consumption of Inception-V4
compared to Inception-V3.

With double the parameters, InceptionResNet-V2 offers 3% better accuracy than
Inception-V3 and 1% in Inception-V4. However, it has an energy consumption of
approximately the same as Inception-V4 or even lower. It can also be remarked that
the relationship between model complexity and energy levels cannot be linear. Because
if this happens, the energy consumption of InceptionResNet-V2 will probably double
with the corresponding increase in the number of parameters. This result contributes to
the hypothesis that the number of parameters of the model does not seem to be the only
factor determining the energy consumption. The DNN model’s structure also signifi-
cantly influences the energy it consumes.

VGG-16 had the highest energy consumption among the evaluated models, but it did
not offer better accuracy. It is even lower than MobileNet-V2, even though its parame-
ters are approximately 30 times more.

Table 2 shows the energy consumption, estimated carbon emission and also the
duration time for the inference process. We separately run the inference process on
the same dataset with training. Usually, this is not the case when we run on the same
dataset. However, it works to simulate the real-life process, and this result still con-
tributes to the conclusion in comparing the energy consumption when we use trained
models.

Table 2. Average energy consumption (EC), carbon emission (CE), duration (D) in inference for
classification models

Model EC (kWh) CE (kgCO2eq) D (seconds)

MobileNet-V2 1.18× 10−3 0.66× 10−4 32,11

Inception-V3 1.96× 10−3 1.10× 10−4 32,26

Inception-V4 2.60× 10−3 1.45× 10−4 32,41

Inception-ResNet-V2 2.56× 10−3 1.43× 10−4 32,51

ResNet-V2-50 2.42× 10−3 1.35× 10−4 32,31

ResNet-V2-152 2.61× 10−3 1.46× 10−4 32,95

VGG-16 2.96× 10−3 1.66× 10−4 33,63
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Fig. 1. Energy consumption in inference per image for classification models

Comeback with training, Table 3 gives the detailed energy consumption scores.
From Fig. 2, 3, the complexity of the models explains that InceptionResNet-V2, with
twice as many parameters for the model as Inception-V3, and Inception-V4, has the
highest energy consumption level. Likewise, the training time for Inception-ResNet-V2
is the biggest among the three models mentioned above. The same goes for ResNet-152,
which has twice the number of parameters ResNet-50 and has a higher power and time
level than ResNet-50.

Nevertheless, it did not happen for VGG-16. Even though VGG-16 is the most
significant one with 150M parameters, it has remarkably positive results by being the
model that consumes the smallest amount of energy and runs in the shortest time. The
belonging designed architecture idea of each DNN explains a part of why the energy
consumption of VGG-16 and MobileNet-V2 are the best models in terms of energy
consumption and training duration for Classification. They both have the same objective
when trying to reduce the complexity cost. While MobileNet-V2 reduces the model
size in order to run on mobile devices, VGG-16 decreases filter size. This observation
shows evidence for the design of deep neural networks can reduce energy consumption
and training time.
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Table 3. Average energy consumption, carbon emission, duration in training for classification
models

Model EC (kWh) CE (kgCO2eq) D (seconds)

MobileNet-V2 1, 75.10−3 0, 98.10−4 35,04

Inception-V3 2, 98.10−3 1, 67.10−4 52,09

Inception-V4 3, 93.10−3 2, 20.10−4 53,79

Inception-ResNet-V2 4, 06.10−3 2, 27.10−4 59,98

ResNet-V2-50 2, 29.10−3 1, 28.10−4 40,01

ResNet-V2-152 4, 01.10−3 2, 24.10−4 53,32

VGG-16 1, 83.10−3 1, 02.10−4 35,19

Fig. 2. Energy consumption in training for classification models
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Fig. 3. Duration in training for classification models

6 Conclusion and Future Work

This paper presents a step towards better understanding the energy consumption
of AI algorithms, notably Deep Neural Networks (DNNs), when running in High-
Performance Computing (HPC) platforms. For this task, we instrumented a known AI
benchmark with energy measurement tools to create an extended benchmark, called
Benchmark-Tracker. Benchmark-Tracker works as a new test-bed for evaluating the
processing performance and energy consumption of AI algorithms in HPC platforms.
For instance, in our case example we found the following observations.

For a certain AI task (in our case example, for the image classification task), more
complex DNN models can consume more energy, emit more CO2, and take longer
time than simpler models to train. Nevertheless, there are exceptions, and they advise
that the energy consumption likewise depends on the structure of the DNNs, and their
relative function is not linear. A more accurate model does not necessarily consume
more energy. Also, if we bring the connection between inference and training into the
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balance, the relationship becomes even more complicated. There are cases where the
energy level for training is low but exceptionally high in inference and vice versa.

The choice of model selection and the HPC hardware is not a trivial decision, since
it depends on the problem and resources specificities, which are not always well under-
stood theoretically. Benchmark-Tracker can help to perform this decision by performing
light-weight experiments to grasp how much energy a certain AI model will consume
and how fast it will run, according to a certain HPC hardware.

6.1 Future Work

For future work, we will take into account calculating the accuracy belonging to the
models for a specific dataset, besides the energy consumption. This will enable us to
perform the following investigations.

1. If we reduce or increase the dataset size during training, we can consider how much
energy the training will consume and how much accuracy we will get for each model
to compare. Furthermore, doing that on a specific model will help understand the
tradeoffs of dataset size, energy consumption, and resulting inference accuracy.

2. With the Benchmark-Tracker, we are going to set energy budgets during the models’
training. We can control the training process for a specific objective by stopping the
training when the total energy (measured by an energy measurement library) passes
a defined budget. Furthermore, as a consequence, we can evaluate the performance
behavior of the DNN models when we have limited energy budgets.

3. Following the energy budget idea, we are going to compare shallow learning algo-
rithms for a selection of applications present in Benchmark-Tracker and whether
these shallow learning algorithms outperform or not the deep learning algorithms
when we have energy budgets.
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