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Abstract. Various Data Structures have been introduced till date that aim at either
to improve them in terms of time or space complexity or they are particularly
designed for some special applications. This work aims at developing a new data
structure that takes the idea of plotting each digit to another dimension and thereby
reducing the access time for keys stored in it. In order to make it practical to
implement, a tree-based approach has been used to store it in the memory. The
asymptotic time complexity is O(nu) for extracting the keys in sorted order where
u is the size of universe. In practical testing, the procedure took much less time
to complete as compared to Merge Sort which is the best Comparison based
Sorting Technique in terms of worst-case time complexity. This work discusses
the concept, implementation and algorithms associated with the data structure.
Then it evaluates it against various test scenarios with other sorting techniques.

Keywords: Data structure · Algorithm · Sorting · Efficiency · Fast access · Time
complexity · Optimization

1 Introduction

Data structures have been in use since the beginning of the era of computers. There
have been various advancements in the field since then which continue till date. The aim
is either to improve them in terms of time or space complexity or they are particularly
designed for some special applications with pre implemented methods that makes it easy
to use and prevents the user from getting deep inside the complexities of implementation
of methods. Unlike most algorithmic issues, “linear time” is too slow; we can’t afford
to scan the complete data structure to answer a single query—and the goal is usually
logarithmic or even constant query time. Also, because the data corpus is usually huge,
space becomes a pressing concern, and you don’t generally want a data structure that
is larger than the data. However, these days, storage is becoming cheaper on the other
hand we want to answer queries at a fast rate.

Thiswork proposes a newdata structurewhich can be used to sort numbers or retrieve
sorted list of numbers from it in less or at least similar asymptotic time as compared
to pre-existing sorting techniques including algorithms and data structures with pre
implemented extract procedures and search time which is independent of number of
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elements present in the data structure in terms of time complexity which is definitely
much less than “linear time” in practical implementation.

This paper is organized into the following manner:
First, it discusses the concept and idea behind this data structure and plotting of

numbers in a space and the basic idea to store it in memory using a direct intuitive array
based implementation of the data structure.

We propose the tree base implementation of the data structure along with all the
methods associated with it for insertion, deletion and search of elements, and then finally
the extract sorted method for sorting numbers using the data structure.

Then, we evaluate our methods against benchmarks. Experimental Results show
that proposed structure outperforms many pre-existing algorithms for the purpose of
searching.

2 Literature Review

Tries were proposed in 1960 [1] that are used for storing alphabetical words in a corpus
with an efficient search complexity. Bitwise Tries have also been used since a long
time. Individual bits are utilized to traverse what basically becomes a sort of binary tree
in bitwise attempts, which are similar to character-based trie. Although this procedure
appears to be slow, it is cache-local and extremely parallelizable due to the lack of
register dependencies, and as a result, it performs quite well on recent out-of-order
execution CPUs. In [2], Huang et al. proposed a multi-block bitwise trie structure for
exact r-neighbour search in hamming space. Bucket sort is another sorting technique
being used for optimal sorting but it is not suitable everywhere. Bucket sort divides
the data pieces to be sorted into buckets, which are subsequently sorted individually
using any other sorting approach or by recursive application of the bucket sort technique
itself. The difficulty of a bucket sort is determined by the number of buckets utilised, the
technique used to sort each bucket, and the uniformity of the data items’ distribution. A
stable sorting technique was introduced in [3] which a novel technique for sorting large
scale data. Its primary aim was to check sorted big numbers however it performed better
than quick sort and similar sorting techniques for sorted numbers. Apart from Merge
Sort itself, tim sort was introduced which has been analysed in [4] which improves over
merge sort modifying its performance in terms of time complexity in some scenarios.

Keshav Bajpai in [5] proposed an efficient version of counting sort that reduced
the sorting time to half from counting sort for an array of 10,000 integers. In 2002,
a new randomized sorting algorithm [6] was proposed sorting n integers in O(n/spl
radic/(log log n)) expected time and linear space. Another algorithm for integer sorting
was proposed in 2001, which claimed to sort n integers in linear space in O(n log log n
log log log n) time. Under certain conditions, it claimed to have a time complexity of
O(n log log n) [7].

Apart from thevarious proposed algorithms, only fewget used frequently considering
there practical limitations and performance. Timsort is a modified version of merge sort
that is used internally by Java and Python for there default sorting algorithm. It has the
best case complexity ofO(n) and aworst case time complexity ofO(log n). Its complexity
analysis has been done in this paper [8].
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In [9], Kumar et al. proposed a new sorting algorithm called recombination Sort
which is derived from the recombination of cardinal principles froma number of different
sorting methods. Radix sort’s ability to deal with each digit of a number separately,
counting sort’s concept of counting the number of occurrences of elements, bucketing
from bucket sort, and hashing a number to a multidimensional space are all combined
to form a single sorting algorithm that outperforms its parent algorithms. For the best,
average, and worst situations, the time complexity of the proposed Recombinant Sort
was expected to be O(n + k). In the worst-case situation, the k in O(n + k) will become
n, but n’s order will never approach two, i.e., k will never approach n2.

Moving on from sorting algorithms and looking at some data structures, Burst tries
[10] were proposed in 2002 which claimed to be fast and efficient data structure for
string keys. However, integers can be converted to strings and stored in the same. Self
balancing trees like AVL, Red Black Tree, B Trees [11] have been used in database
systems for indexing keys which have search complexity in the order of O(log n) and
insert complexity O(log n). Numbers can be retrieved from the data structure in O(n).
So, they have an O(log n) time complexity for sorting numbers. There detailed evalu-
ation has been done in this article [12]. A workshop proceeding [13] proposed various
efficient data structures for storing partitions of n integer, however the best time com-
plexity for them was O(n2). A dynamic integer set [14] was proposed in 2014 which
had O(n) space complexity and O(log n) time complexity for main set operations like
insertion, deletion, predecessor/In 2019, FASTSET [15] was proposed which claimed
to have optimal performance for most of the commonly used set operations claiming
that previously existing sets had at least one non-optimal operation. The author also,
compared it with the inbuilt set of Java collections implementation. In 2021, new data
structures were proposed for orthogonal range reporting and range minimum queries
in [16]. It proposed a data structure that can be used for 2-D orthogonal range minima
queries in O(n) and and O(log ε n) time, where number of points is represented by n in
the data structure and ε is an arbitrarily small positive constant. A sorting algorithm was
also proposed in 2021 in [17] which proposed a parallel multi-deque sorting algorithm.
In 2017, A paper introduced an implementation and statistical comparison of different
edge detection techniques like Prewitt, Sobel and Robert [18]. It was developed on the
top of Multi-Stack Sort enhancing the performance while getting rid of the weakness of
MSP Sort. It was primarily for multi-core CPUs and GPUs. In 2021, an energy efficient
enhancement for prediction-base scheduling was proposed which helps in the network
lifetime improvement in WSNs [19]. In 2019, another efficient sorting algorithm was
introduced for non-volatile memory which claimed to outperform many other sorting
algorithms in terms of execution time and non-volatile memory writes [20].

There have been various sorting algorithms introduced till date that have various
properties associated with themselves namely Bubble Sort, Quick Sort, Heap Sort, Inser-
tionSort,MergeSort, etc. Though, this paper doesn’t propose exactly a sorting algorithm,
but a data structure that can be used to sort numbers. Just like heap sort (analysed in the
cited paper) [21] uses heap data structure to extract numbers in a sorted manner.



N-Dimensional Structure: A Data Structure with Fast Access 493

3 Methodology

3.1 U-Dimensional Space

The idea behind this new data structure is to plot numbers in a u dimensional space which
we like to call a Universe. For a u-dimensional universe, we can plot numbers from 0 to
10u−1. We can think of it as a cartesian u dimensional space where each integer can be
represented as a point in the space.

For example, if we take a 3-dimensional space, we can plot numbers from 0–99. We
reserve one dimension for storing value 0. Which means each number has value zero in
the zeroth dimension.We can say 0 is 000, 1 is 001, 2 is 002, 10 is 010, and 99 is 099.We
won’t be able to plot 100 in this space because we want the zeroth dimension to be zero
always. This might not make sense now but will help us in the implementation phase.
Let us now take this 3-d space and plot some numbers. We will only look at the non-zero
dimensions here, i.e. first and second dimension here. Let us take some numbers. We
will then break them down to dimensions and plot them as given in Table 1.

These numbers plotted in a 3D space while only looking at the non zero dimensions
looks like the space as shown in Fig. 1.

3.2 Array Based Implementation

If we try to implement this in a machine, we can use a 2-D array to do this, which is very
intuitive. However, this approach is just for a better understating of how the tree-based
implementation was derived and to get the intuition behind it. It will look like a table
given below. In the array, the first dimension will represent the first non-zero dimension
and the second similarly will represent the second non-zero dimension. Hence, we can
locate each number in the array using these two dimensions.

Table 1. 3-D equivalent for numbers

Serial number Integer Equivalent Point in 3-dimensions

1 4 004 (0, 0, 4)

2 7 007 (0, 0, 7)

3 12 012 (0, 1, 2)

4 34 034 (0, 3, 4)

5 68 068 (0, 6, 8)

6 91 091 (0, 9, 1)
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Fig. 1. Numbers plotted in a space

For example, 4 will be found in the array a at a[0][4], 7 will be found in the array a
at a[0][7], 34 will be found in the array a at a[3][4], 68 will be found in the array a at
a[6][8], 91 will be found in the array a at a[9][1] and so on.

It will be a binary n-dimensional array where it will hold value 1 when the number is
present and 0 elsewhere. For holding multiple elements of same number we can instead
use it as a counter.

Like if there are multiple copies of 4 say there are 2 4’s in the universe, one can set
a[0][4] to 2 for this. The sample array for the forementioned numbers is given in Table 2.
In the other method, we can use a separate kind of terminal array where it will have a list
of elements. It will look like [4, 4] at a [0][4]. The same approach has been implemented
in the algorithm section in this report.

Table 2. Array representation of numbers for a u-d space

[x] [y] [x] [0] [x] [1] [x] [2] [x] [3] [x] [4] [x] [5] [x] [6] [x] [7] [x] [8] [x] [9]

[0] [y] 0 0 0 0 1 (0, 4) 0 0 1 (0, 7) 0 0

[1] [y] 0 0 1 (1, 2) 0 0 0 0 0 0 0

[2] [y] 0 0 0 0 0 0 0 0 0 0

[3] [y] 0 0 0 0 1 (3, 4) 0 0 0 0 0

[4] [y] 0 0 0 0 0 0 0 0 0 0

[5] [y] 0 0 0 0 0 0 0 0 0 0

[6] [y] 0 0 0 0 0 0 0 0 1 (6, 8) 0

[7] [y] 0 0 0 0 0 0 0 0 0 0

[8] [y] 0 0 0 0 0 0 0 0 0 0

[9] [y] 0 1 (9, 1) 0 0 0 0 0 0 0 0
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A similar approach can be used to represent any set of numbers and we can generate
the array for the same. If we wish to perform various operations in this array say search,
insert, delete by key, one can easily do that by accessing the particular dimensions in the
increasing order according to the values it should hold. If we want to get a sorted list
of all the numbers, we can do so by starting with an empty array, iterating through the
dimensions of the u-d array one by one and keep adding to the array whenever we find
non zero value in the u-d array.

3.3 Tree Based Implementation

While exploring any non-zero dimension n, the value can be only be an integer in the
range of 0 to 9. And if we access next dimension n + 1 for any of the value from 0–9,
there might be elements only in some of the values for the specific dimension.

For example, in the previous example, there were no elements present for 1st non
zero dimension at [2][y], [4][y], [5][y], [7][y], [8][y]. So, we don’t need the n + 1 and
following dimensions where n = 2, 4, 5, 7, 8. This fact can be used in saving storage.
Though, we will have to change the implementation and use an abstract way to represent
the u-d array.

If we treat each dimension as an array of 0–9 of itself and at each of these values, we
point them to the next dimension as presented in Tables 3, 4, 5, 6 and 7, then we only
need to keep those arrays that have points present in the dimension. Let’s say for first
dimension we have a 1-d array as given below. At each position in the array we only
store one address of the array for the next dimension for the current value of current
dimension.

Table 3. Array for first non-zero dimension

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

add0 add1 NULL add3 NULL NULL add6 NULL NULL add9

Table 4. Array at add0 for value 1 in second non-zero dimension

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

0 0 0 0 1 0 0 1 0 0

Table 5. Array at add3 for value 3 in second non-zero dimension

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

0 0 0 0 1 0 0 0 0 0
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Table 6. Array at add6 for value 6 in second non-zero dimension

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

0 0 0 0 0 0 0 0 1 0

Table 7. Array at add9 for value 9 in second non-zero dimension

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

0 1 0 0 0 0 0 0 0 0

This way, we didn’t have to store empty arrays for 2, 4, 5, 7, 8.
In a similar way, it can be implemented for any number of dimensions. This will

ensure memory efficiency and thereby reduce the time complexity of extracting sorted
elements from the data structure.

If we look at it, then the structure it represents is sort of a tree, where each tree can
have at max 10 children. Because each element of the array points to another array of
the next dimension. Each array used in this representation is a node of the tree.

There will be two types of arrays, the ones which are not of the last dimension,
and the ones of last dimension. The intermediate dimension nodes will have values of
addresses. The terminal or last dimension nodes will store the count of elements present
for that number in the particular space or universe.

3.4 Algorithms

In the tree implementation, an object-oriented approach is used. So, in place of directly
considering nodes as arrays, objects will be created which will along with the address or
count array, will also store the current dimension number and current dimension value.
The class diagram for the representation of nodes is given below. Only Universe is the
class which is exposed to the user. One can initialize the data structure by initializing
the Universe class by selecting the suitable number of dimensions he/she wants. The
other too classes are internally initialized by the universe class itself directly or indi-
rectly byDimension class. The user has access toAddToUniverse(), SearchInUniverse(),
DeleteFromUniverse() and ExtractSorted() methods of the Universe class (Fig. 2).
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Fig. 2. Class diagram for tree based implementation

Algorithm 1: Add number to Universe

function ADDTOUNIVERSE (universe, num):
1. numString ← string(num) 

2. numLen ← length(numString) 

3. if numLen>universe.dimensions-1 do
4. return False

5. Add to numString in the beginning a string with every character '0' of size (uni-
verse.dimensions - numLen-1)

6. numValue ← numString
7. value ← int(numValue[0])

8. if universe.nextDim[value] = NULL do
9. universe.nextDim[value] ← Dimension(1,value) 

10. if length(numValue[1:]) = 1 do
11. return

ADDTOTERMINAL(universe.nextDim[value],numString,numValue[1:])

12. else do
13. return

ADDTODIMENSION(universe.nextDim[value],numString,numValue[1:])
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The above Algorithm 1 will be exposed as a member function of the Universe class
(the only class exposed to the user). It will take up a number to be inserted into the
universe, convert it into a string, add zeroes in the starting to make the length equal to
size of the universe. Then, it will extract the first digit from the left and find the next
dimension or terminal where it needs to be inserted and give it a function call for addition.

Algorithm 2: Search number in Universe

function SEARCHINUNIVERSE(universe, num):

1. numString ← string(num) 

2. numLen ← length(numString) 

3. if numLen > universe.dimensions-1 do
4. return False

5. Add to numString in the beginning a string with every character '0' of size (uni-
verse.dimensions- numLen-1)

6. numValue ← numString
7. value ← int(numValue[0])

8. if universe.nextDim[value]=NULL do
9. return False

10. if length(numValue[1:]) = 1 do
11. return

SEARCHINTERMINAL(universe.nextDim[value],numString,numValue[1:])

12. else do
13. return

SEARCHINDIMENSION(universe.nextDim[value],numString,numValue[1:])

The Algorithm 2 will be exposed as a member function of the Universe class. It will
take up a number to be inserted into the universe, convert it into a string, add zeroes in
the starting to make the length equal to size of the universe. Then, it will extract the first
digit from the left and find the next dimension or terminal where it needs to be searched
and give it a function call for search.
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Algorithm 3: Delete number from Universe
function DELETEFROMUNIVERSE(universe, num):

1. numString ← string(num) 
2. numLen ← length(numString)
3. if numLen>universe.dimensions-1 do
4. return False
5. Add to numString in the beginning a string with every character '0' of size (uni-

verse.dimensions- numLen-1)
6. numValue ← numString
7. value = int(numValue[0])
8. if universe.nextDim[value]=NULL do
9. return False
10. if length(numValue[1:]) = 1 do
11. return

DELETEFROMTERMINAL(universe.nextDim[value],numString,numValue[1:])
12. else do
13. return

DELETEFROMDIMENSION(universe.nextDim[value],numString,numValue[1:])

The Algorithm 3 will be exposed as a member function of the Universe class. It will
take up a number to be inserted into the universe, convert it into a string, add zeroes in
the starting to make the length equal to size of the universe. Then, it will extract the first
digit from the left and find the next dimension or terminal from where it needs to be
deleted and give it a function call for delete.

Algorithm 4: Extract Sorted Numbers from Universe or Dimension

function EXTRACTSORTED (a):
1. extractSorted ← empty array
2. for each dimension in a.nextDim do
3. if dim not = NULL do
4. extractSorted.append(dim.extractSorted())

5. return extractSorted

Algorithm 4 will be exposed as a member function of the Universe class. It will
iteratively give call to all the next dimensions [0..9] and will keep on appending the
results to an array which be initialized beforehand. Finally, this array will be returned.
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Algorithm 5: Add number to Dimension

function ADDTODIMENSION(dimension, numString, numValue):

1. value ← int(numValue[0])

2. if dimension.nextDim[value]= NULL do
3. if length(numValue) not =1 do
4. dimension.nextDim[value] = Dimen-

sion(dimension.dimension+1,value) 

5. else do
6. dimension.nextDim[value] =Terminal(dimension.dimension+1,value) 

7. if length(numValue[1:]) = 1 do
8. return

ADDTOTERMINAL(universe.nextDim[value],numString,numValue[1:])

9. else do
10. return

ADDTODIMENSION(universe.nextDim[value],numString,numValue[1:])

In Algorithm 5 function extracts the first digit from the left from the number and
iteratively calls itself for the next dimension for that digit and finally, when only one
digit is left, it calls the AddToTerminal function. If there is no next dimension present
for some digit, it initializes one.

Algorithm 6: Search number in Dimension

function SEARCHINDIMENSION(dimension, numString, numValue):
1. value ← int(numValue[0])

2. if dimension.nextDim[value] = NULL do
3. return False

4. if length(numValue[1:]) = 1 do
5. return

SEARCHINTERMINAL(universe.nextDim[value],numString,numValue[1:])

6. else do
7. return

SEARCHINDIMENSION(universe.nextDim[value],numString,numValue[1:])

In Algorithm 6 the function extracts the first digit from the left from the number and
iteratively calls itself for the next dimension for that digit and finally, when only one
digit is left, it calls the SearchInTerminal function.
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Algorithm 7: Delete number from Dimension

function DELETEFROMDIMENSION(dimension, numString, numValue):
1. value ← int(numValue[0])

2. if dimension.nextDim[value] = NULL:

3. return False

4. if length(numValue[1:]) = 1 do
5. return

DELETEFROMTERMINAL(universe.nextDim[value],numString,numValue[1:])

6. else do
7. return

DELETEFROMDIMENSION(universe.nextDim[value],numString,numValue[1:])

In Algorithm 7, the function extracts the first digit from the left from the number
and iteratively calls itself for the next dimension for that digit and finally, when only one
digit is left, it calls the DeleteFromTerminal function.

Algorithm 8: Add number to terminal

function ADDTOTERMINAL(terminal, numString, numValue):
1. terminal.elements.append(int(numString))

2. return True

In Algorithm 8, the function simply appends the integer value of the number to the
member list of the terminal.

Algorithm 9: Search number in terminal

function SEARCHINTERMINAL(terminal, numString, numValue):
1. if int(numString) in terminal.elements do
2. return self.elements.search(int(numString))

3. else
4. return False

In Algorithm 9, the described function returns true if the integer value of the number
is present in the member list of the terminal.
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Algorithm 10: Delete number from terminal

function DELETEFROMTERMINAL(terminal, numString, numValue):
1. if int(numString) in terminal.elements do
2. return self.elements.delete(int(numString))

3. else
4. return False

In Algorithm 10, the function deletes and returns true if the integer value of the
number is present in the member list of the terminal otherwise it returns false.

Algorithm 11: Extract sorted numbers from terminal

function EXTRACTSORTEDFROMTERMINAL(terminal):
1. return terminal.elements

In Algorithm 11, the function returns the array of member elements present in the
terminal.

3.5 Theoretical Analysis

The time complexity analysis of various operations performed on the data structure are
given in Table 8.

Table 8. Asymptotic time complexity analysis for various operations supported by the proposed
data structure

S.No. Operation Best case Average case Worst case

1 Insert �(u) θ(u) O(u)

2 Delete �(u) θ(u) O(u)

3 Search �(u) θ(u) O(u)

4 Extract sorted numbers �(nu) θ(nu) O(nu)

The theoretical time complexity analysis of the data structure has been compared for
various operations in this section. The X-axis denotes the number of elements present in
the data structure. As we move with the X-Axis, the size of the data structure increases.
The Y-Axis is a theoretical order denotation of the worst-case time complexity for the
specific operation as presented in Fig. 3.
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The graph in Fig. 4 shows the time complexity analysis for various commonly used
data structures for the insertion operation. The Y-Axis here represents the value in which
the order of time it will take to execute. As we can see, for some of the data structures,
the insertion time complexity goes in linear time while for some, it is very less and we
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can see that for the proposed data structure, it lies in the lower level. The size has been
kept up to 100 to ensure that the reader can distinguish between the lines in the graph.

Figure 4 presented the time complexity analysis for various commonly used data
structures for the search operation. The Y-Axis here represents the value in which the
order of time it will take to execute. One can notice that here, that the proposed data
structure has the best performance in terms of worst-case search complexity whereas
most of the data structures take linear time to search for an element in the data structure.
However few like AVL Tree and Red Black Tree have search complexity near to the
proposed data structure. A separate graph for deletion of a particular element from the
data structure has not been presented in this paper as it is same as to the search complexity
for all the mentioned data structures.

Sorting is just one of the applications of this data structure. For testing the data struc-
ture to sort numbers or extracted sorted numbers from the data structure, the following
test cases were used.

• All elements zero
• All elements sorted from 0 to n − 1
• All elements reverse sorted from n − 1 to 0.

Since, it is a data structure and not a sorting algorithm, a combination of insertAll()
and extractSorted() was used to do comparison with other sorting algorithms in terms
of time complexity and space complexity. The asymptomatic complexity of both the
algorithms is presented in Table 9. Here n is the number of elements present and u is the
number of dimensions for the data structure.

Table 9. Asymptotic time complexity analysis for sorting algorithms

S.No. Algorithm Best case Average case Worst case

1 Merge Sort �(nlogn) θ(nlogn) O(nlogn)

2 Quick Sort �(nlogn) θ(nlogn) O(n2)

3 Bubble Sort �(n) O(n2) O(n2)

4 Selection Sort O(n2) O(n2) O(n2)

5 Insertion Sort �(n) O(n2) O(n2)

6 Counting Sort �(n + k) �(n + k) �(n + k)

7 NDS Sort �(nu) θ(nu) O(nu)

If we take numbers up to 10,000,000 the value of u will be 8. Hence for time
complexity, NDS Sort in practical scenario will perform better than Merge Sort. This
is because NDS Sort is not a comparison-based sorting algorithm. Table 10 shows the
space complexity for various sorting algorithms and the u-dimensional data structure.
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Table 10. Asymptotic space complexity analysis for sorting algorithms

S.No. Algorithm Best case Average case Worst case

1 Merge Sort �(n) θ(n) O(n)

2 Quick Sort �(log n) �(log n) O(n)

3 Bubble Sort O(1) O(1) O(1)

4 Selection Sort O(1) O(1) O(1)

5 Insertion Sort O(1) O(1) O(1)

6 Counting Sort �(k) �(k) �(k)

7 NDS Sort �(n) θ(nu) O(nu)

In the best case, all the elements will belong to only one dimension, let’s say, there
is only one element repeated. In that case, the space complexity will be linear.

In the worst case, if elements belong to all different dimensions at all level, in the
last dimension, there will be at max n children, reducing by the factor of 10 in each
dimension as we move up the tree implementation. Since, the dimensions are u the
space complexity will be in the order of nu.

4 Results and Discussion

The testing of sorting numbers with the proposed data structure and Merge Sort was
done on Google Colab which uses a Virtual Machine with Intel(R) Xeon(R) CPU @
2.20 GHz, RAM of 13 GB and a HDD Size of 110 GB approx. The observed time
taken by the algorithms is given in Table 11. The column names specify the number of
elements taken. The range taken was 0 to n − 1, n − 1 to 0 and all elements 0. Each
cell represents the time taken by algorithm in seconds. Time Complexity is presented in
Figs. 5, 6 and 7.
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Table 11. Time taken by system in sec to execute NDS Sort and other sorting algorithms using
Python on Google Colab

Algo-
rithm

Input 10 100 1000 10,000 100,000 1,000,000 10,000,000

Merge 
Sort

0 to n-1 0.000
1 

0.0003 0.004 0.0514 0.6884 7.6915 89.4555

n-1 to 0 4.196
2E-
05

0.0003
87

0.0060
5011

0.0521
37

0.636338 7.418624 86.438826

All 0 6.84E
-05

0.0005
46

0.0045
7239

0.0570
35

0.737706 7.427241 85.912622

Quick 
Sort

0 to n-1 0.001
7433
2

0.0011
48

0.0548
4915

5.0374
39

Crashed Crashed Crashed

n-1 to 0 4.386
9E-
05

0.0017
41

0.0728
0445

8.6141
89

Crashed Crashed Crashed

All 0 3.528
6E-
05

0.0016
38

0.2169
3325

23.605
9 

Crashed Crashed Crashed

Bub-
ble
Sort

0 to n-1 0.000
1671
3

0.0006
35

0.0668
3016

6.3135
08

Crashed Crashed Crashed

n-1 to 0 3.290
2E-
05

0.0024
2 

0.1593
9116

17.385
76

Crashed Crashed Crashed

All 0 2.360
3E-
05

0.0009
27

0.0603
6782

6.2862
49

Crashed Crashed Crashed

Selec-
tion 
Sort

0 to n-1 8.463
9E-
05

0.0007
04

0.0537
1523

4.918 489.1333 Crashed Crashed

n-1 to 0 2.574
9E-
05

0.0008
38

0.0534
4391

5.1749
35

Crashed Crashed Crashed

All 0 1.454
4E-
05

0.0007
51

0.0482
6069

4.7579
6 

Crashed Crashed Crashed

Inser-
tion 
Sort

0 to n-1 0.000
0083

0.0000
56

0.0005
2929

0.0055
17

0.033569 0.335155 3.4667594

n-1 to 0 1.716
6E-
05

0.0009
2 

0.1061
2702

10.775
62

Crashed Crashed Crashed

All 0 8.344
7E-
06

3.46E-
05

0.0003
1519

0.0029 0.03819 0.305743 3.0626819

Count-
ing 
Sort

0 to n-1 2.360
3E-
05

0.0001
34

0.0017
2091

0.0085
09

0.086685 0.867572 8.5488007

n-1 to 0 2.718
E-05

0.0001
35

0.0014
8439

0.0085
63

0.082525 0.85849 8.4852989

All 0 2.551
1E-
05

0.0001
32

0.0010
6096

0.0110
68

0.0807 0.83579 6.6027911

NDS
Sort

0 to n-1 0.000
1

0.0003 0.0029 0.0365 0.4191 4.7976 55.8676

n-1 to 0 7.128
7E-
05

0.0002
55

0.0034
5135

0.0330
77

0.401883 4.661522 53.242062

All 0 0.000
1757
1

0.0002
71

0.0027
0486

0.0346
62

0.400066 4.643523 51.733629
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Fig. 5. Time complexity comparison of sorting algorithms for numbers 0 to n − 1
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Fig. 6. Time complexity comparison of sorting algorithms for numbers from n − 1 to 0 (reverse
sorted order)



508 H. Gupta et al.

0.0000
10.0000
20.0000
30.0000
40.0000
50.0000
60.0000
70.0000
80.0000
90.0000

100.0000

Merge Sort Quick Sort Bubble Sort

Selec�on Sort Inser�on Sort Coun�ng Sort

NDS Sort

Fig. 7. Time complexity comparison of sorting algorithms for all elements 0

5 Conclusion

The data structure has efficient methods for adding, searching and deletion of numbers in
the data structure with time complexity of each operation independent from the number
of elements present in the data structure. The NDS Sort, proposed in the paper which is
nothing but utilizing the ExtractSorted Method of the data structure. The NDS Sort, is
more efficient than many sorting algorithms for positive integers. Extensive evaluation
shows that it significantly outperforms Merge Sort and other sorting techniques over
several testing scenarios mentioned in the paper in previous sections.
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