
Chapter 9
Applications

Abstract As we know, one of the main goals of this book has been to find a
parametrization of the unit sphere of spaces of polynomials endowed with different
norms whose unit balls can be described in .R

3, but mainly we have tried to
obtain the extreme polynomials of the unit balls. We have also studied some of
the extreme polynomials in arbitrary dimensions and we have even described some
of the extreme polynomials of arbitrary degree. The reason behind this is that a full
description of the extreme polynomials of the unit ball has, as a matter of fact, can
be applied to obtain many sharp polynomial inequalities (as we will see in this final
chapter).

If the extreme polynomials of the unit ball are known, then we can simplify the
problems that involve finding sharp inequalities between norms that depend on
polynomials by using a simple consequence of the Krein-Milman Theorem.

Theorem 9.1 (Krein-Milman Theorem [41]) Let X be a normed space. If C is
a compact convex subset of X, then C coincides with the closed convex hull of its
extreme points.

Corollary 9.1 If C is a convex body in a normed space X and .f : C → R is a
convex function that attains its maximum, then there exists an extreme point .p ∈ C

such that .f (p) = max{f (x) : x ∈ C}.
The main idea to apply Corollary 9.1 is the following: Let .B be a convex body in a

normed space of polynomials and f be a convex function defined on .B which attains
its maximum and takes real values, then f attains its maximum at an extreme point
of .B by Corollary 9.1. Furthermore, if we have a full description of the extreme
points of .B, then we can find the maximum of f by evaluating f in the extreme
points of .B (this is the Krein-Milman Approach). This can be used in the case of
norms of polynomials since it is known that the norm function is convex.

The rest of this chapter involves finding well known sharp inequalities for norms
of polynomials that have appeared in this survey.

Let .(X, ‖ · ‖) be a normed space and consider the normed space .P(nX) (see the
beginning of Sect. 5.5). Now, let us also consider the space of continuous symmetric
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n-linear forms of X denoted by .Ls(
nX) and endowed with the following norm:

.‖L‖ = sup{|L(x1, . . . , xn)| : ‖xi‖ ≤ 1, for every i ∈ {1, . . . , n}},

for every .L ∈ Ls(
nX). By the beginning of Sect. 5.5, for every .P ∈ P(nX), there

exists a unique .L ∈ Ls(
nX) such that .P(x) = L(x, . . . , x), for every .x ∈ X, the

polar of P .

9.1 Bernstein-Markov Type Inequalities

Bernstein type inequalities for polynomials are inequalities of the following form:
if .P ∈ P(nX), there exists a function .�(x) defined over .C such that

.‖DkP (x)‖ ≤ �(x)‖P ‖,

where .DkP denotes the k-th derivative of P (the optimal function .�(x) is known
as the Bernstein function). On the other hand, Markov type inequalities are of the
same fashion as Bernstein type inequalities but we are also taking the supremum
of .‖DkP (x)‖ over all .x ∈ C (the optimal constant in Markov type inequalities is
known as the Markov constant). The results of this section focus on finding the
Bernstein function and the Markov constant that are known for the spaces that have
been presented in this survey.

Theorem 9.2 (Araújo et al. [4]) Take .P3(R) (see Sect. 2.1). The Bernstein function
for the inequality

.|P ′(x)| ≤ �(x)‖P ‖R
is given by

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3(1 − 4x2) if 0 ≤ |x| ≤
√
7−2
6 ,

7
√
7+10

9(|x|+1) if
√
7−2
6 ≤ |x| ≤ 2

√
7−1
9 ,

−16x3

(1−9x2)(1−x2)
if 2

√
7−1
9 ≤ |x| ≤ 1+2

√
7

9 ,

7
√
7−10

9(1−|x|) if 1+2
√
7

9 ≤ |x| ≤
√
7+2
6 ,

3(4x2 − 1) if |x| ≥
√
7+2
6 .

The Bernstein function for the inequality

.|P ′′(x)| ≤ �(x)‖P ‖R
is given by
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.

⎧
⎪⎪⎨

⎪⎪⎩

4
1−9x2

if 0 ≤ |x| ≤ 1
9 ,

32
9(|x|−1)2

if 1
9 ≤ |x| ≤ 1

3 ,

24|x| if |x| ≥ 1
3 .

Theorem 9.3 (Muñoz et al. [47]) Let .ϕ : [−1, 1] → [0,+∞) be defined by
.ϕ(x) = √

1 − x2. On the space .Pϕ
3 (R) (see Sect. 2.1.1), the Bernstein function for

the inequality

.|P ′(x)| ≤ �(x)‖P ‖R
is given by

.

⎧
⎪⎪⎨

⎪⎪⎩

2|1 − 3x2| if |x| ∈
[

0,
√

4−√
7

3

]

∪
[√

4+√
7

3 , 1

]

,

4x2√
−9x4+10x2−1

if |x| ∈
[√

4−√
7

3 ,

√
4+√

7
3

]

.

Theorem 9.4 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n. On
the space .Pm,n,∞(R) (see Sect. 3.1), the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

{
mn

n+mλ0
· xn−1 · |xm−n + λ0| if |x| ∈ [0, 1] \ Im,n,

n
(

n
m

) n
m−n · 1

|x| if |x| ∈ Im,n,

where .λ0 comes from Theorem 3.1 and

.Im,n =
[( |λ0|n

m

) 1
m−n

,
( n

m

) 1
m−n

]

.

The Markov constant is given by

.
mn(1 + λ0)

n + mλ0

and equality is attained for the polynomials

.P(x) = ± 1

n + mλ0
(nxm + λ0mxn).
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In order to prove Theorem 9.4, we will prove first the following technical
lemmas.

Lemma 9.1 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n and let
.λ0 be the number from Theorem 3.1. We have

.|λ0| n

m
< |λ0|1 − |λ0| n

m−n

1 − |λ0| m
m−n

<
n

m
.

Proof Recall from Lemma 3.1 that .|λ0| < n
m

< 1 and consider the inequality

.
n

m
<

1 − xn

1 − xm
. (9.1)

We will show when (9.1) holds. If .0 < x < 1, then inequality (9.1) is equivalent
to .m − n > mxn − nxm. Now, since the function .x �→ mxn − nxm is strictly
increasing on .(0, 1), the curves .y = mxn − nxm and .y = m − n intersect in,
at most, one point which is .x = 1. Hence, it is easy to check that the inequality
.m − n > mxn − nxm is satisfied on .(0, 1), which implies that .m − n > mxn − nxm

holds when .x ∈
(

0,
(

n
m

) 1
m−n

)

and we have proven the first inequality of the lemma.

The second inequality follows after doing some simple calculations and using the
fact that .λ0 satisfies .n + mλ0 = (m − n)|λ0| m

m−n . �

Lemma 9.2 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n and let
.λ0 be the number from Theorem 3.1. If we define the functions

.f (x) = mn

m − n
xn−1|xm−m − 1|,

g(x) = mn

n + mλ0
xn−1|xm−m + λ0|,

then .g(x) ≥ f (x) provided x satisfies

.0 ≤ |x| ≤
( |λ0|n

m

) 1
m−n

or
( n

m

) 1
m−n ≤ |x| ≤ 1.

Proof By symmetry, assume that .x > 0. After some calculations, it is easy

to check that the functions f and g intersect at the points .x1 = (
n
m

) 1
m−n and

.x2 =
(

|λ0| 1−|λ0|
n

m−n

1−|λ0|
m

m−n

) 1
m−n

. By Lemma 9.1, the points .x1 and .x2 are not in the

intervals .

(

0,
( |λ0|n

m

) 1
m−n

)

or .

(
(

n
m

) 1
m−n , 1

)

. Hence, either .f ≥ g or .f ≤ g in each
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one of the previous intervals. Now, notice that .f (1) < g(1) and .f

(( |λ0|n
m

) 1
m−n

)

<

g

(( |λ0|n
m

) 1
m−n

)

. Indeed, the former is trivial and the latter is true because of the

following reasoning. Notice that the inequality .f

(( |λ0|n
m

) 1
m−n

)

< g

(( |λ0|n
m

) 1
m−n

)

is equivalent to .

∣
∣
∣
λ0n
m

+ 1
∣
∣
∣ < 1

|λ0|
m

m−n

∣
∣
∣
λ0n
m

− λ0

∣
∣
∣. Moreover, it is also equivalent to

.|λ0| m
m−n < |λ0| which is satisfied since .−1 < − n

m
< λ0 < 0 (see Lemma 3.1) and

the proof is complete. �

Lemma 9.3 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n and let
.λ0 be the number from Theorem 3.1. If we define the functions

.f (x) = mn

m − n
xn−1|xm−m − 1|,

g(x) = mn

n + mλ0
xn−1|xm−m + λ0|,

h(x) = n
( n

m

) n
m−n 1

|x| ,

then .h(x) ≥ max{f (x), g(x)} provided x satisfies

.

( |λ0|n
m

) 1
m−n ≤ |x| ≤

( n

m

) 1
m−n

.

Proof Assume that .

( |λ0|n
m

) 1
m−n ≤ |x| ≤ (

n
m

) 1
m−n holds, then it is enough to show

that .h(x) ≥ f (x) and .h(x) ≥ g(x).
Firstly, notice that the function .xn − xm is strictly increasing on the interval

.

(

0,
(

n
m

) 1
m−n

)

since the derivative is positive. Hence, the maximum of .x �→ xn −xm

on .

(

0,
(

n
m

) 1
m−n

)

is attained at .x = (
n
m

) 1
m−n with value .

(m−n)n
n

m−n

m
m

m−n
. Thus, .xn−xm ≤

(m−n)n
n

m−n

m
m

m−n
for .

( |λ0|n
m

) 1
m−n ≤ |x| ≤ (

n
m

) 1
m−n , which implies after rearranging the

inequality that .f (x) ≤ h(x).

Secondly, notice that the inequality .
mn

n+mλ0
xn−1|xm−m + λ0| ≤ n

(
n
m

) n
m−n 1

|x| is
equivalent to .

m
n+mλ0

|xm + λ0x
n| ≤ (

n
m

) n
m−n . Since the derivative of .xm + λ0x

n is

only 0 when .x = 0 or .x = ±
( |λ0|n

m

) 1
m−n

, we have that .xn + λ0x
n is monotone on

the interval .

[( |λ0|n
m

) 1
m−n

,
(

n
m

) 1
m−n

]

. Hence, it is enough to evaluate .xn + λ0x
n at
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the endpoints of the interval and after some simple evaluations notice that the proof
is complete. �

Proof (of Theorem 9.4) Notice that the Bernstein function on the space .Pm,n,∞(R)

is given by

.Bm,n,∞(x) = sup{|P ′(x)| : P belongs to the unit sphere of Pm,n,∞(R)}.

However it is enough to find the above supremum over the set of extreme points of
the unit ball by Corollary 9.1.

We know from Theorem 3.3 that the set of extreme points of .Bm,n,∞ is

.

{

±
(

t,− m

(m − n)
m−n
m n

n
m

· t
n
m , 0

)

: n

m − n
≤ t ≤ n

n + mλ0

}
⋃

{±(0, 0, 1)}.

Observe that the extreme polynomials .P(x) = ±1 are irrelevant to find the
Bernstein function. Hence we focus our attention on the extreme polynomials

.Pt (x) = ±
(

txm − m

(m − n)
m−n

n n
n
m

t
n
m xn

)

,

where .t ∈
[

n
m−n

, n
n+mλ0

]
. Thus,

.Bm,n,∞(x) = sup

{

|P ′
t (x)| : t ∈

[
n

m − n
,

n

n + mλ0

]}

= sup

{∣
∣
∣
∣
∣
mtxm−1 − mnt

n
m

(m − n)
m−n

n n
n
m

xn−1

∣
∣
∣
∣
∣
: t ∈

[
n

m − n
,

n

n + mλ0

]}

= sup

{∣
∣
∣
∣
∣
mxn−1

[

txm−n −
(

n

m − n

)m−n
m

t
n
m

]∣
∣
∣
∣
∣
:

t ∈
[

n

m − n
,

n

n + mλ0

]}

.

Let us define .R(t) = mxn−1
[

txm−n −
(

n
m−n

)m−n
m

t
n
m

]

. Notice that the above

supremum is attained at either .t = n
m−n

, or .t = n
n+mλ0

, or at a critical point of

.R(t) inside the open interval .
(

n
m−n

, n
n+mλ0

)
. It is easy to show that there exists only

one critical point of .R(t) which is .t0 = n
m−n

(
n
m

) m
m−n 1

|x|m and
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.R(t0) = n
( n

m

) n
m−n 1

|x| .

Now, notice that the series of inequalities .
n

m−n
≤ t0 ≤ n

n+mλ0
is equivalent to

.

( |λ0|n
m

) 1
m−n ≤ |x| ≤

( n

m

) 1
m−n

.

Hence, after some easy calculations, we have

.Bm,n,∞(x) = sup

{

|R(t)| : t ∈
[

n

m − n
,

n

n + mλ0

]}

=

⎧
⎪⎨

⎪⎩

max
{∣
∣
∣R

(
n

m−n

)∣
∣
∣ ,

∣
∣
∣R

(
n

n+mλ0

)∣
∣
∣ , n

(
n
m

) n
m−n 1

|x|
}
if

( |λ0|n
m

) 1
m−n ≤ |x| ≤ (

n
m

) 1
m−n ,

max
{∣
∣
∣R

(
n

m−n

)∣
∣
∣ ,

∣
∣
∣R

(
n

n+mλ0

)∣
∣
∣

}
if |x| ≤

( |λ0|n
m

) 1
m−n or

(
n
m

) 1
m−n ≤ |x| ≤ 1,

where, after evaluating the function R in the above points, we have

.R

(
n

m − n

)

= mnxn−1

m − n
|xm−n − 1|

and

.R

(
n

n + mλ0

)

= mnxn−1

n + mλ0
|xm−n + λ0|.

By applying Lemmas 9.2 and 9.3 the result follows. �

Theorem 9.5 (Muñoz et al. [48]) Let .m, n ∈ N be such that .m > n, m is odd and
n is even. On the space .Pm,n,∞(R), the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

⎧
⎪⎪⎨

⎪⎪⎩

2n|x|n−1 if |x| ∈
[

0,
(

n
m

) 1
m−n

]

,

mxm−1 + n|x|n−1 if |x| ∈
[
(

n
m

) 1
m−n , 1

]

.

The Markov constant is given by

.m + n
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and equality is attained for the polynomials

.P(x) = ±(xm ± xn − 1).

Theorem 9.6 (Muñoz et al. [48]) Let .n ∈ N be odd. On the space .P2n,n,∞(R), the
Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖2n,n,∞

is given by

.

⎧
⎨

⎩

n|x|n−1

1−xn if |x| ∈
[
0, 1

n√2

]
,

4n|x|2n−1 if |x| ∈
[

1
n√2

, 1
]
.

The Markov constant is given by 4n and equality is attained for the polynomials

.P(x) = ±(2x2n − 1).

Theorem 9.7 (Muñoz et al. [48]) Let .n ∈ N be even. On the space .P2n,n,∞(R),
the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖2n,n,∞

is given by

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8n(−2|x|2n−1 + |x|n−1) if |x| ∈
[

0,
(
1
4

) 1
n

]

,

n
|x| if |x| ∈

[(
1
4

) 1
n
,
(
1
2

) 1
n

]

,

n|x|n−1

1−xn if |x| ∈
[(

1
2

) 1
n
,
(
3
4

) 1
n

]

,

8n(2|x|2n−1 − |x|n−1) if |x| ∈
[(

3
4

) 1
n
, 1

]

.

The Markov constant is given by 8n and equality is attained for the polynomials

.P(x) = ±(8x2n − 8xn + 1).

Theorem 9.8 (Muñoz et al. [47]) Let .m, n ∈ N be such that m is odd, n is even
and .m > n. On the normed subspace of .Pm,n,∞(R) given by trinomials that are
bounded by the linear mapping .ϕ(x) = |x| over the interval .[−1, 1], the Bernstein
function for the inequality
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.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

⎧
⎪⎪⎨

⎪⎪⎩

(m + 1)|x|m − (n + 1)xn + 1 if |x| ≤ t1,

2(n + 1)xn − 1 if t1 ≤ |x| ≤ m−n

√
n+1
m+1 ,

(m + 1)|x|m + (n + 1)xn − 1 if m−n

√
n+1
m+1 ≤ |x| ≤ 1,

where .t1 ∈ R is the unique solution of

.(m + 1)xm − 3(n + 1)xn + 2 = 0

on the interval .
(

1
n
√
2(n+1)

, 1
n
√

n+1

)
. The Markov constant is given by .m + n + 1 and

equality is attained for the polynomials

.P(x) = ±[xm ± (xn − 1)].

Theorem 9.9 (Muñoz et al. [47]) On the normed subspace of .P2,1,∞(R) given by
trinomials that are bounded by the linear mapping .ϕ(x) = |x| over the interval
.[−1, 1], the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

⎧
⎨

⎩

∣
∣
∣ 3x

2−1
2

∣
∣
∣ + 2|x| if |x| ∈

[√
13−2
9 ,

√
13+2
9

]
,

|6x2 − 1| if |x| ∈
[
0,

√
13−2
9

]
∪
[√

13+2
9 , 1

]
.

Theorem 9.10 (Muñoz et al. [49]) Let .m, n ∈ N be with different parity and such
that .m > n. On the space .Pm,n,2(R), the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,2

is given by

.

⎧
⎨

⎩

√
n2(2n+1)x2(n−1)+(m+1)2(2m+1)x2(m−1)

2 if m is even and n is odd,
√

m2(2m+1)x2(m−1)+(n+1)2(2n+1)x2(n−1)

2 if m is odd and n is even.

The Markov constant is given by
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.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m + 1)
√

2m+1
2m−1 if m is even and n is odd,

m

√
2m+1
2m−1 if m is odd, n is even and m > n + 1,

m

√
2m−1
2m−3 if m is odd and n = m − 1.

Remark 9.1 On Theorem 9.10, notice that if we consider .n = 1, then we have
Bernstein’s function and Markov’s constant for the space .P2(R) (see Sect. 2.1)
which are given, respectively, by

.

{
1

1−|x| if 0 ≤ |x| ≤ 1
2 ,

4|x| if |x| ≥ 1
2 ,

and

.4,

with equality attained for the polynomials

.P(x) = ±(1 − 2x2).

Theorem 9.11 (Muñoz et al. [46]) Take .P(2�) (see Sect. 4.1). The Markov con-
stant for the inequality

.‖DP(x, y)‖�2 ≤ �(x, y)‖P ‖�

is given by

.2
√
10

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 6xy + y2).

The Bernstein function for the inequality

.‖DP(x, y)‖� ≤ �(x, y)‖P ‖�

is given by
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.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|2x − 6y| if x = 0 or x �= 0 and
( y

x
≤ −1 or y

x
≥ 2

)
,∣

∣
∣2x + 2y + y2

x

∣
∣
∣ if x �= 0 and y

x
∈ [1, 2],

∣
∣
∣2x + 2y + x2

y

∣
∣
∣ if y �= 0 and x

y
∈ [1, 2],

|6x − 2y| if y = 0 or y �= 0 and
(

x
y

≤ −1 or x
y

≥ 2
)
.

The Markov constant is given by 6 and equality is attained for the polynomials

.P(x, y) = ±(x2 − 6xy + y2).

Theorem 9.12 (Gámez et al. [23]) Take .P(2�) (see Sect. 4.2). The Bernstein
function for the inequality

.‖DP(x, y)‖�2 ≤ M(x, y)‖P ‖�
is given by

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√

24y4+12x2y2+x4+x(8y2+x2)
3
2

8y2
if 0 < α0x ≤ y ≤ x,

√

24x4+12x2y2+y4+y(8x2+y2)
3
2

8x2
if 0 < x ≤ y ≤ x

α0
,

√
13x2 − 24xy + 13y2 otherwise,

where .α0 is the unique root of the equation

.80α4 − 192α3 + 92α2 − 1 = (8α2 + 1)
3
2

in the interval .
[
3−√

5
2 , 12−3

√
3

13

]
. The Markov constant is given by

.
√
13

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 3xy + y2).

The Bernstein function for the inequality

.‖DP(x, y)‖� ≤ �(x, y)‖P ‖�
is given by
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.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x − 2y if 0 ≤ y ≤ (
√
2 − 1)x,

5
2x − y + y2

2x if x �= 0 and (
√
2 − 1)x ≤ y ≤ 1

2x,

2x + y2

2x if x �= 0 and 1
2x ≤ y ≤ x,

2y + x2

2y if y �= 0 and x ≤ y ≤ 2x,

5
2y − x + x2

2y if y �= 0 and 2x ≤ y ≤ (
√
2 + 1)x,

3y − 2x if (
√
2 + 1)x ≤ y ≤ 1.

The Markov constant is given by .3 and equality is attained for the polynomials

.P(x, y) = ±(x2 − 3xy + y2).

Theorem 9.13 (Araújo et al. [2]) Take .P (
2D

(
π
4

))
(see Sect. 4.3). The Bernstein

function for the inequality

.‖DP(x, y)‖�2 ≤ �(x, y)‖P ‖D(π
4 )

is given by

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4
[(

13 + 8
√
2
)

x2 +
(
69 + 48

√
2
)

y2 − 2
(
28 + 20

√
2
)

xy
]

if (a),

x2

y2
+ 4

(
x2 + y2

)
if (b),

(
3x2−2xy+3y2

)2

2(x−y)2
if (c),

where

(a) .0 ≤ y ≤
√
2−1
2 x or .

(
4
√
2 − 5

)
x ≤ y ≤ x,

(b) .

√
2−1
2 x ≤ y ≤

(√
2 − 1

)
x,

(c) .

(√
2 − 1

)
x ≤ y ≤

(
4
√
2 − 5

)
x.

The Markov constant is

.4
(
13 + 8

√
2
)

and equality is attained for the polynomials

.P(x, y) = ±(x2 + (5 + 4
√
2)y2 − 4(1 + √

2)xy).

The Bernstein function for the inequality

.‖DP(x, y)‖D(π
4 )

≤ �(x, y)‖P ‖D(π
4 )

is given by
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.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
2
[(

1 + 2
√
2
)

x −
(
3 + 2

√
2
)

y
]

if 0 ≤ y < 2
√
2−1
7 x,

√
2
(
x2+3y2

)

2y if 2
√
2−1
7 x ≤ y <

(√
2 − 1

)
x,

2
(
x + y2

x−y

)
if

(√
2 − 1

)
x ≤ y <

(
2 − √

2
)

x,

4
(
1 + √

2
)

y − 2x if
(
2 − √

2
)

x ≤ y ≤ x.

The Markov constant is given by

.4 + √
2

and equality is attained for the polynomials

.P(x, y) = ±(x2 + (5 + 4
√
2)y2 − 4(1 + √

2)xy).

Theorem 9.14 (Jiménez et al. [34]) Take .P (
2D

(
π
2

))
. The Bernstein function for

the inequality

.‖DP(x, y)‖�2 ≤ 	(x, y)‖P ‖D(π
2 )

is given by

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√

16 (x − y)2 + 4
(
x2 + y2

)
if 0 ≤ y ≤ x

2 ,
√

x4

y2
+ 4

(
x2 + y2

)
if 0 < x

2 < y ≤ x,
√

y4

x2
+ 4

(
x2 + y2

)
if 0 < x < y ≤ 2x,

√

16 (y − x)2 + 4
(
x2 + y2

)
if 2x < y ≤ 1.

The Markov constant is given by .2
√
5 and equality is attained for the polynomials

.P(x, y) = ±(x2 + y2 − 4xy).

The Bernstein function for the inequality

.‖DP(x, y)‖D(π
2 )

≤ �(x, y)‖P ‖D(π
2 )

is given by

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(2x − y) if 0 ≤ y < x
2 ,

2
(
y + x2

2y

)
if x

2 ≤ y < x,

2
(
x + y2

2x

)
if x ≤ y < 2x,

2(2y − x) if y ≥ 2x.
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The Markov constant is given by 4 and equality is attained for the polynomials

.P(x, y) = ±(x2 + y2 − 4xy).

Theorem 9.15 (Jiménez et al. [34]) On .P(2�2p) for .p ∈ {1, 2,∞} (see
Sects. 4.3, 5.1, and 5.2), the Markov constant in the inequality

.‖DP(x, y)‖�2p
≤ �(x, y)‖P ‖�2p

is

(i) 4 if .p = 1,
(ii) 2 if .p = 2,
(iii) .2

√
2 if .p = ∞.

9.2 Polarization Constants

It is easy to see just by the definition of the norms defined on .P(nX) and .Ls(
nX)

that: for every .P ∈ P(nX),

.‖P ‖ ≤ ‖L‖,

where L is the polar of P . But furthermore, the converse is also true, i.e., there exists
.C ≥ 1 such that .‖L‖ ≤ C‖P ‖. In particular, we have the following result that can
be applied for any normed space X.

Theorem 9.16 (Martin [42]) Let X be a normed space. If .P ∈ P(nX), then

.‖P ‖ ≤ ‖L‖ ≤ nn

n! ‖P ‖,

where L is the polar of P .

Notice that throughout this survey we have considered the norm over the space
of n-homogeneous polynomials to be, not only defined over the unit ball of a certain
normed space, but also over a convex body of a normed space. To be more precise,
let X be a normed space and take .C a convex body in X. We define the following
norm over the space of continuous n-homogeneous polynomials of X: for every
continuous n-homogeneous polynomial P ,

.‖P ‖C = sup{|P(x)| : x ∈ C};

and we also define the following norm over the space of symmetric n-linear forms
of X: for every symmetric n-linear form L,
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.‖L‖C = sup{|L(x1, . . . , xn)| : xi ∈ C, for every i ∈ {1, . . . , n}}.

Notice that the condition “every continuous n-homogeneous polynomial P has a
unique continuous symmetric n-linear form L (the polar of P ) such that .P(x) =
L(x, . . . , x)” is purely algebraic. Therefore, it does not depend on the topology
that we consider over the space of n-homogenous polynomials or over the space of
symmetric n-linear forms.

It is easy to see by the definition of the above norms that .‖P ‖C ≤ ‖L‖C.
However, the reverse inequality as in Martin’s Theorem is not true as it can be seen
later on. Furthermore, there is not yet an analogous version of Martin’s Theorem
when the norm is defined over an arbitrary convex body. Thus it is still an open
problem to find a result similar to the one of Martin’s Theorem when we consider
the norm defined over other convex bodies apart from the unit ball of X.

We are able to define now what is known as the n-polarization constant of a
space of continuous n-homogeneous polynomials on a convex body. Let X be a
normed space and .C ⊂ X a convex body. Let .P(nC) be the space of n-homogeneous
polynomials on X bounded on .C endowed with the norm defined by

.‖P ‖C = sup{|P(x)| : x ∈ C}.

Similarly, if L is the polar of .P ∈ P(nC) we define

.‖L‖C = sup{|L(x1, . . . , xn)| : x1, . . . , xn ∈ C}.

We define the n-polarization constant .cpol(P(nC)) of .P(nC) as the following value:

. inf
{
K : ‖L‖C ≤ K‖P ‖C, where P ∈ P(nC) and L is the polar of P

}
.

Furthermore, assume that there exists .P ∈ P(nC) such that

.‖L‖C = cpol(P(nC))‖P ‖C,

where L is the polar of P , then we say that P is an extremal polynomial for
.cpol(P(nC)).

The following results show the known exact values of the polarization constants
of the spaces of homogeneous polynomials that have been dealt with in this survey
(most of them use the Krein-Milman approach, specially those whose norm involve
convex bodies different from the unit ball).

Theorem 9.17 (Muñoz et al. [46]) If .� is the simplex defined in Sect. 4.1, then
.cpol(P(2�)) = 3. Furthermore, .P(x, y) = ±(x2 + y2 − 6xy) are extremal
polynomials for .cpol(P(2�)).

Proof The result follows from the Markov constant in Theorem 9.11 for the
inequality .‖DP(x, y)‖� ≤ �(x, y)‖P ‖� since
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.DP(x, y)(u, v) = 2L((x, y), (u, v))

for all .(x, y), (u, v) ∈ R
2 and where L is the polar of P . �


Theorem 9.18 (Gámez et al. [23]) If .� is the unit square defined in Sect. 4.2,
then .cpol(P(2�)) = 3

2 . Furthermore, .P(x, y) = ±(x2 + y2 − 3xy) are extremal
polynomials for .cpol(P(2�)).

Theorem 9.19 (Araújo et al. [2]) If .D
(

π
4

)
is the circular sector defined in

Sect. 4.3, then .cpol
(P (

2D
(

π
4

))) = 2 +
√
2
2 . Furthermore, .P(x, y) = ±(x2 + (5 +

4
√
2)y2 − (4 + 4

√
2)xy) are extremal polynomials for .cpol

(P (
2D

(
π
4

)))
.

Theorem 9.20 (Jiménez et al. [34]) If .D
(

π
2

)
is the circular sector defined in

Sect. 4.3, then .cpol
(P (

2D
(

π
2

))) = 2. Furthermore, .P(x, y) = ±(x2 + y2 − 4xy)

are extremal polynomials for .cpol
(P (

2D
(

π
2

)))
.

Theorem 9.21 (Sarantopoulos [53]) Let .1 ≤ p ≤ ∞. We have .cpol
(
P
(
2�2p

))
=

2
|p−2|
2 (see Sect. 5). Furthermore, .P(x, y) = ±(x2 − y2) are extremal polynomials

for .cpol
(
P
(
2�2p

))
.

Remark 9.2 It is important to mention that, although we know the extreme poly-
nomials on the spaces .�2p, the proof of Theorem 9.21 in [53] does not use the
Krein-Milman approach but a direct approach. It involves obtaining a sharper bound
C than that of Martin’s bound for every polynomial and then finding a polynomial
P such that .‖L‖C = C‖P ‖C, where L is the polar of P .

An interesting question started by Harris in 1975 related to polarization constants
for polynomials on .�p spaces states that, in a complex setting we have

.cpol(P(n�n∞(C))) ≤ n
n
2 (n + 1)

n+1
2

2nn! .

For the previous estimate consult [32] or [20] for a more modern and accessible

exposition. The question as to whether .cpol(P(n�n∞(C))) = n
n
2 (n+1)

n+1
2

2nn! remains
unsolved nowadays.

Theorem 9.22 (Kim [37]) Let .w ∈ (0, 1).

(a) If .w ≤ √
2 − 1, then .cpol

(
P
(
2O2

w

))
= 2

(
1+w2

)

(1+w)2
(see Sect. 6.1). Furthermore,

.P(x, y) = ±
(

4
(1+w)2

xy
)
are extremal polynomials for .cpol

(
P
(
2O2

w

))
.

(b) If .
√
2 − 1 < w, then .cpol

(
P
(
2O2

w

))
= 1 + w2. Furthermore, .P(x, y) =

± (
x2 − y2

)
are extremal polynomials for .cpol

(
P
(
2O2

w

))
.
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Theorem 9.23 (Kim [39]) Let .w = 1
2 . We have .cpol

(
P
(
2H2

1/2

))
= 5

4 (see

Sect. 6.2). Furthermore,

.P(x, y) = ±
(
x2 − y2

)

and

.Q(x, y) = ±
(
3

4
x2 − 5

16
y2 ± 7

4

)

are extremal polynomials for .cpol
(
P
(
2H2

1/2

))
.

9.3 Unconditional Constants

Let us denote by .xα the monomial

.x
α1
1 · · · xαm

m ,

where .x = (x1, . . . , xm) ∈ K
m (.K = R or .C) and .α = (α1, . . . , αm) with .αk ∈ N ∪

{0} for every .k ∈ {1, . . . , m}. For .P(x) = ∑
|α|≤n aαxα (where .|α| = α1+· · ·+αm)

a polynomial of degree n on .K
m, we define the modulus .| · | of P by .|P |(x) =∑

|α|≤n |aα|xα . If .C is a convex body in .R
m, we denote by .P(nC) the space of n-

homogeneous polynomials on .R
m endowed with the norm .‖P ‖C (see Sect. 9.2). Let

.Bn = {xα : |α| ≤ n} be the canonical basis of .P(nC). The unconditional constant
of .Bn is equal to the best possible constant C (denoted by .Cunc(P(nC))) in the
inequality

.‖|P |‖C ≤ C‖P ‖C.

The following results show all the exact values of the unconditional constants that
are known of the spaces that have been presented on this survey.

Theorem 9.24 (Grecu et al. [30]) If .m, n ∈ N with .m > n, then

.Cunc(Pm,n,∞(R)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 if m and n have different parity,

1 + 4
m−n

(
mm

nn

) 1
m−n

if m and n are even,
n−λ0m
n+λ0m

if m and n are odd,

(see Sect. 3.1) where .λ0 comes from Theorem 3.1, and equality is attained for the
polynomials
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.P(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

±(2xm − 1),

±(−γ0x
m + γ0x

n + 1) where γ0 = − 2
m−n

·
(

mm

nn

) 1
m−n

,

±
(

nxm

n+mλ0
− m|λ0|xn

n+mλ0

)
,

respectively.

Remark 9.3 (Grecu et al. [30]) In Theorem 9.24 it can be seen that for every .k ∈ N

with .k > 1 and every .n ∈ N even we have

.Cunc(Pkn,n,∞(R)) = 1 + 4

k − 1
· k

k
k−1 ,

which is independent of n.

Theorem 9.25 (Grecu et al. [30]) On the space .P(2�) (see Sect. 4.1) we have

.Cunc(P(2�)) = 2

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 6xy + y2).

Theorem 9.26 (Gámez et al. [23]) On the space .P(2�) (see Sect. 4.2) we have

.Cunc(P(2�)) = 5

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 3xy + y2).

Theorem 9.27 (Gámez et al. [23]) On the space .P (
2D

(
π
4

))
(see Sect. 4.3) we

have

.Cunc

(
P
(
2D

(π

4

)))
= 5 + 4

√
2

and equality is attained for the polynomials

.P(x, y) = ±(x2 + (5 + 4
√
2)y2 − (4 + 4

√
2)xy)).

Theorem 9.28 (Jiménez et al. [34]) On the space .P (
2D

(
π
2

))
we have

.Cunc

(
P
(
2D

(π

4

)))
= 3
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and equality is attained for the polynomials

.P(x, y) = ±(x2 + y2 − 4xy).

Theorem 9.29 (Grecu et al. [30]) On the spaces .P(2�21), .P(2�22) and .P(2�2∞) (see
Sects. 4.3, 5.1, and 5.2) we have, respectively, the unconditional constants given by

.

⎧
⎪⎪⎨

⎪⎪⎩

1+√
2

2 ,√
2,

1 + √
2,

with equality attained for the polynomials

.

⎧
⎪⎪⎨

⎪⎪⎩

±
√
2
2 (x2 − y2) ± (2 + √

2)xy,

±(x2 + y2 + 2xy),

2+√
2

4 (x2 − y2) ±
√
2
2 xy,

respectively.

Proof We will prove the result for the space .P(2�21) since the other cases can be
done analogously. By Theorem 5.2, we know that the extreme polynomials of the
unit ball of .P(2�21) are

(a) .P(x, y) = ±x2 ± y2 ± 2xy,

(b) .P(x, y) = ±
√

4|t |−t2

2 (x2 − y2) + txy, where .|t | ∈ (2, 4].
Notice that if P is as in (a), then .‖|P |‖�21

= ‖P ‖�21
= 1. Hence, it is enough to

consider polynomials of type (b). If P is as in (b), then P attains its norm in .�21 at

.

(
1
2 ,

1
2

)
. Thus,

.Cunc(P
(
2�21

)
) = sup

⎧
⎨

⎩

∥
∥
∥
∥
∥

√
4|t | − t2

2
(x2 + y2) + |t |xy

∥
∥
∥
∥
∥

�21

: |t | ∈ (2, 4]
⎫
⎬

⎭

= sup

⎧
⎨

⎩

∥
∥
∥
∥
∥

√
4s − s2

2
(x2 + y2) + sxy

∥
∥
∥
∥
∥

�21

: s ∈ (2, 4]
⎫
⎬

⎭

= sup

{√
4s − s2 + s

4
: s ∈ (2, 4]

}

= 2 + √
2.

�
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Theorem 9.30 (Araújo et al. [2]) Let .1 < p < ∞ with .p �= 2 and take .P(2�2p)

(see Sects. 5.3 and 5.4). Let us define the function

.f (α) =
2

p−2
p

[
α(1 − αp)

(
α − (1 − αp)

1
p

)
+ αp (1 − αp)

1
p

(
α + (1 − αp)

1
p

)]

α (1 − αp)
1
p

(
α2 + (1 − αp)

2
p

)

and set .Mf = sup
{
f (α) : α ∈

[
2− 1

p , 1
]}

, we have that .Cunc(P(2�2p)) = Mf .

Theorem 9.31 (Kim [37]) Let .0 < w < 1.

(a) If .w ≤ √
2 − 1, then .cunc

(
P
(
2O2

w

))
= 1+w2+√

2(1+w4)
(1+w)2

(see Sect. 6.1) and

equality is attained for the polynomials .P(x, y) = ±
(

4
(1+w)2

xy
)
.

(b) If .
√
2 − 1 < w, then .cunc

(
P
(
2O2

w

))
= 1+w2+

√
(1+w2)2+4w2

2 and equality is

attained for the polynomials

.P(x, y) = ±(αx2 − αy2 ± √
α(1 − α)xy),

where .α = 1
2 + 1+w2

2
√

(1+w2)2+4w2
.

Theorem 9.32 (Kim [39]) Let .w = 1
2 . Then, .cunc

(
P
(
2H2

1/2

))
= 3

2 (see Sect. 6.2)

and equality is attained for the polynomials .P(x, y) = ±
(
x2 + 1

4y
2 + xy

)
and

.Q(x, y) = ±
(
x2 + 3

4y
2 + xy

)
.

9.4 Bohnenblust–Hille and Hardy–Littlewood Constants

We begin by considering the following constants which are closely related to
the Bohnenblust–Hille and Hardy–Littlewood constants as we will see. Let .α =
(α1, . . . , αn) with .n ∈ N and let us consider the standard notation .|α| = |α1| +
· · · + |αn|. Let .P(mKn) denote the vector space of m-homogeneous polynomials on
.K

n (where .K = R or .C). Notice that if .P ∈ P(mKn), then P can be written as

.P(x) =
∑

|α|=m

aαxα,

where .aα ∈ K and .xα = x
α1
1 · · · xαn

n for .x = (x1, . . . , xn) ∈ K
n. If .| · | is a norm on

.K
n, then .| · | induces a norm on .P(mKn) called the polynomial norm and it is given

by
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.‖P ‖ = sup{|P(x)| : x ∈ BX},

where .BX is the unit ball of the normed space .X = (Kn, | · |). The space .P(mKn)

endowed with the polynomial norm is denoted by .P(mX). Besides the polynomial
norm, there are other interesting norms on .P(mKn) such as the .�q -norms on the
coefficients, i.e., if .P ∈ P(mKn) and .1 ≤ q ≤ ∞, then

.|P |q =
⎧
⎨

⎩

(∑
|α|=m |aα|q

) 1
q

if 1 ≤ q < ∞,

max{|aα| : |α| = m} if q = ∞.

Let us represent by .‖ · ‖p the polynomial norm of the space .P(m�n
p(K)), where

.1 ≤ p ≤ ∞. Since the space .P(mKn) is finite dimensional, we have that the norms

.| · |q and .‖ · ‖p (.1 ≤ q, p ≤ ∞) are equivalent, i.e., there exist .k,K > 0 such that

.k‖P ‖p ≤ |P |q ≤ K‖P ‖p,

for any .P ∈ P(mKn). Notice that the unit balls of the spaces .(P(mKn), | · |q) and
.P(m�n

p(K)), denoted by .B|·|q and .B‖·‖p , respectively, satisfy that the mapping .B|·|q �
P → ‖P ‖p is bounded by .

1
k
and the mapping .B‖·‖p � P → |P |q is bounded by K .

Moreover, the continuity of such mappings and the compactness of .B|·|q and .B‖·‖p

satisfy the following maxima.

Definition 9.1 Let .1 ≤ q, p ≤ ∞. We define the following constants

.km,n,q,p = 1

max
{‖P ‖p : P ∈ B|·|q

} ,

Km,n,q,p = max
{|P |q : P ∈ B‖·‖p

}
.

From now on, we are interested in calculating the exact values of .km,n,q,p and
.Km,n,q,p when we are considering polynomials whose coefficients are real numbers
(we will consider real polynomials and complex polynomials with real coefficients
separately). To do so, we will be applying the Krein-Milman approach to the
mappings .B|·|q � P → ‖P ‖p and .B‖·‖p � P → |P |q . Hence, we will need, for
instance, the extreme points of the unit ball .B|·|q . It is well known that the extreme
points of .B|·|q are

.

⎧
⎪⎪⎨

⎪⎪⎩

{±ek : 1 ≤ k ≤ m + 1} if q = 1,
{∑m+1

k=1 εkek : εk = ±1
}

if q = ∞,

S|·|q if 1 < q < ∞,

where .{e1, . . . , em+1} stands for the canonical basis of .R
m+1 and .S|·|q is the unit

sphere of .(Rm+1, | · |q).
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The above problem is an extension of the polynomial Bohnenblust–Hille and
Hardy–Littlewood constants problem. The m-Bohnenblust–Hille constant for poly-
nomials is, in fact, an upper bound on .K

m,n, 2m
m+1 ,∞. It was proved in [8] that if

.q ≥ 2m
m+1 , then there exists a constant .Dm,q > 0 depending only on m and q such

that

.|P |q ≤ Dm,q‖P ‖∞,

for any .P ∈ P(m�n∞(K)) and every .n ∈ N. Furthermore, any constant in the latter
inequality for .q < 2m

m+1 depends necessarily on n. By construction, notice that any
viable choice of .Dm,q satisfies .Dm,q ≥ sup{Km,n,q,∞ : n ∈ N}. This construction
allows us to define the Bohnenblust-Hille constants depending on the field (.R or .C)
since there are substantial differences.

Definition 9.2 The m-Bohnenblust-Hille constant for polynomials on .K is defined
as

.DK,m = inf
{
Dm : |P | 2m

m+1
≤ Dm‖P ‖∞, for all n ∈ N and P ∈ P(m�n∞(K))

}
.

If .n ∈ N is fixed, then we define .(m, n)-Bohnenblust-Hille constant for polynomials
on .K as

.DK,m(n) = inf
{
Dm(n) : |P | 2m

m+1
≤ Dm(n)‖P ‖∞, for all P ∈ P(m�n∞(K))

}
.

Also, if we consider a subset E of .P(m�n∞(K)) for some .n ∈ N, then we define the
.(m,E)-Bohnenblust-Hille constant for polynomials on .K as

.DK,m(E) = inf
{
Dm(E) : |P | 2m

m+1
≤ Dm(E)‖P ‖∞, for all P ∈ E

}
.

It is easy to see that

.1 ≤ DK,m(n) ≤ DK,m,

for all .n ∈ N. A similar result to that of Bohnenblust-Hille for values of p different
from .∞ can also be obtained. The proofs of the following results can be found in
[1, 18]. There exist constants .Cm,p and .Dm,p independent of n such that

.|P | p
p−m

≤ Cm,p‖P ‖p for m < p ≤ 2m,

|P | 2mp
mp+p−2m

≤ Dm,p‖P ‖p for 2m ≤ p ≤ ∞,

for all .P ∈ (m�n
p(K)) and every .n ∈ N. If .p = ∞, then we simply put . 2mp

mp+p−2m =
2m

m+1 . Moreover, the exponents .
p

p−m
for .m < p ≤ 2m and .

2mp
mp+p−2m for .2m ≤ p ≤
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∞ are optimal in the sense that any constant H that satisfies

.|P |q ≤ H‖P‖p,

for all .P ∈ (m�n
p(K)) depends necessarily on n. The above construction allows us

to define the following constants.

Definition 9.3 Let .m < p ≤ ∞. The .(m, p)-Hardy-Littlewood constant for
polynomials on .K is defined as

.CK,m,p = inf
{
Cm,p : |P | p

p−m
≤ Cm,p‖P‖p, for all n ∈ N and P ∈ P(m�n

p(K))
}

,

for .m < p ≤ 2m, and

.DK,m,p = inf

{

Dm,p : |P | 2mp
mp+p−2m

≤ Dm,p‖P‖p,

for all n ∈ N and P ∈ P(m�n
p(K))

}

,

for .2m ≤ p ≤ ∞. If .n ∈ N is fixed, then we define the .(m, n, p)-Hardy-Littlewood
constant for polynomials on .K as

.CK,m,p(n) = inf
{
Cm,p(n) : |P | p

p−m
≤ Cm,p(n)‖P‖p, for all P ∈ P(m�n

p(K))
}

,

for .m < p ≤ 2m, and

.DK,m,p(n) = inf
{
Dm,p(n) : |P | 2mp

mp+p−2m
≤ Dm,p(n)‖P‖p,

for all P ∈ P(m�n
p(K))

}
,

for .2m ≤ p ≤ ∞. Also, if we consider a subset E of .P(m�n∞(K)) for some .n ∈ N,
then we define

.CK,m,p(E) = inf
{
Cm,p(E) : |P | p

p−m
≤ Cm,p(E)‖P‖p, for all P ∈ P(mE)

}
,

for .m < p ≤ 2m, and

.DK,m,p(E) = inf

{

Dm,p(E) : |P | 2mp
mp+p−2m

≤ Dm,p(E)‖P‖p, for all P ∈ P(mE)

}

for .2m ≤ p ≤ ∞.
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Notice that .DK,m = DK,m,∞. So essentially the Hardy-Littlewood constants
are in fact a generalization of the Bohnenblust-Hille constants. But furthermore, the
constants .Km,n,q,p are also a generalization of the Hardy-Littlewood constants since
.CK,m,p(n) = Km,n,

p
p−m

,p for .m < p ≤ 2m and .DK,m,p(n) = K
m,n,

2mp
mp+p−2m ,p

for

.2m ≤ p ≤ ∞. Hence we have

.

⎧
⎪⎨

⎪⎩

CK,m,p ≥ sup
{
Km,n,

p
p−m

,p : n ∈ N

}
for m < p ≤ 2m,

DK,m,p ≥ sup

{

K
m,n,

2mp
mp+p−2m ,p

: n ∈ N

}

for 2m ≤ p ≤ ∞.

This section is about providing some of the constants .km,n,q,p, .Km,n,q,p, and in
particular, the Hardy-Littlewood and Bohnenblust-Hille constants, that have been
obtained through the Krein-Milman approach.

9.4.1 On the Complex Case

Assume that .K = C.

Theorem 9.33 (Jiménez et al. [33]) Let .ER be the real subspace of .P(2�2∞(C))

given by .{az2 + bw2 + czw : (a, b, c) ∈ R
3}. We have

.DC,2(ER) = DC,2(2) = 4

√
3

2

with extremal polynomials

.P(x, y) = ±
(√

3

6
z2 −

√
3

6
w2 ±

√
2

3
zw

)

.

9.4.2 On the Real Case

Assume that .K = R. All the results that are presented have been obtained for the
cases when .m = n = 2.

Theorem 9.34 (Jiménez et al. [33]) Let .f :
[
1
2 , 1

]
→ R be given by

.f (t) =
[

2t
4
3 +

(
2
√

t (1 − t)
) 4

3
] 3

4

.

We have
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.DR,2(2) = f (t0),

where

.t0 = 1

36

(

2
3
√

107 + 9
√
129 + 3

√

856 − 72
√
129 + 16

)

.

In particular, the exact value of .f (t0) is given by

. (A + B)
3
4 ,

where

.A =
(
2

3
√
107 + 9

√
129 + 3

√
856 − 72

√
129 + 16

) 4
3

186
2
3

and

.B = 1

9

⎛

⎝− 3

−2
3
√

107+9
√
129+

(
107+9

√
129

) 2
3 −2

3
√

107−9
√
129+

(
107−9

√
129

) 2
3 −60

⎞

⎠

2
3

.

Moreover, the following polynomials are extremal

.P(x, y) = ±
(
t0x

2 − t0y
2 ± 2

√
t0(1 − t0)xy

)
.

Theorem 9.35 (Araújo et al. [3]) If .q, p ∈ {1,∞}, then

.k2,2,q,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if q = p = 1,

1 if q = 1 and p = ∞,

1 if q = ∞ and p = 1,
1
3 if q = p = ∞,

with extremal polynomials given, respectively, by

.P1,1(x, y) = ±x2, ±y2,

P1,∞(x, y) = ±x2, ±y2, ±xy,

P∞,1(x, y) = ±x2 ± y2 ± xy,

P∞,∞(x, y) = ±(x2 + y2 ± xy).
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Theorem 9.36 (Araújo et al. [3]) If .q, p ∈ {1,∞}, then

.K2,2,q,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + 2
√
2 if q = p = 1,

1 + √
2 if q = 1 and p = ∞,

4 if q = ∞ and p = 1,

1 if q = p = ∞,

with extremal polynomials given, respectively, by

.P1,1(x, y) = ±
√
2

2
(x2 − y2) + (2 + √

2)xy,

P1,∞(x, y) = ±
(
2 + √

2

4
x2 − 2 + √

2

4
y2 ±

√
2

2
xy

)

,

P∞,1(x, y) = ±4xy,

P∞,∞(x, y) = ±x2, ±y2, ±
(
1

2
x2 − 1

2
y2 ± xy

)

.

Theorem 9.37 (Araújo et al. [3]) For every .q ∈ [1,∞), let .fq,1 : [2, 4] → R and

.fq,∞ :
[
1
2 , 1

]
→ R be given by

.fq,1(t) =
(
21−q(4t − t2)

q
2 + tq

) 1
q

,

fq,∞(t) =
(
2tq + 2q(t − t2)

q
2

) 1
q

.

We have

.K2,2,q,1 = max
{
fq,1(t) : t ∈ [2, 4]} ,

K2,2,q,∞ = max

{

fq,∞(t) : t ∈
[
1

2
, 1

]}

.

In particular, .K2,2,q,1 = 4 and .K2,2,q,∞ = 2
1
q for every .q ≥ 2, with extremal

polynomials given, respectively, by

.Pq,1(x, y) = ±4xy,

Pq,∞(x, y) = ±(x2 − y2).

Remark 9.4 (Araújo et al. [3]) The exact value of the maximum of the functions
.fq,1 and .fq,∞ or the points of attainment of the maximum seems to be a much
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harder task. However, by using the symbolic calculus tool of MATLAB, we are able
to obtain the exact values where the functions reach its maximum for certain values
of q. For instance, for .q = 4

3 , the maximum of .fq,1(t) and .fq,∞(t) is attained at

.t = 1

9

(

2
3
√

181 + 9
√
273 + 3

√

1448 − 72
√
273 + 14

)

.

and

.t = 1

36

(

2
3
√

107 + 9
√
129 + 3

√

856 − 72
√
129 + 16

)

,

respectively. Also, for .q = 3
2 , the maximum of .fq,1(t) is attained at

.t = 1

15

⎛

⎝
√
6 (A + 24) +

√
√
√
√6

(

−A + 204

√
6

A + 24
+ 48

)

+ 18

⎞

⎠ ,

where

.A = −10 · 32/3 3

√
2

9 + √
93

+ 5 · 22/3 3

√

3
(
9 + √

93
)
.

And also for .q = 3
2 , the maximum of .fq,∞(t) is attained at

.t = 1

20

√
B + 1

2

√
C + D + 9

20
,

where

.B = 10
3
√
9 + √

273

32/3
− 40

3

√

3
(
9 + √

273
) + 1,

.C = −
3
√
9 + √

273

10 · 32/3 + 1

50
+ 2

5 3

√

3
(
9 + √

273
)

and

.D = 40

50

√
√
√
√

10
3
√

9+√
273

32/3
− 40

3
√

3
(
9+√

273
) + 1

.
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Theorem 9.38 (Araújo et al. [3]) If .p ∈ (1,∞), then

.k2,2,q,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if q = 1,

2
2
p

3 if q = ∞ and p ≥ 4
3 ,

1

max

{

x2+(1−xp)
2
p +x(1−xp)

1
p : x∈[0,1]

} if q = ∞ and 1 < p < 4
3 ,

with extremal polynomials given, respectively, by

.P1,p(x, y) = ±x2, ±y2,

P∞,p(x, y) = ±
(
x2 + y2 + xy

)
,

Q∞,p(x, y) = ±
(
x2 + y2 + xy

)
.

Theorem 9.39 (Araújo et al. [3]) For every .q ≥ 1 and .p ≥ 2, let .fq,p : [0, 1] →
R be given by

.fq,p(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
2(1 − s)

q
2 + 2qs

q
2

) 1
q

if p = 2,
{

2|1−2s|q+2q

[

(1−s)
1− 1

p s
1
p +(1−s)

1
p s

1− 1
p

]q} 1
q

(1−s)
2
p +s

2
p

if p �= 2.

We have

.K2,2,q,p = max
{
fq,p(t) : t ∈ [0, 1]} .

See also [13] in connection to the previous result.

Corollary 9.2 (Araújo et al. [3]) For .4 ≤ p ≤ ∞, we have

.DR,2,p(2) = K2,2, 4p
3p−4 ,p

= max
s∈

[
0, 12

]

{

2|1 − 2s| 4p
3p−4 + 2

4p
3p−4

[
(1 − s)

1− 1
p s

1
p + (1 − s)

1
p s

1− 1
p

] 4p
3p−4

} 3p−4
4p

(1 − s)
2
p + s

2
p

.

Theorem 9.40 (Araújo et al. [3]) If .q > 1, then



9.4 Bohnenblust–Hille and Hardy–Littlewood Constants 133

.K2,2,q,2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 if q ≥ 2,

2

(

1+2
1

q−2

) 1
q

(

1+2
2(q−1)
q−2

) 1
2

if 1 < q < 2,

with extremal polynomials given by

.Pq,2(x, y) =
⎧
⎨

⎩

±(x2 − y2) if q ≥ 2,

±
(

a0x
2 − a0y

2 + 2
√

1 − a20xy

)

if 1 < q < 2,

where .a0 =
(

1 + 2
2(1−q)
q−2

)− 1
2

.

Theorem 9.41 (Araújo et al. [3]) If .q, p > 2, then

.K2,2,q,p = 2
max

{
1
q
, 2
p

}

.

If .fq,p is as in Theorem 9.39 and .q, p > 2, then the following polynomials are
extremal

.Pq,p(x, y) =
{

±2
2
p xy if q ≥ p

2 ,

±(x2 − y2) if q <
p
2 .

Corollary 9.3 (Araújo et al. [3]) If .p ≥ 2, then

.K2,2,∞,p = 2
2
p

with extremal polynomials given by

.P∞,p(x, y) =
{

±(x2 − y2) if p = 2,

±2
2
p xy if p > 2.

Corollary 9.4 (Araújo et al. [3]) For .2 < p ≤ 4, we have

.CR,2,p(2) = K2,2, p
p−2 ,p = 2

2
p .

It is important to mention that Corollary 9.4 was first proven in [13].
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Corollary 9.5 (Araújo et al. [3]) We have

.DR,2,4(2) = CR,2,4(2) = K2,2,4,p = √
2

with all extremal polynomials given by

.P(x, y) = ±(x2 − y2),

Q(x, y) = ±
(
(α2 − β2)(x2 − y2) + 2αβxy

)
,

with .α, β ≥ 0 and .α4 + β4 = 1.

Theorem 9.42 (Araújo et al. [3]) For .p > 2, let .f1,p :
[
0, 1

2

]
→ R be defined by

.f1,p(s) =
2(1 − 2s) + 2

[
(1 − s)

1− 1
p s

1
p + (1 − s)

1
p s

1− 1
p

]

(1 − s)
2
p + s

2
p

.

We have

.K2,2,1,p = sup

{

f1,p(t) : t ∈
[

0,
1

2

]}

.

Remark 9.5 (Araújo et al. [3]) The exact calculation of the above supremum seems
to be a harder task. However, by using the symbolic calculus tool of MATLAB, we
can obtain the exact value of the supremum of .f1,p(t) as well as the point where it
attains its maximum for certain values of p. For .p = 4, the function .f1,4(t) attains

its maximum on .

[
0, 1

2

]
at .t = 3−2

√
2

6 and, therefore, .K2,1,4 = √
6.
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