
Philippe Navaux
Carlos J. Barrios H.
Carla Osthoff
Ginés Guerrero (Eds.)

9th Latin American Conference, CARLA 2022
Porto Alegre, Brazil, September 26–30, 2022
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 1660

Communications
in Computer and Information Science 1660

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://springerlink.bibliotecabuap.elogim.com/bookseries/7899

Philippe Navaux · Carlos J. Barrios H. ·
Carla Osthoff · Ginés Guerrero (Eds.)

High Performance
Computing
9th Latin American Conference, CARLA 2022
Porto Alegre, Brazil, September 26–30, 2022
Revised Selected Papers

Editors
Philippe Navaux
Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Carla Osthoff
Laboratório Nacional de Computação
Científica
Petrópolis, Brazil

Carlos J. Barrios H.
Universidad Industrial de Santander
Bucaramanga, Colombia

Ginés Guerrero
Laboratorio Nacional de Computación de
Alto Rendimiento
Santiago, Chile

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-23820-8 ISBN 978-3-031-23821-5 (eBook)
https://doi.org/10.1007/978-3-031-23821-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Chapter “Using Big Data and Serverless Architecture to Follow the Emotional Response to the COVID-19
Pandemic inMexico” is licensedunder the termsof theCreativeCommonsAttribution4.0 InternationalLicense
(http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9957-5861
https://orcid.org/0000-0002-4694-7182
https://orcid.org/0000-0002-3227-8651
https://doi.org/10.1007/978-3-031-23821-5
http://creativecommons.org/licenses/by/4.0/

Preface

CARLA, the Latin American High Performance Computing Conference, is an interna-
tional academic meeting aimed at providing a forum to foster the growth and strength of
the high performance computing (HPC) community in Latin America and the Caribbean
through the exchange and dissemination of new ideas, techniques, and research in HPC
and its application areas. Starting in 2014, CARLA has become the flagship conference
for HPC in the region. One of its principal goals is to spread, together with the interna-
tional community, the advances in both HPC and HPC&AI (the convergence between
HPC and artificial intelligence), as those two key areas are becoming the predominant
engine for innovation and development.

In the previous editions, CARLA offered two main tracks: HPC and HPC&AI. The
latter highlights the convergence of HPC with modern machine learning methods and
their application to multiple areas. CARLA also has become a fundamental forum to
disseminate, discuss, and learn about new international trends in advanced computing.

The 2021 edition addressed topics from advanced computer science applications,
which generated a new distinctive track, HPC&APP, for the 2022 edition. It has become
clear to the HPC Latin American community that after nine editions, CARLA has
matured and consolidated its organization, showing the strength of the academic network
behind its organization.

The 9th Latin American High Performance Computing Conference (CARLA 2022)
was, for the first time, a hybrid event, which meant an opportunity for more inclusive
and flexible participation of the community. The conference was held during September
26–30, 2022, and hosted by the Federal University of Rio Grande do Sul (UFRGS).

In addition to the conference days, there were seven workshops and eight tutori-
als: five fundamental tutorials and three advanced tutorials, all within the framework
and scope of the CARLA conference. The website (http:/carla22.org) provides relevant
information on these activities.

CARLA2022 had 138 registered attendees from21 countries.Out of the total number
of attendees, 112 came from 10 Latin American countries and 26 from 11 other countries
(in Europe, Asia, Africa, and Oceania). The board committee gathered more than 40
colleagues in 13 committees and seven workshop committees, representing more than
30 institutions in Latin America. The board committee had over 45 meetings during the
organizing year. CARLA 2022 had the sponsorship of four important high-technology
companies and six academic institutions or societies.

CARLA 2022 had three keynote speakers: Michela Taufer, Daniel S. Katz, and
Alba Cervera-Lierta. In addition, each track had one invited speaker: Luigi Carro for
the HPC track, Pablo Mininnni for the HPC&AI track, and Nelson Amaral for the
HPC&APP track. The HPC track had six accepted author contributions, the HPC&AI
track had five accepted author contributions, and the HPC&APP track had five accepted
author contributions. Also, there were eight accepted poster contributions. The poster by
Carla Cardoso, Hervé Yviquel, Guilherme Valarini, Gustavo Leite, Marcio Pereira, Alan

http://carla22.org/

vi Preface

Souza, and Guido Araujo, “An OpenMP-only Linear Algebra Library for Distributed
Architectures,” was selected for the Best Poster Award.

Additionally, there were four industrial talks given by various sponsors. The con-
ference had three panels with 13 international panelists on the themes of was “Latin
America HPC”, “HPC Actions in Africa and Latin American”; and “HPC collabora-
tion between ASIA and Latin America.” Furthermore, the seven workshops featured 10
invited speakers and eight tutorials.

This book contains 16 papers selected from 57 submitted manuscripts. All
manuscripts were peer-reviewed by at least three members of the Program Commit-
tee in a single blind process. The work by Carlos H. S. Barbosa and Alvaro L. G. A.
Coutinho, “Multi-GPU 3-D Reverse Time Migration with Minimum I/O”, was selected
for the Best Paper Award of the main tracks. It is noteworthy that since 2018, the impact
of article citations in the CARLA conference volumes has visibly increased.

November 2022 Philippe Navaux
Carlos J. Barrios H.

General Chairs
Carla Osthoff

Ginés Guerrero
Publication Chairs
Alvaro Coutinho
Esteban Mocskos

Organization

General Chairs

Navaux, Philippe Federal University of Rio Grande do Sul, Brazil
Barrios H., Carlos J. Universidad Industrial de Santander, Colombia

Program Committee Chairs

Coutinho, Alvaro Federal University of Rio de Janeiro, Brazil
Mocskos, Esteban Universidad de Buenos Aires, Argentina

Steering Committee

Barrios H., Carlos J. Universidad Industrial de Santander, Colombia
Castro, Harold Universidad de los Andes, Colombia
Díaz T., Gilberto J. Industrial University of Santander, Colombia
Gitler, Isidoro Center for Research and Advanced Studies of the

National Polytechnic Institute, Mexico
Navaux, Philippe Federal University of Rio Grande do Sul, Brazil
Núñez de V. M., Luis A. Universidad Industrial de Santander, Colombia
Meneses, Esteban National High Technology Center, Costa Rica
Mocskos, Esteban Universidad de Buenos Aires, Argentina
Nesmachnow, Sergio Universidad de la República, Uruguay
Osthoff, Carla National Laboratory for Scientific Computing,

Brazil
Ossa O., Alvaro University of Costa Rica, Costa Rica
Valero, Mateo Barcelona Supercomputing Center, Spain
Wolovick, Nicolás Universidad Nacional de Córdoba, Argentina

Program Committee

Barrios H., Carlos J. Universidad Industrial de Santander, Colombia
Bendersky, Ariel Universidad de Buenos Aires, Argentina
Besseron, Xavier University of Luxembourg, Luxembourg
Cadenas, Luis RedCLARA, Chile
Camata, Jose Federal University of Rio Grande do Sul, Brazil
Carastan-Santos, Danilo Université Grenoble Alpes, CNRS, Inria,

Grenoble INP, LIG, Saint-Martin-d’Hères,
France

viii Organization

Cardoso, Douglas Centro Federal de Educação Tecnológica Celso
Suckow da Fonseca, Brazil

Carrillo, Oscar CITI Lab, University of Lyon, CPE Lyon INSA
Lyon, Inria, France

Castro, Márcio Federal University of Santa Catarina, Brazil
Castro, Harold Universidad de los Andes, Colombia
Catabriga, Lucia Federal University of Espírito Santo, Brazil
Chacon A., Claudio H. Corporación Ecuatoriana para el Desarrollo de la

Investigación y la Academia, Ecuador
Cordeiro, Daniel University of São Paulo, Brazil
Coutinho, Alvaro Federal University of Rio de Janeiro, Brazil
Díaz, Gilberto Universidad Industrial de Santander, Colombia
Drummond, Lucia Federal Fluminense University, Brazil
Francesquini, Emilio Federal University of ABC, Brazil
Garcia Henao, John Anderson Nucleus AI, Switzerland
Gitler, Isidoro Center for Research and Advanced Studies of the

National Polytechnic Institute, Mexico
Goldman, Alfredo University of São Paulo, Brazil
Gomes, Antônio Tadeu Laboratório Nacional de Computação Científica

(LNCC), Brazil
Grave, Malú Federal University of Rio de Janeiro, Brazil
Griebler, Dalvan Pontifical Catholic University of Rio Grande do

Sul, Brazil
Guerrero, Ginés Universidad de Chile, Chile
Hernandez, Benjamin Oak Ridge National Laboratory, USA
Hernandez, Esteban PSL Software, Colombia
Iturriaga, Santiago Universidad de la República, Uruguay
Jalife, Salma Centro México Digital, Mexico
Künas, Cristiano Alex Federal University of Rio Grande do Sul, Brazil
Lanzarotti, Esteban Universidad de Buenos Aires, Argentina
Le Mouël, Frédéric University of Lyon, INSA Lyon, Inria, France
Lozoya Arandia, Jorge Universidad de Guadalajara, Centro Universitario

del Sur, Zapotlan el Grande, Mexico
Lujan, Emmanuel Massachusetts Institute of Technology, USA
Martinez-Perez, Francisco Universidad Industrial de Santander, Colombia
Mayo-García, Rafael Centro de Investigaciones Energéticas,

Medioambientales y Tecnológicas, Spain
Melesse Vergara, Verónica Oak Ridge National Laboratory, USA
Mello Schnorr, Lucas Federal University of Rio Grande do Sul, Brazil
Meneses, Esteban Centro Nacional de Alta Tecnología, Costa Rica
Mocskos, Esteban Universidad de Buenos Aires, Argentina
Monsalve Diaz, Jose M. Argonne National Laboratory, USA
Montoya, Javier Universidad de Cartagena, Colombia

Organization ix

Moya, Ulises Gobierno de Jalisco, México
Nakahara Jr, Jorge École Polytechnique Fédérale de Lausanne,

Switzerland
Navaux, Philippe Federal University of Rio Grande do Sul, Brazil
Nesmachnow, Sergio Universidad de la República, Uruguay
Ocaña, Kary Laboratório Nacional de Computação Científica,

Rio de Janeiro, Brazil
Orizaga Trejo, Jose Antonio Universidad de Guadalajara, Smart Cities

Research Center, Mexico
Osthoff, Carla National Laboratory for Scientific Computing,

Brazil
Otero, Alejandro D. Universidad Nacional de La Plata, Argentina
Padoin, Edson Luiz UNIJUI, Brazil
Pantoja, Maria Cal Poly, USA
Pecero Sanchez, Johnatan University of Luxembourg, Luxembourg
Perez, Gervasio Universidad de Buenos Aires, Argentina
Raffin, Bruno Inria, France
Rivas, Robinson Universidad Central de Venezuela, Venezuela
Rizzi, Silvio Argonne National Laboratory, USA
Robles, Lizette Universidad de Guadalajara, México
Rojas, Elvis Universidad Nacional, Costa Rica
Romo Bucheli, David Edmundo Universidad Industrial de Santander, Colombia
Sanabria, John Universidad del Valle, Colombia
Serpa, Matheus Federal University of Rio Grande do Sul, Brazil
Soba, Alejandro Universidad de Buenos Aires, Argentina
Steffenel, Luiz Angelo Université de Reims Champagne-Ardenne,

LICIIS Laboratory, France
Stringhini, Denise Federal University of São Paulo, Brazil
Vasquez, John Universidad Técnica de Ambato, Ecuador
Wolovick, Nicolás Universidad Nacional de Córdoba, Argentina
Clua, Esteban Universidade Federal Fluminense, Brazil

Additional Reviewers

Amaris, Marcos Federal University of Pará, Brazil
Baldassin, Alexandro Universidade Estadual Paulista, Brazil
Bruel, Pedro Hewlett Packard Enterprise, USA
Chacón Velasco, Jorge Luis Universidad Industrial de Santander, Colombia
Colavecchia, Flavio Fundación INTECNUS, Argentina
Dematties, Dario Universidad de Buenos Aires, Argentina
Lima, Willian Federal University of Sergipe, Brazil
Manacero, Aleardo University of São Paulo, Brazil

x Organization

Peretti Pezzi, Guilherme The Swiss National Supercomputing Centre,
Switzerland

Ruiz, John Tul, Colombia
Santos, Ricardo Universidade Federal de Mato Grosso do Sul,

Brazil
Silva, Romulo Federal University of Rio de Janeiro, Brazil
Sánchez, Jorge Adrián Universidad Nacional de Córdoba, Argentina
Clua, Esteban Universidade Federal Fluminense, Brazil

Contents

A Comparative Evaluation of Parallel Programming Python Tools
for Particle-in-Cell on Symmetric Multiprocessors . 1
Oscar Blandino H. and Esteban Meneses

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous
Platform . 16
Yi-Chien Lin, Bingyi Zhang, and Viktor Prasanna

Implementing a GPU-Portable Field Line Tracing Application
with OpenMP Offload . 31
Diego Jiménez, Javier Herrera-Mora, Markus Rampp, Erwin Laure,
and Esteban Meneses

Quantitative Characterization of Scientific Computing Clusters 47
Aurelio Vivas and Harold Castro

Towards Parameter-Based Profiling for MARE2DEM Performance
Modeling . 63
Bruno da Silva Alves, Luciano Paschoal Gaspary,
and Lucas Mello Schnorr

Time-Power-Energy Balance of blas Kernels in Modern fpgas 78
Federico Favaro, Ernesto Dufrechou, Juan P. Oliver, and Pablo Ezzatti

Improving Boundary Layer Predictions Using Parametric Physics-Aware
Neural Networks . 90
Antônio Tadeu Azevedo Gomes, Larissa Miguez da Silva,
and Frédéric Valentin

Towards Fire Identification Model in Satellite Images Using HPC
Embedded Systems and AI . 103
Jhon Deivy Perez Arguello, Carlos J. Barrios Hernández,
and Julián Rodriguez Ferreira

A Machine Learning-Based Missing Data Imputation with FHIR
Interoperability Approach in Sepsis Prediction . 116
Cristian Fernando Toro Beltran, Erick Daniel Villarreal Ibañez,
Vivian Milen Orejuela, and John Anderson García Henao

xii Contents

Understanding the Energy Consumption of HPC Scale Artificial
Intelligence . 131
Danilo Carastan-Santos and Thi Hoang Thi Pham

Using Big Data and Serverless Architecture to Follow the Emotional
Response to the COVID-19 Pandemic in Mexico . 145
Edgar León-Sandoval, Mahdi Zareei, Liliana Ibeth Barbosa-Santillán,
and Luis Eduardo Falcón Morales

Multi-GPU 3-D Reverse Time Migration with Minimum I/O 160
Carlos H. S. Barbosa and Alvaro L. G. A. Coutinho

ParslRNA-Seq: An Efficient and Scalable RNAseq Analysis Workflow
for Studies of Differentiated Gene Expression . 174
Kary Ocaña, Lucas Cruz, Micaella Coelho, Rafael Terra,
Marcelo Galheigo, Andre Carneiro, Diego Carvalho, Luiz Gadelha,
Francieli Boito, Philippe Navaux, and Carla Osthoff

Refactoring an Electric-Market Simulation Software for Massively
Parallel Computations . 190
Franco Seveso, Raúl Marichal, Ernesto Dufrechou, and Pablo Ezzatti

Nearly Quantum Computing by Simulation . 205
Gilberto J. Díaz T, Carlos J. Barrios H., Luiz A. Steffenel,
and Jean F. Couturier

Functionality Testing in the Automation of Scientific Application
Workflows in an HPC Environment . 220
Felipe de Jesús Orozco Luna, Jesús Manuel Alemán González,
and Veronica Lizette Robles Dueñas

Author Index . 233

A Comparative Evaluation of Parallel
Programming Python Tools

for Particle-in-Cell on Symmetric
Multiprocessors

Oscar Blandino H.1(B) and Esteban Meneses1,2

1 School of Computing, Costa Rican Institute of Technology, Cartago, Costa Rica
oscar.blandino.hernandez@intel.com, emeneses@cenat.ac.cr

2 Advanced Computing Laboratory, National High Technology Center,
San Jose, Costa Rica

Abstract. The Python programming language has established itself as
a popular alternative for implementing scientific computing workflows.
Its massive adoption across a wide spectrum of disciplines has created
a strong community that develops tools for solving complex problems
in science and engineering. In particular, there are several parallel pro-
gramming libraries for Python codes that target multicore processors.
We aim at comparing the performance and scalability of a subset of
three popular libraries (Multiprocessing, PyMP, and Torcpy). We use the
Particle-in-cell (PIC) method as a benchmark. This method is an attrac-
tive option for understanding physical phenomena, specially in plasma
physics. A pre-existing PIC code implementation was modified to inte-
grate Multiprocessing, PyMP, and Torcpy. The three tools were tested
on a manycore and on a multicore processor by running different problem
sizes. The results obtained consistently indicate that PyMP has the best
performance, Multiprocessing showed a similar behavior but with longer
execution times, and Torcpy did not properly scale when increasing the
number of workers. Finally, a just-in-time (JIT) alternative was studied
by using Numba, showing execution time reductions of up to 43%.

Keywords: Parallel programming · Python · Particle-in-cell

1 Introduction

Particle-in-cell (PIC) is one of the most important computational methods in
physics to study problems in solid, fluid mechanics, but specially in plasma. It
solves a set of partial differential equations with a combination of individual par-
ticles on a Lagrangian frame and moments computed on Eulerian mesh points.
The first PIC simulations were performed in late 1950 s using between 100 and
1,000 particles to simulate the motion and interaction between them. Nowadays,
this kind of simulations are performed using between 105 and 1010 particles,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 1–15, 2022.
https://doi.org/10.1007/978-3-031-23821-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_1

2 O. Blandino H. and E. Meneses

representing a challenge for computer systems. Large PIC simulations require
the use of supercomputers and code optimizations to reduce execution time [5].

Traditional programming languages in HPC, such as FORTRAN and
C/C++, were used to implement PIC and other well-established numerical meth-
ods. However, the community working on computational science adopted Python
as a popular option for running simulations. A fundamental reason for that
change is the evolution of problem-solving approaches [15]. Python is easier to
learn and use than FORTRAN and C/C++. But, it still has great tools for
scientific computing (SciPy, NumPy, Matplotlib, PyTorch). The first scientific
computing research projects were based on mathematical models simpler than
the complex models used by scientists today. The knowledge the scientific com-
munity gained over the previous decades led to the development of more complex
models to understand bigger or more difficult problems at a higher precision. In
fact, it is now common to include machine learning methods within the workflow
of scientific applications. The high popularity of Python across scientific disci-
plines, the broad availability of tools, and a huge user base, has made Python
an attractive option for implementing complex mathematical models and simu-
lations.

Chips with multiple cores dominate the processor market these days. The
architecture trend is to increase the number of cores per processor. As Moore’s
Law still holds true, we can only expect this course of action to persist for a few
more years. The latest release of the Top500 list [17] shows that nearly 70% of
the systems solely rely on symmetric multiprocessors (SMP) for their computing
power (no accelerators). It is therefore crucial to address the performance char-
acteristics of parallel programming Python tools for SMP architectures when
implementing PIC methods.

This paper sets out to explore three popular parallel programming Python
tools for SMP architectures. We use the PIC method as a guiding example. To
the best of our knowledge, this is the first study on that topic. Our contribution
is twofold. First, we provide a picture of the features these tools provide when
implementing a PIC method. Second, we present a comparative analysis of those
tools backed up with experimental results on two different SMP architectures.

2 Background

2.1 Particle-in-Cell

Mathematical Base. Particle-in-cell (PIC) is a method used to model physical
systems whose behavior varies at macro and micro levels. At the macro level,
the electromagnetic fields are calculated using Maxwell’s equations. At the micro
level, the position, velocity, charge, and current density properties are calculated
for a set of particles [5,13]. The main objective of the PIC method is to simulate
the motion of plasma particles based on the interaction of position and velocity
of the particles, with self induced and external electromagnetic fields. To sim-
ulate this dynamic, the PIC model uses a grid, as presented in Fig. 1a. In that
grid, the position of each particle is shown. The grid is used to calculate and

Python Parallel Programming for PIC 3

determine the interaction of the particle with electromagnetic fields, and subse-
quently the particle’s new position and velocity. These particles, depending on
the application, could have more assigned properties, such as mass, charge, and
material. The particles are the ones responsible of transporting mass and energy
through the grid [13].

Fig. 1. Particle-in-cell (PIC) method.

Particle-in-cell simulations normally solve the equations of motion of N par-
ticles with the Newton-Lorentz’s force [5,9], considering the non-relativistic case,
and also solve Maxwell’s equations to calculate electromagnetic fields, charge and
current density. Considering N particles, with i = 1, · · · , N , the motion equa-
tions are presented in Eqs. 1 and 4 of Fig. 2. Variables Xi and Vi correspond to
the position and velocity of particle i. Also, ei and mi correspond to the electric
charge and mass of particle i. Finally, E and B correspond to the electric and
magnetic fields. On the other hand, Maxwell’s equations are presented in Eqs. 2,
3, 5, and 6. Variable ε corresponds to the permittivity of the medium, H is the
magnetic field, J corresponds to the current density, and ρ to the charge density.

Fig. 2. Particle-in-cell governing equations.

Computer Simulations. The grid in Fig. 1a is used to locate the particles and
to project the effect of electromagnetic fields, charge density, and current density
on the particles. Each block of the grid is known as a cell. That is where the
name particle-in-cell comes from. Each cell has four vertex from which it is pos-
sible to perform several operations: interpolate the particle’s position to project
charge and current density into the grid, solve Maxwell’s equations to obtain
new values of electromagnetic fields, evaluate the changes on electromagnetic

4 O. Blandino H. and E. Meneses

fields and its influence onto the particles, push the particles to a new position
with velocity changes, and affect the electromagnetic fields. This procedure is
executed repeatedly and it is know as the particle-in-cell loop, represented in
Fig. 1b. The PIC method is based on the aforementioned four operations known
as [13]:

Scatter : the particle’s position is calculated by using interpolation. The charge
and current density is affected from each particle to each vertex. It has a differ-
ent magnitude depending on the position of the particles; in other words, this
operation calculates how the particles are affecting the grid.

Solve: once the grid is updated with the new values of charge and current density,
the Maxwell’s equations are calculated in every cell of the grid in order to obtain
new values of the electric and magnetic fields forces.

Gather : the new values of the electric and magnetic fields are interpolated in the
particle’s location to calculate how are these affecting it. In an opposite way to
Scatter, this phase reflects how the grid is influencing the particles.

Push: the changes on electromagnetic forces and its magnitude modify the speed
of the particle pushing it to a new position. The Push phase is in charge of
calculating the new speed and position of the particle.

The initialization phase of the Particle-in-cell algorithm consists in declaring
a random position for all the particles with an initial speed of zero. Also, all the
vertex of the grid should be initialized with a zero value for the electromagnetic
fields. The finalization phase consists in reporting to the user the particles and
grid information regarding positions, velocities, and values of electromagnetic
fields. Using that information, scientists are able to obtain conclusions about
the simulation done [13]. Based on the phases previously described, it is pos-
sible to create a pseudo code of the Particle-in-cell algorithm as presented by
Algorithm 1.

Algorithm 1. Particle-in-cell High Level Algorithm
for each particle p ∈ N do � Initialization of particles

Xp ← random
Vp ← 0

for each vertex v ∈ Grid do � Initialization of fields
E(v) ← 0
B(v) ← 0
J(v) ← 0
ρ(v) ← 0

while t < tmax do
ρ(v) ← ρ(vx,y) + qp · w(p, vx,y) � Scatter: Particle interaction with the grid
E(vx,y) ← E′(vx,y) � Solve: Calculate electromagnetic fields
B(vx,y) ← B′(vx,y)
E(p) ← E(vx,y) · w(p, vx,y) � Gather: Reflect grid’s influence to the particle
Xp ← X′

p � Push: Change particle position
Vp ← V ′

p

Print Xp and Vp � Finalization of particle data
Print E, B, J, ρ � Finalization of grid data

Python Parallel Programming for PIC 5

PythonPIC. A Python implementation of the PIC method was made by
Dominik Stańczak [16]. Called PythonPIC, the code models the interaction
between a hydrogen plasma target and a laser impulse. The implementation
of the Python code used Numba to improve performance, but the parallel pro-
gramming functions of Numba were not used. In this paper, we use this code
to extend it with parallel programming constructs and evaluate their impact on
performance.

The code works in the following way. A configuration script describes the
simulation that will be executed, along with all its parameters. This script uses
a class named Initial from a configuration file, which interprets all the param-
eters and sets up the simulation. The Initial class inherits from Simulation
in the Classes directory and uses functions described in the Algorithms and
Helpers directories. The following is a detailed description of how the interaction
of a laser with a hydrogen shield plasma is being implemented:

Configuration Scripts: The script fulllaser.py imports from Configs a file
named run_laser.py. Several variables and the initial function are being
imported. The configuration script uses this information to define the input
parameters for initial function and execute.

Configs: The run_laser.py file imports file BoundaryCondition.py from Algo-
rithms. From Classes imports Simulation and Species classes. From Helpers
imports different functions and variables. This file describes the class initial
which is inherited from Simulation and it is the one in charge of setting up
everything to run the specific case of simulation that wants to be performed by
using variables and functions from the files and classes previously mentioned.

Classes: This directory contains the three most important files of PythonPIC:
simulation.py, species.py, and grid.py. These three files are used by all the
Config files and are the ones in charge of handling and executing the simulation.
The Simulation class takes all the information from the Config file and executes
the desired simulation, creating the needed directories, initializing the Particle-
in-cell grid, performing all the iterations, doing the post processing, and storing
all the information. The Species class handles a set of particles and stores
the information regarding position, velocity, and other variables. Finally, the
Grid class handles the information regrading Particle-in-cell grid, like charges,
currents, and fields for the particles in the simulation.

Algorithms: This directory contains files for the different algorithms used depend-
ing on the simulation case involved. File BoundaryCondition.py is being used
to represent a boundary condition for the fields in the simulation. These files are
in charge of mathematical calculations, and this could be a point to implement
parallelization and even code optimization for specific simulation cases.

Helpers: This directory includes two files with different functions. File
helpers.py has functions mainly for simulation progress configurations, while
file physics.py includes common functions used in the simulation regarding
mathematical calculations for the simulation.

6 O. Blandino H. and E. Meneses

2.2 Python Parallel Programming

Along with C and FORTRAN, Python is one of the most important program-
ming languages in high performance computing. It comes at no surprise that the
community has developed many Python tools for parallel programming. Accord-
ing to a recent study [11], there are more than 40 different Python parallel
programming tools, each one with their particular combination of type of par-
allelism, execution mode and programming interface. Three of those tools that
stand out for their simplicity and convenience at programming parallel code in
Python are Multiprocessing [14], PyMP [10], and Torcpy [6].

Multiprocessing. It is a library that supports spawning processes with an
API similar to any classic threading module, supporting local and remote con-
currency. Originally, the Global Interpreter Lock (GIL) used by Python is in
charge of scheduling the execution of threads, such that only one runs at a time.
The Multiprocessing library avoids the limitations of GIL and uses sub-processes
instead of threads. Therefore, it allows the use of multiple processors [14,18].
There are two basic ways to exploit parallelism using the multiprocessing library:
Pools and the Process class. The usage of Pool is intended for the execution of
one function for multiple input values, distributing the input data across differ-
ent processes. On the other hand, by using the Process Class, the processes are
spawned by creating an object and then calling a start and join methods. These
two methods, specially the Process class, are the base to start making parallel
code using the multiprocessing library. Below, you will find a code sample for a
parallel sum of two arrays.

1 from mul t i p ro c e s s i ng import Pool , Array
2 def sum(i) :
3 c [i] = a [i] + b [i]
4 i f __name__ == ’__main__ ’ :
5 global a , b , c
6 N = 5
7 a = [1 , 2 , 3 , 4 , 5]
8 b = [2 , 4 , 6 , 8 , 1 0]
9 c = Array (’ f ’ , range (N))

10 with Pool (4) as p :
11 p .map(sum , range (N))
12 print (c)

PyMP. Build on top of Multiprocessing library, PyMP is a Python library
that offers parallel programming functionalities in the style of OpenMP. It takes
the small code changes and high efficiency of directive-based programming and
combines it with Python usage easiness [10]. Since pragmas are not present in
Python, PyMP leverages some language constructs to provide parallel program-
ming features. The with statement provides parallel contexts for several threads.
The range instruction divides loop iterations among active threads. Other con-
figuration options (number of threads, loop scheduling policies, thread-specific
identifiers, variable scope) are passed as parameters to functions. Only a portion

Python Parallel Programming for PIC 7

of the OpenMP standard can be mapped to PyMP language constructs. How-
ever, the available functionalities are powerful to represent a modest range of
parallel algorithms. Below is the PyMP version of the parallel sum of two arrays.

1 import pymp
2 i f __name__ == ’__main__ ’ :
3 N = 5
4 a = [1 , 2 , 3 , 4 , 5]
5 b = [2 , 4 , 6 , 8 , 1 0]
6 c = pymp . shared . array (N, dtype=’ f l o a t 6 4 ’)
7 with pymp . P a r a l l e l (4) as p :
8 for i in p . range (N) :
9 c [i] = a [i] + b [i]

10 print (c)

Torcpy. It is an open source library supported by IBM that provides a parallel
computing framework with a unified approach for expressing and executing task
and data parallelism on both shared and distributed memory architectures [6].
Although it uses MPI internally in a transparent way to the user, Torcpy also
allows the use of explicit MPI code at the application level. It provides support
for parallel nested loops, map functions, and task stealing at several levels of
parallelism. The submit and wait functions provide the necessary task paral-
lelism operations, while map function implements data parallelism. Below is the
Torcpy version of the parallel sum of two arrays.

1 import torcpy as to r c
2 def sum(i , a , b) :
3 return a + b
4 def main () :
5 N = 5
6 a = [1 , 2 , 3 , 4 , 5]
7 b = [2 , 4 , 6 , 8 , 1 0]
8 i t e r a t i o n s = range (N)
9 c = torc .map(sum , i t e r a t i o n s , a , b)

10 print (c)
11 i f __name__ == ’__main__ ’ :
12 to r c . s t a r t (main)

2.3 Related Work

Python implementations of the Particle-in-cell method are easy to find in the
available literature. Blandón et al [2] presents a one-dimensional PIC imple-
mentation using Anaconda packages. They use their sequential code to study
plasma phenomena, such as oscillations, waves, instabilities and damping. Fink
et al [3] used a PIC code to compare two parallel programming tools in Python
(Charm4Py and mpi4Py). They started with an already parallel MPI version of
the code and ported it to parallel objects [4]. Their results highlight the scala-
bility of both approaches on distributed-memory systems, with parallel objects
providing an advantage in load imbalanced scenarios. Kadochnikov [7] acceler-
ated a PIC implementation in Python on GPUs, using CUDA through CuPy
library. The code in that paper used algebraic multigrid solvers in Python to
create a code able to understand some instabilities in electron beam ion sources.

8 O. Blandino H. and E. Meneses

There are previous works comparing tools for parallel programming in
Python. Adekanmbi et al [1] implemented a solution to the N-body problem
using three different HPC Python tools: Taichi, Numba, and NumPy. The former
two provide the shortest execution time, since both are based on a just-in-time
compiler. Kim et al. [8] surveyed parallel processing tools in Python and provided
experimental results showing the advantages of a couple of tools (Pandaral-lel
and Ipyparallel). Using those tools on a multi-core chip, they obtained 5.2x and
2.6x speedups, respectively. Miranda and Stephany [12] used a five-point stencil
program to compare HPC Python tools (Cython and Numba) against a reference
implementation in FORTRAN. Experimental results show the FORTRAN and
F2Py versions are marginally faster than their Python counterparts. Therefore,
Python provides a competitive alternative to traditional programming languages
for HPC.

3 Implementation

3.1 Profiling

Prior to start any code modification, it is necessary to understand how the
code is behaving from the time consumption perspective. The code profiling
indicates which are the most time consuming functions in the execution. By
understanding these functions, it is possible to prioritize them for parallelism
purposes, a reduction of the execution time of these functions is more significant
for the global execution time.

Fig. 3. Profiling of PythonPIC code.

Two profiles were created as presented in Fig. 3. In Fig. 3a the original code
was profiled. It was possible to notice two main functions consuming the majority
of the execution time rela_boris_velocity_kick and current_deposition,
these are part of the Particle-in-cell method. The first function was subdivided
into several functions, while current_deposition was not subdivided, meaning
this is the most time consuming function. There, multiple vectorized operations
were observed. These were converted to for loops and a second profile was done
presented in Fig. 3b. The current_deposition function now takes longer to
execute, but the conversion from vectorized functions to for loops is necessary to
implement code parallelism. The converted function is a multiplication of arrays,
each array has the size of the amount of particles in the simulation.

Python Parallel Programming for PIC 9

3.2 Code Transformation

The code is freely available through the following Git repository:
https://github.com/oblandino/PythonPIC/

Multiprocessing. The implementation’s structure was developed as presented
in the Background section, for a multiplication of arrays. Multiprocessing is part
of Python standard libraries, no extra packages were required to be installed in
order to use it. The map function only admits two arguments, the function and
the iterable, so the arrays were required to be declared as global variables in
order to be used by the external function performing the array multiplication.
The array that stores the information had to be declared as a multiprocessing
Array, in order to be shared by the workers and store information in parallel.
The map function allows a third argument, the chunksize, its function is to split
the iterable into chunks specified by the number of chunksize, the default value
is 1. This is used to improve efficiency, as well as the imap function, which was
used in the code due to the large number of iterations.

PyMP. Based on the for loops code, PyMP was very easy to implement because
the required changes are minimal, as presented in the background. In PyMP, it
was also required to declare the array as a PyMP shared array in order to be
shared by the workers. PyMP does require external package installation, but
overall this was the easiest implementation.

Torcpy. This implementation was done using a map function similar to Multi-
processing. The main difference is that Torcpy does not handle global variables,
instead it allows all the required arguments in the map function. For this reason,
the arrays were not declared as global, instead these were given as arguments
to the map function, and the external function performing the array multipli-
cation had them as inputs. Torcpy requires a one time initialization by using a
start(f) function were f is the function that includes the Torcpy instructions.
For PythonPIC, due to the code implementation and amount of iterations, the
start() function was required to be integrated in the simulation.py file, ini-
tializing the parallel environment sooner than Multiprocessing and PyMP, poten-
tially causing overhead. Torcpy allows the chunksize argument as presented in
Multiprocessing.

4 Experimental Results

4.1 Setup

All experiments in this paper were run on Kabré supercomputer at the National
High Technology Center (CeNAT) of Costa Rica. Kabré is a hybrid compute
cluster comprising a total of 52 computing nodes of 4 different architectures. Two
of those architectures are relevant for the experiments below. First, the manycore

https://github.com/oblandino/PythonPIC/

10 O. Blandino H. and E. Meneses

Table 1. Software configuration.

Program Version

Operating system CentOS

OS distribution 7.9.2009

OS kernel 3.10.0-1160.62.1.el7.x86_64

Python 3.9.7

Multiprocesing library Python 3.9.7

PyMP library 0.5.0

Torcpy library 0.1.1

Numba library 0.55.1

cProfile 1.0.7

SnakeViz 2.1.1

Table 2. PythonPIC parameters.

Item Value

Number of particles 100000, 200000, 400000

Number of iterations 584

Number of trials 10

nodes have each an Intel Xeon Phi KNL 7230 processor, running at 1.30GHz.
Each node has 96 GB of main memory. Second, the multicore nodes contain an
Intel Xeon Gold 6354 processor, running at 3.00GHz. Each node has 512 GB
of main memory. Kabré is interconnected with an Ethernet 10Gb network and
runs Linux CentOS operating system. Table 1 summarizes the configuration of
the software stack used for the experiments. The execution time parameters for
PythonPIC are presented in Table 2. Only average results with a coefficient of
variation lower than 3% are plotted in the experiments below.

4.2 Experiments

Manycore Processor. After the code was transformed, there was still a miss-
ing piece for Multiprocessing and Torcpy, the chunksize. In the documentation of
both tools, there is no specification on how to define this parameter. The devel-
opers suggest to use a large value, but also mention that a very large value can
actually cause overhead and memory inefficiencies. Figure 4 shows the results
obtained in a 100,000 particle simulation. Figure 4a shows that the changes in
chunksize did not affect the overall behavior of Multiprocessing. For Torcpy,
Fig. 4b shows a difference of around 20x between using the default value against
other selected chunksize values. Figure 4c is named Torcpy Reduced, because the
default value was removed to provide a better scale, the best execution time was
obtained with a chunksize value of 500. In any of the cases a time reduction
was observed, meaning that Torcpy does not scale properly in the manycore
processor.

The default chunksize value was used for Multiprocessing, and a chunksize
value of 500 for Torcpy. Figure 5 presents the results obtained for a strong-scale
experiment. The best results were obtained with PyMP, then Multiprocessing,
and lastly Torcpy. In Figs. 5a and 5b, for Multiprocessing and PyMP respectively,
the best results were obtained by using 16 workers, a greater value introduced
overhead and the results started to slowly increase. The best execution times
were presented by PyMP. On the other hand, as it was expected for Torcpy,
a time reduction was not observed in Fig. 5c. On the contrary, execution times
increased as the number of workers increased.

Python Parallel Programming for PIC 11

Fig. 4. Manycore processor chunksize comparison.

Fig. 5. Manycore processor strong-scaling results.

Multicore Processor. A similar approach was performed for the multicore
processor, the chunksize selection was the first step to follow using the same vari-
ables and values presented before. The results presented in Fig. 6 were obtained
in a 100000 particles simulation. Figure 6a shows that changes in chunksize value
did not affect the overall behavior of Multiprocessing implementation. Figure 6b
presents differences around 20x between using the default value of chunksize,
against other selected values for Torcpy. To provide a better scale, the default
chunksize value was removed as presented in Fig. 6c also named Torcpy Reduced,
the best reduction of execution time was obtained with a chunksize value of 500,
greater values were causing overhead.

Using the default chunksize value for Multiprocessing, and a chunksize value
of 500 for Torcpy, the results presented in Fig. 7 were obtained. Similar execution
times were observed, but the best results were presented by PyMP, then Mul-
tiprocessing, and lastly Torcpy. Not only the execution times were lower using
PyMP, but also the scalability of workers was better. The behavior for Multi-
processing presented in Fig. 7a was similar to the one presented by PyMP in
Fig. 7b. The main difference, besides execution time, was that by using 16 work-
ers Multiprocessing showed an increase of execution time, while PyMP presented
the expected reduction. Figure 7c shows that the reduction of execution time for

12 O. Blandino H. and E. Meneses

Fig. 6. Multicore processor chunksize comparison.

Torcpy was only by using 4 workers, a greater value presented a slow increasing
behavior which was more notorious in the 400,000 particles simulation.

Fig. 7. Multicore processor strong-scaling results.

Weak-Scaling results are presented in Fig. 8 for the multicore processor, these
present the number of particles per worker for the simulation. The expected case
is to obtain a line with slope equals to zero, this would mean that as the particles
and number of workers increase, the execution time remains the same, indicating
perfect scalability. The best results were presented by PyMP in Fig. 8b, the slope
does not increase as fast as in Multiprocessing in Fig. 8a or Torcpy in Fig. 8c.
The execution times were also shorter. It is important to highlight that the slope
was almost zero for Multiprocessing when using 8 workers or less, in contrast to
PyMP which had more variation, even when it got better overall results.

Python Parallel Programming for PIC 13

Fig. 8. Multicore processor weak-scaling results.

5 Discussion

Several parallel programming tools for Python have appeared in the last decade.
Presumably, that is a consequence of the original language specification of
Python not including native constructs for parallelism. A survey about Python
tools for HPC found more than 40 libraries [11]. Those libraries come in all
flavors, some mirroring parallel computing paradigms in other languages, some
offering supposedly Pythonic alternatives. Also, the set of libraries contain efforts
already deprecated, while others are still active. This plethora of options offer
an interesting environment for exploring the advantages and downsides of each
alternative.

This paper compared three libraries for parallel programming in Python and
targeting symmetric multiprocessors. The first option, Multiprocessing, offers
generality as it provides features of both task and data parallelism. Perfor-
mance is competitive and maintenance of the library is active. The second option,
PyMP, gives good performance and ease of programming. It truly resembles the
basic features of the OpenMP standard in other programming languages. That
characteristic facilitates the adoption of this library in a community exposed to
traditional shared-memory programming paradigms. The third option, Torcpy,
provides a very neat interface for doing both data and task parallelism. Its per-
formance is still lacking, but it has the backup of a legendary company in the
world of HPC.

A natural question after examining a group of parallel programming libraries
in Python relates to their relative performance compared to a just-in-time (JIT)
compiled alternative. To complement the results of this paper, we added an
experiment with a PythonPIC implementation that includes Numba instruc-
tions. Numba is an open-source JIT compiler that uses LLVM to translate a
subset of Python into machine code. Figure 9 shows the result of running and
reporting average execution time of 10 repetitions. The plots in 9a and 9b offer
the performance results in the multicore and manycore processor, respectively. In
both nodes, the execution time is reduced when using Numba, the delta increases
as the number of particles also increase. The best performance is observed in the

14 O. Blandino H. and E. Meneses

manycore processor showing a reduction of 43% in the execution time of the
400,000 particle simulation.

Fig. 9. Numba experimental results.

6 Final Remarks

The particle-in-cell method has established itself as one of the cornerstones
for understanding physical phenomena in a variety of domains, particularly in
plasma physics. As scientists extend this method and increase the granularity of
the simulation, the computational requirements dramatically grow. Inevitably,
high performance computing resources are needed to execute the simulations
and push the envelope in scientific research.

Along with FORTRAN and C/C++, Python is a popular programming lan-
guage for scientific computing and HPC. The broad adoption of Python in sci-
entific communities, makes it an appropriate alternative for scaling applications.
There are several Python tools for parallel programming, with some of them
focused on symmetric multiprocessor architectures. Hence, it is important to
compare those tools according to the programming features they provide and
the performance they show.

PyMP obtained better performance results compared to Multiprocessing and
Torcpy, its execution time was shorter, its scalability to increasing workers was
better, and its implementation was easier. Multiprocessing presented a similar
behavior than PyMP, but the execution times were longer. In both architectures
analyzed the best results were obtained by using 16 workers. In the multicore
processor, Torcpy presented better execution times than Multiprocessing when
using 2 and 4 workers, a greater value did not scale properly. In the manycore
processor, Torcpy never presented a time reduction. Multiprocessing and Tor-
cpy require a characterization of the chunksize value depending on the problem
involved when the map function is used. The behavior of the multicore proces-
sor changed depending on the value used. Numba is an excellent option to use
depending on how the code is implemented.

Acknowledgments. This research was partially supported by a machine allocation
on Kabré supercomputer at the Costa Rica National High Technology Center.

Python Parallel Programming for PIC 15

References

1. Adekanmbi, O.G.: Performance comparisons for Python libraries in parallel com-
puting and physical simulation. In: 2022 ASEE Gulf Southwest Annual Conference.
ASEE Conferences, Prairie View, Texas, March 2022. https://peer.asee.org/39194

2. Blandón, J.S., Grisales, J.P., Riascos, H.: Electrostatic plasma simulation by
particle-in-cell method using ANACONDA package. J. Phys. Conf. Ser. 850,
012007 (2017)

3. Fink, Z., Liu, S., Choi, J., Diener, M., Kale, L.V.: Performance evaluation of Python
parallel programming models: charm4Py and mpi4py (2021). https://doi.org/10.
48550/ARXIV.2111.04872, https://arxiv.org/abs/2111.04872

4. Galvez, J.J., Senthil, K., Kale, L.: CharmPy: a Python parallel programming
model. In: 2018 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 423–433 (2018). https://doi.org/10.1109/CLUSTER.2018.00059

5. Fehske, H., Schneider, R., Weiße, A.: Computational Many-Particle Physics.
Springer, Cham (2008)

6. (IBM) Integrated Baseboard Management Controller (iBMC) : torcpy: supporting
task-based parallelism in Python (2019). https://github.com/IBM/torcpy

7. Kadochnikov, I.: Accelerating the particle-in-cell method of plasma and particle
beam simulation using CUDA tools. In: 27th International Symposium on Nuclear
Electronics and Computing (NEC 2019) (2019)

8. Kim, T., Cha, Y., Shin, B., Cha, B.: Survey and performance test of python-
based libraries for parallel processing. In: The 9th International Conference on
Smart Media and Applications, SMA 2020, pp. 154–157. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3426020.3426057

9. Lapenta, G.: Kinetic plasma simulation: particle in cell method
10. Lassner, C.: PyMP (2016). https://github.com/classner/pymp
11. Meneses, G.C.S.E.: Parallel programming tools in Python
12. Miranda, E., Stephany, S.: Comparison of high-performance computing approaches

in the python environment for a five-point stencil test problem. In: Anais
do XV Brazilian e-Science Workshop, pp. 33–40. SBC, Porto Alegre, RS,
Brasil (2021). https://doi.org/10.5753/bresci.2021.15786, https://sol.sbc.org.br/
index.php/bresci/article/view/15786

13. Pous, X.S.: Particle-in-cell algorithms for plasma simulations on heterogeneous
architectures

14. Python: multiprocessing - process-based parallelism. https://docs.python.org/3/
library/multiprocessing.html

15. Rao, V.R.: Here’s why you should use Python for scientific research (2018). https://
developer.ibm.com/blogs/use-python-for-scientific-research/

16. Stańczak, D.: Implementation and performance analysis of particle-in-cell simula-
tion software in Python (2017)

17. Top500: Top500 list. Top500 (2022). https://www.top500.org/
18. Zetcode: Zetcode. https://zetcode.com/python/multiprocessing/

https://peer.asee.org/39194
https://doi.org/10.48550/ARXIV.2111.04872
https://doi.org/10.48550/ARXIV.2111.04872
https://arxiv.org/abs/2111.04872
https://doi.org/10.1109/CLUSTER.2018.00059
https://github.com/IBM/torcpy
https://doi.org/10.1145/3426020.3426057
https://github.com/classner/pymp
https://doi.org/10.5753/bresci.2021.15786
https://sol.sbc.org.br/index.php/bresci/article/view/15786
https://sol.sbc.org.br/index.php/bresci/article/view/15786
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://developer.ibm.com/blogs/use-python-for-scientific-research/
https://developer.ibm.com/blogs/use-python-for-scientific-research/
https://www.top500.org/
https://zetcode.com/python/multiprocessing/

Accelerating GNN Training
on CPU+Multi-FPGA
Heterogeneous Platform

Yi-Chien Lin(B) , Bingyi Zhang, and Viktor Prasanna

University of Southern California, Los Angeles, USA
{yichienl,bingyizh,prasanna}@usc.edu

Abstract. Training Graph Neural Networks (GNNs) has become time
consuming as the graphs grow larger. Thus, many works have been
proposed to accelerate GNN training on multi-GPU platforms. Though
GPUs feature high computation power, training GNNs on GPU suffers
from low resource utilization. We propose to accelerate GNN training
on a CPU+Multi-FPGA heterogeneous platform. By utilizing the cus-
tomizable hardware resources on the FPGAs, we instantiate multiple
hardware kernels with optimized data access pattern and memory orga-
nization. The optimized hardware kernels can efficiently access graph-
structured data and thus achieve high training performance. However,
training GNN with multiple FPGAs also leads to high FPGA-to-FPGA
communication overhead and workload imbalance. We develop optimized
graph partitioning techniques to minimize FPGA-to-FPGA data commu-
nication, and develop a task scheduler to balance the workload among the
FPGAs. Compared with the state-of-the-art GNN training implementa-
tion on a multi-GPU platform, our work achieves up to 24.7× bandwidth
efficiency; this superior efficiency enables our work to achieve up to 3.88×
speedup and 7.18× energy efficiency using much less compute power and
memory bandwidth than GPUs.

Keywords: Graph neural networks · CPU+Multi-FPGA

1 Introduction

Graph Neural Networks (GNNs) have facilitated many applications such as social
recommendation system [21], molecular property prediction [9], and traffic pre-
diction [12], etc. Despite the usefulness of GNNs, training a GNN model on a
large-scale graph using a single GPU is time-consuming. Thus, there has been
an increasing interest in using multi-GPU platforms [7,18] to accelerate GNN
training. Although these works accelerate GNN training using multiple GPUs,
some challenges remain: (1) inefficiency: GNN training underutilizes the avail-
able resources because traditional cache policies fail to capture the data access
pattern in GNN training, resulting in high cache miss rate [11,20]. In addition,
each data element goes through multi-level caches before being computed, which
incurs high latency. Due to the aforementioned reasons, most of the training time

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 16–30, 2022.
https://doi.org/10.1007/978-3-031-23821-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_2&domain=pdf
http://orcid.org/0000-0002-1710-1532
http://orcid.org/0000-0002-1609-8589
https://doi.org/10.1007/978-3-031-23821-5_2

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 17

is spent on reading and writing data from/to the GPU global memory, instead of
the actual computation; (2) power consumption: though GPU features superior
peak performance, it also comes with high power consumption. Power consump-
tion is an essential consideration for cloud service providers like Amazon Web
Service (AWS) and Microsoft Azure since it directly relates to the operating cost
of the data centers.

Recently, Field Programmable Gate Array (FPGA) has emerged as a pop-
ular platform to accelerate GNN inference [16,25] and training [17,22]. This is
because FPGAs are highly customizable; this allows developers to customize
their hardware kernels, datapath, and memory hierarchy. In contrast, in CPUs
and GPUs, the datapath, memory controller and memory hierarchy are all fixed.
Utilizing the customized hardware designs, previous works [16,17,22,25] achieve
high performance and energy-efficient GNN computations on a single FPGA
platform. Cloud platforms like AWS F1 [1], Azure NP-series [2], and Intel Dev-
Cloud [3] are all equipped with FPGAs, making FPGAs easily accessible to
researchers and developers.

Motivated by the challenges of training GNN on GPU platforms and the
emergence of FPGAs, we propose to accelerate GNN training on a CPU+Multi-
FPGA heterogeneous platform; such a platform consists of a multi-core CPU
processor, connected to multiple FPGAs. We utilize the flexibility of CPU to per-
form control-intensive tasks such as graph preprocessing, mini-batch sampling
and task scheduling. We exploit customizable hardware resources of FPGAs
to develop kernels with optimized memory organization and data access pat-
tern to reduce the communication overhead during GNN training. In addition
to efficient data access, training GNNs with application-specific architecture on
FPGAs allows us to achieve superior energy efficiency. Though a CPU+Multi-
FPGA heterogeneous platform provides more hardware resources and memory
bandwidth than a single FPGA platform, it is challenging to achieve a scalable
speedup due to the complex data dependency of graph-structured data. In par-
ticular, during GNN training, the input graph is partitioned and distributed to
each FPGA and trained in parallel. However, a straightforward graph partition-
ing would lead to significant FPGA-to-FPGA communication overhead [7] since
each FPGA may need to read significant amount of data from other FPGA local
DDR memory. To overcome this issue, we use METIS [13] to partition the input
graph; METIS graph partitioning can minimize edge-cut between graph parti-
tions and thus minimize data communication among the FPGAs. However, since
each graph partition contains different number of vertices and edges, the work-
load of each partition is different. Thus, we develop a task scheduler to handle
the workload imbalance among the FPGAs. Though we exploit multi-level paral-
lelism and various optimization techniques, none of them alter the GNN training
algorithm; thus, we achieve the same training accuracy and convergence rate as
in training on a multi-GPU platform. We summarize our contributions as follows:

– We accelerate GNN training on a CPU+Multi-FPGA heterogeneous plat-
form. We demonstrate the acceleration of GNN training using two well-known
GNN models on three widely-used datasets.

18 Y.-C. Lin et al.

– We develop hardware kernels with optimized memory organization and data
access pattern, which reduce the data access overhead in GNN training.

– We develop several optimizations, including: (1) graph partitioning, and (2)
workload balancing to improve the training performance on our target plat-
form.

– Compared with a state-of-the-art GNN training framework on a multi-GPU
platform, our implementation on a CPU+multi-FPGA platform achieves up
to 24.7× bandwidth efficiency, 3.88× speedup, and 7.18× energy efficiency.

2 Background

2.1 GNN Models

Given an input graph G(V, E ,X), where V, E , and X is the vertices, edges, and
vertex features of the graph, a GNN model is specified by:

– L: number of layers.
– Vt: a set of target vertices to be inferred.
– f l: hidden dimension in layer l (1 � l � L).
– A mechanism of constructing mini-batches, including:

• The mechanism to construct V l: the set of vertices in layer l (0 � l � L).
|V l| denotes the number of vertices in layer l. Moreover, VL = Vt.

• The mechanism to construct Al ∈ R
|Vl−1|×|Vl|: adjacency matrix for fea-

ture aggregation in layer l (1 � l � L). Al defines the inter-layer connec-
tivity between V l−1 and V l.

– Aggregate() function that is used by each vertex to aggregate information
from its neighbors.

– Update() function including an one-layer multi-layer perceptron (MLP) and
an activation function σ() that is used to perform feature update.

– W l ∈ R
f l−1×f l

: weight matrix of layer l (1 � l � L) that is used in update
function to perform linear transformation of vertex features.

– X ∈ R
|V|×f l

: input feature matrix.
– hl ∈ R

|Vl|×f l

: the vertex matrix in layer l (0 � l � L). Moreover, h0 = X.

GNNs learn to generate low-dimensional vector representation (i.e., node embed-
ding) for a set of target vertices Vt. We illustrate the above process in Fig. 1 with
an example of a L-layer GNN model. Starting from layer 1, the GNN model com-
putes the feature vector of each vertex in V1 by aggregating and updating the
feature vectors of its neighbor vertices in V0; this process is repeated L times
until the node embedding of the target vertices Vt (which is VL) is derived.
The derived node embedding capture the structural information A and vertex
features X of the input graph and can be used to facilitate many downstream
applications as mentioned in Sect. 1.

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 19

Fig. 1. GNN computation abstraction

Fig. 2. Full-graph vs. Mini-batch

2.2 Mini-Batch GNN Training

GNNs can be trained in full-graph [15], or in a mini-batch fashion [9,23]. The
former approach uses the entire graph to compute the node embeddings of all
the vertices; the latter approach first samples a set of vertices and edges and
only utilizes the sampled vertices and edges to compute the node embeddings
of the target vertices. Mini-batch GNN training demonstrate advantages com-
pared with full-graph training in terms of accuracy, and scalability for large-scale
graphs [9,23]; thus, this work focuses on accelerating mini-batch GNN training.
We illustrate the difference between the two approaches in Fig. 2, the blue-colored
vertices are selected to compute the node embedding of the target vertex (labeled
with the letter “T”). Note that there are various mini-batch sampling algorithms
[19], Fig. 2 only depicts the Neighbor Sampling algorithm [9] for simplicity. It
is also worth noticing that the numbers labeled on the vertices in Fig. 2 are in
random order since graph-structured data is non-Euclidean. Since accessing the
vertices in random order incurs random memory access, GNN training suffers
from high communication overhead. The mini-batch training process consists of
five stages [9,23]: sampling, forward propagation, loss calculation, back propaga-
tion, and weight update. In the sampling stage, a set of vertices and adjacency
matrices are sampled from the input graph topology G(V, E). We use V l to denote
the vertices sampled from V in layer l. Al denotes the sampled adjacency matrix,
which describes inter-layer connections (edges) between V l−1 and V l within the
mini-batch. A mini-batch consists of target vertices Vt, sampled vertices for each
layer {V l : 0 � l � L−1}, and sampled adjacency matrices {Al : 1 � l � L−1}.
In the forward propagation stage, the mini-batch is processed layer by layer as
in Fig. 1. The node embeddings in the last layer {hL

i : vi ∈ VL} are compared
with the ground truth for loss calculation. The calculated loss is used for back-

20 Y.-C. Lin et al.

propagation, which performs a similar computation as forward propagation but
in a reverse direction. At last, the gradients of W l in each layer are derived and
used to update the weights.

Algorithm 1. Mini-batch GNN Training Algorithm
1: for each iteration do
2: Sampling(G(V, E)) � Derive mini-batches
3: for l = 1...L do � Forward Propagation
4: for vertex v ∈ V l do
5: al

v = Aggregate(hl−1
u : u ∈ Ns(v), u ∈ V l−1)

6: hl
v = Update(al

i,W
l, σ())

7: end for
8: end for
9: CalculateLoss({hL

i : vi ∈ VL})
10: BackPropagation() � Derive gradient of W l

11: WeightUpdate()
12: end for

We show the steps of GNN training in Algorithm 1, Ns(v) denotes neighbors
of v in V l−1 that are specified in Al.

2.3 Related Work

Hardware Acceleration for GNN Training. GraphACT [22] accelerates
GNN training on a CPU-FPGA heterogeneous platform by exploiting both task-
level parallelism and data parallelism. It adopts a redundancy reduction tech-
nique to reduce the number of memory access; however, the technique can only
be applied to graphs with binary edge weight. Thus, GraphACT cannot sup-
port certain GNN models such as Graph Convolutional Network (GCN) [15]
with non-binary edge weight. HP-GNN [17] proposes a general framework that
is able to accelerate various GNN models. Given a sampling algorithm, GNN
model, and platform metadata, the framework automatically generates a GNN
training implementation that runs on a CPU-FPGA heterogeneous platform.
Though HP-GNN is able to accelerate various GNN models on a CPU-FPGA
platform, it does not support CPU+Multi-FPGA heterogeneous platform which
needs to address the high FPGA-to-FPGA communication overhead and tackle
the workload imbalance issue.

GNN Training Using Multiple CPUs or GPUs. DistDGL [26] acceler-
ates GNN training on a cloud platform with multiple CPU instances. It shows
that GNN training on multiple instances with synchronous stochastic gradi-
ent descent (SGD) quickly converges to almost the same accuracy as training
on a single machine. In addition, DistDGL proposes to use graph partition-
ing to reduce the communication overhead among different nodes and achieve
high training performance. PaGraph accelerates GNN training on a multi-GPU
platform. PaGraph partitions the input graph using a greedy algorithm that

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 21

Fig. 3. CPU+Multi-FPGA heterogeneous Platform

Fig. 4. GNN training on a CPU+Multi-FPGA heterogeneous platform

balances the workload among partitions. In addition, it caches vertex feature
of high out-degree vertices since these vertices are expected to be frequently
accessed. Utilizing multiple CPUs or GPUs, these works improve GNN training
performance compared with a single CPU or GPU. However, as mentioned in
Sect. 1, training GNNs using general-purpose processors with fixed data access
patterns and complex memory hierarchy suffers from inefficiency; this motivates
us to accelerate GNN training on a CPU+Multi-FPGA heterogeneous platform,
which is not yet explored by any previous work.

3 GNN Training on CPU+Multi-FPGA Platform

We illustrate a CPU+Multi-FPGA Heterogeneous Platform in Fig. 3. The plat-
form consists of a multi-core CPU connected to the CPU memory via DDR
memory channel. The CPU is connected to multiple FPGAs via PCIe. Each
FPGA has a local DDR memory.

We depict the workflow of GNN training on a CPU+Multi-FPGA heteroge-
neous platform in Fig. 4. The training algorithm on a CPU+Multi-FPGA het-
erogeneous platform is similar to Algorithm 1, but with two additional stages:
graph preprocessing and gradient synchronization. We assign the CPU to per-
form graph preprocessing since the preprocessing is well-supported by existing
library1. Thus, we store the input graph G(V, E ,X) in the CPU memory for the
CPU to perform graph preprocessing. Note that the preprocessing overhead can
be amortized since the graph partitioning is a one-time cost. During the graph
processing phase, the input graph G(V, E ,X) is partitioned and distributed to

1 https://github.com/KarypisLab/METIS.

https://github.com/KarypisLab/METIS

22 Y.-C. Lin et al.

each FPGA, we use Xi to indicate the vertex features stored in the ith FPGA
local DDR memory. We use different colors to indicate that the vertices are
assigned to different FPGAs in Fig. 4. When the graph preprocessing is done, the
five stages in Algorithm 1 are performed. We assign the CPU to perform mini-
batch sampling because it is flexible to support various sampling algorithms.
The sampler samples from each graph partition, and assigns the mini-batches to
each FPGA. Note that it is possible to sample vertices from different graph par-
titions as shown in the mini-batches of Fig. 4; because the edges crossing graph
partitions are preserved in a graph partition, so the sampler might sample some
vertices in other partitions via the partition-crossing edges. Although access-
ing vertices in other graph partitions incurs FPGA-to-FPGA communication,
preserving the edges crossing different partitions is necessary since removing
them would affect the training accuracy. After the mini-batches are produced
and distributed, each FPGA performs forward propagation, loss calculation, and
back propagation in parallel; we assign FPGAs to perform the GNN operations
because the optimized hardware kernels can efficiently deal with the irregular
data access patterns in GNNs. Thus, we store the mini-batch topology V l, Al,
and selected vertex features Xi in the FPGA local DDR memory to perform
GNN operations. Finally, we assign the CPU to perform gradient synchroniza-
tion and weight update since it’s easier to synchronize using the CPU.

We perform GNN training using synchronous stochastic gradient descent
(SGD) [8], which is widely used in related works that accelerate GNN training
on a multi-GPU platform. We accelerate the GNN computations but do not
alter the training algorithm; thus, the convergence rate and the accuracy are the
same as training on a multi-GPU platform using synchronous SGD.

4 Optimizations

4.1 Graph Partitioning and Workload Balancing

Assume there are p FPGAs on the target platform, we partition the input graph
into p partitions, and store each partition in one FPGA local DDR memory.
During feature aggregation (Algorithm 1), the vertex features of the neighbor
vertices are fetched and aggregated. If the vertex required resides in the same
graph partition, the vertex feature can be fetched directly from the local DDR
memory; otherwise, the vertex feature needs to be fetched from another DDR
memory, which incurs high overhead FPGA-to-FPGA communication.

To minimize the FPGA-to-FPGA communication overhead, we utilize
METIS [13] algorithm to perform graph partitioning. METIS can minimize
cross-partition edge connection and thus reduce FPGA-to-FPGA communica-
tion overhead. However, each graph partition consists of a different number of
vertices and edges; thus, the workload of training on each graph partition is also
different. We develop a task scheduler to balance the workload among FPGAs.
Figure 5 illustrates the idea with an example of 4 FPGAs. First, a Mini-batch

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 23

Fig. 5. Workload balancing scheduler

Fig. 6. Data structure

Sampler samples a mini-batch from each graph partition in a round-robin fash-
ion. Each circle in the figure represents a mini-batch, the labeled number indi-
cates the order that each mini-batch is produced, and the color indicates from
which graph partition it is sampled. 4 mini-batches is executed in each train-
ing iteration, and then a synchronized SGD is performed to update the model
weights. In iteration 2, all the mini-batches in partition 3 have been executed.
Thus, the sampler continues to sample another mini-batch to produce 4 mini-
batches. By default, mini-batch 8 should be computed by FPGA 1 according
to the graph partitioning, which causes workload imbalance. Our task scheduler
addresses the workload imbalance by assigning the additional mini-batches to
idle FPGAs. For example, on the right side of Fig. 5, mini-batch 8 is assigned
to FPGA 3. Similarly, in iteration 3, an additional mini-batch is sampled from
partition 2 and is then assigned to FPGA 3. Note that this workload balancing
technique does not alter the algorithm. As we can see in Fig. 5, the mini-batches
being computed in each iteration are the same in both scheduling strategies.

4.2 Optimized GNN Kernels

As mentioned in Sect. 2.2, each GNN layer performs two major steps: feature
aggregation and feature update. The aggregation kernel fetches the feature vec-
tors of source vertices, performs an aggregation function which depends on
the GNN model, and then writes the result to the destination vertices; the
update kernel performs a multi-layer perceptron, which can be implemented
using matrix multiplication, to update the feature vectors of the destination
vertices. In this subsection, we focus on the optimizations done in the aggregate
kernel since it is the bottleneck of GNN training; for the update kernel, we adopt

24 Y.-C. Lin et al.

a systolic-array-based design to perform matrix multiplication of feature matrix
hl and weight matrix W l.

Data Structure. GNN training suffers from poor data reuse, resulting in fre-
quent accesses to the FPGA local DDR memory, which is much slower than
accessing on-chip memory like Block RAMs (BRAMs). To exploit data reuse,
we store the graph edges in coordinate (COO) format, sorted by the source ver-
tices; this allows our kernels to maximize the opportunity for data reuse. We
illustrate the idea in Fig. 6 with a toy example. During GNN training, the aggre-
gation kernel first fetches the feature vector of v0 from the local DDR memory,
a Feature Duplicator will then duplicate the feature vector and store it inside
each PE’s register. In the meantime, each PE reads an edge to compute. If the
source value of the edge matches the feature vector stored inside the PE register
(e.g., the first three PE in Fig. 6), then the PE proceeds with its computation of
multiplying edge weight with feature vector; if a mismatch occurs (e.g., the 4th

PE), the PE stalls and waits for the next feature vector (e.g., feature vector of
vertex 1) to compute. Using the proposed data structure and hardware design,
the feature vector of each source vertex only needs to be fetched once from the
DDR memory, which reduces the communication cost from O(|A1|) to O(|V0|).

Memory Organization and Datapath. Sorting the graph edges by source
vertices allows us to exploit data reuse, but also incurs random memory write
since the destination vertices are in random order. To mitigate the overhead
of random memory write, the aggregate kernel buffers the intermediate results
on-chip instead of writing them back to the DDR memory; this allows the inter-
mediate results to be stored in one cycle. After the aggregation is done, the
aggregated results are directly transferred to the update kernel. Similarly, after
the update is done, the updated results are directly transferred to the aggregate
kernel for the computation of next layer. After all L layers are executed, the
final results are written back to the local DDR memory sequentially. Utilizing
the FPGA on-chip memory to buffer the intermediate results, we reduce the
overhead of the random memory access; the datapath design allows the kernels
to directly read input data in one cycle since the data do not need to travel
through a complex memory hierarchy. In addition, the datapath avoids frequent
access to the local DDR memory because it does not need to write back the
intermediate results.

5 Experiments

5.1 Experimental Setup

Environments. We run our experiments on a dual-socket server. For the multi-
GPU platform, we equip the server with 4 GPUs; and for the CPU-Multi-FPGA
heterogeneous platform, we equip the server with 4 FPGAs. The GPUs or
FPGAs are connected to the host CPU via PCIe. We list the information of

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 25

Table 1. Specifications of the platforms

Platforms CPU

AMD EPYC 7763

GPU

Nvidia RTX A5000

FPGA

Xilinx Alveo U250

Technology TSMC 7nm+ Samsung 8 nm TSMC 16nm

Frequency 2.45GHz 2000MHz MHz 300MHz

Peak performance 3.6 TFLOPS 27.8 TFLOPS 0.6 TFLOPS

TDP power 280W 230W 225W

On-chip memory 256 MB L3 cache 6 MB L2 Cache 54 MB

Memory bandwidth 205 GB/s 768 GB/s 77 GB/s

Table 2. Statistics of the datasets and GNN-layer dimensions

Dataset #Vertices #Edges f0 f1 f2

Reddit (RD) 232,965 23,213,838 602 128 41

Amazon (AM) 1,569,960 264,339,468 200 128 107

ogbn-products (PR) 2,449,029 61,859,140 100 128 47

the host CPU, GPUs, and FPGAs in Table 1. Note that the peak performance
and memory bandwidth of FPGA is significantly lower than GPU; thus, the
speedup of our work highly relies on our optimizations. We develop our hard-
ware kernels using Xilinx Vitis HLS v2021.2, and implement the host program
using C++14 with the openCL library. We implement the multi-GPU baseline
using Python v3.6, PyTorch v1.11, CUDA v11.3, and PyTorch-Geometric v2.0.3.

Measurements. We use the built-in time2 library to measure the GNN training
time on the multi-GPU platform. We build a cycle-accurate simulator to measure
the GNN training time on the CPU-multi-FPGA heterogeneous platform. To
verify the simulator, we implement the host program and GNN kernels, measure
the program execution time on the CPU and post-synthesis execution time on
the FPGA using the time library, and then tune our simulator according to the
data we collected from the actual hardware. We use the Vitis Analyzer [14] to
obtain the power consumption of the FPGAs. Vitis Analyzer creates a power
trace report, and the power consumption can be calculated using the report.
We use Nvidia System Management Interface (SMI) [5] and PowerTop tool [6]
to monitor the power consumption of GPUs and CPUs, respectively; these two
tools only monitor the power usage instead of providing a power trace report.
Thus, we create a script to trace the power consumption to manually obtain the
power trace report. Since the sample period of Nvidia SMI is between 1/6 to
1 s, we set our script to read the power consumption from SMI every 0.1 s. In
all of our experiments, we measure the data by training 10 epochs and taking
the average of the measured value. In our experiments, the observed variation
for each epoch is approximately the same (relative standard deviation less than

2 https://docs.python.org/3/library/time.html.

https://docs.python.org/3/library/time.html

26 Y.-C. Lin et al.

5%), so measuring the values from 10 epochs is similar as measuring the values
from all the epochs that it takes for the model to converge.

GNN Models and Datasets. We run our experiments using two well-known
GNN models: GraphSAGE (GSG) [9] and GCN [15]. We use a 2-layer model
with a hidden feature size of 128 for all the tasks since this is a widely-used
setup [9,24]. We choose three datasets with over 10 million edges for evaluation,
namely the Reddit dataset (RD), Amazon dataset (AM) [23], and ogbn-products
(PR) [10]. We use the Neighbor Sampler [9] to produce mini-batches; we set the
size of target vertices |Vt| as 1024, the neighbor sampling size of each layer is 25
and 10, and the learning rate is 0.01. Note that under the setup of synchronized
SGD, training 4 mini-batches of size 1024 in parallel is equivalent to training a
mini-batch of size 4096 on a single GPU or FPGA. Details of the datasets and
the GNN-layer dimensions are shown in Table 2.

5.2 Hardware Parameter Selection and Resource Utilization

There are two parameters in our kernel design. We use n and m to denote the
parallelism of the aggregate kernel and update kernel, respectively. In particular,
n indicates the number of processing elements (PEs) in the aggregate kernel.
Figure 6 shows an example of n equals 4. m indicates the number of multiply-
and-accumulate (MAC) units in the systolic-array-based kernel design.

Given a GNN model, we aim to find a set of parameters that optimizes the
throughput. We first assign an initial value for n and m, evaluate its performance
on the three datasets (Sect. 5.1), and observe which kernel is the bottleneck.
Then we increase the parallelism of the bottleneck kernel and re-evaluate the
performance. We repeatedly increase the parallelism of the bottleneck kernel in
each iteration until we saturate the available hardware resources. Both the GCN
model and the GraphSAGE model lead to the same set of parameters when the
hardware resources are saturated. We show the selected parameters and resource
utilization in Table 3.

Table 3. Hardware parameters and resource utilization

Parallelism (n, m) LUTs DSPs URAM BRAM

(8, 2048) 72% 90% 48% 40%

5.3 Performance Metrics

– Epoch time: the time it takes to train one epoch (seconds).
– Throughput: we define the training throughput as the Number of Vertices

Traversed Per Second (NVTPS).
– Bandwidth efficiency: throughput divided by available memory bandwidth

of the target platform (NVTPS/(GB/s)). Since the bandwidth varies on dif-
ferent platforms, normalizing the throughput with the available bandwidth
provides a clear indication of the effectiveness/efficiency of the accelerator.

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 27

Table 4. Comparison with multi-GPU platform

RD AM PR Geo. Mean

GCN [15] Epoch time GPU 1.21 4.04 4.61 –

This work 0.57 1.05 2.81 –

Throughput GPU 25.3 M 27.6 M 106 M 42.0 M (1×)

This work 53.8 M 107 M 175 M 100 M (2.38×)

BW efficiency GPU 7.71 K 8.42 K 32.5 K 12.8 K (1×)

This work 105 K 208 K 340 K 195 K (15.2×)

Energy efficiency GPU 0.47 1.58 1.80 1.10 (1×)

This work 0.12 0.22 0.59 0.25 (4.40×)

GSG [9] Epoch time GPU 1.25 4.16 4.89 –

This work 0.71 1.78 4.27 –

Throughput GPU 24.4 M 26.8 M 100 M 40.4 M (1×)

This work 42.9 M 62.7 M 115 M 67.6 M (1.67×)

BW efficiency GPU 7.46 K 8.17 K 30.6 K 12.3 K (1×)

This work 83.6 K 122 K 224 K 132 K (10.7×)

Energy efficiency GPU 0.49 1.63 1.91 1.15 (1×)

This work 0.15 0.38 0.90 0.37 (3.10×)

– Energy efficiency: the energy consumption of training one epoch on the target
platform (kJ/epoch).

5.4 Comparison with Multi-GPU Platform

Performance. We compare the performance of our design on a CPU+Multi-
FPGA heterogeneous platform, with a state-of-the-art GNN training
implementation using PyTorch-Geometric on a multi-GPU platform. Both the
multi-GPU baseline and our work adopts the METIS algorithm for graph pre-
processing. In our work, we overlap the sampling stage and GNN operations in
each training iteration since they are performed on CPU and FPGAs, respec-
tively. We use the performance metrics defined in Sect. 5.3 to compare with
the multi-GPU baseline. We list the results in Table 4. As noted in Sect. 5.1,
we obtain the experimental results by training 10 epochs and then average the
measured values. The measured values from each epoch are very close to each
other: the maximum relative standard deviation in our experiments is 3.3%. We
use GPU to indicate the multi-GPU baseline, and use This work to indicate
our work which runs on the CPU+Multi-FPGA heterogeneous platform. We
achieve 2.38× and 1.67× speedup on the GCN model and GraphSAGE model,
respectively; this is because (1) our task scheduler balances the workload on each
FPGA which reduces the parallel execution time; and (2) our optimized GNN
kernels effectively reduce the memory access overhead.

Note that GPUs have much higher peak performance and memory band-
width than FPGAs; thus, to illustrate the effectiveness of our optimizations, we
further compare the bandwidth efficiency on both platforms which normalized

28 Y.-C. Lin et al.

Fig. 7. Throughput scales linearly w.r.t. number of FPGAs on the target platform

the throughput with the available bandwidth on the platform. We achieve up
to 24.7× bandwidth efficiency than the multi-GPU baseline; in other words,
our design is able to achieve up to 24.7× throughput given the same memory
bandwidth. While the workload balancing technique can also be applied to the
multi-GPU platform, the GNN kernel optimizations are specific for FPGAs. If we
apply the same data structure to the multi-GPU baseline, we are able to exploit
some data reuse with the GPU cache since the edges are sorted by the source
vertices; however, we can not mitigate the random memory write overhead since
we have no control over the datapath and on-chip memory on a GPU platform.
On an FPGA platform, we overcome this issue by utilizing the abundant on-
chip memory to buffer the intermediate results; we also design a datapath to
avoid any unnecessary write to the local DDR memory during GNN training
(Sect. 4.2). Thus, even if we speed up the memory read phase on the multi-GPU
platform, the memory write bottlenecks the performance.

In addition, unlike our kernels which can access the data in one cycle (3.3
ns), GPUs require multiple cycles to access the data in multi-level caches. Taking
Nvidia RTX 3090 as an example, the L2 cache latency is over 130 ns [4]. Note
that we use Nvidia RTX A5000 for our experiments, which uses the same GPU
architecture (GA102) as Nvidia RTX 3090, so we expect similar cache latency
on both GPUs. Finally, our work achieves up to 7.18× energy efficiency than
the multi-GPU baseline. This is because our dedicated hardware designs can
efficiently perform GNN training, while GPUs launch massive amount of CUDA
cores with low utilization.

Convergence. As mentioned in Sect. 3, our work does not alter the original
training algorithm; thus, the convergence rate of our work is the same as the
serial training algorithm.

5.5 Scalability

We evaluate the scalability of our work using the three datasets on a two-layer
GCN model. As shown in Fig. 7, our work achieves a scalable speedup as we
increase the number of FPGAs. We do not consider cases with more than 16
FPGAs since it exceeds the number of PCIe channels on our target platform.

Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform 29

0

0.5

1

1.5

2

2.5

Reddit Amazon ogbn-products

Baseline WB WB + OGK

Fig. 8. Throughput improvement due to optimizations

5.6 Impact of Optimizations

We evaluate the two optimizations of workload balancing (WB) and optimized
GNN kernels (OGK) described in Sect. 4 on a two-layer GCN model. We first
measure the throughput of the baseline implementation with no optimizations,
and then incrementally apply the two optimizations. The throughput in Fig. 8
is normalized with the baseline design. Both optimizations increase the GNN
training throughput and can deliver up to 2× improvement in total.

6 Conclusion

In this work, we accelerated GNN training using a CPU+Multi-FPGA heteroge-
neous platform. We developed several techniques to efficiently accelerate GNN
training on our target platform. Using much less compute power and memory
bandwidth than GPUs, our work achieved up to 2.38× speedup and 4.40× energy
efficiency compared with the multi-GPU baseline due to the 24.7× bandwidth
efficiency. In the future, we plan to extend our work to a general framework that
can automatically map GNN training on any given CPU+Multi-FPGA platform.

Acknowledgement. This work has been supported by the U.S. National Science
Foundation under grant number OAC-2209563.

References

1. Amazon ec2 f1. https://aws.amazon.com/tw/ec2/instance-types/f1/. Accessed 23
June 2022

2. Azure np-series. https://docs.microsoft.com/en-us/azure/virtual-machines/np-
series. Accessed 23 June 2022

3. Intel devcloud. https://www.intel.com/content/www/us/en/developer/tools/
devcloud/overview.html. Accessed 23 June 2022

4. Measuring GPU memory latency. https://chipsandcheese.com/2021/04/16/
measuring-gpu-memory-latency/. Accessed 20 June 2022

5. Nvidia system management interface. https://developer.nvidia.com/nvidia-
system-management-interface. Accessed 21 June 2022

https://aws.amazon.com/tw/ec2/instance-types/f1/
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://chipsandcheese.com/2021/04/16/measuring-gpu-memory-latency/
https://chipsandcheese.com/2021/04/16/measuring-gpu-memory-latency/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

30 Y.-C. Lin et al.

6. PowerTOP. https://github.com/fenrus75/powertop. Accessed 21 June 2022
7. Cai, Z., Yan, X., Wu, Y., Ma, K., Cheng, J., Yu, F.: DGCL: an efficient commu-

nication library for distributed GNN training. In: 16th European Conference on
Computer Systems (2021)

8. Chen, J., Monga, R., Bengio, S., Jozefowicz, R.: Revisiting distributed synchronous
SGD. In: International Conference on Learning Representations Workshop (2016)

9. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: 31st Neural Information Processing Systems (2017)

10. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687 (2020)

11. Huang, K., Zhai, J., Zheng, Z., Yi, Y., Shen, X.: Understanding and bridging the
gaps in current GNN performance optimizations. In: 26th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2021 (2021)

12. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: a survey. arXiv
preprint arXiv:2101.11174 (2021)

13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

14. Kathail, V.: Xilinx vitis unified software platform. In: ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (2020)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2017)

16. Lin, Y.C., Zhang, B., Prasanna, V.: GCN inference acceleration using high-level
synthesis. In: IEEE High Performance Extreme Computing Conference (2021)

17. Lin, Y.C., Zhang, B., Prasanna, V.: HP-GNN: generating high throughput GNN
training implementation on CPU-FPGA heterogeneous platform. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (2022)

18. Lin, Z., Li, C., Miao, Y., Liu, Y., Xu, Y.: PaGraph: scaling GNN training on large
graphs via computation-aware caching. In: ACM Cloud Computing (2020)

19. Liu, X., Yan, M., Deng, L., Li, G., Ye, X., Fan, D.: Sampling methods for efficient
training of graph convolutional networks: a survey. IEEE/CAA J. Autom. Sinica
9, 205–234 (2022)

20. Yan, M., et al.: HYGCN: a GCN accelerator with hybrid architecture. In: Interna-
tional Symposium on High Performance Computer Architecture (HPCA) (2020)

21. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: 24th ACM
SIGKDD Knowledge Discovery & Data Mining (2018)

22. Zeng, H., Prasanna, V.: GraphACT: accelerating GCN training on CPU-FPGA
heterogeneous platforms. In: ACM/SIGDA Field-Programmable Gate Arrays
(2020)

23. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: GraphSAINT: graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (2020)

24. Zhang, B., Kannan, R., Prasanna, V.: BoostGCN: a framework for optimizing
GCN inference on FPGA. In: 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE (2021)

25. Zhang, B., Zeng, H., Prasanna, V.: Hardware acceleration of large scale GCN infer-
ence. In: 31st International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). IEEE (2020)

26. Zheng, D., et al.: DistDGL: distributed graph neural network training for billion-
scale graphs. CoRR (2020)

https://github.com/fenrus75/powertop
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2101.11174

Implementing a GPU-Portable Field Line
Tracing Application with OpenMP

Offload

Diego Jiménez1(B) , Javier Herrera-Mora1,2 , Markus Rampp3 ,
Erwin Laure3 , and Esteban Meneses1,2

1 Advanced Computing Laboratory, National High Technology Center,
San José, Costa Rica

{djimenez,jherrera,emeneses}@cenat.ac.cr
2 School of Computing, Costa Rica Institute of Technology,

Cartago, Costa Rica
3 Max Planck Computing and Data Facility, Garching, Germany

{markus.rampp,erwin.laure}@mpcdf.mpg.de

Abstract. Accelerated computing is becoming more diverse as new
vendors and architectures come into play. Although platform-specific
programming models promise ease of development and better control
over performance, they still restrict the portability of scientific appli-
cations. As the OpenMP offloading specification becomes adopted by
more compilers, this programming model stands out as a vendor-neutral
portable approach to heterogeneous programming. In this study, we port
a plasma physics oriented field line tracing code from a CPU-based
MPI+OpenMP approach to a GPU accelerated version, using OpenMP’s
offloading capabilities. We analyze GPU performance across different
vendors with respect to the original CPU version and test both prescrip-
tive and descriptive approaches to accelerator programming. A maxi-
mum 6× acceleration over the CPU implementation was achieved using
OpenMP’s high-level offloading directives. In addition, we demonstrate
portability across three different vendor GPUs with no code modifica-
tions.

Keywords: High performance computing · Computational plasma
physics · OpenMP GPU offload

1 Introduction

Plasma physicists rely on computer simulations to understand the trade-offs of
new designs for nuclear fusion confinement devices, before building them. These
simulations require ever-increasingly complex mathematical models to recreate
a variety of physical variables of interest. Fortunately, High Performance Com-
puting (HPC) technology is also evolving rapidly, with the integration of massive
multi-core processors and the addition of hardware accelerators. The latest edi-
tion of the Top500 list [15] shows that 7 systems in the top 10 use Graphical
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 31–46, 2022.
https://doi.org/10.1007/978-3-031-23821-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_3&domain=pdf
http://orcid.org/0000-0002-7569-5578
http://orcid.org/0000-0003-2906-502X
http://orcid.org/0000-0001-8177-8698
http://orcid.org/0000-0002-9901-9857
http://orcid.org/0000-0002-4307-6000
https://doi.org/10.1007/978-3-031-23821-5_3

32 D. Jiménez et al.

Processing Units (GPU) to quicken computation. Not only are GPUs success-
ful at speeding up simulations, but also at accelerating data science and artifi-
cial intelligence workflows. Hence, exploiting the massive parallelism of GPUs is
imperative.

Effectively programming for GPUs is still a demanding task, mainly due
to the need of matching the program structure with the hardware features of
the accelerator. The Open Multi-processing (OpenMP) standard has established
itself as one of the most important programming tools for multi-core processors.
OpenMP is based on directives, code annotations that hint the compiler which
program pieces can be parallelized. Directives are added as comments to the
main code, providing a flexible mechanism to incrementally add parallelism to
an already existing sequential code. These high-level language constructs still
provide several control variables for the programmer to express where and how
the parallelism shall be performed. OpenMP also offers directives allowing pieces
of the code to be offloaded on a GPU. Although other directive-based models
exist, namely OpenACC, OpenMP is supported across all three GPU platforms
that are relevant in HPC: NVIDIA, AMD and Intel. As such, it can be regarded
as a vendor-neutral approach to GPU programming.

We embarked on the task of migrating an already existing MPI+OpenMP
plasma physics field line tracing code from multi-core nodes to GPU-enabled
nodes by using OpenMP directives for accelerators. This paper describes the
insights we gained in the process. Section 2 discusses OpenMP’s offloading exe-
cution and memory details. Section 3 describes our implementations of the Biot-
Savart Solver for Computing and Tracing Magnetic Field Lines (BS-SOLCTRA)
code using OpenMP on GPUs. Section 4 analyzes the resulting performance
of this new approach and discusses scaling, portability and performance-costs
putting into context the benefit of GPU acceleration. Finally, Sect. 5 presents
the key takeaways from this study.

2 Background

2.1 Directive-Based Programming for Accelerators with OpenMP

Responding to the trend of accelerators in HPC, the OpenMP API incorporated
device constructs starting from standard 4.0 and updating it subsequently [13].
Through these high-level directives, developers can use OpenMP to create single-
source parallel software that is able to execute on either traditional multi-core
processors or accelerators, like GPUs. This approach to accelerator programming
is conceptually portable and avoids the troublesome maintenance problem of
having multiple versions of a code module that arises when working with vendor-
specific programming models.

Heterogeneous Execution. Pertaining to the execution workflow in OpenMP
offloading, the host device is where program execution starts and this is where
code sections and data are offloaded to the target device, i.e. accelerator. In

Portable Field Line Tracing Application with OpenMP Offload 33

general, OpenMP makes no distinction about the underlying target, so CPUs,
GPUs, FPGAs or other specialized processors could be used. The #pragma omp
target directive is used to define a target region. These are usually computa-
tionally intensive sections of an application like work-sharing loops or regions of
code that can be executed as kernels.

As the host runs into the target directive, a new thread potentially running
on the accelerator is created to handle said region, whilst the host thread awaits
its completion. GPUs provide massive parallelism capabilities and utilizing just
one thread on such a device would not be sufficient. The teams construct along
with the target directive, initializes a league of concurrent thread teams on the
device. The initial thread inside each team executes the bounded region without
distributing any of the work across the individual master threads of each team.

OpenMP developers can choose one of two possible design decisions: prescrip-
tive or descriptive parallelism. Under a prescriptive approach, the programmer
indicates to the compiler and runtime where and how parallelization should
occur. Using a descriptive approach, the programmer just hints what code seg-
ments should be parallelized but not how [14].

Under the prescriptive approach, worksharing is achieved through the con-
junction of both the teams and distribute constructs in a single directive. By
doing so, the iterations of one or multiple loops are distributed across all active
thread teams and executed by the master thread of each team. The traditional
parallel for construct can then be used to further distribute iterations across
the different threads of each thread team.

The descriptive model, on the other hand, seeks to provide better perfor-
mance portability while offering higher productivity. Under this approach, par-
allelism is hinted through the #pragma omp target teams loop directive but
the compiler is given the responsibility of figuring out how to map it to the accel-
erator. This reduces the number of directives and clauses needed to accelerate
program execution and frees the programmer from dealing with the specifics of
how parallelism is mapped to the different accelerators.

Memory Management. As previously stated, data management is another
crucial aspect of the offloading model. Minimizing the amount of data transfers
between the host and target devices is key to achieving good performance on cur-
rent GPU architectures. In OpenMP, variables needed on the different offloaded
code regions should be mapped on to the accelerator. The device has its own
data environment that contains all the variables allocated in its memory. The
map clause is used along with the target directive to specify a list of variables,
array sections or structures that should be created or copied to and from the
target device. This construct applies to the subsequent code block after which
the data may be deleted or moved back to the CPU.

However, when a variable is needed across multiple target regions, avoiding
constant data movement can be achieved by using the target enter data and
target exit data constructs. These directives are not associated with a specific
target region but rather move data to and from the device when specified. When

34 D. Jiménez et al.

needed, data can be copied back to the host or updated on the device by using
the target update directive.

Whether or not an application is successful under the offloading model heavily
depends on the decisions that the programmer takes in relation to mapping
parallelism to the accelerator and how data is moved back and forth from host
to device.

2.2 Simulating Plasma Confinement in Stellarator Devices

The Biot-Savart Solver for Computing and Tracing Magnetic Field Lines (BS-
SOLCTRA) is our target application in this study [8]. This is a C++ code
developed for the Stellarator of Costa Rica 1 (SCR1). This nuclear fusion reactor
was designed and constructed by the Plasma Laboratory for Fusion Energy and
Applications of the Costa Rica Institute of Technology in 2016 [4]. BS-SOLCTRA
uses the field line tracing technique to provide information about the 3D-vacuum
magnetic field, computed through Biot-Savart’s Law, that is generated by a
specific design of modular coils for the reactor. Currently, this application is used
in production as part of an experimental campaign where plasma diagnostics are
being designed and implemented to characterize the real conditions of plasma
inside the fusion device.

(a) Top view of modular
coils present in the SCR-1
and particle trajectory over

time

(b) Filamentary segment
modeling for Biot-Savart’s

Law

Fig. 1. BS-SOLCTRA modeling of modular coils and filamentary segment representa-
tion

Figure 1a shows a top level view of the simplified modular coils used by BS-
SOLCTRA and the trajectory of one input particle. The simulator traces a group
of input particles over time, following their trajectory to track down the magnetic
field lines that are generated by the set of coils. Output files of the simulation are
then post-processed to provide physicists with a map of magnetic flux surfaces,
helping them understand how confinement is affected by coil designs and input
electric currents.

Portable Field Line Tracing Application with OpenMP Offload 35

Particle trajectories in BS-SOLCTRA are computed by using a fourth-order
Runge-Kutta method (RK4) where in each iteration, and for each input parti-
cle, the magnetic field is computed by applying Biot-Savart’s Law to take into
account the influence of each filamentary segment that makes up a coil (shown
in Fig. 1b) and integrating over all twelve existing coils. As particle dynamics
is not the purpose of this simulator, particle interactions are not relevant in
BS-SOLCTRA. Particle trajectories are computed until the number of iteration
steps is completed or a divergence criterion is met. In particular, device dimen-
sions are used to verify if a particle has gone out of bounds, in which case its
time integration is stopped.

The existing version of BS-SOLCTRA is based on a typical MPI+OpenMP
parallelization strategy and relies on guided auto-vectorization by the compiler,
using OpenMP SIMD directives. This application has been used to generate sci-
entific and communicative visualizations [3] and has been ported to other parallel
programming paradigms [9] to tackle some specific imbalance scenarios. Given
that there is only very little communication involved and particle trajectory
computations are mututally independent, this application is a promising target
for acceleration with GPU devices.

2.3 Related Work

An early study by Lopez et al. [11] compared the performance portability of
directive-based programming for accelerators. Their paper uses a handful of
kernels, and both OpenMP and OpenACC standards, to show how to remain
performance-competitive when programming with directives compared to the
native version of the kernels. However, they noted the programmer must be
aware of the architectural characteristics of the specific accelerator and rely on a
decent compiler to be effective. Newer versions of the OpenMP standard, partic-
ularly OpenMP 4.5, brought a set of capabilities for simplifying code portability
between CPU and GPU. Karlin et al. [10] reported good results in porting three
mini-applications to GPUs using OpenMP. They pointed out existing challenges
when OpenMP interacts with C++ language, including virtual functions. Gay-
atri et al. [7] used OpenMP 4.5 to port a material science application to several
CPU and GPU architectures. Their results show that OpenMP performance on
a V100 matches an OpenACC implementation.

Recent studies highlight the progress high-level performance-portable tools
have had in the last 5 years. Marowka [12] surveyed hundreds of case studies
of these tools, and defined a new performance-portability metric that takes into
account a number of platforms and the relative performance on each platform.
Using that metric, the author reported that OpenMP, OpenACC, Kokkos and
RAJA all achieve more than 80% portability across CPU and GPU architec-
tures without significantly losing performance between different combinations
of architectures and compilers. Ozen and Wolfe [14] argued that the OpenMP
pragma loop avoids using different directives depending on the architecture, and
thus offers a productive programming method. Such pragma relies on a proper
compiler implementation.

36 D. Jiménez et al.

Parallelization of a field-line tracing tool with OpenMP pragmas was reported
by Bogdanović et al. [2]. They presented the tool L2G, written in C++ with a
Python interface. L2G computes field-line tracing and heat loads mapping within
the SMITER framework, a software specific for the ITER fusion reactor. Their
performance tests show a speedup higher than 2x when running with 16 threads
on a CPU, compared to the sequential version.

3 Directive-Based GPU Offloading Implementation

3.1 Breakdown of the Execution Flow

The first step towards a GPU implementation with OpenMP required figuring
out at what granularity level should parallelism be exploited in the accelerator.
Figure 2 shows a sketch of the execution flow of the simulation. Given a set of
input particles, specified by their (x, y, z) coordinates, and initialized according
to some prescribed or random distribution, the simulation consists of N iteration
steps. In each iteration, all particle positions are updated in lockstep.

Fig. 2. Basic execution flow of the BS-SOLCTRA simulation

Calculating the new particle position is a compute intensive task. A fourth-
order Runge Kutta method is used requiring four calls to the magnetic field
computation procedure. In this function, a nested loop structure computes the
magnetic field force components over the particle. Device coils are modeled as
filamentary segments and thus, the resulting magnetic field on a given position is
computed as the contribution of each infinitesimal segment, calculated through
Biot-Savart’s Law.

Portable Field Line Tracing Application with OpenMP Offload 37

Our starting point for the port to GPU offloading was an already paral-
lelized implementation that relies on MPI+OpenMP and SIMD vectorization.
MPI is used to distribute the input set of particles among multiple processes
and OpenMP handles the time integration of the corresponding subset of par-
ticles per MPI process. Usually, a single MPI process is allocated per compute
node. The computationally intensive portion of the code, the magnetic field pro-
cedure, takes advantage of omp simd directives, e.g. to exploit Intel’s AVX-512
instruction set on the latest generation of Xeon CPUs.

Given this execution flow and the existing implementation of BS-SOLCTRA,
we had to choose the granularity at which we wanted to parallelize the code
using GPUs. There are two possible granularity levels where parallelism can be
exploited in this simulation: i) at the particle level, ii) at the magnetic field
computation level.

Parallelism at the magnetic field computation level is limited by the amount
of coils present in the device (twelve coils) and the amount of points used to
model each coil as filamentary segments (360 points). This amount of paral-
lelism is not enough to saturate the GPU and furthermore, when offloading, the
particle position would have to be transferred to and from the GPU each time
the magnetic field computation is called.

Following a similar approach as in the baseline implementation, we then
decided to offload the simulation at the particle level. This is, transferring the
set of input particles to the GPU and using OpenMP’s teams and threads inside
the GPU to simultaneously compute each iteration step for all particles. The
following subsections detail the necessary changes to the data structures and
how OpenMP directives were used to offload the computations to the GPU.

(a) Baseline implementation main
data structures

(b) One-dimensional arrays used for
offloading

Fig. 3. Data structure modifications for offloading

3.2 Data Management for Offloading

The next step was figuring out which data had to be moved to the GPU and at
what point during the simulation. Particle coordinates, coil data points and the

38 D. Jiménez et al.

values for the unit vector along each filamentary segment have to be available
in the GPU before the main time looping is reached.

The baseline implementation relies on structures to encapsulate the main
data objects. Particles are represented using an array of structures, each one
composed of three double values (x, y, z). Coil data points and the unit vector
data are encapsulated in a structure of arrays like the one shown in Fig. 3a. In
order to facilitate data handling on the GPU, we decided to collapse all these
structures into one-dimensional arrays that could be easily transferred to the
GPU.

1 #pragma omp target enter data map(to:coils[0:size_3D], e_r[0:size_3D],
leng_segment[0:size_2D], particles[0:size_particles])↪→

2

3 //Time looping and particle computation in GPU
4 for(int i=1;i<=steps;i++){
5 for(int p=0; p<particle_count;p++)
6 //computeIteration(...)
7 }
8

9 #pragma omp target exit data map(release:coils[0:size_3D], e_r[0:size_3D],
leng_segment[0:size_2D], particles[0:size_particles])↪→

Listing 1: Data offloading with OpenMP in BS-SOLCTRA

Given that the information needed for all these objects are coordinates, we
standardized this information by using an array convention of storing contiguous
x, y, z values. Figure 3b shows the resulting scheme we used for data transfers.
Computations involving the different coils and the values of unit vectors (ê in
Fig. 1b) along each filamentary segment, stored in e roof, just had to be modified
based on the offset at which each coil/e roof is located on the associated array.
In doing so, data transfer to the GPU was simplified and required a single data
environment.

Code Listing 1 shows the data mapping associated directives used in BS-
SOLCTRA. Data has to be copied into the GPU just once, simulation “snap-
shots” are transferred to the CPU at a configurable frequency (detailed in
Sect. 3.3) and when the simulation is finished no data is transferred back to
the CPU.

3.3 Parallelism Implementation

In this subsection we discuss how a prescriptive parallelism approach was used
to accelerate the simulation on the GPU and then, how we modified the code
to allow for a single-source descriptive approach for both, GPU-accelerated and
CPU-only platforms.

Prescriptive OpenMP Model. The prescriptive approach requires that the
programmer explicitly specifies how algorithmic parallelism should be mapped

Portable Field Line Tracing Application with OpenMP Offload 39

1 # Enter Data transfer pragma from Code Listing 1
2 #pragma omp parallel num_threads(2)
3 {
4 #pragma omp single
5 {
6 for (int i = 1; i <= steps; i++){
7 #pragma omp target teams distribute parallel for
8 for(int p=0; p < particle_count ; p++){
9 int base = p*DIMENSIONS;

10 if((particles[base] == MINOR_RADIUS) && (particles[base+1] ==
MINOR_RADIUS) && (particles[base+2] == MINOR_RADIUS)){↪→

11 continue;
12 }
13 else{
14 computeIteration(coils, e_r, leng_segment, &particles[base],

step_size, mode);↪→
15 }
16 }
17 if(i%100 == 0){
18 #pragma omp taskwait
19 #pragma omp target update from(particles[0:size_particles])
20 {
21 #pragma omp task shared(particles)

firstprivate(i,output,size_particles)↪→
22 printIterationFile(particles, i, output,particle_count);
23 }
24 }}}}
25 #Exit Data transfer pragma from Code Listing 1

Listing 2: Prescriptive parallelism with OpenMP in BS-SOLCTRA

to parallelism in the hardware. In our application we decided on parallelizing
at the particle level, meaning that the computation of new particle positions
could be done concurrently for all particles at each iteration step. As no particle
interaction is required, synchronization is not an issue in this simulation.

Particle distribution is done among teams and threads, so that the GPU
can be sufficiently utilized, by using the worksharing clauses distribute par-
allel for. Code Listing 2 shows our prescriptive implementation of the time
integration loop. Of special interest is line 7, where the computation is actually
offloaded to the GPU.

Snapshot files of particle positions are generated, e.g. after every 100 itera-
tions by updating the particle array on the CPU using the target update from
directive. The CPU then handles the file writing. In order to achieve an over-
lap of the I/O with subsequent iterations, we leverage the fact that the target
construct generates an explicit task, as specified in the standard and thus, task
synchronization features may be used. Initially, two CPU threads are created.
When entering the time integration loop, a single pragma is created to avoid
computation replication. One of the threads handles the offloading while the
other is idle. When a snapshot must be created, the previously idle thread han-
dles the I/O operation as specified in line 22 of Listing 2 while the other single
thread continues to service the GPU offloaded computation.

40 D. Jiménez et al.

Descriptive OpenMP Model. Under the prescriptive approach, we had to
explicitly specify to the compiler how to distribute work among execution units
on the GPU. Although this approach should work across different GPU models
and vendors, it doesn’t provide a single-source implementation that could also
be executed on a CPU. OpenMP’s loop construct, by constrast, is a platform-
agnostic directive that could be used to create single-source applications. This
directive hints at the compiler that a code section should be parallelized but
does not specify how to map it to the underlying hardware.

We implemented a descriptive version of the application by changing
the #pragma omp target teams distribute parallel for to a #pragma omp
target teams loop directive. We added the bind clause to hint the compiler
on how to distribute work. If no hint was given, the compiler distributed work
just among teams and their master threads, affecting performance significantly.
Due to current compiler limitations with CPU code generation, our task-based
computation-I/O overlap had to be left out for the moment because the mul-
ticore CPU code would become nested due to the parallel region enclosing the
target block.

All implementations are publicly available in the following repository:
https://gitlab.com/CNCA CeNAT/bs-solctra-gpu.git.

4 Results

This section describes how our prescriptive and descriptive OpenMP offload-
ing implementations fare against the baseline CPU implementation and how
portable they are across multiple vendor GPUs and compilers. All timings
reported throughout this section are the result of 10 repetitions. Reported exe-
cution times correspond to simulation runs without particle-snapshot I/O.

4.1 Experimental Setup

Experimental Platforms. We have used three different platforms to analyze
our implementations. Our main target is the Raven HPC system at the Max
Planck Computing and Data Facility where all scalability experiments were per-
formed. The baseline CPU version was also executed on this platform. Single
GPU performance was analyzed across these three systems:

– Max-Planck Society’s HPC System “Raven”: the HPC system “Raven”
operated by the Max Planck Computing and Data Facility comprises 1592
compute nodes, each with two Intel Xeon IceLake-SP processors (Platinum
8360Y), 72 cores and 256 GB RAM. In addition, Raven has 192 GPU-
accelerated nodes, with the same host processors and 4 NVIDIA A100-SXM4
GPUs (40 GB HBM2 and NVLink3), each.

– AMD MI250 GPU test system: we had access to an AMD test cluster
which provides a single node with two AMD EPYC 7763 processors with
a total of 128 cores and 256 GB RAM, and four AMD MI250 GPUs. Note

https://gitlab.com/CNCA_CeNAT/bs-solctra-gpu.git

Portable Field Line Tracing Application with OpenMP Offload 41

that the MI250 GPU is composed of two multi-chip modules (MCMs) each
of which is exposed by the operating system as an individual (logical) GPU.
Hence, our single-GPU benchmarks could utilize only half of the hardware
resources provided by an entire MI250 GPU. For a conventional comparison
with the A100 GPU our performance numbers for MI250 may be doubled,
given the scalability of BS-SOLCTRA over multiple GPUs (see below).

– Intel Xe GPU test system: we had access to an Intel test system with some
“preview” hardware resembling an upcoming Intel Xe GPU. While we are
not allowed to disclose the hardware specifications and obtained performance
numbers, our experiments do serve as an early demonstration of the viability
of our approach on the new Intel software platform (oneAPI) and upcoming
line of GPU hardware.

Compilers and Environment Variables. Table 1 shows information about
the compilers, compilation flags and environment variables used. We used Intel-
MPI (2021.5) for multi-node runs of both, CPU and GPU implementations. The
baseline MPI+OpenMP CPU version was compiled with the “classic” Intel C++
compiler (icpc) on Raven.

Table 1. Compilers, flags and environment variables used on different platforms

Compiler Flags Environment Variables

Intel icpc

2021.5.0 20211109

(CPU implementation

-O3 -qopenmp -xICELAKE-SERVER

-qopt-zmm-usage=high

OMP NUM THREADS=72

OMP SCHEDULE=dynamic

OMP PLACES=cores

NVIDIA nvc++

22.5-0

(NVHPCSDK)

-O3 -mp=gpu -gpu=pinned,fastmath

-Minfo=mp

OMP TARGET -

OFFLOAD=MANDATORY

AMD amdclang++

14.0.0 (rocm 5.1.0)

-Ofast -ffast-math -fopenmp

-fopenmp-targets=amdgcn-amd-

amdhsa

-Xopenmp-target=amdgcn-amd-

amdhsa

-march=gfx90a

OMP TARGET -

OFFLOAD=MANDATORY

Intel icpx

2022.0

-O3 -qopenmp

-fopenmp-targets=spir64

OMP TARGET -

OFFLOAD=MANDATORY

4.2 Baseline Comparison: Single CPU Node Versus Single GPU

The main goals of this study were: i) understanding whether a GPU implemen-
tation based on OpenMP offload could provide better performance than our
already CPU-optimized implementation and, ii) determining how well OpenMP
can deliver on performance portability across different GPUs, with little-to-no
code modifications. As there are no particle interactions in BS-SOLCTRA during
the simulation, application behavior can be analyzed on the level of single-GPU
(or single CPU-node) performance, i.e. all reported GPU speedups are based on
a comparison of runtimes obtained on an entire IceLake-based node (72 cores, 1

42 D. Jiménez et al.

OpenMP thread per core) versus a single GPU. Table 2 summarizes our exper-
imental results for both these questions. In these set of experiments, we tested
three different problem sizes on all target platforms by running 1000 iteration
steps: i) Small problem size: 102 400 particles; ii) Medium problem size: 512 000
particles; iii) Large problem size: 1 024 000 particles.

Table 2. Single CPU-node versus Single-GPU performance comparison of the baseline
implementation and OpenMP implementations

Test case Average total execution time [s]

Intel Xeon IceLake
SP Node (72 cores,
1 thread per core)

NVIDIA A100
Prescriptive

NVIDIA A100
Descriptive

AMD MI250
(1 MCM)

Small 115.34 25.83 24.83 21.99

Medium 576.72 111.44 109.29 96.79

Large 1155.60 216.52 213.30 191.56

In terms of performance acceleration with respect to the baseline CPU imple-
mentation, all GPU executions were faster in general across all three problem
sizes. The highest speedup was achieved on the large problem size with the AMD
MI250 GPU, exhibiting a 6× speedup over the CPU implementation. All GPU
executions were at least 4× faster than the CPU version when running on either
NVIDIA’s A100 or AMD’s MI250 GPUs. The relative performance gain on the
MI250 GPU falls somewhat short of the A100 GPU, given the significantly larger
double-precision (FP64) peak performance of the MI250 GPU (22.6 TFlop/s for
a single MCM) as compared to the A100 GPU (9.5 TFlop/s) and the fact that
the application is largely compute bound. Identifying the cause for this lower effi-
ciency (compared to peak performance) would require an in-depth performance
analysis for the MI250 GPU which is beyond the scope of this work, given the
novelty of the hardware and the AMD software ecosystem. We speculate that
the OpenMP clang compiler is not yet able to generate as efficient GPU code
compared to the NVIDIA compiler which is more mature.

Regarding performance portability, given that no architecture-specific opti-
mizations were used, it is worth noting that no code changes were made to
execute on the different vendor GPUs, recompilation was enough in this case.
Table 1 shows the set of compilation flags needed on each platform.

Prescriptive Versus Descriptive Implementations. Table 2 shows the per-
formance of both approaches on NVIDIA’s A100 GPUs. The compiler is of cen-
tral importance when using high-level programming models like OpenMP, in
particular, how well is it able to map an application to the underlying hardware.
In this study, the performance of both implementations was essentially the same.
Indeed, a performance analysis of both prescriptive and descriptive code bases

Portable Field Line Tracing Application with OpenMP Offload 43

with the NVIDIA Nsight tools (Compute and Systems) shows that our appli-
cation is largely compute bound and achieves 5.6 TFLOP/s FP64 performance
when executing the large test case. An in-depth analysis of the performance
metrics collected with the Nsight tools confirmed that the NVIDIA compiler
produced highly efficient GPU code with little room for additional improvement
from the OpenMP standpoint. Further optimizations would require platform-
specific code transformations, which is not the point of this study.

Although our application did not require involved OpenMP programming, we
wanted to test the OpenMP descriptive model as a way to keep a single source
code for all platforms, including the multicore CPU. At the time of writing, the
amdclang++ compiler provides no support for the OpenMP loop directive, which
impedes the single-source approach on the AMD GPU platform. The descrip-
tive approach was also successfully executed on the Intel Xe GPUs platform
under oneAPI. However, when following this single-source approach, simulation
performance on the CPU was severely downgraded with respect to the baseline
CPU implementation, in which vectorization hinting pragmas were used in the
magnetic field computation to significantly boost performance. Design decisions
that we took to facilitate and reduce data movement to/from the GPU resulted
in code modifications to the magnetic field computation procedure. This code
changes precluded us from using vectorization and, as a result, the single-source
implementation is not as efficient when executed on the CPU as the baseline
implementation.

4.3 Multi-GPU Scalability

Finally, we added MPI to our prescriptive implementation to achieve a scalable
application which enables scientists to run much larger problems or substantially
shorten the time to solution. MPI is used to distribute particles among the
different GPUs, i.e. a single MPI process is allocated per GPU. Table 3 shows
the experimental results for both strong and weak scaling. For strong scaling,
we used a problem size of 16 384 000 particles and 1000 iteration steps. Weak
scaling was performed by fixing an 512 000 particles-per-node ratio and using
1000 iteration steps. As previously mentioned, each scenario timing reported in
this section is the result of 10 repetitions.

Table 3. Scaling results for the Prescriptive OpenMP Implementation of BS-
SOLCTRA

Scaling Average execution time per iteration

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

Strong 3.36 s/step 1.68 s/step 0.92 s/step 0.43 s/step 0.22 s/step 0.11 s/step

Weak 109.96 ms/step 110.11 ms/step 110.27 ms/step 110.27 ms/step 110.28 ms/step 110.26 ms/step

Strong scaling shows very good speedups for the multi-GPU approach, pro-
vided the problem size is enough to saturate each unit. Weak scaling, as expected,

44 D. Jiménez et al.

was close to perfect. This behavior is expected from an application like ours
where there are no particle interactions thus no communication bottlenecks
appear as the GPU count increases.

4.4 Economic Analysis

As impressive a substantially reduced time to solution obtained for a specific
application may appear, the actual speedups might not warrant the use of more
powerful hardware from an economic perspective. It is thus mandatory, in our
opinion, to put bare application speedups into the context of the economic costs
to solution, i.e. to compare relative speedups obtained on a specific hardware
platform with the approximate (additional) costs that apply, e.g. for procuring
and operating (electricity, cooling) GPUs in our case. In the absence of pub-
lished data, some rough estimates can be derived from comparing the pricing for
different instance types offered by commercial cloud providers. Amazon EC2, for
example, charges [1] an extra factor of about 3 for a “p3.8xlarge” instance with
4 A100 GPUs compared with a “c6i.32xlarge” instance with 64 Xeon IceLake
cores. This translates to a required “speedup” of at least 0.75, when comparing
a single A100 GPU with an entire Xeon IceLake node on Raven (72 CPU cores),
which is the basis for the speedups reported in this work.

In the light of these considerations, the increase of application performance
we have achieved by porting BS-SOLCTRA to modern GPUs has not only sig-
nificantly reduced time to solution (which enables to do more science and hence
is a value per se), but can also substantially overcompensate the additional cost
of such type of hardware and thus makes the new GPU version of BS-SOLCTRA
appear economically highly efficient.

Thanks to the adopted high-level and portable programming paradigm using
OpenMP, the human effort for the actual porting and future maintenance (the
costs of which are hardly ever taken into account in academic HPC) can be
considered as very moderate.

5 Conclusions

As the HPC community gains access to exascale computing power, scientific
applications must be adapted to effectively utilize these complex and often het-
erogeneous platforms. Currently, one of the main challenges is developing appli-
cations that can be easily ported and maintain good performance across different
platforms. The OpenMP standard offers high-level software parallelization and
offloading capabilities and as more compilers become compliant to its specifi-
cation, the more it becomes a vendor-neutral option for attaining performance
portability [5,6].

In this study, we ported a plasma physics field line tracing production code,
BS-SOLCTRA, used to simulate plasma confinement in stellarator devices, from
a traditional MPI+OpenMP implementation to an OpenMP offload approach.
We tested both prescriptive and descriptive models to GPU programming and

Portable Field Line Tracing Application with OpenMP Offload 45

analyzed portability across all three relevant GPU platforms, namely NVIDIA,
AMD, and Intel. The new, GPU-accelerated version of the BS-SOLCTRA code
achieved a maximum speedup of 6× and on average was at least 4× faster than
the original CPU implementation, when comparing the runtimes on an entire
CPU node with 72 Intel Xeon IceLake cores vs. a single GPU unit. We also
successfully demonstrated portability across all three GPU platforms by being
able to compile and execute our application with no code modifications. This
now enables physicists working with this application to achieve a much better
turn-around to results and the possibility to execute this code on a wider set of
target platforms.

The promise of single-source development was part of the allure of the
descriptive model that motivated this study. However, execution times when
offloading was disabled were not acceptable, mainly due to design decision in our
code-base that were focused on enhancing GPU execution. Although we applied
the correct directives, developing a “single-source” performance-portable appli-
cation can be a challenge given the considerable differences between CPU and
GPU in hardware capabilities and organization. We plan on finding alternative
implementations of the code that could potentially unlock performance portabil-
ity across GPUs and multicore systems. Another key aspect we plan on working
is understanding how different compilers deal with offloading directives as a way
of unveiling best practices in OpenMP offload programming to achieve efficient
GPU-utilization.

Acknowledgments. This research was partially funded by the Max Planck Society of
Germany (MPG) - Costa Rica National Council of Rectors (CONARE) joint research
projects framework. We also thank: Markus Hrywniak from NVIDIA for consulting on
A100 performance; Andre Heidekrueger from AMD for enabling access to MI250 and
providing technical support and we acknowledge Intel for giving us early access to the
upcoming Xe GPU hardware and Alexander Poeppl for support.

References

1. Amazon: Compute Savings Plans for Amazon EC2, 22 June 2022. https://aws.
amazon.com/savingsplans/compute-pricing/

2. Bogdanovic, L., Simič, G., Kos, L.: L2G PFC heat loads and field-line tracing in
the SMITER framework. In: 30th International Conference Nuclear Energy for
New Europe (NENE2021) (2021)

3. Campos-Duarte, L., et al.: Towards photorealistic visualizations for plasma con-
finement simulations. Association for Computing Machinery, New York (2021).
https://doi.org/10.1145/3437359.3465608

4. Coto-Vı́lchez, F., et al.: Progress on the small modular stellarator SCR-1: new diag-
nostics and heating scenarios. J. Plasma Phys. 86(4), 815860401 (2020). https://
doi.org/10.1017/S0022377820000677

5. Diaz, J.M., Pophale, S., Hernandez, O., Bernholdt, D.E., Chandrasekaran, S.:
OpenMP 4.5 validation and verification suite for device offload. In: de Supinski,
B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP
2018. LNCS, vol. 11128, pp. 82–95. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98521-3 6

https://aws.amazon.com/savingsplans/compute-pricing/
https://aws.amazon.com/savingsplans/compute-pricing/
https://doi.org/10.1145/3437359.3465608
https://doi.org/10.1017/S0022377820000677
https://doi.org/10.1017/S0022377820000677
https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-319-98521-3_6

46 D. Jiménez et al.

6. ECP Sollve Project: OpenMP validation and verification test suite, 22 June 2022.
https://crpl.cis.udel.edu/ompvvsollve/

7. Gayatri, R., Yang, C., Kurth, T., Deslippe, J.: A case study for performance porta-
bility using OpenMP 4.5. In: Chandrasekaran, S., Juckeland, G., Wienke, S. (eds.)
WACCPD 2018. LNCS, vol. 11381, pp. 75–95. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12274-4 4

8. Jiménez, D., Campos-Duarte, L., Solano-Piedra, R., Araya-Solano, L.A., Meneses,
E., Vargas, I.: BS-SOLCTRA: towards a parallel magnetic plasma confinement
simulation framework for modular stellarator devices. In: Crespo-Mariño, J.L.,
Meneses-Rojas, E. (eds.) CARLA 2019. CCIS, vol. 1087, pp. 33–48. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-41005-6 3

9. Jiménez, D., Meneses, E., Vargas, V.: Adaptive plasma physics simulations: dealing
with load imbalance using Charm++. Association for Computing Machinery, New
York (2021). https://doi.org/10.1145/3437359.3465566

10. Karlin, I., et al.: Early experiences porting three applications to OpenMP 4.5.
In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS,
vol. 9903, pp. 281–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45550-1 20

11. Lopez, M.G., et al.: Towards achieving performance portability using directives for
accelerators. In: 2016 Third Workshop on Accelerator Programming Using Direc-
tives (WACCPD), pp. 13–24 (2016). https://doi.org/10.1109/WACCPD.2016.006

12. Marowka, A.: On the performance portability of OpenACC, OpenMP, Kokkos
and RAJA. In: International Conference on High Performance Computing in Asia-
Pacific Region, HPCAsia2022, pp. 103–114. Association for Computing Machinery,
New York (2022). https://doi.org/10.1145/3492805.3492806

13. OpenMP Architecture Review Board: OpenMP application programming inter-
face. version 5.2, November 2021. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-2.pdf

14. Ozen, G., Wolfe, M.: Performant portable OpenMP. In: Proceedings of the 31st
ACM SIGPLAN International Conference on Compiler Construction, pp. 156–168
(2022)

15. Top500: Top500 list. Top500, 26 May 2022. https://www.top500.org/

https://crpl.cis.udel.edu/ompvvsollve/
https://doi.org/10.1007/978-3-030-12274-4_4
https://doi.org/10.1007/978-3-030-12274-4_4
https://doi.org/10.1007/978-3-030-41005-6_3
https://doi.org/10.1145/3437359.3465566
https://doi.org/10.1007/978-3-319-45550-1_20
https://doi.org/10.1007/978-3-319-45550-1_20
https://doi.org/10.1109/WACCPD.2016.006
https://doi.org/10.1145/3492805.3492806
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.top500.org/

Quantitative Characterization
of Scientific Computing Clusters

Aurelio Vivas(B) and Harold Castro

COMIT Reserach Group, Universidad de los Andes, Bogotá, Colombia
{aa.vivas,hcastro}@uniandes.edu.co

Abstract. Several forms of non-HPC clusters named cluster of worksta-
tions and cluster of virtual machines have become available in universities
and research institutions as cost effective solutions for scientific comput-
ing. With the need to characterize the cluster computing systems that
are traditionally used to run high-performance computing applications
and those that are not, the terms tightly- and loosely- coupled clusters
were adopted. However this qualitative characterization of clusters does
not provide further characterization of non-HPC systems, and does not
reveal real insights into their capacity to tackle many scientific applica-
tions. As a consequence, researchers who use these computing systems do
not have the tools to make informed decisions about what type of appli-
cations better fits the capacity and capabilities of every kind of non-HPC
cluster. In this work, we propose the cluster performance profile. This
profile enables the quantitative characterization, initially, on non-HPC
clusters in order to support decisions in the use and development of these
clusters.

Keywords: Cluster computing · High-performance computing ·
Cluster overhead · Cluster coupling · Cluster benchmarking

1 Introduction

Although supercomputers have been considered as the de facto computer archi-
tectures for the execution of high-performance computing (HPC) applications,
their operation and maintenance costs have increased at higher rates [9] when
compared to other forms of cluster architectures. These increasing rates have
led the scientific community into the development of emerging and low-cost
non-HPC clusters such as cluster of workstations (COW), cluster of desktops
(COD), and cluster of virtual machines (COV), which are commonly found in
research laboratories and institutions.

In non-HPC clusters, researchers have sought to give answers to the follow-
ing questions. First, what kind of cluster better fits the needs of a given scien-
tific application (HPC and non-HPC). Second, which is a common and recur-
ring question made among scientists when considering the execution of scientific
applications on these clusters, what configuration (nodes, and processors) of these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 47–62, 2022.
https://doi.org/10.1007/978-3-031-23821-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_4&domain=pdf
http://orcid.org/0000-0002-3967-5895
http://orcid.org/0000-0002-7586-9419
https://doi.org/10.1007/978-3-031-23821-5_4

48 A. Vivas and H. Castro

clusters render the best performance for a given scientific application. In order
to give answers to the above-mentioned research questions, we propose the clus-
ter performance profile, this profile summarizes the performance obtained for
a variety of scientific applications in strong scaling benchmarking experiments.
From these performances, we derive further cluster specific metrics named clus-
ter overhead and cluster coupling, based on a previously proposed methodology
[14]. The cluster performance profile that includes the applications performance
metrics, the cluster overhead, and cluster coupling enables the characterization
of not only non-HPC, but also HPC clusters by quantifying their strengths and
weaknesses when executing well-known scientific computing kernels such as the
seven dwarfs of scientific computing. The seven dwarfs of scientific computing
exhibit a variety of communication and computation patterns common to many
scientific applications, they enable further characterization of the capacity of
clusters under different kinds of workloads.

Research questions are addressed as follows in this research paper. Section 2
presents related work on characterizing scientific computing clusters and evalu-
ating their capacity for the execution of scientific applications. Section 3 presents
a background on cluster overhead, cluster coupling and the proposed cluster per-
formance profile. Section 4 presents the performance evaluation of four clusters
and the calculation of their cluster performance profiles. Section 5 discusses our
findings on these cluster profiles and provides answers to the proposed research
questions. Conclusions on the use of the cluster performance profile and future
directions are drawn in Sect. 6.

2 Related Work

The quantification of the capacity of scientific computing clusters for the exe-
cution of high-performance computing applications is a common and ongoing
research problem, named performance evaluation and benchmarking. These eval-
uations provide to some extent an estimate of the performance that computers
can deliver for specific applications. On non-HPC clusters, related works have
been conducted in virtual clusters built on top of containers or virtual machines
over cloud [1,6,8,10,12], IoT [3,11], workstations [2], and desktops [4] infrastruc-
tures. Bare-metal cluster deployments on top of workstations [7] and desktops
[13] have also been considered. Furthermore, those related works usually esti-
mate the capacity in terms of the metrics delivered by the traditional compute-
intensive benchmarks such as high-performance Linpack (HPL), NAS Parallel
Benchmarks (NPB), or HPC Challenge Benchmark (HCB).

Most related works that estimate the capacity of virtual and container-
ized clusters concentrate their efforts in the determination of the computation
and communication overhead these technologies pose on the performance of
HPC applications. These works usually compare the capacity (given in FLOPS,
latency, bandwidth, and related metrics) of the bare-metal host system with the
same system when hosting containers or virtual machines. On the other hand,
related works that estimate the capacity of bare-metal deployments, such as clus-
ters of workstations and desktops use the capacity estimated in supercomputers
as base line to determine if the system under study has a satisfactory capacity.

Quantitative Characterization of Scientific Computing Clusters 49

In this work we extend the state of the art in performance evaluation and
benchmarking of scientific clusters in the following directions: (i) we extend the
performance analysis commonly conducted in strong scaling analyses by includ-
ing the cluster performance profile that comprises the traditional performance
metric, and our previously proposed metrics (cluster overhead and cluster cou-
pling [14]), finally (ii) we provide a quantitative characterization of four small
size scientific computing clusters and demonstrate the validity of this character-
ization, the characterization being summarized in a cluster performance profile
per cluster.

3 Background

Here we define the concepts that are relevant for the quantitative characteriza-
tion of scientific computing clusters; namely, cluster overhead, cluster coupling,
and the cluster performance profile.

3.1 Cluster Overhead and Coupling

Cluster distributed systems have been categorized as loosely- or tightly-coupled
according to the storage, interconnection, processing technology and the com-
ponents packing strategy employed in their development. In addition, the speed
and reliability of the interconnection channel have been considered as the criteria
for this classification [5]. Nevertheless, the loosely- and tightly-coupled classifi-
cation does not provide quantitative information about how coupled these differ-
ent computing systems are. Accordingly, in [14] we proposed a methodology to
quantitatively estimate the coupling of clusters using a metric we called cluster
overhead.

The cluster overhead is estimated by determining how similar a given clus-
ter is to its tightly-coupled counterpart, assumed to be a single node. Figure 1
depicts the performance for a single node of a cluster (Ph(1)) and the per-
formance for the same cluster with n computing nodes (Ph(n)), for the high-
performance computing application building block h. This figure also depicts
P ′

h(1) and P ′
h(n) serving as linear approximations of Ph(1) and Ph(n) respec-

tively. Then, the cluster overhead with respect to h is given by the following
formula.

α = �P ′
h(1) P ′

h(n) (1)

Although computers’ performance does not have linear behavior, linear approx-
imations led us to derive properties of lines that allow further understanding of
cluster’s performance. For instance, in the formula, the angle (α) between the
segments P ′

h(1) and P ′
h(n) stand as the performance loss also known as the clus-

ter overhead, this measured in degrees. Note that there is an inverse relationship
between the cluster overhead and coupling, as shown in Fig. 2. In Fig. 2, large
values for α stand for large overhead, resulting in a poor similarity between a
node and the whole cluster, this being rendered in a loose cluster coupleness.

50 A. Vivas and H. Castro

On the other hand, small values for α stand for small overhead, resulting in
a higher similarity between a node and the whole cluster, this being rendered
in a tightly cluster coupleness. Then, the cluster coupling is defined by the
following formula, where α stands for the cluster overhead.

c =
1
α

(2)

Fig. 1. Cluster overhead

Fig. 2. Cluster coupleness

Note that the performance measure used for the calculation of coupling and
overhead metrics variates according to the specific application being used for the
measurement; for instance, NAS Parallel benchmarks use the MOP/s (millions
of operations per second) as the standard to deliver benchmark performance, the
type of operation OP variates according to the specific benchmark. Benchmarks
such as FT, MG and CG use as an operation unit the Float Point whilst EP use
Random Numbers Generated.

3.2 Cluster Performance Profile

Table 1 presents the cluster performance profile for an hypothetical cluster. This
profile summarizes the properties of segments such as P ′

h(1) and P ′
h(n) that

Quantitative Characterization of Scientific Computing Clusters 51

are of interest for clusters characterization. These properties are: the slope (m),
the angle between a segment and the x-axis (θ), the cluster overhead (α) that
is calculated with respect to another segment, and the coupling (c) which is
derived from the cluster overhead. In the cluster performance profile, m and θ
bring information about how fast the performance increases when considering a
segment established between points (p, P ′

h(p)) and (p + 1, P ′
h(p + 1)), where p

is the number of processors considered and P ′
h(p) is the performance of h when

considering p processors of the cluster. If we think in terms of a line segment,
m is the segment’s slope and θ the angle formed between the x-axis and the
segment, both m and θ are directly proportional. In a similar way, α describes
how close the performance of a cluster being represented by a segment is to a
tightly-coupled instance being represented by another segment.

The baseline for the cluster performance profile is a single node. Since this
is supposed to be a tightly-coupled instance, when compared to itself, the clus-
ter overhead is defined to equal zero, α = 0. As the number of computational
resources (processors, nodes) used in computing h increases, performance will
tend to drop due to the parallel overhead. This also may affect the performance
growth rate being estimated by m and θ, increases the cluster overhead α, and
decreases the system coupling. However, although the above is the expected
behavior, different computation and communication patterns might differ from
this behavior for different settings of nodes and processors. These differences are
intended to be caught in the cluster performance profile.

Table 1. Cluster performance profile

Application Nodes (p, Ph(p)) m θ α c

h 1 (1, Ph(1)) (4, Ph(4)) m1 θ1 0 c1

2 (1, Ph(1)) (8, Ph(8)) m2 θ2 > 0 < c2

4 (1, P ′
h(1)) (16, Ph(16)) m3 θ3 >> 0 << c3

4 Performance Evaluation

Five scientific computing dwarves (spectral methods, sparse linear algebra,
unstructured meshes, structured meshes and monte carlo) represented in four
NAS parallel benchmarks (FT, CG, MG and EP) are used to evaluate the per-
formance of three non-HPC clusters Cw1 , Cw2 , Ccov and one HPC cluster Chpc

which is used for validation purpose. The resulting performance delivered by the
applications in a strong scaling evaluation is then used to the elaboration of a
cluster performance profile per cluster, according to the methodology proposed
in Sect. 3.2. The findings on these profiles are further discussed in Sect. 5.

52 A. Vivas and H. Castro

4.1 Experimental Setup

The experiment comprises a strong scaling performance evaluation on dedi-
cated clusters Cw1 , Cw2 , Ccov and Chpc whose technical details are shown in
Table 2. Chpc is the university high-performance computing system; Ccov is a
Microsoft Hyper-V-based cluster of virtual machines whose cluster computing
nodes were deployed on different servers at the university datacenter, although
virtual machines are dedicated, the datacenter is not; Cw1 and Cw2 are clusters
of workstations differing in their network bandwidth and latency capabilities.
The FT, CG, MG, and EP benchmarks are executed over the only-MPI execu-
tion scheme. Here, we increased the number of MPI processes and the number
of nodes. The Class C of NAS parallel benchmark problem sizes is considered
and remains fixed through experiments. The MPI processes mappings consid-
ered for the experiment are described in Table 3. In Table 3, ppn stands for MPI
processes per node and tp for the total number of processes in the cluster.

Table 2. Clusters specifications

Specs Chpc Ccov Cw1 Cw2

of nodes 4 4 4 4

CPU(s) 28 4 4 4

CPU model Intel(R) Xeon(R) CPU E5-2690 v4 Intel(R) Xeon(R) CPU E5-2680 v4 Intel(R) Core(TM) i7-4790 Intel(R) Core(TM) i7-4790

CPU clock speed 2.60 GHz 2.40 GHz 3.60 GHz 3.60 GHz

Thread(s) per core 2 1 2 2

Core(s) per socket 14 1 4 4

Socket(s) 2 4 1 1

NUMA node(s) 2 1 1 1

Network bandwidth 40 Gb/s 4x QDR 10 Gb/s 100 Mb/s 1 Gb/s

Network latency 1.3 us ∼77 us ∼380 us ∼81 us

Table 3. Processes mappings

of nodes 1 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4

ppn 1 2 4 8 16 32 1 2 4 8 16 1 2 4 8 16

tp 1 2 4 8 16 32 2 4 8 16 32 4 8 16 32 64

4.2 Threats to Validity

The performance exhibited by a cluster is susceptible to a countless number of
software parameters. To name a few: the problem size, the parallelization scheme,
the supporting numerical libraries and the algorithms. Given the actual difficulty
in providing an accurate measure of overall computers performance, our estima-
tion considers a simplified version of the problem. Here, we consider small-scale
clusters, and well-known scientific computing kernels with fixed problem sizes
and execution schemes; these in order to validate our methodology. Regarding
the execution scheme, in the HPC cluster we do not use all the physical cores
in order to be able to use only powers of 2 number of processors, then this must

Quantitative Characterization of Scientific Computing Clusters 53

be considered when performing comparisons between clusters. Also although
experiments were executed three times, we observe no significant variations that
lead to errors in our estimations of performance. In this regard, results are well
supported by theory.

Finally, note the performance is a compound metric that measures the appli-
cation and computing system performance, not the computing system in iso-
lation, the former is what we mean when referring to the performance of the
cluster.

4.3 Results

Figures 3, 4, 5 and 6 describe the performance achieved for clusters Chpc, Ccov,
Cw1 and Cw2 in the FT, CG, MG and EP benchmarks, respectively. These figures
compare the performance achieved in the clusters for the different settings of
nodes and processors considered for the computations.

Fig. 3. FT - fast Fourier Transform - spectral methods

54 A. Vivas and H. Castro

In FT, Fig. 3, Chpc achieves strong scalability when compared to the other
clusters, as expected. However, this cluster exhibits a particular performance
behavior which is the divergence in the performance seen on different settings of
nodes from 16 processors. This divergence is explained by the NUMA memory
architecture commonly present in high-performance computing cluster nodes.
Here the performance attained for one, two, and four nodes is similar until the
number of processors used per node cross the processors’ capacity of a single
socket or NUMA domain. This suggests intra-node communication issues being
rendered in the node performance degradation. Note that these issues are solved
when we distributed 16 processes in two or four nodes, that is, by considering
2n ∗ 8p and 4n ∗ 4p settings, respectively. Regarding the non-HPC computing
systems, although Ccov, Cw1 and Cw2 achieve strong single node scaling, Ccov

outperform the multi-node performance of Cw1 and Cw2 . Finally, even though
Ccov exhibits better inter-node communication capabilities, better overall per-
formance is achieved for a single node in either Cw1 or Cw2 clusters.

Fig. 4. CG - Conjugate Gradient - sparse linear algebra and unstructured meshes

Quantitative Characterization of Scientific Computing Clusters 55

In CG, Fig. 4, Chpc also demonstrates an upward trend in performance when
increasing the number of nodes and processors; however, the effect of the NUMA
memory architecture substantially hurts the performance of this computing ker-
nel. For example, for 32 processors, the 4n ∗ 8p nodes-processors setting outper-
forms the 2n ∗ 16 setting, since in the former setting, the eight processors per
node do not cross the boundaries of a single node socket. The above-mentioned
NUMA effect is also seen for 64 processors, but here the increasing performance
tendency dramatically drops. Concerning the non-HPC computing systems, all
sustain scalable performance for a single node; however, Ccov exceeds the multi-
node performance of its counterparts. In addition, Ccov achieves the best overall
performance in four nodes. If we compare the maximum performance achieved in
the whole Ccov cluster and the maximum performance achieved in a single Chpc

node, Ccov just reaches 54.29% of the Chpc single node capacity. Moreover, if we
compare the maximum performance achieved in Cw2 against the one achieved
in Ccov, a single Cw2 node reaches 74.79% of the whole Ccov cluster capacity.

Fig. 5. MG - Multi Grid - structured meshes

56 A. Vivas and H. Castro

In MG, Fig. 5, Chpc demonstrates the same upward scaling pattern seen in
the FT computing kernel. This similarity suggests the same communication and
computation pattern. Both kernels solve the Poisson equation and employ short-
and long-distance communication operations, but MG, unlike FT, is a memory-
intensive kernel [14]. In the non-HPC computing systems, this computing kernel
reports poor scalability in Ccov, and no scalability is seen in the Cw1 and Cw2

clusters. In particular, the lack of scalability in Cw1 and Cw2 might be attributed
to the memory-intensive nature of MG, suggesting a memory bandwidth issue.
Conclusively, for the MG computing kernel, Ccov outperform clusters Cw1 and
Cw2 in all node settings, namely one, two and four nodes. Finally, when com-
pared to Chpc, the whole Ccov cluster reaches only 41.75% of a single Chpc node
capacity.

Fig. 6. EP - Embarrassingly Parallel - Monte Carlo

In EP, Fig. 6, clusters Chpc, Ccov, and Cw1 demonstrate strong scalability as
expected. Note that Cw2 was not considered since it will achieve roughly the
same performance of Cw1 as computing nodes are the same, but variate in the

Quantitative Characterization of Scientific Computing Clusters 57

inter-nodes interconnection. When considering the non-HPC computing systems,
the overall performance achieved in cluster Cw1 outperforms the performance
achieved in Ccov. Here, Ccov just reaches 69.40% of the overall performance of
Cw1.

4.4 Clusters Performance Profiles

Tables 4, 5, 6 and 7 provide four performance-derived metrics for the clusters
under study; namely slope, θ, α, and coupling. These metrics characterize the
clusters under study with respect to the four fundamental computing kernels:
FT, MG, CG, and EP. Note that unlike the previous section where application
performance was analyzed per node and per processing unit, here the perfor-
mance is described for the clusters as whole entities.

Table 4 depicts the characterization computed for the Chpc cluster. The slope,
as mentioned in Sect. 3, describes the rate of growth in the performance deliv-
ered by an application for a given processors and computing nodes setting. A
downward trend is expected in this rate as the number of computing nodes and
processors climb due to the parallel overhead. This pattern is being exhibited
by FT, MG, and EP. CG, on the contrary, describes a particular behavior. Here
the rate attained when considering a two-nodes Chpc cluster is higher than the
one achieved for one and four nodes Chpc clusters. This is explained by the
increasing performance tendency seen in two nodes, Fig. 4a, that is contrary to
that observed for one and four nodes. Note that the slope also tells us the per-
formance cost of increasing the number of computational resources (processors
and nodes). In the case of Chpc, the increase in cost tends to be linear in all
applications except for CG.

Chpc proof consistency in the cluster overhead and coupling when considering
the expectation that the overhead might tend to increase as more computing
resources are added for the computation; as a consequence, the resulting coupling
might decrease at the same extent. Note that this expectation is consistent in
all applications except for CG which proof a negative −0.0501 cluster overhead.
This means that instead of having overhead, the application is exhibiting a
performance rate (slope) that surpasses the single node rate. Since the trend
seen in two nodes Chpc cluster surpass the one exhibited by a single node that
was considered as the tightly coupled instance of the cluster for the computation
of coupling, −19.9600 can’t represent the coupling of the two nodes Chpc cluster;
because a single node is not any more a tightly coupled instance of the cluster.
Another particular behavior seen in Chpc is the one exhibited for FT. Here
the performance rate in FT decreases significantly from two to four nodes; this
suggests scalability issues of FT for many computing nodes. Lastly, in general,
Chpc exhibits a cluster overhead close to zero and higher degree of coupling, being
this a characteristic of high-performance computing systems. However, cluster
overhead and coupling will really make sense when we are able to compare these
values with the ones obtained from other clusters.

Table 5 depicts the characterization computed for the Ccov cluster. Here, the
slope decreases significantly describing a polynomial behavior, except for CG

58 A. Vivas and H. Castro

Table 4. Cluster performance profile Chpc

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,1762.41) (16,16184.33) 961.4613 89.9404 0.0000 –

2 (1,1762.41) (32,28131.62) 850.6197 89.9326 0.0078 128.7781

4 (1,1762.41) (64,19124.67) 275.5914 89.7921 0.1483 6.7427

MG 1 (1,3810.23) (16,36541.11) 2182.0587 89.9737 0.0000 –

2 (1,3810.23) (32,68435.4) 2084.6829 89.9725 0.0012 815.3292

4 (1,3810.23) (64,134120.4) 2068.4154 89.9723 0.0014 693.1671

CG 1 (1,406.55) (16,5991.34) 372.3193 89.8461 0.0000 –

2 (1,406.55) (32,17519.91) 552.0439 89.8962 −0.0501 −19.9600

4 (1,406.55) (64,22721.68) 354.2084 89.8382 0.0079 127.0909

EP 1 (1,46.94) (16,666.79) 41.3233 88.6137 0.0000 –

2 (1,46.94) (32,1318.02) 41.0026 88.6029 0.0108 92.2507

4 (1,46.94) (64,2540.23) 39.5760 88.5526 0.0612 16.3457

where there is a linear decrease in slope. Regarding cluster overhead, this cluster
keeps consistency in the expectation that the overhead might tend to increase as
more computing resources are added for the computation; as a consequence, there
is also a consistency in the resulting coupling. Note that the values for cluster
overhead and coupling on this cluster can be compared to the ones achieved in
Chpc; however, when doing this comparison, we need to consider that Chpc was
evaluated up to 16 processors while Ccov only considered four. If we consider
Chpc as a base line, we can conclude that Ccov exhibits the characteristics of a
loosely coupled computing system; these are higher cluster overhead and lower
coupleness.

Table 5. Cluster performance profile Ccov

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,1535.95) (4,4731.63) 1065.2267 89.9462 0.0000 –

2 (1,1535.95) (8,2307.81) 110.2657 89.4804 0.4658 2.1468

4 (1,1535.95) (16,3611.28) 138.3553 89.5859 0.3603 2.7753

MG 1 (1,3428.22) (4,11388.69) 2653.4900 89.9784 0.0000 –

2 (1,3428.22) (8,10229.9) 971.6686 89.9410 0.0374 26.7567

4 (1,3428.22) (16,15256.62) 788.5600 89.9273 0.0511 19.5825

CG 1 (1,449.58) (4,1718.61) 423.0100 89.8646 0.0000 –

2 (1,449.58) (8,2611.97) 308.9129 89.8145 0.0500 19.9891

4 (1,449.58) (16,3252.4) 186.8547 89.6934 0.1712 5.8417

EP 1 (1,44.35) (4,175.16) 43.6033 88.6862 0.0000 –

2 (1,44.35) (8,304.24) 37.1271 88.4571 0.2291 4.3656

4 (1,44.35) (16,600.7) 37.0900 88.4556 0.2306 4.3363

Table 6 show the performance derived metrics computed for the Cw1 cluster.
Although we expected a downward trend in slope as we increased the number of
computing nodes and processors, Cw1 depicts an unexpected trend. We observe

Quantitative Characterization of Scientific Computing Clusters 59

negative slopes for the communication intensive computing kernels, this being
the rates of performance degradation. We also observe that for the FT and MG
computing kernels the performance degradation rate is greater in the two nodes
setting than in the four nodes setting, whereas in GC the major degradation
rate takes place, as expected, in the four nodes setting. We attributed the higher
degradation in the two nodes setting to the poor network capacity of this cluster,
this degradation seems to be compensated by the amount of computing proces-
sors used in the four nodes cluster setting. The equivalent behavior seen in FT
and MG obeys the similarity these computing kernels have in terms of com-
putation and communication. Finally, the negative slope renders higher cluster
overheads, thus poor cluster coupling.

Table 6. Cluster performance profile Cw1

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,2261.71) (4,6264.74) 1334.3433 89.9571 0.0000 –

2 (1,2261.71) (8,363.13) −271.2257 −89.7888 179.7458 0.0056

4 (1,2261.71) (16,500.53) −117.4120 −89.5120 179.4691 0.0056

MG 1 (1,4544.48) (4,5920.05) 458.5233 89.8750 0.0000 –

2 (1,4544.48) (8,2924.32) −231.4514 −89.7525 179.6275 0.0056

4 (1,4544.48) (16,3539.47) −67.0007 −89.1449 179.0200 0.0056

CG 1 (1,670.57) (4,2408.03) 579.1533 89.9011 0.0000 –

2 (1,670.57) (8,644.73) −3.6914 −74.8425 164.7436 0.0061

4 (1,670.57) (16,458.49) −14.1387 −85.9543 175.8554 0.0057

EP 1 (1,57.69) (4,217.92) 53.4100 88.9274 0.0000 –

2 (1,57.69) (8,436.51) 54.1171 88.9414 −0.0140 −71.3638

4 (1,57.69) (16,865.55) 53.8573 88.9363 −0.0089 −112.2702

Table 7 contains the performance derived metrics computed for the Cw2 clus-
ter. This cluster demonstrates the same performance degradation rate pattern

Table 7. Cluster performance profile Cw2

Kernel Nodes (p, P ′(p)) (p + 1, P ′(p + 1)) slope θ α coupling

FT 1 (1,2023.55) (4,6031.51) 1335.9867 89.9571 0.0000 –

2 (1,2023.55) (8,368.31) −236.4629 −89.7577 179.7148 0.0056

4 (1,2023.55) (16,508.38) −101.0113 −89.4328 179.3899 0.0056

MG 1 (1,4550.05) (4,5934.79) 461.5800 89.8759 0.0000 –

2 (1,4550.05) (8,2940.89) −229.8800 −89.7508 179.6266 0.0056

4 (1,4550.05) (16,2982.86) −104.4793 −89.4516 179.3275 0.0056

CG 1 (1,671.32) (4,2432.56) 587.0800 89.9024 0.0000 –

2 (1,671.32) (8,679.92) 1.2286 50.8560 39.0464 0.0256

4 (1,671.32) (16,515.7) −10.3747 −84.4943 174.3968 0.0057

60 A. Vivas and H. Castro

seen in Cw1 , since clusters computing nodes are the same except for the nodes
interconnection. Although the negative slopes, cluster overhead and cluster cou-
pling metrics are similar on Cw1 and Cw2 for FT and MG, there are subtle
improvements in these metrics due to the improvement in the interconnection
network in the Cw2 cluster. In addition, the network enhancement improved the
coupling of the cluster in terms of the CG computing kernel.

5 Discussion

A scalability analysis and the one focused on cluster overhead and coupling
metrics, were conducted on four scientific computing clusters in order to quan-
titatively characterize their capacity to execute scientific applications. The scal-
ability analysis suggests memory bandwidth issues in Cw1 and Cw2 that might
prevent the scalability of memory intensive computing kernels such as MG. In
addition, the analysis demonstrates the negative effect of the NUMA memory
architecture, established in Chpc cluster nodes, that can slightly affect the scala-
bility of scientific applications exhibiting computing patterns similar to FT and
MG; being these spectral methods and structured meshes. But the NUMA archi-
tecture substantially hurts the scalability of sparse linear algebra and unstruc-
tured meshes computations such as the ones exhibited in CG for the Chpc cluster.
Finally, when considering the non-HPC clusters, Cw1 and Cw2 demonstrate best
overall performance for FT in one node and EP in four nodes whilst Ccov demon-
strate best overall performance in CG and MG in the four nodes setting.

The cluster performance profile reveals numerous cluster specific behaviors
that might be considered, first, for the selection of clusters for specific scientific
applications, and, second, to guide architectural design decisions on the devel-
opment of these clusters. In the first matter, when considering the non-HPC
clusters, under the experimental conditions, the workstations based clusters Cw1

and Cw2 best fits the needs of FT and EP workloads, for the given problem
size and the only-MPI parallelization scheme. On the other hand, the virtual
machines based cluster Ccov best fits the need of CG and MG workloads.

In the second matter, for instance, the performance rate of most comput-
ing kernels executed in Chpc decreases linearly when increasing the number of
computing resources. In contrast, Ccov exhibits polynomial decrease in this rate
and Cw1 and Cw2 exhibit negative performance rates. Note that these perfor-
mance rates can be improved by cluster designers by considering enhancements,
for example, in the nodes interconnection as demonstrated when improving the
interconnection of Cw1 in Cw2 .

6 Conclusion

In this work we proposed the cluster performance profile, this profile comprises
performance related metrics for specific computing kernels and cluster specific
metrics derived from the performance exhibited on these computing kernels. This
profile was introduced to support both researchers running scientific applications

Quantitative Characterization of Scientific Computing Clusters 61

on HPC and non-HPC clusters and cluster designers mainly developing low cost
scientific computing clusters.

In this regard, the profile delivers two main benefits for researchers; first, serve
as a guide for non HPC experts to determine what kind of scientific applications
would strong scale, in a given cluster, when increasing the number of computing
resources and which might not; second, as this profile is based on well-known
building blocks seen in many scientific applications, it can be considered as a first
glance when determining the appropriate cluster for the execution of applications
developed by the combination of these building blocks. In addition, the cluster
performance profile also serves as a guideline for cluster designers that will be
able to perform improvements led by metrics such as the cluster overhead and
coupling on scientific computing clusters.

Future work may involve the use of the cluster performance profile in large
scale scientific computing clusters to fulfill two main objectives; first, determine
the validity of the proposed quantitative characterization in this type of clus-
ters; then, determine how this profile constructed on well-known building blocks
executed on large scale clusters can anticipate the performance that could be
achieved from applications made by the combination of well-known scientific
computing building blocks.

References

1. Aljamal, R., El-Mousa, A., Jubair, F.: Benchmarking Microsoft Azure virtual
machines for the use of HPC applications. In: 2020 11th International Conference
on Information and Communication Systems (ICICS), pp. 382–387. IEEE (2020)

2. Beserra, D., et al.: Performance evaluation of hypervisors for HPC applications.
In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp.
846–851. IEEE (2015)

3. Beserra, D., Pinheiro, M.K., Souveyet, C., Steffenel, L.A., Moreno, E.D.: Perfor-
mance evaluation of OS-level virtualization solutions for HPC purposes on SoC-
based systems. In: 2017 IEEE 31st International Conference on Advanced Infor-
mation Networking and Applications (AINA), pp. 363–370. IEEE (2017)

4. Chavarriaga, J., Gómez, C.E., Bonilla, D.C., Castro, H.E.: Capacity of desktop
clouds for running HPC applications: a revisited analysis. In: Florez, H., Leon,
M., Diaz-Nafria, J.M., Belli, S. (eds.) ICAI 2019. CCIS, vol. 1051, pp. 257–268.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32475-9 19

5. Ebbers, M., Hastings, C., Nuttal, M., Reichenberg, M.: Introduction to the new
mainframe: networking. Copyright IBM Corp (2006)

6. He, Q., Zhou, S., Kobler, B., Duffy, D., McGlynn, T.: Case study for running
HPC applications in public clouds. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pp. 395–401 (2010)

7. Huse, L.P., Bugge, H.: High-end computing on SHV workstations connected with
high performance network. In: Sørevik, T., Manne, F., Gebremedhin, A.H., Moe,
R. (eds.) PARA 2000. LNCS, vol. 1947, pp. 324–332. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-70734-4 38

8. Mehrotra, P., et al.: Performance evaluation of amazon elastic compute cloud for
NASA high-performance computing applications. Concurr. Comput. Pract. Exp.
28(4), 1041–1055 (2016)

https://doi.org/10.1007/978-3-030-32475-9_19
https://doi.org/10.1007/3-540-70734-4_38

62 A. Vivas and H. Castro

9. Muraña, J., Nesmachnow, S.: Simulation and evaluation of multicriteria plan-
ning heuristics for demand response in datacenters. Simulation 00375497211020083
(2021)

10. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A
performance analysis of EC2 cloud computing services for scientific computing. In:
Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) CloudComp 2009.
LNICSSTE, vol. 34, pp. 115–131. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12636-9 9

11. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.:
Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, pp. 1–12 (2013)

12. Saini, S., et al.: An application-based performance evaluation of NASA’s nebula
cloud computing platform. In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Con-
ference on Embedded Software and Systems, pp. 336–343. IEEE (2012)

13. Setiawan, I., Murdyantoro, E.: Commodity cluster using single system image based
on Linux/Kerrighed for high-performance computing. In: 2016 3rd International
Conference on Information Technology, Computer, and Electrical Engineering (ICI-
TACEE), pp. 367–372. IEEE (2016)

14. Vivas, A., Castro, H.: Estimating the overhead and coupling of scientific computing
clusters. Simulation 00375497211064198 (2021)

https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1007/978-3-642-12636-9_9

Towards Parameter-Based Profiling
for MARE2DEM Performance Modeling

Bruno da Silva Alves(B), Luciano Paschoal Gaspary, and Lucas Mello Schnorr

Graduate Program in Computer Science (PPGC/UFRGS), Porto Alegre, Brazil
{bsalves,paschoal,schnorr}@inf.ufrgs.br

Abstract. The Controlled Source Electromagnetic (CSEM) combined
with seismic surveys has been used to explore new oil and gas reservoirs.
The MARE2DEM application generates as mesh that represents a resis-
tivity model of the seafloor underground. From a set of electromagnetic
readings, the application runs a data inversion (using Maxwell’s equa-
tions) along many steps to converge to a resistivity model that more
closely matches the measured data. This data inversion procedure is
very compute-bound because of the large amount of arithmetic oper-
ations involved. As consequence, the MARE2DEM application divides
the workload into smaller work grains, called refinement groups due to
the usage of Adaptive Mesh Refinement (AMR). These groups are pro-
cessed independently in a parallel fashion by a set of workers. It is known
that parallel processing suffers from delays and resource underutilization
if the load remains imbalanced. In this article, we propose an analysis of
the performance and imbalance of the MARE2DEM through source code
inspection and trace analysis. The novelty of our investigation consists
in the usage of runtime parameters to more profoundly understand and
characterize the refinement groups’ execution time and variability. Our
results show that the execution time of the refinement groups is strongly
impacted by both the number of processed nodes present on the input
mesh and the measured data associated to each refinement group.

1 Introduction

The oil and gas exploration industry has been using marine Controlled Source
Electromagnetic (CSEM) methods for the past years. CSEM data provides com-
plementary information to seismic surveys. Besides, CSEM data acquisition is
a better cost-effective alternative to new seismic surveys in areas where legacy
seismic data is already present [2]. Figure 1 depicts the CSEM data acquisition.
Firstly, stationary receivers are positioned on the seafloor above the region of
interest. Then, a particular boat towing an electromagnetic wave transmitter
(tx) navigates over the area. The receivers (rx) capture the electromagnetic
fields influenced by the materials under the seabed. The boat navigates by fol-
lowing a vertical (from south to north, crossline) or horizontal (from west to east,
inline) path that drives the data acquisition. In Fig. 1.A, we depict a crossline
(Line-01) and an inline (Line-07) captured from the receivers at different times.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 63–77, 2022.
https://doi.org/10.1007/978-3-031-23821-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_5

64 B. da Silva Alves et al.

The set of measurement lines completes the final dataset that represents the
region of interest. In Fig. 1.B, we represent the Line-01 with a 2D representation
as a slice from the 3D space. Obtaining the data is only the first step in the
marine CSEM workflow. The key step relies on data inversion, where one can
obtain a resistivity model by calculating the data inversion through Maxwell’s
equations [12]. Those equations describe how an electromagnetic field diffuses
through a material depending on its resistivity [12]. And the output model
identifies potential reservoirs in the areas where resistivity values are similar
to the known oil and gas resistivity values. However, the electromagnetic fields’
inversion involves iterative and expensive math operations. In this context, the
MARE2DEM [7] application emerged as an open-source project for CSEM data
inversion. MARE2DEM is an iterative program that searches for 2.5D resistivity
models using adaptive refinement meshes.

Fig. 1. CSEM data acquisition in 3D and 2D spaces. A boat tows the electric dipole
transmitter (antenna in green). Receivers (in red) positioned on the seafloor capture
the electromagnetic fields influenced by the materials under the seafloor. Distances and
sizes were simplified for visualization. (Color figure online)

MARE2DEM receives as input a) the CSEM data described above, b) the
region’s geometry, and c) an initial resistivity model. The region’s geometry is
basically a polygon mesh that identifies the air, seawater, and seafloor areas
where the mesh granularity can vary depending on the investigation interests.
The initial resistivity model stores a resistivity value for each mesh section. A
specialist can help define the initial resistivity values by evaluating the region.
However, when resistivities are unknown, one can simply assign the same value
for all mesh sections. The application does the CSEM data inversion on each
iteration and searches for a better resistivity model than the current one. On
this search, MAREDEM calculates an error for each mesh section representing a
difference between the calculated electromagnetic fields and the measured data.
Then, it identifies the areas with the highest errors, refines them using the adap-
tive refinement strategy, and calculates new resistivity values for each refined

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 65

region and surroundings. Furthermore, the application uses parallelization to
speed up the processing time. In this way, the code splits the domain problem
into small sections called refinement groups, and those are assigned to workers
through the coordinator-worker scheme. Each refinement group contains a copy
of the whole mesh, and the data collected by the transmitters and receivers
present in the group. However, the processing time for each refinement group
varies depending on its configuration. The significant difference in processing
time among the refinement groups leads to performance issues that make load
balancing a challenging task.

Identifying the factors leading to a load imbalance is very challenging since
MARE2DEM is a complex parallel application that relies on the Adaptive Mesh
Refinement (AMR) technique. Performance visualization has proven its value
for load imbalance characterization on the CSEM data inversion context [5]
and also in other scenarios [1,6,11]. As consequence, we apply the same perfor-
mance visualization methodology and tools to characterize the performance of
the MARE2DEM application. As far as we are aware, there are no other reported
investigation that tackles a performance analysis of the MARE2DEM applica-
tion that considers the internal operations and their runtime parameters. Thus,
an analysis of the MARE2DEM performance is proposed through the evaluation
of the execution traces and the source code of the MARE2DEM application. The
results show that the processing times of the refinement groups are guided by
the number of mesh nodes processed in the refinement mesh and by the amount
of input data mapped to each refinement group.

The article is organized as follows. Section 2 presents the dataset and appli-
cation background. Section 3 details our experimental methodology and con-
text. Section 4 presents our results, including the performance characterization
of MARE2DEM’s microkernels and of the refinement groups. Finally, Sect. 5
brings a summary of our observations and draw future work.

2 Dataset and Application Background

We present an overview of the MARE2DEM execution workflow, including its
CSEM input dataset, the application’s steps for data inversion, and the refine-
ment groups used in the domain division.

2.1 CSEM Data

We use the CSEM data from the open-source MR3D (Marlim R3D) dataset
available on [3]. The MR3D contains the geoelectric model of the Marlim field
present in the Campos Basin, it occupies an area of 257.6Km2 in a region off the
northern Rio de Janeiro coast in Brazil [10]. This model emerged as a standard
for CSEM studies of the particular turbiditic reservoirs on the Brazilian coast
[4]. The dataset contains the electromagnetic components of 25 inlines (Weast-
East) and 20 crosslines (North-South) captured at six different frequencies that
range from 0.125Hz to 1.25Hz. We selected one arbitrary line for the following

66 B. da Silva Alves et al.

evaluations since the application process one line at a time and we expect the
lines to have similar characteristics. Figure 2 depicts the chosen inline referenced
as Line 04Tx013a. We show the model height and length on the Y and X axis.
Figure 2.A shows the initial mesh refinement with a heavily refined rectangular
area with 64Km of length and 6Km of depth. Each inline has a length of 42Km
from the first transmitter to the last one and an additional 11Km area to the left
and right of the first and last transmitters. Figure 2.B shows a smaller area closer
to the transmitters and receivers. The blue points identify the 206 transmitters
and the red triangles identify the 20 receivers placed in the irregular seafloor.
Each transmitter is within 100m of the next.

Fig. 2. Line 04Tx013a of the MR3D dataset: the initial refinement mesh (A), where the
polygon sizes reflects the refinement degree; and the rectangular Rx/Tx area (B), where
the numbered red triangles represents the 20 receivers, and the blue points represents
the 206 transmitters. (Color figure online)

One might expect the data to have a measured electromagnetic field for each
transmitter-receiver pairs at each of the used frequencies. However, the selected
inline contains less data than the possible combinations of 206 tx, 20 rx, and the
6 frequencies due to the usage of a filter that eliminates non-relevant information.
The transmitted fields can reach receivers in three ways: guided fields, reflected
fields, and noisy fields. Figure 3 shows the field types captured by the receiver
number 10 before applying the filter. We can see that the field classification
depends on the distance between the transmitter and the receiver. When the
elements are closer, the field directly reaches the receiver without capturing

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 67

Fig. 3. The CSEM field classification using the data registered by the received number
10 of the MarlimR3D dataset: we depict that the field type (color) depends on the
geographical distance between the transmitter and receiver (a Rx-Tx pair, the lines).
(Color figure online)

the underground material signature (the green lines on Fig. 3). On the other
hand, when the elements are far apart, the reaching field may capture undesired
signatures like the ones present in the air (the red lines). The field that we are
interested in are the ones influenced by the materials under the seabed (the blue
lines). Those are considered guided fields. This last field type occurs when the
transmitter and receiver are at a safe distance, not too close or far away. The
MarlimR3D dataset contains only guided fields.

2.2 MARE2DEM

The MARE2DEM application is an open-source project1 for 2D modeling in
the context of electromagnetic geophysics. The application generate as output
resistivity models for both CSEM (Controlled Source Electromagnetics) and MT
(Magnetotelluric) data, but we focus our analysis on the CSEM inversion. The
code is mainly written in Fortran, with some features written in MATLAB and
C. The MATLAB’s source code allows the users to create input models and
visualize the results through routines that display a MATLAB graphical inter-
face. The Fortran source code handles the bulk of compute-intensive operations,
which mainly include the data inversion operations and the parallel job distri-
bution policy. The use of Adaptive Mesh Refinement (AMR) is MARE2DEM’s
main feature. This feature removes the responsibility from the user of creat-
ing numerically accurate meshes, since it can refine an arbitrary input model’s
mesh on the regions with the highest possible errors, such as the ones closer
to receivers and transmitters. We can also highlight that MARE2DEM can be
run in parallel for large CSEM datasets. In what follows, we describe how the
application calculates the resistivity models from the input data.

1 MARE2DEM repository: https://mare2dem.bitbucket.io/.

https://mare2dem.bitbucket.io/

68 B. da Silva Alves et al.

The MARE2DEM application starts each iteration by calculating the misfit
between the CSEM data and the current resistivity mesh. An initial resistivity
model defined by the user is assumed as the current resistivity mesh in the
first iteration. Then, the application searches for a model with a lower data
misfit. The operation is carried out by refining the mesh on the regions with
the highest misfit errors and adapting the resistivity according to the inversion
process. The described process is repeated until a determined misfit is obtained
or when a maximum number of iterations is reached. Further information about
the behavior present on the MARE2DEM is available [7,8].

Jacobian Smoothing

Phases

1
2

4
5

3

6

9

7
8

10

12
11

15

20

14

16

13

21

17

19
18

22
23

24
25

80

81

82

83

84

85

86

88

89

90
91

92

93

94

95

98
99

100

102

103

106
112

113

120
123

147

148

157

158
160

161

164

165

168

170

182
183

187

3

1
2

7

4
5

8

6

9

11

13

15
14

12

10

16

18
17

20
19

21
22

23
24
25

80

81

82
83

84

85

86

88

89

90

91

92

93

94

96

97

100

101

104

105

106

114

116

126

127

149

153

155

160

161

162

165
166

167

169

172

174
184

186
187

189

Refinement Groups

1700 1900 2100 2300

1

3

5

7

9

11

13

15

17

19

21

23

25

Time [seconds]

R
an

k
[id

]

Fig. 4. The two MARE2DEM phases as gathered on its third iteration. The refinement
groups processing is also shown for the first 25 workers (rank id) of a total of 80. The
X-axis shows the elapsed time since application’s start.

We can also explain how MARE2DEM works from the source code perspec-
tive by evaluating its function call stack. Figure 4 shows the main regions present
on the application. MARE2DEM runs the Jacobian and Smoothing phases for
each iteration (we show here the third iteration). The Jacobian phase (in red,
left) calculates the model misfit and searches for a µ value that produces a
model with a lower data misfit. Then, the Smoothing phase (in blue) seeks for
the model with the smallest roughness given the calculated µ. This step sta-
bilizes the inversion and prevents unexpected structures from appearing in the
model. The application process the filtered CSEM data on each phase by group-
ing it into refinement groups. Each refinement group contains the data from a
set of transmitters, receivers and frequencies. We show the refinement group’s

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 69

processing on the bottom facet. The Y axis shows parallel worker ranks, the X
axis shows the time in seconds, and the labels on the orange rectangles iden-
tify each refinement group. Each phase processes all available refinement groups
(from a total of 190 in this example), however, we only show the first 25 workers
to facilitate the visualization reasons. The slowest rank determines the phase’s
processing time. The next section describes how the MARE2DEM creates the
refinement groups.

2.3 Refinement Groups

The refinement groups composition is an essential step in the application’s work-
flow, as it determines the size of the working grain that will be processed in
parallel. The user defines a triplet, prior to execution, with the maximum num-
ber of transmitters, receivers, and frequencies that should have each refinement
group. We set the application to use refinement groups with a maximum of 6
transmitters, 20 receivers, and 1 frequency. This means that each refinement
group has a maximum of 120 transmitter-receiver pairs. However, the groups
end up having fewer pairs due to the guided waves filtering of the CSEM data.
A previous analysis showed that by setting the receivers and frequencies at 20
and 1, the chosen configuration (with 6 receivers) had the shortest execution
time among the possible values for the receivers. Figure 5 shows the amount of
Rx-Tx pairs (on the Y axis) for each refinement group (on the X axis). The col-
ors identify the distinct frequencies used. We can see that all central refinement
groups (identification ranging from 50 to 150) have a higher number of Rx-Tx
pairs, and the peak appears around the refinement group 100. This behavior
happens because the number of receivers is more significant around the central
transmitters, leading to higher number of pairs in this central area. Another
observation is that refinement groups with a higher frequency (1.250Hz) have
less data when compared to a lower frequency (0.125Hz). The reason is that
lower frequencies are capable to penetrate further in the medium, resulting in

0

30

60

90

0 50 100 150
Refinement Groups [id]

Tx
−R

x
Pa

irs
 [c

ou
nt

]

Frequencies
0.125 Hz
0.250 Hz
0.500 Hz
0.750 Hz
1.000 Hz
1.250 Hz

Fig. 5. Number of Rx-Tx pairs present on each of the refinement groups. The colors
depict the CSEM frequency associated to each refinement group. (Color figure online)

70 B. da Silva Alves et al.

more number of pairs in the dataset. While this example has been created with
a MARE2DEM configuration setup that limits each refinement group to have
only one frequency, one can change that parameter so one refinement group can
have more frequencies. Such configurations would imply in a more elaborated
mapping from data to refinement groups.

3 Methodology and Experimental Context

We adopted a five-step methodology to characterize the MARE2DEM appli-
cation’s behavior. 1) Code inspection to select the code’s relevant regions and
parameters. 2) Code instrumentation via manual region instrumentation and
parameter-based profiling. 3) Parallel MARE2DEM execution for traces acquisi-
tion with the MR3D dataset. 4) Conversion from the OTF2 (Open Trace Format
Version 2) traces to CSV (Comma-Separated Values) files with the inspected
parameters. 5) Trace analysis and behavior characterization. These steps rep-
resent a cyclic process where step 1 may follow step 5 in a new analysis cycle.
We repeat the cycle until a sufficient number of regions and parameters allow
us to explain application behavior. In the following, we detail the software and
hardware

In the first step, we started our search for the code’s crucial regions by first
looking at the wider regions and then refining it by inspecting the functions
inside those regions. From the manager’s code, we select three relevant regions:
the application’s main function, the iteration processing and phases processing.
The other regions comes from the worker’s code inspection: the refinement group
processing, the subset-group processing, and the microkernels. The microkernels
are the most elementary functions during the refinement group processing, we
detail the worker’s stack call in the next section. Then, we fully characterize
each region by selecting a set of parameters to be collected. The parameters are
the values of the variables present at the scope of each region. We select the
following parameters for each worker’s region: the iteration number, the phase
name, the worker identification, the refinement group identification, the subset-
group identification, the number of mesh nodes processed by each microkernel,
the number of Rx-Tx pairs on each refinement group.

For steps 2 and 3, we use Score-P 7.0 for code instrumentation and trace
gathering. Score-P is a software with a set of tools to track performance-related
events such as event duration, hardware counters, communication metrics, func-
tion stack level, among others [9]. We manually instrument the MARE2DEM
source code to capture such performance events for the regions identified in
the first step. One should enclose the code’s region with Scorep special flags to
manually identify the regions of interest. Although Score-P allows to track all
functions on the source code automatically or even to filter for a set of functions
listed on a particular file, we adopted manual region instrumentation since it can
increase control over the region’s coverage and reduce instrumentation overhead
significantly. This strategy allows one to group functions together or to even
select a part of a function to be instrumented. Also, the control over the output

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 71

trace file size increases. We also set the Score-P to collect the regions’ start and
end timestamp and the previously mentioned parameters.

In the third step, we use four computing nodes from our local cluster2 .
Each of the nodes is equipped with 2 Intel Xeon E5-2650v3 processors (20 cores,
40 threads) running at 2.3GHz with 128GB DDR4 RAM memory. The nodes
run the Debian 10 (buster) operating system with the Linux kernel 4.19.0-20-
amd64, and they are interconnected with a 1 Gbit/s local network. We configure
the MPI (OpenMPI 3.1.4) to use all the available cores on each node, leading
to 20 processes per node that were mapped into 79 MARE2DEM workers and
1 manager. For step 4, we use the otf2csv3 tool to convert the OTF2 format
to CSV and improve it to associate the parameters values with each tracked
region. For the last step, we build a mean trace as a result of four executions of
the application. Our mean trace represents the mean duration for each captured
region by using an unique key created from the captured parameters. At least
99% of the regions have a relative standard error less than 5%, therefore our
mean trace is considered representative. Furthermore, we conducted the traces
analysis using reproducible notebooks filled with experiments annotations and
R codes blocks with the Tidyverse package. We made available a reproducible
companion4 of the analysis phase associated with this article.

4 Results

We present the performance characterization by evaluating the MARE2DEM’s
elementary functions, called microkernels, and then by extending our analysis to
wider regions such as iterations and refinement groups.

4.1 Performance Characterization of the Microkernels

The refinement groups represent the workload that each worker receives to com-
pute independently. To compute each refinement group, the application needs
to calculate 30 Fourier transformations. Those transformations are grouped in
subset-groups of size 5. Figure 6 depicts the processing of the 7th refinement
group (red rectangle) for the Jacobian and Smoothing phases. We show the
elapsed time since the application’s start in the X-axis, the colored rectangles
represent the operations, and the rectangle position on the Y-axis represents the
operation’s stack level (operations on the top call the ones on the bottom). In
what follows, we identify the worker’s mesh copy as base-mesh. On each subset-
group (orange rectangles), the worker refines its base-mesh on the first subset
(blue rectangle, local_refinement). The following subsets at the same subset-
group reuse the mesh previously refined. When moving to the next subset-group,
the worker starts again by using the base-mesh. For example, in the first subset-
group that contains the subsets from 1 to 5, the worker refines the base-mesh
2 UFRGS-PCAD cluster: http://gppd-hpc.inf.ufrgs.br/.
3 otf2csv: https://github.com/schnorr/otf2utils.
4 Companion: https://github.com/Alves-Bruno/CARLA2022-companion.

http://gppd-hpc.inf.ufrgs.br/
https://github.com/schnorr/otf2utils
https://github.com/Alves-Bruno/CARLA2022-companion

72 B. da Silva Alves et al.

Fig. 6. Stack state of the refinement group processing (number 7) for both Jacobian
and Smoothing phases: the orange rectangle shows the subset-group processing; the
pink, green, brown, and yellow rectangles represent the microkernels. (Color figure
online)

when processing subset 1 and then reuses the resulting refined mesh in the sub-
sets 2 to 5. The operations at the bottom of each facet represent the microkernels
(pink, green, yellow, and brown rectangles). They are the most basic operations
carried out by MARE2DEM during the refinement group processing. The main
functional difference between the phases is that the derivs_comp_adj operation
is only present at the Jacobian phase.

We compare the relative time of each operation in order to determine the
impact of the operations when compared to the total execution time taken by
the application. The Table 1 resumes the operations’ impact by showing the num-
ber of calls (instances), the relative time, and the variability (minimum, mean,
and maximum durations) for each basic operation. The application spend more
than 48% of its execution time in the primal_solve, and this operation has the
highest number of instances. Thus the primal_solve is the most expensive oper-
ation. The error_estimate operation follows the primal_solve as the second
most expensive operation by occupying a significant relative time and by having
the higher mean duration. The derivs_comp_adj is a particular microkernel,
since it is only present at the Jacobian phase. Thus, it leads to a low num-
ber of instances that consume a significant amount of (relative) time. Despite
its number of instances, the derivs_comp_adj is considered expensive as the
duration mean is the second highest when compared to the other microkernels.
The lhs_gen and local_refinement represent less than 7% of the execution
time, and we exclude the local_refinement operation from the following eval-

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 73

uations since this operation has the lowest instance number and its impact on
the execution is low.

Table 1. Microkernel’s impact on the MARE2DEM performance: the relative time,
operation’s variability (minimum, mean, and maximum durations), and number of
instances called during execution for each microkernel.

Operation Instances Relative time D. min D. mean D. max

local_refinement 43.3 K 3.14% 0.26 s 0.81 s 1.77 s
lhs_gen 304.1 K 3.86% 0.03 s 0.14 s 0.66 s
derivs_comp_adj 45.6 K 11.11% 0.03 s 2.72 s 19.01 s
error_estimate 105.3 K 33.72% 0.19 s 3.57 s 14.42 s
primal_solve 304.1 K 48.16% 0.20 s 1.77 s 8.41 s
Total → 802.4 K 100.00% – – –

Figure 7 shows the duration (Y-axis) for each instance of the microker-
nels (facets) as a function of the number of processed nodes (X-axis). We can
observe that error_estimate, lhs_gen, and primal_solve duration is strongly
impacted by the number of processed mesh nodes in both phases. However,
the derivs_comp_adj differs from the others microkernels because the num-
ber of processed mesh nodes cannot fully explain the duration. There are many
instances with the same number of processed nodes, but with different dura-
tions. To fully understand this particular microkernel, we need to also consider
the number of Rx-Tx pairs as an impacting factor. The derivs_comp_adj right-
most facet shows the number of Rx-Tx pairs with a binned color scale. Thus,
we can conclude that the derivs_comp_adj duration is impacted by both the
number of processed nodes and Rx-Tx pairs.

Fig. 7. Microkernels’ duration of the Jacobian (all facets) and Smoothing (only the
three facets from left-to-right) MARE2DEM phases as a function of the number of
processed mesh nodes and Rx-Tx pairs (note the different Y scales).

74 B. da Silva Alves et al.

4.2 Iterations and Refinement Groups

We now consider the previous parameters in evaluating the processing of the
iterations and refinement groups. We start by taking a closer look into the itera-
tions durations that is guided by the slowest parallel worker. Figure 8 shows (at
the left) the mean duration (Y-axis) of each MARE2DEM’s iteration (X-axis).
Previous evaluations have revealed that the iterations’ duration for both phases
increases as the application progresses, and we confirm this for the present con-
figuration. Besides that, we can observe that the Smoothing phase becomes more
expensive than the Jacobian when considering the final iterations (iterations 5
to 8). The higher execution times observed at the Smoothing phase happens
because the application may repeat the processing of all refinement groups due
to convergence conditions controlling the search of the smallest roughness value.
We show the number of repetitions needed for the Smoothing phase on each of
the iterations (numeric labels on top of each point). Still in Fig. 8 (at the right),
we show the duration as a function of the number of processed nodes. The num-
ber of processed nodes is a sum of the number of nodes present on the mesh at
each microkernel function call on a given iteration. The iteration duration during
Smoothing is completely explained by the number of processed nodes. However,
this explanation remains insufficient when considering the Jacobian phase. For
example, the iterations 3 and 5 (during Jacobian) decrease the duration from
the previous iteration despite the increase of processed nodes.

Figuring out the size of the workloads is an important step towards dis-
tributing workloads efficiently among parallel workers. In this sense, we consider
the duration of each refinement group as the size of the parallel tasks. The
Fig. 9 shows the refinement groups’ duration pattern (top-row) for the last four
iterations, as they are the most expensive ones. We also show the processed

1 1 1

6

6 6

7

2

0

1000

2000

3000

2 4 6 8
Iteration

M
ea

n
D

ur
at

io
n

[s
]

Phase Jacobian Smoothing

Zoom

0

1000

2000

3000

2000 4000 6000

M
ea

n
D

ur
at

io
n

[s
]

Zoom into Jacobian

800 1000 1200

500

600

700

800

900

Processed nodes x 1M

M
ea

n
D

ur
at

io
n

[s
]

Fig. 8. The duration and number of processed nodes for each iteration and phase.

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 75

nodes pattern (bottom-row). The colors represents the 6 CSEM frequencies that
reflects the Rx-Tx pairs showed on Fig. 5. The pairs count remains equal on all
iterations as they represents the collected data. Despite the differences in scale,
the pattern of processed nodes is similar for the two phases, where the central
(near to 100) and central-right groups (100 to 160) have higher values than the
side groups (0 to 25 and 175 to 206). However, the duration pattern is slightly
different in the two phases. During Smoothing, the pattern of the groups follows
the same pattern as in the bottom row. During the Jacobian, the pattern of
refinement groups reflects a mix between what is shown in the bottom-row and
the number of pairs on Fig. 5. Although the duration is strongly driven by the
amount of processed nodes, there are differences between the two phases due to
the presence of the derivs_comp_adj microkernel during the Jacobian.

Fig. 9. The signature of each refinement group’s duration and processed nodes at the
last four iterations. The colours indicate the CSEM frequency of each group. Center
and center-right groups are the ones that take longer to process. (Color figure online)

5 Conclusion

MARE2DEM is an open-source application for 2D resistivity modeling on the
context of oil and gas exploration using CSEM data. In this work, we evalu-
ated the performance of the MARE2DEM application when running with the
Brazilian MR3D dataset. The code inspection, trace evaluation and performance
visualization lead us to the following conclusions. The application spends more
than 92% of the execution time on the primal_solve, error_estimate and
derivs_comp_adj microkernels, hence those functions deserve some optimiza-
tion efforts in a eventual code review. The imbalance on the parallel tasks, iden-
tified as refinement groups in the MARE2DEM terminology, is a consequence

76 B. da Silva Alves et al.

of the Adaptive Mesh Refinement algorithm that refines the groups differently
depending on the configuration of the refinement group (number and placement
of receivers, transmitters, and frequencies). The variability on the refinement
groups’ duration is mainly explained by the number of processed mesh nodes for
both Jacobian and Smoothing phases. We show that the central and central-right
refinement groups have longer execution times, while side groups need shorter
execution times. In building a more efficient load distribution, one must consider
the presented duration patterns for each of the CSEM frequencies used. As future
work, we intend to conduct a wider performance analysis considering all possi-
ble configurations for the refinement groups definition during the MARE2DEM
initialization phase. Our goal would be to estimate the best MARE2DEM’s con-
figuration for a given set of compute resources.

Acknowledgements. FAPERGS (16/354-8, 16/488-9), the CNPq (447311/2014-0),
the CAPES (Brafitec 182/15, Cofecub 899/18), and Petrobras (2018/00263-5). This
study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de
Nivel Superior - Brasil (CAPES) - Finance Code 001. Experiments have been executed
in INF/UFRGS’s High-Performance Computational Resources, http://gppd-hpc.inf.
ufrgs.br.

References

1. Cogo Miletto, M., Leandro Nesi, L., Mello Schnorr, L., Legrand, A.: Performance
analysis of task-based multi-frontal sparse linear solvers: structure matters. Future
Gener. Comput. Syst. 135, 409–425 (2022). https://doi.org/10.1016/j.future.2022.
05.013

2. Cooper, R., MacGregor, L.: CSEM: back from the brink (2020)
3. Correa, J.L., Menezes, P.T.L.: Marlim R3D (MR3D) - the full azimuth CSEM

dataset (2018). https://doi.org/10.5281/zenodo.1256787
4. Correa, J.L., Menezes, P.T.L.: Marlim R3D: a realistic model for controlled-source

electromagnetic simulations phase 2: the controlled-source electromagnetic data
set. Geophysics 84(5), E293–E299 (2019). https://doi.org/10.1190/geo2018-0452.
1

5. Dagostini, J.I., da Silva, H.C.P., Pinto, V.G., Velho, R.M., Gastal, E.S.L., Schnorr,
L.M.: Improving workload balance of a marine CSEM inversion application. In:
2021 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 704–713 (2021). https://doi.org/10.1109/IPDPSW52791.
2021.00107

6. Isaacs, K.E., et al.: State of the art of performance visualization. In: Borgo, R.,
Maciejewski, R., Viola, I. (eds.) EuroVis - STARs. The Eurographics Association
(2014). https://doi.org/10.2312/eurovisstar.20141177

7. Key, K.: MARE2DEM: a 2-D inversion code for controlled-source electromagnetic
and magnetotelluric data. Geophys. J. Int. 207(1), 571–588 (2016). https://doi.
org/10.1093/gji/ggw290

8. Key, K., Ovall, J.: A parallel goal-oriented adaptive finite element method for 2.5-d
electromagnetic modelling. Geophys. J. Int. 186(1), 137–154 (2011). https://doi.
org/10.1111/j.1365-246X.2011.05025.x

http://gppd-hpc.inf.ufrgs.br
http://gppd-hpc.inf.ufrgs.br
https://doi.org/10.1016/j.future.2022.05.013
https://doi.org/10.1016/j.future.2022.05.013
https://doi.org/10.5281/zenodo.1256787
https://doi.org/10.1190/geo2018-0452.1
https://doi.org/10.1190/geo2018-0452.1
https://doi.org/10.1109/IPDPSW52791.2021.00107
https://doi.org/10.1109/IPDPSW52791.2021.00107
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.1093/gji/ggw290
https://doi.org/10.1093/gji/ggw290
https://doi.org/10.1111/j.1365-246X.2011.05025.x
https://doi.org/10.1111/j.1365-246X.2011.05025.x

Towards Parameter-Based Profiling for MARE2DEM Performance Modeling 77

9. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, scalasca, tau, and vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31476-6_7

10. Nascimento, T.M., Menezes, P.T.L., Braga, I.L.: High-resolution acoustic
impedance inversion to characterize turbidites at Marlim field, Campos basin,
Brazil. Interpretation 2(3), T143–T153 (2014). https://doi.org/10.1190/INT-2013-
0137.1

11. Veroneze Solórzano, A.L., Leandro Nesi, L., Mello Schnorr, L.: Using visualization
of performance data to investigate load imbalance of a geophysics parallel applica-
tion. In: Practice and Experience in Advanced Research Computing, pp. 518–521.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3311790.3400844

12. Zhdanov, M.S.: Geophysical Electromagnetic Theory and Methods. Elsevier,
Oxford (2009)

https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1190/INT-2013-0137.1
https://doi.org/10.1190/INT-2013-0137.1
https://doi.org/10.1145/3311790.3400844
https://doi.org/10.1145/3311790.3400844

Time-Power-Energy Balance of BLAS
Kernels in Modern FPGAs

Federico Favaro1(B), Ernesto Dufrechou2, Juan P. Oliver1, and Pablo Ezzatti2

1 Instituto de Ingeniería Eléctrica,
Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

{ffavaro,jpo}@fing.edu.uy
2 Instituto de Computación, Facultad de Ingeniería, Universidad de la República,

Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

Abstract. Numerical Linear Algebra (NLA) is a research field that in
the last decades has been characterized by the use of kernel libraries
that are de facto standards. One of the most remarkable examples, in
particular in the HPC field, is the Basic Linear Algebra Subroutines
(BLAS). Most BLAS operations are fundamental in multiple scientific
algorithms because they generally constitute the most computationally
expensive stage. For this reason, numerous efforts have been made to
optimize such operations on various hardware platforms. There is a grow-
ing concern in the high-performance computing world about power con-
sumption, making energy efficiency an extremely important quality when
evaluating hardware platforms. Due to their greater energy efficiency,
Field-Programmable Gate Arrays (FPGAs) are available today as an
interesting alternative to other hardware platforms for the acceleration
of this type of operation. Our study focuses on the evaluation of FPGAs
to address dense NLA operations. Specifically, in this work we explore
and evaluate the available options for two of the most representative ker-
nels of BLAS, i.e. GEMV and GEMM. The experimental evaluation is
carried out in an Alveo U50 accelerator card from Xilinx and an Intel
Xeon Silver multicore CPU. Our findings show that even in kernels where
the CPU reaches better runtimes, the FPGA counterpart is more energy
efficient.

Keywords: Dense numerical linear algebra · Energy-efficiency ·
HPC · Matrix-matrix multiplication

1 Introduction

The Numerical Linear Algebra (NLA) is one of the most important fields in
scientific computing. A support for this claim is the existence of several compu-
tational kernels involved in the most widespread benchmarks. One of the most
notorious is the Linpack benchmark [12] that is employed to define the Top500
list [2]. This benchmark is based on the LU-factorization operation to compute
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 78–89, 2022.
https://doi.org/10.1007/978-3-031-23821-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_6

Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs 79

the peak performance reached by a specific combination of a hardware platform
and software implementations.

The LU-factorization is part of the LAPACK specification [3] and typically
these kinds of methods are built over BLAS kernels. This philosophy of develop-
ing several layers of kernels specifications, has guided the dense NLA landscape
since the 70 s. Firstly, with the BLAS-1 specification [17], later with BLAS-
2 [11] and BLAS-3 [10], and subsequently LAPACK and ScaLAPACK [7], this
field offers a the facto standard for the definition and interoperativity of its basic
kernels.

In recent years, another constraint that emerged in the HPC field, and in
particular in NLA, is the energy consumption required to compute the different
kernels [5,13,14]. This situation motivated, among other things, the develop-
ment of the Green 500 list [1]. This effort reorders the Top500 hardware plat-
form considering, instead of the attainable peak performance, the ratio between
performance and energy consumption (e.g. GFLOPs per watts). Thus, in the
last decade the energy consumption of both, algorithm and hardware platforms,
has been a matter of utmost importance.

Field-Programmable Gate Arrays (FPGAs) technology is gaining attention
in the HPC community. As a reconfigurable device, FPGAs are very efficient for
implementing parallel algorithms. Even though they offer lower memory band-
width and clock frequencies, FPGAs are becoming more powerful, narrowing
the gap with other heterogeneous platforms like GPUs. They are still behind in
raw computing power with GPUs, but given their considerably lower power con-
sumption, there is an active topic of research for energy efficiency on FPGAs. In
addition to the hardware upgrades, High-Level Synthesis (HLS) tools are becom-
ing more and more refined which enables higher productivity and (may provide)
more access to non-hardware experts.

In the previously described context we advance in the study of the potential
of FPGAs to address NLA operations. More in detail, in this work we explore
and evaluate the available options for two of the most representative kernels of
BLAS, i.e. GEMV and GEMM. The experimental evaluation was carried out
in an Alveo U50 accelerator card from Xilinx and an Intel Xeon Silver multi-core
CPU. It shows that even in kernels where the CPU reaches better runtimes, the
FPGA counterpart requires less energy consumption.

The rest of the paper is structured as follows. In Sect. 2 we summarize the
main concepts of BLAS and the use of FPGAs platforms for HPC. Later, in
Sect. 3, we present the different versions of both studied kernels. This is followed
by the experimental evaluation in Sect. 4. Finally, in Sect. 5 we close with the
main concluding remarks and some lines of future work.

2 FPGAs and NLA

In this section we briefly introduce the BLAS specifications and the main con-
cepts related with the use of FPGAs for HPC.

80 F. Favaro et al.

2.1 BLAS

Numerical Linear Algebra (NLA) is a research field that in the last decades has
been characterized by the use of kernel-libraries that are de facto standards.
One of the most remarkable examples, in particular in the HPC field, is the
Basic Linear Algebra Subroutines (BLAS) [8]. This library has become essential
for HPC due to its efficiency, portability and availability. BLAS is composed of
routines for computing common linear algebra operations. It is organized into
levels according to the degree of complexity. The level 1 involves scalar, vector
and vector-vector operations, the level 2 includes matrix-vector operations, and
the level 3 performs matrix-matrix operations. BLAS libraries have become one
of the main building blocks in linear algebra applications, such as solving linear
system of equations, linear least square problems or eigenvalue problems. Two
of the most important operations are GEMM and GEMV from levels 3 and 2
respectively. We describe these operations next.

GEMM This operation belongs to Level 3 of the BLAS specification [10] and is
defined as follows:

C = αA ∗ B + βC (1)

where A, B and C are matrices and α and β are scalars. This kernel is considered
the main building block in dense linear algebra because many other operations
can be expressed in terms of several GEMM invocations [6].

GEMV This operation is defined as follows:

y = αA ∗ x + βy (2)

where A is a matrix, x and y are vectors and α and β are scalars. GEMV belongs
to Level 2 of the BLAS specification.

2.2 FPGAs

FPGAs are composed of a matrix of configurable logic blocks (or logic elements)
and hard coded blocks such as memories, hardware adder/multipliers (DSPs) and
clock managers. On top of that, a programmable routing structure enables the
interconnection of the different blocks. They also feature several programmable
input/output pins that allow interfacing with the outside world.

To program an FPGA means that an actual electrical circuit is synthesized
inside the device through the programmable logic’s interconnection-elements and
hard-coded blocks. This allows very low latency (as there is little to none control
overhead), great flexibility (as they can be reprogrammed in the field), and fine-
grained parallelism. From a technological perspective, FPGAs stand somewhere
in between Application-Specific Integrated Circuits (ASICs) and general-purpose
processors. One of the main advantages of FPGAs with respect to ASICs is that
the first can be reprogrammed after the manufacturing process.

Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs 81

The clock’s operating frequency of a given design depends on the synthesized
circuit, but it is usually lower than other heterogeneous devices. FPGAs also offer
lower peak floating-point performance than GPUs and even multi-core CPUs,
and less memory bandwidth, but this may change at some point, as FPGA
manufacturers are making big efforts to compete with GPU performance in these
contexts.

Traditionally, FPGAs have been a good alternative in fixed-point, dataflow
streaming applications, where they reach high speeds at excellent energy effi-
ciency. Also, as opposed to CPUs and GPUs they natively support arbitrary
precision bitwidths. However, their poor performance in floating-point arith-
metic, in addition to the complex design flow kept them apart from the main-
stream HPC world. This started to change recently, as modern high-end FPGA
devices offer up to millions of logic elements, thousands of DSP blocks (that
allow TFLOP performance) and high-bandwidth memory (HBM). These char-
acteristics, in combination with the HLS tools available, are making these devices
increasingly attractive in the HPC domain.

A brief review of the state of the art about the use of FPGAs to compute
dense numerical algebra kernels can be found in F. Favaro et al. [15,16].

3 Evaluated Kernels

3.1 Vitis Libraries

Xilinx offers an extensive set of performance-optimized, open source libraries for
use with Vitis software. Their repository includes common topics such as math,
linear algebra, statistics, data management, and also domain specific libraries
for image processing, computer vision, data compression, etc. For linear algebra,
Xilinx developed Vitis BLAS Library, which is an FPGA implementation of the
Basic Linear Algebra Subroutines (BLAS).

The library provides three levels of implementations (not to be confused
with the BLAS levels organization): primitives (L1), kernels (L2), and software
APIs (L3). L1 provides parametrized C++ implementations (to be compiled
with HLS) of the basic operations found in BLAS. These primitives include
modules for computations and for data movement. The first ones have streaming
interfaces and carry out the operations, while the second ones move data between
on-chip memory and the computation modules. This allows the programmer
to construct high-performance logic by interconnecting computation and data
mover modules. L2 offers kernel implementation examples aimed at host code
developers. L3 provides C/C++ and Python APIs to allow software developers
to accelerate BLAS operations using pre-built FPGA images.

For this work we evaluated the BLAS function kernels from L2. These ker-
nels share the same top function, which has only two ports to communicate
with external memory (DRAM, HBM or PLRAM). The kernels consist of an
instruction processing block, a computation unit (e.g. GEMM), and a timer
unit.

82 F. Favaro et al.

GEMM Basic: The architecture of this kernel is composed of the following
blocks:

– Systolic array: Implemented using L1 primitives. Its size depends on the
datatype and the memory interface. For single precision floating point and
512 bits interface it corresponds to 16 × 16.

– Data movers: These blocks get data from global memory and send it to the
computation blocks, and vice versa.

– Transpose modules: One of the matrices must be transposed before entering
the systolic array. This block also acts as a buffer to reuse data.

GEMM Multiple Compute Units (MCU): This kernel is implemented as
two parallel instances (compute units) of the previous kernel. Each compute unit
has its own dedicated HBM channel. The provided version of this kernel uses
four compute units and its intended for the Alveo U250 board. In order to fit the
design in the ALveo U50 board only 2 instances could be used. Also the DDR
memory had to be changed for HBM.

GEMV Basic: This kernel follows the same structure as GEMM basic, but
with a custom processing block to perform GEMV operation.

GEMV Streaming: This kernel does not follow the aforementioned BLAS ker-
nels unique function architecture. Instead, it makes efficient use of the high-
bandwidth memory. To maximize throughput, it instantiates 16 parallel GEMV
compute blocks and connects each one to an individual HBM channel.

3.2 Matrix-Matrix Multiplication (MMM)

In order to obtain a point of comparison for the results of Vitis BLAS, we
included in the evaluation a state of the art implementation for GEMM devel-
oped by J. de Fine Licht et al. [9]. They propose a matrix-matrix multiplication
(MMM) implementation on FPGA aimed at minimizing off-chip data movement
(by reusing data stored in fast on-chip memory) and maximizing performance
(computations per I/O operation). They start with a general model for com-
putation, I/O and resource utilization to create a hardware architecture that is
highly optimized for the resource available on a target device.

Their I/O model assumes a parallel machine consisting on p processors, each
one with S words of fast private memory. To perform an arithmetic operation,
each processor must have all operands in its fast memory. They model the MMM
algorithm as a computation directed acyclic graph (CDAG), where each vertex
corresponds to a unique value during the execution and the edges represent data
dependencies between them.

They constrain their model based on FPGA available resources and char-
acteristics (number of ports and limited fan-out) to maximize the computation
throughput and favour routability. They reach a logic hierarchy which encapsu-
lates various FPGA resources and guides the implementation to minimize I/O

Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs 83

and maximize performance. The implementation follows a systolic array archi-
tecture, were Np processing elements (PE) consume pre-fetched elements of the
matrices A and B in a stream-like fashion. Each PE holds Nc compute units
(CU) and each one of them is capable of producing one output product (partial
result of matrix C) every clock cycle. The PEs are encapsulated in compute tiles,
which are in turn grouped in block tiles. On top, a memory tile encapsulates the
block tiles, using all available memory blocks of the FPGA. The parallelism is
determined by the number of compute units.

Their implementation is done in HLS C++, is flexible (parametrized),
portable, scalable (adaptable to different FPGAs with different number of
resources and with different characteristics) and open source (rare for highly
tuned FPGA implementations).

They tested the implementation for different configurations of tiles size and
number of CUs and for various data types, measuring performance and energy
efficiency. Their design achieved 409 GOp/s 32-bit floating point performance,
and 1.5 TOp/s 8-bit integer performance, utilizing more than 80% of hardware
resources in a Xilinx VCU1525 accelerator board.

4 Experimental Evaluation

4.1 Setup

We used the following hardware for the experiments:

– An Alveo U50 FPGA accelerator card from Xilinx. The FPGA is based on the
UltraScale+ architecture and includes 872K look-up tables, 1743K registers,
28MB of internal RAM, and 5952 DSP blocks. The chip also has 8GB of
HBM RAM. The designs for this platform were compiled using Xilinx Vitis
2020.2.

– A system with an Intel Xeon Silver 4208 CPU with 8-cores running at 2.1GHz,
and 80GB of RAM. The CPU implementations make use of Intel MKL library,
using all 8 cores (8 threads) with SMT disabled and AVX2 instructions. This
device is capable of AVX512, but we experimentally determined that using
this feature in multicore execution severely limits the operating frequency of
the cores, which degrades the performance.

We performed the characterization of performance and energy consumption
as follows:

– In the Alveo U50 FPGA, the board has internal sensors that provide current,
voltage, and temperature readings while the kernel is running. The driver
Xilinx Runtime (XRT) sends these values to the host.

– In the Intel Xeon processor, we measured CPU and memory power consump-
tion using RAPL (which provides an estimate of the dissipated power based
on performance counters and a device power model).

84 F. Favaro et al.

– All power measurements were automated using PMlib [4]. Results are an
average of readings collected during 2min of execution, with an equal warm-
up time before measuring.

– The runtime measurements are the average of multiple iterations of the ker-
nels.

4.2 Experimental Results and Discussion

For the experimental evaluation, and as a baseline, we employ the BLAS imple-
mentations offered by MKL library on CPU.

All the results summarized in this section are the average of 10 independent
executions. Also, in all cases we used single precision floating point.

The resource utilization of the implemented FPGA kernels is shown in
Table 1.

Table 1. Resource utilization in percentage of available resources for the implemented
FPGA kernels.

Type Available Utilization (%)
GEMV basic GEMV streaming GEMM basic GEMM MCU MMM

LUTs 870016 14.02 22.83 37.39 61.16 42.45
Registers 1740032 8.98 17.10 28.30 47.59 32.33
Block RAM 1344 16.22 16.07 18.34 22.84 53.27
DSPs 5940 0.29 9.87 20.94 41.82 46.13

In the first experiment we evaluate the computational performance reached
by the different versions for the GEMV operation over square matrices of: 128,
256, 512, 1024, 2048, 4096 and 8192 columns. Specifically, Fig. 1 presents the
GFLOPs achieved by all the evaluated variants.

Considering the obtained experimental results for the GEMV kernel, and
with focus on the FPGAs variants, firstly we can say that the basic version is a
non-competitive option. This implementation has very low levels of parallelism,
because it performs the dot product on vectors of 16 elements. Also, due to
a carried-dependency issue in the computation loop, it ends operating 4 times
slower than intended. Next, for the small test cases the MMM reaches better
runtimes than the Streaming variant, which has a poor performance for small
matrices. However, for dimension bigger than 1024 the result is reversed. More
in detail, the performance of the MMM variant is stagnant since matrices of 1024
while the Streaming counterpart is growing even for the largest matrices. The
Streaming variant provides 16 times more parallelism than the basic version and
takes advantage of the HBM on the Alveo board. The CPU version offers the
best peak of performance for matrices of 1024 columns, but in the largest test

Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs 85

Fig. 1. Achieved performance (GFLOPs) of the GEMV kernels for different matrix
sizes.

cases the performance is degraded. This result is reasonable taking into account
the effects of the use of the cache memories.

Later, we evaluate the energy consumption implied by the different GEMV
implementations. In this line, Fig. 2 presents the GFLOPs per watt achieved
by the evaluated variants over the same range of matrices. Similar to the per-
formance evaluation, the energy study allows us to conclude that the fastest
GEMV version is, in general, the most energy-efficient option. However, in all
cases the FPGAimplementations require less power than the CPU counterpart.
Additionally, the MMM version uses, on average, less power than the Streaming
variant. Finally, and as a remarkable aspect, the FPGA version outperforms (in
the energy-consumption perspective) the CPU counterpart for the three largest
dimensions.

The experimental results for the performance reached by the GEMM ker-
nels is shown in Fig. 3. For this operation, the CPU variant is faster than the
FPGA counterparts for all the evaluated matrix dimensions. With focus on the
FPGA, the basic variant is far below the other versions in performance. For
the basic and MCU GEMM kernels, performance climbs to a maximum around
dimensions 1024 and then starts to degrade. The cause for this performance loss
for the bigger sizes was not fully determined and needs to be further investi-
gated. The MMM variant also peaks around size 1024 but the for bigger sizes
the performance remains constant.

86 F. Favaro et al.

Fig. 2. Energy efficiency (GFLOPs/W) of the GEMV kernels for different matrix sizes.

Fig. 3. Achieved performance (GFLOPs) of the GEMM kernels for different matrix
sizes.

Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs 87

The energy consumption results for the GEMM kernels are summarized in
Fig. 4. Contrary to the performance results achieved in the GEMV experiment,
in this case the FPGA outperforms the CPU counterpart for six of seven matrix
dimensions. This situation remarks the energy efficiency offered by the FPGA
platforms, specially in this context where the CPU is faster than other versions.
Neither of the Vitis BLAS versions manages to outperform the CPU in this case
(except for the smallest matrix size). This is expected since the evaluated kernels
for GEMM were designed for bigger FPGAs boards and are not optimized for
the Alveo U50 platform (contrary to the Streaming GEMVwhich was designed
for this board).

Fig. 4. Energy efficiency (GFLOPs/W) of the GEMM kernels for different matrix
sizes.

5 Conclusions

In this article we have revisited the use of non-traditional HPC hardware to
compute BLAS kernels. Specifically, we review the available kernels to compute
the GEMV and GEMM kernels in FPGAs and also we extend and tune some
other variants of these kernels. The experimental evaluation carried out over an
Alveo U50 FPGA board shows that, in general, the CPU version outperforms
in GFLOPs the FPGAs counterparts but the use of FPGAs offer more efficient
variants from the energy consumption perspective. These results are very rele-
vant. First, due to the importance of the energy consumption as a restriction in

88 F. Favaro et al.

the HPC field and second, considering the years of development of CPU imple-
mentations compared to the recent focus on this kind of methods for FPGAs.

As a future line of work we identify several perspectives, following we describe
the most important ones.

– Firstly, is mandatory to extend our study to include other FPGAs with dif-
ferent characteristics, among other Intel FPGAs.

– Secondly, the comparison should be done with other heterogeneous hardware
platforms. In particular, comparing the FPGA kernels with implementations
on cutting-edge GPUs and particularly low-consuming devices (such as ARM
processors).

– Also, it would be interesting to complement the GFLOPs and GFLOPs per
watt metrics with other perspectives, maybe the most important being the
learning curve in FPGA design and the design and compilation times of the
FPGAs implementations.

Acknowledgements. The researchers were supported by Universidad de la República
and the PEDECIBA. We acknowledge the ANII – MPG Independent Research Groups:
“Efficient Hetergenous Computing” with the CSC group.

References

1. The green500 list (2022). http://www.green500.org
2. The top500 list (2022). http://www.top500.org
3. Anderson, E., et al.: LAPACK Users’ guide, 3rd edn. SIAM, Philadelphia (1999)
4. Barrachina, S., et al.: An integrated framework for power-performance analysis of

parallel scientific workloads. Energy, pp. 114–119 (2013)
5. Benner, P., Ezzatti, P., Quintana-Ortí, E., Remón, A.: On the impact of optimiza-

tion on the time-power-energy balance of dense linear algebra factorizations. In:
Aversa, R., Kołodziej, J., Zhang, J., Amato, F., Fortino, G. (eds.) ICA3PP 2013,
Part II. LNCS, vol. 8286, pp. 3–10. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03889-6_1

6. Bientinesi, P., et al.: Deriving dense linear algebra libraries. Formal Aspects Com-
put. 25(6), 933–945 (2013)

7. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
8. Blackford, L.S., et al.: An updated set of basic linear algebra subprograms (BLAS).

ACM Trans. Math. Softw. 28(2), 135–151 (2002)
9. de Fine Licht, J., Kwasniewski, G., Hoefler, T.: Flexible communication avoiding

matrix multiplication on FPGA with high-level synthesis. In: Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), 23–25 Feb 2020, Seaside, CA, USA (2020)

10. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

11. Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Softw. 14(1),
1–17 (1988)

12. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present,
and future (2002)

http://www.green500.org
http://www.top500.org
https://doi.org/10.1007/978-3-319-03889-6_1
https://doi.org/10.1007/978-3-319-03889-6_1

Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs 89

13. Dongarra, J., et al.: The international ExaScale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3–60 (2011)

14. Ezzatti, P., Quintana-Ortí, E.S., Remón, A., Saak, J.: Power-aware computing.
Concurrency Computa. Pract. Experience 31(6), e5034 (2019)

15. Favaro, F., Dufrechou, E., Ezzatti, P., Oliver, J.P.: Energy-efficient algebra kernels
in FPGA for High Performance Computing. 21 (2021)

16. Favaro, F., Oliver, J.P., Dufrechou, E., Ezzatti, P.: Understanding the performance
of elementary NLA kernels in FPGAs. In: 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 479–482 (2020)

17. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra sub-
programs for Fortran usage. ACM Trans. Math. Softw. 5(3), 308–323 (1979)

Improving Boundary Layer Predictions
Using Parametric Physics-Aware Neural

Networks

Antônio Tadeu Azevedo Gomes(B) , Larissa Miguez da Silva,
and Frédéric Valentin

Laboratório Nacional de Computação Cient́ıfica (LNCC), Av. Getúlio Vargas 333,
Quitandinha, Petrópolis-RJ, Brazil

{atagomes,lamiguez,valentin}@lncc.br

Abstract. Physics-Informed Neural Networks (PINNs) are machine
learning tools that approximate the solution of general partial differ-
ential equations (PDEs) by adding them in some form as terms of the
loss/cost function of a Neural Network. Most pieces of work in the area
of PINNs tackle non-linear PDEs. Nevertheless, many interesting prob-
lems involving linear PDEs may benefit from PINNs; these include para-
metric studies, multi-query problems, and parabolic (transient) PDEs.
The purpose of this paper is to explore PINNs for linear PDEs whose
solutions may present one or more boundary layers. More specifically, we
analyze the steady-state reaction-advection-diffusion equation in regimes
in which the diffusive coefficient is small in comparison with the reactive
or advective coefficients. We show that adding information about these
coefficients as predictor variables in a PINN results in better prediction
models than a PINN that only uses spatial information as predictor vari-
ables. Even though using these coefficients when training a PINN model
is a common strategy for inverse problems, to the best of our knowledge
we are the first to consider these coefficients for parametric direct prob-
lems. This finding may be instrumental in multiscale problems where the
coefficients of the PDEs present high variability in small spatiotemporal
regions of the domain, and therefore PINNs may be employed together
with domain decomposition techniques to efficiently approximate the
PDEs locally at each partition of the spatiotemporal domain, without
resorting to different learned PINN models at each of these partitions.

Keywords: Physics-informed neural networks · Boundary layer
problems · Multiscale methods

1 Introduction

Physics-Aware Neural Networks (NNs) are machine learning tools that approxi-
mate the solution of general partial differential equations (PDEs) by adding the

The authors are presented in alphabetical order.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 90–102, 2022.
https://doi.org/10.1007/978-3-031-23821-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_7&domain=pdf
http://orcid.org/0000-0002-0746-4014
http://orcid.org/0000-0002-5056-7529
https://doi.org/10.1007/978-3-031-23821-5_7

Improving Boundary Layer Predictions Using Physics-Aware NNs 91

physical laws these equations represent to some component of the neural net-
work. The PINNs [19] are likely to be the most well-known of these NNs; the
defining characteristic of a PINN is the inclusion of the strong form of a PDE
(including its boundary and initial conditions) as terms of the loss/cost function.

Most pieces of work in the area of physics-aware NNs tackle non-linear
PDEs [6,10,11,14,17]. Nevertheless, many interesting problems involving linear
PDEs may benefit from physics-aware NNs; these include parametric studies,
multi-query problems, and parabolic (transient) PDEs.

We are mostly interested in the solution of linear PDEs whose coefficients
present high variability in small spatiotemporal regions of the physical domain.
In this case, we say that the solution has a multiscale behavior. Standard numeri-
cal methods often present difficulties in approximating the solution to such PDEs
with combined quality and computational affordability. Multiscale numerical
methods (e.g. [9]) have emerged as an attractive option for dealing with such
difficulties by rewriting the original formulation of the PDE in terms of: (i) local
problems living each one in a partition of the physical domain; and (ii) a global
problem that “glues together” the solution of the local problems. The price to
pay is a potentially large number of local problems. Although said local prob-
lems are independent from one another, thus benefiting from massive parallel
computations, they may still be computationally demanding.

The purpose of this paper is to investigate the potential of physics-aware NNs
in general, and PINNs specifically, for efficiently solving local problems in mul-
tiscale numerical methods. We explore the particular case of linear PDEs whose
solutions may present one or more boundary layers. More specifically, we ana-
lyze the steady-state reaction-advection-diffusion equation in regimes in which
the diffusive coefficient is small in comparison with the reactive or advective
coefficients. We verify that adding information about these coefficients as pre-
dictor variables in a PINN results in better prediction models than a PINN that
only uses spatial information as predictor variables. Even though using these
coefficients when training a PINN model is a common strategy for inverse prob-
lems, to the best of our knowledge we are the first to consider these coefficients
for parametric direct problems. We believe this finding may be instrumental
in multiscale problems, because it opens the path for PINNs to be employed
together with domain decomposition techniques to efficiently approximate the
PDEs locally at each partition of the spatiotemporal domain, without resorting
to different learned PINN models at each of these partitions.

The remainder of this paper is structured as follows. In Sect. 2, we quickly
review the related literature. In Sect. 3, we present the problem and the methodol-
ogy for the proposed model. In Sect. 4, we examine two different cases of the target
equation and the effectiveness of the proposed model. Finally, in Sect. 5, we report
the conclusions of this work along with a discussion of future directions.

2 Related Work

In recent years, the use of algorithms that “learn” from data has caused great
impact and change in several areas of science. Algorithms using NNs have

92 A. T. A. Gomes et al.

been used in many problems governed by PDEs and presented satisfactory
results [2,15,20,21]. In particular, in [19] the methodology of PINNs was first
proposed, combining the properties of universal approximation of NNs and the
knowledge of physical laws described by PDEs. Since then, many pieces of work
have been published on this topic [3,16,18]. However, problems with complex
geometry domains have led to other methodologies based on domain decompo-
sition methods and PINNs, including Extended PINNs (XPINNs) [12], Conser-
vative PINNs (cPINNs) [11] and Variational PINNs (VPINNs) [14].

Although the aforementioned pieces of work have shown excellent results,
there are still many theoretical gaps that need to be filled. The techniques are
new and do not have a trivial application in the solution of physical problems.
For instance, a particularly complex step in formulating deep learning problems
and PINNs is the definition of the loss functional to be minimized. Additionally,
there are many hyperparameters to be configured and, although the automatic
selection of hyperparameters is possible, there is usually a large computational
cost. Interestingly, this last problem also exists somehow in a handful of multi-
scale methods with regard to their configuration parameters (e.g. [7,8]).

There is a growing number of papers relating multiscale methods and data-
driven approaches [4,5,13,22]. To the best of our knowledge, none of these pieces
of work tackle the problem the way we do, which is by training a single machine
learning model that may be parameterized for approximating the solution of a
PDE with highly variable coefficients in the spatial domain.

3 Methodology

3.1 Boundary Layer Problem

The boundary layer problem can appear in many applications, including fluid
dynamics, meteorology, atomic reactors, among others. This phenomenon occurs
when the gradient is high in the region close to the boundary and can bring
instability to the discrete solution of the problem. Next, we present an example
for this case.

Consider the case in which the reaction-advection-diffusion problem has an
exact solution which contains boundary layers. This happens when the reactive
or advective coefficient dominates the diffusive one. We consider the following
reaction-advection-diffusion problem: Find u ∈ H1(Ω) such that :

⎧
⎪⎨

⎪⎩

∇ · (−K∇u + αu) + σu = 1 in Ω,

u = 0 on ∂ΩD,

∇u · n = 0 on ∂ΩN ,

(1)

where Ω is a unit square domain, ∂ΩD corresponds to the boundaries x =
(0, y) and x = (1, y), with y ∈ (0, 1), where homogeneous Dirichlet conditions
are to be enforced, and ∂ΩN = ∂Ω\∂ΩD corresponds to the boundaries where
homogeneous Neumann conditions are to be enforced. The coefficients are such

Improving Boundary Layer Predictions Using Physics-Aware NNs 93

that α := (a, 0)T , K = kI, where I is the identity matrix and a, k, σ ∈ R. If
σ > 0, the analytical solution to this equation is:

u(x, y) =
sinh(

√
4kσ

2k
(x − 1)) − sinh(

√
4kσ

2k
x)

sinh(
√

a2 + 4kσ

2k
)

+ 1 ,

Otherwise, if σ = 0 and a > 0, then the exact solution becomes

u(x, y) =
1
a

⎛

⎜
⎝x −

sinh(
√

a

2k
x)

sinh(
√

a

2k
)

e
√

a
2k (x−1)

⎞

⎟
⎠

We consider two experimental settings. First, in Subsect. 4.1 we will assume
σ = 1 and a = 0. So, we will explore the case in which the reactive coefficient
dominates the diffusive one. Next, in Subsect. 4.2 we will consider the case in
which the advective coefficient dominates by assuming that σ = 0 and a = 1.

3.2 Architecture Design

To solve the problem presented in Subsect. 3.1, we use the PINN depicted in
Fig. 1. A key feature of this PINN is the use of the diffusion coefficient k as
a predictor variable together with the spatial data (x, y). This way, we aim at
getting a model capable of making predictions for different diffusion coefficients.

We assume a feed-forward NN with the following structure: 4 fully connected
layers each containing 24 neurons and each followed by a hyperbolic tangent
activation function. Furthermore, we use one output layer of size 1 and a linear
activation function. These hyperparameters as well as all other configurations
not explicitly explained in the remainder of the text have been determined empir-
ically.

For the sake of comparison, we establish two scenarios for the input layer,
as will be further explained in the following section: (i) Scenario 1, with only
2 neurons, input k being taken out; (ii) Scenario 2 with 3 neurons, exactly as
shown in Fig. 1.

Also, we considered the loss function

φθ(X) := c1φ
bd
θ (Xbd) + c2φ

bn
θ (Xbn) + c3φ

r
θ(X

r), (2)

as a function of the training data, as also explained in the following section.

4 Experimental Results

In this section, we present some numerical results that show the performance of
PINNs to solve the boundary layer problem.1 In our simulations, we consider
the following scenarios:
1 The experiments presented in this paper can be reproduced in Google Colaboratory:

https://colab.research.google.com/drive/1dzzK41xIrmi5ozzO4IzBnkktGjI90j -.

https://colab.research.google.com/drive/1dzzK41xIrmi5ozzO4IzBnkktGjI90j_-

94 A. T. A. Gomes et al.

Fig. 1. PINN architecture for Reaction-Advection-Diffusion problem.

Scenario 1 : We fix a diffusion coefficient k, train the network for some collocation
and boundary points and predict others. Therefore, the input parameters of
the network are (x, y) and the output is the solution u.

Scenario 2 : We vary the diffusion coefficient k and train the network for some
k to predict. Therefore, the input parameters of the network are (x, y, k) and
the output is the solution u.

The collocation points are given by Xr, the boundary data is in Xbd and
Xbn, where Xbd represents the data on the Dirichlet boundary ΩD and Xbn the
data on the Neumann boundary ΩN . Respectively, on those boundary points,
we have the solutions ubd and ubn. Additionally, the coefficients c1, c2 and c3
representing the weights of each loss term are hyperparameters of the model,
and their values have been chosen empirically based on the knowledge of the
authors about the behavior of Eq. 1 for different values of its coefficients.

We assume that the collocation points Xr as well as the points for the bound-
ary data Xbd and Xbn are randomly sampled from a uniform distribution.

4.1 First Setting: Reaction-Diffusion Problem

For this first problem, we began with a training data of size Nbd = Nbn = 200
and Nr = 1000, where Nbd is when we apply the Dirichlet boundary condition
and Nbn when we apply the Neumann boundary condition. We illustrate this
setting in Fig. 2.

Improving Boundary Layer Predictions Using Physics-Aware NNs 95

Fig. 2. The collocation points (red circles) and the positions where the Dirichlet bound-
ary condition (blue cross marks) and the Neumann boundary condition (green cross
marks) will be weakly imposed. (Color figure online)

Figure 3 depicts some experimental results for Scenario 1. We observe that as
we shrink the diffusive coefficient k, the solution gets worse, with some undesired
features when k = 0.0001 and k = 0.00001. (Nonetheless, we see in Fig. 6 that
the PINN is able to approximate the solution with a small error when k = 1.0,
k = 0.1, and k = 0.01.) Besides the difficulty of approximating the solution in
the case where we have a very small k, another disadvantage of this approach is
that the model needs to be retrained for each new k.

For Scenario 2, we add 20 different, randomly sampled k ∈ (0.0001, 1.0) to
the input data. First, we investigate the sensitivity of the PINN with respect to
the amount and dispersion of collocation training points in Scenario 2. In Fig. 4,
we show the exact solution and the solution field generated by a PINN with
decreasing values of k, for different amounts of collocation and boundary points.
We plot a cut for a fixed y; the exact solutions are represented by the solid lines
and the predicted PINN solutions are represented by the dotted lines.

We can observe that the proposed PINN architecture for Scenario 2 interpo-
lates quite well for values of k greater than or equal to 0.001, but for k = 0.0001
we have significant errors. Once more we see the impact of the boundary layer
problem on the predictions.

96 A. T. A. Gomes et al.

Fig. 3. Scenario 1, reaction-diffusion setting: predicted solution vs exact solution with
respect to parameter k.

Fig. 4. Scenario 2, reaction-diffusion setting: sensitivity analysis with respect to the
size of the training data.

Improving Boundary Layer Predictions Using Physics-Aware NNs 97

In the above experiments we trained the PINNs with c1 = 2, c2 = 1 and
c3 = 0.01 as the weights of the loss terms. In Fig. 5 we show the sensitivity of
the model for Scenario 2 with respect to the loss weights.

Fig. 5. Scenario 2, reaction-diffusion setting: sensitivity analysis with respect to loss
weights.

For the cases presented in Fig. 5 we used Nbd = Nbn = 100, Nr = 240. The
results are even more impressive because the PINN algorithm in Scenario 2 is
able to reconstruct the solution field with high precision from a small number
of points used for the training, even for the case where we have a very small k.
Therefore, the results clearly show the impact of the loss weights on the training.

Finally, we compare the errors originating from Scenario 1 and Scenario 2.
We use the Relative Mean Square Error (RMSE) to compare the results of
the different scenarios, as presented in Fig. 6. We observe a significant error
increase with a decaying k for Scenario 1, whereas for Scenario 2 this increase is
much slower, specially for k ∈ (0.001, 1.0). However, the much higher errors for
Scenario 2 with larger values of k are still largely unexplained and motivates a
series of investigations as part of our future work.

Fig. 6. Quality of prediction for the reaction dominant case (log-log scale).

Now, we take advantage of the fact that we can predict for different values of
k in Scenario 2 and try to perform an extrapolation. The results are presented

98 A. T. A. Gomes et al.

in Fig. 7, in which we plot two different cases. In Fig. 7(a), we extrapolate for
an even smaller k, where the boundary layer problem is more evident. Even so,
we still get a good approximation; we believe this is due to the fact that the
diffusion coefficient is close to the range of k used for the training. The same
does not occur in Fig. 7(b), when we try to extrapolate to a larger value of k.
(Mind, however, that we have plotted Fig. 7(b) in a different scale, to emphasize
the prediction error.) The curve for the exact solution is far from the curve that
represents the predicted solution although this case is a completely boundary
layer free problem. This result is likely an indication that the proposed method
still does not work well for extrapolations far from the set used for the training.
Also note that the error is particularly high near the Dirichlet boundary (1, y),
with y ∈ (0, 1), which shows that imposing the boundary condition weakly by
means of a loss term may be tricky.

Fig. 7. Scenario 2, reaction-diffusion setting: extrapolating for different values of k.

4.2 Second Setting: Advection-Diffusion Problem

Here, similarly to Subsect. 4.1, we will consider the same two scenarios, as well as
the same PINN architecture, and the same number of collocation points already
described. What we will change are the loss weights, now set to c1 = 1, c2 = 1.2
and c3 = 1.

Figure 8 depicts some experimental results for Scenario 1. As in the reaction-
diffusion setting, we observe that as we shrink the diffusive coefficient k, the solu-
tion gets worse. The advection-diffusion problem is nevertheless much tougher to
approximate well than the reaction-diffusion problem. The figure clearly shows
this, with completely wrong solutions when k = 0.01 and k = 0.001.

For Scenario 2, we add 20 different, randomly sampled k ∈ (0.001, 1.0) to the
input data. In Fig. 9, we show the exact solution and the solution field generated
by a PINN with decreasing values of k for this scenario. The results are again

Improving Boundary Layer Predictions Using Physics-Aware NNs 99

Fig. 8. Scenario 1, advection-diffusion setting: predicted solution vs exact solution with
respect to parameter k.

impressive; the PINN algorithm in Scenario 2 is able to reconstruct the solution
field with high precision from a small number of points used for the training,
even for the case where we have a very small k.

Lastly, Fig. 10 presents the RMSE originating from Scenario 1 and Scenario 2.
Again, for Scenario 2 the increase in the error is much slower than for Scenario
1. Nevertheless, as in the reaction-diffusion case, the much higher errors for
Scenario 2 with larger values of k are still largely unexplained and motivates a
series of investigations as part of our future work.

5 Summary and Outlook

The results presented herein clearly show the potential of PINNs for predicting
the solution of PDEs with complex geometries and highly variable coefficients.
Bringing physical coefficients into the training stage is key to avoiding the dis-
crete solution’s spurious oscillatory behavior in singularly perturbed regimes. In
addition, it allows obtaining an accurate parameterization of the discrete solution
concerning the physical coefficient in the interpolation scenario. However, when
we extrapolate, we can observe that this methodology will hardly overcome the
numerical methods to solve direct linear problems and, while automatic hyper-
parameter selection is possible, it can be expensive.

100 A. T. A. Gomes et al.

Fig. 9. Scenario 2, advection-diffusion setting: predicted solution vs exact solution with
respect to parameter k.

Fig. 10. Quality of prediction for the advection dominant case (log-log scale).

One way to solve this problem is to combine the strengths of numerical
methods and data science by creating hybrid combinations of theory-based and
data science models. We will focus on the family of Multiscale Hybrid-Mixed
(MHM) methods [1,9] and their interaction with PINNs. The MHM methods are
attractive because of their approximation properties and massive parallelization
capability, which allows the physical properties of the model to be treated locally
and efficiently, thanks to the concept of local multiscale functions. So, we envision
PINNs being used within MHM as surrogate models to predict the shape of the
multiscale basis functions in parallel, among other possibilities. This combination
will be the subject for future work.

Other topics for future work include: (i) to explore alternatives to impose
boundary conditions strongly (e.g. as in [6]); (ii) to apply the technique to other
parametric studies, such as solutions with oscillatory behavior arising in oscilla-
tory coefficient models or wave equation propagation problems; (iii) to consider
the use of PINNs for other expensive linear problems, such as in multi-query
scenarios.

Acknowledgment. The authors were supported by CAPES/Brazil under Project
EOLIS (No. 88881.520197/2020-01). Frédéric Valentin was supported by Inria/France

Improving Boundary Layer Predictions Using Physics-Aware NNs 101

under the Inria International Chair, by CNPq/Brazil under Project No. 309173/2020-5,
and by FAPERJ/Brazil under Project No. E-26/201.182/2021.

References

1. Barrenechea, G., Jaillet, F., Paredes, D., Valentin, F.: The multiscale hybrid mixed
method in general polygonal meshes. Numerische Mathematik 145(1), 197–237
(2020). https://doi.org/10.1007/s00211-020-01103-5

2. Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing 317, 28–41 (2018)

3. Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis, G.E.: Physics-informed
neural networks for heat transfer problems. J. Heat Transfer 143(6), 060801 (2021)

4. Capuano, G., Rimoli, J.J.: Smart finite elements: a novel machine learning appli-
cation. Comput. Methods Appl. Mech. Eng. 345, 363–381 (2019)

5. Chan, S., Elsheikh, A.H.: A machine learning approach for efficient uncertainty
quantification using multiscale methods. J. Comput. Phys. 354, 493–511 (2018)

6. E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm
for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018). https://
doi.org/10.1007/s40304-018-0127-z

7. Fabian, J.H.L., Gomes, A.T.A., Ogasawara, E.: Estimating the execution time of
fully-online multiscale numerical simulations. In: Proceedings of the XXI Brazilian
Symposium on High-Performance Computing Systems (WSCAD), pp. 191–202.
Sociedade Brasileira de Computação (2020)

8. Fabian, J.H.L., Gomes, A.T.A., Ogasawara, E.: Estimating the execution time of
the coupled stage in multiscale numerical simulations. In: Nesmachnow, S., Castro,
H., Tchernykh, A. (eds.) CARLA 2020. CCIS, vol. 1327, pp. 86–100. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-68035-0 7

9. Harder, C., Paredes, D., Valentin, F.: On a multiscale hybrid-mixed method for
advective-reactive dominated problems with heterogeneous coefficients. Multiscale
Model. Simul. 13(2), 491–518 (2015)

10. Jagtap, A., Karniadakis, G.: Extended physics-informed neural networks
(XPINNs): a generalized space-time domain decomposition based deep learn-
ing framework for nonlinear partial differential equations. Commun. Comput.
Phys. 28(5), 2002–2041 (2020). https://global-sci.org/intro/article detail/cicp/
18403.html

11. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed
neural networks on discrete domains for conservation laws: applications to forward
and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020).
https://www.sciencedirect.com/science/article/pii/S0045782520302127

12. Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks
(XPINNs): a generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations. In: AAAI Spring Sympo-
sium: MLPS (2021)

13. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural net-
works (PGNN): an application in lake temperature modeling. arXiv preprint
arXiv:1710.11431 (2017)

14. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: Variational physics-informed neural
networks for solving partial differential equations (2019). https://arxiv.org/abs/
1912.00873

https://doi.org/10.1007/s00211-020-01103-5
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/978-3-030-68035-0_7
https://global-sci.org/intro/article_detail/cicp/18403.html
https://global-sci.org/intro/article_detail/cicp/18403.html
https://www.sciencedirect.com/science/article/pii/S0045782520302127
http://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1912.00873
https://arxiv.org/abs/1912.00873

102 A. T. A. Gomes et al.

15. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordi-
nary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000
(1998)

16. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for
high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020)

17. Liao, Y., Ming, P.: Deep Nitsche method: deep Ritz method with essential bound-
ary conditions. Commun. Comput. Phys. 29(5), 1365–1384 (2021). https://doi.
org/10.4208/cicp.OA-2020-0219

18. Misyris, G.S., Venzke, A., Chatzivasileiadis, S.: Physics-informed neural networks
for power systems. In: 2020 IEEE Power & Energy Society General Meeting
(PESGM), pp. 1–5. IEEE (2020)

19. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving nonlin-
ear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). https://
www.sciencedirect.com/science/article/pii/S0021999118307125

20. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlin-
ear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

21. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial
differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

22. Yeung, T.S.A., Chung, E.T., See, S.: A deep learning based nonlinear upscaling
method for transport equations. arXiv preprint arXiv:2007.03432 (2020)

https://doi.org/10.4208/cicp.OA-2020-0219
https://doi.org/10.4208/cicp.OA-2020-0219
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://arxiv.org/abs/2007.03432

Towards Fire Identification Model in Satellite
Images Using HPC Embedded Systems and AI

Jhon Deivy Perez Arguello1,2,4(B) , Carlos J. Barrios Hernández1,2,4 ,
and Julián Rodriguez Ferreira1,2,3,4

1 Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
jhon2198570@correo.uis.edu.co, {cbarrios,jgrodrif}@uis.edu.co
2 High Performance and Scientific Computing Center (SC3UIS), Bucaramanga, Colombia
3 Electronic Control, Simulation and Modelling Group (CEMOS), Bucaramanga, Colombia

4 Advanced and Large Scale Computing Group (CAGE), Bucaramanga, Colombia

Abstract. Forest fires and environmental disasters that are rarely avoided due to
Forest fires are environmental disasters is a crucial problem to resolve with High
Performance Computing (HPC) due to the real-time need to avoid the reaction
of the control agencies and the community. One of the strategies to support early
warnings related to forest fires is using space technology and realtime image treat-
ment. However, the large amount of data given by the satellite images, the cost
of the satellite technology, and the difficulty of accessing remote places infor-
mation make it challenging to deal with the problem. This project presents the
development of a solution that fights fires through identification supported using
artificial intelligence (AI), mainly Convolutional Neural Networks (CNN) and
Computer Vision (CV). Space technology captures images in various spectral fre-
quency ranges by optical instruments onboard artificial satellites. In addition, the
solution deploys on a low-cost and easily accessible open-source embedded sys-
tem, which allows its scope to be extended for use on mobile device applications
such as robots, and uncrewed aerial vehicles, among others. This paper reflects
the progress achieved within the project, mainly the creation of an open-source
dataset of satellite images for fire classification, the election, conditioning, and
training of the CNN.

Keywords: Satellite images · Computer vision · HPC embedded system ·
Artificial intelligence · Data analytics · Convolutional neural networks ·
Open-source

1 Introduction

The exponential development of the hardware required to execute algorithms and com-
putational techniques has enabled the use of technologies such as Computer Vision (CV)
orMachine Learning (ML) for solving specific problems [1]. These problems are notable
for their intensive data handling in processes with high computational costs. However,
advances in micro and nano electronics promote the use of compact (embedded) devices
with low monetary cost and energy consumption as support for the solution to these

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 103–115, 2022.
https://doi.org/10.1007/978-3-031-23821-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_8&domain=pdf
http://orcid.org/0000-0001-9354-7360
http://orcid.org/0000-0002-3227-8651
http://orcid.org/0000-0003-1373-6044
https://doi.org/10.1007/978-3-031-23821-5_8

104 J. D. P. Arguello et al.

problems [2]. One of these embedded systems, the NVIDIA Jetson Nano card [3], is
widely used in prototyping and academic projects due to its good quality/price ratio.

One of these problems is finding fires fromorbit. Although there are tools for this task
[4], its identification continues to develop due to continuous improvements in algorithms,
image processing, available instruments, and satellite communication.

Free access images from various satellites that observe the Earth at different wave-
lengths are used during this research. A dataset was created in which forest fires were
observed fromwhen theywere small conflagrations until they became large fires. Finally,
various characteristics are identified in the images, which using CNN and Computer
Vision algorithms in embedded systems, allow the identification of said fires.

This paper presents the progress achieved in creating an alternative fire classification
model to the current solutions, as an early warning so that the pertinent organisms act
and evaluate the damage. For this, in the next Related Works section, a state of the art
and some similar projects are exhibited resalting application goals, in this case, satellite
imagery. The results section shows the creation of a dataset using images from the VIIRS
sensor of the NOAA-20 and S-NPP satellites in which forest fires were analyzed from
when they were small until they became large conflagrations, and later the performance
of the CNNs in training with these images is shown. Finally, some conclusions and
further work are presented.

2 Related Works

This section shows, firstly, a project that proposes a workflow for the identifying objects
in satellite images with the help of machine learning technology, and secondly, a project
to create small CNNs that reduce the computational load, useful to be deployed on
embedded systems.

2.1 Satellite Imagery Multiscale Rapid Detection With Windowed Networks

Detecting small objects over large areas is a significant challenge in satellite imagery
analysis. The main problems they face are a large number of pixels (more than 250
million), the geographical extension (more than 64 Km2), or the tiny size of the objects
of interest (less than 10 pixels). For which this research proposes a workflow called
Satellite Imagery Multiscale Rapid Detection with Windowed Networks (SIMRDWN)
[5], which evaluates satellite images of an arbitrarily large size at native resolution at
speed greater than or equal to 0.2 km2/s.

The SIMRDWN pipeline includes and compares the performance of some frame-
works, where a version known as YOLT [6] is found, along with the TensorFlow object
detection API models: SSD [7] and FASTER R-CNN [8]. This allows objects of very
different scales to be quickly detected with relatively little training data across multiple
sensors.

Towards Fire Identification Model in Satellite Images Using HPC 105

2.2 Lapped Convolutional Neural Networks for Embedded Systems

CNN has made numerous advances in many artificial intelligence applications. How-
ever, its complexity is quite relatively, usually requiring an expensive GPU (Graphics
ProcessingUnit) [9] or FPGA (Field Programmable LogicGateArray) [10] implementa-
tion, which is not cost-effective for many embedded systems. In this project, a new CNN
or Lapped CNN (LCNN) architecture is developed that is suitable for resource-limited
embedded systems [11].

The network is designed so that it can be decomposed into two or more stages. A
hardware module can implement each with low complexity and low-resolution input.

Fig. 1. Lapped convolutional neural networks.

Figure 1 show that the original input image is divide into some sub-images of the
same size, with correctly designed overlaps with each other. The hardware module
that implements the first stage of the CNN processes these sub-images sequentially.
The outputs of different sub-images are merge and processed in the following low-cost
hardware CNN module.

The result is the same as applying a larger-scale CNN to the entire image with
higher resolution. Therefore, a lower-cost, larger-scale CNN system can be achieve
by reusing inexpensive hardware CNN modules. Experimental results demonstrate the
performance of the proposed scheme. This approach enables more cost-effective CNN
solutions for some embedded systems. It is well suited for applications where basic deep
learning capabilities are required but where constraints on computational cost and power
consumption must also be met.

This proposal is in the convergence of the recognition of objects in satellite images
with the deployment of CNNs in embedded systems. It seeks to present another solution
to the identification of forest fires that contains the union of said technologies following
an implementation methodology shown in the following section.

106 J. D. P. Arguello et al.

3 Workflow

The methodology used in this research work is based on the AI life cycle [12], grouping
19 development stages into 4 phases as seen in Fig. 2.

Fig. 2. Project development methodology.

Figure 2 shows the methodology implemented in this research project. It begins with
the elaboration of a dataset of images acquired from a public platform. It continues
with the selection of the most relevant object classification deep learning algorithm to
implement on the JETSON Nano embedded development board. The next stage is the
training of the neural network with the structured data set. The last activity corresponds
to the validation of the model through its deployment in the embedded system.

3.1 Dataset Elaboration

The satellite images that make up the dataset were obtained from NASA’s public access
platform calledWORLDVIEW[13],which shows photographs of the eEarthin a timeline
with different wavelengths. From there, 1100 images were downloaded in various com-
binations of spectral bands generated by an optical sensor called VIIRS [14], present in
satellites of the National Oceanic and Atmospheric Administration-20 (NOAA-20) [15]
and theNational Program ofAssociation in Suomi Polar Orbit (S-NPP) [16]. These com-
binations of spectral bands are identified as “M3-I3-M11” [17], and their characteristics
can be observed by analyzing the bands captured by the VIIRS sensor.

We chose the satellite images with this spectral combination due to the high contrast
generated by the color of the thermal radiation of the fire, concerning the rest of the
image and of the smoke given off by the fire for the clouds and other aerosols, allowing
a more efficient identification with the algorithms used in this project (Fig. 3).

Towards Fire Identification Model in Satellite Images Using HPC 107

Fig. 3. Bands M3-I3-M11 left. Bands True Color, right.

The 1,100 images were divided into two packages. The first of 1000 images are used
for the neural network training process, 500 with forest fires and 500 without fires. The
second of 100 images are used for the classification process with the algorithms, 50 with
forest fires and 50 without fires. The characteristics of these images are as follows:

• Training images size: 224 × 224 pixels
• Identification images size: 2048 × 2048 pixels
• Spatial resolution: 125 m
• Altitude: 200 km (Average altitude for microsatellites)

For the training images, 80% (800) were designated for training and 20% (200)
for validation. Due to the low number of images and as a recommended practice in
convolutional neural network training, a technique is applied to the first set of images
(800) that allows us to increase our training data set caled “Data Augmentation” [18].
With this technique, we apply transformations to the original images, generating others
with the reflected changes. The modifications applied in this case are Flip and Rotation.
As a result, the 800-image set now has 2,230 images, and adding this with the 200-image
validation set, leaves 2,430 images for the entire neural network training process.

3.2 Algorithm Selection

Two CNN models were chosen for training and evaluation to identify forest fires in
satellite images: Inception V3 [19] and Mobilenet V2 [20]. These models are selected
for their affinitywith the project purposes,which implicitly entails generating aminimum
expenditure of resources without losing effectiveness in the classification process.

108 J. D. P. Arguello et al.

The first model is inception V3 [21], which focuses mainly on consuming less
energy and computational resources bymodifying the previous models.We find factored
convolutions, regularization, dimension reduction, and parallel calculations within the
techniques used to optimize performance.

On the other hand, we have the mobilenet V2 model [22], designed for deployment
on mobile devices; therefore, one of its characteristics is the low computational and
energy consumption required for its operation. This model retains many of the features
of its predecessor model, mobilenet V1 but introduces two new advances, such as linear
bottlenecks between layers and shortcut connections between jams.

Regardless of the neural network model chosen to perform an classification process,
good training performance requires a large number of images. Due to the difficulty of
construction and the time needed to consolidate a large dataset, it is necessary to rely
on a specific technique for these situations called transfer learning [23]. This technique
take advantage of the knowledge acquired from previously trained models to train new
models, which do not necessarily need to have a large number of images. For this project,
it is necessary to carry out transfer learning using the pre-trainedweights in the twoneural
models of the ImageNET image dataset [24].

The Inception V3 model used in this project is adapted from a development that
detects fire in images capturedby indoor andoutdoor security cameras.On the other hand,
the Mobilenet V2 model is adapted from a tutorial created by Tensorflow developers
[25] and modified in the Roboflow platform [26] for flower classification. Data of this
experiment are available for reproducibility in the project’s GitHub repository [27].

4 Results

Now, the results obtained in the third methodological phase are presented below. In
addition, the evaluation metrics that will be used are shown, although the model has not
been validated on the embedded system.

4.1 Artificial Learning

This process beginswith loading the structured dataset corresponding to the firstmethod-
ological stage. The pre-trained CNN is also loaded, which works as a feature extractor
by stacking the upper classification layers. Then the model is trained with our dataset
and the parameters are saved as an “h5” file that will be used as input in the inference
algorithm. The training results for each model were as follows:

In Fig. 4, the Inception V3 model in training shows an increase from approximately
83% to over 95% accuracy after five (5) epochs and oscillating between 94 and 96% in
the remaining fifteen (15) epochs. The validation stage, the level of precision is between
90 and 93%.

Figure 5 shows that the inception V3 model during training presents a descending
level of loss in a staggeredmanner fromapproximately 80% to10%after eight (8) epochs,
then stay there. In the validation stage, the level of loss always fluctuates between 20
and 30%.

Towards Fire Identification Model in Satellite Images Using HPC 109

Fig. 4. Accuracy inception.

Fig. 5. Loss inception.

As can be seen in Fig. 6, the mobilenet V2 model in training presents a rectilinear
ascent fromapproximately 87% to 96%accuracy after two (2) epochs, and then continues
with a shallow ascending parabola until reaching 99% during the four (4) and following

110 J. D. P. Arguello et al.

Fig. 6. Accuracy mobilenet.

fourteen (14) epochs. In the validation stage, the precision level also draws remains at
95% for six (6) epochs, and after an ascending parabola until reaching approximately
99%.

Fig. 7. Loss mobilenet.

Towards Fire Identification Model in Satellite Images Using HPC 111

Figure 7 shows that the mobilenet V2 model during training presents a level of loss
through a descending curve from approximately 23% to 3% during six (6) epochs, to
later mark a fluctuating line between 2 and 4%. In the validation stage, the level of loss
draws a curve starting at 10%, rising to 16% for five (5) epochs, then falling and staying
at 3% approximately.

For these two models, it is observed that the beginning of the precision is high
because the training is supported by the characteristics extracted from the pre-trained
model with the previous weights thanks to transfer learning. The same happens when
we analyze the loss, although in the mobilenet model the training and validation start
with higher percentages than in the inception model.

It is also observed that the increase in epochs in training and validation allows us to
see more continuous values in the precision and loss metrics, as reflected in the curve of
the mobilenet model, contrary to what is shown in the inception model.

4.2 Evaluation Metrics

4.2.1 Reliability

Reliability within the evaluation process allows determining the consistency level of
the model through consecutive measurement events. For this, the Confusion Matrix
will be used, which shows us the crossing of the true results with those obtained after
the execution of the algorithm. Making use of the aforementioned prediction lists, the
confusion matrix is created for each algorithm.

The results thrown by the confusion matrix are divided into 4 variables that reflect
what happens when comparing the expected or real results with those received or
generated by the algorithms (see Table 1).

Table 1. Confusion matrix result.

Real/Predicted Positive Negative

Positive TP FN

Negative FP TN

Where:

• TP - true positive: is real positive and predicted positive.
• FN - false negative: is real positive and predicted negative.
• FP - false positive: is real negative and predicted positive.
• TN - true negative: is real negative and predicted negative.

Based on these variables, the metrics that will allow evaluating the reliability of the
algorithm are structured.

Precision: It is the resulting index between the true positives and the total positives
generated by the algorithm.

TP/(TP + FP)

112 J. D. P. Arguello et al.

Accuracy: It is the resulting index between the successes, both positive and negative,
and the total results generated by the algorithm.

TP + TN / (TP + FN + FP + TN)

Recall: It is the resulting index between the true positives and the total of real
positives.

TP/(TP + FN)

F1-Score: Allows comparing two metrics into one, sensitivity and precision, and is
widely used when the classes within the dataset are unequal.

2 ∗ (Recall ∗ Accuracy) / (Recall + Accuracy)

4.2.2 Efficiency

The different ML techniques require a large amount of computational and energy
resources for their deployment, for this reason, in the development of this type of model,
it is important to evaluate the consumption of said resources and, if possible, reduce it.
This approach is called Algorithmic Efficiency. Although it is true that in any situation
the saving of resources is a matter of great attention, in this particular case it is evenmore
so, due to the limitations presented by embedded systems or integrated architectures.

The metrics to consider with the project models are:

• Energy Consumption: Measured in milliwatts (mW) and corresponds to the average
consumption of the embedded card during the test with each algorithm.

• RAMconsumption:Measured inmegabytes (MB). The JetsonNano card shares RAM
with the GPU, that is, it is not separated.

• Device Temperature: Measured in degrees centigrade (°C) and corresponds to the
temperature recorded by the entire card during the elapsed time.

• GPU consumption: Measured in percentage (%) and corresponds to the use of the
GPU in its processing.

5 Conclusion

The results obtained in the progress of this research show that with a small dataset,
adequate training of a convolutional neural network can be carried out, allowing an
alternative proposal to be proposed as support in the surveillance of forest fires.

In addition, a dataset of 2430 satellite images with spectral bands M3-I3-M11 was
structured, captured, and conditioned from within the WORLDVIEW platform. This
dataset is available to the academic or scientific community in the respective repository.

The training through transfer learning of the CNNs used in this project facilitated
the implementation process of the development, due to the decrease in time and data

Towards Fire Identification Model in Satellite Images Using HPC 113

that these networks needed in their preparation compared to those carried out right from
the start.

However, preparing an image dataset and building a model with convolutional neu-
ral networks presents several challenges for researchers, for example, the time spent
developing prototypes that allow evaluating the behavior of a model, the reuse of these
prototypes in other applications, and the adaptation of the resulting models to run on
hardware with more limited specifications.

6 Future Work

Different proposals follow the outcomes of this project. First, the customization of the
method to develop several fire classifications models, searching low-cost implementa-
tion, accuracy, and computing efficiency. Second, the growth of open access data sets
to help researchers and agencies in the fire early aware forecasting. Finally, this project
is under development and implementation for real use inside the Space Mission as A
ServiceModel or SMMAS, anHPC-cloud computingmodel to space projects developed
by the High Performance and Scientific Computing Center of the Universidad Industrial
de Santander (SC3UIS),1 and some of the following steps to be executed are:

• Execution Execution of the CNNs using minimal resources on the embedded system
for inference with the images acquired.

• Measurement of the resources consumed during the execution process of the models
on the embedded system to systems performance evaluation and characterization of
the resources.

• Evaluation of the implementedmodels in the classification by aminimum expenditure
of resources.

References

1. Feng, X., Jiang, Y., Yang, X., Du, M., Li, X.: Computer vision algorithms and hardware
implementations: a survey. Integration 69, 309–320 (2019)

2. Brozek, T., ed.: Micro-and nanoelectronics: emerging device challenges and solutions. CRC
Press (2014)

3. Nano, N.J.: https://nvidia.com/en-us/autonomus-machines/embedded-systems/jetson-nano/.
Accessed 23 Oct 2021

4. Petrescu, R.V., et al.: NASA satellites help us to quickly detect forest fires. Am. J. Eng. Appl.
Sci. 11(1), 288–296 (2018)

5. Van Etten, A.: Satellite imagery multi-scale rapid detection with windowed networks. In:
2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 735–743.
IEEE (2019)

6. Van Etten, A.: You only look twice. Rapid multi-scale object detection in satellite imagery.
arXiv preprint arXiv:1805.09512 (2018)

1 More information in: https://www.sc3.uis.edu.co.

https://nvidia.com/en-us/autonomus-machines/embedded-systems/jetson-nano/
http://arxiv.org/abs/1805.09512
https://www.sc3.uis.edu.co

114 J. D. P. Arguello et al.

7. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single
shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-464
48-0_2

8. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.
01497

9. Graphic Processing Unit (GPU). https://www.intel.la/content/www/xl/es/products/docs/pro
cessors/what-is-a-gpu.html. Accessed 13 July 2020

10. Field Programmable Gate Array (FPGA). https://www.arm.com/glossary/fpga. Accessed 14
July 2020

11. Wang, X., Ng, H.W., Liang, J.: Lapped convolutional neural networks for embedded sys-
tems. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pp. 1135–1139. IEEE (2017)

12. De Silva, D., Alahakoon, D.: An artificial intelligence life cycle: From conception to
production. Patterns, 100489 (2022)

13. National Aeronautics and Space Administration, data visualization application WORLD-
VIEW. https://worldview.earthdata.nasa.gov/. Accessed 20 Oct 2020

14. Cao, C., Xiong, J., Blonski, S., Liu, Q., Uprety, S., Shao, X.,Weng, F.: Suomi NPPVIIRS sen-
sor data record verification, validation, and long-term performance monitoring. J. Geophys.
Res. Atmos. 118(20), 664–678 (2013)

15. Cao, C., et al.: NOAA-20 VIIRS on-orbit performance, data quality, and operational Cal/Val
support. In: Earth Observing Missions and Sensors: Development, Implementation, and
Characterization V, vol. 10781, p. 107810K. International Society for Optics and Photonics
(2018)

16. Weng, F.: Advanced Technology Microwave Sounder Calibration and Validation. Liang, S.:
Comprehensive Remote Sensing, pp. 42–63. Elsevier (2018). ISBN 9780128032213. https://
doi.org/10.1016/B978-0-12-409548-9.10393-8

17. National Oceanic and Atmospheric Administration. NOAA Technical Report NESDIS 142
(2017). https://ncc.nesdis.noaa.gov/documents/documentation/viirs-users-guide-tech-report-
142a-v1.3.pdf. https://doi.org/10.1016/B978-0-12-409548-9.10393-8. Accessed 15Apr 2020

18. Zoph, B., Cubuk, E., Ghiasi, G., Lin, T., Shlens, J., Le, Q.: Learning data augmentation
strategies for object detection. arXiv (2019)

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2818–2826 (2016)

20. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted resid-
uals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520 (2018)

21. D. Shah, «Early Fire detection system using deep learning and OpenCV,» 2020, https://tow
ardsdatascience.com/early-fire-detection-system-using-deep-learning-and-opencv-6cb602
60d54a. Accessed 20 Jun 2021

22. Sahoo, S.: How to Train MobileNetV2 On a Custom Dataset (2021). https://blog.roboflow.
com/how-to-train-mobilenetv2-on-a-custom-dataset/. Accessed 24 Jun 2021

23. Sarkar, D., Bali, R., Ghosh, T.: Hands-onTransfer Learningwith Python: Implement advanced
deep learning and neural network models using TensorFlow and Keras. Packt Publishing
(2018)

24. Deng, J., Dong,W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255 (2009)

https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1506.01497
https://www.intel.la/content/www/xl/es/products/docs/processors/what-is-a-gpu.html
https://www.arm.com/glossary/fpga
https://worldview.earthdata.nasa.gov/
https://doi.org/10.1016/B978-0-12-409548-9.10393-8
https://ncc.nesdis.noaa.gov/documents/documentation/viirs-users-guide-tech-report-142a-v1.3.pdf
https://doi.org/10.1016/B978-0-12-409548-9.10393-8
https://towardsdatascience.com/early-fire-detection-system-using-deep-learning-and-opencv-6cb60260d54a
https://blog.roboflow.com/how-to-train-mobilenetv2-on-a-custom-dataset/

Towards Fire Identification Model in Satellite Images Using HPC 115

25. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with tensorflow: a review. Journal of
Educational and Behavioral Statistics 45(2), 227–248 (2020)

26. Roboflow Platform. https://roboflow.com/. Access 30 Oct 2021
27. Github. https://github.com/jhonesis/Proyecto-IGNIS. Access 13 Jun 2022

https://roboflow.com/
https://github.com/jhonesis/Proyecto-IGNIS

A Machine Learning-Based Missing Data
Imputation with FHIR Interoperability

Approach in Sepsis Prediction

Cristian Fernando Toro Beltran1,2, Erick Daniel Villarreal Ibañez3,
Vivian Milen Orejuela2, and John Anderson Garćıa Henao1,4(B)

1 Nucleus-AI Research, Medellin, Colombia
jagh1729@gmail.com

2 Central Unit of Valle del Cauca (UCEVA), Tuluá, Colombia
3 Fundacion Oftalmologica de Santander (FOSCAL), Bucaramanga, Colombia
4 ARTORG Center for Biomedical Research, University of Bern, Bern, Switzerland

Abstract. Sepsis is a dangerous infection that can affect different parts
of the body. It is caused by the body’s immune system overreacting to
an infection. Therefore, hospitalized patients can benefit from having
an Artificial Intelligence (AI)-based approach to alert healthcare pro-
fessionals when the patient is at risk of sepsis. However, automating
and diagnosing sepsis in hospitalized patients is difficult, as sepsis can
present differently in each individual. However, although deep learning
(DL) algorithms have demonstrated high accuracy and exemplary perfor-
mance in different clinical categories, very few have been integrated into
medical systems. In this paper, we introduce an interoperability platform
to integrate electronic healthcare records (EHRs) and clinical modeling of
mortality risk in patients with sepsis to support patient monitoring and
early detection. Furthermore, we assess the training and evaluation of
machine learning algorithms to classify the risk of a hospitalized patient
getting sepsis using the EHRs from two hospitals released in the cardi-
ology challenge 2019 for early sepsis prediction from clinical data. Addi-
tionally, we focus on structuring the data in units and building a clinical
document architecture using the standard Fast Healthcare Interoperabil-
ity Resources (FHIR) standard to enable the interoperability to train and
deploy the model from different hospitals. We also present a dashboard
for patient monitoring and support of early detection. We evaluated Gra-
dientBoosting, and LightGradientBoostingMachine (LightGBM) classi-
fiers on two test sets, one by each hospital EHRs, using the F1-score
represents the perfect accuracy and recall of the model and the area
under the receiver operating characteristic curve (AUC). When trained
on data from hospital A, the LightGBM yields an F1-score of 0.87 and
0.26 for the two test sets. The LightGBM trained from hospital B yields
an F1-score of 0.20 and 0.88 for the two test sets, while using the data
training combination of two hospitals improves the prediction accuracy
with an F1-score of 0.93 and 0.94 for the two test sets. The accuracy

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-23821-5 9.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 116–130, 2022.
https://doi.org/10.1007/978-3-031-23821-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_9
https://doi.org/10.1007/978-3-031-23821-5_9

A Machine Learning-Based Missing Data Imputation with FHIR 117

of sepsis classification in hospitalized patients relies on the diversity of
the training data since we identified variations in the values of the clini-
cal characteristics used to represent each patient’s condition. Therefore,
we highlight that reliably composing a diverse and structured dataset
improves the results. Also, adding a model for imputation of missing val-
ues improves the classification performance and deals with the missing
data that often appear in hospitals.

Keywords: Sepsis prediction · Machine learning · BioInformatics

1 Introduction

In 2017, there were 48.9 million cases and 11 million deaths related to sepsis world-
wide, which accounted for almost 20% of all global deaths [13]. Sepsis is a danger-
ous infection that affects different parts of the body. It is caused by the body’s
immune system overreacting to an infection. Therefore, hospitalized patients can
benefit from having an Artificial Intelligence (AI)-based system to alert healthcare
professionals when the patient is at risk of sepsis. However, automating and diag-
nosing sepsis in hospitalized patients is difficult, as sepsis can present differently
in each individual. This adds to the methodological and engineering challenges
of scaling up early warning systems in different healthcare centers, and hospitals
[1,3]. Although early detection and appropriate treatment of sepsis help improve
outcomes, professional intensive care societies have proposed new clinical criteria
to aid in recognizing sepsis. Nevertheless, the fundamental need for early detection
and treatment remains a challenging task [6,7,12].

The automation of Artificial Intelligence (AI)-based models for medical diag-
nostics are an indispensable tool to support the clinical decision process and
increase the efficiency of care delivery in the diagnosis and care of patients in
clinical settings. However, although deep learning (DL) algorithms have demon-
strated high accuracy and exemplary performance in different clinical categories,
very few have been integrated into medical systems. One of the main limitations
is the scaling of medical applications with deep learning models built under a
single clinical information system. Whose challenges are related to the differ-
ent structures and semantics of the clinical information systems that hospitals
may have; therefore, a model that works in hospital A does not scale directly to
hospital B or C [8]). Therefore, In this paper, we introduce an interoperability
platform to integrate electronic healthcare records (EHRs) and clinical model-
ing of mortality risk in patients with sepsis to support patient monitoring and
early detection. Furthermore, we assess the training and evaluation of machine
learning algorithms to classify the risk of a hospitalized patient getting sepsis
using the EHRs from two hospitals released in the cardiology challenge 2019 for
early sepsis prediction from clinical data. In this direction, this paper made the
following contributions:

1. Transform patient clinical records with the HL7 FHIR standard. This stage
is focused on structuring the data in units and building a clinical document

118 C. F. T. Beltran et al.

architecture using the standard Fast Healthcare Interoperability Resources
(FHIR) standard to enable the interoperability to train and deploy the model
from different hospitals.

2. Implementing an ML workflow from the data structure, adjusting the data
imputation method according to the type of EHRs and their periodicity
until assessing the ML algorithms to classify the risk of sepsis in hospital-
ized patients.

3. Build a dashboard for patient monitoring and support early detection. The
patient dashboard presents the individual clinical records from vital and lab-
oratory data and the predictions made by the machine learning models.

2 State of the Art

2.1 Machine Learning on Clinical Features for Sepsis Prediction

Given the increasing volume of data in healthcare systems, data mining is widely
applied to extract patients’ clinical features and characteristics. In addition, it is
used with machine learning models to develop clinical decision systems. Specifi-
cally, this AI-based modeling can help clinicians to predict and prognosis the risk
of hospitalized patients getting sepsis. Although the hospital could suffer a load
and overload of hospitalizations and intensive care units, it becomes more chal-
lenging to identify the different symptoms that patients may present when they
are at risk of sepsis, which can be difficult because of their different symptoma-
tologies. On the other hand, they have the problem that some clinical results
that are integrated into patient records are in incompatible formats, generating
a diagnostic omission or poor ease of analysis and visualization of the data. For
example Zhao et al. develops an early prediction of sepsis based on machine
learning algorithm, where its main objective is to deliver sepsis predictions in
patients, applying different classifiers and processing methods to make a predic-
tion 6 h in advance. Feature generation methods are built by combining different
features, including statistical strength features, window features and medical fea-
tures. The Miceforest multiple interpolation method is applied to address large
missing data problems. The results show that the feature generation method out-
performs the average processing method. XGBoost and LightGBM algorithms
are excellent in prediction performance, this paper contributed to model building
and classifier training [15].

2.2 Interoperability of Healthcare Information Systems

The first difficulty for healthcare systems in transforming from data-driven
healthcare to a knowledge-driven healthcare system is the health information
exchange from a patient-centered perspective [4]. It was moving as a scalability
difficulty for deep learning-based medical applications to integrate into new clini-
cal settings. Thus, the model that works in hospital A does not work in hospital B
due to the structure and semantics of the patient-related information required to

A Machine Learning-Based Missing Data Imputation with FHIR 119

feed the DL medical application [8]. The EHR interoperability challenges occur
at different scales, from minimal communication and data exchange between sev-
eral independent software within the same organization to the diversity of codes
used to record the exact characteristics of the patient between internal units and
external organizations. For example, Bender et al. build an agile and RESTful
approach to healthcare information Exchange [2], in which they examine the
potential for new Health Level 7 (HL7) standard Fast Healthcare Interoperabil-
ity Resources (FHIR, pronounced “fire”) standard to help achieve healthcare
systems interoperability. HL7 messaging standards are widely implemented by
the healthcare industry and have been deployed internationally for decades. HL7
Version 2 (“v2”) health information exchange standards are a popular choice of
local hospital communities for the exchange of healthcare information, includ-
ing electronic medical record information [2]. While Greg et al., introduce a
future-proof architecture for telemedicine using loose-coupled modules and HL7
FHIR, in which the majority of telemedicine solutions are proprietary and dis-
ease specific, which causes a heterogeneous and silo-oriented system landscape
with limited interoperability. Solving the interoperability problem would require
a strong focus on data integration and standardization in telemedicine infras-
tructures. Our objective was to suggest a future-proof architecture that consisted
of small loose-coupled modules to allow flexible integration with new and exist-
ing services and the use of international standards to allow high reusability of
modules and interoperability in the health IT landscape [9]. In this direction,
we believe that the basis for building continuous machine learning approaches
to the healthcare domain is to add a layer of standardization of EHRs through
a standard medical model, such as those provided by the FHIR standard.

3 Materials and Methods

3.1 Study Design

Figure 1 presents the imputation interoperability scheme of a machine learning-
based missing data for inpatient sepsis classification. The imputation interop-
erability scheme is implemented in four stages: Processing and transforming
clinical data to the FHIR standard. First, the data corresponding to hospitals A
and B will be split into training and validation sets. Next, the data correspond-
ing to hospitals A and B will be used separately for the evaluation (MIMIC-III).
Then, training the machine learning algorithms and automatic capture of metrics
such as accuracy (F1-score) and an inspection of box plots such as AUC ROC.
Finally, assess the machine learning algorithms using the test set corresponding
to hospitals A and B.

3.2 Dataset Early Prediction of Sepsis from Clinical Data

The data used in the competition is sourced from ICU patients in three separate
hospital systems. Data from two hospital systems will be publicly available; how-
ever, one data set will be censored and used for scoring. The data provided by

120 C. F. T. Beltran et al.

Fig. 1. Scheme of the machine learning-based missing data imputation interoperability
approach for inpatient sepsis classification.

Early prediction of sepsis from clinical Data (PhysionetSepsis2019), are divided
by one-hour time records of hospitalized patients, these data are separated into
groupings of clinical records such as: vital signs with 8 different attributes, lab-
oratory values with 26 different attributes, demographic data with 7 different
attributes [12].

3.3 Processing and Transformation of Clinical Data to the FHIR
Standard

To structure the EHRs, a non-relational database, such as Mongodb, was used
because it allows the generation of patient information in JSON documents. This
allows the creation of aggregations and different collections where the patients’
medical records will be distributed, and the new engineering attributes, achieving
the respective records of each patient, which provides speed in the search and
grouping of data for future analysis [11].

Figure 2 hows the EHRs structuring pipeline. It begins from EHRs import,
verifies it, inserts the time columns, and continues with the next patient. At the
end of the import of the received patients, the aggregations of the engineering
variables are started, generating different attributes based on health methods
focused on the identification of sepsis in patients, the aggregations created on
the dataset are SIRS (Systemic Inflammatory Response Syndrome) and SOFA
(Acute Organ System Failure), These aggregations comply with different condi-
tions of the methodology, identifying if the patient complies with the conditions
for the SIRS or SOFA variable to be positive or negative, the SOFA conditions
verifies to which group it belongs since it is in a specified range, giving us the
SOFA variable in the group it is in [5].

A Machine Learning-Based Missing Data Imputation with FHIR 121

Fig. 2. EHRs structuring pipeline based on FHIR standard.

Use of the SIRS and SOFA Scales as Secondary Clinical Outcomes:
Different ways of studying the data set were verified to evidence the occurrence of
sepsis in patients, by investigating different methods to identify the occurrence of
sepsis in hospitalized patients, the concepts of Sepsis-2 and Sepsis-3 are studied,
taking as a guide for analysis and study the SIRS and SOFA method [14].

SIRS is a clinical situation of general inflammatory response to an aggression,
as a consequence of an infection. It is a complex set of pathological phenomena
that produce clinical alterations in four elements: temperature, heart rate, respi-
ratory rate and leukocyte count. An aggregation was performed for the sepsis-2
study method called SIRS in which the data evaluated by the method such as:
hearth rate, temperature, White blood cell. These will be evaluated in the aggre-
gation complying with some metric conditions [14]. See clinical conditions in the
supplementary document.

SOFA (Sequential Organ Failure Assessment), which includes a series of clini-
cal, laboratory and management criteria. SOFA, which includes a series of clinical
variables, laboratory and management criteria. An aggregation was performed
for the sepsis-3 study method called SOFA in which the data evaluated by the
method will be verified such as: Respiration rate, Platelets, Bilirubins, Mean
arterial pressure, Creatinine [14]. See clinical conditions in the supplementary
document.

3.4 Data Distribution - Hospitals A and B

After obtaining the CDA data structuring, we verified the number of records and
patients contained in the CDA in the elapsed time of hospitalization to verify how
to approach the analysis of the data. When observing the dataset of hospitals
A and B, we found the patients’ hospitalization time and the imbalance in the
clinical data of each hospital-obtaining a total of 20336 patients in hospital A and
20000 patients in hospital B. When verifying the number of patients throughout
the hospitalization period, we obtained a total of 790215 records in hospital A
and 761995 records from hospital B. In the count of the Sepsis Label, we can see
that there are many patients classified as zero (0) negative, at different times, a
total of 773079, and 17136 patients classified as (1) positive for hospital A, and

122 C. F. T. Beltran et al.

751215 negative (0), 10780 positive (1) records for hospital B so we can see we
have an unbalanced data set. On verifying the number of patients and records,
and the imbalance of the data set, it was decided to conduct the study under
a selection criterion, performing a cross-sectional study, to test and verify the
essential clinical features, make decisions and select the classifiers to be used.

3.5 Preprocessing of Data

Before starting an analysis and training process with the machine learning classi-
fiers, it is necessary to perform a data preprocessing on the two data sets created,
and to select different methods and attribute criteria to test the models to be
generated.

Selection of Attibutes: Performing an analysis of different clinical variables
and observing the amount of missing values, it was decided to reduce the number
of attributes with which the training of classifiers is being performed, different
articles were investigated which handled similar databases and several conclu-
sions of these articles were taken into account, therefore it was decided to reduce
the attributes to 27 clinical values delivered by the dataset and add 2 engineering
values created for the CDA.

Data Imputation: It is observed that in addition to having an unbalanced
dataset there is more missing data than the data delivered by the dataset, but
it should be noted that these missing data are mostly clinical results which are
taken every 12 or 24 h, generating that such data are with a very wide time
distance, so the clinical records will be an important factor when performing an
analysis for the Machine learning classifier, since these missing values generate
that the training is spoiled and delivers wrong answers or a large margin of error.
It is also observed that in some laboratory attributes the time range may vary
depending on the patient’s condition, these attributes may appear in a range
of 3, 5, or 6 h, therefore the vital and laboratory values that are having these
missing values are identified, and we proceed to perform a data imputation
to obtain an accurate training with the 28 variables selected for training the
classifier. To start this data imputation process, the division of the attributes
of vital signs and laboratory records was made, for the classification attributes,
such as patient records and demographic data, no missing values were found,
Since this imputation would only be done for vital signs and laboratory data, it
will be divided into two different functions since the vital signs attributes have
few missing values and these records are taken every hour, but the laboratory
variables have a wider range that can reach up to 24 h.

Imputation of Vital Signs: For the imputation of the vital signs attributes,
some engineering variables were used, which were created in the CDA, such as
the unit of measurement of time of the patient in hospitalization, and the days
elapsed in such hospitalization, in order to achieve an interpolation of the data
of each patient, in the course of 24 h, therefore it was decided to generate this
interpolation of data for each elapsed day of hospitalization, where the vital signs

A Machine Learning-Based Missing Data Imputation with FHIR 123

were with missing values of a maximum of 2 h, so a function is created in python
that analyzes the 24 h of hospitalization of the corresponding patient and for
each missing value in a range of 2 h will generate the sum and the average of the
closest values the value of the upper hour and now lower, recording the average
of the analyzed data and replacing the missing value.

Vital signs, every two—2 h—Interpolation of data per patient every 24 h
(1 day), calculated mean. Imputation (KNN) [15]

Imputation of Laboratory Results: For the imputation of the attributes
of the laboratory results, we also used the time measurement variables of the
patient’s hospitalization and the days of hospitalization, in order to interpolate
the values lost in the course of 24 h, for the laboratory results we had three
different conditions, as some laboratories had a difference of 12 and 24 h, the
first condition verified the number of records that were taken in the laboratory
attribute in the course of the day for the patient analyzed, the next condition if
the laboratory result is recorded on more than one occasion the summation and
the average will be made to replace the missing values of the day in question
with the average obtained, and as a last condition if the laboratory result is not
recorded in the corresponding 24 h the missing values will be replaced by 0.

Laboratory results, every—12 h—or—24 h—Interpolation of data per patient
every 24 h (1 day), calculated average. Imputation (KNN) If there is no record in
the 24 h, the patient’s attribute on the corresponding day is zero. Upon verifying
the attributes of both vital signs and laboratory and that needed data imputa-
tion, the decision was made to perform this imputation to the complete Data set
and not only to the study groups in order to correctly interpolate the records
of the patient’s days of hospitalization, upon interpolating and performing the
data imputation in the complete Data set, the training and division of the data
for a broader test is performed.

3.6 Experiment Dataset

The experimental dataset will not be divided by time criteria, since the selected
criteria are the records of all patients who had sepsis at some time during their
hospitalization, taking both positive and negative records, obtaining a total of
1790 patients and 104,964 records. The analysis corresponding to the dataset is
performed, verifying the amount of missing data in both vital signs and labora-
tory results, performing the imputation process with knn, generating a change in
the dataset without affecting the results of the clinical attributes, and initiating
the training and analysis process.

3.7 Creation of Train Test

It was proposed to create a binary scoring system, in which the complete data
frame will be traversed, verifying the records, and checking different attributes
such as “SepsisLabel”, “SepsisSirs”, “SepsisSofa” which are classifications made

124 C. F. T. Beltran et al.

Table 1. Imputed test and training dataset measurement

Features Hospital A Imp. Hospital A No Imp. Hospital B Imp. Hospital B No Imp.

HR 88.04 ± 18.03 87.99 ± 18.17 88.44 ± 18.79 88.25 ± 19.01

O2SAT 97.37 ± 13.27 97.41 ± 2.84 97.08 ± 3.15 97.11 ± 3.25

TEMP 36.84 ± 13.11 37.14 ± 0.86 36.22 ± 12.10 37.11 ± 1.25

SBP 118.26 ± 130.62 122.54 ± 22.36 125.96 ± 26.28 126.54 ± 26.81

MAP 79.70 ± 115.18 79.76 ± 15.51 85.27 ± 16.23 85.452 ± 16.68

DBP 51.02 ± 125.51 61.11 ± 13.10 64.60 ± 13.73 64.58 ± 14.16

RESP 20.03 ± 15.82 20.07 ± 5.88 18.96 ± 5.82 19.29 ± 5.81

HCO3 24.16 ± 14.87 23.97 ± 4.73 22.19 ± 3.25 22.42 ± 3.65

Ph 3.96 ± 13.10 7.38 ± 0.07 4.82 ± 2.93 7.38 ± 0.09

PaCO2 21.50 ± 118.13 41.41 ± 9.60 25.09 ± 17.18 39.85 ± 10.49

AST 65.24 ± 1401.82 375.21 ± 1092.97 119.32 ± 495.39 281.16 ± 893.35

BUN 17.46 ± 118.67 30.021 ± 23.54 17.58 ± 18.55 28.53 ± 21.36

Alkalinephos 35.45 ± 165.36 112.26 ± 108.59 70.38 ± 68.30 98.09 ± 80.11

Chloride 67.26 ± 138.77 105.78 ± 6.33 72.56 ± 41.79 106.34 ± 5.22

Creatinine 0.96 ± 11.27 1.58 ± 1.54 1.14 ± 1.60 1.73 ± 1.81

Lactate 0.81 ± 11.23 2.42 ± 2.06 1.54 ± 1.78 3.13 ± 2.93

Magnesium 1.29 ± 10.78 2.06 ± 0.37 1.41 ± 0.77 2.17 ± 0.46

Potassium 2.58 ± 11.56 4.09 ± 0.62 2.59 ± 1.54 4.11 ± 0.67

Bilirubin total 0.78 ± 12.74 3.92 ± 6.99 1.31 ± 2.16 3.02 ± 5.14

PTT 22.35 ± 120.62 42.29 ± 24.56 33.84 ± 34.96 45.85 ± 37.31

WBC 8.04 ±17.43 12.49 ± 8.31 8.03 ± 7.53 12.50 ± 7.73

Fibrinogen 54.98 ± 1143.83 300.86 ± 189.30 224.30 ± 189.83 285.06 ± 167.28

Platelets 137.71 ± 1118.06 195.25 ± 118.80 125.81 ± 100.23 172.59 ± 102.93

Age 63 ± 115.82 63 ± 15.82 60 ± 16.57 60 ± 16.57

Fig. 3. Dataset Hospital A experiment missing data and Dataset imputed experiment.

A Machine Learning-Based Missing Data Imputation with FHIR 125

Fig. 4. Dataset Hospital B experiment missing data and Dataset imputed experiment.

by different clinical methodologies that were created in mongodb. This will
deliver a classification referring to a binary table, assigning a score, depending
on the result obtained for each attribute [10] (Table 1 and Fig. 3) .

After generating the dataset with the binary system for patients a validation
will be performed, with a cross validator called “Stratified Suflet Split” and
“Stratified KFold” that helped to provide training indices, with which we can
split the datasets into training, and test, in a more equitable way based on the
designated parameters. This Cross Validation object returns stratified random
folds the folds are performed while preserving the percentage of samples from
each class. With the binary scoring function and the use of the cross-validator,
the issue of generating an equitable training and test data set is resolved (Fig. 4).

Once the identification and selection of all patients to be used in the training
and test dataset, selected thanks to the binary classifier and cross-validators, has
been obtained, the dataset is divided into “training” and “test”, and the process
of selection and implementation of the machine learning classifiers is started in
order to check which of them offers the best result.

3.8 Implementation of Classifiers

The training process starts with three classifiers that provide ease in the analysis
process and have different hyperparameters that can help in the analysis of the
data: Logistic regression, Random Forest, K-Nearest Neighbor.

The 30 clinical features were preprocessed and selected to classify the tar-
get variable SepsisLabel. Each ML classifier training function is created for the
dataset assigned for training and combined with a cross-validator called Grid-
SearchCV; which is a class available in Scikit-learn that allows to systematically
evaluate and select the parameters of a model by indicating a model and the
parameters to be tested, or by managing to evaluate the performance of the for-
mer based on the latter through cross-validation. When evaluating the trained
models, a better response is obtained by the Random Forest classifier, delivering
better results both in time and reducing its margin of error in the four corre-

126 C. F. T. Beltran et al.

sponding groups, so it was decided to investigate other classifiers that use the
random forest methodology to obtain results with a better accuracy rate.

Selected Classifiers. The search for different classifiers is performed using the
same Random Forest methodology but more efficiently to reduce the training
time and the margin of error. As a result, three new classifiers are obtained:
LigthGBM, and Gradient Boosting.

LigthGBM supports training for efficiency and has excellent advantages like
higher training speed, lower memory consumption, better accuracy, and dis-
tributed support for fast processing of massive data. It is a durable model in
machine learning. The main idea is to use a weak classifier or decision tree and
iterative training to obtain the optimal model.

Gradient Boosting consists of a set of individual decision trees, trained
sequentially so that each new tree tries to improve the errors of the previous
trees. Finally, the prediction of a new observation is obtained by aggregating the
predictions of all the individual trees that make up the model.

A great result is obtained by the three new models (LigthGBM, Gradient
Boosting). It is decided to take the best classification model, which delivered
better results in F1-score and AUC, taking LigthGBM to continue with the
research and testing process.

4 Experiments and Results

4.1 Experiment Results

We evaluated GradientBoosting, and LightGradientBoostingMachine (Light-
GBM) classifiers on two test sets, one by each hospital EHRs, using the F1-score
represents the perfect accuracy and recall of the model and the area under the
receiver operating characteristic curve (AUC). When trained on data from hos-
pital A, the LightGBM yields an F1-score of 0.87 and 0.26 for the two test sets,
and the LightGBM trained from hospital B yields an F1-score of 0.20 and 0.88
for the two test sets while using the data training combination of two hospitals
improves the prediction accuracy with an F1-score of 0.93 and 0.94 for the two
test sets (Fig. 5).

After obtaining the selected classifier, having the function that configures the
hyperparameters necessary for the selected classifiers, and having the Dataset
imputed with no missing values, training was performed with the clinical data
under the selection criteria for both hospitals A and B. Generate the data sets
for training and testing by creating one set for each hospital dataset A and B
. The training of the different models was carried out, obtaining the following
results in the statistical measures. It is observed that LigthGBM has a more
accurate response in predicting the target variable. Different statistical measures
and accuracy of the predictions made by each model were performed, F1 score
and AUC graphs inf Figs. 7 and 8 (Fig. 6).

After running the training and creating the model, the corresponding tests
were performed in the Dataset test, giving results for the model created, a good

A Machine Learning-Based Missing Data Imputation with FHIR 127

Fig. 5. AUC ROC comparison results between ML models evaluated on both test sets.

Fig. 6. AUC ROC comparison results between ML algorithms without and with data
imputation, evaluated by each test set.

128 C. F. T. Beltran et al.

Table 2. Results of the comparison between ML algorithms without and with data
imputation evaluated in both test sets.

Training data kNN Impu. Classifier Testing Hosp. A Testing Hosp. B

F1-score AUC F1-score AUC

Hospital A No GBC 0.28 0.50 – –

Hospital A Yes GBC 0.77 0.83 0.26 0.49

Hospital A No L-GBM 0.28 0.51 – –

Hospital A Yes L-GBM 0.87 0.91 0.26 0.51

Hospital B No GBC – – 0.28 0.52

Hospital B Yes GBC 0.20 0.54 0.76 0.82

Hospital B No L-GBM – – 0.28 0.55

Hospital B Yes L-GBM 0.20 0.54 0.88 0.91

Hospital A&B Yes L-GBM 0.93 0.95 0.94 0.95

accuracy when making predictions of sepsis in patient records where it managed
to have accuracy for imputed data in both hospitals A and B, and low results
for non-imputed data (Table 2).

Fig. 7. (Hospital A) imputed VS (Hospital A) no imputed

A Machine Learning-Based Missing Data Imputation with FHIR 129

Fig. 8. (Hospital B) imputed VS (Hospital B) no imputed

5 Conclusions

The accuracy of sepsis classification in hospitalized patients relies on the diversity
of the training data since we identified variations in the values of the clinical
characteristics used to represent each patient’s condition. Therefore, we highlight
that reliably composing a diverse and structured dataset improves the results.
Also, adding a model for imputation of missing values improves the classification
performance and deals with the missing data that often appear in hospitals.

Our imputation interoperability approach successfully allows transforming
and structuring of the EHRs into the HL7 FHIR standard for modeling machine
learning-based missing data and integrating it into patient monitoring and early
detection. Additionally, this study identified the essential attributes for develop-
ing ML models to classify sepsis in hospitalized patients, obtaining a reduction
of 28 clinical features from 58 clinical features provided in the released dataset.
As a result, the 28 clinical features were composed of eight vital attributes, 15
laboratory attributes, and five demographic attributes to obtain the best per-
formance in both hospital test sets.

One limitation is that the dataset released in the cardiology challenge 2019
does not include patients’ comorbidities, which makes it difficult to scale an ML
model trained with data from a single hospital as sepsis can present differently
in each individual. Therefore, future work will collect and compose more diverse
and rich clinical data from Colombian hospitals.

References

1. Badgeley, M.A., et al.: EHDViz: clinical dashboard development using open-source
technologies. BMJ Open 6(3), e010579 (2016)

130 C. F. T. Beltran et al.

2. Bender, D., Sartipi, K.: Hl7 FHIR: an agile and RESTful approach to healthcare
information exchange. In: Proceedings of the 26th IEEE International Symposium
on Computer-based Medical Systems, pp. 326–331. IEEE (2013)

3. Berŕıos-Torres, S.I., et al.: Centers for disease control and prevention guideline for
the prevention of surgical site infection, 2017. JAMA Surg. 152(8), 784–791 (2017)

4. Braunstein, M.L.: Health Information Exchange, pp. 79–112. Springer Interna-
tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-93414-3 5

5. Briceño, I.: Sepsis: definiciones y aspectos fisiopatológicos. Medicrit 2(8), 164–178
(2005)

6. Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health
records: a deep learning approach. In: Proceedings of the 2016 SIAM International
Conference on Data Mining, pp. 432–440. SIAM (2016)

7. Concannon, D., Herbst, K., Manley, E.: Developing a data dashboard framework
for population health surveillance: widening access to clinical trial findings. JMIR
Formative Res. 3(2), e11342 (2019)

8. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29
(2019). https://doi.org/10.1038/s41591-018-0316-z

9. Gøeg, K.R., Rasmussen, R.K., Jensen, L., Wollesen, C.M., Larsen, S., Pape-
Haugaard, L.B.: A future-proof architecture for telemedicine using loose-coupled
modules and HL7 FHIR. Comput. Methods Programs Biomed. 160, 95–101 (2018)

10. Goh, K.H., et al.: Artificial intelligence in sepsis early prediction and diagnosis
using unstructured data in healthcare. Nat. Commun. 12(1), 1–10 (2021)

11. González López, D., Álvarez Barreras, L.M., Fernández Orozco, A.: Imple-
mentación de estándares DICOM SR y HL7 CDA para la creación y edición de
informes de estudios imagenológicos. Revista Cubana de Informática Médica 6(1),
71–86 (2014)

12. Reyna, M.A., et al.: Early prediction of sepsis from clinical data: the phys-
ionet/computing in cardiology challenge 2019. In: 2019 Computing in Cardiology
(CinC). pp. Page-1. IEEE (2019)

13. Rudd, K.E., et al.: Global, regional, and national sepsis incidence and mortality,
1990–2017: analysis for the global burden of disease study. Lancet 395(10219),
200–211 (2020)

14. Soto-Balán, J.C., Campo-Mercado, F.J., Fernández-Chica, D.A., Iglesias-Acosta,
J., Salcedo-Mendoza, S., Mora-Moreo, L.: Escalas qSOFA, SOFA y SIRS para
evaluación del riesgo de sepsis y admisión hospitalaria. Med. Int. Mex. 38(2), 258–
267 (2022)

15. Zhao, X., Shen, W., Wang, G.: Early prediction of sepsis based on machine learning
algorithm. Comput. Intel. Neurosci. 2021, 1–13 (2021)

https://doi.org/10.1007/978-3-319-93414-3_5
https://doi.org/10.1038/s41591-018-0316-z

Understanding the Energy Consumption of HPC
Scale Artificial Intelligence

Danilo Carastan-Santos(B) and Thi Hoang Thi Pham

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
danilo.carastan-dos-santos@inria.fr

Abstract. This paper contributes towards better understanding the energy con-
sumption trade-offs of HPC scale Artificial Intelligence (AI), and more specif-
ically Deep Learning (DL) algorithms. For this task we developed benchmark-
tracker, a benchmark tool to evaluate the speed and energy consumption of DL
algorithms in HPC environments. We exploited hardware counters and Python
libraries to collect energy information through software, which enabled us to
instrument a known AI benchmark tool, and to evaluate the energy consumption
of numerous DL algorithms and models. Through an experimental campaign, we
show a case example of the potential of benchmark-tracker to measure the com-
puting speed and the energy consumption for training and inference DL algo-
rithms, and also the potential of Benchmark-Tracker to help better understanding
the energy behavior of DL algorithms in HPC platforms. This work is a step for-
ward to better understand the energy consumption of Deep Learning in HPC, and
it also contributes with a new tool to help HPC DL developers to better balance
the HPC infrastructure in terms of speed and energy consumption.

Keywords: AI benchmark · AI energy consumption · HPC scale AI

1 Introduction

The current direction in Artificial Intelligence, and more specifically Deep Learning
(DL), is clearly to orders of magnitude more compute [14], reaching High-Performance
Computing (HPC) scale. That means more energy, which comes from sources such
as fossil fuels, nuclear power, water dams, wind, etc. Fossil fuel is the main source,
contributing to 36%1 in the total energy sources mix. Fossil energy emits a significant
amount of CO2 into the environment. Under all of these observations, it is therefore
important to monitor the energy consumption of DL, to master its energy demand and
attenuate its contribution to climate change.

1 https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-3b.html?lang=en.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 131–144, 2022.
https://doi.org/10.1007/978-3-031-23821-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_10&domain=pdf
http://orcid.org/0000-0002-1878-8137
http://orcid.org/0000-0003-0176-2245
https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-3b.html?lang=en
https://doi.org/10.1007/978-3-031-23821-5_10

132 D. Carastan-Santos and T. H. T. Pham

Typical DL research focuses mainly in the quality of the predictions of a trained
DL model. As Deep Learning being a significant part of AI, understanding DL and
its energy consumption will build us the path to better balance computing and energy
resources needed for its proper operation, and thus being less energy demanding.

This paper is a step towards building this path. It addresses the following challenges:

– For Deep Learning running in HPC platforms, how much energy are the current
popular and widely used DNNs consume?

– Is it accurate to say that: More complex models will cost more energy?
– Does the model give higher accuracy, more energy will be consumed?

In this work, we instrumented a Deep Learning benchmark with a software energy mea-
surement tool to output the Benchmark-Tracker, which tracks the energy consumption
of DNN models inside the DL benchmark. The results from running experiments with
the developed instrument give us a better understanding of today’s energy consumption
for the widely used DNN models. From those insights, we can expand to further and
more in-depth future studies on energy consumption issues. The available version of
Benchmark-Tracker is on GitHub2.

We organized the remaining of this paper in the following manner: Sect. 2 presents
the related work. In Sect. 3 we present some preliminary background information.
Section 4 briefly presents the instrumentation details to implement Benchmark-Tracker,
and Sect. 5 present some preliminary results of our tool. Finally, in Sect. 6 we present
our concluding remarks and our planned future works.

2 Related Work

2.1 AI and Climate Change

Climate change is a crucial issue for people all over the world. According to experts
in the field, AI has the potential to accelerate the process of environmental degrada-
tion. For example, large-scale natural language processing models – specifically trans-
former [16] models – have a huge carbon footprint [13]. Alternatively, “There is a real
need to think about how you’re building these systems. Are you training a needlessly
complex algorithm? How frequently are you retraining?” [13]. In order to understand
energy consumption grounds, firstly, we have entered the background detailed in [8].
Secondly, we have to understand that not only using electrical energy to train an DNN
creates CO2, but also collecting and storing data. As DL becomes more complex, data
centers are essential for storing large amounts of data needed to power DL systems,
but require significant energy. “Data centers are going to be one of the most impactful
things on the environment” [10]. Additionally, training advanced artificial intelligence
systems, including deep learning models, may require high-powered GPUs running for
days at a time and GPUs that use much power to run machine learning training have
contributed to significant CO2 emissions [3].

2 https://github.com/phamthi1812/Benchmark-Tracker.

https://github.com/phamthi1812/Benchmark-Tracker

Understanding the Energy Consumption of HPC Scale Artificial Intelligence 133

2.2 Energy-Aware AI

Many practical aspects were attempted by numerous works [6,7,12,15]. Besides focus-
ing on reducing energy consumption in the training process, one of the possibilities is
that we can have better energy management once its energy consumption can be mod-
eled and predicted. Chen et al. [5] proposed the idea of using deep learning to model
energy consumption. In technical points, the hardware provider has also tried to give
the better compatible hardware or especially GPU, which gives the best performance in
[17].

As some ideas have been outlined above, there are numerous efforts to better con-
trol energy consumption, but they still do not reduce the development and power of
Deep Learning. We can consider when training models, such as controlling the num-
ber of parameters in the model or finding a better efficient way to store data which has
mentioned in [2] or [11].

2.3 AI Benchmarks

There are many benchmarks available today for AI, for example, AI Benchmark3 works
for both mobile devices and desktops, Dynabench4 mainly works on Natural language,
Sentiment Analysis, or Cloud-Based AutoML5, which can enable developers with lim-
ited machine learning expertise to train high-quality models specific to their needs. Each
tool is developed with an emphasis on a fixed factor, notably the quality of the models’
predictions.

2.4 Energy Measurement Tools

There are several tools based on three methodology points: Estimation from hardware
characteristics (Green algorithms, ML CO2 Impact), External measures from outside
the hardware (Wattmeters), or Software power models from hardware performance
counters (CodeCarbon, Experiment-Impact-Tracker [8], CarbonTracker, Energy Scope
[9]).

2.5 Positioning of This Paper

Our paper situates in two fronts: (i) Our paper bridges AI benchmarks and energy mea-
surement tools, giving an out-of-the-box tool to help HPC DL developers to better bal-
ance the HPC infrastructure in terms of speed and energy consumption, and (ii) we
go beyond only evaluating the prediction quality of AI models and algorithms, but we
also evaluate the energy/complexity/performance trade-offs of popular AI models and
algorithms, taking into consideration several HPC hardware.

3 https://ai-benchmark.com/alpha.
4 https://dynabench.org/.
5 https://cloud.google.com/automl/.

https://ai-benchmark.com/alpha
https://dynabench.org/
https://cloud.google.com/automl/

134 D. Carastan-Santos and T. H. T. Pham

3 Background

In this section we present information about the used tools. We start by bringing details
about the AI Benchmark Alpha. We then bring some details about measuring/estimat-
ing the energy consumption and CO2 emissions of HPC platforms, and we finish by
presenting details about the Experiment-Impact-Tracker tool.

AI Benchmark Alpha. The AI Benchmark Alpha is an open-source6 library, for eval-
uating the AI performance of various hardware platforms, including CPUs, GPUs, and
TPUs. The benchmark relies on the TensorFlow [1] machine learning library and pro-
vides a precise and lightweight solution for assessing inference and training speed for
widely used and popular Deep Learning models.

AI Benchmark treats the training and inference of the models as tests. The
tests cover all major Deep Learning models and algorithms. They include: Classi-
fication (MobileNet-V2, Inception-V3, Inception-V4, Inception-ResNet-V2, ResNet-
V2-50, ResNet-V2-152, VGG-16), Image-to-Image Mapping (SRCNN 9-5-5, VGG-
19, ResNet-SRGAN, ResNet-DPED, U-Net, Nvidia-SPADE), Image Segmentation
(ICNet, PSPNet, DeepLab), Image Inpainting (Pixel-RNN), Sentence Sentiment Anal-
ysis (LSTM), and Text Translation (GNMT).

Energy Consumption and Carbon Emissions in HPC Platforms. When we measure
the energy consumption for training an AI model running in HPC platforms, we also
have to consider the additional power used to run the platform that is not directly related
to computing, such as cooling. We call this power overhead as Power Usage Effective-
ness (PUE), which is a number that depends on the HPC platform cooling efficiency
and is often slightly larger than 1, and acts as a multiplicative factor for the measured
energy consumption of the computing nodes.

From the energy level consumed obtained at the computing nodes, and multiplied
by the PUE, we can calculate the corresponding CO2 emissions released into the envi-
ronment as follows:

Emissioncarbon = Energycomputing × Intensitycarbon

The intensity of carbon is the number of grams of carbon dioxide (CO2) that it takes to
make one unit of electricity a kilowatt per hour (kWh).

6 https://pypi.org/project/ai-benchmark/.

https://pypi.org/project/ai-benchmark/

Understanding the Energy Consumption of HPC Scale Artificial Intelligence 135

The quantity of carbon emission is just as substantial as the energy consumption
because the higher the carbon intensity, the more polluting the energy consumption.
The carbon intensity of electricity generation depends on the energy sources mix, and
it varies from region to region7. For our experiments we adopted 55g CO2/kWh, which
relates to France’s typical carbon intensity8.

The Experiment-Impact-Tracker. The Experiment-Impact-Tracker is a software
tool9 that provides a simple plug-and-play solution for tracking your system’s energy
use, carbon emissions, and compute utilization. It records: power consumption from
CPU and GPU, hardware information, and projected carbon emission information on
Linux computers with Intel CPUs that implement the Running Average Power Limit
(RAPL) and NVIDIA GPUs.

Through the following example, we see how one can track the energy consumption
by covering the process with the Experiment-Impact-Tracker:

from e x p e r im e n t _ imp a c t _ t r a c k e r . c ompu t e _ t r a c k e r import Impac tT r a cke r
from e x p e r im e n t _ imp a c t _ t r a c k e r . d a t a _ i n t e r f a c e import Da t a I n t e r f a c e
os . mkdir (" g i v e _ a_p a t h ")
t r a c k e r = Impac tT r a ck e r (" g i v en_pa t h ")
t r a c k e r . l a un ch_ impac t _mon i t o r ()
Pu t _You r_P roce s s_he r e ()
t r a c k e r _ r e s u l t s = {}
d a t a _ i n t e r f a c e = D a t a I n t e r f a c e ([" g i v e n_p a t h "])

The Experiment-Impact-Tracker launches a separate Python process that gathers the
energy consumption information in the background. Also, we can then access the infor-
mation via the DataInterface. Moreover, like we mentioned before about how useful
this Tracker is because of this context management, as illustrated in the listing below:

expe r imen t 1 = t emp f i l e . mkdtemp ()
expe r imen t 2 = t emp f i l e . mkdtemp ()

wi th Impac tT r a cke r (expe r imen t 1) :
do_someth ing ()

w i th Impac tT r a cke r (expe r imen t 2) :
do_ some t h i ng_e l s e ()

The combination of the AI Benchmark Alpha with the Experiment-Impact-Tracker
that we did to produce Benchmark Tracker, which is used for running the experiments
to understand the energy behavior of AI algorithms, is presented in the following sub-
section.

7 https://app.electricitymap.org/map.
8 https://app.electricitymap.org/map.
9 https://github.com/Breakend/experiment-impact-tracker.

https://app.electricitymap.org/map
https://app.electricitymap.org/map
https://github.com/Breakend/experiment-impact-tracker

136 D. Carastan-Santos and T. H. T. Pham

4 Benchmark Tracker

The essence of Benchmark-Tracker is in the instrumentation of the AI Benchmark
Alpha with Experiment-Impact-Tracer, to also measure the energy consumption. For
this task, we identified the code regions where AI Benchmark runs for each model’s
training and inference. From there, we instrumented the Experiment-Impact-Tracker in
these code regions, intending to be able to measure not only the hardware benchmark
from the AIBenchmark but also the energy consumption of each model running in this
benchmark. We can control which process we would like to run in the primary run file.
The process goes as follows:

1. Benchmark runs and starts calling the corresponding tests for each model.
2. The Experiment-Impact-Tracker is activated and starts measuring energy during the

training process of that model.
3. The Tracker is turned off, and data logging occurs.
4. The inference process of the same model happens (if we run this tool for both train-

ing and inference).
5. Another test is called up to continue the process.

The inference process is shortly presented as follows:

f o r s ubTe s t in (t e s t . i n f e r e n c e) :
os . mkdir (PATH)
wi th Impac tT r a cke r (PATH) :

<<TRACKED_CODE>>
t racke r_ INFERENCE_resu l t s = {}
d a t a _ i n t e r f a c e = D a t a I n t e r f a c e ([PATH])

The advantage of using experiment-impact-tracker becomes evident, since we can
easily instrument a code section using the Python context management (i.e., the with
statement). In the case above, «TRACKED_CODE» refers to the code commands for an
inference task. The same instrumentation procedure holds for the training tasks.

With the AI benchmark’s dataset and our evaluated hardware (see Sect. 5.1), the
AI benchmark runs approximately 60 s for one model. The Experiment-Impact-Tracker
provides inaccurate estimations when the processing time is too short (in the order
of 60 s). With this in mind, we artificially increase the size of the dataset to increase
the processing time, and have accurate energy measurements. Artificially increasing
the size of the dataset invalidate the accurate computed at the training tasks. That is
why in the next section we compare the model’s accuracy in terms of their reported
accuracy in ImageNet10. We plan to release a new version of Benchmark-Tracker with
an appropriate dataset in future work (see Sect. 6).

10 https://ai-benchmark.com/tests.html.

https://ai-benchmark.com/tests.html

Understanding the Energy Consumption of HPC Scale Artificial Intelligence 137

5 Results

5.1 Experimental Setting

For the experiments, we used Grid’500011 High-Performance Computing test-bed. We
used the Chifflet node (Model: Dell PowerEdge R730, CPU: Intel Xeon E5-2680 v4,
Memory: 768 GiB, GPU: 2 x Nvidia GeForce GTX 1080 Ti (11 GiB)).

5.2 Experimental Results

We ran Benchmark-Tracker 10 times to achieve the below statistical results. The bar
plots below represent an estimate of the central tendency for energy consumption with
the height of each rectangle. It provides some indication of the uncertainty around that
estimate using error bars. Intuitively, we see that the confidence intervals bar graph
shows a slight error between 10 sets of the outcomes. It is also essential to remember
that a bar plot shows only the mean value.

Let recall the definition of Training and Inference. We can say Training and Infer-
ence are the norm in DL. They are two key processes associated with developing and
using AI:

– Training is “teaching” a Deep Neural Network (DNN) to perform the desired AI task
(such as image classification or converting speech into text). We can express that it
fits a model for training data. During the DL training process, the data scientist is
trying to guide the DNN model to converge and gain the expected accuracy.

– The inference uses a trained DNN model to make predictions against previously
unseen data and perform decision-making. The DL training process involves infer-
ence, because each time an image is fed into the DNN during training, the DNN
tries to classify it. Given this, people usually deploy a trained DNN for inference.
For example, one could make a copy of a trained DNN and start using it “as is” for
inference.

Therefore, the results are grouped into training and inference phases.
With AI tasks, created DNN models can be large and complex, with dozens or

hundreds of layers of artificial neurons and millions or billions of weights linking them.
Normally, the bigger the DNN, the more computing, memory, and energy are consumed
to execute it, and the longer will be the response time (or “latency”) from when you
input data to the DNN until you obtain an outcome.

Without losing generality, to better focus the analysis we only access the results of
the classification task. It is important to remind that, thanks to AI Benchmark Alpha,
Benchmark-Tracker also evaluates other kinds of tasks, such as (Classification, Image-
to-Image Mapping, Image Segmentation). Table 1 presents the classification models’
complexity, measured in the number of parameters.

11 https://www.grid5000.fr/w/Grid5000:Home.

https://www.grid5000.fr/w/Grid5000:Home

138 D. Carastan-Santos and T. H. T. Pham

Table 1. Image classification model complexity, measured as the number of parameters [4]

Model Number of parameter (M: millions)

MobileNet-V2 5M

Inception-V3 25M

Inception-V4 35M

Inception-ResNet-V2 60M

ResNet-V2-50 30M

ResNet-V2-152 70M

VGG-16 150M

Also, to give the reader an impression of the connection between the structure of the
DNNs and the energy consumption, we briefly present the main ideas of the evaluated
models for the image classification task:

– MobileNet-V2: Depth wise Separable Convolution which dramatically reduces the
complexity cost and model size of the network.

– Inception-V3: Factorizing Convolutions, which reduces the number of connections/-
parameters without decreasing network efficiency, helps realize computational effi-
ciency and fewer parameters.

– Inception-V4: A more uniform, simplified architecture and more inception modules
than Inception-v3. It uses asymmetric filters.

– Inception-ResNet-V2: Use a part of Inception-V4 and replace connection by residual
links.

– ResNet-V2-50: It introduces skip connection (or shortcut connection) to fit the input
from the previous layer to the next layer without any modification of the input. This
version has 50 layers and uses residual links.

– ResNet-V2-152: Same idea with ResNet-V2-50, but this one has the maximum num-
ber of layers 152. ResNet is the Winner of ILSVRC 2015 in image classification,
detection, and localization, as well as Winner of MS COCO 2015 detection, and
segmentation.

– VGG-16: by using 3 × 3 filters uniformly, VGG-16 reduces the number of weight
parameters in the model significantly. It helps in reducing the complexity of com-
puting.

We describe the results in inference belonging to each type of model. Additionally, the
rectangle’s color shows the reported accuracy on ImageNet for each of the evaluated
models12.

12 https://ai-benchmark.com/tests.html.

https://ai-benchmark.com/tests.html

Understanding the Energy Consumption of HPC Scale Artificial Intelligence 139

Figure 1 presents the energy consumption in the inference process per image for
classification, which shows us the amount of energy it will cost each time we input
one more image into the trained relative model. The small number of parameters and
the simple model structure are the main contributors to MobileNet-V2 having the low-
est power level. However, this entails that it also has almost the lowest accuracy. The
increase in the number of parameters increased the power consumption of Inception-V4
compared to Inception-V3.

With double the parameters, InceptionResNet-V2 offers 3% better accuracy than
Inception-V3 and 1% in Inception-V4. However, it has an energy consumption of
approximately the same as Inception-V4 or even lower. It can also be remarked that
the relationship between model complexity and energy levels cannot be linear. Because
if this happens, the energy consumption of InceptionResNet-V2 will probably double
with the corresponding increase in the number of parameters. This result contributes to
the hypothesis that the number of parameters of the model does not seem to be the only
factor determining the energy consumption. The DNN model’s structure also signifi-
cantly influences the energy it consumes.

VGG-16 had the highest energy consumption among the evaluated models, but it did
not offer better accuracy. It is even lower than MobileNet-V2, even though its parame-
ters are approximately 30 times more.

Table 2 shows the energy consumption, estimated carbon emission and also the
duration time for the inference process. We separately run the inference process on
the same dataset with training. Usually, this is not the case when we run on the same
dataset. However, it works to simulate the real-life process, and this result still con-
tributes to the conclusion in comparing the energy consumption when we use trained
models.

Table 2. Average energy consumption (EC), carbon emission (CE), duration (D) in inference for
classification models

Model EC (kWh) CE (kgCO2eq) D (seconds)

MobileNet-V2 1.18× 10−3 0.66× 10−4 32,11

Inception-V3 1.96× 10−3 1.10× 10−4 32,26

Inception-V4 2.60× 10−3 1.45× 10−4 32,41

Inception-ResNet-V2 2.56× 10−3 1.43× 10−4 32,51

ResNet-V2-50 2.42× 10−3 1.35× 10−4 32,31

ResNet-V2-152 2.61× 10−3 1.46× 10−4 32,95

VGG-16 2.96× 10−3 1.66× 10−4 33,63

140 D. Carastan-Santos and T. H. T. Pham

Fig. 1. Energy consumption in inference per image for classification models

Comeback with training, Table 3 gives the detailed energy consumption scores.
From Fig. 2, 3, the complexity of the models explains that InceptionResNet-V2, with
twice as many parameters for the model as Inception-V3, and Inception-V4, has the
highest energy consumption level. Likewise, the training time for Inception-ResNet-V2
is the biggest among the three models mentioned above. The same goes for ResNet-152,
which has twice the number of parameters ResNet-50 and has a higher power and time
level than ResNet-50.

Nevertheless, it did not happen for VGG-16. Even though VGG-16 is the most
significant one with 150M parameters, it has remarkably positive results by being the
model that consumes the smallest amount of energy and runs in the shortest time. The
belonging designed architecture idea of each DNN explains a part of why the energy
consumption of VGG-16 and MobileNet-V2 are the best models in terms of energy
consumption and training duration for Classification. They both have the same objective
when trying to reduce the complexity cost. While MobileNet-V2 reduces the model
size in order to run on mobile devices, VGG-16 decreases filter size. This observation
shows evidence for the design of deep neural networks can reduce energy consumption
and training time.

Understanding the Energy Consumption of HPC Scale Artificial Intelligence 141

Table 3. Average energy consumption, carbon emission, duration in training for classification
models

Model EC (kWh) CE (kgCO2eq) D (seconds)

MobileNet-V2 1, 75.10−3 0, 98.10−4 35,04

Inception-V3 2, 98.10−3 1, 67.10−4 52,09

Inception-V4 3, 93.10−3 2, 20.10−4 53,79

Inception-ResNet-V2 4, 06.10−3 2, 27.10−4 59,98

ResNet-V2-50 2, 29.10−3 1, 28.10−4 40,01

ResNet-V2-152 4, 01.10−3 2, 24.10−4 53,32

VGG-16 1, 83.10−3 1, 02.10−4 35,19

Fig. 2. Energy consumption in training for classification models

142 D. Carastan-Santos and T. H. T. Pham

Fig. 3. Duration in training for classification models

6 Conclusion and Future Work

This paper presents a step towards better understanding the energy consumption
of AI algorithms, notably Deep Neural Networks (DNNs), when running in High-
Performance Computing (HPC) platforms. For this task, we instrumented a known AI
benchmark with energy measurement tools to create an extended benchmark, called
Benchmark-Tracker. Benchmark-Tracker works as a new test-bed for evaluating the
processing performance and energy consumption of AI algorithms in HPC platforms.
For instance, in our case example we found the following observations.

For a certain AI task (in our case example, for the image classification task), more
complex DNN models can consume more energy, emit more CO2, and take longer
time than simpler models to train. Nevertheless, there are exceptions, and they advise
that the energy consumption likewise depends on the structure of the DNNs, and their
relative function is not linear. A more accurate model does not necessarily consume
more energy. Also, if we bring the connection between inference and training into the

Understanding the Energy Consumption of HPC Scale Artificial Intelligence 143

balance, the relationship becomes even more complicated. There are cases where the
energy level for training is low but exceptionally high in inference and vice versa.

The choice of model selection and the HPC hardware is not a trivial decision, since
it depends on the problem and resources specificities, which are not always well under-
stood theoretically. Benchmark-Tracker can help to perform this decision by performing
light-weight experiments to grasp how much energy a certain AI model will consume
and how fast it will run, according to a certain HPC hardware.

6.1 Future Work

For future work, we will take into account calculating the accuracy belonging to the
models for a specific dataset, besides the energy consumption. This will enable us to
perform the following investigations.

1. If we reduce or increase the dataset size during training, we can consider how much
energy the training will consume and how much accuracy we will get for each model
to compare. Furthermore, doing that on a specific model will help understand the
tradeoffs of dataset size, energy consumption, and resulting inference accuracy.

2. With the Benchmark-Tracker, we are going to set energy budgets during the models’
training. We can control the training process for a specific objective by stopping the
training when the total energy (measured by an energy measurement library) passes
a defined budget. Furthermore, as a consequence, we can evaluate the performance
behavior of the DNN models when we have limited energy budgets.

3. Following the energy budget idea, we are going to compare shallow learning algo-
rithms for a selection of applications present in Benchmark-Tracker and whether
these shallow learning algorithms outperform or not the deep learning algorithms
when we have energy budgets.

Acknowledgements. This work was supported by the research program on Edge Intelligence
of the Multi-disciplinary Institute on Artificial Intelligence MIAI at Grenoble Alpes (ANR-19-
P3IA-0003), and the Energy Saving in Large Scale Distributed Platforms - Energumen project
(ANR-18-CE25-0008). We also thank all institutions (INRIA, CNRS, RENATER and several
Universities as well as other organizations) who support the Grid5000 platform.

Author contributions. Thi contribued to the source-code implementation, execution of experi-
ments, data processing, analysis, and results interpretation with the guidance of Danilo. Danilo
was the main writer of Sects. 1, 2, and 6, and Thi was the main writer of Sects. 3, 4, and 5. Finally,
all the authors reviewed the final manuscript.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems
(2015). Software available from tensorflow.org. https://www.tensorflow.org/

2. Avidon, E.: ‘data for good’ movement spurs action in fight for causes (2020). https://www.
techtarget.com/searchbusinessanalytics/news/252487703/Data-for-good-movement-spurs-
action-in-fight-for-causes

https://www.tensorflow.org/
https://www.techtarget.com/searchbusinessanalytics/news/252487703/Data-for-good-movement-spurs-action-in-fight-for-causes
https://www.techtarget.com/searchbusinessanalytics/news/252487703/Data-for-good-movement-spurs-action-in-fight-for-causes
https://www.techtarget.com/searchbusinessanalytics/news/252487703/Data-for-good-movement-spurs-action-in-fight-for-causes

144 D. Carastan-Santos and T. H. T. Pham

3. Avidon, E.: How much does it cost to run a GPU (2022). https://graphicscardsadvisor.com/
how-much-does-it-cost-to-run-a-gpu/

4. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative
deep neural network architectures. IEEE Access 6, 64270–64277 (2018). https://doi.org/10.
1109/access.2018.2877890

5. Chen, C., Liu, Y., Kumar, M., Qin, J.: Energy consumption modelling using deep learning
technique - a case study of EAF. Procedia CIRP 72, 1063–1068 (2018)

6. Ficher, M., Berthoud, F., Ligozat, A.L., Sigonneau, P., Wisslé, M., Tebbani, B.: Assessing
the carbon footprint of the data transmission on a backbone network. In: 24th Conference on
Innovation in Clouds, Internet and Networks, Paris, France, March 2021. https://hal.archives-
ouvertes.fr/hal-03196527

7. García-Martín, E., Rodrigues, C.F., Riley, G.D., Grahn, H.: Estimation of energy consump-
tion in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019)

8. Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., Pineau, J.: Towards the system-
atic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res.
21, 1–43 (2020)

9. Jay, M.: How can we estimate the energy consumption of training an AI model? (2022).
https://team.inria.fr/datamove/files/2022/02/220202-slides-mathilde-jay.pdf

10. Labbe, M.: Energy consumption of AI poses environmental problems. https://
www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-
environmental-problems

11. Labbe, M.: AI and climate change: the mixed impact of machine learning (2021).
https://www.techtarget.com/searchenterpriseai/feature/AI-and-climate-change-The-mixed-
impact-of-machine-learning

12. Mazouz, A., Wong, D.C.L., Kuck, D.J., Jalby, W.: An incremental methodology for energy
measurement and modeling. In: Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering (2017)

13. Morgan, L.: AI carbon footprint: helping and hurting the environment (2021). https://www.
techtarget.com/searchenterpriseai/feature/AI-carbon-footprint-Helping-and-hurting-the-
environment

14. OpenAI: AI and compute (2018). https://openai.com/blog/ai-and-compute/
15. Schmidt, V., et al.: CodeCarbon: estimate and track carbon emissions from machine learning

computing (2021). https://doi.org/10.5281/zenodo.4658424
16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing

Systems, vol. 30 (2017)
17. Walton, J.: Graphics card power consumption and efficiency tested (2021). https://www.

tomshardware.com/features/graphics-card-power-consumption-tested

https://graphicscardsadvisor.com/how-much-does-it-cost-to-run-a-gpu/
https://graphicscardsadvisor.com/how-much-does-it-cost-to-run-a-gpu/
https://doi.org/10.1109/access.2018.2877890
https://doi.org/10.1109/access.2018.2877890
https://hal.archives-ouvertes.fr/hal-03196527
https://hal.archives-ouvertes.fr/hal-03196527
https://team.inria.fr/datamove/files/2022/02/220202-slides-mathilde-jay.pdf
https://www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-environmental-problems
https://www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-environmental-problems
https://www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-environmental-problems
https://www.techtarget.com/searchenterpriseai/feature/AI-and-climate-change-The-mixed-impact-of-machine-learning
https://www.techtarget.com/searchenterpriseai/feature/AI-and-climate-change-The-mixed-impact-of-machine-learning
https://www.techtarget.com/searchenterpriseai/feature/AI-carbon-footprint-Helping-and-hurting-the-environment
https://www.techtarget.com/searchenterpriseai/feature/AI-carbon-footprint-Helping-and-hurting-the-environment
https://www.techtarget.com/searchenterpriseai/feature/AI-carbon-footprint-Helping-and-hurting-the-environment
https://openai.com/blog/ai-and-compute/
https://doi.org/10.5281/zenodo.4658424
https://www.tomshardware.com/features/graphics-card-power-consumption-tested
https://www.tomshardware.com/features/graphics-card-power-consumption-tested

Using Big Data and Serverless
Architecture to Follow the Emotional
Response to the COVID-19 Pandemic

in Mexico

Edgar León-Sandoval(B) , Mahdi Zareei , Liliana Ibeth Barbosa-Santillán ,
and Luis Eduardo Falcón Morales

School of Engineering and Sciences, Monterrey Institute of Technology
and Higher Education, Monterrey, Mexico

leon.s.edgar@tec.mx

Abstract. The emergence of the COVID-19 pandemic has led to an
unprecedented change in the lifestyle routines of millions of people.
Beyond the multiple repercussions of the pandemic, we are also fac-
ing significant challenges in the population’s mental health and health
programs. Typical techniques to measure the population’s mental health
are semiautomatic. Social media allow us to know habits and daily life,
making this data a rich silo for understanding emotional and mental well-
being. This study aims to build a resilient and flexible system that allows
us to track and measure the sentiment changes of a given population, in
our case, the Mexican people, in response to the COVID-19 pandemic.
We built an extensive data system utilizing modern cloud-based server-
less architectures to analyze 760,064,879 public domain tweets collected
from a public access repository to examine the collective shifts in the gen-
eral mood about the pandemic evolution, news cycles, and governmental
policies using open sentiment analysis tools. We provide metrics, advan-
tages, and challenges of developing serverless cloud-based architectures
for a natural language processing project of a large magnitude.

Keywords: Sentiment analysis · Big data · COVID-19 · Machine
learning · Mexico · Twitter

1 Introduction

On February 27, 2020, Hugo López-Gatell Ramı́rez, the head of the Undersecre-
taries of Prevention and Health Promotion at the Mexican Secretariat of Health,
reported a patient in the INER (National Institute of Respiratory Diseases) as
the first official case of COVID-19 reported nationwide [21]. From there, a gen-
eral lockdown was mandated on April 21, 2020. Since then, the country has
followed actions based on non-pharmaceutical interventions (NPI) to mitigate
the effects of the pandemic on the general population. However, the COVID-19
pandemic also challenges individuals’ emotional and psychological well-being.

c© The Author(s) 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 145–159, 2022.
https://doi.org/10.1007/978-3-031-23821-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_11&domain=pdf
http://orcid.org/0000-0002-2904-327X
http://orcid.org/0000-0001-6623-1758
http://orcid.org/0000-0002-3509-9667
http://orcid.org/0000-0001-8760-5640
https://doi.org/10.1007/978-3-031-23821-5_11

146 E. León-Sandoval et al.

This challenge raises the need to incorporate emotional health-related data
into organizations’ decision-making processes and to build the appropriate dash-
boards showing critical information. Even though it is clear the importance of
tracking the day-to-day data on the pandemic progression regarding ongoing
infection rates and fatality, among other statistics, another important dimen-
sion, emotional health, needs a proper measuring instrument. These reasons
point to the need to build, deploy, and maintain a large-scale, resilient system
capable of performing sentiment analysis in large, continuous data sets, such as
ongoing Twitter traffic.

Acquiring and processing this amount of information is not an easy task, as
this is a task that presents all of the challenges described by the three Vs. of
Big-Data: Volume, Variety, and Velocity [15]. For large-scale sentiment analysis
systems, these challenges are explored in depth by [5] adopting a broader def-
inition of big data. There are multiple definitions containing different aspects
of these architectures, such as analysis, value, computer power, visualization,
variability, and integrity, among others. An in-depth description of these def-
initions is described by [28], concluding that the challenges presented depend
on the context of the task. However, as already defended by [15], this problem
adheres to the extensive data domain in multiple dimensions beyond the original
three dimensions proposed. Several challenges must be addressed as a big data
problem, which is listed next.

1. Acquiring the emotional data of a large population of individuals, either in a
traditional methodology or through social media, can be costly.

2. Processing this large amount of data in a short amount of time is difficult.
3. Handling heterogeneous data, such as those presented in tweets, is not trivial.
4. Building a system requires expertise from multiple dimensions: data science,

big data, software engineering, systems engineering, and natural language
processing.

5. Maintaining such systems is expensive for the software and infrastructure
required.

6. Updating can be very difficult, depending on the coupling strategy chosen for
the modules.

To solve point (1), we can recur to traditional survey methods, such as inter-
views or surveys. Still, we find them prohibitive, for, besides the high expense,
they require a significant amount of time and effort to gather data on a smaller
sample of the population. They can only provide information on discrete-time
periods rather than a continuous flow. Thus we can look for data in the already
public posts on social media. Twitter is a mature, well-established, and popular
micro-blogging service that offers users a platform to share their conversations,
reviews, and data. For this purpose, we collected a large corpus of heterogeneous
COVID-19-related data [1], which we will refer to as the COVID-19 Twitter chat-
ter data set and used as our primary source of information. the COVID-19 Twit-
ter chatter data set includes raw text, tweet metadata, images, videos, URLs,
popularity, and other types of metadata. This corpus is an excellent candidate

Tracking the COVID-19 Emotional Response in Mexico 147

for sentiment analysis to follow public opinion on any given topic or event as long
as it is related to the COVID-19 pandemic. Still, it does present several chal-
lenges, such as the high computing resources needed for conducting the research
work, but in return, it provides a curated, well-defined data corpus. In addition,
sentiment analysis on a near-real-time basis is possible thanks to the big data
technology stack, which is focused on handling and processing a large volume of
data at a fast velocity, and from numerous heterogeneous sources [3].

Sentiment analysis refers to a group of natural language processing tech-
niques that allow extracting affective indicators from raw text to determine the
sentiment polarity of a given tweet, whether the tweet expresses a positive or
negative emotion. To measure the sentiment polarity of tweets, we may employ
several language models, each implemented using different technologies and hav-
ing other characteristics. All implementations use nonlinear statistical models as
language representations, in different ways, from massive attention-based deep
learning architectures to more straightforward dictionary-based deployments, as
is VADER (Valence Aware Dictionary and sEntiment Reasoner) [9].

VADER is an open-source, rule-based tool that recognizes standard terms,
idioms, jargon, and more complex grammar structures such as punctuation,
negations, abbreviations, etc., commonly employed in social media platforms.
VADER uses a curated lexicon of over 7,500 standard terms rated by ten inde-
pendent humans. VADER has been extensively validated for Twitter-based con-
tent, showing promising results in terms of accuracy for tweets in several sen-
timent analysis tools [2]. However, state-of-the-art language models are imple-
mented by deep neural networks, allowing the use of a more sophisticated text
representation space, context awareness, and powerful nonlinear statistical mod-
els to provide text classification. BERTweet [20] is based on BERT [4], using a
pre-training procedure similar to that utilized by RoBERTa [17] and uses pub-
licly available tweets in English for training and evaluation. TimeLMs [18] intro-
duces a time concept into the language model by utilizing continuous learning
and thus accounts for future and out-of-distribution tweets it might encounter.

This language model also uses publicly available tweets in English for train-
ing and evaluation. Thus, it is essential to have a system independent of the
language model selected for the task, making it simple to choose and change
the language model if needed. This work describes the architecture developed to
perform this sentiment analysis study, already reported by [16], going in-depth
on the design, advantages, and disadvantages of utilizing big data in serverless
cloud-based architectures for a project of this size. Next, we present a brief
exploration of related works, followed by the methodology followed in the study,
the architecture implemented as well as infrastructure-related information, the
experiments performed, and closing with a description of the results and a brief
discussion of those results.

2 Related Work

Twitter has been widely used to perform sentiment analysis studies in the eco-
nomic, social, and political domains [27]. Sentiment analysis research extensively

148 E. León-Sandoval et al.

uses Twitter-related traffic, partly due to the high volume [10], high availability,
and the limit of 280 characters per entry [8]. A survey shows that building such
systems running on private clouds is feasible, relying on the Hadoop tech stack.
However, these systems are expensive: they require a significant up-front invest-
ment, require effort to set up and maintain and fail to scale properly according
to the present demand [5].

Table 1. Summary of massively distributed systems for performing sentiment analysis
over large volumes of tweets [16].

Reference Tech Batch/Stream Features Comments

Victor and
Lijo, 2919 [26]

Hadoop & Spark both HBase
interface

Sathya et al.,
2012 [22]

Hadoop batch classifier
selection, pre-
processing,
sarcasm, VR

open source,
needs self
hosting

Bhuvaneswari
et al., 2019 [2]

Hadoop & Kafka both Uses flume

Cenni et al.,
2018 [3]

Hadoop batch - aggregation of
4 projects

Sehgal and
Agarwal,
2016 [23]

Hadoop batch -

Kummar and
Bala, 2016 [14]

Mahout batch - Less complex
to build,
experiments
made on a
single node

Kumamoto et
al., 2014 [13]

batch graphs no details

Khuc et al.,
2012 [11]

Hadoop batch HBase
interface

nice UI for
data cleanup

Marcus et al.,
2011 [19]

Hadoop batch peak
detection,
sub-event
selection

this work cloud & serverless both auto scaling,
easy to
consume,
cloud native

uses remote
hosting

Table 1 displays a summary of these systems, showcasing that Apache
Hadoop technologies support most prototypes for streaming and batch data

Tracking the COVID-19 Emotional Response in Mexico 149

processing. While these systems all present good results, they also lack flexibil-
ity and scalability, resulting in high maintenance costs, and a robust up-front
investment is required. Being self-hosted solutions, it is the responsibility of the
implementing institution to procure equipment, networking, setup, and mainte-
nance of the system. There is also waste in terms of regular under-utilization
of the system, making this an expensive solution that requires a significant up-
front investment. So, it can be mitigated by having dynamic scaling in place,
thus providing the needed resources instead of having a fixed capacity regardless
of utilization.

3 Method

We consumed a large dataset of tweets collected from an open-access reposi-
tory of global COVID-19-related tweets, called the COVID-19 Twitter chatter
dataset [1]. It is designed to collect every tweet posted that is somehow related
to the pandemic in a diverse variety of geographic locations. This repository pro-
vides a list of tweet IDs, geographical location, and detected language using the
following schema: [tweet id, date, time, lang, country code]. However,
we encountered schema inconsistencies over time. For example, the annotation of
country code, which is necessary for filtering before requesting a tweet lookup,
was not introduced until the second half of the year, and even so, a vast number
of tweets lack this metadata annotation.

For this reason, we had to load them via Twitter’s public API to filter
out tweets originating from outside Mexico, which may leave data out from
those users who choose not to share their location. We used this information
to download each tweet in Mexico, discarding all other metadata provided by
Twitter’s API for privacy reasons. Specifically, we retrieved COVID-19-related
tweets posted in Mexico from February 1, 2020, through December 31, 2020,
processing n = 760, 064, 879 unique tweets. All tweets were scrubbed of any per-
sonally identifiable information to ensure the user’s privacy and comply with
ethical, social media use practices, resulting in the following simplified schema:
full text, id, timestamp. It is worth mentioning that this data set includes
tweets in multiple languages, including both English and Spanish, for many of
the population engage in social media in languages other than native Spanish.

Figure 1 summarizes the general data flow of the system. Tweets are con-
sumed parallel to mitigate the official lookup API’s rate limitations. The design
of this system allows for this API to be easily swapped for other end-points,
such as the search end-point, allowing data consumption as a near real-time data
stream without the need to perform any other code or system changes. These
tweets flow into a pre-processing stage, where they are cleaned up and made
ready for consumption by the language models and further narrowed down to a
total of over n = 2, 142, 800 unique tweets by discriminating tweets to include
only the ones that are not retweets, and, posted from within Mexico. For a
detailed definition of the schema returned by the lookup API, please consult
the tweet object model definition [24]. Still, for this study, we strip down all

150 E. León-Sandoval et al.

Fig. 1. Data Flow Overview. The data is processed in three main stages: first, we load
the desired tweet IDs from the COVID-19 Twitter chatter dataset, then we consult
them directly from Twitter using the official APIs. For pre-processing we clean-up and
filter the data, then we process this data set in order to produce a time series of the
perceived COVID-19 related sentiment.

the metadata to include only the ID, tweet text, and timestamp. For the pre-
processing performed on the text, we follow the standard practices common in
natural language processing projects: removing punctuations and emojis, URLs,
stop words, converting the text to lower casing, tokenization, stemming, and
lemmatization. We then perform sentiment analysis and a time series analysis
on the remaining tweets to do the actual sentiment polarity tracking, better
described by [16].

Next, a quick summary of the methodology followed by [16] is presented.
Natural language processing has several architectures available to implement lan-
guage models, each with their differences in robustness and accuracy for several
tasks, such as sentiment polarity determination. These implementations use non-
linear statistical models as language representations, in different ways, from vast
attention-based deep learning architectures to more straightforward dictionary-
based deployments, such as VADER. VADER [9] is an open-source rule-based
robust language model that can handle complex grammar structures commonly
employed in social networks. VADER is reliable, fast to deploy, and needs few
resources to evaluate new text entries. However, for training, it utilizes a curated
corpus evaluated by humans, making adapting it, or incorporating new data a
difficult task. BERTweet [20] is based on BERT [4], using a pretraining proce-

Tracking the COVID-19 Emotional Response in Mexico 151

dure similar to that utilized by RoBERTa [17] and uses publicly available Tweets
in English for training and evaluation.

We then utilize VADER for sentiment polarity determination, consuming a
single tweet and providing three different metrics: positive and negative intensity,
and a composed metric obtained by normalizing both the positive and negative
scores and using an external factor to better approximate a 1 to −1 distribu-
tion [9],

norm score =
sum polarities

√
sum polarities2 + α

(1)

where sum polarities is the simple addition of positive and negative polarities,
and α is initialized as α = 15. We need to adjust this α for every operation based
on a heuristic and the lexicon collected by the language model. We then use these
three metrics to construct a smoothed time series, perform a daily average and
calculate an ARIMA model where the box-test showed a p− value < 2.2e−16 to
estimate the trends and seasonality the series might show. Details on the results
obtained are presented in the Results section.

3.1 General System Architecture

Implementing cloud technologies, a serverless architecture, and industry-
standard ML-ops practices require three challenges to be properly addressed
in order to be successful:

1. The system needs to ingest large amounts of data in the shortest possible
time.

2. The system must maintain user privacy and keep the data secure.
3. Use state-of-the-art deep-learning-based language models and implementa-

tions with low-level hardware optimization for efficient data processing.

So, the system was implemented using Google’s Cloud Platform (GCP)for
its dynamic scaling of managed infrastructure and tight integration with the
Tensorflow/Keras technology stack, enabling dynamic scaling, loose coupling,
and managed micro-services/serverless technology. All while maintaining low-
level hardware optimization over the use of multiple CPUs and GPUs in each
managed instance.

Figure 2 summarizes the system’s general architecture, which follows a flow
somewhat similar to that described by Fig. 1. This flow is next described, but
keep in mind we have observed some details out of the list, such as monitoring,
logging, deployment pipelines, and general error handling.

1. Data is ingested from Twitter, using the identifiers provided by the COVID-
19 Twitter chatter dataset and the public query API provided by Twitter.

2. The queried tweet is posted in PubSub. Then preprocessing is evaluated, writ-
ing the resulting clean tweet directly to disk storage and posted again to
PubSub.

152 E. León-Sandoval et al.

Fig. 2. General Architecture implemented in Google Cloud Platform (GCP) [16]. This
cloud-based architecture ingests tweets using the official Twitter APIs, sending each
one of these through Google’s Pub/Sub, which uses as endpoints basic pre-processing,
raw storage, and a serverless function to calculate the sentiment polarity. The results
of this function is fed into BigTable through another Pub/Sub pipeline.

3. PubSub feeds this data entry into a service, which evaluates the polarity of
the tweets using a language model implementation written in TensorFlow,
and posts the results again in PubSub to be fed into BigTable for final con-
sumption. Note that this evaluation greatly benefits from choosing instances
with GPU support, or if hosting the model in another GCP service, this will
happen automatically to use the CUDA technology.

4. The data is now ready for consumption by a managed Dataproc instance
which can work under different approaches:
(a) Periodic batch jobs that collect daily aggregations. These aggregations

are also stored in cloud storage for easy access.
(b) Jupyter notebooks for manual data exploration.
(c) A third hook can be placed here for generating near-real-time visualiza-

tions of the gathered data.
Here we decided on the daily aggregations generated by the batch jobs, but
this can be easily changed, and the options are not mutually exclusive.

This approach makes it easy to collaborate remotely and share progress or
data. All the code was implemented using standard Python 3.7 and its data-
focused libraries. The language models used for polarity calculation were imple-
mented in TensorFlow. TensorFlow enables consuming state-of-the-art language
models as a service, decoupling this architecture from the rest of the solution
and allowing the implementation of an automated ML-ops flow to inject updates
and model changes. Note the clear separation of operations performed on the
ingested data. This flow allows for consuming data as streams, thus allowing
using this solution as a decision-making tool by providing near real-time data
processing.

Remember that point (3) is the sentiment polarity evaluation triggered by
PubSub and supports multiple endpoints. This makes it easy to swap solutions

Tracking the COVID-19 Emotional Response in Mexico 153

or keep multiple language models evaluating data in parallel and putting results
in different BigTable instances. We used for sentiment polarity evaluation the
VADER, BERTweet and RoBERTa language models, for they cover both state-of-the-
art implementations as well as rule-based, well tested systems. Both BERTweet
and RoBERTA are based on BERT, which needs around 350M parameters to per-
form forward and back propagation, needed to evaluate sentiment polarity [4].
However, the system can keep up with tweet consumption by exploiting CUDA
technology, both in the software and hardware layer, thus providing reliable
results promptly.

For point (4), Dataproc provides a managed Apache Hadoop/Spark clus-
ter that provides Big Data capabilities. We choose to perform data analytics
on an extensive batch data set. However, Apache Spark also provides stream-
ing capabilities, and this combined with infrastructure-as-code practices, makes
trivial the decision of batch vs. streaming data analytics. This flexibility permits
batch-processing large amounts of data or providing near real-time data results
by processing it as it is consumed in a streaming fashion. Both are proven to be
helpful in different use cases.

It is also worth mentioning the MLops practices used throughout this project
and not described by Fig. 2. Besides hosting the utilized code in GitHub, we inte-
grated and utilized Google Cloud Deployment Manager to describe as plain
text files the services and infrastructure used, detect changes in them, and auto-
matically propagate changes in the solution. More details on the infrastructure
are provided in the next section. This practice, coupled with tagging and ver-
sioning of the utilized language models, allows for auto-deployments with a solid
integration with TensorFlow Serving and infrastructure management as if it
were code. While this practice requires robust up-front investment in develop-
ment time, it provides flexibility and resources to maintain a high-quality stan-
dard in the development and experimentation cycle, such as pair programming,
code reviews, and automated unit testing.

4 Experiments

This research work consumed a large dataset of tweets, collected from an open-
access repository called the COVID-19 Twitter chatter dataset [1], and is com-
posed of COVID-19-related tweets, in multiple languages and all over the world.
From them, we downloaded n = 760, 064, 879 unique tweets using the official
Twitter API, regardless of language but confined to the geographical region of
Mexico and from February 1 to December 31, 2020. These were filtered down
to n = 2, 142, 800 unique tweets and stripped of any metadata, with light text
preprocessing to clean URLs and similar operations. The sentiment polarity was
then calculated using several language models, from which a time series was
generated, followed by a similar analysis to that of [16].

The system was designed following a serverless, cloud-based architecture as
described in Sect. 3, Method. Our system was implemented entirely in the Google
Cloud Platform, using Python 3.7 for any code development, data transforma-
tion, or aggregation, as well as language model implementations.

154 E. León-Sandoval et al.

Table 2. Summary of machine types provided by GCP. Note that there are multiple
configurations for GPUs as well, but these are only available in A2 instances.

Instance type CPUs Memory GPUs SSD interruptable

E2 (grl) 2∼32 0.5∼8 GB 0 no yes

E2 (shared) 0.25∼1 0.5∼8 GB 0 no yes

A2 12∼96 7GB 1∼4 yes yes

A2 (mega) 96 14GB 1∼16 yes yes

However, there is a hard limit on Twitter’s consumption rate, set to 450
requests per 15-min window, and a ceiling of total tweets consumed [25]. GCP
offers multiple configuration options, considering the number of machines to be
provided, although the load-balancer dynamically decides this and the type of
machine. Table 2 summarizes the machines types [7], from which we set up three
different environments:

1. Reduction costs by selecting the E2 machine family, which has a low number
of shared CPUs and no GPU option.

2. Providing a fast throughput by selecting the E2 machine family, which comes
with a fair number of dedicated CPUs and has multiple GPU options, and
finally,

3. A hybrid approach, in which we utilize the data pipelines, but the processing
is performed locally.

Table 3. Summary of performance of GPUs offered by GCP, in TFLOPS.

Metric A100 T4 V100 P4 P100

FP64 9.7 0.25 7.8 0.2 4.7

FP32 19.5 8.1 15.7 5.5 9.3

FP16 18.7

INT8 22

FP64 19.5

TF32 156

FP16 312 65 125

INT8 624 180

INT4 1248 260

The local setup consists of a single laptop machine, with 8 CPU cores of
Intel’s i7-6700 at 2.6 GHz processors, 16 GB, and a 950 m GPU which provides
640 Maxwell GPU cores for a maximum of 1439 GFLOPS for FP32 operations and

Tracking the COVID-19 Emotional Response in Mexico 155

44.96 GFLOPS for FP64 operations. The GPU options offered by GCP are sum-
marized in Table 3, coming at higher costs and significantly better performance
[6]. The language models were implemented using Python 3.7 and TensorFlow
with Keras, providing a tight hardware integration, allowing us to take advan-
tage of the GPUs equipped fully. The following section summarizes and compares
the results obtained in these configurations.

5 Results

Our system was built to be able to consume a large dataset of tweets collected
from an open-access repository of global COVID-19-related tweets, called the
COVID-19 Twitter chatter dataset [1]. The system was designed to collect every
tweet posted related to the pandemic in various geographic locations, with over
n = 760, 064, 879 unique tweets, all COVID-19 related and written in multiple
languages. These tweets flow into a pre-processing stage, where they are cleaned
up and made ready for consumption by the language models and further nar-
rowed down to a total of over n = 2, 142, 800 unique tweets. Then, the algorithm
goes into a sentiment analysis phase, where the tweet’s sentiment polarity is
calculated using multiple language models; in particular, the method utilized
to evaluate the consumed tweets used the following implementations: VADER,
BERTweet, and RoBERTa. Then, the data is analyzed as a time series, following
the same methodology set by [16].

Note that the system could consume and process this large amount of tweets,
storing partial results for each stage of the data flow and keeping separated ver-
sions running in parallel for the multiple language models utilized. One consid-
erable limitation is Twitter’s API rate limit, which is enforced to be 450 requests
per 15-minute window, and comes with a low-ceiling cap on the total of tweets
consumed. However, a particular academic rate helps these hard limits [25].

To keep costs low, the method utilized the E2 machines types provided by
GCP [7] and summarized in Table 2, which comes with a low number of shared
CPUs, reaching an evaluation rate of around 4 tweets per second using both
BERTweet and RoBERTa. Keep in mind that these models depend on around
350M parameters. Still, this consumption rate is slightly faster than Twitter’s
rate limit, so this configuration provides a constant throughput while keeping
the costs low. Also, note that these rates use low-cost E2 machine types with no
GPU options. GPUs can be configured independently of the machine type, as
long as it is in the A2 family [6].

A single GPU can provide performance of several TFLOPs, exploited well by
the TensorFlow environment. Table 3 summarizes the performance achieved by
the multiple GPU family types made available by GCP, all measurements are
shown in TFLOPs. However, to keep costs further down, the method exploited
the independence of the modules. We evaluated several of the sentiment analysis
tasks in a local laptop, with 8 CPU cores of Intel’s i7-6700 at 2.6 GHz processors,
16 GB, and a 950m GPU which provides 640 Maxwell GPU cores for a maximum
of 1439 GFLOPS for FP32 operations and 44.96 GFLOPS for FP64 operations. While

156 E. León-Sandoval et al.

it is not ideal, the method did see a significant speed-up over the CPU-only
evaluation of language models. Thus, choosing the language model based on the
target performance and budget is recommended, which can be processed with
CPUs and VADER with no issues whatsoever or use a powerful, yet expensive
BERT architecture and GPUs.

Fig. 3. Year-long time series of daily averaged of compound sentiment polarity of
COVID-19 related tweets, de-trended, in Mexico. This represents a time series based
on the same dataset collected by [1] and restricted to Mexico, from February 2 to
December 31 2020. Data was smoothed over via a 7-day rolling means.

Figure 3 shows a summary of the study results. For more details, please refer
to [16], but suffice to say that it was possible to perform on time. As can be
observed, an almost zero trend is present in the time series, with a slope of
y = −2.2087107971 + 0.0001110643x and an ARIMA model fit with a very
small p-value (of 2.2e−16). We also observe a robust weekly seasonality, which is
expected from the Twitter data and was also observed by [12]. Another point to
note is the change in tweet volume. Before the pandemic declaration, the average
volume of tweets in Mexico was 20, 971 per day, adding to a total of 608, 170
tweets for the month. March presented an average of 46, 767 tweets per day and
1, 449, 768 tweets for the month alone. This represents an increase in the volume
of 238.382% between these two months.

Tracking the COVID-19 Emotional Response in Mexico 157

6 Conclusions

We presented a flexible system design that supports dynamic scaling and is capa-
ble of promptly consuming a large amount of data, which was then used to track
the emotional well-being of the Mexican population from February to Decem-
ber 2020. For this, we consumed more than n = 760, 064, 879 unique tweets, all
related to COVID-19 and written in multiple languages. We have shown that
this system can process such a large amount of data, both in batch and stream-
ing modes, while still being capable of swapping out multiple language models
and facilitating data exploration and visualization. For the language models, we
worked with both rule-based models, VADER, and state-of-the-art attention-
based deep learning models, with BERTweet and RoBERTa, by simply plugging
them into the appropriate stage in the data pipeline. It combined with modern
MLops practices such as auto-deployments, model versioning, and infrastructure-
as-code allows for a cost-effective solution for this big data problem. It mitigates
common issues such as model performance degradation and adversary attacks
and can gracefully handle data volume changes that occur naturally.

We have shown that it is possible to build a large-scale big data system for
sentiment analysis using serverless technology and still achieve high performance.
So near-real-time results by taking advantage of low-level code and hardware
optimization. In our case by exploiting Tensorflow and its CUDA integration.
This architecture presents additional advantages over traditional extensive data
systems. For example, no significant initial investment is required, the software
overhead and maintenance costs are significantly lower than those of Apache’s
Hadoop, and dynamic scaling is possible without any code changes. However, this
system does present some drawbacks. The hosted services are off-site, with little
to no control on our part, making security concern of the highest importance. To
mitigate this concern, we have stripped the data of any metadata that could be
used to identify a particular individual, such as account IDs. It’s worth noting
that the data utilized, while being a large corpus, is limited to a single year and
country, that of 2020 in Mexico. There is no technical reason for having this
limitation, and the system is fully capable of consuming an enormous amount
of data. Also, in the future, we would like to develop visualization dashboards
to provide instant feedback to decision-making organizations and to see a more
extensive adoption in many organizations that include emotional data in their
decision-making policies.

References

1. Banda, J.M., et al.: A large-scale COVID-19 twitter chatter dataset for open sci-
entific research - an international collaboration, February 2021. https://doi.org/
10.5281/zenodo.4540809

2. Bhuvaneswari, M., et al.: Handling of voluminous tweets and analyzing the senti-
ment of tweets. In: 2019 5th International Conference on Advanced Computing &
Communication Systems (ICACCS), pp. 360–364. IEEE (2019)

https://doi.org/10.5281/zenodo.4540809
https://doi.org/10.5281/zenodo.4540809

158 E. León-Sandoval et al.

3. Cenni, D., Nesi, P., Pantaleo, G., Zaza, I.: Twitter vigilance: a multi-user
platform for cross-domain twitter data analytics, NLP and sentiment analysis.
In: 2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced
and Trusted Computed, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People and Smart City Innovation, Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017, pp. 1–8 (2018). https://
doi.org/10.1109/UIC-ATC.2017.8397589

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. arXiv: Computation and
Language (2018). MAG ID: 2896457183

5. El Alaoui, I., Gahi, Y., Messoussi, R.: Full consideration of big data characteristics
in sentiment analysis context. In: 2019 IEEE 4th International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA), pp. 126–130. IEEE (2019)

6. Google: GCP’s GPU offering (2022). https://cloud.google.com/compute/docs/
gpus

7. Google: GCP’s machine types (2022). https://cloud.google.com/compute/docs/
machine-types

8. Heisler, Y.: Twitter’s 280 character limit increased engagement without increasing
the average tweet length (2018). https://bgr.com/2018/02/08/twitter-character-
limit-280-vs-140-user-engagement/

9. Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment anal-
ysis of social media text. In: Proceedings of the International AAAI Conference on
Web and Social Media, vol. 8 (2014)

10. InternetLiveStats.com: Internet live stats (2019). https://www.internetlivestats.
com/one-second/#tweets-band

11. Khuc, V.N., Shivade, C., Ramnath, R., Ramanathan, J.: Towards building large-
scale distributed systems for twitter sentiment analysis. In: Proceedings of the
ACM Symposium on Applied Computing, pp. 459–464 (2012). https://doi.org/10.
1145/2245276.2245364

12. Kmetty, Z., Bokányi, E., Bozsonyi, K.: Seasonality pattern of suicides in the us-a
comparative analysis of a twitter based bad-mood index and committed suicides.
Intersect. East Eur. J. Soc. Polit. 3(1), 56–75 (2017)

13. Kumamoto, T., Wada, H., Suzuki, T.: Visualizing temporal changes in impressions
from tweets. In: ACM International Conference Proceeding Series, pp. 116–125,
04–06 December 2014. https://doi.org/10.1145/2684200.2684279

14. Kumar, M., Bala, A.: Analyzing twitter sentiments through big data. In: 2016
3rd International Conference on Computing for Sustainable Global Development
(INDIACom), pp. 2628–2631. IEEE (2016)

15. Laney, D., et al.: 3D data management: controlling data volume, velocity and
variety. META Group Res. Note 6(70), 1 (2001)

16. León-Sandoval, E., Zareei, M., Barbosa-Santillán, L.I., Falcón Morales, L.E., Pareja
Lora, A., Ochoa Ruiz, G.: Monitoring the emotional response to the COVID-19
pandemic using sentiment analysis: a case study in Mexico. Comput. Intell. Neu-
rosci. 2022 (2022). https://doi.org/10.1155/2022/4914665. publisher: Hindawi

17. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach.
arXiv: Computation and Language (2019). MAG ID: 2965373594

18. Loureiro, D., Barbieri, F., Neves, L., Anke, L.E., Camacho-Collados, J.: TimeLMs:
diachronic language models from twitter. arXiv:2202.03829 (2022), http://arxiv.
org/abs/2202.03829

https://doi.org/10.1109/UIC-ATC.2017.8397589
https://doi.org/10.1109/UIC-ATC.2017.8397589
http://arxiv.org/abs/Computation
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://bgr.com/2018/02/08/twitter-character-limit-280-vs-140-user-engagement/
https://bgr.com/2018/02/08/twitter-character-limit-280-vs-140-user-engagement/
https://www.internetlivestats.com/one-second/#tweets-band
https://www.internetlivestats.com/one-second/#tweets-band
https://doi.org/10.1145/2245276.2245364
https://doi.org/10.1145/2245276.2245364
https://doi.org/10.1145/2684200.2684279
https://doi.org/10.1155/2022/4914665
http://arxiv.org/abs/Computation
http://arxiv.org/abs/2202.03829
http://arxiv.org/abs/2202.03829
http://arxiv.org/abs/2202.03829

Tracking the COVID-19 Emotional Response in Mexico 159

19. Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.:
Twitinfo: aggregating and visualizing microblogs for event exploration. In: Confer-
ence on Human Factors in Computing Systems - Proceedings, pp. 227–236 (2011).
https://doi.org/10.1145/1978942.1978975

20. Nguyen, D.Q., Vu, T., Nguyen, A.T.: BERTweet: a pre-trained language model for
English tweets. arXiv:2005.10200 (2020), http://arxiv.org/abs/2005.10200

21. Ramı́rez, H.L.G.: Twitter - undersecretaries of prevention and health promotion
(2020). https://twitter.com/HLGatell/status/1233245568668966913

22. Sathya, V., Venkataramanan, A., Tiwari, A., Dev Daksan, P.S.: Ascertaining
public opinion through sentiment analysis. In: Proceedings of the 3rd Interna-
tional Conference on Computing Methodologies and Communication, ICCMC 2019
(ICCMC), pp. 1139–1143 (2019). https://doi.org/10.1109/ICCMC.2019.8819738

23. Sehgal, D., Agarwal, A.K.: Sentiment analysis of big data applications using twitter
data with the help of HADOOP framework. In: 2016 International Conference
System Modeling & Advancement in Research Trends (SMART), pp. 251–255.
IEEE (2016)

24. Twitter: Twitter’s object model definition (2022). https://developer.twitter.com/
en/docs/twitter-api/data-dictionary/object-model/tweet

25. Twitter: Twitter’s public API access level policy (2022). https://developer.twitter.
com/en/docs/twitter-api/getting-started/about-Twitter-api#v2-access-level

26. Victor, P., Lijo, V.: A big data processing framework for polarity detection in social
network data. In: 2019 5th International Conference on Advanced Computing &
Communication Systems (ICACCS), pp. 291–295. IEEE (2019)

27. Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time
twitter sentiment analysis of 2012 US presidential election cycle. In: Proceedings
of the ACL 2012 System Demonstrations, ACL 2012, pp. 115–120. Association for
Computational Linguistics (2012)

28. Ylijoki, O., Porras, J.: Perspectives to definition of big data: a mapping study and
discussion. J. Innov. Manage. 4, 69–91 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1978942.1978975
http://arxiv.org/abs/2005.10200
http://arxiv.org/abs/2005.10200
https://twitter.com/HLGatell/status/1233245568668966913
https://doi.org/10.1109/ICCMC.2019.8819738
https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/tweet
https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/tweet
https://developer.twitter.com/en/docs/twitter-api/getting-started/about-Twitter-api#v2-access-level
https://developer.twitter.com/en/docs/twitter-api/getting-started/about-Twitter-api#v2-access-level
http://creativecommons.org/licenses/by/4.0/

Multi-GPU 3-D Reverse Time Migration
with Minimum I/O

Carlos H. S. Barbosa(B) and Alvaro L. G. A. Coutinho

High-Performance Computing Center, COPPE Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil

{c.barbosa,alvaro}@nacad.ufrj.br

Abstract. Seismic imaging techniques based on two-way wave equa-
tions are computationally and data-intensive activities in the oil and
gas industry. For instance, Reverse Time Migration (RTM) migrates a
set of SEG-Y format data from the disk called a seismogram. Besides,
during execution, the RTM application needs to store the forward-
propagated wavefield (or source wavefield) on disk to build the final
seismic image. Storing the source wavefield for multiple RTMs execut-
ing in parallel is even more challenging because the storage capacity can
reach tens of Terabytes of information. Aiming to mitigate the storage
demand, we develop a 3-D RTM with source wavefield reconstruction.
The source wavefield is reconstructed by introducing a new wave equa-
tion to the problem and adjusting the initial and boundary conditions
to take advantage of random boundary conditions’ (RBC) properties.
The RBC does not suppress unwanted waves coming from the artificial
boundary enabling full wavefield recovery. We also develop a hybrid Ope-
nACC/MPI implementation for the 3-D RTM on a multi-GPU machine.
We test the RTM implementation on the 3-D HPC4E Seismic Test Suite.
The numerical experiments show that the OpenACC/MPI 3-D RTM,
which implements the wavefield reconstruction, presents the best execu-
tion times and hard disk demands.

Keywords: High performance computing · Reverse time migration ·
Wavefield reconstruction and OpenACC/MPI implementation

1 Introduction

Reverse Time Migration (RTM) is a depth migration technique that provides a
reliable high-resolution representation of the Earth subsurface, useful for seismic
interpretation and reservoir characterization [26]. RTM is based on the two-way
wave equation and an appropriate imaging condition. Generally, the two-way
wave equation is solved by numerical methods such as the Finite Difference
Method (FDM) and the Finite Element Method (FEM). Besides, imaging con-
ditions need the computational implementation of the forward-propagated wave-
field (or source wavefield) for further access in reversal order to build the seismic
image.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 160–173, 2022.
https://doi.org/10.1007/978-3-031-23821-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_12&domain=pdf
http://orcid.org/0000-0002-1420-9118
http://orcid.org/0000-0002-4764-1142
https://doi.org/10.1007/978-3-031-23821-5_12

Multi-GPU Reverse Time Migration 161

Advances in wave propagation algorithms and wavefield storage develop-
ments, and hardware acceleration implementations are some of the main chal-
lenges concerning RTM [26]. For instance, the most effective non-reflecting
boundary condition, Perfectly Matched Layer (PML), demands additional par-
tial differential equations (PDEs) to be solved on artificial layers around the
domain [9,17] to deal with unwanted reflections due to truncated domains. A way
to overcome this issue is to use the random boundary conditions (RBC) proposed
by [6]. Thus, instead of suppressing unwanted waves by inserting new equations
into the problem, the methodology proposed by [6] is based on exploring low
correlations with non-coherent signals coming from an artificial boundary with
random velocities. On the other hand, the source wavefield in the RTM technique
is a bottleneck due to the amount of information that has to be stored on a disk
to build the imaging condition [26]. Strategies to diminish input/output (I/O)
related to the source wavefield storage or its reconstruction are presented by
[1,5–7,13,16,22,23]. Among them, [22] presented two strategies to reduce data
storage, where one is based on the Nyquist sampling theorem, and the second
one uses a lossless compression algorithm. In this sense, [1] studied the numerical
impact of applying lossless and lossy compression to the RTM source wavefield.
They show that the careful use of high levels of data compression can signifi-
cantly reduce the storage demand without hampering the final seismic images.
However, instead of storing the wavefield, its reconstruction is a viable possibil-
ity. This can be done by checkpoint methods [7,23], using wavefield recording
around the boundary [5,16], or by initial value reconstruction (IVR) [6,13,16].

Independent of the RTM implementation strategy, all can use HPC tech-
niques to boost their performance. [18] implemented the seismic modeling and
RTM on single and multi-GPUs using a hybrid MPI+OpenACC approach aiming
to develop portable high-level directive-based codes across heterogeneous plat-
forms for seismic imaging applications. [20] evaluated three different computa-
tional optimizations based on multicore and GPU architectures and investigated
their codes’ performance, energy efficiency, and portability. Nevertheless, the
storage demand issue remained in the RTM-based GPU implementations pre-
sented by the earlier research. For this, [15] implemented the RTM with RBC
to diminish the storage demand in migration algorithms showing that such a
strategy is beneficial for GPU implementations. The GPU computational imple-
mentation with the RBC technique was coded in CUDA and tested only for
2-D RTM applications. For 3-D environments, [2] developed a wave propagation
modeler and a RTM algorithm exploring the main RBC characteristics. It was
shown that RTM with RBCs performs better on vector processors and GPU
machines than CPU platforms.

In this context, we developed an RTM approach for 3-D environments that
explore the main characteristics of the RBC to mitigate calculations on the arti-
ficial boundaries and enable the source wavefield reconstruction. The RTM with
wavefield reconstruction takes advantage of the RBC’s non-dissipative energy
property and implements the IVR technique to build the imaging condition with
minimum storage. Our implementation is particularly suited for GPUs because

162 C. H. S. Barbosa and A. L. G. A. Coutinho

we eliminate the need for storage for the whole source wavefield. We present
the computational times and disk storage results for two algorithmic choices
(with and without IO) in two different computational platforms: a CPU clus-
ter and a CPU-GPU cluster. We show that our computational implementations
are efficient, scalable, and portable with minimum interference on the optimized
baseline code.

The remainder of the work is organized by introducing the RTM mathe-
matical background in Sect. 2. Section 3 details the computational implemen-
tation along with optimizations for the NVIDIA V100 platform. In Sect. 4, we
present numerical experiments, where we expose the execution time require-
ments, speedups, and hard disk demand for each computational implementation,
as well as the RTM outcomes (seismic images). The paper ends with a summary
of our main findings in Sect. 5.

2 Reverse Time Migration

Reverse Time Migration (RTM) is a depth migration technique based on the
two-way wave equation, and an imaging condition [26]. Solving the wave equa-
tion twice to build the imaging condition is necessary. The first solution, called
forward-propagated wavefield (source wavefield), can be obtained by solving the
equation:

∇2p (r, t) − 1
v2 (r)

∂2p (r, t)
∂t2

= f (rs, t) , (1)

where, p is the pressure, v the velocity for the compressional wave, r the spatial
coordinates, t the time in [0, T], and f (rs, t) the seismic source at the position
rs. The pressure p is defined in a domain Ω ⊂ R

3. The second-order differential
equation (1) needs initial and boundary conditions. A natural initial condition
is to define p (r, 0) = ∂p (r, 0) /∂t = 0 for r ∈ Ω. Lastly, we set p (r, t) = 0 on
∂Ω ∈ R

2, where ∂Ω is the domain boundary.
The second solution is obtained by solving the following equation:

∇2p̄ (r, τ) − 1
v2 (r)

∂2p̄ (r, τ)
∂τ2

= s (rr, τ) , (2)

where, p̄ is the backward-propagated wavefield (receiver wavefield), s (rr, τ) is the
seismogram recorded at the receivers positions rr, and τ = T − t is the reversal
time evolution defined as in [8], where τ ∈ [0, T]. p̄ is also defined in Ω ⊂ R

3,
and corresponding initial, and boundary conditions should be set. Once we have
the source and receiver wavefields, the imaging condition can be calculated as:

I (r) =
∫ T

0
p (r, t) p̄ (r, τ) dt
∫ T

0
[p (r, t)]2 dt

, (3)

where I (r) is called source-normalized cross-correlated imaging condition. The
source-normalized cross-correlation image in Eq. (3) has the same unit, scaling,
and sign of the reflection coefficient [26].

Multi-GPU Reverse Time Migration 163

3 Computational Implementation and Optimizations

Our RTM implementation employs the explicit Finite Difference Method (FDM)
to solve the acoustic wave equation. The finite difference stencil for Eqs. (1) and
(2) are 8th-order in space and 2nd-order in time. Thus, the numerical discretiza-
tion leads to the discrete version of the velocity field, source wavefield, receiver
wavefield, seismic source, and seismograms represented by the vectors v, p, p̄,
f , and s, respectively. For the 3-D case, the vectors v, p, p̄ have the dimension
N = Nx × Ny × Nz, where Nx, Ny and Nz are the number of grid points in
each Cartesian direction. On the other hand, the seismogram is a vector of size
Nrec × (Nt + 1), where Nrec is the number of receivers, and Nt = T/Δt, with
Δt the time step. Lastly, the seismic source f has dimension Nt for each shot.

3.1 Classical Reverse Time Migration

Algorithm 1 presents the RTM implementation, which is one of the simplest
ways to build the cross-correlated imaging condition. The colors in Algorithm 1
stand for host computations (black), data transfer (blue), and GPU calculations
(red), which will be better explained in Sect. 3.3. The RTM needs as inputs a
velocity field, a seismic source, and a set of seismograms, {s1, · · ·, sNshots

} that
contains information about the medium reflectivity. The computation of the
imaging condition uses the source and receiver wavefield solutions to build the
migrated seismic section that stacks the partial results over time

(
I∑

nτ

)
, and

over the number of seismograms
(
I∑

shot_id

)
. We compute the source wavefield

by solving the wave equation with the independent term being the seismic source
and storing it in disk for further access (step 10 in red). On the other hand,
the recorded seismograms induce the computation of the receiver wavefield. At
the end of Algorithm 1, we obtain the discrete seismic image I ∈ R

N , where
the amplitude variations represent physical properties changes. Both source and
receiver wavefields can be obtained by solving the wave equation propagation
over a temporal loop (the inner loops of Algorithm 1 - lines 7 and 14) for each
shot_id (loop in line 4). The shot refers to the seismic source that starts the
wave propagation, and each one is localized in the domain represented by the
finite-difference grid.

A computational implementation of absorbing boundary conditions (ABCs)
leads to non-spurious reflections on the truncated domain. Among the several
options in the literature, the Convolutional Perfectly Matched Layer (CPML)
[9,17] and the damping factors for plane waves introduced by [4] are the most
common. Although unusual in wave propagation simulation studies, the RBCs,
first introduced by [6], can also be employed in seismic imaging methods based
on the two-way wave equation, such as the RTM and FWI [5,6,13,16].

3.2 Reverse Time Migration with Wavefield Reconstruction

Storing and accessing the source wavefield into and from the hard disk is com-
putationally demanding. For instance, the disk requirements to store the source

164 C. H. S. Barbosa and A. L. G. A. Coutinho

Algorithm 1. Reverse Time Migration
Require: v, {s1, · · ·, sNshots}, and f
1: function rtm(vector v, vectors {s1, · · ·, sNshots}, vector f)
2: read v, f , and {s1, · · ·, sNshots}
3: initialize image condition I∑

shot_id = 0
4: for shot_id = 1 to Nshots do
5: initialize nt = 0
6: apply initial conditions for it = 0
7: for it = 1 to Nt do
8: nt = nt + it ∗ Δt
9: solve equation (1) � source wavefield

10: store pnt for all nt

11: end for
12: read sshot_id

13: initialize nτ = 0, and I∑
τ = 0

14: apply initial conditions for iτ = 0
15: for iτ = 1 to Nt do
16: nτ = Nt − (nτ + iτ ∗ Δτ) � reverse time
17: read pnτ

18: solve equation (2) � receiver wavefield
19: calculate I∑

nτ = I∑
nτ + (pnτ p̄nτ) / (pnτ pnτ) � imaging condition

20: end for
21: stack I∑

shot_id = I∑
shot_id + I∑

nτ � stacking
22: end for
23: I ← I∑

shot_id

24: store I
25: end function

wavefield propagation for the 3-D case is 4 × Nshots × Nt × N Bytes, where the
value 4 stands for single precision representation of a real number. Considering
a hypothetical scenario of the wavefield propagation in a grid of 200× 200× 200
grid points during 6.0 s step-wised of 0.5 ms leads to a disk storage demand of
≈ 178.81 GB per shot. Executing the same example in parallel considering 20
shots elevates the disk requirements to 3.5 TB.

Although compression techniques [1,10,11,14], decimation strategies based
on the Nyquist theory [22,25] and checkpoint methods [23] reduces persistent
storage, applications of RTM for large scale for frequencies up to 20.0 Hz is still
challenging [19]. Another way to overcome this issue, explored in this work, is
to reconstruct the wavefield from information generated during the first RTM
part, that is, forward wave propagation [16]. To reconstruct the source wavefield,
we implement the IVR methodology first explored by [7] and [23]. The IVR
proposed by [23] stores temporary states of the wavefield known as checkpoints.
Such states are after used for recursive re-computations of the source wavefield.
The complete reconstruction of the wavefield can be achieved by keeping all
energy in the system. However, unwanted signals come from the boundary due
to the absence of attenuated layers in truncated domains. This issue can be

Multi-GPU Reverse Time Migration 165

circumvented by generating incoherent signals coming from the boundary, as
explored in [6], by introducing boundaries with randomized velocities.

The RBC proposed by [6] is based on the idea that what matters for the cal-
culation of the RTM imaging condition is the coherent reflections coming from
the boundaries. Thus, [6] proposed to introduce a random component to the
velocity field at the boundaries. Notice that the random velocity field has to
respect the numerical stability constraint of the FDM. It is expected that the
random source wavefield coming from the boundaries does not coherently cor-
relate with the receiver wavefield. Besides, a smoother transition from the inner
domain to the boundaries is ideal. The smooth transition will avoid unwanted
immediate reflections of the randomized area. One way to build a smooth tran-
sition area is by multiplying coefficients ci to the random vector velocity v in
the normal direction to the boundaries, where the index i ∈ [1, · · ·, Na] with Na

been the boundary thickness size. The coefficients are responsible for decreasing
down the velocities values, and [21] suggested the values computed by linear and
Gaussian functions.

Further, this strategy does not impose an extra cost on the wave equation
calculation. An alternative way to avoid coherent signals coming from the bound-
aries is presented by [13], where they used an extra viscoacoustic wave equation
in the boundaries to attenuate the wavefield. In this work, we employ the strategy
presented in [21]. Details of the RBC algorithm can be observed in [6]. Here, we
will describe the modifications for Algorithm 1 aiming to eliminate the storage
requirements of the forward-propagated wavefield.

First, we need a third second-order wave equation as follows:

∇2pR (r, τ) − 1
v2 (r)

∂2pR (r, τ)
∂τ2

= 0, (4)

where pR is the reconstructed source wavefield defined in Ω ⊂ R
3. Boundary

conditions can be set as Eqs. (1), and (2), that is pR (r, t) = 0 on ∂Ω. Lastly, the
initial conditions are set as pR (r, 0) = p (r, T), and ∂pR (r, 0) /∂t = ∂p (r, T) /∂t
after solving Eq. 1, and τ = T − t is the reversal time.

Algorithm 2 details the RTM that implements the source wavefield recon-
struction. Again, the color pattern represents the host computations (black),
data transfer (blue), and GPU calculations (red), which will be better explained
in Sect. 3.3. We use the vector pR to represent the finite difference discretization
of Eq. (4). The first part of the RTM with wavefield reconstruction calculates the
source wavefield, and the last two instants of the wavefield are stored (line 11).
After reading the stored wavefield instants, the second part of the algorithm,
that calculates the receiver wavefield, also computes the reconstruction of the
source wavefield pR by solving Eq. (4). Thus, the modified algorithm stores only
two source wavefield panels instead of all panels for each nt. This strategy comes
with the additional cost of solving one extra wave equation.

166 C. H. S. Barbosa and A. L. G. A. Coutinho

Algorithm 2. Reverse Time Migration with Wavefield Reconstruction
Require: v, {s1, · · ·, sNshots}, and f
1: function rtm(vector v, vectors {s1, · · ·, sNshots}, vector f)
2: read v, f , and {s1, · · ·, sNshots}
3: create a RBC as Algorithm 2 from [6]
4: initialize image condition I∑

shot_id = 0
5: for shot_id = 1 to Nshots do
6: initialize nt = 0
7: apply initial conditions for it = 0
8: for it = 1 to Nt do
9: nt = nt + it ∗ Δt

10: solve equation (1) � source wavefield
11: store pnt for Nt−1, and Nt

12: end for
13: initialize nτ = 0, and I∑

τ = 0
14: read sshot_id

15: read pNt , and pNt−1

16: apply initial conditions for iτ = 0
17: for iτ = 1 to Nt do
18: nτ = Nt − (nτ + iτ ∗ Δτ) � reverse time
19: solve equation (2) � receiver wavefield
20: solve equation (4) � wavefield reconstruction
21: calculate I∑

nτ = I∑
nτ +

(
pR

nτ
p̄nτ

)
/

(
pR

nτ
pR

nτ

)
� imaging condition

22: end for
23: stack I∑

shot_id = I∑
shot_id + I∑

nτ � stacking
24: end for
25: I ← I∑

shot_id

26: store I
27: end function

3.3 Hybrid OpenACC/MPI Implementation

The GPU programming model based on OpenACC directives aims to provide an
easier way for scientific applications coding [12,18]. Besides, compared to CUDA
and OpenCL, OpenACC programming demands less coding efforts in heteroge-
neous environments with CPU+GPU [18,20]. The OpenACC implementation
deals with three main issues: CPU (host) calculations, GPU calculations, and
communications to and from the GPU. Thus, any computational implementation
must maximize the GPU computations and prevent communications between the
host and GPU.

Algorithm 1 also details the host and GPU calculations and the communi-
cation between them. Notice that we use three different colors to represent the
host computations (black), data transfer (blue), and GPU calculations (red).
The first operations made by the host are data allocation followed by disk read-
ing and storage of the velocity field and seismic source information in the vectors
v, and f . These steps are represented in line 2 of Algorithm 1. Lines 8 and 9
show the GPU operations for the wave equation calculation once the necessary

Multi-GPU Reverse Time Migration 167

information is transferred and allocated. Line 10 shows that the source wavefield
needs to be moved during its calculation from the GPU to the host to be stored
on the disk. In general, storing the source wavefield in a disk is needed because
the GPU memory (or RAM) is insufficient to store it. The second part of the
RTM algorithm (lines 12 to 21) moves back the source wavefield from host to
GPU, calculates the receiver wavefield, and builds the imaging condition. The
calculation of the receiver wavefield needs the seismograms stored on the disk.
Thus, the host reads the seismogram from the disk and transfers it to the GPU.
Algorithm 1 requires two data transfers for the velocity field and seismic source,
Nshots data transfers for the seismograms, and 2 × Nt data transfers for the
source wavefield.

The OpenACC implementation based on Algorithm 2 follows the same strat-
egy presented in Algorithm 1. Remember that Algorithm 2 implements the wave-
field reconstruction, and one extra wave equation is required for that. Because of
that, its computational implementation does not fully store the source wavefield,
only the last two time-frames. The data transfer based on the OpenACC imple-
mentation occurs between the two main stages of the RTM technique and not
during the temporal loops as the Algorithm 1. Thus, Algorithm 2 requires only
four data transfers between the GPU and host for the source wavefield. We use
for both Algorithms 1 and 2 the ACC DATA COPYIN directive for transferring
the data from the host to GPU. ACC DATA COPYOUT directive transfers the
data from GPU to host. ACC DATA CREATE allocates necessary vectors in
the GPU. For parallelization, we use the ACC LOOP directive.

Message Passing Interface (MPI) library manages the execution of multiple
shots, where batches of shots are assigned to different allocated MPI processes.
We handle the set of shots per MPI process in lines 4 and 5 of the Algorithms 1
and 2, respectively. Each MPI process can be assigned to a GPU or CPU node.

4 Numerical Experiments

In this section, we present the performance analysis of the 3-D RTM using two
different computational platforms: a CPU cluster and a CPU-GPU machine.
Both belongs to the Santos Dumont system at the National Scientific Computing
Laboratory at Petrópolis/Brazil1. The CPU cluster has Intel Xeon E5-2695v2
Ivy Bridge processors with 2.4 GHZ and 24 cores per node, where the nodes
are connected by an FDR (Forteen Data Rate) infiniband network (56 Gb/s)
All the 24 cores have been used for the CPU experiments. On the other hand,
the CPU-GPU cluster has a CPU Intel Skylake GOLD 6148, 2.4 GHZ with 24
cores and 4 × NVIDIA V100 per node. In this case, the nodes are connected by
an EDR (Enhanced Data Rate) infiniband network (100 Gb/s). Both CPU and
CPU-GPU nodes are supported by a Lustre filesystem v2.12.

We have chosen the MODEL AF provided by the HPC4E Seismic Test Suite2
for the 3-D RTM experiments. Figure 1 shows the velocity field provided by the
1 https://sdumont.lncc.br/support_manual.php?pg=support.
2 https://hpc4e.bsc.es/downloads/hpc-geophysical-simulation-test-suite.

https://sdumont.lncc.br/support_manual.php?pg=support
https://hpc4e.bsc.es/downloads/hpc-geophysical-simulation-test-suite

168 C. H. S. Barbosa and A. L. G. A. Coutinho

HPC4E benchmark defined as MODEL AF. The MODEL AF is a model designed
as a set of 15 layers with constant velocity values and flat topography. Besides,
the velocity parameter model (velocity field) covers an area of 10 × 10 × 4.5
km. We have used a 501 × 501 × 235 grid size with 25.0 m of grid space to
represent the velocity field. Notice that the grid size for the 3-D cases includes
Na = 50 and half of the finite difference stencil length at the top of the velocity
model to simulate the free surface. We used the Ricker seismic source [24] with
20 Hz cutoff frequency placed near the surface. The total acquisition time is
6.0 seconds step-wised of 1.0 ms. The experiments consist of running the RTM
implementations for a single shot and a seismic acquisition and presenting the
execution times, disk requirements, and speed-ups.

Fig. 1. 3-D velocity field provided by the HPC4E Seismic Test Suite.

Single Shot Experiment: The first experiment consists of executing the RTM
applications for a single seismic source (single shot) located at [5000, 5000] m.
The RTM follows the implementations presented in Algorithms 1 and 2. The
seismograms for the RTM are represented by the seismic signals recorded in a
seismic survey. The receiver geometry of the seismogram follows the expressions:

rx = 25.0(i − 1) + 1012.5 with i = 1, · · ·, 320, (5)
ry = 25.0(j − 1) + 1012.5 with j = 1, · · ·, 320, (6)

where, the pair [rx, ry] meters represents the receiver locations on the surface.
Table 1 shows the average time execution and the hard disk requirements for

the 3-D RTM implementations. The RTM based on Algorithm 1 requires the
full storage of the source wavefield. Nevertheless, instead of storing the source
wavefield for every time step (Δt) based on the FDM, we took advantage of the

Multi-GPU Reverse Time Migration 169

Nyquist theory as explored by [22] to store the wavefield at the Nyquist time step
to reduce the amount of information. The Nyquist time step Δtnyq is defined as,

Δtnyq =
1

2(fmax − fmin)
, (7)

where fmax and fmin are the highest and lowest frequency of the seismic source.
For the Ricker wavelet that we use for the RTM test case, fmax = 100.0 Hz and
fmin = 0.0 Hz. Thus, the Nyquist time step based on Eq. 7 is Δtnyq = 10.0 ms
against to Δt = 1.0 ms, 10 times bigger than the FDM time step.

Hence, Algorithm 1 which implements the wavefield storage requires 132.062
GB of hard disk for NVIDIA V100 against 0.439 GB of the wavefield reconstruc-
tion implementation (Algorithm 2). The best average execution time refers to
the RTM that implements the wavefield reconstruction. The RTM with wavefield
reconstruction is ≈ 2.11× faster than the wavefield storage implementation on
NVIDIA V100. Although the storage demand decreases drastically from 132.062
GB to 0.439 GB, the same does not occur in the total execution time. We observe
that in both Algorithms 1 and 2 the forward and backward solutions of the wave
equation take 80.0 s. In Algorithm 1, all the remaining time is spent in I/O. How-
ever, in Algorithm 2, the wavefield reconstruction takes most of the additional
execution time.

Table 1. Comparison of hard disk and time requirements for the 3-D RTM implemen-
tation with wavefield storage, and wavefield reconstruction.

Method Platform Hard disk (GB) Av. time (s) [variance (s)]

Wavefield Storage NVIDIA V100 132.062 256.166 [46.810]
Wavefield Reconstruction NVIDIA V100 0.439 121.431 [1.371]

We also compare the RTM speedups across the platforms CPU Cluster and
NVIDIA V100. For the OpenMP RTM implementation, we follow [1,3], where
we implement an MPI/OpenMP+vectorization strategy on multi-core machines.
The implementation takes advantage of OpenMP directives to explore multiple
cores parallelism, it supports Single-Instruction-Multiple-Data (SIMD) model
and memory alignment to ensure vectorization. We can see in Fig. 2 that the
OpenMP implementation speedup is 12.09, and the OpenACC implementation
speedup is 54.62. All the implementations for the platform comparisons are based
on Algorithm 2 which describes the RTM with wavefield reconstruction and
requires minimum I/O. Thus, the performance of the RTM implementation with
OpenACC is 4.52× OpenMP implementation.

Seismic Survey Experiment: The final experiments consider running the RTM
for a survey geometry with 1681 seismograms. The geometry acquisition for the
seismic survey follows the expressions:

170 C. H. S. Barbosa and A. L. G. A. Coutinho

Fig. 2. Reverse Time Migration speedup across the platforms Santos Dumont CPU
Cluster and NVIDIA V100 for the 501 × 501 × 235 grid.

sx = 200.0(i − 1) + 1000.0 with i = 1, · · ·, 41, (8)
sy = 200.0(j − 1) + 1000.0 with j = 1, · · ·, 41, (9)

where, the pair [sx, sy] meters represents the seismic source locations near the
surface.

Firstly, we compare the total time of executing the RTM on CPU Cluster and
NVIDIA V100. For the CPU cluster, we consider 16 nodes, where each node has
24 physical cores. Considering the GPU machine, we set 4 nodes because each
one has 4 NVIDIA V100 adding up to 16 GPUs. Table 2 shows the total time of
executing the RTM with wavefield reconstruction on CPU cluster and NVIDIA
V100. We can see that the OpenACC implementation performs better than the
OpenMP implementation for the same strategy which eliminates I/O related to
the source wavefield. In this experiment, the RTM considering 16 NVIDIA GPUs
is 7.62 times faster than the RTM running on 16 CPUs nodes.

Table 2. Comparison of the total execution time or the 3-D RTM implementation
with wavefield reconstruction on CPU cluster and NVIDIA V100.

Method Platform Total time

Wavefield reconstruction CPU cluster 1259 min 22.560 s
Wavefield reconstruction NVIDIA V100 170 min 56.420 s

Figure 3 shows the stacked seismic image for one migrated shot of the 3-D
HPC4E Seismic Test Suite benchmark. We generated the observed seismogram

Multi-GPU Reverse Time Migration 171

by simulating the wave propagation and recording the seismic signals at the
locations following the Eqs. 5 and 6 near the surface at 25.0 m in depth. The
survey acquisition follows the geometry expressed in Eqs. 8 and 9 and takes into
account 1681 shots.

Fig. 3. Seismic image for the 3-D HPC4E Seismic Test Suite.

5 Conclusions

This work studies RTM algorithms for 3-D environments that mitigate the source
wavefield’s storage and explores hybrid architectures for speeding-up seismic
applications. We eliminate the need of storing the source wavefield by recon-
structing it through IVR based on the RBC. The RBC mitigates calculations on
the artificial boundaries simplifying coding compared to versions with damping
layers. Our algorithmic choices benefit computational architectures like GPUs.
For instance, our numerical experiments show that the RTM based on the wave-
field reconstruction performed better on the NVIDIA V100 than on Intel Xeon
multi-CPUs platforms for 3-D applications. Besides, the 3-D RTM algorithms
based on the wavefield reconstruction demand less storage and are faster than
the classical RTM storing the source wavefield. We also compare the RTM exe-
cution time with wavefield reconstruction for a seismic survey with 1681 shots.
In this case, the RTM takes advantage of multi-GPUs and multi-CPUs to run
the entire application. The RTM for multi-GPUs is 7.62 times faster than the
RTM for multi-CPUs platforms. We use high-level programming models such as
OpenACC for the NVIDIA GPU and OpenMP for the Multi-CPU for all compu-
tational implementations. The high-level programming models allow code porta-
bility and little code interference on the optimized baseline version. We point
out that the computational implementation based on the OpenACC library is

172 C. H. S. Barbosa and A. L. G. A. Coutinho

one of the simplest ways to produce fast and portable codes maintaining high-
performance rates. Nevertheless, further performance gains can be obtained by
using tailored optimizations, sacrificing portability.

Acknowledgements. This study was financed in part by CAPES, Brazil Finance
Code 001. This work is also partially supported by FAPERJ, CNPq, and Petrobras.
Computer time on Santos Dumont machine at the National Scientific Computing Lab-
oratory (LNCC - Petrópolis).

References

1. Barbosa, C.H., Coutinho, A.L.: Enhancing reverse time migration: hybrid paral-
lelism plus data compression. In: Proceedings of the XLI Ibero-Latin-American
Congress on Computational Methods in Engineering. ABMEC (2020)

2. Barbosa, C.H., Coutinho, A.L.: Seismic modeling and migration with random
boundaries on the NEC SX-Aurora TSUBASA. arXiv preprint arXiv:2204.03380
(2022)

3. Barbosa, C.H., et al.: A workflow for seismic imaging with quantified uncertainty.
Comput. Geosci. 145, 104615 (2020)

4. Cerjan, C., Kosloff, D., Kosloff, R., Reshef, M.: A nonreflecting boundary condition
for discrete acoustic and elastic wave equations. Geophysics 50(4), 705–708 (1985)

5. Clapp, R.G.: Reverse time migration: saving the boundaries. Stanford Exploration
Project 137 (2008)

6. Clapp, R.G.: Reverse time migration with random boundaries. In: SEG Technical
Program Expanded Abstracts 2009, pp. 2809–2813. Society of Exploration Geo-
physicists (2009)

7. Faria, E.: Migração antes do empilhamento utilizando propagação reversa no
tempo, January 1986. http://www.cpgg.ufba.br/pgeof/resumos/gfm/gfm0056a.
html

8. Givoli, D.: Time reversal as a computational tool in acoustics and elastodynamics.
J. Comput. Acoust. 22(03), 1430001 (2014)

9. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer
improved at grazing incidence for the seismic wave equation. Geophysics 72(5),
SM155–SM167 (2007)

10. Kukreja, N., Hückelheim, J., Louboutin, M., Hovland, P., Gorman, G.: Combin-
ing checkpointing and data compression to accelerate adjoint-based optimization
problems. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 87–100.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7_7

11. Kukreja, N., Hückelheim, J., Louboutin, M., Washbourne, J., Kelly, P.H., Gorman,
G.J.: Lossy checkpoint compression in full waveform inversion: a case study with
ZFPv0. 5.5 and the overthrust model. Geosci. Model Dev. 15(9), 3815–3829 (2022)

12. Kushida, N., Lin, Y.-T., Nielsen, P., Le Bras, R.: Acceleration in acoustic wave
propagation modelling using OpenACC/OpenMP and its hybrid for the global
monitoring system. In: Wienke, S., Bhalachandra, S. (eds.) WACCPD 2019. LNCS,
vol. 12017, pp. 25–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
49943-3_2

13. Li, Q., Fu, L.Y., Wu, R.S., Du, Q.: Efficient acoustic reverse time migration with an
attenuated and reversible random boundary. IEEE Access 8, 34598–34610 (2020)

http://arxiv.org/abs/2204.03380
http://www.cpgg.ufba.br/pgeof/resumos/gfm/gfm0056a.html
http://www.cpgg.ufba.br/pgeof/resumos/gfm/gfm0056a.html
https://doi.org/10.1007/978-3-030-29400-7_7
https://doi.org/10.1007/978-3-030-49943-3_2
https://doi.org/10.1007/978-3-030-49943-3_2

Multi-GPU Reverse Time Migration 173

14. Lindstrom, P., Chen, P., Lee, E.J.: Reducing disk storage of full-3D seismic wave-
form tomography (F3DT) through lossy online compression. Comput. Geosci. 93,
45–54 (2016)

15. Liu, H., et al.: The issues of prestack reverse time migration and solutions with
graphic processing unit implementation. Geophys. Prospect. 60(5), 906–918 (2012)

16. Nguyen, B.D., McMechan, G.A.: Five ways to avoid storing source wavefield snap-
shots in 2D elastic prestack reverse time migration. Geophysics 80(1), S1–S18
(2015)

17. Pasalic, D., McGarry, R.: Convolutional perfectly matched layer for isotropic
and anisotropic acoustic wave equations. In: SEG Technical Program Expanded
Abstracts 2010, pp. 2925–2929. Society of Exploration Geophysicists (2010)

18. Qawasmeh, A., Hugues, M.R., Calandra, H., Chapman, B.M.: Performance porta-
bility in reverse time migration and seismic modelling via OpenACC. Int. J. High
Perform. Comput. Appl. 31(5), 422–440 (2017)

19. Schuster, G.T.: Seismic Inversion. Society of Exploration Geophysicists, Tulsa
(2017)

20. Serpa, M.S., et al.: Energy efficiency and portability of oil and gas simulations
on multicore and graphics processing unit architectures. Concurr. Comput. Pract.
Exp. 33(18), e6212 (2021)

21. Silva, K.C.: Modelagem, mrt e estudos de iluminação empregando o conceito de
dados sísmicos blended, January 2012. http://www.coc.ufrj.br/pt/dissertacoes-de-
mestrado/112-msc-pt-2012/2265-karen-carrilho-da-silva

22. Sun, W., Fu, L.Y.: Two effective approaches to reduce data storage in reverse time
migration. Comput. Geosci. 56, 69–75 (2013)

23. Symes, W.W.: Reverse time migration with optimal checkpointing. Geophysics
72(5), SM213–SM221 (2007)

24. Wang, Y.: Frequencies of the Ricker wavelet. Geophysics 80(2), A31–A37 (2015)
25. Zand, T., Malcolm, A., Gholami, A., Richardson, A.: Compressed imaging to

reduce storage in adjoint-state calculations. IEEE Trans. Geosci. Remote Sens.
57(11), 9236–9241 (2019)

26. Zhou, H.W., Hu, H., Zou, Z., Wo, Y., Youn, O.: Reverse time migration: a prospect
of seismic imaging methodology. Earth Sci. Rev. 179, 207–227 (2018)

http://www.coc.ufrj.br/pt/dissertacoes-de-mestrado/112-msc-pt-2012/2265-karen-carrilho-da-silva
http://www.coc.ufrj.br/pt/dissertacoes-de-mestrado/112-msc-pt-2012/2265-karen-carrilho-da-silva

ParslRNA-Seq: An Efficient and Scalable
RNAseq Analysis Workflow for Studies

of Differentiated Gene Expression

Kary Ocaña1(B), Lucas Cruz1,2, Micaella Coelho1, Rafael Terra1,
Marcelo Galheigo1, Andre Carneiro1, Diego Carvalho2, Luiz Gadelha1,

Francieli Boito3, Philippe Navaux4, and Carla Osthoff1

1 National Laboratory of Scientific Computing, LNCC, Rio de Janeiro, Brazil
{karyann,lucruz,micaella,rafaelst,galheigo,andrerc,lgadelha,

osthoff}@lncc.br
2 Federal Center for Technological Education Celso Suckow da Fonseca, CEFET-RJ,

Rio de Janeiro, Brazil
d.carvalho@ieee.org

3 Univ. Bordeaux, CNRS, Bordeaux INP, INRIA, LaBRI, Talence, France
francieli.zanon-boito@u-bordeaux.fr

4 Informatics Institute, Federal University of Rio Grande do Sul, UFRGS,
Porto Alegre, Brazil
navaux@inf.ufrgs.br

https://www.gov.br/lncc/pt-br

Abstract. RNA sequencing has become an increasingly affordable way
to profile gene expression analyses. Here we introduce a scientific work-
flow implementing several open-source software executed by Parsl par-
allel scripting language in an high-performance computing environment.
We have applied the workflow to a single-cardiomyocyte RNA-seq data
retrieved from Gene Expression Omnibus database. The workflow allows
for the analysis (alignment, QC, sort and count reads, statistics gen-
eration) of raw RNA-seq data and seamless integration of differential
expression results into a configurable script code. In this work, we aim
to investigate an analytical comparison of executing the workflow in Solid
State Disk and Lustre as a critical decision for improving the execution
efficiency and resilience in current and upcoming RNA-Seq workflows.
Based on the resulting profiling of CPU and I/O data collection, we
demonstrate that we can correctly identify anomalies in transcriptomics
workflow performance which is an essential resource to optimize its use of
high-performance computing systems. ParslRNA-Seq showed improve-
ments in the total execution time of up to 70% against its previous
sequential implementation. Finally, the article discusses which workflow
modeling modifications lead to improved computational performance and
scalability based on provenance data information. ParslRNA-Seq is avail-
able at https://github.com/lucruzz/rna-seq.

Keywords: High-performance computing · Transcriptomics ·
Scientific workflows

Supported by organization CNPq.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 174–189, 2022.
https://doi.org/10.1007/978-3-031-23821-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_13&domain=pdf
https://github.com/lucruzz/rna-seq
https://doi.org/10.1007/978-3-031-23821-5_13

ParslRNA-Seq 175

1 Introduction

RNA-Seq is a recently developed approach to transcriptome profiling that uses
deep-sequencing technologies. In transcriptomics, the modeling, execution, and
analysis of RNA Sequencing (RNA-Seq) experiments represent a challenge for
managing the complexity and large volumes of biological and computational
data. Differential gene expression (DGE) analysis is one of the most common
applications of RNA-seq data, which allows for studying the behavior of a set of
transcripts of differentially expressed genes across two or more conditions, such
as a cell in a given physiological and developmental conditions or cancer. Despite
technological advances, we still face many challenges in producing high-quality,
reliable, and comparable DGE data [1].

Systems biology, omics technologies, artificial intelligence, machine learning,
data science, data mining, and high-performance computing develop biological
applications in RNA-Seq of differentially expressed genes from RNA-Seq and
functional enrichment results. In addition, there is still no universal methodol-
ogy that combines those approaches; then, bioinformaticians must develop their
scripts to call several different approaches in the same code. However, scripting
codes are not a guarantee that shows how large and complex RNA-Seq data
affects the computational performance of execution and the data analytics of
transcriptomic data.

Scientific workflows represent the flow of activities of an experiment [3], which
makes it possible to establish better modeling, execution management, and anal-
ysis that will reinforce the experiment’s reproducibility, reliability, and scalabil-
ity. Scientific Workflows Management Systems (SWfMS) based on the web, such
as Galaxy1 and Statistical packages of R and Bioconductor (EdgeR, DESeq2)
are used in DGE studies. Related to task automation, using distributed and
parallel languages or SWfMS such as Nextflow, Tavaxy, Kepler, Pegasus, Swift,
and Parsl are promising strategies [2].

The present work presents ParslRNA-Seq scientific workflow, its architec-
ture and the validated performance by computational analysis, and discussions
about transcriptomics DGE. The current implementation is composed of six
main activities, where the formal modifications have been made to use the new
update of the HTSeq program, which allows the partitioning of two input data
for distribution and parallel executions in multiples cores [4]. Executions of the
current implementation of ParslRNA-Seq reach a gain in computational time of
up to 70%. The high-performance computing (HPC) environment used our tests
is the Santos Dumont2 (SDumont) supercomputer.

The remainder of this manuscript is structured as follows. Section 2 presents
related works. Section 3 introduces terminology used throughout this paper.
Section 4 describes the experimental framework used to evaluate the performance
of the ParslRNA-Seq workflow algorithms. Section 5 describe the dataset, experi-

1 https://galaxyproject.org/.
2 https://sdumont.lncc.br/.

https://galaxyproject.org/
https://sdumont.lncc.br/

176 K. Ocaña et al.

ment setup and computational environment. Section 6 describes the performance
results of the workflow executions. Finally, Sect. 7 presents our conclusions

2 Related Works

Cruz et al. (2020) [4] traces the modeling and performance analysis of ParslRNA-
Seq executed in the SDumont environment. The analyses involve Parsl manage-
ment for the efficient use of two computational resources and a better exploration
of the Bowtie2 multithread parameter, which significantly improves workflow
performance. Other works for DGE analyses include the seveaseq pipeline man-
aged by scripts and second as our investigations executed serially. RSEM is a
package for identifying and quantifying transcripts in RNA-Seq analyses; it does
not use reference genomes, uses Bowtie2 and a RSEM algorithm to calculate
abundance; it was optimized in HPC environments.

WorkflowHub [13], an evolution of myExperiment, is a community framework
that provides a collection of tools for analyzing workflow execution traces and
simulating workflow executions. It follows an open-development model per FAIR
principles to facilitate the discovery and re-use of workflows in an accessible and
interoperable way. Galaxy is a web-based platform that features various RNA-
Seq workflows, with parallelization options integrated with Taverna (Tavaxy).
It is more similar to our ParslRNA-Seq, which has been intensively explored in
supercomputing environments. Among other tools, we have Tximeta, Salmon,
Sailfish, and featureCounts [5].

Bioworkbench [11] is a framework for collecting provenance and runtime
information from workflows implemented in the Swift parallel scripting system
[12], a predecessor of Parsl. The framework allows for executing queries on prove-
nance data and predicting total workflow execution time and storage space used
using machine learning techniques.

Wratten et al. [14] highlight the concepts that will become essential for data-
driven research and applications in high-throughput biology. They introduce
the advantages of workflow managers compared with traditional pipelines and
compare some of the existing approaches. They review pipeline repositories that
provide curated collections of pipelines to avoid re-implementing best-practice
analysis workflows.

3 Background on Differential Gene Expression Analysis

Next-Generation Sequencing (NGS) technology revolutionizes the field of
genomic and transcriptomic analysis due to massively large-scale sequencing.
The technique known as RNA-Seq is based on the analysis of the DGE using
statistical modeling tools of the data relating to the number of transcripts. RNA-
Seq studies have facilitated the study of alternative splicing, Single Nucleotide
Polymorphisms (SNPs), post-transcriptional modifications, and changes in gene
expression over time or between treatment groups or disease progression. DGE
analyses allow to elucidate the level of expression between different experimental

ParslRNA-Seq 177

conditions and establish whether there is a significant difference between them.
Conducting studies of DGE indicates the formalization of a flow of activities
that can be represented by the use of different software, being essential to verify
a biological correlation for the resulting statistical results.

The sequence alignment of transcriptomic data is the task of determining the
location in the reference genome that corresponds to each sequenced read. Given
a file with aligned sequencing reads and a list of genomic features, a common task
is to count how many reads map to each feature. DGE analysis is based in the
detection and counting of RNA-seq data. Count data are stored in a tabular form
with each sample related to the number of sequence fragments assigned to each
gene. An important analysis issue is the quantification and statistical inference
of systematic changes between conditions compared to variability within con-
ditions. The DESeq2 package provides methods for testing the DGE by using
negative binomial generalized linear models; the scatter and log shift estimates
incorporate past data-based distributions.

4 ParslRNA-Seq: Workflow for DGE Analysis

4.1 Improvements in the Previous Implementation of the Workflow

Bowtie2 and HTseq are software activities that respectively aligns and counts
sequencing reads and spend most of their time computing the CPU-bound pro-
cesses. We assume that exploring multithreading and multiprocessing thread
scaling in those critical activities are potential points for improvements the per-
formance of the workflow. Bowtie2 and HTseq are the most representative CPU
and time-consuming software of the workflow executed in SDumont and they
were the main focus in our case studies. DESeq2 analyzed the DGE from the
matrices of the counts of the alignment and the mapping of the sequences against
the reference genome. These arrays (GTF file) contain the number of reads that
were uniquely aligned (columns) with the exons of each gene in the samples
(columns).

The previous implementation of the workflow cited in [4] is the first tentative
of automating RNA-Seq processes in a structured scientific workflow. It was
modeled with Parsl and presents three activities Bowtie2, HTSeq, and DESEq,
as shown in Fig. 1(a). Parsl manages the execution of the script on clusters,
clouds, grids, and other resources; orchestrates required data movement; and
manages the execution of Python functions and external applications in parallel.
The Parsl library can be easily integrated into Python-based gateways, allowing
for simple management and scaling of workflows [8].

Bowtie2 calls a node and sets the “-p/–threads NTHREADS” performance
option that launches the number of parallel search threads to process each FastQ.
Bowtie2 threads option run on separate processors and synchronize the output
alignments, which increases the alignment throughput by approximately a mul-
tiple of the number of threads. Users can set “-p” to increase Bowtie2 memory
footprint making the execution highly parallel and the speedup close to linear
[6]. As Parsl scales to hundreds of threads better than single processed workflows

178 K. Ocaña et al.

or pipelined approaches, we raise three modes of execution calling both Bowtie2
and Parsl to better understand if there is some kind of competition in the call of
the numbers of threads by both of them. Our tests use: (a) The higher default
buffer threshold for serialization Parsl with the Bowtie2 multithread option. (b)
The Bowtie2 serial option with the Parsl multithread option. (c) The double
parallelization of both Parsl and Bowtie2 multithreads options.

4.2 Multithreading and Multiprocessing

Multiprocessing (MP) is a system with more than one or two processors that
assigns separate memory and resources for each of the processes. Multithread-
ing (MT) is a program execution technique that allows a single process to have
multiple code segments; then helps to create multiple threads inside a single pro-
cess to increase computing throughput. We detect that modifications in some
ParslRNA-Seq activities (mainly Bowtie2 and HTseq) can be exploited as poten-
tial points to MT or MP thread scaling, as they can increase the computing speed
of the system.

The ParslRNA-Seq workflow code3 shows the software command lines. While
Bowtie2 creates MT processes, HTSeq “–nprocesses” (MP argument) only works
to process different BAM files in parallel, i.e., htseq-count on one file is not
parallelized. For instance, let us consider the following context in our ParslRNA-
Seq processes. While we focus on making the best use of threads in a single
process, an alternative is to run multiple simultaneous processes, possibly with
many threads each. ParslRNA-Seq consumes six input FastQs, each deployed in
parallel in an independent node.

For each node, Bowtie2 sets the performance option “-p/–threads
NTHREADS” to launch the number of parallel search threads (default: 1) to
process each FastQ. The threads will run on separate processors/cores and
synchronize when parsing reads the output alignments, increasing alignment
throughput by approximately a multiple of the number of the threads (linearly).
The Split Picard’s option “SplitSamByNumberOfReads” splits an input query-
grouped SAM or BAM file into multiple (e.g., 24) BAM files while maintaining
the sort order to parallelize alignment. The HTSeq “–nprocesses” processes those
BAM files.

MP can suffer from load imbalance as some batches take longer to execute
than others, and the job’s duration is determined by the longest-running batch.
Merge HTSeq suffers this impact whereby some lock-holding threads are slow
to finish their works (and release the lock) due waiting threads are using its
resources. Finally, DESeq2 should wait for Merge HTSeq finishes to be executed.

4.3 The Current Implementation of the ParslRNA-Seq Workflow

Bowtie2 multithreading was provided in the previous implementation of work-
flow; still with more improvements, we’ll get to explore HTSeq in the current

3 https://github.com/lucruzz/RNA-seq/blob/master/RNA-seq.py.

https://github.com/lucruzz/RNA-seq/blob/master/RNA-seq.py

ParslRNA-Seq 179

workflow implementation. HTSeq executes as default each file in an entire node,
yet files are not parsed and no MT or MP strategies for execution were applied.
The insertion of extra activities was required in the ParslRNA-Seq workflow
modeling to (1) parse a SAM file in 24 blocks; (2) pass HTSeq the execution of
a task for each SAM block in a thread; (3) manage the parallel distribution of
tasks in CPU cores, applying in MP and MT approaches performed by Parsl.

The current implementation of the ParslRNA-Seq workflow presented
in Fig. 1(b) is composed of six activities, including Sort, Split Picard, and
Merge HTSeq that aim to improve performance over HTSeq. ParslRNA-Seq
receives as input the reference genome of Mus musculus, the GTF (Gene Transfer
Format) file with genomic metadata, and the sequencing files in FASTQ format.
A CSV format file was created to relate the FASTQs and the experimental
conditions: three control FASTQs and three Wnt condition FASTQs (Wingless
pathway, Wnt transcriptional signaling metabolic pathway).

Fig. 1. Conceptual modeling of the scientific workflow ParslRNA-Seq.

Activity 1 runs the program Bowtie2 which maps and compares the genome
readings character by character. Activity 2 runs the program Samtools version
1.10 which sorts the readings. Activity 3 runs the program Picard version 2.25.0
used for manipulation and division of read files. Activity 4 runs the HTSeq
program htseqcount from HTSeq version 0.13.5 to count the number of reads
mapped by each gene. With n read files mapped, HTSeq sends each one to
n cores, generating a single output file with n + 1 columns, where the first
column represents the gene and the other columns represent counts performed
on each file. Activity 5 (HTSeq-Merge) is a script in Python that merges the
data generated by running HTSeq multicore, joining all the counts performed in

180 K. Ocaña et al.

a single column. Activity 6 runs the DESeq2 package that applies DGE statistics
on the experimental conditions.

5 Methods and Infrastructure

5.1 Experiment Dataset

Maladaptive cardiac remodeling has been reported in the activation of the evo-
lutionarily conserved Wnt pathway but the function of Wnt-transcriptional acti-
vation in the adult heart is yet unknown. RNA was isolated from mice cardiac
tissue and RNA libraries were prepared for sequencing using standard Illumina
protocols. The data belongs to a real RNA-Seq experiment4, extracted from the
public repository, Gene Expression Omnibus5 (GEO) database. Data was divided
into: (1) the control group: SRR5445794, SRR5445795, SRR5445796 and (2) the
Wnt pathway condition group: SRR5445797, SRR5445798, SRR5445799. The
organism is Mus musculus and the GEO.ID is GSE97763 (Illumina HiSeq 2000
Platform - Mus musculus). Sequence reads were aligned to the mouse reference
assembly (UCSC version mm9) using Bowtie2. For each gene, the number of
mapped reads was counted using htseq-count and DESeq2 was used to analyze
the DGE. Mus musculus GEO.ID is GSE97763 [7].

5.2 Experiment Setup

The transcriptomics software used in experiments are Bowtie26 program, Sam-
tools7 program version 1.10, Picard8 program version 2.25.0, HTSeq9 framework
version 0.13.5 with the htseq-count script, HTSeq-Merge Python homemade-
script, and DESeq210 package. All software, libraries and dependencies, Parsl and
Python components, Intel VTune Profiler11, and Darshan12 tool were deployed
at the top of the Santos Dumont environment.

5.3 Computational Environment Setup

The SDumont is among the 500 most powerful machines in the world. It has a
processing capacity of 5.1 Petaflop/s, with 34,688 multi-core CPUs distributed in
1,132 computational nodes that are interconnected by an Infiniband FDR/HDR
interconnect network. The compute nodes have two Ivy Bridge Intel Xeon E5-
2695v2 CPUs (12c @2.4 GHz) and 64 Gb of RAM and an Nvidia K40 GPU. The
4 https://sfb1002.med.uni-goettingen.de/production/literature/publications/201.
5 https://www.ncbi.nlm.nih.gov/geo/.
6 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml.
7 http://www.htslib.org/doc/samtools.html.
8 http://broadinstitute.github.io/picard/.
9 https://htseq.readthedocs.io/.

10 https://bioconductor.org/packages/DESeq2/.
11 http://intel.ly/vtune-amplifier-xe.
12 https://www.mcs.anl.gov/research/projects/darshan/.

https://sfb1002.med.uni-goettingen.de/production/literature/publications/201
https://www.ncbi.nlm.nih.gov/geo/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.htslib.org/doc/samtools.html
http://broadinstitute.github.io/picard/
https://htseq.readthedocs.io/
https://bioconductor.org/packages/DESeq2/
http://intel.ly/vtune-amplifier-xe
https://www.mcs.anl.gov/research/projects/darshan/

ParslRNA-Seq 181

executions were performed on compute nodes of two Intel Xeon E5-2695v2 Ivy
Bridge CPUs, 24 cores (12 per CPU) and 64 GB of RAM. Software, algorithms,
bioinformatics dependencies of Bowtie2, Samtools, Picard, HTSeq, DESeq2 and
Parsl components were installed in the SDumont environment.

6 Experimental Results

This section analyzes the experimental results depicting workflow performance
and scalability in the SDumont supercomputer environment. Besides the com-
putational results, we also present some biological data showing the breakdown
of RNA-Seq data, DGE analysis, and Multidimensional Scale Analysis.

6.1 Performance and Scalability Analyses

In order to understand workflow performance and scalability, Fig. 2 presents the
execution time of different workflow versions (previous and current implemen-
tations), where we vary each execution from one to 24 threads in the SDumont
environment. Although there is no substantial performance gain when increasing
the number of threads beyond 12, we observe a noteworthy gain with the newly
executed implementations depicted below.

Performance of the previous workflow implementation: improvements
with Bowtie2. The Bowtie2 task implemented employs one of the three follow-
ing strategies. (a) The higher default buffer threshold for serialization Parsl with
the Bowtie2 multithread option. (b) The Bowtie2 serial option with the Parsl
multithread option. (c) The double parallelization of both Parsl and Bowtie2
multi-threads option. Using n number of threads of Parsl and n number of
threads of Bowtie2 led to a double parallelization.

Option (c) performs better than other strategies, and the Total Execution
Time (TET) decreased from 643 min (1 node) to 75 min (6 nodes), which refers
to 88.34% of improvement in terms of TET and 8,57 of speedup-after that,
increasing the number of nodes does not show a significant improvement in
TET. The double parallelization in both Parsl and Bowtie2 in Option (c) was
the chosen strategy to be coupled into the current implementation of ParslRNA-
Seq workflow.

Performance of current implementation of the ParslRNA-Seq work-
flow: Improvements with HTSeq. The workflow calls the most up-to-date
version of the HTSeq activity that allows the multicore parallelization of inputs.
Each entry was partitioned into 24 sub-entries so that each sub-entry was allo-
cated and executed on a single SDumont CPU core. This strategy decreased
the computational time of this activity from 305.3283 to 30.4161 min, represent-
ing approximately 90% of improvement in terms of TET and 10,03 of speedup
(Table 1). The other activities of the workflow did not present any execution bot-
tlenecks. Bowtie2 and Samtools use multi-threads parameters; besides Picard,
HTSeq-Merge and DESeq are low-time and computationally expensive.

182 K. Ocaña et al.

Fig. 2. Scalability of the previous implementation of the workflow with three activities.
Performance is based on Bowtie2 TET in minutes.

Table 1 presents the results of serial execution of ParslRNA-Seq. Both
ParslRNA-Seq versions, previous and current, were executed with the same con-
figuration of libraries, software, number of cores, and type of CPU architectures.
The TET of the previous workflow implementation was 326.07 min compared to
the TET of 95.64 min of the current workflow implementation, representing a
decrease in the TET of 70.67%. This result demonstrates that the gain is three
times greater, even with the inclusion of the three activities: Sort, Picard, and
HTSeq-Merge. Only, HTSeq improvements in ParslRNA-Seq of up to 90, 04%
decreased the TET from 305,33 to 30,42 min in 24 cores.

Table 1. Total Execution Time in minutes of the previous and current implementation
of the ParslRNA-Seq workflow.

Workflow Bowtie2 Sort Split HTSeq Merge DESeq TET

Previous implementation 19,27 – – 305,33 – 1,48 326,07

Current implementation 5,88 38,56 30,42 0,04 95,64

6.2 I/O Performance Results Using Darshan

The workflow was executed with the Darshan profiler to investigate the I/O
behavior of each step. Figure 3 presents the distribution of step execution time—
Bowtie2 on the top and Sort on the bottom—with two input sizes: 1.8 and 3 GB.
Each bar plot presents the percentage of that step’s execution time spent on each
activity: POSIX read (in read, on the bottom of each bar), write (in green, in
the middle), and others (in pink, on the top). The other steps—HTSeq, Split,
DESeq2, and Merge HTSeq—were omitted because they spent less than 10% of
their time doing I/O. For both applications, increasing the input size increases
the proportion of the execution time spent on I/O. That indicates that the I/O
limits the scalability of these codes: as more data is treated, most time is spent

ParslRNA-Seq 183

on I/O, and thus the CPU-focused optimizations presented earlier may have less
impact on performance [9,10].

Fig. 3. Distribution of execution time of Bowtie2 and Sort, by activity, as reported by
Darshan. (Color figure online)

I/O Analysis for Bowtie2. Changing the input from 1.8 to 3 GB increases
the run time from 152 seconds (80% on write operations) to 263 seconds (90%
on writes). This increase was only due to I/O, with the write time increasing
practically linearly with the input size. The output size was 6 and 11 GB.

I/O Analysis for Sort. Time increased from 41 s (5% on reading and 15% on
write operations) to 91 s (70% on reads and 10% on writes). While the writing
time remained relatively constant (output size was 657 MB and 1.1 GB), the
reading time of Sort increased over 30 times by doubling the input size, which
indicates the reading portion of this code is a limiting factor for its performance.

HTSeq, Split, DESeq2, and Metge HTSeq spend less than 10% of their
time in I/O.

6.3 Performance Results Using SSD

To further improve the ParslRNA-Seq workflow’s performance, we select the two
most I/O intensive workflow tasks (Bowtie2 and Sort) as targets for improve-
ments. Usually, all intermediate files, that are created by one task and consumed
by the following one, are written to Lustre. Hence we decided to write inter-
mediate files to Solid State Drive (SSD) storage devices, available in each of
SDumont’s compute nodes, instead.

184 K. Ocaña et al.

We investigated different strategies for doing this, such as (i) to decouple the
DESEq activity from the workflow since it gets only executed after the Merge
activity has processed all data. The next was (ii) to use, in an isolated way, a
compute node (and its SSD) to execute a workflow pipeline, now composed of:
Bowtie2, Sort, Split, HTSeq, and Merge. In this way, the input data is copied
from the Lustre to the SSD, and the workflow pipeline is executed only after
that. When the pipeline execution finishes, the output data is copied back to
Lustre. In this way, all raw I/O goes through the SSD during all tasks that
present relevant I/O times (Fig. 4).

It should be noted that the DESEq activity will read data from Lustre and
is still dependent on completing all launched pipelines. However, in distributed
parallelism, the dependency is on the pipeline processing the most significant
data. For this reason, in Fig. 4 two pieces of information are presented: one
about the execution doing I/O to the SSDs and the other using Lustre.

Fig. 4. Modelling of the current implementation of the ParslRNA-Seq workflow for
I/O executions in SSD and Lustre.

Comparatively, in Table 2, which disregards the copy time, the execution
time of the workflow decreased on average from 17 minutes to 15 minutes when
using the SSDs for the intermediate files. This shows this idea of using node-local
storage to avoid accessing the parallel file system is a promising one. Another
approach, under development, is to not make copies from Lustre to the SSD and
vice versa, but to have the Bowtie2 activity reading directly from Lustre and
the Merge writing its output directly to the remote file system as well (while
keeping the intermediate files in the SSDs).

6.4 Biological Results of RNA-Seq Data

The results of the analysis for the selection of differentially expressed genes
under DESeq2 are presented in Fig. 5 (MA-Plot), Fig. 6 (MDS graph), and Fig. 7
(heatmaps). The comparative analyses of the Figures demonstrate that there is
no evidence of difference in biological results obtained with the execution of the
previous or current implementations of the ParslRNA-Seq workflow.

ParslRNA-Seq 185

Table 2. Total execution time of the current implementation of the ParslRNA-Seq
workflow in SSD and Lustre.

Executions using SSDs

File Size (GB) Total execution time (min) Avg. Std. dev.

SRR5445797 1.8 10,07 10,03 10,08 10,20 10,08 10,09 0,06

SRR5445796 3.0 15,86 15,90 15,58 15,70 16,12 15,83 0,20

Executions using lustre

File Size (GB) Total execution time (min) Avg. Std. dev.

SRR5445797 1.8 11,62 12,08 11,95 12,07 11,57 11,86 0,25

SRR5445796 3.0 17,60 17,40 17,77 17,77 17,63 17,63 0,15

Fig. 5. Average normalized of the log2foldChange gene/change counts.

DGE Analysis. DESeq2 uses the Negative Binomial probabilistic model for
normalization to perform GDS analyses. DESeq2 normalizes data by estimating
sample size and dispersion, fits data to a negative binomial Generalized Linear
Model (GLM), and verifies the GDS using Wald’s parametric test. DESeq2 calcu-
lates the functions baseMean (average of normalized readings); log2foldChange
(proportion of readings as a function of log2); lfcSE (standard error); stat
(Wald); pvalue and padj (adjusted p and p values from DE transcripts).

In Fig. 5, the differentially expressed genes appear in red and the others in
black. Some considerations are: (1) There will be differentially expressed genes
(in red) above and below the line that delimits the log2foldChange values. The
genes above had more counts in the Control condition than in the Wnt condition,
and the points below the opposite. (2) The higher the average counts (further
to the right of the graph), the differentially expressed genes will be closer to the
limit line, influenced by log2foldChange, that the higher the averages, although
they are different, the logarithm will be less different and therefore the threshold
for determining that a gene is differentially expressed will be lower. (3) There
is a tendency for there to be no differentially expressed genes to the left of the

186 K. Ocaña et al.

graph. The further to the left of the graph, the lower the counts observed for the
genes, and when there are almost no counts, almost no difference can be shown.

MA-Plot plots the average of the normalized readings of each gene against
the log2 of the doubled change (Fig. 5). Points corresponding to genes identified
as differentially expressed (adjusted p value less than 0.05) are highlighted in red.
Points outside the window are plotted as open triangles pointing up or down,
depending on whether the value of logFC is greater than 2 or less than −2,
respectively.

Multidimensional Scale Analysis (MDS Graph). It is a multivariate tech-
nique that allows visually analyzing the proximity between samples from the
same study, placing them in certain dimensions. In an MDS plot, the first dimen-
sion represents the magnitude of the initial change that best separates the sam-
ples and therefore explains the greatest proportion of variation in the data. The
MDS plot of Fig. 6 shows the relationship between samples to detect GDS. What
is most striking in the graph is the separation between the two groups. The Wnt
samples (in red) are generally with higher positive values on the X-axis than
the samples in the control group (in blue). The approximation between some
groups may be due to effects such as the gender of the mouse (male/female),
but without affecting the general condition of the experiment.

Fig. 6. Multidimensional scale of distances from the relationship between samples.(a)
Previous workflow implementation. (b) Current workflow implementation. (Color figure
online)

Heatmaps. The dendrogram in Fig. 7 allows viewing the grouping of samples
based on a hierarchical group along with the expression levels of individual genes.
The variance in each of the lines of the log2−CPM matrix was previously calcu-
lated and the number of genes to be displayed was established. The selection of
the 1000 most variable genes grouped the samples according to the experimental
group. The overexpressed genes are represented in red, downregulated genes in
blue, and the white color indicates the absence of expression change. Each row
of the grid represents a gene and each column a sample.

ParslRNA-Seq 187

Fig. 7. Heatmaps of the 1000 most variable genes. (Color figure online)

7 Conclusion

In this work, we have presented a real-world workflow analysis for data-intensive
transcriptomics applications to enable performance optimization of HPC sys-
tems. We introduce a current implementation of the ParslRNA-Seq workflow
tailored to the needs of tracking a workflow execution and identifying potential
issues to improve performance. Our experiments demonstrate that this optimized
workflow can accurately orchestrate computation resources, helping to pinpoint
relevant metrics to help identify performance problems. Our results show per-
formance improvements of up to 70.67% from 326.074 min with the previous
implementation of the ParslRNA-Seq workflow to 95.64 min with the current
implementation of the ParslRNA-Seq workflow, both executed in 24 cores. This
result demonstrates that the gain is three times greater, even with the inclusion
of the three activities: Sort, Picard, and HTSeq-Merge.

Additionally, we characterized the Bowtie2 improvements in the previous
implementation of the ParslRNA-Seq workflow of up to 88.34% decreased the
TET (8,57 of speedup) from 643 min (1 node) to 75 min (6 nodes) with a double
parallelization option. HTSeq improvements in the current implementation of the
ParslRNA-Seq workflow of up to 90, 04% decreased the TET (10,03 of speedup)
from 305,33 to 30,42 min in 24 cores. Further, we characterized the I/O behavior
of the workflow components, identifying I/O problems in two of them, which
will be the focus of future optimization efforts.

The next steps involve performance analyses of massive (terabytes datasets)
RNA-Seq data in parallel and distributed executions of the optimized ParslRNA-
Seq. The code will be made available to the scientific community through sci-
entific gateways as Bioinfo-Portal13, hosted at LNCC, aimed at strengthening
research in the bioinformatics community.

13 https://bioinfo.lncc.br/.

https://bioinfo.lncc.br/

188 K. Ocaña et al.

Acknowledgement. To the National Laboratory of Scientific Computing (Brazil)
for providing the resources for the Santos Dumont supercomputer. To HPCProSol
project (Next-generation HPC PROblems and SOLutions), represented by a joint team
(équipe associée) between Inria, in France, and the National Laboratory for Scientific
Computing (LNCC), in Brazil.

References

1. Anders, S., Huber, W.: Differential expression analysis for sequence count data.
Genome Biol. 11(R106) (2010). https://doi.org/10.1186/gb-2010-11-10-r106

2. da Silva, R.F., Filgueira, R., Pietri, I., et al.: A characterization of workflow man-
agement systems for extreme-scale applications. Future Gener. Comput. Syst. 75,
228–238 (2017). https://doi.org/10.1016/j.future.2017.02.026

3. Mattoso, M., Werner, C., Travassos, G., et al.: Towards supporting the life cycle
of large-scale scientific experiments. Int. J. Bus. Process. Integr. Manag. 5, 79–92
(2010). https://doi.org/10.1504/IJBPIM.2010.033176

4. Cruz, L., Coelho, M., Gadelha, L., et al.: Avaliação de Desempenho de um
Workflow Cient́ıfico para Experimentos de RNA-Seq no Supercomputador San-
tos Dumont. In: Anais Estendidos do XXI Simpósio em Sistemas Computa-
cionais de Alto Desempenho, SBC 2020, pp. 86–93 (2020). https://doi.org/10.5753/
wscad estendido.2020.14093

5. Liao, Y., Smyth, G., Shi, W.: featureCounts: an efficient general purpose program
for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–930
(2014). https://doi.org/10.1093/bioinformatics/btt656

6. Anders, S., Pyl, P.T., Huber, W.: HTSeq-a Python framework to work with high-
throughput sequencing data. Bioinformatics 31(2), 166–169 (2014). https://doi.
org/10.1093/bioinformatics/btu638

7. Iyer, L., Nagarajan, S., Woelfer, M., et al.: A context-specific cardiac β-catenin and
GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving
disease progression in the adult heart. Nucleic Acids Res. 46(6), 2850–2867 (2018).
https://doi.org/10.1093/nar/gky049

8. Babuji, Y., Woodard, A., Li, Z., et al.: Parsl: pervasive parallel programming in
Python. In: Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing 2019, pp. 25–36 (2019). https://doi.org/10.
48550/arXiv.1905.02158

9. Cruz, L., Coelho, M., Galheigo, M., et al.: Parallel performance and I/O profiling
of HPC RNA-Seq applications. Computación y Sistemas (2022, Submitted)

10. Bez, J.L., Carneiro, A.R., Pavan, P., et al.: I/O performance of the Santos Dumont
supercomputer. Int. J. High Perform. Comput. Appl. 34(2), 227–245 (2020).
https://doi.org/10.1177/1094342019868526

11. Mondelli, M.L., Magalhães, T., Loss, G., et al.: BioWorkbench: a high-performance
framework for managing and analyzing bioinformatics experiments. PeerJ 6, e5551
(2018). https://doi.org/10.7717/peerj.5551

12. Wilde, M., Hategan, M., Wozniak, J.M., et al.: Swift: a language for distributed par-
allel scripting. Parallel Comput. 37(9), 633–652 (2011). https://doi.org/10.1016/
j.parco.2011.05.005

https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1016/j.future.2017.02.026
https://doi.org/10.1504/IJBPIM.2010.033176
https://doi.org/10.5753/wscad_estendido.2020.14093
https://doi.org/10.5753/wscad_estendido.2020.14093
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/nar/gky049
https://doi.org/10.48550/arXiv.1905.02158
https://doi.org/10.48550/arXiv.1905.02158
https://doi.org/10.1177/1094342019868526
https://doi.org/10.7717/peerj.5551
https://doi.org/10.1016/j.parco.2011.05.005
https://doi.org/10.1016/j.parco.2011.05.005

ParslRNA-Seq 189

13. Goble, C., Soiland-Reyes, S., Bacall, F., et al.: Implementing FAIR digital objects
in the EOSC-life workflow collaboratory. Zenodo 2(5), 99–110 (2021). https://doi.
org/10.5281/zenodo.4605654

14. Wratten, L., Wilm, A., Göke, J.: Reproducible, scalable, and shareable analysis
pipelines with bioinformatics workflow managers. Nat. Methods 18, 1161–1168
(2021). https://doi.org/10.1038/s41592-021-01254-9

https://doi.org/10.5281/zenodo.4605654
https://doi.org/10.5281/zenodo.4605654
https://doi.org/10.1038/s41592-021-01254-9

Refactoring an Electric-Market
Simulation Software for Massively

Parallel Computations

Franco Seveso, Raúl Marichal, Ernesto Dufrechou(B), and Pablo Ezzatti

Instituto de Computación (INCO), Universidad de la República,
Montevideo, Uruguay

{franco.seveso,rmarichal,edufrechou,pezzatti}@fing.edu.uy

Abstract. In the last two decades, Uruguay has been immersed in the
process of significantly changing its energy generation matrix, especially
by the introduction of wind and solar sources. In this context, Sim-
SEE, a simulation and optimization software designed to help decision-
making in generating and distributing electrical energy, is extensively
used. The design of this tool is conceived for conventional CPUs and
follows a sequential execution paradigm. This paper focuses on a refac-
toring of SimSEE that enables leveraging massively-parallel hardware
platforms, seeking to adapt the tool for the increasing size and complex-
ity of Uruguay’s electric market. We extend our previous ideas about
reorganizing the software architecture to exploit the parallelism in each
time-step of SimSEE’s simulation. In more detail, we present two variants
following this parallelism pattern, a straightforward parallel version that
requires replicating the used memory and a variant that implies limited
performance restrictions but requires a minimal memory overhead.

Keywords: Coarse-grained parallelism · Electric energy generation ·
Stochastic dynamic programming · Memory usage

1 Introduction

In the last two decades, the Uruguayan electricity generation matrix experienced
important changes, mainly due to the constant incorporation of new generation
sources such as wind and solar farms [16]. This brings important challenges to
efficiently using and distributing the available resources, making demand and
generation capacity prediction necessary. The SimSEE (Electric Power Systems
Simulator) is a software tool that allows users to make customized simulations
of an electric energy generation system. Its principal purpose is to aid in the
decision-making process, both in the long term (investment planning) and in
the short term (system operation and market simulation) [7]. It was developed
at the Universidad de la República, by engineers of the Instituto de Ingenieŕıa
Eléctrica (IIE) of the Facultad de Ingenieŕıa (FING), between the years 2006
and 2008, maintaining a constant evolution up to now [6,10]. The tool is tailored
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 190–204, 2022.
https://doi.org/10.1007/978-3-031-23821-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_14

Refactoring an Electric-Market Software for Massively Parallel Computations 191

to represent the reality of Uruguay’s electric market. Hence, its most intensive
users are the Uruguayan public agency managing the electricity generation mar-
ket, called ADME [3] and the Uruguayan public company that generates and
distributes electric energy (UTE).

This work’s motivation is to adapt the simulation tool to increase the num-
ber of actors (e.g., power sources) and complexity of the models while main-
taining the accuracy levels and simulation runtime constraints, such as keeping
bounded simulation times. For this purpose, we aim to leverage the compu-
tational power offered by modern massively parallel hardware platforms, such
as heterogeneous servers equipped with GPUs. These platforms have shown an
impressive evolution in the last decades and have become a vital piece of the
HPC landscape [4,5,11].

This effort is an extension of [13], where we identify the SimSEE bottlenecks
by evaluating different realistic cases and propose a new software architecture
design for the SimSEE to exploit the massively parallel computations. Specifi-
cally, this work presents two different variants of SimSEE following the previ-
ously described parallelism pattern. First, a direct parallel version that requires
replicating the used memory, and second, we design a new variant that implies
concrete performance restrictions but requires a minimal memory overhead for
each simulation trajectory computed in parallel. In other words, a parallel ver-
sion that offers scalability in memory use.

The rest of the work is organized as follows. Section 2 synthesizes the arrived
results of the previous work. In Sect. 3 we present different variations to imple-
ment the previously proposed and discussed parallel design. Next, in Sect. 4, the
experimental evaluation results of the implementations are summarized. Finally,
Sect. 5 presents our conclusions and some future lines of work.

2 The SimSEE and Previous Results

As we stated previously, SimSEE (Electric Power Systems Simulator) is a soft-
ware tool that allows users to make customized simulations of an electric energy
generation system. It is based on Stochastic Dynamic Programming techniques,
it allows to simulate the contribution of multiple energy sources, including ther-
mal, solar, hydro-electric or wind energy, to a specific electrical network. For
this reason in the simulation different and random realizations of these stochas-
tic processes, called trajectories, are executed, and the results are expressed in
terms of the expected value or as distributions or probabilities of exceedance.
Its principal purpose is to aid in the decision-making process both in the long
term (investment planning) and in the short term (system operation and market
simulation) [7]. It was developed at the UDELAR, by engineers of the Instituto
de Ingenieŕıa Eléctrica (IIE) of the Facultad de Ingenieŕıa (FING) in the Pascal
programming language [12].

In the previous work were designed and evaluated different realistic test cases,
varying the scenarios between three classes: hourly, daily, and weekly (i.e., short,
mid, and long-term). Since the SimSEE is a legacy complex system developed in

192 F. Seveso et al.

Pascal and is being used by ADME, the main goal of these tests was to exhibit the
most resource-consuming procedures in the simulation routine and then, with a
fine-grain approach, efficiently implement a parallel version of those procedures.
This approach avoids re-implementing the entire simulation routine, a task of
serious difficulty and resource demand. The experimental results showed that
none of the procedures represent an important bottleneck since a single execution
of these procedures is not demanding enough, deriving that the cost came from
the number of calls or invoked. Nevertheless, we found that an important part
of the simulation runtime is invested in Simplex resolution routines. In Fig. 1,
for example, we can see the proportion of Simplex-related operations (middle
green rectangle), and Table 1 shows how many times some of these procedures
are called into the simulation. Based on this, we propose a strategy to exploit
parallelism by designing a new simulation scheme focused on a coarse-grain
approach instead of including fine-grain parallelism.

Fig. 1. Graphical representation of simulation call map with a daily playroom. The
area of each rectangle is proportional to the runtime of the corresponding procedure.

Table 1. Top 5 procedures for the daily playroom simulation.

Procedure Perc. (%) CPU cycles Calls Unit

PASOBUSCARFACTIBLEIGUALDAD4 29.0 3.349× 1011 1.348× 106 USIMPLEX

LOCATE ZPOS 20.3 2.344× 1011 5.991× 107 USIMPLEX

INTERCAMBIAR 15.4 1.780× 1011 8.258× 106 USIMPLEX

MEJORPIVOTE 6.1 6.991× 1010 5.972× 107 USIMPLEX

CAMBIO VAR COTA SUP EN COLUMNA 4.1 4.719× 1010 5.670× 1010 USIMPLEX

The simulation algorithm can be divided into two main loops. The first and
outer loop iterates through the trajectories, line (3) in Algorithm 1, and for each
of these trajectories, there is a second loop (5) that sets up and solves, for each
time step (7), an optimization problem using the Simplex algorithm, represented
by a matrix, based on the work of Rutishauser et al. [14]. Since each trajectory

Refactoring an Electric-Market Software for Massively Parallel Computations 193

is independent, in [13] we redesigned the routine interchanging the loops and
structures related to solving, for the different trajectories, the simplex matrices
associated with each time step in parallel. Note the (parallel) for of trajectories
in line 11 of the Algorithm 2, solving independent simplex matrices.

Algorithm 1. Simular + cargarSala

1 room = cargarSa la (r o om f i l e)
2 // Simulat ion
3 prepare (room)
4 for Tra j e c t o r i e s :
5 T r a j I n i t (room)
6 for t ime s t ep s :
7 s implex matr ix = simplex (room)
8 so l v e (s implex matr ix)
9 end

10 end

Algorithm 2. Simular’ + cargarSalas

1 rooms = carga rSa l a s (r o om f i l e)
2 // Simulat ion
3 for i in Tra j e c t o r i e s :
4 prepare (rooms [i])
5 T r a j I n i t (rooms [i])
6 end
7 for t ime s t ep s :
8 for Tra j e c t o r i e s :
9 spx array [i] = simplex (rooms [i])

10 end
11 (p a r a l l e l) for Tra j e c t o r i e s :
12 s o l v e (spx array [i])
13 end
14 end

Pseudocode of the original SimSEE simulation scheme (Algorithm 1) and the
reorganization proposed in [13] (Algorithm 2).

3 Proposal

As discussed in the previous section, the strategy behind the massively parallel
version of the simulation is to process independent trajectories at the same time,
solving in parallel multiple simplex matrices. To implement this design, the data

194 F. Seveso et al.

associated with each trajectory must stay independent from the others. In other
words, each trajectory needs its playroom, which is a data structure that holds all
the information about the electrical system being simulated, including the state
variables of each power source, such as the water level of hydroelectrical plants.
In the original version, the playroom is created by the procedure cargarSala
reading a configuration file associated with the room line by line. This room
is instantiated once and used throughout the whole simulation. Therefore, the
cost of the cargarSala in the original algorithm is constant for any number of
trajectories, which is why it was not taken into account in the previous work
evaluation. Depending on the room, this procedure can take several computation
cycles, mainly conditioned to the number of entities and historical information.
Then, in the simulation phase, as trajectories are run sequentially for each time
step, the state variables of the playroom can be reset for each new trajectory. If
trajectories run in parallel, sharing the state variables is impossible, so a certain
degree of data replication is necessary.

In the following sections, we propose different implementations to load multi-
ple playrooms and, considering the cost of in/out and file reading [9], we advance
in implementing routines that use the playroom file once and create multiple
rooms. On the other hand, it is important to highlight that memory usage multi-
plication is a very limiting strategy when trying to massively parallelize systems.
In other words, one of the essential characteristics to reach in parallel patterns
is the scalability in memory usage [8,9]. We design, implement and evaluate a
version where the different rooms share certain structures through pointers or
references, using SimSEE native classes. Later we present another version with
a simple structure to store the reference pointers for the shared units between
the rooms, avoiding the list searches of the first.

3.1 Loading the Playrooms for Massively-Parallel Trajectories,
naive

A straightforward strategy to address the problem of independent playrooms is
to create a collection of rooms, with a size equal to the number of trajectories,
by calling the procedure cargarSala multiple times. As an early result, Table 2
shows the outcome of this implementation. The table shows the elevated cost
of instantiating these rooms, with linear growth of the elapsed time to load the
rooms and simulation time due to the preparation of the rooms in the Simular’
procedure.

Table 2. Elapsed time (ms) of room load (cargarSala) and simulation (Simular)
comparison for both strategies in hourly playroom (see Sect. 4.2 for details about test
cases and the runtime environment).

of trajectories cargarSala Simular Loop of cargarSala Simular’

256 4125 27828 968844 161094

Refactoring an Electric-Market Software for Massively Parallel Computations 195

For reasons previously described, we studied the procedure cargarSala in
detail and evaluated the possibility of implementing a new procedure capable of
instantiating multiple rooms efficiently.

3.2 Improving the Playrooms Replication, base

Although the previous implementation returns the expected collection, it need-
lessly repeats procedures when loading the different rooms. Since all rooms are
equal and loaded from the same file, we can improve this implementation in
different ways, such as refactoring some of the procedures or optimizing the
access to the file for reading. Considering the above, we modified the strategy
initially used to load the rooms, deriving this procedure in cargarSalas. Unlike
cargarSala, this implementation reads the text file associated with the room
once, line by line, and instantiates simultaneously many structures and units as
rooms are needed.

Although cargarSalas is also a naive version, it allows fulfilling the task
of loading multiple rooms, avoiding multiple file reads and the implied runtime
overhead. However, this strategy implies a large memory usage since it instanti-
ates every single structure for the room N times.

The memory used in the simulation is mainly given by the initialization
of each room. For example, the sizes of the evaluated rooms (hourly, daily and
weekly) result in around 90 MB, 3.8 MB, and 2.4 MB, respectively, when mapped
to Pascal objects. Therefore, simulating 1000 trajectories of a hourly playroom
will require around 90 GB of memory, making this cargarSalas implementation
not scalable and unfeasible when the number of trajectories grows for devices
with limited memory resources.

3.3 Sharing References to Avoid Memory Allocations, RefCat

A reasonable conclusion from the previous discussion, can be that the main
restriction for the inclusion of massively parallel techniques in the SimSEE is
the multiplication of the memory usage. This motivated a detailed study of the
units created in cargarSalas, looking for possible instances unchanged between
the different trajectories. The Dynamic Parameters record or simply record are
particular cases of a valid structure for this approach. Based on [15], the dynamic
records can be defined as the system allowing the various playroom entities to
change their parameters at runtime. A dynamic record consists of a start date,
a periodicity, and a set of parameters depending on the type of entity that it
belongs to. The actors or other entities that require parameters that may vary
over time must specify in their records what those parameters are, and the
system automatically updates them when the indicated date is reached, both
in simulation and in optimization. Each record will be valid from its start date
until another replaces it. In other words, if an actor has a single record at the
beginning of the simulation, it will be valid for the entire simulation horizon.
If the actor has a record at the beginning and another in the middle, the first
record will be valid until half of the simulation, then it will be replaced by the

196 F. Seveso et al.

second one that will follow until another replaces it or the simulation finishes.
Basically, represent historical states of the entities, and remain invariant through
the simulation.

In the particular case of the hourly room (VATES [1]), it has about 2000
records associated with the entities that must be instantiated when load-
ing the room, which, in the worst case, implies having to instantiate 2000 ×
NTrajectories records. The simplest solution would be for the same entities
from the different rooms to point to a single instance of the records and some-
how share them. The problem that arises is that many of these records have
references or pointers to the entities within the same room. Due to this, it is
impossible to directly share the records since these references are accessed when
computing the variables to prepare, for example, the simplex matrix at each
time step. So, to share the records it is necessary to have the information of
the different references corresponding to each room and switch those references
when computing with them. Figure 2 shows this problem; while the entities of
different rooms must be independent, the records remain constant through the
simulation (red box), and the main problem is the references to entities in the
same room (yellow arrows).

Fig. 2. Simplified scheme of multiple playrooms. Entities in different rooms must be
different instances, but the files remain the same for the same entity in different rooms
except by the references. (Color figure online)

Considering the previously described situation, we implemented a “Reference
Catalogue”, which is responsible for containing the information of references and
maintaining the consistency of the ones for the room when the simulation needs
to use it. The main idea is to map the excessive memory usage of rooms related to
the records, to simple pointers stored in the “Reference Catalogue”, representing
a critical memory usage reduction. The new simulation scheme sharing records is
presented in the Algorithm 3, where the procedure ChangeReferences is added
to set the correct references to entities of different rooms when a trajectory cal-
culates and prepares, for example, the simplex matrix. Note that this procedure
is called twice in the Algorithm 3, in first place (line 3), due to the prepara-
tion of the rooms, initializing the actors, sources and variables of the playrooms
previous to the true simulation stage. The second call (line 9) in the simulation

Refactoring an Electric-Market Software for Massively Parallel Computations 197

stage, is needed to set the correct references before the simplex creation for each
time step.

Algorithm 3. Simular’ sharing room’s objects

1 rooms , ca ta logue = ca rga rSa l a s (r o om f i l e)
2 for i in Tra j e c t o r i e s :
3 ChangeReferences (rooms [i] , ca ta logue)
4 prepare (rooms [i])
5 T r a j I n i t (rooms [i])
6 end
7 for t ime s t ep s :
8 for Tra j e c t o r i e s :
9 ChangeReferences (rooms [i] , ca ta logue)

10 spx array [i] = simplex (rooms [i])
11 end
12 (p a r a l l e l) for Tra j e c t o r i e s :
13 s o l v e (spx array [i])
14 end
15 end

3.4 Enhancing the Access to Shared References in the Simulation,
RefDicc

In the previously described strategy, when a reference needs to be changed, it
is necessary to search for the new reference within the list of entities and the
“Reference Catalogue” in simulation time. This operation implies a complexity
proportional to the number of references and entities the room has, which can
be substantial depending on the room. To avoid these searches, we propose to
introduce a dictionary (a matrix of pointers), responsible for saving the already
resolved references for all the rooms.

This strategy avoids the unnecessary task of iterating over the list of enti-
ties looking for a reference and then resolving it. By applying these changes, we
convert the complexity of the operation that changes a reference to a constant
order, significantly reducing the computation cost and its impact on the sim-
ulation. In other words, we sacrifice memory consumption to store the already
solved references for each room to avoid repeated operations in simulation time.

4 Experimental Evaluation

This section presents the experimental evaluation of our proposal.

4.1 Test Cases

To evaluate how the proposed algorithm schemes perform, we vary the simulation
scenarios between hourly, daily, and weekly playrooms, which are representative

198 F. Seveso et al.

workloads of the SimSEE. Based on VATES [1] the hourly playroom runs to
calculate the optimal energy dispatch in the following week and incorporates the
forecasts of hydraulic contributions to the dams, the forecast of wind and solar
generation, and the forecast of demand for every hour. It has 168 time steps,
composed of three hydro generators with reservoirs and one without, twelve fuel-
fired generators, one wind and one solar generator representing all the country’s
farms, and a CEGH source, that states for modeling multi-variable stochastic
processes, working as a time series synthesizer having common characteristics
with the available time series measures, with two hydrologic state variables.

The daily playrooms are mostly used for seasonal programming, with a
CEGH source for the contribution to basins that also has two hydrologic state
variables, and there are still three hydro generators with reservoirs. This kind of
playroom is the most required by SimSEE users [2].

4.2 Runtime Environment

This section contains the environment specification where all the executions and
results proposed in this work were carried out. This environment has an 8-core
processor Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz, 16 GB of RAM with
Linux operating system.

4.3 Experimental Results

The time measurements of the simulation were presented in scale to obtain an
abstraction for the number of trajectories used, but in the same way, the com-
putation time required by the simulation with the strategy of loading multiple
rooms is still a bit distant from the original in terms of efficiency.

As mentioned in the previous section, Table 2 shows how the time of loading
many rooms (repeating the file read) is significantly high, converting this into a
non-viable implementation strategy, and in terms of memory use, it replicates
all the rooms. The first proposed idea to mitigate this problem was reading the
file once, with the implemented procedure cargarSalas. In the new idea, the
runtime is not a problem, but the issue of memory usage keeps present.

Table 3. Peak memory usage (MB) for the different strategies simulating 100 trajec-
tories of hourly, daily and weekly rooms.

Original Full independent Reference catalogue

Hourly 500 9560 970

Daily 401 780 750

Weekly 142 630 363

In this line, the Vates playroom is the worst case in memory usage due to
its large size and number of records, but for the same reason, it represents an

Refactoring an Electric-Market Software for Massively Parallel Computations 199

opportunity to see the profits of the optimization strategy of sharing records
between the rooms. Table 3 reflects the results of this approach. It shows that
the new variant that shares structures using the references catalogue improves
the rooms’ loading stage, using considerably less memory. On the other hand,
for the hourly scenario, with 100 trajectories, the principal disadvantage of this
strategy can be seen in the last columns of Table 4, where the computational
cost is now transferred to the simulation, with the procedure ChangeReferences
implemented with the a “Reference Catalogue”, native system class mainly used
for the playroom’s load.

Table 4. Elapsed time (ms) of Simular, Simular’ and ChangeReferences with 100
trajectories for Hourly, Daily and Weekly playroom, using the reference catalogue.

Playroom Simular Simular’ ChangeReferences

Hourly 7875 274406 261711

Daily 43996 180896 128596

Weekly 14929 36312 19856

Finally, the last version of the refactored SimSEE is evaluated. Specifically,
Table 5 presents the results of applying the structure share techniques between
rooms in terms of memory usage.

Table 5. Peak memory usage (MB) for the different strategies simulating 100 trajec-
tories of hourly, daily and weekly rooms.

Original Full independent Reference catalogue Reference dictionary

Hourly 500 9560 970 1068

Daily 401 780 750 760

Weekly 142 630 363 407

The first observation is that, although the Reference Catalogue technique
employs less memory to store the references that need to be changed between
rooms (2K references for VATES), they are solved every time in simulation
when a room needs to make a computation. This resulted in poor performance,
negatively affecting the simulation, as shown Table 4. On the other hand, the
strategy that uses a matrix of pointers to store the already solved references
requires little more memory since it employs as many rows and columns as
trajectories and references, respectively, to store the correct pointers. Moreover,
it significantly reduces the overhead introduced to the simulation by the previous
technique.

When it is not the worst case (for example, Daily Room) and the number of
referenced records contained in the room is not so large, the efficiency of loading

200 F. Seveso et al.

the rooms with this implementation of shared records is not as noticeable as the
Hourly room, but severely impacts on the simulation time. Like the previous
one, the weekly playroom contains few records, and the improvement is not so
noticeable. Despite this, both daily and weekly playrooms present very good
performance loading rooms.

Fig. 3. Stages percents associated with the simulation of 100 trajectories sharing ref-
erences with a dictionary, for hourly, daily and weekly playrooms.

Figure 3 shows the ratio between the simplex resolution time and the whole
simulation time for the three evaluated scenarios. The first stage (Prepare rooms
for simulation), which performs settings and initializations of the variables nec-
essary for each trajectory during the simulation, consumes 23%, 1% or 5% of the
total of the simulation for the hourly, daily, and weekly respectively. The second
stage, as shown in Fig. 3, is composed of “Time Step Preparation”, “ChangeRef-
erences”, Loading, Solving and Post Processing Simplex, and “Others”. Those
stages take the largest part of the time within the simulation. The final stage
prints the results of all the simulations in an output file, which is almost negli-
gible compared to the other stages from the computational point of view.

Carrying out an analysis of the simulation times with the different strategies,
we can conclude that a large part of the difference between the times occurs in
handling the references. This confirms that the last strategy to optimize sim-
ulation implementation, using a matrix of pointers instead of another complex
structure as a Reference Catalogue, can lead to important savings.

Refactoring an Electric-Market Software for Massively Parallel Computations 201

Although this modification does not fully cover the time difference between
the simulations, another important factor is that, in the first stage, certain vari-
ables are initialized, and memory is reserved for each room. These procedures
have a heavy computational weight. Since in the initial version of the simula-
tion, only one room is needed, these initializations are done once, whereas, in
this version, they must be done as many times as rooms are needed. Line 3 in
Algorithm 2 sets a lower bound to optimize the elapsed time of the first sim-
ulation stage. Considering this, the settings and initialization in the first stage
and the ChangeReferences procedure in the second determine this implementa-
tion’s overhead. Therefore, depending on the room, the overhead varies, allowing
rooms with less overhead to be more efficient in the future.

In rooms where the time taken by solving the Simplexes is high, parallelizing
the Simplexes solution in a massively parallel architecture (for example, a GPU)
can save significantly more time than the overhead implied by our change in the
simulation design, accelerating the original model.

Tables 6, 7 and 8 show, for each playroom (Hourly, Daily and Weekly), a
comparison of the elapsed simulation times for the developed strategies.

Table 6. Simulation times (ms) for Hourly playroom (VATES) with different imple-
mentations.

of trajectories Original Refs. Catalogue Refs. dictionary

2 179 5432 295

4 337 11251 590

8 649 22749 1184

16 1308 43431 2401

32 2590 89255 4913

64 5131 175247 10066

100 7875 274406 15880

128 10280 351584 22119

256 20106 701891 45542

As seen in the previous tables, the implementation obtained after the dif-
ferent optimizations specified throughout this work is just above the sequential
strategy, especially for rooms containing many records. Thus, as previously men-
tioned, the time it takes to solve the simplex in these rooms is constant in all the
implementations, but unlike before, there is now an infrastructure that allows
solving trajectories in parallel, creating the opportunity of solving many Sim-
plexes in parallel using a GPU in the future.

202 F. Seveso et al.

Table 7. Simulation times (ms) for Daily playroom with different implementations.

of trajectories Original Refs. catalogue Refs. dictionary

2 902 3567 933

4 1743 6934 1804

8 3574 13806 3673

16 7168 28041 7483

32 14138 56802 15209

64 28256 114822 31219

100 43996 180896 49113

128 56452 233024 63320

256 113594 480108 128958

Table 8. Simulation times (ms) for Weekly playroom with different implementations.

of trajectories Original Refs. catalogue Refs. dictionary

2 312 714 315

4 616 1412 613

8 1205 2809 1212

16 2406 5585 2398

32 4794 11211 4847

64 9562 22780 9895

100 14929 36312 15657

128 19174 46688 20324

256 38091 94600 40868

5 Conclusion and Future Work

In this work, we have refactored a large legacy computational system to expose
parallelism and create the opportunity of accelerating it using GPUs shortly,
extending our initial effort to introduce modern parallelism techniques on the
SimSEE tool. Considering our previous results, we study the principal challenges
and constraints to implementing the proposed massively-parallel version of the
SimSEE.

Concretely, we successfully implemented and evaluated versions of the sys-
tem that allow simulating multiple trajectories in parallel by instantiating as
many playrooms as the number of trajectories. The evaluation involved different
temporal scenarios, facing various problems for some of these cases. The princi-
pal difficulty was the memory scalability, i.e., the memory footprint related to
the rooms’ instantiation. Therefore, we propose multiple optimizations. In the
first place, and common to all the strategies, we instantiate all the rooms by
reading the playroom’s file once, reducing unnecessary serialized I/O activity.

Refactoring an Electric-Market Software for Massively Parallel Computations 203

The true optimizations focused on understanding playrooms’ structures, iden-
tifying units that remain invariable through the different trajectories’ room, to
instantiate them once, for all rooms. We successfully implemented a version of
the room’s loading and simulation procedures, considerably more suitable for
a massively-parallel implementation, with a scalable shared-memory variation,
reducing 88% the memory footprint of the hourly case. The downside of this
strategy is the introduction of certain overhead in the simulation routine. To
reduce this overhead, we propose two different variations, one using a native
structure implemented with classes and the other using a simple pointer matrix.
We significantly reduced the overhead introduced by the first technique by sac-
rificing a very small percentage of memory. For example, in the hourly case,
compared to the fist technique we improved the simulation time by a factor of
17×, by increasing memory usage by only 10%.

In future work, we intend to address the GPU parallelization of the Simplex
solved for all the trajectories in each time step. Additionally, it is interesting to
evaluate the parallelization of other stages of the simulation.

Acknowledgement. The authors of this article were partially financed by project
ANII FSE 1 2018 1 153060 Aceleración del SimSEE utilizando GPUs (SimSEE-MP).

References

1. ADME: VATES. https://latorre.adme.com.uy/vates/
2. ADME: Usos del SimSEE. https://www.simsee.org/simsee/usos.html. Accessed 31

July 2021
3. ADME: Administración del Mercado Eléctrico (2022). https://adme.com.uy/.

Accessed 10 June 2022
4. Baya, R., Pedemonte, M., Gutiérrez Arce, A., Ezzatti, P.: An asynchronous com-

putation architecture for enhancing the performance of the weather research and
forecasting model. Concurr. Comput. Pract. Exp. 32(19) (2020). https://www.
scopus.com

5. Baya, R., Porrini, C., Pedemonte, M., Ezzatti, P.: Task parallelism in the WRF
model through computation offloading to many-core devices. In: Merelli, I., Liò,
P., Kotenko, I.V. (eds.) 26th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing, PDP 2018, Cambridge, United Kingdom,
21–23 March 2018, pp. 596–600. IEEE Computer Society (2018). https://doi.org/
10.1109/PDP2018.2018.00100

6. Camacho, V., Chaer, R.: Hourly model of a combined cycle power plant for Sim-
SEE. In: 2020 IEEE PES Transmission & Distribution Conference and Latin Amer-
ica (T&D LA), pp. 1–5. IEEE (2019)

7. Coppes, E., Tutté, C., Maciel, F., Forets, M., Cornalino, E., Chaer, R.: SimSEE
Proyecto ANII FSE 2009 18 Mejoras a la plataforma SimSEE (2012). https://iie.
fing.edu.uy/publicaciones/2012/CTMFCC12

8. CORDIS: REfactoring Parallel Heterogeneous Resource-Aware Applications -
a Software Engineering Approach (2014). https://cordis.europa.eu/project/id/
644235

https://latorre.adme.com.uy/vates/
https://www.simsee.org/simsee/usos.html
https://adme.com.uy/
https://www.scopus.com
https://www.scopus.com
https://doi.org/10.1109/PDP2018.2018.00100
https://doi.org/10.1109/PDP2018.2018.00100
https://iie.fing.edu.uy/publicaciones/2012/CTMFCC12
https://iie.fing.edu.uy/publicaciones/2012/CTMFCC12
https://cordis.europa.eu/project/id/644235
https://cordis.europa.eu/project/id/644235

204 F. Seveso et al.

9. Dennis, J.M., Loft, R.D.: Refactoring scientific applications for massive parallelism.
In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds.) Numerical Techniques
for Global Atmospheric Models. LNCSE, vol. 80, pp. 539–556. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-11640-7 16

10. Flieller, G., Chaer, R.: Introduction of ensemble based forecasts to the electric-
ity dispatch simulator SimSEE. In: 2020 IEEE PES Transmission & Distribution
Conference Latin America (T&D LA), pp. 1–6. IEEE (2019)

11. Igounet, P., Alfaro, P., Usera, G., Ezzatti, P.: GPU acceleration of the caffa3d.MB

model. In: Murgante, B., et al. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp.
530–542. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31128-
4 39

12. Jensen, K., Wirth, N.: PASCAL User Manual and Report: ISO PASCAL Standard.
Springer, Heidelberg (2012)

13. Marichal, R., Vallejo, D., Dufrechou, E., Ezzatti, P.: Towards a massively-parallel
version of the SimSEE. In: 2021 IEEE URUCON. IEEE (2021). https://doi.org/
10.1109/urucon53396.2021.9647142

14. Rutishauser, H., Gutknecht, M., Gautschi, W., Schwarz, H., Henrici, P., Läuchli,
P.: Lectures on Numerical Mathematics. Birkhäuser, Boston (1990)

15. Fichas Dinámicas. https://simsee.org/simsee/simsee/ayuda/fichas-parametros-
dinamicos.htm

16. UTE: Wind Energy in Uruguay (2022). https://portal.ute.com.uy/composicion-
energetica-y-potencias. Accessed 18 June 2022

https://doi.org/10.1007/978-3-642-11640-7_16
https://doi.org/10.1007/978-3-642-31128-4_39
https://doi.org/10.1007/978-3-642-31128-4_39
https://doi.org/10.1109/urucon53396.2021.9647142
https://doi.org/10.1109/urucon53396.2021.9647142
https://simsee.org/simsee/simsee/ayuda/fichas-parametros-dinamicos.htm
https://simsee.org/simsee/simsee/ayuda/fichas-parametros-dinamicos.htm
https://portal.ute.com.uy/composicion-energetica-y-potencias
https://portal.ute.com.uy/composicion-energetica-y-potencias

Nearly Quantum Computing
by Simulation

Gilberto J. Dı́az T1(B) , Carlos J. Barrios H.1 , Luiz A. Steffenel2 ,
and Jean F. Couturier2

1 High Performance and Scientific Computing, Universidad Industrial de Santander,
Bucaramanga, Colombia

{gjdiazt,cbarrios}@uis.edu.co
2 LICIIS Laboratory, Université de Reims Champagne-Ardenne, Reims, France

{angelo.steffenel,jean-francois.couturier}@univ-reims.fr
https://www.sc3.uis.edu.co , https://www.univ-reims.fr/

Abstract. Quantum computing has ceased to be an exotic topic for
researchers, moving its treatment today from theoretical physicists to
computer scientists and engineers. Recently, several real quantum devices
have become available through the cloud. On the other hand, different
possibilities on-premises allow having quantum computing simulators
using High-Performance Computing (HPC) capabilities. Nevertheless,
they did not expect to be very limited, in the near term, the number and
quality of the fundamental storage element, the qubit. Therefore, soft-
ware quantum simulators are the only widely available tools to design and
test quantum algorithms. However, the representation of quantum com-
puting components in classical computers consumes significant resources.
In quantum computing, a state composed of n qubits will be a union of
all possible combinations of n 0s and 1s. That is to say, the size of the
information is 2n. The amplitude is the magnitude associated with every
variety and is composed of a complex number. This paper shows a survey
of different implementations to simulate quantum computing supported
by classical computing, highlighting important considerations for imple-
menting and developing solutions.

Keywords: Quantum computing · Parallelism · Simulation

1 Introduction

An innovative model was developed in the second half of the 20th century by
scientists who combined two remarkable theories: Information Theory [1] and
Quantum Mechanics [2]. The first one is about the study of the transmission,
processing, extraction, and utilization of information. The second one is about
the behavior of matter and its interactions with energy on the scale of atoms
and subatomic particles. The result was a new point of view of computation and
information, the Quantum Information Theory [3–9].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 205–219, 2022.
https://doi.org/10.1007/978-3-031-23821-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_15&domain=pdf
http://orcid.org/0000-0001-8188-5784
http://orcid.org/0000-0002-3227-8651
http://orcid.org/0000-0003-3670-4088
http://orcid.org/0000-0002-3577-1126
https://doi.org/10.1007/978-3-031-23821-5_15

206 G. J. Dı́az T et al.

Information theory has abstracted away the physical part of the devices used
for computation and communication in such a way that it is possible to talk
about the efficiency of an algorithm or the robustness of a communication pro-
tocol without understanding the details of the underlying physics. Quantum
information Theory applies concepts of quantum mechanics directly to the way
of doing computing. The contribution of quantum mechanics to developing new
computing devices has been highly significant. Until a few recent decades, the
influence of quantum mechanics was only in low-level implementation; it did not
affect how the computation or communication. However, the Quantum Informa-
tion Theory provides a new paradigm of computing, where the model of quantum
mechanics is not only limited to hardware but is applied directly to information
processing and transmission.

Recently, several quantum devices, with up to tens of qubits on universal
quantum computers (UQC) and thousand qubits on annealer (QA) devices,
have become available through the cloud, enabling the possibility of using real
quantum hardware to solve simple problems. In the near term, those devices are
expected to be very limited in the number and quality of qubits. Therefore, using
them for practical applications is challenging, requiring thousands of qubits [10].
Nevertheless, the production of software for quantum computing, which runs on
classical computers, has increased substantially. A list of developments can be
found in [11–13].

For all this, quantum computing simulators are the only widely available
tools to design and test quantum algorithms. However, the simulation of quan-
tum computing models in classical computers requires exponential time and
involves highly complex memory management. Using conventional techniques to
simulate an arbitrary quantum process significantly more extensively than exist-
ing quantum prototypes requires massive memory on a classical computer. For
instance, to simulate a 60 qubits quantum state, the process would take about
18.000 petabytes of classical computer memory. Therefore, researchers try to
reduce such challenges by proposing efficient simulators.

Several initiatives are trying to reduce the consumption of classical resources
by quantum simulators. For example, Jianxin Chen et al. [12] work on a tech-
nique based on Google’s model for variable elimination in the line graph that
implements a single-amplitude simulator. Aidan Dang et al. [13] studies how
the entanglement structure of Shor’s algorithm [14] is suitable for a particular
matrix product state representation, that quantifiable reduces the computational
requirements for simulation, and Xin-Chuan Wu et al. [15] implements a loss
compression algorithm to reduce the amount of memory usage. The aim is to
re-design quantum simulators using at least one of these techniques, or a mix of
them, to test quantum algorithms with valuable dimensions.

Even though some quantum computers have come onto the market, they
represent prototypes that are not scalable and sufficient to test complex quan-
tum algorithms. The construction of a full-scale quantum computer comprising
millions of qubits is a long-term prospect. Quantum computer prototypes are
currently tiny and cannot overcome classical computers in terms of exceeding

Nearly Quantum Computing by Simulation 207

their capacity. This task resembles the early days of programming, in which soft-
ware was built in machine languages [16]. Then, quantum computing simulators
are the only widely available tools to design and test quantum algorithms. Sim-
ulating quantum algorithms at this level is essential to learning how a quantum
computer will physically operate, how the software can work, and what sort
of problems it can solve. However, the simulation of quantum computing mod-
els in classical computers requires exponential time and involves highly complex
memory management. The problem is that using conventional techniques to sim-
ulate an arbitrary quantum process significantly more extensive than any of the
existing quantum prototypes would soon require a vast amount of memory on
a classical computer. For instance, to simulate a 50 qubits quantum state, the
process would take about 16 petabytes [17]. Therefore, researchers try to reduce
such challenges by proposing efficient simulators.

This paper presents how to implement quantum computing in simulators
supported by HPC architectures as a strategy to run quantum simulations effi-
ciently to reduce classical resource consumption and threaten real problems that
need quantum computing solutions. The paper in the Sect. 2 shows important
theoretical considerations about Quantum Mechanics and information theory to
develop quantum computing models. Section 3 introduces the concept of Quan-
tum Parallelism and Quantum Simulation supported by classical computing.
Finally, Sect. 4 shows a proposed discussion and further work.

2 Quantum Computing Modelling

A quantum computing model describes the different scientific approaches to for-
malizing the transformations over inputs to compute outputs using quantum
resources. A model is determined by the essential elements in which the compu-
tation is decomposed [18]. The four main models of practical importance are:

– Quantum Gate Array or Quantum Circuit: The computation is decom-
posed into sequence of few qubit quantum gates. This is the best well-known
model of quantum computation.

– One-way quantum computer: The computation is decomposed into
sequence of one-qubit measurements applied to a highly entangled initial state
or cluster state.

– Adiabatic quantum computer: The computation is decomposed into a
slow continuous transformation of an initial Hamiltonian into a final Hamil-
tonian, whose ground states contain the solution.

– Topological quantum computer: The computation is decomposed into
the braiding of anyons in a 2D lattice.

– Quantum Turing Machine: A quantum Turing machine, also known as
universal quantum computer, is an abstract machine used to model a quantum
computer proposed by David Deutsch [9].

In this study we are going to work with the quantum circuit model because
its popularity. However, due to the strong dependence of Quantum Information
Theory of Quantum Mechanics, let us briefly describe the fundamentals of it.

208 G. J. Dı́az T et al.

2.1 An Overview of Quantum Mechanics

Quantum mechanics is a theory that describes the world at the scale of the
energy level of atoms and other subatomic particles. The early proposed theory
about some physical phenomena that could not be explained using classical
physics was formulated by Max Planck [19] and Albert Einstein [20]. There are
several mathematical formalisms. One of them uses the wave function to provide
information about the probability amplitude of position, momentum, and other
physical properties of a particle.

Quantum System. A quantum system is a portion of the physical world con-
sidered to perform the analysis or study of quantum mechanics related to the
wave-particle duality in that system. It involves the wave function and its com-
ponents, such as the wavelength and the wave’s momentum for which the wave
function. A physical system consists of a notion of states, properties, and a
dynamical law that describes the system’s evolution. In the case of quantum
mechanics, (pure) states are elements ψ of a Hilbert space H normalized to 1,
which can also consider as rays in a Hilbert space or rank-1 orthogonal pro-
jections. Hermitian operators are on this Hilbert space. In this approach, the
dynamical law is the Schrödinger equation i∂tψ(t) = Hψ(t) where H is the
energy observable in the Hamiltonian. There are equivalent formulations like
the Heisenberg approach and generalizations like the notion of mixed states [21].

Two-State Quantum System. A two-state is a quantum system with two
independent quantum states (physically distinguishable) or a superposition. The
Hilbert space that describes such a system is two-dimensional. Therefore, a com-
plete base encompassing the space will consist of two independent states.

Postulate 1 (State Space). In the formalism of quantum mechanics, at each
instant, the state of an isolated physical system can be characterized by a state
vector in a complex, separable Hilbert space of infinite dimension and with an
inner product. This space allows expressing any physical state by a countable
sequence of vectors, weighted by their amplitudes of respective probabilities.
These state vectors are written in the standard bracket Dirac’s notation [22].

Postulate 2 (Evolution). The temporal evolution of the state of an isolated
physical system can be described by an unitary transformation that acts on the
state vector that describes the system. That is, the state |Ψ〉 of the system at
time t1 is related to the state |Ψ ′〉 of the system at time t2 by a unitary operator
U which depends only on the times t1 and t2 [22]:

U : |Ψ〉 → |Ψ ′〉 = U |Ψ〉 (1)

Quantum Mechanics does not specify neither the state space nor the unit
operator for a particular quantum system. It just merely assures us that the
evolution of any closed quantum system may be described in such a way.

Nearly Quantum Computing by Simulation 209

Postulate 3 (Measurement). In classical physics, the disturbance associated
with the procedure of measurement of any physical phenomenon, in general,
is minimal. In quantum physics, the act of measurement plays an active and
disturbing role. Because of this, quantum particles are best described within the
context of the possible outcomes of measurements.

Once we have seen the most outstanding aspects of quantum mechanics that
influence quantum computing, we will see the contribution of information theory
in this area of research.

2.2 Information Theory

Information Theory studies information transmission, processing, extraction,
and utilization. It is based on the studies of Claude Shannon (1948) [1], who
worked on the ideas of Ralph Hartley (1928) [23] and Harry Nyquist. Hartley
tried to define a measure of information. He said that for every symbol of a
message, there are s possibilities, and for a message with l symbols, there are sl

different messages. Hartley defined the amount of information as the logarithm
of the number of distinguishable messages. In the same way, Shannon demon-
strated that all kinds of information could be quantified with absolute precision.
Telephone signals, text, radio waves, and pictures, essentially every mode of com-
munication, could be encoded in bits. He raised several critical concepts in the
paper “A Mathematical Theory of Communication” [1].

Channel Capacity and the Noisy Channel Coding Theorem. The main
idea is that every communication channel has a speed limit, measured in bits
per second. It is mathematically impossible to obtain an error-free channel if
the speed limit is exceeded. Without losing some information, you cannot make
the channel go faster than the limit. On the other hand, if you work under that
limit, it is possible to transmit information without errors. The noisy channel
coding theorem, or just Shannon’s Theorem, shows that it is possible to
transmit discrete data (digital information) almost without errors on the same
noisy channel at a maximum computable rate.

Digital Representation. The message’s content is irrelevant to the transmis-
sion procedure. The message could be text, image, video, or sound. However,
only bits (0’s and 1’s) are transferred through the channel. The term bit appears
for the first time in this work. Shannon also pointed out that once data was
represented digitally, it could be regenerated and transmitted without error.

Efficiency of Representation (Source Coding). The main objective of
source coding is to make the message smaller removing redundancy in the infor-
mation. Shannon discusses a loss-less method of compressing data at the source,
using a variable rate block code (Shannon-Fano code).

210 G. J. Dı́az T et al.

Entropy and Information Content. Entropy can be considered as a measure
of the uncertainty and information necessary to, in any process, limit, reduce or
eliminate the uncertainty. The Shannon entropy equation provides a way to
estimate the average minimum number of bits needed to encode a string of
symbols based on the frequency of these [24].

It is possible to build the Quantum Information theory from the Information
Theory, as shown below.

2.3 Quantum Information Theory

Quantum Information Theory is the study that explores the use of quantum
mechanics theory, instead of classical mechanic fundamentals, to model infor-
mation, process it, and transmit it when it is stored in quantum particles [16].
Quantum Information Theory includes quantum simulation, cryptography, com-
munications, and games [22,25]. The concept of quantum information comes
from classical information. Meanwhile, the bit is the information unit in classi-
cal information, and the qubit is the unit in quantum information.

Logical Qubit. A logical qubit is a unitary vector in a two-dimensional Hilbert
space.

|ψ〉 ∈ H where ||ψ|| = 1 and dimH = 2 (2)

The Boolean states 0 and 1 are represented by a prescribed pair of normalized
and mutually orthogonal quantum states denoted using Dirac’s notation |0〉 and
|1〉.

The two states form a computational basis and any other (pure) state of the
qubit can be written as a superposition α|0〉 + β|1〉 [26]. The bra/ket notation
can be independent of the elements’ basis and order. Once this notation becomes
familiar, it is easier to read and faster to use. Mathematically, Dirac’s notation
(ket) is a shorthand notation for column vectors:

|0〉 ≡
(

1
0

)
: |1〉 ≡

(
0
1

)
(3)

In Quantum Information processing, classical bits values of 0 and 1 are rep-
resented using distinguished states |0〉 and |1〉. With this representation, we can
directly compare bits and qubits, where bits can take on only two values, 0 and
1, while qubits can take on those previous values and any superposition.

Quantum State. A quantum state is simply something that encodes the state
of a quantum system. Formally, a quantum state is a vector |v〉 representing a
superposition of the elements {|β1〉, |β2〉} if it is a nontrivial linear combination
of |β1〉 and |β2〉, if |v〉 = a1|β1〉 + a2|β2〉 where a1 and a2 are non-zero. For the
term superposition to be meaningful, a basis must be specified [16].

Nearly Quantum Computing by Simulation 211

In Classical Information Theory, the amount of information contained by a
specific state using n bits is n. There will be only one combination of n 0s and 1s.
In Quantum Information Theory, a state composed of n qubits will be a union
of all possible combinations of n 0s and 1s. That is to say, the size of information
is 2n. For example, if we use 3 bits, we will have just one of the 23 possibilities
whose length is 3, for instance, 010. If we use 3 qubits, we will have not only one
but all combinations: 001, 010, 011... 111, each multiplied by the corresponding
amplitude. If we increase 1 the number of bits, the size will be n + 1, but if we
increase the number of qubits, we get double the size, that is to say, 2n+1.

Superposition. The unique characteristic of quantum states is that they allow
the system to be simultaneously in a few conditions. Quantum bits are not
constrained to be wholly 0 or wholly 1 at a given instant. It may also exist in
a superposition, or blend of those states simultaneously [21], when a quantum
system find to be in one of a discrete set of states, which we’ll write as |0〉 or
|1〉, then, whenever it is not being observed.

Entanglement. It supposes a correlation between different parts of a quantum
system that surpasses anything that is classically possible. It happens when the
subsystems interact so that the resulting state of the whole system cannot be
expressed as the direct product of the states of its parts. When a quantum
system is in such a tangled state, the actions performed in one subsystem will
have a side effect in another subsystem, even if it does not act directly on that
subsystem. It takes 2n − 1 complex numbers to describe the states of an n-qubit
system. Because 2n is much bigger than n, most of the n-qubit states cannot be
described in terms of the state of n separate single-qubit systems. States that
cannot define as the tensor product of n single-qubit states are called entangled
states. Thus, most quantum states are entangled [16]. If we can write the tensor
product of those states, they are said to be separate states.

With a quantum computing theory and taking advantage of the opportu-
nities of HPC architectures and parallelism, it is possible to simulate quantum
computing in classical computing, as shown in the next section.

3 Quantum Computing Parallelism and Simulation

Quantum superposition, quantum uncertainty, and quantum entanglement are
powerful resources that we can use to encode, decode, transmit and process
information in a highly efficient way that is impossible in the classical world. In
theory, a quantum computer can perform any task that a classical computer can
execute, but this does not necessarily mean that a quantum computer exceeds
a classical computer for all types of tasks. For a quantum computer to show its
superiority, it needs to use new algorithms to exploit the ability to work on all
possible states simultaneously. This phenomenon is called quantum parallelism.
However, these algorithms are not easy to design and produce spectacular results.
One example is the quantum factorization algorithm created by Peter Shor [27].

212 G. J. Dı́az T et al.

Quantum Algorithms. Generally, the term is used for those algorithms that
incorporate some essential feature of quantum computing, such as superposition
or entanglement. David Deutsch is the precursor of the quantum algorithms field.
His work went from quantum information to quantum computation [9]. Deutsch
asked whether there is a quantum extension of the Church-Turing idea that
any computation that runs on a classic computer can be efficiently simulated
on a universal Turing machine [28]. Deutsch proposes that to see the Church-
Turing hypothesis as a physical principle, not only must computer science be
turned into a branch of physics, but also part of experimental physics into a
branch of computer science [29]. In consequence, contrary to the popular belief
that quantum computers have few applications, the field of quantum algorithms
has become a sufficiently large area of study. Then, websites like “Quantum
Algorithms Zoo” [30] cite almost 400 articles in this area.

In the computational complexity theory, asymptotic scales of complexity
measures such as execution time or problem size are generally considered. In
classical and quantum computing, the execution time is measured by the number
of elementary operations used by an algorithm. Particularly, quantum comput-
ing uses the quantum circuit model, where a quantum circuit is a sequence of
quantum operations called quantum gates, each applied to a small number of
qubits. Comparing the performance of the algorithms, the notation O(f(n)) of
the computing style is used, which is interpreted as “asymptotically delimited
by f(n)”. Table 1 contains descriptions of some complexity classes.

Table 1. Computational complexity classes of algorithms

P A deterministic classical computer can solve it in polynomial time

BPP A probabilistic classical computer can solve it in polynomial time

BQP A quantum computer can solve it in polynomial time

NP A deterministic classical computer can check the solution in polynomial time

QMA A quantum computer can check the solution in polynomial time

There are three classes of quantum algorithms with clear advantages over
known classical algorithms: Algorithms based upon quantum versions of the
Fourier transform, Quantum search algorithms, and Quantum simulation1.

Richard Feynman pointed out that simulating quantum systems on a classical
computer is very difficult. Besides, other physicists believe that all aspects of the
world around us, including classical logic circuits, can ultimately be explained
using quantum mechanics. However, quantum circuits cannot be used to directly
simulate classical circuits because unitary quantum logic gates are inherently
reversible, whereas many classical logic gates such as the NAND gate are inher-
ently irreversible [22]. To overcome this obstacle, we can replace the original
classical circuit by an equivalent circuit containing only reversible gates like
Toffoli gate [31].
1 A quantum computer simulates a quantum system.

Nearly Quantum Computing by Simulation 213

Quantum Parallelism. One of the main features of quantum computing is to
take advantage of quantum mechanics effects like superposition and entangle-
ment to speed up the calculations. In 1985, Deutsch [9] found a computational
problem solved on a quantum computer in a manner that is impossible classi-
cally. In 1992, Deutsch and Jozsa [31] simplified and extended the earlier result.

The modern formulation of the problem is the following. Suppose a classical
algorithm that computes some function f : ±1 → f : ±1. There are exactly four
such functions:

f1(x) = x

f2(x) = −x

f3(x) = +1
f4(x) = −1

(4)

Evaluating f(−1) and f(+1) we obtain two bits of classical information and
know which of the four functions we have. Obviously this requires two evaluations
of the function. All those functions can be categorized as: Balanced: fore example:
f(−1) + f(+1) = 0 or Unbalanced: or constant.

It is necessary to acquire a classic bit of information to determine the func-
tion’s class, which requires two evaluations. Quantum mechanically defines the
class with only a single “measurement”. The trick is to put x into a superposition
of both +1 and −1, and a single assessment of the function determines the class.
However, it is impossible to decide which position because the measurement
returns only one bit of classical information.

Quantum Algorithms Workflow. A typical quantum algorithm workflow on
a gate-model quantum computer is depicted in Fig. 1. It begins with a high level
definition of the problem, for example, Shor’s algorithm. The problem to solve is,
given an odd composite number N , we need to find an integer i, strictly between
1 and N , that divides N .

Fig. 1. Quantum algorithm workflow

214 G. J. Dı́az T et al.

Hybrid Approach. Current quantum computers cannot execute many main
quantum algorithms with asymptotic speedup for practical size problems due to
the small number of qubits. Due to decoherence, the limited number of gates run
before the accumulation of errors makes the output useless. Several quantum-
classical algorithms have been developed to overcome these inconveniences. The
general method is to decompose the problem statically or dynamically, solve
the subproblems on QPU, and combine them on the CPU to obtain a global
solution. One of the most famous hybrid algorithms is the Variational Quantum
Eigensolver (QVE). This algorithm combines a small QPU and CPU to find the
ground state of a Hamiltonian problem. The trial state (ansatz) is prepared by
applying a series of parameterized gates on the QPU and its energy measured.
This process is outlined in the Fig. 2. The advantage of this kind of algorithm
is that the trial state can be chosen. Therefore, the number of required gates
is small enough to run feasibly on a small QPU or noisy intermediate-scale
quantum computer (NISQ). Shaydulin et al. [10] describe a hybrid approach for
solving practical size problems about local quantum search (QLS) in their work.

Fig. 2. The general outline of variational hybrid algorithms

3.1 Quantum Computing Simulators

A quantum simulator is an object able to execute quantum computations. They
can be classified in two categories [32]: A Quantum System that can perform
specific quantum computations, and Software Packages that can reproduce
the fundamental aspects of a general universal quantum computer on a general
purpose classical computer.

Although quantum computers are available to use over the cloud, they are
still very small to be considered as a complete universal quantum computer.
Besides, there has been an explosion of quantum software platforms which can
overwhelm to those looking for a platform to use.

Nearly Quantum Computing by Simulation 215

3.2 Popular Open Source Quantum Computer Simulators

Many initiatives are working on quantum simulators2. LaRose et al. [36] reviewed
some important general-purpose projects operating at the quantum gates. Guzik
[37] studied the appropriate approach to implementing different quantum com-
puting models. Fingerhuth et al. [38] did an evaluation of a wide range of
open-source software for quantum computing, including all stages of the quan-
tum toolchain from quantum hardware interfaces through quantum compilers to
implementations of quantum algorithms, as well as several quantum computing
models: quantum annealing and discrete and continuous-variable gate-model.
Table 2 shows these works with a specific selection of major software quantum
simulators developments.

Table 2. Software quantum simulators

Name Language Description

Quantum++ C++ General-purpose multi-threaded quantum simulator written
in C++ with high performance. It is not restricted to qubit
systems or specific quantum information processing tasks;
capable of simulating arbitrary quantum processes [39]

Qrack C++ Quantum simulator in C++, including additional support for
GPUs. Emphasis on performance by parallelization over
multiple CPU or GPU cores. It supports arbitrary numbers of
entangled qubits up to system limitations [40]

Quirk JavaScript Quantum simulator less-performance oriented for educational
purposes, with a visual user experience that allows beginners
and experts to construct quantum circuits via drag-and-drop
operations [41]

Cliffords.js Julia It only uses quantum gates from the Clifford group. It
executes the calculation of Clifford circuits by tracking the
evolution of X and Z generators. An exciting feature is that it
allows tracking the inverse operations [42]

Qbsolv C++ It is not a simulator but the closest analog for annealing
devices. It finds the minimum value of quadratic
unconstrained binary optimization problems (QUBO) [43,44]

Other projects provide a full-stack approach to quantum computing, includ-
ing a simulator and compilers and the possibility to run the program on real
quantum processors. The Table 3 shows some of them.

Beyond popularity, the two tables highlight specific implementations that
allow the simulation of quantum algorithms on classical computers. However,
these tools create architectural, representation, and performance challenges to
discuss in the next section.

2 A list of the recent developments is maintained on several websites [11,12,34,35].

216 G. J. Dı́az T et al.

Table 3. Full-stack quantum libraries

Project Simulator Language Description

XACC TNQVM C It is an implementation taking the tensor
network theory to simulate quantum circuits
[45,46]

Qiskit Qiskit Aer Framework for working with noisy quantum
computers at the level of pulses, circuits,
and algorithms supported by IBM [47,48]

ProjectQ ProjectQ C++, Python An open source software framework for
quantum computing [49] supported by ETH
Zurich

Forest QVM Python Forest full stack library quantum simulator.
It is a Python-based simulator for rapid
prototyping of quantum circuits [50]

4 Discussion and Further Work

As we study the limit of the non-simulable, it is important to verify that quan-
tum computers behave as intended. Furthermore, it is of fundamental interest
to classify the limit beyond which quantum computers do something genuinely
unreachable classically (quantum supremacy). Thus, pushing this boundary as
far as possible is important to make quantum supremacy meaningful. To ful-
fill this aim, the interest in general quantum simulation has increased. Already,
there are more than 100 classical simulators for various types of quantum systems
available [11,12,34,35]. Different results are obtained in various areas of inter-
est within this wide range of simulators. There are two major amplitude-wise
approaches to simulate a quantum circuit of N qubits and [13] depth d:

– 1) stores the entire state vector in memory, therefore, here the memory is the
principal issue.

– 2) calculates the amplitude αx for any N -bit string x ∈ {0, 1}N .

In 1), memory is the primary concern. Their dimensions have limited the
simulation of quantum circuits. One decade ago, the most extensive simula-
tion was a 42-qubit quantum circuit on the Jülich supercomputer [51]. Mikhail
Smelyanskiy et al. used an Intel simulator to simulate up to 42 qubits quantum
supremacy circuits. A simulation of 45 qubits was carried out on the Cori II
supercomputing system using 0.5 petabytes of memory and 8,192 nodes in 2017
[52]. In 2018, a quantum circuit of 7 × 7 grid of depth 39 was simulated on the
Sunway TaihuLight supercomputer [53]. In 2020, on the same supercomputer, a
49 qubits circuit of 55 depth was performed [54].

Several works implement different techniques to make better use of memory.
Jianxin Chen et. al. [13] works on a new technique, that implement a single-
amplitude simulator that computes 〈x|C|0...0〉 for an arbitrary quantum circuit

Nearly Quantum Computing by Simulation 217

C. Jianxin tested the simulator for a randomly generated C from a restricted
circuit class that produces a sampling problem classified as intractable [55].
The algorithm uses tensor network contraction [56], where the treewidth is the
dominant factor in determining the time and space-complexity.

Aidan Dang et al. [14] studies how the entanglement structure of Shor’s
algorithm [7] is suitable for a particular matrix product state representation
that quantifiably reduces the computational requirements for simulating it in
a classical computer. The matrix product states of tensor networks [57] were
originally used for simulating one-dimensional quantum many-body systems [58,
59], however, they have been adapted for simulating quantum circuits [60,61].

Thomas Häner et al. introduces a quantum computer emulator making use
of the availability of an abstract, high-level quantum code by directly utiliz-
ing classical emulation for quantum subroutines. Instead of compiling them into
quantum gates before applying them using a series of sparse matrix-vector mul-
tiplications enabling an entirely new class of optimizations [33].

The simulation of quantum systems carried out in classical computers has
been done for a long time. However, as we present in this paper, the recent
boom in real quantum devices has fueled the development of these simulators.
It has increased pressure to determine the capabilities of what can be achieved
in classical computers, mainly involving highly complex memory management,
and our further work goes in this direction.

References

1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. 27(3),
379–423 (1948)

2. Born, M., Jordan, P.: Zur quantenmechanik. Z. Angew. Phys. 34(1), 858–888
(1925)

3. Feynman, R.P.: Feynman and Computation. There’s Plenty of Room at the Bot-
tom, pp. 63–76. Perseus Books, Cambridge (1999)

4. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum
communication channel. Probl. Inf. Transm. 9(3), 177–183 (1973)

5. Poplavski, R.P.: Thermodynamic models of information processes. Sov. Phys.
Uspekhi 18(3), 222–241 (1975)

6. Ingarden, R.S.: Quantum Information Theory. Preprint - Instytut Fizyki Uniwer-
sytetu Mikolaja Kopernika. PWN (1975)

7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

8. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical
Hamiltonian model of computers as represented by turing machines. J. Stat. Phys.
22(5), 563–591 (1980)

9. Deutsch, D.: Quantum theory, the church-turing principle and the universal quan-
tum computer. Proc. R. Soc. Lond. 400, 97–117 (1985)

10. Shaydulin, R., Ushijima-Mwesigwa, H., Negre, C., Safro, I., Mniszewski, S., Alex-
eev, Y.: A hybrid approach for solving optimization problems on small quantum
computers. Computer 52, 18–26 (2019)

11. Fingerhuth, M.: Open-source quantum software projects (2019). https://github.
com/qosf/os quantum software

https://github.com/qosf/os_quantum_software
https://github.com/qosf/os_quantum_software

218 G. J. Dı́az T et al.

12. Quantum Computing Report. Qbit count (2019). https://
quantumcomputingreport.com/scorecards/qubit-count/

13. Chen, J., Zhang, F., Huang, C., Newman, M., Shi, Y.: Classical simulation of
intermediate-size quantum circuits (2018)

14. Dang, A., Hill, C.D., Hollenberg, L.C.L.: Optimising matrix product state simula-
tions of Shor’s algorithm. Quantum 3, 116 (2019)

15. Wu, X., Di, S., Cappello, F., Finkel, H., Alexeev, Y., Chong, F.T.: Memory-efficient
quantum circuit simulation by using lossy data compression (2018)

16. Eleanor, R., Wolfgang, P.: Quantum Computing, A Gentle Introduction. The MIT
Press, Cambridge (2011)

17. Haner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2017, NY, USA, pp. 33:1–33:10 (2017)

18. Imanuel, A.: What is quantum computing? Top 18 quantum computing companies
(2018). https://www.predictiveanalyticstoday.com/what-is-quantum-computing/

19. Planck, M.: Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum.
j-VERH- DTSCH-PHYS-GES 2(17), 237–245 (1900)

20. Einstein, A.: Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt. j-ANN-PHYS-1900-4 322(6), 132–148 (1905)

21. Lein, M.: Quantum mechanical systems (2016). https://physics.stackexchange.
com/questions/278413/what-exactly-is-a-quantum-mechanical-physical-system

22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York (2011)

23. Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 7(3), 535–563
(1928)

24. Wilde, M.: From Classical to Quantum Shannon Theory. Cambridge University
Press, Cambridge (2018)

25. Barnum, H., Wehner, S., Wilce, A.: Introduction: quantum information theory and
quantum foundations. Found. Phys. 48(8), 853–856 (2018)

26. Hayden, P., Ekert, A., Inamori, H.: Basic concepts in quantum computation. In:
Kaiser, R., Westbrook, C., David, F. (eds.) Coherent Atomic Matter Waves. Les
Houches - Ecole d’Ete de Physique Theorique, vol. 72, pp. 661–701. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45338-5 10

27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 1994 Proceedings 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134 (1994)

28. Humble, T.S., De Benedictis, E.P.: Quantum realism. Computer 52(6), 13–17
(2019)

29. Jordan, S.: Quantum Algorithm Zoo (2018). https://quantumalgorithmzoo.org
30. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
31. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Tech-

nical report, University of Bristol, Bristol, UK (1992)
32. Karafyllidis, I., Sirakoulis, G.Ch., Dimitrakis, P.: Representation of qubit states

using 3D memristance spaces: a first step towards a memristive quantum simulator.
In: Proceedings of the 14th IEEE/ACM International Symposium on Nanoscale
Architectures, NANOARCH 2018, New York, USA, pp. 163–168 (2018)

33. Haner, T., Steiger, D., Svore, K., Troyer, M.: A software methodology for compiling
quantum programs. Quantum Sci. Technol. 3(2), 020501 (2018)

34. Quantiki. List of qc simulators (2019). https://www.quantiki.org/wiki/list-qc-
simulators

https://quantumcomputingreport.com/scorecards/qubit-count/
https://quantumcomputingreport.com/scorecards/qubit-count/
https://www.predictiveanalyticstoday.com/what-is-quantum-computing/
https://physics.stackexchange.com/questions/278413/what-exactly-is-a-quantum-mechanical-physical-system
https://physics.stackexchange.com/questions/278413/what-exactly-is-a-quantum-mechanical-physical-system
https://doi.org/10.1007/3-540-45338-5_10
https://quantumalgorithmzoo.org
https://www.quantiki.org/wiki/list-qc-simulators
https://www.quantiki.org/wiki/list-qc-simulators

Nearly Quantum Computing by Simulation 219

35. Quantum Open Source Foundation Team. Quantum open source foundation
(2019). https://qosf.org/

36. La Rose, R.: Overview and comparison of gate level quantum software platforms.
Quantum 3, 130 (2019)

37. Guzik, V., Gushanskiy, S., Polenov, M., Potapov, V.: Models of a quantum com-
puter, their characteristics and analysis. In: 9th International Conference on Appli-
cation of Information and Communication Technologies (AICT), pp. 583–587
(2015)

38. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum comput-
ing. PLOS One 13(12), 1–28 (2018)

39. Gheorghiu, V.: Quantum++: a modern C++ quantum computing library. PLoS
One 13(12), 1–27 (2018)

40. Strano, D.: Qrack (2019). https://vm6502q.readthedocs.io/en/latest/
41. Strilanc, A drag-and-drop quantum circuit simulator (2019). https://github.com/

Strilanc/Quirk
42. Cliffords.jl (2018). https://github.com/BBN-Q/Cliffords.jl
43. D Wave (2019). https://www.dwavesys.com/
44. Qbsolv (2019). https://github.com/dwavesystems/qbsolv
45. McCaskey, A., Dumitrescu, E., Liakh, D., Chen, M., Feng, W., Humble, T.: A lan-

guage and hardware independent approach to quantum-classical computing (2017)
46. Tensor Network QPU Simulator for Eclipse XACC (2019). https://github.com/

ornl-qci/tnqvm
47. Qiskit (2019). https://qiskit.org/
48. Qiskit aer (2019). https://github.com/Qiskit/qiskit-aer
49. Projectq (2019). https://github.com/ProjectQ-Framework/ProjectQ
50. QVM Reference (2019). https://github.com/rigetti/reference-qvm/
51. De Raedt, K., et al.: Massively parallel quantum computer simulator. Comput.

Phys. Commun. 176(2), 121–136 (2007)
52. Smelyanskiy, M., Sawaya, N.P.D., Aspuru-Guzik, A.: qHIPSTER: the quantum

high performance software testing environment. CoRR, abs/1601.07195 (2016)
53. Li, R., Wu, B., Ying, M., Sun, X., Yang, G.: Quantum supremacy circuit simulation

on Sunway TaihuLight (2018)
54. Li, R., Wu, B., Ying, M., Sun, X., Yang, G.: Quantum supremacy circuit simulation

on Sunway TaihuLight. IEEE Trans. Parallel Distrib. Syst. 31(4), 805–816 (2020)
55. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat.

Phys. 14(6), 595–600 (2018)
56. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Neven, H.: Simulation of low-depth

quantum circuits as complex undirected graphical models (2017)
57. Orus, R.: A practical introduction to tensor networks: matrix product states and

projected entangled pair states. Ann. Phys. 349, 117–158 (2014)
58. Vidal, G.: Classical simulation of infinite-size quantum lattice systems in one spa-

tial dimension. Phys. Rev. Lett. 98, 070201 (2007)
59. Schollwock, U.: The density-matrix renormalization group in the age of matrix

product states. Ann. Phys. 326(1), 96–192 (2011). Special Issue
60. Wang, D.S., Hill, C.D., Hollenberg, L.L.C.L.: Simulations of Shor’s algorithm using

matrix product states (2015)
61. Vidal, G.: Efficient classical simulation of slightly entangled quantum computa-

tions. Phys. Rev. Lett. 91, 147902 (2003)

https://qosf.org/
https://vm6502q.readthedocs.io/en/latest/
https://github.com/Strilanc/Quirk
https://github.com/Strilanc/Quirk
https://github.com/BBN-Q/Cliffords.jl
https://www.dwavesys.com/
https://github.com/dwavesystems/qbsolv
https://github.com/ornl-qci/tnqvm
https://github.com/ornl-qci/tnqvm
https://qiskit.org/
https://github.com/Qiskit/qiskit-aer
https://github.com/ProjectQ-Framework/ProjectQ
https://github.com/rigetti/reference-qvm/

Functionality Testing in the Automation
of Scientific Application Workflows in an HPC

Environment

Felipe de Jesús Orozco Luna, Jesús Manuel Alemán González,
and Veronica Lizette Robles Dueñas(B)

University of Guadalajara (CADS Data Analysis and Supercomputing Center), Zapopan,
Jalisco, México

{forozco,lizette}@cads.udg.mx, felipe.orozco@academicos.udg.mx,

jesus.aleman4182@alumnos.udg.mx

Abstract. This paper presents the results obtained in performance tests of task
automation in the supercomputing cluster of the University of Guadalajara (CADS
Data Analysis and Supercomputing Center).

The main objective was to design an automated workflow process to take
advantage of high computational performance in scientific applications, routines
in R, Python or shell that by nature consume only one core, and that by the volume
of data to be processed could allow the execution of multiple tasks at once in a
supercomputing cluster environment, or even in the cloud, for an efficient use
of the infrastructure. In addition to using Singularity containers to encapsulate
applications or scripts to be used in workflows.

The following tools were tested: Snakemake as a tool for workflow automa-
tion and scaling, as well as Singularity container technologies for application
encapsulation and SLURM for managing resource usage in the cluster.

The results are presented as well as the experience gained in using these
technologies.

Keywords: Automation · Snakemake · Singularity containers · Scaling ·
Reproducibility · Supercomputing cluster · Parallelization

1 Introduction

We are currently faced with the need to process large amounts of data with tools that
use a single processing core, which makes scalability and automation difficult.

This problem is very common in the scientific context, asmany scientific applications
use a single processing core for a large amount of data. For this reason, and because
of the computational resources required, these applications are candidates for use in a
processing flow that enables scalability and automation.

To address this issue, tests were conducted to quantify the performance and scaling of
the parallelized tools. These tests were performed by creating a container in Singularity
with a scientific application.

We test the functionality and performance of the tools required for workflow
automation, scaling, and reproducibility. The following themes motivate our study:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Navaux et al. (Eds.): CARLA 2022, CCIS 1660, pp. 220–232, 2022.
https://doi.org/10.1007/978-3-031-23821-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23821-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-23821-5_16

Functionality Testing in the Automation of Scientific Application 221

• Framing within an automated processing flow with containers. Within containers,
scientific applications that require only a processing core or routines in R, Python, or
shell.

• Create a suitable environment for executing tasks, many of which cannot inherently be
parallelized but require large amounts of data and information processing and storage
capacity.

• Create processing workflows that are scalable and automated.
• Design and test workflows with parallelized tasks for optimal use of resources
provisioned in the supercomputing cluster.

• Use Python scripts integrated as processing boxes (one core per job) in these
processing flows.

The present study helped us to test and design processing flows with different sce-
narios of tools and cluster capacities, testing since one compute node using partially all
available cores (up to 36 cores per node), and performance tests using a maximum of 28
compute nodes.

Parameters to be tested included the scalability and automation capabilities of a
workflow to make the best use of the supercomputing cluster resources.

An additional motivation is to gain experience using these processing schemes for
CADS and supercomputing users who wish to leverage the use of processing in these
work scenarios that inherently lack scalability and parallelization capabilities.

2 Infrastructure Used

The Data Analysis and Supercomputing Center (CADS) is a space created by the Uni-
versity of Guadalajara, located in the facilities of the University Center for Economic
and Administrative Sciences, in Zapopan Jalisco, México.

Within the CADS is the University of Guadalajara Supercomputer, associated with
large processing, storage and communications capabilities, whose purpose is to enable
and accelerate scientific research and technological development of the university
community.

Up to 28 compute nodes of the Leo ATROX Supercomputing equipment were used
for these tests, each with the following characteristics:

2 Xeon-6154 (SKYLAKE) processors with 18 cores at 3.0 Ghz Between 188 -
392 GB RAM

3 Tools Used

3.1 Slurm

Slurm is an open source tool used in supercomputing environments that handles the
management and allocation of resources within the cluster. It is based on a configuration
file where you can specify the amount of resources to use along with the routines or
commands for processing your work.

222 F. de Jesús Orozco Luna et al.

Slurm’s operation is based on queue management, where each job is assigned an
identifier and given a priority for execution. Slurm is in charge of managing the job
contention in the cluster, since it has the ability to send jobs in parallel. Due to this
operation, Slurm allows to start, stop and monitor the jobs in a very simple way, so that
the user knows at all times in which state his job is.

3.2 Singularity

Singularity is an open source platform for the management, creation and execution of
containers within local and supercomputing environments. It was created primarily for
the encapsulation of computationally demanding projects, therefore, it has become an
ideal tool to be installed in an HPC environment.

Compared to other container platforms, Singularity offers greater security, scalability
and reproducibility, in addition, it allows transforming Docker images to its format to
be used and executed with Singularity. Last but not least, Singularity can communicate
perfectly with other tools that allow you to improve the development of your project and
optimize aspects of it.

3.3 Snakemake

Snakemake is a workflow management system for creating scalable and reproducible
data analysis. It is based on Python because it is so simple and easy for humans to
understand.

Snakemake creates a workflow based on rules that contain the input files to be
processed to create the final output files, as well as the scripts or commands needed to
process the workflow.

Snakemake also lets you adjust the amount of computing resources needed to run the
workflow. This allocation depends heavily on the project and the amount of resources
the user has on their machine. However, Snakemake is excellent for supercomputing
environments, for running projects with high computational requirements.

Automation, reproducibility and scalability are the words that sum up Snakemake.
Finally, Snakemake adapts to many tools. For example, you can use Singularity, Kuber-
netes andSlurm in yourworkflow,making the extension and combination of technologies
even more powerful.

Summary of tools used and their versions. See Table 1.

4 Design of the Processing Flow for Testing

Several processing flows were designed for these performance tests:

• A Singularity container was used by taking a Docker image with a scientific tool used
for high-energy particle simulation.

• In addition to Python routines for NumPy data processing.

Additional considerations are:

Functionality Testing in the Automation of Scientific Application 223

Table 1. Versioning used for testing.

Tool Version Source

SLURM 20.11.3 https://slurm.schedmd.com/

Singularity 3.6 https://docs.sylabs.io/guides/3.6/user-guide/

Snakemake 6.15.5 https://snakemake.readthedocs.io/en/v6.15.5/getting_started/installat
ion.html

Centos OS 8.2 https://www.centos.org/

• A processing box is defined as a routine application, script, or library that can execute
inside or outside a container, generally receiving input, performing processing, and
returning output.

• The tests consist of two stages of processing. The first stage uses a processing box
in a Singularity container with the capacity to execute a large number of tasks simul-
taneously and without dependencies on each other; and the next stage uses Python
processing boxes that depend on the output data from the previous stage to perform
the tests, see detail in Fig. 1.

• In both processing boxes mentioned above, only one computational core was
consumed per task.

• The tests were performed with 360, 720 and 1,000 files as output data for data
processing.

• The maximum number of compute nodes used for the performance test was 28.

5 Analysis of Possible Cases

5.1 Running Python Script

The benefits of using tools like Snakemake to automate and scale work processes in a
supercomputing cluster with containers like Singularity can be seen in Table 2, which
shows the different tool scenarios.

It is important to note that the grid above the diagonal was not included to avoid
repeating the scenarios.

The above leads me to answer the premise with which the tests began: How can
I fully exploit the capabilities of a supercomputing cluster in a container environment
and/or Python routines? The answer is as follows: Use Snakemake as a tool that supports
reproducibility and automation of tasks that result in less time spent running a large
number of jobs and using the installed infrastructure.

5.2 Running Python Script with SLURM and Singularity

In the case of using tools such as Snakemake, whether or not using tools such as SLURM
or Singularity, we can see the possible processing scenarios. See Table 3.

https://slurm.schedmd.com/
https://docs.sylabs.io/guides/3.6/user-guide/
https://snakemake.readthedocs.io/en/v6.15.5/getting_started/installation.html
https://www.centos.org/

224 F. de Jesús Orozco Luna et al.

Fig. 1. Details of the designs used in the tests. The number of input files for each test, The number
of processing steps executed, At each processing step, a routine may be encapsulated in python, r,
shell, or a scientific application that uses only one processing core. The output files, the number
of files expected as a result of the processing.

Table 2. Possible capabilities per scenario using Python routine.

Capabili es possible when running Python scripts vs. Tools

Python Script
Without
SLURM SLURM Snakemake Singularity

Without SLURM A single core - - -

SLURM NA A single core - -

Snakemake Multiple nodes Multiple nodes Multiple nodes -

Singularity A single core A single core Multiple nodes A single core

5.3 Running a Singularity Container with Snakemake Using SLURM

This table analyzes the case of using a scientific tool for data processing, running on
a single processing core within a Singularity container, and how to make its use more
efficient with massive processing and data in the supercomputing cluster. See Table 4.

5.4 Notes for Tables 2, 3 and 4

Single core: Only uses one processing core.

Functionality Testing in the Automation of Scientific Application 225

Table 3. Possible capabilities using Python routines inside a container.

Possible Python scrip�ng capabili�es
inside a container

Snakemake Without
SLURM SLURM

Singularity A single node Multiple nodes

Table 4. Capacities using singularity containers.

Send to run APP in container

Snakemake Without
SLURM

SLURM

Singularity A single no-
de

Mul�ple nodes

Single node: It can only run on one node, using from 1 to 36 cores per node.

Multiple nodes: Ability to run on multiple compute nodes, using multiple cores.

6 Results of Executions

6.1 Case 1:

The following data were used for the first test:

• 360 initial input files, using Snakemake.
• Maximum of 10 compute nodes.
• Using two stages of processing using a Singularity container and Python script to
process data in NumPy.

The results of the first test can be seen in Fig. 2, where 360 files were processed. The
test started with 36 cores and the processing time was 2,222 s; when the 360 cores were
used, the time dropped to 322 s.

Figure 2 shows that while the applications and scripts used only consume one pro-
cessor core. However, with tools to automate the processing flow such as Snakemake and

226 F. de Jesús Orozco Luna et al.

a reasonable amount of data, a large number of tasks can be run simultaneously, making
the processing time more efficient. It is worth noting that thanks to the functionalities of
Snakemake and SLURM, the use of multiple computing nodes is achieved.

Fig. 2. Processing 360 files. This figure shows that applications scale better from node 1 to node
4, the more cores, the less processing time. From node 5 to node 8, there is no improvement
in performance. And from node 9, performance improves again. This behavior is related to the
number of processing steps and the routines that are processed in each step.

It is important to note that we want to demonstrate the benefit and advantage of
automating applications that do not scale natively and how they can take advantage of
the supercomputing cluster infrastructure (Table 5).

6.2 Case 2:

The following data were used for the second test:

• 720 initial input files, using Snakemake.
• Maximum of 20 compute nodes.
• Using two stages of processing using a Singularity container and Python scripts to
process data in NumPy.

The results obtained in the second test can be seen in Fig. 3, where 720 files were
processed, the test started with 36 cores and the processing time was 5156 s, when using
the 720 cores, the time dropped to 447 s.

Functionality Testing in the Automation of Scientific Application 227

Table 5. Detail of processing times of 360 files.

Processing time for 360 files

Number of cores Time in seconds

36 2222

72 1053

108 842

144 648

180 495

216 493

252 496

288 523

324 432

360 322

Fig. 3. Processing of 720 files.

228 F. de Jesús Orozco Luna et al.

6.3 Case 3:

The following data were used for the third test:

• 1000 initial input files, using Snakemake.
• Maximum of 28 computational nodes.
• Use of two processing stageswith a Singularity container and Python scripts to process
the data in NumPy.

The results of the second test can be seen in Fig. 4. When processing 1,000 files,
the test was started with 36 cores and the processing time was 6,567 s; when using the
1,008 cores (28 compute nodes), the time dropped to 567 s.

Fig. 4. Processing of 1000 files.

When comparing performance, varying the number of files to process in Fig. 5 shows
similar trends of lowering processing time by increasing the number of processing cores.

A comparison of the efficiency of the three runs with different numbers of files is
made and compared to an ideal efficiency based on processing per compute node. See
Fig. 6.

In this figure, an interesting result can be seen: When testing with 720 files, using 5
to 6 nodes produced an efficiency that is slightly higher than the ideal efficiency.

It should benoted that at the timeof submitting jobs to theSlurmqueue to be executed,
these jobs depend on the handling and management of Slurm on the processing cores,
as well as the high demand and utilization of the cluster by other users. This therefore
affects the performance of the workflow tasks and causes performance spikes and dips,
as can be seen in Fig. 6.

It is assumed that efficiency can be affected by the amount of RAM in each node,
although this depends on the applications running in the workflow.

Functionality Testing in the Automation of Scientific Application 229

Fig. 5. Performance comparison Scale the processing flow not the application.

7 Discussion of Results and Conclusions

There are important considerations in discussing the results, as these tests and their
results compare the improvements in execution times in a framework of parallelizing
and automation of a particular use of processing using processing boxes. The first using a
tool that consumesonly oneprocessing corewithin a singularity container, and the second
processing step using aPython routine that consumes a single processing core.Reviewing
the benefits that can be achieved in an automation and parallelization framework in a
supercomputing cluster.

Based on the above considerations, it is not intended to serve as a basis for subse-
quent performance comparisons, but rather to demonstrate the benefits of sharing these
applications.

These performance tests should serve as a reference for those who need to build
robust automation and parallelization frameworks, even if their tools do not inherently
allow parallelization.

Based on the tests carried out with the combination of the 3 technologies used, the
following results and observations were obtained:

7.1 Testing Time

For the analysis, the times of Snakemake were used, since it is the tool that manages
the entire workflow, from the input files to the generation of the output files, and also
the processing times of Slurm. It is worth noting that Slurm manages its own processing
times. For this reason, it may happen that Slurm completes a series of files and releases
the used resources, but the job queue still appears as a busy node because Snakemake is
trying to complete the workflow for that series.

230 F. de Jesús Orozco Luna et al.

Fig. 6. The ideal efficiency shows the same ratio, in the increase of compute nodes with efficiency
gains.

7.2 Duration of Tests

From the design of the processing sequences, the construction of the test container, the
design of the automation scripts, as well as the execution of the scripts, up to the analysis
of the results, about 3 months were needed.

7.3 What Limitations There Were

Although it is possible to integrate several scientific applications that only consume a
processing core, or use R, Python or shell scripts, it will not always be beneficial to
integrate them into a processing flow, since there will be the limitation of the volume of
data and how they are processed.

One of the observations that had the most impact on the tests and the results of the
different scenarios to be run was the management and the amount of cluster resources
available, since in some cases resources (compute nodes) have to be shared with other
users because the resources that should be used are not provided due to the high demand
of users using the cluster.

Functionality Testing in the Automation of Scientific Application 231

This resource sharing limitation can occur at any time and is something that we as
users cannot control, since Slurm is responsible for resource allocation. For this reason,
it is ideal to run the operations in a custom working partition that contains the set N
amount of resources to be used, for example not in a general partition where many users
use the same resources.

7.4 Learning

In cases where better execution efficiency has been shown, the number of nodes is
chosen to match the number of processing cores with the number of jobs to be processed
simultaneously, i.e., if 360 files are sent for execution, it would be ideal to take 10
nodes since the infrastructure has 36 cores per node to execute 360 processing cores
simultaneously.

This results in greater optimization of the total job duration. Using a large number
of nodes is not always the best solution, as this depends on the SLURM queues and the
amount of processing in the cluster.

Better performances were shown using the total number of cores per node.

7.5 Conclusions and Benefits

Scaling capabilities were tested with Slurm, Snakemake, and Singularity technologies
and found to have parallelization capabilities that can be applied to projects that require
large processing capacities and data volumes and are limited by their applications that
do not have parallelization capabilities.

Glossary

• NumPy: Python language library used for the creation of vectors and matrices along
with the collection of mathematical functions.

• Python: High-level programming language for developing applications of all kinds.
• Container: Technology used for the encapsulation of projects (work environments).
• Docker: Open-source platform for managing and creating containers.
• Kubernetes: Open-source platform for container and microservices management.

References

1. Mölder, F., et al.: Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021)
2. How to Manage Workflow with Resource Constraint on HPC. https://www.sichong.site/wor

kflow/2021/11/08/how-to-manage-workflow-with-resource-constraint.html
3. GitHub smk-simple-slurm, smk-simple-slurm. https://github.com/jdblischak/smk-simple-

slurm
4. Slurm Workload Manager. https://slurm.schedmd.com/documentation.html
5. Snakemake. https://snakemake.readthedocs.io/en/v6.15.5/
6. Singularity. https://docs.sylabs.io/guides/3.6/user-guide/

https://www.sichong.site/workflow/2021/11/08/how-to-manage-workflow-with-resource-constraint.html
https://github.com/jdblischak/smk-simple-slurm
https://slurm.schedmd.com/documentation.html
https://snakemake.readthedocs.io/en/v6.15.5/
https://docs.sylabs.io/guides/3.6/user-guide/

232 F. de Jesús Orozco Luna et al.

7. Sokolov, S., Idiriz, O., Vukadinoff, M., Vlaev, S.: Scaling and automation in cloud deploy-
ments of enterprise applications. J. Eng. Sci. Technol. Rev. Special Issue on Telecommuni-
cations, Informatics, Energy and Management (2019)

8. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Association for Computing Machinery.
SIGCOMM Comput. Commun. Rev (2011)

9. Caragnano, G., et al.: Scalability of a Parallel Application in Hybrid Cloud. IEEE Computer
Society (2014)

10. Sarkar, S., Abdulla, P.P., Ramaswamy, S.: Analysis, evaluation, and assessment for con-
tainerizing an industry automation software. In: 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 1972–1979 2020. https://doi.org/10.1109/SMC
42975.2020.9282840

https://doi.org/10.1109/SMC42975.2020.9282840

Author Index

Arguello, Jhon Deivy Perez 103

Barbosa, Carlos H. S. 160
Barbosa-Santillán, Liliana Ibeth 145
Barrios H., Carlos J. 205
Beltran, Cristian Fernando Toro 116
Blandino H., Oscar 1
Boito, Francieli 174

Carastan-Santos, Danilo 131
Carneiro, Andre 174
Carvalho, Diego 174
Castro, Harold 47
Coelho, Micaella 174
Coutinho, Alvaro L. G. A. 160
Couturier, Jean F. 205
Cruz, Lucas 174

da Silva Alves, Bruno 63
da Silva, Larissa Miguez 90
de Jesús Orozco Luna, Felipe 220
Díaz T, Gilberto J. 205
Dueñas, Veronica Lizette Robles 220
Dufrechou, Ernesto 78, 190

Ezzatti, Pablo 78, 190

Favaro, Federico 78
Ferreira, Julián Rodriguez 103

Gadelha, Luiz 174
Galheigo, Marcelo 174
García Henao, John Anderson 116
Gaspary, Luciano Paschoal 63
Gomes, Antônio Tadeu Azevedo 90
González, Jesús Manuel Alemán 220

Hernández, Carlos J. Barrios 103
Herrera-Mora, Javier 31

Ibañez, Erick Daniel Villarreal 116

Jiménez, Diego 31

Laure, Erwin 31
León-Sandoval, Edgar 145
Lin, Yi-Chien 16

Marichal, Raúl 190
Meneses, Esteban 1, 31
Morales, Luis Eduardo Falcón 145

Navaux, Philippe 174

Ocaña, Kary 174
Oliver, Juan P. 78
Orejuela, Vivian Milen 116
Osthoff, Carla 174

Pham, Thi Hoang Thi 131
Prasanna, Viktor 16

Rampp, Markus 31

Schnorr, Lucas Mello 63
Seveso, Franco 190
Steffenel, Luiz A. 205

Terra, Rafael 174

Valentin, Frédéric 90
Vivas, Aurelio 47

Zareei, Mahdi 145
Zhang, Bingyi 16

	 Preface
	 Organization
	 Contents
	A Comparative Evaluation of Parallel Programming Python Tools for Particle-in-Cell on Symmetric Multiprocessors
	1 Introduction
	2 Background
	2.1 Particle-in-Cell
	2.2 Python Parallel Programming
	2.3 Related Work

	3 Implementation
	3.1 Profiling
	3.2 Code Transformation

	4 Experimental Results
	4.1 Setup
	4.2 Experiments

	5 Discussion
	6 Final Remarks
	References

	Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
	1 Introduction
	2 Background
	2.1 GNN Models
	2.2 Mini-Batch GNN Training
	2.3 Related Work

	3 GNN Training on CPU+Multi-FPGA Platform
	4 Optimizations
	4.1 Graph Partitioning and Workload Balancing
	4.2 Optimized GNN Kernels

	5 Experiments
	5.1 Experimental Setup
	5.2 Hardware Parameter Selection and Resource Utilization
	5.3 Performance Metrics
	5.4 Comparison with Multi-GPU Platform
	5.5 Scalability
	5.6 Impact of Optimizations

	6 Conclusion
	References

	Implementing a GPU-Portable Field Line Tracing Application with OpenMP Offload
	1 Introduction
	2 Background
	2.1 Directive-Based Programming for Accelerators with OpenMP
	2.2 Simulating Plasma Confinement in Stellarator Devices
	2.3 Related Work

	3 Directive-Based GPU Offloading Implementation
	3.1 Breakdown of the Execution Flow
	3.2 Data Management for Offloading
	3.3 Parallelism Implementation

	4 Results
	4.1 Experimental Setup
	4.2 Baseline Comparison: Single CPU Node Versus Single GPU
	4.3 Multi-GPU Scalability
	4.4 Economic Analysis

	5 Conclusions
	References

	Quantitative Characterization of Scientific Computing Clusters
	1 Introduction
	2 Related Work
	3 Background
	3.1 Cluster Overhead and Coupling
	3.2 Cluster Performance Profile

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Threats to Validity
	4.3 Results
	4.4 Clusters Performance Profiles

	5 Discussion
	6 Conclusion
	References

	Towards Parameter-Based Profiling for MARE2DEM Performance Modeling
	1 Introduction
	2 Dataset and Application Background
	2.1 CSEM Data
	2.2 MARE2DEM
	2.3 Refinement Groups

	3 Methodology and Experimental Context
	4 Results
	4.1 Performance Characterization of the Microkernels
	4.2 Iterations and Refinement Groups

	5 Conclusion
	References

	Time-Power-Energy Balance of BLAS Kernels in Modern FPGAs
	1 Introduction
	2 FPGAs and NLA
	2.1 BLAS
	2.2 FPGAs

	3 Evaluated Kernels
	3.1 Vitis Libraries
	3.2 Matrix-Matrix Multiplication (MMM)

	4 Experimental Evaluation
	4.1 Setup
	4.2 Experimental Results and Discussion

	5 Conclusions
	References

	Improving Boundary Layer Predictions Using Parametric Physics-Aware Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Boundary Layer Problem
	3.2 Architecture Design

	4 Experimental Results
	4.1 First Setting: Reaction-Diffusion Problem
	4.2 Second Setting: Advection-Diffusion Problem

	5 Summary and Outlook
	References

	Towards Fire Identification Model in Satellite Images Using HPC Embedded Systems and AI
	1 Introduction
	2 Related Works
	2.1 Satellite Imagery Multiscale Rapid Detection With Windowed Networks
	2.2 Lapped Convolutional Neural Networks for Embedded Systems

	3 Workflow
	3.1 Dataset Elaboration
	3.2 Algorithm Selection

	4 Results
	4.1 Artificial Learning
	4.2 Evaluation Metrics

	5 Conclusion
	6 Future Work
	References

	A Machine Learning-Based Missing Data Imputation with FHIR Interoperability Approach in Sepsis Prediction
	1 Introduction
	2 State of the Art
	2.1 Machine Learning on Clinical Features for Sepsis Prediction
	2.2 Interoperability of Healthcare Information Systems

	3 Materials and Methods
	3.1 Study Design
	3.2 Dataset Early Prediction of Sepsis from Clinical Data
	3.3 Processing and Transformation of Clinical Data to the FHIR Standard
	3.4 Data Distribution - Hospitals A and B
	3.5 Preprocessing of Data
	3.6 Experiment Dataset
	3.7 Creation of Train Test
	3.8 Implementation of Classifiers

	4 Experiments and Results
	4.1 Experiment Results

	5 Conclusions
	References

	Understanding the Energy Consumption of HPC Scale Artificial Intelligence
	1 Introduction
	2 Related Work
	2.1 AI and Climate Change
	2.2 Energy-Aware AI
	2.3 AI Benchmarks
	2.4 Energy Measurement Tools
	2.5 Positioning of This Paper

	3 Background
	4 Benchmark Tracker
	5 Results
	5.1 Experimental Setting
	5.2 Experimental Results

	6 Conclusion and Future Work
	6.1 Future Work

	References

	Using Big Data and Serverless Architecture to Follow the Emotional Response to the COVID-19 Pandemic in Mexico
	1 Introduction
	2 Related Work
	3 Method
	3.1 General System Architecture

	4 Experiments
	5 Results
	6 Conclusions
	References

	Multi-GPU 3-D Reverse Time Migration with Minimum I/O
	1 Introduction
	2 Reverse Time Migration
	3 Computational Implementation and Optimizations
	3.1 Classical Reverse Time Migration
	3.2 Reverse Time Migration with Wavefield Reconstruction
	3.3 Hybrid OpenACC/MPI Implementation

	4 Numerical Experiments
	5 Conclusions
	References

	ParslRNA-Seq: An Efficient and Scalable RNAseq Analysis Workflow for Studies of Differentiated Gene Expression
	1 Introduction
	2 Related Works
	3 Background on Differential Gene Expression Analysis
	4 ParslRNA-Seq: Workflow for DGE Analysis
	4.1 Improvements in the Previous Implementation of the Workflow
	4.2 Multithreading and Multiprocessing
	4.3 The Current Implementation of the ParslRNA-Seq Workflow

	5 Methods and Infrastructure
	5.1 Experiment Dataset
	5.2 Experiment Setup
	5.3 Computational Environment Setup

	6 Experimental Results
	6.1 Performance and Scalability Analyses
	6.2 I/O Performance Results Using Darshan
	6.3 Performance Results Using SSD
	6.4 Biological Results of RNA-Seq Data

	7 Conclusion
	References

	Refactoring an Electric-Market Simulation Software for Massively Parallel Computations
	1 Introduction
	2 The SimSEE and Previous Results
	3 Proposal
	3.1 Loading the Playrooms for Massively-Parallel Trajectories, naive
	3.2 Improving the Playrooms Replication, base
	3.3 Sharing References to Avoid Memory Allocations, RefCat
	3.4 Enhancing the Access to Shared References in the Simulation, RefDicc

	4 Experimental Evaluation
	4.1 Test Cases
	4.2 Runtime Environment
	4.3 Experimental Results

	5 Conclusion and Future Work
	References

	Nearly Quantum Computing by Simulation
	1 Introduction
	2 Quantum Computing Modelling
	2.1 An Overview of Quantum Mechanics
	2.2 Information Theory
	2.3 Quantum Information Theory

	3 Quantum Computing Parallelism and Simulation
	3.1 Quantum Computing Simulators
	3.2 Popular Open Source Quantum Computer Simulators

	4 Discussion and Further Work
	References

	Functionality Testing in the Automation of Scientific Application Workflows in an HPC Environment
	1 Introduction
	2 Infrastructure Used
	3 Tools Used
	3.1 Slurm
	3.2 Singularity
	3.3 Snakemake

	4 Design of the Processing Flow for Testing
	5 Analysis of Possible Cases
	5.1 Running Python Script
	5.2 Running Python Script with SLURM and Singularity
	5.3 Running a Singularity Container with Snakemake Using SLURM
	5.4 Notes for Tables 2, 3 and 4

	6 Results of Executions
	6.1 Case 1:
	6.2 Case 2:
	6.3 Case 3:

	7 Discussion of Results and Conclusions
	7.1 Testing Time
	7.2 Duration of Tests
	7.3 What Limitations There Were
	7.4 Learning
	7.5 Conclusions and Benefits

	References

	Author Index

