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Abstract. Trafficmonitoring and advanced urban analytics play an important role
in city planning and in attaining sustainablemobility through data-driven decision-
making. With the advent of open-sourced data initiatives, new data-sharing tech-
nologies and software, also analytical methods, and data integration techniques
are forced to subsequent levels. In this paper, we present two pilot studies of a
recently conducted national project, joining vehicle counts and the travel times to
present roadway traffic flows. We introduce a targeted selection of indicators and
demonstrate the applicability of travel time metrics and the vehicle count mea-
sures, by combining different open datasets and transferable analyses to advance
the interpretation strength of the data. Concretely, we apply regression methods
based on the cosinor model, which allows us to analyze the rhythmic behavior
of travel time and congestion trends. Furthermore, following the principles of
data integration and data reusability we examine, using regression modeling and
cross-validation, the possibilities to interchangeably use the governmental road-
way counting database, vehicle counting byWeCount Ljubljana Telraamdatabase,
and the travel times records sourced by Google Direction API. The data ana-
lyzed indicate the possible interchangeability in selected scenarios and confirm
the prospective to be used as complementary systems in the city monitoring and
for urban sustainability assessment.
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1 Introduction

The research on the connections between the urban environment, its organization, and
sustainability targets has increased substantially in recent years, linking the broad inter-
ests among policymakers, research initiatives, and neighborhood communities to assure
more sustainable, high quality and livable cities [1–3]. The mobility aspect here plays
an important role: infrastructure planning and renewal, planning of the amenities and
services, conducting people’s habits, and routines, managing the public transport, or
planning for higher walkability are important factors in this initiative. However, timely
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reactions require a different approach in integrated planning practices [4]; it entails con-
tinuous and adaptive monitoring, as well as the assessment of the existing situations
based on frequent and solid data infrastructures.

Data-driven urbanistic practices are at the core of these endeavors. The rapid evolu-
tion in information and communication technologies has brought the potential of urban
analytics and assessments onto the subsequent levels and consequently better prospects
for well-informed decisions, also on the bases of the existing data, its repurposing, and
reuse. The evolution towards a data-based society, where data from different domains
and activities can be publicly accessed, reused, and integrated, is one of the strong Euro-
pean goals.1 The increasing availability of new forms of data stemming from smart
sensors and our interactions with large socio-technical systems, such as social media
platforms or mapping applications (e.g. Twitter, Instagram, Strava, etc.) and ubiquitous
devices such as smartphones or activity trackers (e.g. smartwatches), allows us to use
data science and artificial intelligence (AI) to better understand the cities [5, 6] peoples’
needs and expectations, as well as peoples’ behavior, movements, and to find relations
between these and the urban form and organization [7]. Not only can urban planners
tackle urbanistic challenges to create healthier and more sustainable environments [8],
but they can nowadays examine socio-environmental systems on a finer level and with
the enormous support of human-gathered or geo-location data evidence. Moreover, the
analytical methods developed and applied in other domains have proven to offer possi-
ble synergies among the examined problems and the methods used. For example, today,
more than ever, different types of rhythmic datasets are being captured, thus, the rhyth-
micity analysis2 has also become an important aspect in other fields of research [9],
also by interpreting sustainability and efficiency trends, such as traffic flows and their
oscillation, walkability patterns, energy consumption patterns, buildings’ performance
variations.

However, in combining heterogeneous data to solve the cross-cutting urban issues
it is common to encounter syntactic and semantic discrepancies [10], mainly due to
spatial, temporal, or thematic diversities, different techniques of capturing, and institu-
tional dispersion of the studied datasets. In particular, national and municipality-related
institutions create and operate datasets based on specific purposes which are designed
for problems at hand and cover specific areas of interest (from mobility, accessibility,
and commuting, noise and air pollution, to energy consumption, waste management, or
sociodemographic data, indicators of peoples’ commitment, their habits, and patterns
of behavior, etc.). This diversity in data subjects results also in sparse and incompatible
datasets, discontinued or disconnected time series, and reciprocally incompatible data
queries characterized by diverse data models and storage structures [11–13].

Despite the huge amounts of data generated, paradoxically, obtaining micro-urban,
and fine-grained records that correspond to higher spatial resolutions and eloquence, still
often bring significant data scarcity [14] and thus requires advanced techniques of data

1 Directive (EU) 2019/1024 of the European Parliament and of the Council on open data and
the re-use of public sector information: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=
CELEX:32019L1024.

2 Detection and analysis of rhythmic patterns were initially introduced and developed, especially
in the field of biology and medicine [9].
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integration, repurposing, or introducing newways of data interchangeability. For this rea-
son, feasible and serviceable data sources are increasingly being extended also towards
citizens- and the crowds- data harnessing. Here, the miscellaneous, location-stamped
data, is collected by engaged citizens or end-users. Different citizen science activities
also create new learning opportunities, increase scientific legibility among the public
and allow civic participation in important decisions or to foster important sustainability
goals [15]. With a continuously growing number of smart and wearable devices or other
sensors, the feasibility and the richness of crowdsourced and citizens collected data is
increasing [16]; however, it brings additional difficulties in the aggregation process with
other data repositories, and the necessity to introduce solid indicators and validation
techniques for further processing of data queries.

In this paper, we present selected results of the two pilot studies within the national
research3 to process and interchangeable use three different data sources (i.e., Google
Directions API [17], governmental road vehicle monitoring, and theWeCount Ljubljana
Telraam database [18]), two basic indicators (i.e., traffic counts and travel times), and
several different analyses (i.e., cosinor analyses, travel time reliability analyses, regres-
sion modeling) to assess the roadway traffic flows on certain strategical routes/trips in
the city of Ljubljana, Slovenia. Even though services, such as Google Directions API
[17], can be used to assess short-term traffic conditions, these cannot be directly applied
to the assessment of traffic trends and travel time reliabilities, which presented the focus
of our analyses. Our research entailed a specific focus on the network performance of
individual motorized traffic on the six routes connecting the three neighborhoods with
important points in the city by suggesting vehicle counts analyses and travel time met-
rics for the assessment. We extract and present, for the purpose of this paper, the data
sources and the analyses applied as well as interpretation techniques used in two studies
of this research to showcase the research, benefits attained, and difficulties encountered.
Selected detailed results have been published in Janež et al. [16] and Verovšek et al.
[19].

In this paper, we first briefly explain the three different sources of the roadway
flow performance used in the study. We further outline the methodological contexts of
the study; the geographical and time frames and describe the data variables and the
necessary data pre-processing. We continue with the description of the types of analyses
andmeasures applied in the study and the demonstration of results presented by different
interpretation techniques, followed by a short discussion and conclusion.

2 Three Sources of Roadway Flow Performance

Commonly, the network travel performance and the efficiency of road systems have been
estimated by roadway flow rates directly rendered from the vehicle counts. The state-
of-practice procedures on counting propose stationary on-road or over-road counting
devices, among which the inductive loop counters (ILC) embedded in the pavements
are by far the most widely used in conventional traffic control systems [20, 21]. We
obtained historical traffic count data from the Slovenian Ministry of Infrastructure and
the Municipality of Ljubljana (MOL).

3 Slovenian Research Agency [J5-1798, 2019–2022].
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Technical advances of the last decade have attested a strong development in sensor-
based solutions. Coupled with the new initiatives of citizens science, cost-efficient sen-
sors have been developed and promoted for traffic counting. As part of the H2020 citizen
science project WeCount Ljubljana,4 which has also been extended to WeCount the Lit-
toral and WeCount Novo mesto in Slovenia, engaged citizens have placed WeCount
Telraam sensors on the windows of their homes and offices to count traffic flows on the
city’s streets. The project features an open-sourceWeCount Ljubljana Telraam platform,
developed with support from the Belgian federal government’s Smart Mobility Belgium
fund and the European Union’s Horizon 2020 research and innovation programme as
part of the WeCount project [22], and collects data captured by a low-resolution sensor
with a Raspberry Pi module that processes the sensor inputs and sends the count data to
the central database [18]. As the count is based on visual input, the count can only be
done during the day.

The advances and presence of cellular networks have also evolved significantly in
the last decade which has also enabled continuous tracking of vehicles and floating
car data [23]. With that, the roadway performance can be measured by travel times on
the selected routes and the traveling reliability referred to that. These two measures
and their derivatives are by far more intuitive and bring a different understanding of
the traffic situations and patterns. In our study, we used Google Directions API’s data
[17] to render the trip durations on the selected routes in the city. The Directions API
provides real-time traffic data and modeled estimations for travel times and directions
between selected locations, to enable real-time vehicle routing. One of our endeavors
was to repurpose and effectively couple thesemeasures with the traffic counts to estimate
flow performances in the long run, and eventually enable interchangeable use of both
sources if needed. The possible prediction of trip durations (and reliability) from traffic
counts represent an added value for the assessment. There have been several studies
employed to improve the assessment strategies in this regard e.g. [24–26], however, the
comparison of the research settings is problematic due to different input data targeting,
different information outputs, or travel modes examined (e.g. bus public transport),
different geographical contexts, etc.

3 Methodological Context

3.1 Location and Periods

We demonstrated the proposed analysis in different residential districts of Ljubljana, the
capital of Slovenia with approximately 280,000 residents.We selected routes connecting
different strategic destination points of the city. The routes were based on car-based
trips (Fig. 1). The city center and a widely popular shopping center located on the
city boundary were selected as the main strategic points. A visual representation of
the established routes is available on the interactive map (link). For each route, travel
time rates and traffic counts were evaluated in two different periods. In the first study,
the observation period covered 4 weeks in October 2020 with the additional period-
and location- extensions for traffic counts examination in our second study. We applied

4 https://we-count.net/networks/ljubljana.

https://we-count.net/networks/ljubljana
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available count data ofWeCount Ljubljana Telraam counters in 2021 and coupled it with
the ILC counters within equivalent periods and fitting locations.

Fig. 1. An example of a route setting visualized by the Google Directions API interface [17].
The route connects the selected neighborhoods on the outskirts of the city with one of the two
strategical destination points, i.e., the city center.

3.2 Data Variables and Pre-processing

Three types of aforementioned traffic data were engaged: (i) travel times data obtained
on selected routes using Google Directions API; (ii) vehicle count data captured from
on-road traffic sensors (magnetic loops) provided by governmental and municipal traffic
services, and (iii) WeCount Ljubljana Telraam vehicle count data publicly available
under the CC-BY-NC license.5 Travel times were normalized to obtain the variables of
average pace (in seconds per meter) and speed (in meters per second) for each route
at a given time. We filtered the data to remove the outliers, namely, we removed the

5 Data ownership: All intellectual property rights in the traffic statistics collected by Telraam
and the data.bases it contains belong to the Telraam Alliance, in this case to the WeCount
Ljubljana team from University.of Ljubljana Faculty of Architecture.The WeCount Ljubl-
jana Telraam sensors data are openly available under the CC-BY-NC license (https://creativec
ommons.org/licenses/by-nc/4.0/legalcode; https://telraam.zendesk.com/hc/en-us/articles/360
056754532-Telraam-Data-License). The creator(s) of the LicensedMaterial is:WeCount Ljubl-
jana Telraam. A copyright notice is: ©WeCount Ljubljana Telraam. A notice that refers to
this Public License is: All intellectual property rights from the WeCount Ljubljana Telraam
belong to the University of Ljubljana Faculty of Architecture, WeCount Ljubljana team. Fund-
ing: This work was part of the WeCount: Citizens Observing UrbaN Transport project. The
project received financial support from theEUResearch and Innovation Framework Programme
Horizon 2020 under Agreement number 87274.

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://telraam.zendesk.com/hc/en-us/articles/360056754532-Telraam-Data-License
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measurements deviating more than three standard deviations from the mean. Traffic data
were augmented with weather data (iv), which we obtained using the Visual Crossing
Weather API [27]. Weather data were classified into two categories, namely normal and
adverse weather conditions as described in [19]. All four datasets were aligned at a
given timepoint to further assess their correlations and mutual impacts. Another factor
that was included in the analyses was the type of day. Days were classified into two
categories, namely workdays and weekends as these reflect different traffic patterns as
already described in the previous studies [28, 29].

4 Interpretation of Data

4.1 Types of Analyses and Measures

In the two pilot studies of the national research project, we used several different
analytical approaches to interpret the data series described in the following section.

Cosinor analyses. Travel time data were examined using the rhythmicity analyses
by the set of cosinor regression models [9, 30]. We presumed a 24-h main period and
assessed the number of components in a model for each dataset using the extra sum-
of-squares F-test, as described in [9]. We employed the selected model to identify the
locations, heights, and number of peaks and troughs repeating with a 24-h rhythm.
Moreover, we used the constructed models to compare different scenarios on the same
route, i.e., differences between workdays and weekends and differences between normal
and adverse weather conditions.

Travel time index (TTI) and the planning time index (PTI). In the subsequent
step of the travel times analysis, we introduced two existing measures of travel time
reliability, i.e. the travel time index and the planning time index, both calculated on
the hourly terms. TTI is defined as the observed average travel time divided by the
constant of the free-flow travel time rate on the observed route [31], whereas the PTI in
its formulation uses 95th-percentile travel time to represent the near-worst case travel
time [32, 33], thus, in general, is more sensitive to rare events, particularly to accidents.
The advantage of the TTI and PTI here is the possibility to directly compare them on
the equivalent numeric scales. Since both measures are based on the free-flow6 factor,
they enable comparable assessment in the case of different road types.

Regression of ILC data. We observed eight road segments with the current match-
ing ILC and WeCount Ljubljana Telraam counters (the overlapping location, equivalent
direction of counting, and matching timestamp), and estimate their interchangeability
based on the regression analyses. We tested different regression models using different
sets of features to find the best-performing model for each scenario (the quality of pre-
dictions was assessed using the R2 – coefficient of determination metric). The regression
models were trained on 70% of the data and tested on the remaining 30% of the data.
Grid search cross-validation was applied to identify the optimal values of hyperparam-
eters for each of the models. The whole framework was implemented in Python relying
on the scikit-learn library [35].

6 The free-flow travel time rate in our case was defined, as suggested by [34], by the 85th
-percentile travel time during overnight hours (10 p.m. to 5 a.m.).
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Predicting travel times using count data. We analyzed the possibilities to predict
the travel times on a route using the count data. Firstly, we identified the counters
located on a selected route. Secondly, we assessed the Pearson and Spearman correlation
coefficients between the travel times and count data. Furthermore, we employed a simple
linear and exponential model to predict the travel time data from vehicle counts for a
route. The prediction quality was again assessed using the R2 metric obtained with
10-fold cross validation.

4.2 Representation of the Results

The results of the two pilot studies of the national research overviewed here were pre-
sented by different interpretation techniques. The actual detailed results are not in the
scope of this paper; however, we present several selected aspects of the results.

Distributions of travel times. Analysis of distributions of travel time values is
vital since different distributions might require different steps in further quantitative
analyses. We used frequency distributions visualization with different boxplot-type and
violin-plot-type graphs. Violin-plots enable the assessment of the multimodality in the
distributions and allow for estimating the basic differences between the routes concerning
the median, quartiles and outliers, distribution width, and skewness. To normalize the
travel time values with regard to the length of a route, we used space-mean speed (in
meters per second) or the average travel time rate – pace, which present the exact inverse
of each other. In the next step, we rescaled the obtained pace measurements to 24 h
and plotted their distributions in dependence on the day of the week (i.e., workday or
weekend) and the weather conditions (i.e., normal or adverse) – Fig. 2.

The assessed distributions of travel times not only guide further analyses but also
present a baseline for defining travel time reliability metrics. From a measurement per-
spective, reliability is thus quantified, for a given trip over a significant timespan. It
may be viewed from different perspectives, which include the focus on the travel time
distributions within the course of a day, from day-to-day, or even within a month or
a season of the year [31]. A balanced summary of travel time measures and reliabil-
ity performance comes from [36], recommending a specific, e.g. 95th, percentile travel
time, which also corresponds to the buffer index. Reliability metrics also include on-time
measures such as the percentage share of trips completed within a travel time threshold
or failure measures like the percent of trips that exceed a travel time threshold [37].

Many metrics are expressed relative to the free-flow travel time, i.e., travel time
in low traffic-flow conditions, which is becoming the benchmark for travel time and
reliability analysis. Moreover, while the distributions show actual travel times, their
values are commonly normalized to obtain travel rates that enable comparative analyses
across routes of different lengths (Fig. 3).

Rhythmicity trends. We analyzed the rhythmicity trends, i.e., trends repeating with
a predefined period (in our case this was set to 24 h), of travel times more precisely by
applying cosinor models with different complexity to the data obtained on the workdays
and weekends, and to normal and adverse weather conditions. Figure 4 summarizes
the results of the cosinor model obtained on Route 4 on different types of a day (i.e.,
workdays or weekends). Measured travel times are plotted against the fitted curves to
determine the level of consistency between amodel and the underlying data.We assessed
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Fig. 2. An example of the preliminary analyses: pace distributions on all six routes divided by
workday/weekday (right boxplot) and normal//adverse weather (left plot). Figure adapted from
[19]. All the segments share similar distributions except segment 5, which presents a highway road
segment. It is evident that the type of the day (workday/weekday, right plot) has a significantly
stronger effect on traffic than the weather conditions (left plot).

the overall significance values of each fit using the F-test. Quantile-quantile (Q-Q) plots
were also analyzed to assess the goodness of fit of each model [34].

Fig. 3. An example of the travel time index and planning time index during; the 24-h course for
the Route 4; a comparison of normal and adverse weather situations. The shaded areas represent
the corresponding 95% confidence intervals. Two peaks are expressed during the day, both in
adverse and normal weather situation, however, the travel time variability is evidently higher in
the case of adverse weather.

TTI and PTI trends. TTI and PTI values can be employed to systematically assess
the travel time trends, and to compare the pervasiveness of “normal” delays with the
“exceptional delays” (Fig. 3). Typical delays together with the normal trip durations can
be assessed using the TTI. On the other hand, TTIs can be extended with the surplus
delays using the PTIs. In this context, the surplus delays present the unexpected delays
caused by non-recurrent events.

Pair-plotting: travel times and traffic counts. We compared the trip durations
with the vehicle counts per hour for the equivalent period utilizing correlation analyses.
Figure 5 illustrates the correlations between the average pace [s/m] and the network flow
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Fig. 4. An example of the travel time rate (pace) distributions on Route 4; a comparison between
workdays (above) and weekends (below) with the residual Q-Q visual check plots. While the
cosinor model can satisfactorily describe the observed data during the weekends, its goodness-of-
fit is lower on the workdays. The obtained results indicate that the observed data can be described
with the selected cosinor models.

[vehicles/hour] captured by stationary ILC counters (0174-1, 0855-1, 1010-1) on Route
5.

Pair-plotting: ILC counts andWeCount Ljubljana Telraam counts. Wematched
and compared the ILCs withWeCount Ljubljana Telraam counters on the observed road.
Since WeCount Ljubljana Telraam counters might face several issues (e.g., due to low
light conditions or obstruction),we employeddifferentmachine learning regressionmod-
els, which are more robust to data anomalies and do not presume specific distributions
of input data.

Regressing ILC data. We further estimated the interchangeability of the ILC coun-
ters withWeCount Ljubljana Telraam counters in different scenarios by regression anal-
yses. Figure 6 presents the results of the regression analysis using the top five performing
models on a selected road in two different directions. Themajority of the presentedmod-
els reflected a relatively strong predictive capability, which indicated that pre-trained
regression models could be used to induce the count data of a counting source with an
alternative counting infrastructure.
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Fig. 5. An example of the correlations between the average pace [s/m] and the network flow
[vehicles/hour] on Route 5. rP and rS denote Pearson’s and Spearman’s rank correlation coeffi-
cient, respectively. Figure adapted from [19]. The obtained results indicate that the average pace
if highly correlated with all of the observed counters (Spearman’s rank correlation values equal
to 0.88).

5 Discussion and Conclusion

Our results indicate that the observed datasets can be used interchangeably in certain
cases. Count data can be obtained using different types of counting infrastructure. After-
wards, we can employ the count data to assess the travel times on a selected route.
Even though the travel times can be expressed with traffic counts using relatively sim-
ple regression models, the substitution of one type of count data with another requires
precise tuning of regression models, which limits its generalization. For example, our
analyses were performed in selected parts of a specific city in a specific season. To
transfer the obtained models to different cities, neighborhoods or even the same road
segments in different conditions, the models would require additional training using the
additional input data. This presents the main limitation of the presented approach, which
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Fig. 6. The predictive power of top five regression models on a road segment (Ižanska cesta) in
different directions. R2 (test) presents the coefficient of determination evaluated on the testing.
Figure adapted from [16]. Our results indicate that the ILC data can be accurately predicted using
the WeCount Ljubljana Telraam counters with the majority of the selected models.

we aim to address in our future work. We could partially address this problem with the
application of unsupervised machine learning approaches, such as clustering of sensors
and their locations. The main benefit of such (unsupervised) approach is that it reduces
the requirement for prior training of the models. However, its feasibility needs to be
verified on the proposed testbed or beyond.

One of the crucial questions that arise here is the actual feasibility of the diverse
citizens’ science databases (present in different geographical environments, capturing
data of different scopes and with diverse dispersion degrees) to be used in scientific
research. Dense geographical resolution and solid distribution of citizens’ sensors can
enable more accurate results with better prediction capabilities. Namely, the broader
use of a large number of less reliable sensors to improve the accuracy of obtained data
has been employed in different engineering disciplines (see [38]). An example vividly
illustrating the concept of increasing the accuracy by redundancy was reported by Weis
et al. [39] demonstrated this concept by employing several imprecise watches to obtain a
highly accurate clock. Using an adequate number of less reliable Telraam sensors might
be able to provide more accurate results in relation to the appurtenant ILC counter, as
possible cut-outs could be replaced by redundant sensors in direct vicinity. In our pilot
case, we were able to obtain relatively accurate predictions of count data on Ižanska and
Dunajska road by employing a single or two Telraam counters.

More than 1700 Telraam sensors are in operation today, mostly in Europe. The high-
est density of sensors is in Belgium and the Netherlands. Smaller concentrations are
also found around Dublin, Cardiff and Slovenia. Telraam is wholly owned and main-
tained by Rear Window BV (BE0762.549.266), a spin-off initiative of TML, Mobiel
21 and Waanz.in [18]. During the WeCount project, project partners from Leuven,
Madrid/Barcelona, Cardiff, Dublin and Ljubljana have upgraded the already established
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Telraam sensor and platform with a focus on usability and the aim to make the technol-
ogy friendlier to reach a wider range of Telraam users. A variety of interactions between
the project teams and local citizens supported this process with a range of engagement
methods, guidelines and recommendations to identify and promote local communities.
Given the different cultural contexts and approaches to recruiting and engaging citizens,
as well as the different urban structures in the cities, all of which influence the effec-
tiveness of the sensor distributions, remain the most important and demanding aspect of
such a citizens science approach.
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