
Contrastive Learning of Emoji-Based
Representations for Resource-Poor

Languages

Nurendra Choudhary(B), Rajat Singh, Ishita Bindlish, and Manish Shrivastava

Language Technologies Research Centre (LTRC), Kohli Center on Intelligent Systems
(KCIS), International Institute of Information Technology, Hyderabad, India

{nurendra.choudhary,rajat.singh}@research.iiit.ac.in,
ishita.bindlish@students.iiit.ac.in, m.shrivastava@iiit.ac.in

Abstract. The introduction of emojis (or emoticons) in social media
platforms has given the users an increased potential for expression. We
propose a novel method called Classification of Emojis using Siamese
Network Architecture (CESNA) to learn emoji-based representations of
resource-poor languages by jointly training them with resource-rich lan-
guages using a siamese network.

CESNA model consists of twin Bi-directional Long Short-Term Mem-
ory Recurrent Neural Networks (Bi-LSTM RNN) with shared parame-
ters joined by a contrastive loss function based on a similarity metric.
The model learns the representations of resource-poor and resource-rich
language in a common emoji space by using a similarity metric based
on the emojis present in sentences from both languages. The model,
hence, projects sentences with similar emojis closer to each other and
the sentences with different emojis farther from one another. Experi-
ments on large-scale Twitter datasets of resource-rich languages - English
and Spanish and resource-poor languages - Hindi and Telugu reveal that
CESNA outperforms the state-of-the-art emoji prediction approaches
based on distributional semantics, semantic rules, lexicon lists and deep
neural network representations without shared parameters.
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1 Introduction

Social media continues to grow exponentially since its inception and has now
become a forum filled with people’s expression, opinions and sentiments. To
better capture the text’s sentimental context, users adopted emojis. Basically,
emojis are special characters (or pictures) used to communicate context inex-
pressible by standard text. Emojis are ideograms and smileys used in electronic
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Table 1. Distribution of emojis in languages’ tweets. (The hearts in the table are of
different colors. The most frequent one is red, the second most frequent one is blue and
the last one is purple heart)

messages and web pages. Originally meaning pictograph, the word emoji comes
from Japanese e (絵,picture) + moji (文字,character) [20]. Despite immense lin-
guistic diversity, emojis and their definitions remain almost identical across all
the major languages. Emojis capture a more mutually shared medium of com-
munication, especially, in case of related cultures.

A frequent usage of social media platforms is microblogging. These
microblogs comprise of limited text with an emoji that represents the emotions
related to that text. Hence, we establish a general correlation between the text
and the emoji, where emoji is the corresponding text’s tag in the microblog. Uti-
lizing this aspect of emojis, we assert that sentences with similar corresponding
emojis in different languages carry similar semantic features.

In this paper, we propose a novel unified framework called Classification of
Emojis using Siamese Network Architecture (CESNA). CESNA model consists
of twin Bi-directional Long Short-Term Memory Recurrent Neural Networks
(Bi-LSTM RNN) with shared parameters and a contrastive energy function,
based on a similarity metric, joining them. The applied energy function suits
discriminative training for energy-based models [14].

CESNA learns the shared model parameters and the similarity metric by
minimizing the energy function connecting the twin networks. Parameter shar-
ing and the similarity metric guarantee that, if the emoji of sentences on both
the individual Bi-LSTM networks is same, then they are nearer to each other
in the emoji space, else they are far away from each other. For example, the
representations of “The Big Bang Theory was funny ” and “ ”
(The elections were funny) should be nearer to each other than those of “The
Big Bang Theory was so funny today ” and “ ” (Big Bang
Theory was boring). The learned similarity metric is used to model the similarity
between sentences of different languages into a common emoji space.

The rest of the paper is organized as follows. Section 2 presents the previous
approaches to conquer the problem. Section 3 describes the evaluation dataset
and Sect. 4 describes the architecture of CESNA. Section 5 explains the training
and testing phase of CESNA. Section 6 details the baselines. In Sect. 7, the exper-
imental set-up and results are presented. Finally, Sect. 8 concludes the paper.
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2 Related Work

Distributional semantics [16] approach captures the overall sentence’s semantic
value but does not maintain information of the words’ order. [17] assigns senti-
ment polarity to words or phrases. Polarity of its constituents assigns the score
to the sentence. The information loss of the words’ sequence leads to the wrong
classification. e.g.; In “I am not happy”, “not” carries a negative sentiment and
“happy” has a positive sentiment. The combination gives a neutral sentiment,
whereas the sentence is truly negative. Bag of n-grams limits the problem but
does not eliminate it completely.

BiLSTM model [3] provides a solution to the problem of maintaining the sen-
tence’s sequence, by using recurrent neural network to embed sentences. They
propose two types of embeddings based on words and characters. This approach
presents an effective model for capturing the content and sequence in the sen-
tence. However, the approach requires immense amount of data to train and
hence will fail in case of languages with fewer resources.

Another line of research [2,12] utilizes rules and vocabulary of the languages
to classify sentences. These techniques are highly accurate but susceptible to the
problems of spelling errors and improper sentences. And these problems are very
frequent in informal texts such as tweets. Also, in case of Hindi, [19] have trained
a multinomial naive bayes model on annotated tweets to solve the problem.

Additionally, there have been efforts by researchers [18] to generate more
annotated resources by utilizing available raw corpus. They employ the avail-
ability of different domains to construct a Multi-arm Active Transfer Learning
(MATL) algorithm to label raw samples and continuously add them to the orig-
inal dataset. Each step updates the algorithm’s parameters using reinforcement
learning with a reward function. The above approach works well for the domains
considered in their work - sports, movies and politics. A formal grammar and
vocabulary structure these domains, whereas, tweets do not follow this trend.
Hence, the model is inapplicable to unstructured tweets. The new resources
depend on the available resources’ domain, which is risky, especially in the case
of tweets that do not comply with any specific domain.

Most of the work done in the fields of emoji prediction and sentiment analysis
is on major languages such as English or Spanish. Hence, the assumption in these
approaches is the availability of immense data.

Usually, methods that require immutable words are ineffective. Applying lan-
guages’ characters instead of words is a better approach. Given their proven
effectiveness in [1,7,9,11,13,21,22], we use Bidirectional LSTMs (Bi-LSTMs)
based on character n-grams. This approach produces embeddings based on the
sequence of character n-grams, thus eliminating the problems of spelling mistakes
and agglutination (in the case of some languages such as Telugu).

Although Bi-LSTMs manage mapping of sentences to an emoji space, we
also require the distance between the sentences with the similar sentiment to
be closer and the sentences with the different sentiment to be farther. For this
reason, we use the architecture of siamese networks. This architecture possesses
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the capability of learning similarity from the given data without requiring specific
information about the classes.

Fig. 1. Siamese Network

2.1 Siamese Networks

[5] introduced siamese neural networks (shown in Fig. 1) to solve the problem of
signature verification. Later, [6] applied the architecture with discriminative loss
function for face verification. These networks also effectively enhance the quality
of visual search [10,15]. Recently, [8] solved the problem of community question
answering applying these networks .

Let F (X) be the family of functions with parameters W . F (X) is differ-
entiable with respect to W . Siamese network seeks a value of the parameter
W such that the symmetric similarity metric is small if X1 and X2 belong to
the same category, and large if they belong to different categories. The scalar
energy function S(R,P ) that measures the emoji’s relatedness between tweets
of resource-poor (P ) language and resource-rich (R) language can be defined as:

S(P,R) = ||F (P ) − F (R)|| (1)

In CESNA, the network takes tweets from both the languages as input. The loss
function is minimized such that S(P,R) is small if the R and P contain the same
emoji and large otherwise.
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Fig. 2. Architecture of CESNA

3 Dataset Creation

The twitter datasets for different languages are given below:

– English: Tweets from the ids given by [3]. The dataset consists of the tweets
with 18 most frequent emojis, which is, 500,000 tweets.

– Spanish: Tweets containing the most frequent emojis present in English
tweets, which is, 100,000 tweets.

– Hindi: Tweets containing the most frequent emojis present in English tweets,
which is 15000.

– Telugu: Tweets containing the most frequent emojis present in English
tweets, which is, 6000.

Table 1 demonstrates the distribution of the emojis in the above datasets.

4 Architecture of CESNA

As shown in Fig. 2, CESNA consists of a Bi-LSTM pair and a dense feed forward
layer at the top. The Bi-LSTMs capture the sequence and constituents of the
sentence and project them to a emoji space. We connect the yielded emoji vectors
to a layer that measures similarity between them. The contrastive loss function
combines the similarity measure and the label. Back-propogation through time
computes the loss function’s gradient with respect to the weights and biases
shared by the sub-networks.
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Table 2. Number of unique character trigrams and Words in the datasets

Language Hin Tel Eng Spa

Char trigrams 30849 21453 47924 42261

Words 41731 29298 72182 100171

4.1 Primary Representation

Twitter Data consists of a lot of spelling errors, out-of-vocabulary words and
word variations. The way of writing a word may also convey emotions (e.g.;
“Hiiii” conveys a positive emotion whereas “Hi” is a neutral emotion). Hence,
we use character trigrams to embed the sentence instead of using words. This
approach takes care of the spelling errors and out-of-vocabulary words because a
partial match exists in the character trigrams. Character trigrams take the infor-
mation of all the word’s inflections, thus, eliminating the problem of agglutina-
tion. This method, also, captures the information of different writing variations.
Computational complexity is reduced as the number of words exceeds character
trigrams. Table 2 shows the comparison between the number of unique words and
unique trigrams in our case. The approach represents a sentence using a vector
with number of dimensions equal to the number of unique character trigrams in
the training dataset.

We input character-based term vectors of the resource-poor and resource-rich
language’s tweets and a label to the twin networks of CESNA. The label indicates
whether the samples should be nearer or farther to each other in the emoji space.
For positive samples (expected nearer in the emoji space), term vectors of tweets
(one from resource-poor and one from resource-rich) with the same emoji are
input to the twin networks. For negative samples (expected farther from each
other in the emoji space), term vectors of tweets (one from resource-poor and
one from resource-rich) with different emojis are input to the twin networks.

4.2 Bi-directional LSTM Network

We map each sentence-pair into [pi, ri] such that pi ∈ IRm and ri ∈ IRn, where m
and n are the total number of character trigrams in the resource-poor language
and the resource-rich language respectively.

Bi-LSTM model encodes the sentence twice, one in the original order (for-
ward) of the sentence and one in the reverse order (backward). Back-propagation
through time (BPTT) [4] calculates the weights for both the orders indepen-
dently. The algorithm works in the same way as general back-propagation, except
in this case the back-propagation occurs over all the hidden states of the unfolded
timesteps.

We apply element-wise Rectified Linear Unit (ReLU) to the output encod-
ing of the BiLSTM. ReLU is defined as: f(x) = max(0, x). We choose ReLU
here because it simplifies back-propagation, causes faster learning and avoids
saturation.
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The architecture’s final dense feed forward layer converts the output of the
ReLU layer into a fixed length vector s ∈ IRd. In our architecture, we have
empirically set the value of d to 128. The overall model is formalized as:

s = max{0,W [fw, bw] + b} (2)

where W is a learned parameter matrix (weights), fw is the forward LSTM
encoding of the sentence, bw is the backward LSTM encoding of the sentence,
and b is a bias term, then passed through an element-wise ReLU.

Fig. 3. Loss and Accuracy vs Epochs

5 Training and Testing

We train CESNA on a tweet in resource-poor language with a tweet from
resource-rich language to capture the similarity in the tweets’ emojis. CESNA
differs from the other deep learning counterparts due to its property of parameter
sharing. Training the network with a shared set of parameters not only reduces
the number of parameters (thus, save many computations) but also ensures that
the sentences of both the languages are project into the same emoji space. We
learn the shared network’s parameters with the aim to minimize the distance
between the tweets with the same emojis and maximize the distance between
the tweets with different emojis.

Given an input pi, ri where pi and ri are tweets from resource-poor and
resource-rich languages respectively and a label yi ∈ {−1, 1}, the loss function
is defined as:

l(pi, ri) =

{
1 − cos(pi, ri), y = 1;
max(0, cos(pi, ri) − m), y = −1;

(3)

where m is the margin by which dissimilar pairs should move away from each
other. It varies between 0 to 1. We minimize the loss function such that pair
of tweets with the label 1 (same emoji) project nearer to each other and pair
of tweets with the label -1 (different emoji) project farther from each other in
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Table 3. Comparison between different dataset pairs for 5,10,18 emojis (classes).
P,R,F1 are Precision, Recall and F-scores of the models respectively.

Dataset Pair 5 10 18

P R F1 P R F1 P R F1

Eng-Hin 0.68 0.70 0.69 0.52 0.56 0.54 0.46 0.43 0.44

Eng-Tel 0.63 0.66 0.64 0.48 0.43 0.45 0.42 0.39 0.40

Eng-Spa 0.71 0.72 0.71 0.58 0.59 0.58 0.42 0.42 0.42

Hin-Tel 0.54 0.58 0.56 0.45 0.47 0.46 0.39 0.33 0.35

Eng-Eng 0.74 0.73 0.73 0.62 0.60 0.61 0.49 0.54 0.51

the emoji space. The model trains by minimizing the overall loss function in a
batch. The objective is to minimize:

L(Λ) =
∑

(pi,ri)∈C∪C′
l(pi, ri) (4)

where C contains the batch of same emoji tweet pairs and C ′ contains the batch
of different emoji tweet pairs. Back-propagation through time (BPTT) updates
the parameters shared by the Bi-LSTM sub-networks.

For testing, we randomly sample a certain number (100 in our case) of tweets
for each emoji Remoji from the language corpus with higher amount of data. For
every input, we then apply the trained model to get the similarity between
the input and all corresponding Remoji. The Remoji with the most number of
matches with the input is finally selected as the correct emoji.

In case the testing data of both resource-rich and resource-poor languages do
not contain emojis, we use the abundant resources of one language to construct a
state-of-the-art emoji prediction model [3] and then utilize it to aid the resource-
poor language’s prediction.

6 Baselines

The approaches vary based on the language in consideration. Hence, we accord-
ingly define the baselines below. English, Japanese and Spanish enjoy the high-
est share of data on Twitter1. We consider English and Spanish because of their
script and typological similarity (both are Subject-Verb-Object). The baselines
considered for resource-rich languages are:

– Average Skip-Gram Vectors (ASV): We train a Word2Vec skip-gram
model [16] on a corpus of 65 million raw (unannotated) tweets in English and
20 million raw tweets in Spanish. Word2Vec provides a vector for each word.

1 The Many Tongues of Twitter - MIT Technology Review.
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Table 4. Comparison with the baselines. ASV is Average Skipgram Vectors, Bi-LSTM
(W) and Bi-LSTM (C) refer to Word and Character based Bi-LSTM models. They are
baselines for English and compare to CESNA (Eng-Eng). DSC-T is Domain Specific
Classifier for Telugu and compares to CESNA (Tel-Eng). MNB-H refers to Multinomial
Bayes Model for Hindi and compares to CESNA (Hin-Eng).P,R,F1 are the Precision,
Recall and F-scores respectively.

Dataset Pair 5 10 18

P R F1 P R F1 P R F1

ASV 0.59 0.60 0.59 0.44 0.47 0.45 0.32 0.34 0.35

Bi-LSTM (W) 0.61 0.61 0.61 0.45 0.45 0.45 0.34 0.36 0.35

Bi-LSTM (C) 0.63 0.63 0.63 0.48 0.47 0.47 0.42 0.39 0.40

DSC-T (RF) 0.34 0.35 0.34 0.31 0.32 0.31 0.24 0.23 0.23

MNB-H 0.45 0.49 0.46 0.42 0.43 0.42 0.38 0.36 0.37

CESNA (Eng-Eng) 0.74 0.73 0.73 0.62 0.60 0.61 0.49 0.54 0.51

CESNA (Hin-Eng) 0.68 0.70 0.69 0.52 0.56 0.54 0.46 0.43 0.44

CESNA (Tel-Eng) 0.63 0.66 0.64 0.49 0.47 0.48 0.41 0.44 0.42

We average the words’ vectors in the tweet to get the vector for the sentence.
So, each sentence vector is defined as:

Vs =

∑
w∈Ws

Vw

|Ws| (5)

where Vs is vector of the sentence s, Ws is the set of words and Vw is the
vector of word w. After obtaining each message’s embedding, we train an
L2-regularized logistic regression, (with ε equal to 0.001).

– Bidirectional LSTM (Bi-LSTM): There are two approaches - word based
and character based Bi-LSTM embeddings. We model the architecture as
described in [3]. We use the same design as a part of our model, which is
explained in Sect. 4.2.

Hindi and Telugu are the 3rd and 17th most spoken language in the world respec-
tively. But they hold a relatively low share of twitter data. The major reason is
that the speakers of Hindi and Telugu on Twitter primarily use the transliterated
form of their respective language. The baselines for these languages are:

– Domain Specific Classifier (Telugu) (DSC-T): We train a Word2Vec
model on a corpus of 700,000 raw Telugu sentences provided by Indian Lan-
guages Corpora Initiative (ILCI). We train a Random Forest (RF) and Sup-
port Vector Machines (SVM) classifier (given by [17]) on the Telugu Twitter
dataset to structure our baseline for Telugu language.

– Multinomial Naive Bayes (Hindi) (MNB-H): We train a multinomial
naive bayes model (given by [19]) on the Hindi Tweets dataset to form our
baseline for Hindi language.
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7 Experiments and Evaluation

In order to study the comparison between CESNA and the previous models, we
performed an array of experiments. In the first experiment (Sect. 7.1), we analyze
the model for varying language pairs and make a comparison between them.
In the second experiment (Sect. 7.2), we compare our model against previous
approaches in the problem. In the third experiment (Sect. 7.3), we train our
architecture on clusters of emojis instead of unique ones.

7.1 Experiments for Different Language Pairs

The experiment is a classification task. We take the English and Hindi Twitter
datasets (Eng-Hin) and align each Hindi tweet with English tweets of the same
emoji (positive samples) and label them 1. Similarly, we also randomly sample
the same number of English tweets with different emoji (negative samples) for
each Hindi tweet and label them -1.

We perform the experiment thrice taking 5 most frequent emojis (5 classes),
10 most frequent emojis (10 classes) and all the emojis (18 classes) in Hindi.
Similarly, we repeat the experiment for English-Telugu (Eng-Tel) dataset pair,
English-Spanish (Eng-Spa) dataset pair, English-English (Eng-Eng) dataset pair
and Hindi-Telugu (Hin-Tel) dataset pair, taking 5 most frequent emojis (5
classes), 10 most frequent emojis (10 classes) and all the emojis in the language
with lesser resource respectively for each case. The results of the experiments
are given in Table 3.

7.2 Comparison with the Baselines

In this experiment, we compare our model against the baselines (defined in
Sect. 6). We defined the baselines for resource-rich languages on English. So,
we perform contrastive learning of our model using data made by aligning each
English tweet with a set of positive English tweet samples (with the same emoji)
with label 1 and a set of negative English tweet samples (with different emoji)
of the same size with label -1.

In the case of resource-poor languages, i.e. Hindi and Telugu, we perform con-
trastive learning of our model using data made by aligning each of the resource-
poor language (Hindi and Telugu) tweet with a set of positive English tweet
samples (with the same emoji) with label 1 and a set of negative English tweet
samples (with different emoji) of the same size with label -1.

7.3 Clustering Based Approach with CESNA

In our previous experiment (Sect. 7.1), we observed that in several test scenarios
the tweet is incorrectly classified to its nearest neighbor in the semantic space
of emojis. We observe that the emojis form clusters in the semantic map. These
clusters reduce multiple unique emojis to a single class for this experiment. So,
we finally arrive at three clusters (Table 5).
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Table 5. Clustering the emojis to a single
emoji3 The emojis in the heart cluster are of
different colors. The first one is red, second
one is purple and third one is blue in color.

Table 6. Results after clustering the
Emojis

Language Pair P R F1

CESNA (Eng-Eng) 0.83 0.85 0.83

CESNA (Hin-Eng) 0.80 0.79 0.79

CESNA (Tel-Eng) 0.72 0.74 0.73

7.4 Evaluation of the Experiments

We observe from Table 3 that the best overall results for multilingual emoji
classification is the English-Spanish pair. This is due to the English-Spanish
pair containing the maximum number of tweet pairs. We also note from Fig. 3
that with increasing number of epochs, the accuracy and overall performance
considerably increases.

We also find that multiple times a tweet classifies into a related class. e.g.; A
tweet of class (purple heart emoji) is classified into a more frequent emoji
(red heart emoji). To verify this behavior, we conducted another experiment in
Sect. 7.3 to approach this from the perspective of emojis’ clustered classes. The
results (given in Table 6) demonstrate that fewer classes lead to better accuracy.
This reduction in the number leads to a more even distribution of classes in the
data. The drawback of this approach, though, is the loss of information about
emojis. Hence, it only benefits when such data loss is acceptable.

From Table 4, we observe that CESNA outperforms the state-of-the-art
approaches significantly, especially in the case of resource-poor languages. Inter-
estingly, Table 4 also shows that using shared parameters (Siamese Networks)
instead of a single Bi-LSTM network leads to an improvement in performance.
CESNA learns representation, specifically, for the task of emoji-based classifica-
tion. It also leverages the relatively resource-rich language for the improvement
in the resource-poor language’s accuracy.

8 Conclusions

In this paper, we proposed CESNA for emoji prediction of resource-poor lan-
guages which solves the problem by projecting the resource-poor language and
resource-rich language in the same emoji space. CESNA employs twin Bidirec-
tional LSTM networks with shared parameters to capture an emoji-based rep-
resentation of the sentences. These emoji-based representations in conjunction
with a similarity metric group sentences with similar emoji together.

A clustering based approach used in conjunction with CESNA boosts the per-
formance of overall emoji prediction further. Experiments conducted on different
Twitter datasets revealed that CESNA outperforms the current state-of-the-art
approaches significantly.
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In future, we would apply the current model on more applications based on
learning similarity like question-answering, conversation systems and semantic
similarity. Though, of course, the presence and impact of emojis would be limited
in other areas. Also, we believe that there is a good case for integration of
attention-based models in the subnetworks.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Balamurali, A., Joshi, A., Bhattacharyya, P.: Cross-lingual sentiment analysis for
indian languages using linked wordnets. In: Proceedings of COLING 2012: Posters,
pp. 73–82 (2012)

3. Barbieri, F., Ballesteros, M., Saggion, H.: Are emojis predictable? arXiv preprint
arXiv:1702.07285 (2017)

4. Boden, M.: A guide to recurrent neural networks and backpropagation. the Dallas
project (2002)
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