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Abstract. Word sense embeddings are vector representations of pol-
ysemous words – words with multiple meanings. These induced sense
embeddings, however, do not necessarily correspond to any dictionary
senses of the word. To overcome this, we propose a method to find new
sense embeddings with known meaning. We term this method refitting,
as the new embedding is fitted to model the meaning of a target word in
an example sentence. The new lexically refitted embeddings are learnt
using the probabilities of the existing induced sense embeddings, as well
as their vector values. Our contributions are threefold: (1) The refitting
method to find the new sense embeddings; (2) a novel smoothing tech-
nique, for use with the refitting method; and (3) a new similarity measure
for words in context, defined by using the refitted sense embeddings. We
show how our techniques improve the performance of the Adaptive Skip-
Gram sense embeddings for word similarly evaluation; and how they
allow the embeddings to be used for lexical word sense disambiguation.

Keywords: Word sense embeddings · Polysemous words · Refitting
methods

1 Introduction

Popular word embedding vectors, such as Word2Vec, represent a word’s seman-
tic meaning and its syntactic role as a point in a vector space [1,2]. As each
word is only given one embedding, such methods are restricted to the repre-
sentation of only a single combined sense, or meaning, of the word. Word sense
embeddings generalise word embeddings to handle polysemous and homonymous
words. Often these sense embeddings are learnt through unsupervised Word
Sense Induction (WSI) [3–6]. The induced sense embeddings are unlikely to
directly coincide with any set of human defined meaning at all, i.e. they will
not match lexical senses such as those defined in a lexical dictionary, e.g. Word-
Net [7]. These induced senses may be more specific, more broad, or include the
meanings of jargon not in common use.

One may argue that WSI systems can capture better word senses than human
lexicographers do manually. However, this does not mean that induced senses
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can replace standard lexical senses. It is important to appreciate the vast wealth
of existing knowledge defined around lexical senses. Methods to link induced
senses to lexical senses allow us to take advantage of both worlds.

We propose a refitting method to generate a sense embedding vector that
matches with a labelled lexical sense. Given an example sentence with the
labelled lexical sense of a particular word, the refitting method algorithmically
combines the induced sense embeddings of the target word such that the likeli-
hood of the example sentence is maximised. We find that in doing so, the sense
of the word in that sentence is captured. With the refitting, the induced sense
embeddings are now able to be used in more general situations where standard
senses, or user defined senses are desired.

Refitting word sense vectors to match a lexicographical sense inventory, such
as WordNet or a translator’s dictionary, is possible if the sense inventory features
at least one example of the target sense’s use. Our method allows this to be
done very rapidly, and from only the single example of use this has with possible
applications in low-resource languages.

Refitting can also be used to fit to a user provided example, giving a specific
sense vector for that use. This has strong applications in information retrieval.
The user can provide an example of a use of the word they are interested in. For
example, searching for documents about “banks” as in “the river banks were very
muddy”. By generating an embedding for that specific sense, and by comparing
with the generated embeddings in the indexed documents, we can not only pick
up on suitable uses of other-words for example “beach” and “shore”, but also
exclude different usages, for example of a financial bank. The method we propose,
using our refitted embeddings, has lower time complexity than AvgSimC [3], the
current standard method for evaluating the similarity of words in context. This
is detailed in Sect. 5.1.

We noted during refitting, that a single induced sense would often dominate
the refitted representation. It is rare in natural language for the meaning to be so
unequivocal. Generally, a significant overlap exists between the meaning of dif-
ferent lexical senses, and there is often a high level of disagreement when humans
are asked to annotate a corpus [8]. We would expect that during refitting there
would likewise be contention over the most likely induced sense. Towards this
end, we develop a smoothing method, which we call geometric smoothing that
de-emphasises the sharp decisions made by the (unsmoothed) refitting method.
We found that this significantly improves the results. This suggests that the
sharpness of sense decisions is an issue with the language model, which smooth-
ing can correct. The geometric smoothing method is presented in Sect. 3.2.

We demonstrate the refitting method on sense embedding vectors induced
using Adaptive Skip-Grams (AdaGram) [6], as well as our own simple greedy
word sense embeddings. The method is applicable to any skip-gram-like language
model that can take a sense vector as its input, and can output the probability
of a word appearing in that sense’s context.

The rest of the paper is organised as follows: Sect. 2 briefly discusses two
areas of related works. Section 3 presents our refitting method, as well as our



Finding Word Sense Embeddings of Known Meaning 5

proposed geometric smoothing method. Section 4 describes the WSI embedding
models used in the evaluations. Section 5 defines the RefittedSim measure for
word similarity in context, and presents its results. Section 6 shows how the
refitted sense vectors can be used for lexical WSD. Finally, the paper concludes
in Sect. 7.

2 Related Works

2.1 Directly Learning Lexical Sense Embeddings

In this area of research, the induction of word sense embeddings is treated as
a supervised, or semi-supervised task, that requires sense labelled corpora for
training.

Iacobacci et al. [9] use a Continuous Bag of Word language model [1], using
word senses as the labels rather than words. This is a direct application of word
embedding techniques. To overcome the lack of a large sense labelled corpus,
Iacobacci et al. use a 3rd party WSD tool, BabelFly [10], to add sense annotations
to a previously unlabelled corpus.

Chen et al. [11] use a supervised approach to train sense vectors, with an
unsupervised WSD labelling step. They partially disambiguate their training
corpus, using word sense vectors based on WordNet; and use these labels to
train their embeddings. This relabelled data is then used as training data, for
finding sense embeddings using skip-grams.

Our refitting method learns a new sense embedding as a weighted sum of
existing induced sense embeddings of the target word. Refitting is a one-shot
learning solution, as compared to the approaches used in the works discussed
above. A notable advantage is the time taken to add a new sense. Adding a
new sense is practically instantaneous, and replacing the entire sense inventory,
of several hundred thousand senses, is only a matter of a few hours. Whereas
for the existing approaches this would require repeating the training process,
which will often take several days. Refitting is a process done to word sense
embeddings, rather than a method for finding sense embeddings from a large
corpus.

2.2 Mapping Induced Senses to Lexical Senses

By defining a stochastic map between the induced and lexical senses, Agirre
et al. [12], propose a general method for allowing WSI systems to be used for
WSD. Their work was used in SemEval-2007 Task 02 [13] to evaluate all entries.
Agirre et al. use a mapping corpus to find the probability of a lexical sense, given
the induced sense according to the WSI system. This is more general than the
approach we propose here, which only works for sense embedding based WSI. By
exploiting the particular properties of sense embedding based WSI systems we
propose a system that can better facilitate the use of this subset of WSI systems
for WSD.
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3 Proposed Refitting Framework

The key contribution of this work is to provide a way to synthesise a word sense
embedding given only a single example sentence and a set of pretrained sense
embedding vectors. We termed this refitting the sense vectors. By refitting the
unsupervised vectors we define a new vector, that lines up with the specific
meaning of the word from the example sentence.

This can be looked at as a one-shot learning problem, analogous to regression.
The training of the induced sense, and of the language model, can be considered
an unsupervised pre-training step. The new word sense embedding should give a
high value for the likelihood of the example sentence, according to the language
model. It should also generalise to give a high likelihood of other contexts where
this word sense occurs.

We initially attempted to directly optimise the sense vector to predict the
example. We applied the L-BFGS [14] optimisation algorithm with the sense
vector being the parameter being optimised over, and the objective being to
maximise the probability of the example sentence according to the language
model. This was found to generalise poorly, due to over-fitting, and to be very
slow. Rather than a direct approach, we instead take inspiration from the locally
linear relationship between meaning and vector position that has been demon-
strated for word embeddings [1,15,16].

To refit the induced sense embeddings to a particular meaning of a word, we
express that a new embedding as a weighted combination of the induced sense
vectors. The weight is determined by the probability of each induced sense given
the context.

Given a collection of induced (unlabelled) embeddings u = u1, ..., unu
, and an

example sentence c = w1, ..., wnc
we define a function l(u | c) which determines

the refitted sense vector, from the unsupervised vectors and the context as:

l(u | c) =
∑

∀ui∈u

uiP (ui | c) (1)

Bayes’ Theorem can be used to estimate the posterior predictive distribution
P (ui | c).

Bengio et al. [17] describe a similar method to Eq. (1) for finding (single
sense) word embeddings for words not found in their vocabulary. The formula
they give is as per Eq. (1), but summing over the entire vocabulary of words
(rather than just u).

3.1 A General WSD Method

Using the language model and application of Bayes’ theorem, we define a general
word sense disambiguation method that can be used for refitting (Eq. (1)), and
for lexical word sense disambiguation (see Sect. 6). This is a standard approach
of using Bayes’ theorem [5,6]. We present it here for completeness.
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The context is used to determine which sense is the most suitable for this
use of the target word (the word being disambiguated). Let s = (s1, ..., sn), be
the collection of senses for the target word1.

Let c = (w1, ..., wnc
) be a sequence of words making up the context of the

target word. For example for the target word kid, the context could be c = (wow
the wool from the, is, so, soft, and, fluffy), where kid is the central word taken
from between the and fluffy.

For any particular sense, si, the multiple sense skip-gram language model can
be used to find the probability of a word wj occurring in the context: P (wj | si).
By assuming the conditional independence of each word wj in the context, given
the sense embedding si, the probability of the context can be calculated:

P (c | si) =
∏

∀wj∈c

P (wj | si) (2)

The correctness of the conditional independence assumption depends on the
quality of the representation – the ideal sense representation would fully capture
all information about the contexts it can appear in – thus the other contexts
elements would not present any additional information, and so P (wa | wb, si) =
P (wa | si). Given this, we have an estimate of P (c | si) which can be used to
find P (si | c). However, a false assumption of independence contributes towards
overly sharp estimates of the posterior distribution [18], which we seek to address
in Sect. 3.2 with geometric smoothing.

Bayes’ Theorem is applied to this context likelihood function P (c | si) and
a prior for the sense P (si) to allow the posterior probability to be found:

P (si | c) =
P (c | si)P (si)∑

sj∈s P (c | sj)P (sj)
(3)

This is the probability of the sense given the context.

3.2 Geometric Smoothing for General WSD

During refitting, we note that often one induced sense would be calculated as
having much higher probability of occurring than the others (according to Eq. 3).
This level of certainty is not expected to occur in natural languages, ambiguity
is almost always possible. To resolve such dominance problems, we propose a
new geometric smoothing method. This is suitable for smoothing posterior prob-
ability estimates derived from products of conditionally independent likelihoods.
It smooths the resulting distribution, by shifting all probabilities to be closer to
the uniform distribution.

We hypothesize that the sharpness of probability estimates from Eq. (3) is a
result of data sparsity, and of a false independence assumption in Eq. (2). This

1 As this part of our method is used with both the unsupervised senses and the lexical
senses, referred to as u and l respectively in other parts of the paper, here we use a
general sense s to avoid confusion.



8 L. White et al.

is well known to occur for n-gram language models [18]. Word-embeddings lan-
guage models largely overcome the data sparsity problem due to weight sharing
effects [17]. We suggest that the problem remains for word sense embeddings,
where there are many more classes. Thus the training data must be split further
between each sense than it was when split for each word. The power law distri-
bution of word use [19] is compounded by word senses within those used also
following the a power law distribution [20]. Rare senses are liable to over-fit to
the few contexts they do occur in, and so give disproportionately high likelihoods
to contexts that those are similar to. We propose to handle these issues through
additional smoothing.

We consider replacing the unnormalised posterior with its nc-th root, where
nc is the length of the context. We replace the likelihood of Eq. (2) with
PS(c | si) =

∏
∀wj∈c

nc
√

P (wj | si). Similarly, we replace the prior with:
PS(si) = nc

√
P (wj | si) When this is substituted into Eq. (3), it becomes a

smoothed version of P (si | c).

PS(si | c) =
nc
√

P (c | si)P (si)∑
sj∈s

nc
√

P (c | sj)P (sj)
(4)

The motivation for taking the nc-th root comes from considering the case of the
uniform prior. In this case PS(c | si) is the geometric mean of the individual
word probabilities PS(wj | si). Consider, if one has two context sentences, c =
{w1, ..., wnc

} and c′ = {w′
1, ..., w

′
nc′ }, such that n′

c > n′
c then using Eq. (2) to

calculate P (c | si) and P (c′ | si) will result in incomparable results as additional
number of probability terms will dominate – often significantly more than the
relative values of the probabilities themselves. The number of words that can
occur in the context of any given sense is very large – a large portion of the
vocabulary. We would expect, averaging across all words, that each addition
word in the context would decrease the probability by a factor of 1

V , where
V is the vocabulary size. The expected probabilities for P (c | si) is 1

V nc and
for P (c′ | si) is 1

V n
c′ . As nc′ > nc, thus we expect P (c′ | si) � P (c | si).

Taking the nc-th and nc′ -th roots of P (c | si) and P (c | si) normalises these
probabilities so that they have the same expected value; thus making a context-
length independent comparison possible. When this normalisation is applied to
Eq. (3), we get the smoothing effect.

4 Experimental Sense Embedding Models

We trained two sense embedding models, AdaGram [6] and our own Greedy
Sense Embedding method. During training we use the Wikipedia dataset as used
by Huang et al. [4]. However, we do not perform the extensive preprocessing used
in that work.

Most of our evaluations are carried out on Adaptive SkipGrams (AdaGram)
[6]. AdaGram is a non-parametric Bayesian extension of Skip-gram. It learns a
number of different word senses, as are required to properly model the language.
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We use the implementation2 provided by the authors with minor adjustments
for Julia [21] v0.5 compatibility.

The AdaGram model was configured to have up to 30 senses per word, where
each sense is represented by a 100 dimension vector. The sense threshold was
set to 10−10 to encourage many senses. Only words with at least 20 occurrences
are kept, this gives a total vocabulary size of 497,537 words.

To confirm that our techniques are not merely a quirk of the AdaGram
method or its implementation, we implemented a new simple baseline word sense
embedding method. This method starts with a fixed number of randomly ini-
tialised embeddings, then greedily assigns each training case to the sense which
predicts it with the highest probability (using Eq. (3)). The task remains the
same: using skip-grams with hierarchical softmax to predict the context words for
the input word sense. This is similar to [22], however it is using collocation prob-
ability, rather than distance in vector-space as the sense assignment measure.
Our implementation is based on a heavily modified version of Word2Vec.jl3.

This method is intrinsically worse than AdaGram. Nothing in the model
encourages diversification and specialisation of the embeddings. Manual inspec-
tion reveals that a variety of senses are captured, though with significant repeti-
tion of common senses, and with rare senses being missed. Regardless of its low
quality, it is a fully independent method from AdaGram, and so is suitable for
our use in checking the generalisation of the refitting techniques.

The vocabulary used is smaller than for the AdaGram model. Words with at
least 20,000 occurrences are allocated 20 senses. Words with at least 250 occur-
rences are restricted to a single sense. The remaining rare words are discarded.
This results in a vocabulary size of 88,262, with 2,796 words having multiple
senses. We always use a uniform prior, as the model does not facilitate easy
calculation of the prior.

5 Similarity of Words in Context

Estimating word similarity with context is the task of determining how similar
words are, when presented with the context they occur in. The goal of this task is
to match human judgements of word similarity. For each of the target words and
contexts; we use refitting on the target word to create a word sense embedding
specialised for the meaning in the context provided. Then the similarity of the
refitted vectors can be measured using cosine distance (or similar). By measuring
similarity this way, we are defining a new similarity measure.

Reisinger and Mooney [3] define a number of measures for word similarity
suitable for use with sense embeddings. The most successful was AvgSimC, which
has become the gold standard method for use on similarity tasks. It has been
used with great success in many works [4,5,11].

2 https://github.com/sbos/AdaGram.jl.
3 https://github.com/tanmaykm/Word2Vec.jl/.

https://github.com/sbos/AdaGram.jl
https://github.com/tanmaykm/Word2Vec.jl/
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AvgSimC is defined using distance metric d (normally cosine distance) as:

AvgSimC((u, c), (u′, c′)) =
1

n × n′
∑

ui∈u

∑

u′
j∈u′

P (ui | c)P (u′
j | c′) d(ui, u

′
j) (5)

for contexts c and c′, the contexts of the two words to be compared, and for
u = {u1, ..., un} and u′ = {u′

1, ..., u′n′} the respective sets of induced senses of
the two words.

Sentence containing
Word1

Word1 Word2 Sentence containing
Word2

Pretrained Unsupervised
Sense Embeddings

Distance

u={u1,...} u ={u1,...}
c c

l(u |c) l(u |c )

Fig. 1. Block diagram for RefittedSim similarity measure

5.1 A New Similarity Measure: RefittedSim

We define a new similarity measure, RefittedSim, as the distance between the
refitted sense embeddings. As shown in Fig. 1 the example contexts are used to
refit the induced sense embeddings of each word. This is a direct application of
Eq. (1).

Using the same definitions as in Eq. (5), RefittedSim is defined as:

RefittedSim((u, c), (u′, c′)) = d(l(u | c), l(u′ | c′) = d
(∑

ui∈u uiP (ui | c), ∑
u′
j∈u′ uiP (u′

j | c′)
)

(6)
AvgSimC is a probability weighted average of pairwise computed distances

for each sense vector. Whereas RefittedSim is a single distance measured between
the two refitted vectors – which are the probability weighted averages of the
original unsupervised sense vectors.

There is a notable difference in time complexity between AvgSimC and Refit-
tedSim. AvgSimC has time complexity O(n ‖c‖ + n′ ‖c′‖ + n × n′), while Refit-
tedSim has O(n ‖c‖ + n′ ‖c′‖). The product of the number of senses of each
word n × n′, may be small for dictionary senses, but it is often large for induced
senses. Dictionaries tend to define only a few senses per word – the average4

4 It should be noted, though, that the number of meanings is not normally distributed
[23].
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number of senses per word in WordNet is less than three [7]. For induced senses,
however, it is often desirable to train many more senses, to get better results
using the more fine-grained information. Reisinger and Mooney [3] found opti-
mal results in several evaluations near 50 senses. In such cases the O(n × n′)
is significant, avoiding it with RefittedSim makes the similarity measure more
useful for information retrieval.

5.2 Experimental Setup

We evaluate our refitting method using Stanford’s Contextual Word Similarities
(SCWS) dataset [4]. During evaluation, each context paragraph is limited to 5
words to either side of the target word, as in the training.

Table 1. Spearman rank correlation ρ × 100 when evaluated on the SCWS task.

(a) For varying hyper-parameters.

Method Geometric Smoothing Use Prior AvgSimC RefittedSim

AdaGram T T 53.8 64.8

AdaGram T F 36.1 65.0

AdaGram F T 43.8 47.8

AdaGram F F 20.7 24.1

Greedy T F 23.6 49.7

Greedy F F 22.2 40.7

(b) Compared to other methods RefittedSim-S is with
smoothing, and RefittedSim-SU is with uniform prior

Paper Embedding Similarity ρ × 100

This paper AdaGram AvgSimC 43.8

This paper AdaGram RefittedSim-S 64.8

This paper AdaGram RefittedSim-SU 65.0

[4] Huang et al. AvgSimC 65.7

[4] Pruned tf-idf AvgSimC 60.5

[11] Chen et al. AvgSimC 68.9

[5] Tian et al. AvgSimC 65.4

[5] Tian et al. MaxSim 65.6

[9] SenseEmbed Min Tanimoto 58.9

[9] SenseEmbed Weighted Tanimoto 62.4

5.3 Results

Table 1a shows the results of our evaluations on the SCWS similarity task. A
significant improvement can be seen by applying our techniques.

The RefittedSim method consistently outperforms AvgSimC across all con-
figurations. Similarly geometric smoothing consistently improves performance
both for AvgSimC and for RefittedSim. The improvement is significantly more
for RefittedSim than for AvgSimC results. In general using the unsupervised
sense prior estimate from the AdaGram model, improves performance – partic-
ularly for AvgSimC. The exception to this is with RefittedSim with smoothing,
where it makes very little difference. Unsurprisingly, given its low quality, the
Greedy embeddings are always outperformed by AdaGram. It is not clear if these
improvements will transfer to clustering based methods due to the differences in
how the sense probability is estimated, compared to the language model based
method evaluated on in Table 1a.

Table 1b compares our results with those reported in the literature using
other methods. These results are not directly comparable, as each method uses
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a different training corpus, with different preprocessing steps, which can have sig-
nificant effects on performance. It can been seen that by applying our techniques
we bring the results of our AdaGram model from very poor (ρ×100 = 43.8) when
using normal AvgSimC without smoothing, up to being competitive with other
models, when using RefittedSim with smoothing. The method of Chen et al. [11],
has a significant lead on the other results presented. This can be attributed to
its very effective semi-supervised fine-tuning method. This suggests a possible
avenue for future development in using refitted sense vectors to relabel a corpus,
and then performing fine-tuning similar to that done by Chen et al.

Target
Lemma

Target
POS Tag

Target
Word

WordNet
Sense Inventory

Pretrained Unsupervised
Sense Embeddings

Lexical WSD

Sentence

Disambiguated
Sense
l

SynsetGlosses
{c1,c2,...}

Induced
Sense Embeddings
u={u1,u2,...}

Lexical
Sense Embeddings

l={l1,l2,..}

Lexical
Sense Priors

{P (l1),P (l2),...}
cT

Fig. 2. Block diagram for performing WSD using refitting.

6 Word Sense Disambiguation

6.1 Refitting for Word Sense Disambiguation

Once refitting has been used to create sense vectors for lexical word senses, an
obvious used of them is to perform word sense disambiguation. In this section
we refer to the lexical word sense disambiguation problem, i.e. to take a word
and find its dictionary sense; whereas the methods discussed in Eqs. (3) and
(4) consider the more general problem, as applicable to disambiguating lexical
or induced word senses depending on the inputs. Our overall process shown in
Fig. 2 uses both: first disambiguating the induced senses as part of refitting, then
using the refitted sense vectors to find the most likely dictionary sense.

First, refitting is used to transform the induced sense vectors into lexical
sense vectors. We use the targeted word’s lemma (i.e. base form), and part of
speech (POS) tag to retrieve all possible definitions of the word (Glosses) from
WordNet; there is one gloss per sense. These glosses are used as the example
sentence to perform refitting (see Sect. 3). We find embeddings, l = {l1, ..., lnl

}
for each of the lexical word senses using Eq. (1). These lexical word senses are
still supported by the language model, which means one can apply the general
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WSD method to determine the posterior probability of a word sense, given an
observed context.

When given a sentence cT , containing a target word to be disambiguated,
the probability of each lexical word sense P (li | cT ), can be found using Eq. (3)
(or the smoothed version Eq. (4)), over the lexically refitted sense embeddings.
Then, selecting the correct sense is simply selecting the most likely sense:

l�(l, cT ) = argmax:
∀li∈l

P (li|cT ) = argmax:
∀li∈l

P (cT | li)P (li)∑
∀lj∈l P (cT | lj)P (lj)

(7)

6.2 Lexical Sense Prior

WordNet includes frequency counts for each word sense based on Semcor [24].
These form a prior for P (li). The comparatively small size of Semcor means that
many word senses do not occur at all. We apply add-one smoothing to remove
any zero counts. This is in addition to using our proposed geometric smoothing
as an optional part of the general WSD. Geometric smoothing serves a different
(but related) purpose, of decreasing the sharpness of the likelihood function –
not of removing impossibilities from the prior.

6.3 Experimental Setup

The WSD performance is evaluated on the SemEval 2007 Task 7.
We use the weighted mapping method of Agirre et al. [12], (see Sect. 2.2) as

a baseline alternative method for using WSI senses for WSD. We use Semcor as
the mapping corpus, to derive the mapping weights.

The second baseline we use is the Most Frequent Sense (MFS). This method
always disambiguates any word as having its most common meaning. Due to
the power law distribution of word senses, this is a very effective heuristic [20].
We also consider the results when using a backoff to MSF when a method is
unable to determine the word sense the method can report the MFS instead of
returning no result (a non-attempt).

6.4 Word Sense Disambiguation Results

The results of employing our method for WSD, are shown in Table 2. Our results
using smoothed refitting, both with AdaGram and Greed Embeddings with back-
off, outperform the MSF baseline [25] – noted as a surprisingly hard baseline to
beat [11].

The mapping method [12] was not up to the task of mapping unsupervised
senses to supervised senses, on this large scale task. The Refitting method works
better. Though refitting is only usable for language-model embedding WSI, the
mapping method is suitable for all WSI systems.

While not directly comparable due to the difference in training data, we
note that our Refitted results, are similar in performance, as measured by F1
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Table 2. Results on SemEval 2007 Task 7 – course-all-words disambiguation. The -S
marks results using geometric smoothing. The ∗ marks results with MSF backoff.

Method Attempted Precision Recall F1

Refitted-S AdaGram 99.91% 0.799 0.799 0.799

Refitted AdaGram 99.91% 0.774 0.773 0.774

Refitted-S Greedy 79.95% 0.797 0.637 0.708

Refitted-S Greedy* 100.00% 0.793 0.793 0.793

Refitted Greedy 79.95% 0.725 0.580 0.645

Refitted Greedy* 100.00% 0.793 0.793 0.793

Mapped AdaGram 84.31% 0.776 0.654 0.710

Mapped AdaGram* 100.00% 0.736 0.736 0.736

MFS baseline 100.00% 0.789 0.789 0.789

score, to the results reported by Chen et al. [11]. AdaGram with smoothing, and
Greedy embeddings with backoff have close to the same result as reported for
L2R with backoff – with the AdaGram slightly better and the Greedy embed-
dings slightly worse. They are exceeded by the best method reported in that
paper: S2C method with backoff. Comparison to non-embedding based methods
is not discussed here for brevity. Historically state of the art systems have func-
tioned very differently; normally by approaching the WSD task by more direct
means.

Our results are not strong enough for Refitted AdaGram to be used as a WSD
method on its own, but do demonstrate that the senses found by refitting are
capturing the information from lexical senses. It is now evident that the refitted
sense embeddings are able to perform WSD, which was not possible with the
unsupervised senses.

7 Conclusion

A new method is proposed for taking unsupervised word embeddings, and adapt-
ing them to align to particular given lexical senses, or user provided usage exam-
ples. This refitting method thus allows us to find word sense embeddings with
known meaning. This method can be seen as a one-shot learning task, where
only a single labelled example of each class is available for training. We show
how our method can be used to create embeddings to evaluate the similarity of
words, given their contexts.

This allows us to propose a new similarity measuring method, Refitted-
Sim. The performance of RefittedSim on AdaGram is comparable to the
results reported by the researchers of other sense embeddings techniques using
AvgSimC, but its time complexity is significantly lower. We also demonstrate
how similar refitting principles can be used to create a set of vectors that are
aligned to the meanings in a sense inventory, such as WordNet.
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We show how this can be used for word sense disambiguation. On this dif-
ficult task, it performs marginally better than the hard to beat MFS baseline,
and significantly better than a general mapping method used for working with
WSI senses on lexical WSD tasks. As part of our method for refitting, we present
a geometric smoothing to overcome the issues of overly dominant senses prob-
ability estimates. We show that this significantly improves the performance.
Our refitting method provides effective bridging between the vector space rep-
resentation of meaning, and the traditional discrete lexical representation. More
generally it allows a sense embedding to be created to model the meaning of a
word in any given sentence. Significant applications of sense embeddings in tasks
such as more accurate information retrieval thus become possible.
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