®

Check for
updates

A Comparative Evaluation of Parallel
Programming Python Tools
for Particle-in-Cell on Symmetric
Multiprocessors

Oscar Blandino H.1®) and Esteban Meneses!:2

1 School of Computing, Costa Rican Institute of Technology, Cartago, Costa Rica
oscar.blandino.hernandez@intel.com, emeneses@cenat.ac.cr
2 Advanced Computing Laboratory, National High Technology Center,
San Jose, Costa Rica

Abstract. The Python programming language has established itself as
a popular alternative for implementing scientific computing workflows.
Its massive adoption across a wide spectrum of disciplines has created
a strong community that develops tools for solving complex problems
in science and engineering. In particular, there are several parallel pro-
gramming libraries for Python codes that target multicore processors.
We aim at comparing the performance and scalability of a subset of
three popular libraries (Multiprocessing, PyMP, and Torcpy). We use the
Particle-in-cell (PIC) method as a benchmark. This method is an attrac-
tive option for understanding physical phenomena, specially in plasma
physics. A pre-existing PIC code implementation was modified to inte-
grate Multiprocessing, PyMP, and Torcpy. The three tools were tested
on a manycore and on a multicore processor by running different problem
sizes. The results obtained consistently indicate that PyMP has the best
performance, Multiprocessing showed a similar behavior but with longer
execution times, and Torcpy did not properly scale when increasing the
number of workers. Finally, a just-in-time (JIT) alternative was studied
by using Numba, showing execution time reductions of up to 43%.

Keywords: Parallel programming - Python - Particle-in-cell

1 Introduction

Particle-in-cell (PIC) is one of the most important computational methods in
physics to study problems in solid, fluid mechanics, but specially in plasma. It
solves a set of partial differential equations with a combination of individual par-
ticles on a Lagrangian frame and moments computed on Eulerian mesh points.
The first PIC simulations were performed in late 1950 s using between 100 and
1,000 particles to simulate the motion and interaction between them. Nowadays,
this kind of simulations are performed using between 10° and 10'° particles,
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 1-15, 2022.
https://doi.org/10.1007/978-3-031-23821-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_1

2 O. Blandino H. and E. Meneses

representing a challenge for computer systems. Large PIC simulations require
the use of supercomputers and code optimizations to reduce execution time [5].

Traditional programming languages in HPC, such as FORTRAN and
C/C++, were used to implement PIC and other well-established numerical meth-
ods. However, the community working on computational science adopted Python
as a popular option for running simulations. A fundamental reason for that
change is the evolution of problem-solving approaches [15]. Python is easier to
learn and use than FORTRAN and C/C-+-+. But, it still has great tools for
scientific computing (SciPy, NumPy, Matplotlib, PyTorch). The first scientific
computing research projects were based on mathematical models simpler than
the complex models used by scientists today. The knowledge the scientific com-
munity gained over the previous decades led to the development of more complex
models to understand bigger or more difficult problems at a higher precision. In
fact, it is now common to include machine learning methods within the workflow
of scientific applications. The high popularity of Python across scientific disci-
plines, the broad availability of tools, and a huge user base, has made Python
an attractive option for implementing complex mathematical models and simu-
lations.

Chips with multiple cores dominate the processor market these days. The
architecture trend is to increase the number of cores per processor. As Moore’s
Law still holds true, we can only expect this course of action to persist for a few
more years. The latest release of the Top500 list [17] shows that nearly 70% of
the systems solely rely on symmetric multiprocessors (SMP) for their computing
power (no accelerators). It is therefore crucial to address the performance char-
acteristics of parallel programming Python tools for SMP architectures when
implementing PIC methods.

This paper sets out to explore three popular parallel programming Python
tools for SMP architectures. We use the PIC method as a guiding example. To
the best of our knowledge, this is the first study on that topic. Our contribution
is twofold. First, we provide a picture of the features these tools provide when
implementing a PIC method. Second, we present a comparative analysis of those
tools backed up with experimental results on two different SMP architectures.

2 Background

2.1 Particle-in-Cell

Mathematical Base. Particle-in-cell (PIC) is a method used to model physical
systems whose behavior varies at macro and micro levels. At the macro level,
the electromagnetic fields are calculated using Maxwell’s equations. At the micro
level, the position, velocity, charge, and current density properties are calculated
for a set of particles [5,13]. The main objective of the PIC method is to simulate
the motion of plasma particles based on the interaction of position and velocity
of the particles, with self induced and external electromagnetic fields. To sim-
ulate this dynamic, the PIC model uses a grid, as presented in Fig. la. In that
grid, the position of each particle is shown. The grid is used to calculate and

Python Parallel Programming for PIC 3

determine the interaction of the particle with electromagnetic fields, and subse-
quently the particle’s new position and velocity. These particles, depending on
the application, could have more assigned properties, such as mass, charge, and
material. The particles are the ones responsible of transporting mass and energy
through the grid [13].

SCATTER
[] []

@ ‘ PUSH ‘ @ SOLVE
[]
R o \ J
GATHER

(a) Particle-in-cell Grid. (b) Particle-in-cell Phases.

Fig. 1. Particle-in-cell (PIC) method.

Particle-in-cell simulations normally solve the equations of motion of IV par-
ticles with the Newton-Lorentz’s force [5,9], considering the non-relativistic case,
and also solve Maxwell’s equations to calculate electromagnetic fields, charge and
current density. Considering N particles, with ¢ = 1,--- , N, the motion equa-
tions are presented in Eqs.1 and 4 of Fig. 2. Variables X; and V; correspond to
the position and velocity of particle i. Also, e; and m; correspond to the electric
charge and mass of particle ¢. Finally, £ and B correspond to the electric and
magnetic fields. On the other hand, Maxwell’s equations are presented in Egs. 2,
3, 5, and 6. Variable £ corresponds to the permittivity of the medium, H is the
magnetic field, J corresponds to the current density, and p to the charge density.

ax; OB

=V (1) 5y = VxE) V.B=0 (3)
dv; e; o
T en(BX)+Vix BX)) (@) = vxH-J) () V-E=Z (@©

Fig. 2. Particle-in-cell governing equations.

Computer Simulations. The grid in Fig. 1a is used to locate the particles and
to project the effect of electromagnetic fields, charge density, and current density
on the particles. Each block of the grid is known as a cell. That is where the
name particle-in-cell comes from. Each cell has four vertex from which it is pos-
sible to perform several operations: interpolate the particle’s position to project
charge and current density into the grid, solve Maxwell’s equations to obtain
new values of electromagnetic fields, evaluate the changes on electromagnetic

4 O. Blandino H. and E. Meneses

fields and its influence onto the particles, push the particles to a new position
with velocity changes, and affect the electromagnetic fields. This procedure is
executed repeatedly and it is know as the particle-in-cell loop, represented in
Fig. 1b. The PIC method is based on the aforementioned four operations known
as [13]:

Scatter: the particle’s position is calculated by using interpolation. The charge
and current density is affected from each particle to each vertex. It has a differ-
ent magnitude depending on the position of the particles; in other words, this
operation calculates how the particles are affecting the grid.

Solve: once the grid is updated with the new values of charge and current density,
the Maxwell’s equations are calculated in every cell of the grid in order to obtain
new values of the electric and magnetic fields forces.

Gather: the new values of the electric and magnetic fields are interpolated in the
particle’s location to calculate how are these affecting it. In an opposite way to
Scatter, this phase reflects how the grid is influencing the particles.

Push: the changes on electromagnetic forces and its magnitude modify the speed
of the particle pushing it to a new position. The Push phase is in charge of
calculating the new speed and position of the particle.

The initialization phase of the Particle-in-cell algorithm consists in declaring
a random position for all the particles with an initial speed of zero. Also, all the
vertex of the grid should be initialized with a zero value for the electromagnetic
fields. The finalization phase consists in reporting to the user the particles and
grid information regarding positions, velocities, and values of electromagnetic
fields. Using that information, scientists are able to obtain conclusions about
the simulation done [13]. Based on the phases previously described, it is pos-
sible to create a pseudo code of the Particle-in-cell algorithm as presented by
Algorithm 1.

Algorithm 1. Particle-in-cell High Level Algorithm

for each particle p € N do > Initialization of particles
Xp «— random
Vp <0
for each vertex v € Grid do > Initialization of fields
E(w) <0
B(v) < 0
J(v) <0
p(v) — 0
while t < t,,4, do
p(v) — p(va,y) + qp - W(P, Va,y) > Scatter: Particle interaction with the grid
E(va,y) — E'(va,y) > Solve: Calculate electromagnetic fields
B(va,y) < B/(vw,y)
E(p) < E(Vg,y) - w(p, Va,y) > Gather: Reflect grid’s influence to the particle
> Push: Change particle position

Print X, and V), > Finalization of particle data
Print E, B, J, p > Finalization of grid data

Python Parallel Programming for PIC 5

PythonPIC. A Python implementation of the PIC method was made by
Dominik Stanczak [16]. Called PythonPIC, the code models the interaction
between a hydrogen plasma target and a laser impulse. The implementation
of the Python code used Numba to improve performance, but the parallel pro-
gramming functions of Numba were not used. In this paper, we use this code
to extend it with parallel programming constructs and evaluate their impact on
performance.

The code works in the following way. A configuration script describes the
simulation that will be executed, along with all its parameters. This script uses
a class named Initial from a configuration file, which interprets all the param-
eters and sets up the simulation. The Initial class inherits from Simulation
in the Classes directory and uses functions described in the Algorithms and
Helpers directories. The following is a detailed description of how the interaction
of a laser with a hydrogen shield plasma is being implemented:

Configuration Scripts: The script fulllaser.py imports from Configs a file
named run_laser.py. Several variables and the initial function are being
imported. The configuration script uses this information to define the input
parameters for initial function and execute.

Configs: The run_laser.py file imports file BoundaryCondition.py from Algo-
rithms. From Classes imports Simulation and Species classes. From Helpers
imports different functions and variables. This file describes the class initial
which is inherited from Simulation and it is the one in charge of setting up
everything to run the specific case of simulation that wants to be performed by
using variables and functions from the files and classes previously mentioned.

Classes: This directory contains the three most important files of PythonPIC:
simulation.py, species.py, and grid.py. These three files are used by all the
Config files and are the ones in charge of handling and executing the simulation.
The Simulation class takes all the information from the Config file and executes
the desired simulation, creating the needed directories, initializing the Particle-
in-cell grid, performing all the iterations, doing the post processing, and storing
all the information. The Species class handles a set of particles and stores
the information regarding position, velocity, and other variables. Finally, the
Grid class handles the information regrading Particle-in-cell grid, like charges,
currents, and fields for the particles in the simulation.

Algorithms: This directory contains files for the different algorithms used depend-
ing on the simulation case involved. File BoundaryCondition.py is being used
to represent a boundary condition for the fields in the simulation. These files are
in charge of mathematical calculations, and this could be a point to implement
parallelization and even code optimization for specific simulation cases.

Helpers: This directory includes two files with different functions. File
helpers.py has functions mainly for simulation progress configurations, while
file physics.py includes common functions used in the simulation regarding
mathematical calculations for the simulation.

6 O. Blandino H. and E. Meneses

2.2 Python Parallel Programming

Along with C and FORTRAN, Python is one of the most important program-
ming languages in high performance computing. It comes at no surprise that the
community has developed many Python tools for parallel programming. Accord-
ing to a recent study [11], there are more than 40 different Python parallel
programming tools, each one with their particular combination of type of par-
allelism, execution mode and programming interface. Three of those tools that
stand out for their simplicity and convenience at programming parallel code in
Python are Multiprocessing [14], PyMP [10], and Torcpy [6].

Multiprocessing. It is a library that supports spawning processes with an
API similar to any classic threading module, supporting local and remote con-
currency. Originally, the Global Interpreter Lock (GIL) used by Python is in
charge of scheduling the execution of threads, such that only one runs at a time.
The Multiprocessing library avoids the limitations of GIL and uses sub-processes
instead of threads. Therefore, it allows the use of multiple processors [14,18].
There are two basic ways to exploit parallelism using the multiprocessing library:
Pools and the Process class. The usage of Pool is intended for the execution of
one function for multiple input values, distributing the input data across differ-
ent processes. On the other hand, by using the Process Class, the processes are
spawned by creating an object and then calling a start and join methods. These
two methods, specially the Process class, are the base to start making parallel
code using the multiprocessing library. Below, you will find a code sample for a
parallel sum of two arrays.

1 from multiprocessing import Pool, Array
2 def sum(i):

3 cli] = ali] + b[i]

4 if name = ’ main__ ’:

5 global a, b, c

6 N=5

7 a = [1,2,3,4,5]

8 b = [2,4,6,8,10]

9 c = Array(’f’, range(N))
10 with Pool(4) as p:

11 p.map(sum, range (N))

—
3]

print (c)

PyMP. Build on top of Multiprocessing library, PyMP is a Python library
that offers parallel programming functionalities in the style of OpenMP. It takes
the small code changes and high efficiency of directive-based programming and
combines it with Python usage easiness [10]. Since pragmas are not present in
Python, PyMP leverages some language constructs to provide parallel program-
ming features. The with statement provides parallel contexts for several threads.
The range instruction divides loop iterations among active threads. Other con-
figuration options (number of threads, loop scheduling policies, thread-specific
identifiers, variable scope) are passed as parameters to functions. Only a portion

Python Parallel Programming for PIC 7

of the OpenMP standard can be mapped to PyMP language constructs. How-
ever, the available functionalities are powerful to represent a modest range of
parallel algorithms. Below is the PyMP version of the parallel sum of two arrays.

with pymp.Parallel (4) as p:
for i in p.range(N):
cl[i] = a[i] + b[i]

1 import pymp

2 if name — ’ main

3 N=5

4 a = [1,2,3,4,5]

5 b = [2,4,6,8,10]

6 ¢ = pymp.shared.array (N, dtype=’'float64’)
7

8

9

0

1 print (c)

Torcpy. It is an open source library supported by IBM that provides a parallel
computing framework with a unified approach for expressing and executing task
and data parallelism on both shared and distributed memory architectures [6].
Although it uses MPI internally in a transparent way to the user, Torcpy also
allows the use of explicit MPI code at the application level. It provides support
for parallel nested loops, map functions, and task stealing at several levels of
parallelism. The submit and wait functions provide the necessary task paral-
lelism operations, while map function implements data parallelism. Below is the
Torcpy version of the parallel sum of two arrays.

1 import torcpy as torc

2 def sum(i, a, b):

3 return a + b

4 def main():

5 N=25

6 a = [1,2,3,4,5]

7 b = [2,4,6,8,10]

8 iterations = range(N)
9 ¢ = torc.map(sum, iterations, a, b)
10 print (c)

11 if _ name ' _main__:
12 torc.start (main)

2.3 Related Work

Python implementations of the Particle-in-cell method are easy to find in the
available literature. Blandon et al [2] presents a one-dimensional PIC imple-
mentation using Anaconda packages. They use their sequential code to study
plasma phenomena, such as oscillations, waves, instabilities and damping. Fink
et al [3] used a PIC code to compare two parallel programming tools in Python
(Charm4Py and mpidPy). They started with an already parallel MPI version of
the code and ported it to parallel objects [4]. Their results highlight the scala-
bility of both approaches on distributed-memory systems, with parallel objects
providing an advantage in load imbalanced scenarios. Kadochnikov [7] acceler-
ated a PIC implementation in Python on GPUs, using CUDA through CuPy
library. The code in that paper used algebraic multigrid solvers in Python to
create a code able to understand some instabilities in electron beam ion sources.

8 O. Blandino H. and E. Meneses

There are previous works comparing tools for parallel programming in
Python. Adekanmbi et al [1] implemented a solution to the N-body problem
using three different HPC Python tools: Taichi, Numba, and NumPy. The former
two provide the shortest execution time, since both are based on a just-in-time
compiler. Kim et al. [8] surveyed parallel processing tools in Python and provided
experimental results showing the advantages of a couple of tools (Pandaral-lel
and Ipyparallel). Using those tools on a multi-core chip, they obtained 5.2x and
2.6x speedups, respectively. Miranda and Stephany [12] used a five-point stencil
program to compare HPC Python tools (Cython and Numba) against a reference
implementation in FORTRAN. Experimental results show the FORTRAN and
F2Py versions are marginally faster than their Python counterparts. Therefore,
Python provides a competitive alternative to traditional programming languages
for HPC.

3 Implementation

3.1 Profiling

Prior to start any code modification, it is necessary to understand how the
code is behaving from the time consumption perspective. The code profiling
indicates which are the most time consuming functions in the execution. By
understanding these functions, it is possible to prioritize them for parallelism
purposes, a reduction of the execution time of these functions is more significant
for the global execution time.

[‘H bl
S——

' l=||I|I|| L 4T
=N W I |
] Hl (I I |]
1 LU0l H I
(a) Original Code Profiling. (b) For Loops Profiling.

Fig. 3. Profiling of PythonPIC code.

Two profiles were created as presented in Fig. 3. In Fig. 3a the original code
was profiled. It was possible to notice two main functions consuming the majority
of the execution time rela_boris_velocity_kick and current_deposition,
these are part of the Particle-in-cell method. The first function was subdivided
into several functions, while current_deposition was not subdivided, meaning
this is the most time consuming function. There, multiple vectorized operations
were observed. These were converted to for loops and a second profile was done
presented in Fig.3b. The current_deposition function now takes longer to
execute, but the conversion from vectorized functions to for loops is necessary to
implement code parallelism. The converted function is a multiplication of arrays,
each array has the size of the amount of particles in the simulation.

Python Parallel Programming for PIC 9

3.2 Code Transformation

The code is freely available through the following Git repository:
https://github.com/oblandino/PythonPIC/

Multiprocessing. The implementation’s structure was developed as presented
in the Background section, for a multiplication of arrays. Multiprocessing is part
of Python standard libraries, no extra packages were required to be installed in
order to use it. The map function only admits two arguments, the function and
the iterable, so the arrays were required to be declared as global variables in
order to be used by the external function performing the array multiplication.
The array that stores the information had to be declared as a multiprocessing
Array, in order to be shared by the workers and store information in parallel.
The map function allows a third argument, the chunksize, its function is to split
the iterable into chunks specified by the number of chunksize, the default value
is 1. This is used to improve efficiency, as well as the imap function, which was
used in the code due to the large number of iterations.

PyMP. Based on the for loops code, PyMP was very easy to implement because
the required changes are minimal, as presented in the background. In PyMP, it
was also required to declare the array as a PyMP shared array in order to be
shared by the workers. PyMP does require external package installation, but
overall this was the easiest implementation.

Torcpy. This implementation was done using a map function similar to Multi-
processing. The main difference is that Torcpy does not handle global variables,
instead it allows all the required arguments in the map function. For this reason,
the arrays were not declared as global, instead these were given as arguments
to the map function, and the external function performing the array multipli-
cation had them as inputs. Torcpy requires a one time initialization by using a
start (f) function were f is the function that includes the Torcpy instructions.
For PythonPIC, due to the code implementation and amount of iterations, the
start () function was required to be integrated in the simulation.py file, ini-
tializing the parallel environment sooner than Multiprocessing and PyMP, poten-
tially causing overhead. Torcpy allows the chunksize argument as presented in
Multiprocessing.

4 Experimental Results

4.1 Setup

All experiments in this paper were run on Kabré supercomputer at the National
High Technology Center (CeNAT) of Costa Rica. Kabré is a hybrid compute
cluster comprising a total of 52 computing nodes of 4 different architectures. Two
of those architectures are relevant for the experiments below. First, the manycore

https://github.com/oblandino/PythonPIC/

10 O. Blandino H. and E. Meneses

Table 1. Software configuration. Table 2. PythonPIC parameters.
Program Version Item Value
Operating system CentOS Number of particles | 100000, 200000, 400000
OS distribution 7.9.2009 Number of iterations | 584
OS kernel 3.10.0-1160.62.1.el7.x86 _ 64 Number of trials 10
Python 3.9.7
Multiprocesing library | Python 3.9.7
PyMP library 0.5.0
Torcpy library 0.1.1
Numba library 0.55.1
cProfile 1.0.7
SnakeViz 2.1.1

nodes have each an Intel Xeon Phi KNL 7230 processor, running at 1.30GHz.
Each node has 96 GB of main memory. Second, the multicore nodes contain an
Intel Xeon Gold 6354 processor, running at 3.00GHz. Each node has 512 GB
of main memory. Kabré is interconnected with an Ethernet 10Gb network and
runs Linux CentOS operating system. Table 1 summarizes the configuration of
the software stack used for the experiments. The execution time parameters for
PythonPIC are presented in Table 2. Only average results with a coefficient of
variation lower than 3% are plotted in the experiments below.

4.2 Experiments

Manycore Processor. After the code was transformed, there was still a miss-
ing piece for Multiprocessing and Torcpy, the chunksize. In the documentation of
both tools, there is no specification on how to define this parameter. The devel-
opers suggest to use a large value, but also mention that a very large value can
actually cause overhead and memory inefficiencies. Figure4 shows the results
obtained in a 100,000 particle simulation. Figure4a shows that the changes in
chunksize did not affect the overall behavior of Multiprocessing. For Torcpy,
Fig. 4b shows a difference of around 20x between using the default value against
other selected chunksize values. Figure 4c is named Torcpy Reduced, because the
default value was removed to provide a better scale, the best execution time was
obtained with a chunksize value of 500. In any of the cases a time reduction
was observed, meaning that Torcpy does not scale properly in the manycore
processor.

The default chunksize value was used for Multiprocessing, and a chunksize
value of 500 for Torcpy. Figure 5 presents the results obtained for a strong-scale
experiment. The best results were obtained with PyMP, then Multiprocessing,
and lastly Torcpy. In Figs. 5a and 5b, for Multiprocessing and PyMP respectively,
the best results were obtained by using 16 workers, a greater value introduced
overhead and the results started to slowly increase. The best execution times
were presented by PyMP. On the other hand, as it was expected for Torcpy,
a time reduction was not observed in Fig. 5c. On the contrary, execution times
increased as the number of workers increased.

Python Parallel Programming for PIC 11

——1 —m—100 500 1000 —%—5000

——] =100 500 1000 ==¥=5000 ~—&— 100 500 1000 ==¥=5000
70 600 70
7 60 7 s00 “,._.,_——0———’ Z 60 —- —
H £ @00 H
w 40 w w 40
£ £ £
g 30 g g 30
E 20 5 200 5 20
X 10 X 100 X 10
0 o 0
0 20 40 60 80 o 50 - 0 - 0 20 40 60 80
WORKERS GRKERS WORKERS
(a) Multiprocessing (b) Torcpy (c) Torcpy Reduced

Fig. 4. Manycore processor chunksize comparison.

——100000 —@—200000 400000 —+—100000 —#—200000 400000 —4—100000 ~— 200000 400000

g

250 250

B
g
INUTES)
51
g

8
E (M
g

EXECUTION TIME (MINUTES)
EXECUTION TIME (MINUTES)

2
100 % 100 100 A =
5 . o
50 & 50 50
0 0 - 0
0 20 40 60 80 0 20 40 60 80 o 20 40 60 80
WORKERS WORKERS 'WORKERS
(a) Multiprocessing (b) PyMP (c¢) Torcpy

Fig. 5. Manycore processor strong-scaling results.

Multicore Processor. A similar approach was performed for the multicore
processor, the chunksize selection was the first step to follow using the same vari-
ables and values presented before. The results presented in Fig. 6 were obtained
in a 100000 particles simulation. Figure 6a shows that changes in chunksize value
did not affect the overall behavior of Multiprocessing implementation. Figure 6b
presents differences around 20x between using the default value of chunksize,
against other selected values for Torcpy. To provide a better scale, the default
chunksize value was removed as presented in Fig. 6¢ also named Torcpy Reduced,
the best reduction of execution time was obtained with a chunksize value of 500,
greater values were causing overhead.

Using the default chunksize value for Multiprocessing, and a chunksize value
of 500 for Torcpy, the results presented in Fig. 7 were obtained. Similar execution
times were observed, but the best results were presented by PyMP, then Mul-
tiprocessing, and lastly Torcpy. Not only the execution times were lower using
PyMP, but also the scalability of workers was better. The behavior for Multi-
processing presented in Fig.7a was similar to the one presented by PyMP in
Fig. 7b. The main difference, besides execution time, was that by using 16 work-
ers Multiprocessing showed an increase of execution time, while PyMP presented
the expected reduction. Figure 7c shows that the reduction of execution time for

12 O. Blandino H. and E. Meneses

—+—1 —8—100 500 1000 —%—5000 ——1 —8—100 500 1000 —%=—5000 —=—100 500 1000 —%=—5000

EXECUTION TIME (MINUTES)
R
EXECUTION TIME (MINUTES)
2 8 B =
888 &
EXECUTION TIME (MINUTES)
ocrNwaE WO N®© B

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
WORKERS WORKERS WORKERS

(a) Multiprocessing (b) Torcpy (c) Torcpy Reduced

Fig. 6. Multicore processor chunksize comparison.

Torcpy was only by using 4 workers, a greater value presented a slow increasing
behavior which was more notorious in the 400,000 particles simulation.

—+—100000 —#—200000 400000 —4—100000 —— 200000 400000 —4—100000 —— 200000 400000

EXECUTION TIME (MINUTES)
EXECUTION TIME (MINUTES)
EXECUTION TIME (MINUTES)

WORKERS WORKERS WORKERS

(a) Multiprocessing (b) PyMP (c¢) Torcpy

Fig. 7. Multicore processor strong-scaling results.

Weak-Scaling results are presented in Fig. 8 for the multicore processor, these
present the number of particles per worker for the simulation. The expected case
is to obtain a line with slope equals to zero, this would mean that as the particles
and number of workers increase, the execution time remains the same, indicating
perfect scalability. The best results were presented by PyMP in Fig. 8b, the slope
does not increase as fast as in Multiprocessing in Fig.8a or Torcpy in Fig. 8c.
The execution times were also shorter. It is important to highlight that the slope
was almost zero for Multiprocessing when using 8 workers or less, in contrast to
PyMP which had more variation, even when it got better overall results.

Python Parallel Programming for PIC 13

——150000 100000 200000 —e—50000 100000 200000 —e—50000 100000 200000

8

160

&
-~
8

3

EXECUTION TIME (MINUTES)

5 &

EXECUTION TIME (MINUTES)

EXECUTION TIME (MINUTES)
8

/ 0 e LY /
o 5 10 15 20 0 5 10 15 20 o 5 10 15 20
WORKERS 'WORKERS 'WORKERS

°

(a) Multiprocessing (b) PyMP (¢) Torcpy

Fig. 8. Multicore processor weak-scaling results.

5 Discussion

Several parallel programming tools for Python have appeared in the last decade.
Presumably, that is a consequence of the original language specification of
Python not including native constructs for parallelism. A survey about Python
tools for HPC found more than 40 libraries [11]. Those libraries come in all
flavors, some mirroring parallel computing paradigms in other languages, some
offering supposedly Pythonic alternatives. Also, the set of libraries contain efforts
already deprecated, while others are still active. This plethora of options offer
an interesting environment for exploring the advantages and downsides of each
alternative.

This paper compared three libraries for parallel programming in Python and
targeting symmetric multiprocessors. The first option, Multiprocessing, offers
generality as it provides features of both task and data parallelism. Perfor-
mance is competitive and maintenance of the library is active. The second option,
PyMP, gives good performance and ease of programming. It truly resembles the
basic features of the OpenMP standard in other programming languages. That
characteristic facilitates the adoption of this library in a community exposed to
traditional shared-memory programming paradigms. The third option, Torcpy,
provides a very neat interface for doing both data and task parallelism. Its per-
formance is still lacking, but it has the backup of a legendary company in the
world of HPC.

A natural question after examining a group of parallel programming libraries
in Python relates to their relative performance compared to a just-in-time (JIT)
compiled alternative. To complement the results of this paper, we added an
experiment with a PythonPIC implementation that includes Numba instruc-
tions. Numba is an open-source JIT compiler that uses LLVM to translate a
subset of Python into machine code. Figure9 shows the result of running and
reporting average execution time of 10 repetitions. The plots in 9a and 9b offer
the performance results in the multicore and manycore processor, respectively. In
both nodes, the execution time is reduced when using Numba, the delta increases
as the number of particles also increase. The best performance is observed in the

14 O. Blandino H. and E. Meneses

manycore processor showing a reduction of 43% in the execution time of the
400,000 particle simulation.

—e—Numba For Loops —e—Numba ——For Loops

5 30
@ @ 25
£ 4 =
El 2
3 s 20
g3 %
2 215 /
£ :
82 8 i
E £ 10
S - ,

o 0

0 100000 200000 300000 400000 S00000 0 100000 200000 300000 400000 500000
PARTICLES PARTICLES
(a) Multicore Processor (b) Manycore Processor

Fig. 9. Numba experimental results.

6 Final Remarks

The particle-in-cell method has established itself as one of the cornerstones
for understanding physical phenomena in a variety of domains, particularly in
plasma physics. As scientists extend this method and increase the granularity of
the simulation, the computational requirements dramatically grow. Inevitably,
high performance computing resources are needed to execute the simulations
and push the envelope in scientific research.

Along with FORTRAN and C/C++, Python is a popular programming lan-
guage for scientific computing and HPC. The broad adoption of Python in sci-
entific communities, makes it an appropriate alternative for scaling applications.
There are several Python tools for parallel programming, with some of them
focused on symmetric multiprocessor architectures. Hence, it is important to
compare those tools according to the programming features they provide and
the performance they show.

PyMP obtained better performance results compared to Multiprocessing and
Torcpy, its execution time was shorter, its scalability to increasing workers was
better, and its implementation was easier. Multiprocessing presented a similar
behavior than PyMP, but the execution times were longer. In both architectures
analyzed the best results were obtained by using 16 workers. In the multicore
processor, Torcpy presented better execution times than Multiprocessing when
using 2 and 4 workers, a greater value did not scale properly. In the manycore
processor, Torcpy never presented a time reduction. Multiprocessing and Tor-
cpy require a characterization of the chunksize value depending on the problem
involved when the map function is used. The behavior of the multicore proces-
sor changed depending on the value used. Numba is an excellent option to use
depending on how the code is implemented.

Acknowledgments. This research was partially supported by a machine allocation
on Kabré supercomputer at the Costa Rica National High Technology Center.

Python Parallel Programming for PIC 15

References

10.
11.
12.

13.

14.

15.

16.

17.
18.

Adekanmbi, O.G.: Performance comparisons for Python libraries in parallel com-
puting and physical simulation. In: 2022 ASEE Gulf Southwest Annual Conference.
ASEE Conferences, Prairie View, Texas, March 2022. https://peer.asee.org/39194
Blandoén, J.S., Grisales, J.P., Riascos, H.: Electrostatic plasma simulation by
particle-in-cell method using ANACONDA package. J. Phys. Conf. Ser. 850,
012007 (2017)

Fink, Z., Liu, S., Choi, J., Diener, M., Kale, L.V.: Performance evaluation of Python
parallel programming models: charm4Py and mpidpy (2021). https://doi.org/10.
48550/ ARXIV.2111.04872, https://arxiv.org/abs/2111.04872

Galvez, J.J., Senthil, K., Kale, L.: CharmPy: a Python parallel programming
model. In: 2018 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 423-433 (2018). https://doi.org/10.1109/CLUSTER.2018.00059
Fehske, H., Schneider, R., Weike, A.: Computational Many-Particle Physics.
Springer, Cham (2008)

(IBM) Integrated Baseboard Management Controller (iBMC) : torcpy: supporting
task-based parallelism in Python (2019). https://github.com/IBM/torcpy
Kadochnikov, I.: Accelerating the particle-in-cell method of plasma and particle
beam simulation using CUDA tools. In: 27th International Symposium on Nuclear
Electronics and Computing (NEC 2019) (2019)

Kim, T., Cha, Y., Shin, B., Cha, B.: Survey and performance test of python-
based libraries for parallel processing. In: The 9th International Conference on
Smart Media and Applications, SMA 2020, pp. 154-157. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3426020.3426057

Lapenta, G.: Kinetic plasma simulation: particle in cell method

Lassner, C.: PyMP (2016). https://github.com/classner/pymp

Meneses, G.C.S.E.: Parallel programming tools in Python

Miranda, E., Stephany, S.: Comparison of high-performance computing approaches
in the python environment for a five-point stencil test problem. In: Anais
do XV Brazilian e-Science Workshop, pp. 33-40. SBC, Porto Alegre, RS,
Brasil (2021). https://doi.org/10.5753 /bresci.2021.15786, https://sol.sbc.org.br/
index.php/bresci/article/view /15786

Pous, X.S.: Particle-in-cell algorithms for plasma simulations on heterogeneous
architectures

Python: multiprocessing - process-based parallelism. https://docs.python.org/3/
library /multiprocessing.html

Rao, V.R.: Here’s why you should use Python for scientific research (2018). https://
developer.ibm.com /blogs/use-python-for-scientific-research /

Stanczak, D.: Implementation and performance analysis of particle-in-cell simula-
tion software in Python (2017)

Top500: Top500 list. Top500 (2022). https://www.top500.org/

Zetcode: Zetcode. https://zetcode.com/python /multiprocessing/

https://peer.asee.org/39194
https://doi.org/10.48550/ARXIV.2111.04872
https://doi.org/10.48550/ARXIV.2111.04872
https://arxiv.org/abs/2111.04872
https://doi.org/10.1109/CLUSTER.2018.00059
https://github.com/IBM/torcpy
https://doi.org/10.1145/3426020.3426057
https://github.com/classner/pymp
https://doi.org/10.5753/bresci.2021.15786
https://sol.sbc.org.br/index.php/bresci/article/view/15786
https://sol.sbc.org.br/index.php/bresci/article/view/15786
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://developer.ibm.com/blogs/use-python-for-scientific-research/
https://developer.ibm.com/blogs/use-python-for-scientific-research/
https://www.top500.org/
https://zetcode.com/python/multiprocessing/

	A Comparative Evaluation of Parallel Programming Python Tools for Particle-in-Cell on Symmetric Multiprocessors
	1 Introduction
	2 Background
	2.1 Particle-in-Cell
	2.2 Python Parallel Programming
	2.3 Related Work

	3 Implementation
	3.1 Profiling
	3.2 Code Transformation

	4 Experimental Results
	4.1 Setup
	4.2 Experiments

	5 Discussion
	6 Final Remarks
	References

