Chapter 9 )
Applications Qs

Abstract As we know, one of the main goals of this book has been to find a
parametrization of the unit sphere of spaces of polynomials endowed with different
norms whose unit balls can be described in R3, but mainly we have tried to
obtain the extreme polynomials of the unit balls. We have also studied some of
the extreme polynomials in arbitrary dimensions and we have even described some
of the extreme polynomials of arbitrary degree. The reason behind this is that a full
description of the extreme polynomials of the unit ball has, as a matter of fact, can
be applied to obtain many sharp polynomial inequalities (as we will see in this final
chapter).

If the extreme polynomials of the unit ball are known, then we can simplify the
problems that involve finding sharp inequalities between norms that depend on
polynomials by using a simple consequence of the Krein-Milman Theorem.

Theorem 9.1 (Krein-Milman Theorem [41]) Let X be a normed space. If C is
a compact convex subset of X, then C coincides with the closed convex hull of its
extreme points.

Corollary 9.1 If C is a convex body in a normed space X and f: C — Risa
convex function that attains its maximum, then there exists an extreme point p € C
such that f(p) = max{f(x): x € C}.

The main idea to apply Corollary 9.1 is the following: Let B be a convex body in a
normed space of polynomials and f be a convex function defined on B which attains
its maximum and takes real values, then f attains its maximum at an extreme point
of B by Corollary 9.1. Furthermore, if we have a full description of the extreme
points of B, then we can find the maximum of f by evaluating f in the extreme
points of B (this is the Krein-Milman Approach). This can be used in the case of
norms of polynomials since it is known that the norm function is convex.

The rest of this chapter involves finding well known sharp inequalities for norms
of polynomials that have appeared in this survey.

Let (X, || - ||) be a normed space and consider the normed space P (" X) (see the
beginning of Sect. 5.5). Now, let us also consider the space of continuous symmetric
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n-linear forms of X denoted by L, (" X) and endowed with the following norm:
LIl = sup{|L(x1, ..., x0)|: Ilxill = 1, foreveryi €{l,...,n}},

for every L € L (" X). By the beginning of Sect. 5.5, for every P € P("X), there
exists a unique L € L;("X) such that P(x) = L(x, ..., x), for every x € X, the
polar of P.

9.1 Bernstein-Markov Type Inequalities

Bernstein type inequalities for polynomials are inequalities of the following form:
if P € P("X), there exists a function ¥ (x) defined over C such that

ID* P < ¥ P],

where DX P denotes the k-th derivative of P (the optimal function W(x) is known
as the Bernstein function). On the other hand, Markov type inequalities are of the
same fashion as Bernstein type inequalities but we are also taking the supremum
of || DFP(x)|| over all x € C (the optimal constant in Markov type inequalities is
known as the Markov constant). The results of this section focus on finding the
Bernstein function and the Markov constant that are known for the spaces that have
been presented in this survey.

Theorem 9.2 (Aratjo et al. [4]) Take P3(R) (see Sect. 2.1). The Bernstein function
for the inequality

|P'(0)] = W) PR

is given by
31-4%) 0 < |x| < Y2,
RES if Y2 < ) < 2L
e L <y <
e ir 30 <y < 2,
3@x2—1)  iflx| = Y2,

The Bernstein function for the inequality
P70 < W) PR

is given by
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4 . 1
1—9x2 lfo = |x| = 9>
32 e 1
9(|x\—1)2 lf§ =< |-x| < 3
. 1
24|x| iflxl = 3.

Theorem 9.3 (Mufioz et al. [47]) Let ¢: [—1,1] — [0, +00) be defined by
@(x) = ~/1 — x2. On the space 7’%’ (R) (see Sect. 2.1.1), the Bernstein function for
the inequality

|P'(x)| < W()[IPllr

is given by

201 — 3x2] if x| € o,V43ﬁ}u[V4§ﬁ,1],

4x2 l‘fl.x| c \/4_\/7 V4+\ﬁ
—9x4110x2-1 33

Theorem 9.4 (Muiioz et al. [48]) Let m,n € N be odd and such that m > n. On
the space P n,00(R) (see Sect. 3.1), the Bernstein function for the inequality

|P/(x)| S VNP llmn,00

is given by

{,,1%0 U ol i lx] € [0, 11\ D,

n
n—n 1 .
n ()™ o if x| € In.n,

where Ly comes from Theorem 3.1 and

mo=[ (22)™. ()77

The Markov constant is given by

mn(1 + Ag)
n—+ mig

and equality is attained for the polynomials

P(x) = :i:;(nxm + Aomx™)
n 4+ mkig ’
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In order to prove Theorem 9.4, we will prove first the following technical
lemmas.

Lemma 9.1 (Munoz et al. [48]) Let m, n € N be odd and such that m > n and let
Ao be the number from Theorem 3.1. We have

n
n 1 — |Ag|m—n n
Aol — < [Aol ————== < —
m

— aolmm  m
Proof Recall from Lemma 3.1 that [Ao] < ;- < 1 and consider the inequality

n 1 —x"
— < .
m 1 —xm

9.1

We will show when (9.1) holds. If 0 < x < 1, then inequality (9.1) is equivalent
tom —n > mx" — nx™. Now, since the function x +— mx" — nx™ is strictly
increasing on (0, 1), the curves y = mx" — nx™ and y = m — n intersect in,
at most, one point which is x = 1. Hence, it is easy to check that the inequality

m —n > mx" —nx" is satisfied on (0, 1), which implies that m —n > mx" — nx™
i
holds when x € (0, (%) m=n ) and we have proven the first inequality of the lemma.

The second inequality follows after doing some simple calculations and using the
fact that Ag satisfies n + mig = (m — n)|Ag|m-7. 0

Lemma 9.2 (Muioz et al. [48]) Let m, n € N be odd and such that m > n and let
Lo be the number from Theorem 3.1. If we define the functions

Fl) = gl mem g,
m—n
mn n—1; . .m—m
X)) = ——Xx X + Aol,
g(x) e I ol

then g(x) > f(x) provided x satisfies

1 1
[Aolm | m=n ANT=T
0=<lx| =< or | — <|x| =L

m m

Proof By symmetry, assume that x > 0. After some calculations, it is easy

1
to check that the functions f and g intersect at the points x; = (%) m=n and
1
Xy = (me) . By Lemma 9.1, the points x; and x; are not in the
]7|)Lo|mfn

L 1
intervals (0, (%’”)_) or ((%)m” : 1). Hence, either f > g or f < g in each
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e
one of the previous intervals. Now, notice that (1) < g(1) and f ((Ik%n) m—n> -

m

1
g ( (M) " ) Indeed, the former is trivial and the latter is true because of the

_1 1
following reasoning. Notice that the inequality f ((%) " ) <g <<|)‘%> " )

A
ZOLS 1‘ < —L
g 77

is equivalent to

’\% — Ao‘. Moreover, it is also equivalent to

[Ao|m=7 < |Ao| which is satisfied since —1 < — < Ao < 0 (see Lemma 3.1) and

the proof is complete. O

Lemma 9.3 (Muiioz et al. [48]) Let m,n € N be odd and such that m > n and let
Ao be the number from Theorem 3.1. If we define the functions

mn
f@) = ———x" " 1,
nm—n

mn n—1, _m—m
X)) = ——X X Mo,
g(x) P | + Ao
=
h(x):n(i) —,
m |x]

then h(x) > max{f(x), g(x)} provided x satisfies

1
A n\
(' OI) <lki= ()"
m m

1
m—n L . .
Proof Assume that [2oln ) m=n < x| < (ﬂ)’"*” holds, then it is enough to show
m m

that 2(x) > f(x) and h(x) > g(x).
Firstly, notice that the function x” — x™ is strictly increasing on the interval

1
<O, (%) m—n > since the derivative is positive. Hence, the maximum of x +— x" —x™

1\ . . L T
on (0, (%)’"") is attained at x = (£)”~" with value m=mn 71 hyg, x"—x™M <
mm—n
1

n
— m—n M m—n —_— . . . .
mona ™ [2oln < |x| < (£)™, which implies after rearranging the

m—n m
inequality that f(x) < h(x).

_n_ .
Secondly, notice that the inequality nﬁ;‘koxn—l X gl < n (%) n—n |)lc_‘ is

for (

equivalent to ;72— [x" + Aox"| < (Z)™. Since the derivative of x™ + Aox" is

1
only O when x = Qorx = & (%) "™ we have that x" 4+ Aox" is monotone on

m

P i
the interval [(%) , (i) m=n ] Hence, it is enough to evaluate x” + Agx™ at
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the endpoints of the interval and after some simple evaluations notice that the proof
is complete. O

Proof (of Theorem 9.4) Notice that the Bernstein function on the space Py, .o (R)
is given by

Binon.oo(x) = sup{|P’(x)|: P belongs to the unit sphere of Prm.n,ooR)}.
However it is enough to find the above supremum over the set of extreme points of

the unit ball by Corollary 9.1.
We know from Theorem 3.3 that the set of extreme points of By, ,, o is

m n n n
+(t,——————— 1w, 0] : <t<— +(0,0, D}.
[ ( PR ) — n+m0}U{< )

Observe that the extreme polynomials P(x) = =1 are irrelevant to find the
Bernstein function. Hence we focus our attention on the extreme polynomials

m n
P = & (t _ —t) ,

m—n n
(m—n)» nm

IA

where ¢ € [ 1 L] Thus,

m—n’ n+mkig

n n
B (x) =sup{|P/(x)]:t e ,—
m,n, oo p1lP | m—n'n+mho
_ mntm _ n n
= sup mtx™ 1—Wx" ! t e ,
(m—n)n nm m—n n+mky
_ _ n moon
= sup { |mx" 1|:txm ”—< > tm:H
m—n

n n
re , —— .
[m—n n+mk0j|}

m—n

Let us define R(z) = mx"~! |:txm_” — ( n ) " trlrz:|. Notice that the above

m—n

supremum is attained at either r = -~ ort = —2—,
m—n n+mhg

or at a critical point of

n n
m—n’ n+mig

R(?) inside the open interval ( ) It is easy to show that there exists only

one critical point of R(r) which is fo = —— (£)»=" \xll’" and
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R(to) = n (%)F €

|x|

Now, notice that the series of inequalities —— < fyp < —— is equivalent to
m—n n+mhg

1
Aoln | m—n A=
al <kl =(2)"".
m m

Hence, after some easy calculations, we have

n n
B = R()|: t € —
m,n, 00 (X) sup{l Q] |:m_n n+mko]}
1

mnfni 1 [Aoln | m=n R \m—n
_ maX{h(ﬁ) R(MT%) o () \x|} 1f< ;31 )m Pl = ()
- 1 1

o )| )] 0= () 07 21

where, after evaluating the function R in the above points, we have

)

and
n—1
R n _ mnx 4 ],
n—+ mig n+mig
By applying Lemmas 9.2 and 9.3 the result follows. O

Theorem 9.5 (Muiioz et al. [48]) Let m,n € N be such that m > n, m is odd and
n is even. On the space P, .00 (R), the Bernstein function for the inequality

[P ) < WP lmn,00

is given by

1

2nx|"! iflx| € [0, (&)™ |,

mxm—1+n|x|n—l lf|x|€ (%)ml—n’l

The Markov constant is given by

m+n
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and equality is attained for the polynomials
Px)=£x"+£x"-1).

Theorem 9.6 (Muiioz et al. [48]) Letn € N be odd. On the space P2y n,00(R), the
Bernstein function for the inequality

|P/()] < WP ll2n,n,00

is given by
n—1
. 1
Sl if x| €10, 751
2n—1 1
4n|x| if |x| € %,l .

The Markov constant is given by 4n and equality is attained for the polynomials
P(x) = £(2x2" — 1).

Theorem 9.7 (Muiioz et al. [48]) Let n € N be even. On the space Pap n,0o(R),
the Bernstein function for the inequality

|P/(x)| =< \IJ(X)HPHZn,n,oo

is given by
r 1
8n(—20x|"" +x""") iflx| € |0, (5)]
r 1 1
H e | (1) (3) ]
n—1 M 1 %
e rire [ ()" (3)]
r 1
8n(2lx21=1 — |x"~1)  if|x| e (g) , 1].

The Markov constant is given by 8n and equality is attained for the polynomials
P(x) = £(8x2" — 8x" + 1).

Theorem 9.8 (Muiioz et al. [47]) Let m,n € N be such that m is odd, n is even
and m > n. On the normed subspace of P n,00(R) given by trinomials that are
bounded by the linear mapping ¢(x) = |x| over the interval [—1, 1], the Bernstein
function for the inequality
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|P' ()] < WO Plm.n.0o0
is given by

(m+Dix[™ =+ Dx"+ 1 if|x] <1,

2(n+ Dx" —1 iftn < |x| < "
(m+ Dlx™ 4+ (n+ Dx" — 1 if "2 < x| <1,

where t1 € R is the unique solution of
m+Dx" =3n+Dx"+2=0

. 1 1 L.
on the interval (—('/Z(rTl)’ Tm) The Markov constant is given by m +n + 1 and
equality is attained for the polynomials

P(x) = £[x" £ (" — D]
Theorem 9.9 (Mufioz et al. [47]) On the normed subspace of P2.1,00(R) given by
trinomials that are bounded by the linear mapping ¢(x) = |x| over the interval
[—1, 1], the Bernstein function for the inequality

[P/ < WP lmn,00

is given by

9 ’ 9 ’
16x2 — 1 if 1x] |0, @*2] U [@ 1].

3x22—1‘+2|x| l:f|x|€ J13—=2 J/13+42

9

Theorem 9.10 (Muiioz et al. [49]) Let m, n € N be with different parity and such
that m > n. On the space Py, .2 (R), the Bernstein function for the inequality

[P/ < WPl n 2

is given by

2 2(n—1) 2 2(m—1) . . .
\/" @ntDx H”;‘H) (Zm+D)x if m is even and n is odd,

\/m2(2m+1)xz(”’_l)+(n+1)2(2n+1)x2("—')
2

if m is odd and n is even.

The Markov constant is given by
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(m+ 1),/ 22+l if m is even and n is odd,

2m—1
m\/% ifmis odd, nis evenandm > n + 1,
m —%ZZ% ifmisoddandn =m — 1.
Remark 9.1 On Theorem 9.10, notice that if we consider n = 1, then we have

Bernstein’s function and Markov’s constant for the space P, (R) (see Sect.2.1)
which are given, respectively, by

1 : 1
{W if0 < |x] < 5,

x| Ix] = 4,
and
4,
with equality attained for the polynomials
P(x) = £(1 — 2x?).

Theorem 9.11 (Muiioz et al. [46]) Tuke P(*A) (see Sect.4.1). The Markov con-
stant for the inequality

IDPx, e, =W (x, MIPla
is given by
2v10
and equality is attained for the polynomials
P(x,y) = £(x% — 6xy + y?).
The Bernstein function for the inequality
IDP(x, y)lla =¥(x, MIPla

is given by
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[2x — 6y| ifx=00rx#0and (2 <—1ori=>2),
2x—|—2y—|—yx—2 ifx #0and % €[1,2],
2x +2y + 5| ify #0and £ €[1,2],
|6x — 2y| ify:Oory;éOand(féf—lorizﬂ.

The Markov constant is given by 6 and equality is attained for the polynomials
_ 2 2
P(x,y) =+ —6xy + y°).

Theorem 9.12 (Gamez et al. [23]) Take P(*0)) (see Sect.4.2). The Bernstein
function for the inequality

IDP(x, Y)lle, = Mx, MIIPlo

is given by

if0<aox <y <ux,

3
\/24y4+l2x2)72+x4+x(8y2+x2) 2
8y2

3
\/ 24x4+12x2y2 +y4+y (832 +y?) 2
8x2

\/13x2 — 24xy + 132 otherwise,

if0<x§y§aio,

where « is the unique root of the equation
800t — 19203 + 920% — 1 = (8a2 + 1)2

in the interval [3_7‘5, %5] The Markov constant is given by

V13

and equality is attained for the polynomials
P(x,y) = +(x* = 3xy + ).

The Bernstein function for the inequality
IDP(x, o =¥, »IPIo

is given by
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3x —2y if0<y=<2-Dx,
%x—y—i—g ifx;éOand(\/E—l)xfyg%x,
2x+% ifx;éOand%xSyfx,
2y+§—y ify#0andx <y < 2x,
Sy—x+% ify#0and2x <y <2+,
3y —2x f(W2+Dx<y<l.

The Markov constant is given by 3 and equality is attained for the polynomials

P(x,y) = £(x? = 3xy + y?).

Theorem 9.13 (Aratjo et al. [2]) Tuke P (>D (%)) (see Sect. 4.3). The Bernstein

function for the inequality
IDPx, y)lle, = W(x, MIPlp(z)

is given by

4 [(13 n 8ﬁ) X2+ (69 n 48ﬁ) ¥ -2 (28 + 20ﬁ) xy] if (a),

£ +4(2+)7) if (b),

(3x2—2xy+3y2)2 .

Sy} if (©),
where

(a) 0<y< “/22_]x0r<4\/§—5)x§y§x,
(b) Flx =y (V2-1)x
() (V2-1)x=y=(42-5)x

The Markov constant is

4(13+38v2)
and equality is attained for the polynomials
P(x,y) = £(x? + (5 +4v2)y? — 4(1 + V2)xy).
The Bernstein function for the inequality

IDPCx. Mlipezy = ¥x. MIPlpx)

is given by
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V2[(1+2v2)x - (3+2v2)y] 0=y < 2Ly,

Y2 ) 22 <y < (Vi-1)x,
2 x+xyT2y) if V2 - )x<y<<2—\/§)x,
4 1+ﬁ)y—2x if 2—ﬁ)xgy5x.

The Markov constant is given by
442
and equality is attained for the polynomials
P(x,y) = £ + (5 +4v/2)y% — 4(1 + vV2)xy).

Theorem 9.14 (Jiménez et al. [34]) Take P (*D (%)). The Bernstein function for
the inequality

IDPCx, e, < @, MIPlp(x)

is given by

\/16<x—y>2+4 3432 f0<y<i.

(
‘/7+4( ¥?) f0<3<y<=<x,
,/%+4( ) if0<x <y <2,

\/16(y—x)2+4(x2+y2) if2x <y <1.

The Markov constant is given by 2/5 and equality is attained for the polynomials
P(x,y) = £(x* +? — 4xy).
The Bernstein function for the inequality
IDPG. Wlnesy < W NPl
is given by

22x—y) if0<y<3y,
2(y+% f3 <y<ux,
2(x+% ifx <y<2x,
22y —x)  ify=2x.
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The Markov constant is given by 4 and equality is attained for the polynomials
P(x,y) = £(x* + y* — 4xy).

Theorem 9.15 (Jiménez et al. [34]) On P((3) for p € {1,2,00} (see
Sects. 4.3, 5.1, and 5.2), the Markov constant in the inequality

IDP(x, Ml = Wx, WP

is

(i) 4ifp=1,
(ii)) 2ifp=2,
(iii) 2+/2if p = oo

9.2 Polarization Constants

It is easy to see just by the definition of the norms defined on (" X) and L; (" X)
that: for every P € P("X),

1Pl =< IILII,

where L is the polar of P. But furthermore, the converse is also true, i.e., there exists
C > 1 such that |[L|| < C||P||. In particular, we have the following result that can
be applied for any normed space X.

Theorem 9.16 (Martin [42]) Let X be a normed space. If P € P(* X), then

n

n
Pl <Ll = —1Pl,
n:

where L is the polar of P.

Notice that throughout this survey we have considered the norm over the space
of n-homogeneous polynomials to be, not only defined over the unit ball of a certain
normed space, but also over a convex body of a normed space. To be more precise,
let X be a normed space and take C a convex body in X. We define the following
norm over the space of continuous n-homogeneous polynomials of X: for every
continuous n-homogeneous polynomial P,

I[Pllc = sup{|P(x)|: x € C};

and we also define the following norm over the space of symmetric n-linear forms
of X: for every symmetric n-linear form L,
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ILlIc = sup{|L(x1,...,xp)|: x; € C, foreveryi € {1,...,n}}.

Notice that the condition “every continuous n-homogeneous polynomial P has a
unique continuous symmetric n-linear form L (the polar of P) such that P(x) =
L(x,...,x)” is purely algebraic. Therefore, it does not depend on the topology
that we consider over the space of n-homogenous polynomials or over the space of
symmetric n-linear forms.

It is easy to see by the definition of the above norms that ||P|lc < |Lllc.
However, the reverse inequality as in Martin’s Theorem is not true as it can be seen
later on. Furthermore, there is not yet an analogous version of Martin’s Theorem
when the norm is defined over an arbitrary convex body. Thus it is still an open
problem to find a result similar to the one of Martin’s Theorem when we consider
the norm defined over other convex bodies apart from the unit ball of X.

We are able to define now what is known as the n-polarization constant of a
space of continuous n-homogeneous polynomials on a convex body. Let X be a
normed space and C C X a convex body. Let (" C) be the space of n-homogeneous
polynomials on X bounded on C endowed with the norm defined by

[ Pllc = sup{|P(x)| : x € C}.
Similarly, if L is the polar of P € P("C) we define
ILllc = sup{|L(x1,...,x5)|:x1,...,x, € C}L.
We define the n-polarization constant cpol (P (" C)) of P("C) as the following value:
inf{K: ||L|lc < K|IP|lc, where P € P("C) and L is the polar of P} .
Furthermore, assume that there exists P € P("C) such that
ILllc = cpat(PCCONIPlc,

where L is the polar of P, then we say that P is an extremal polynomial for
Cpol (PCO)).

The following results show the known exact values of the polarization constants
of the spaces of homogeneous polynomials that have been dealt with in this survey
(most of them use the Krein-Milman approach, specially those whose norm involve
convex bodies different from the unit ball).

Theorem 9.17 (Muioz et al. [46]) If A is the simplex defined in Sect. 4.1, then
c,ml(?’(zA)) = 3. Furthermore, P(x,y) = +(x* 4+ y> — 6xy) are extremal
polynomials for cper (PCA)).

Proof The result follows from the Markov constant in Theorem 9.11 for the
inequality ||DP(x, y)|la < W(x, y)||P||a since
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DP(x, y)(u,v) =2L((x, y), (u, v))

for all (x, y), (u,v) € R? and where L is the polar of P. m]

Theorem 9.18 (Gamez et al. [23]) If U is the unit square defined in Sect. 4.2,
then cpol(P(ZD)) = % Furthermore, P(x,y) = +(xZ + y2 — 3xy) are extremal
polynomials for cpo (P(ZD)).

Theorem 9.19 (Araijo et al. [2]) If D (%) is the circular sector defined in

Sect. 4.3, then cpoy (P (2D (%))) =2+ @ Furthermore, P(x,y) = +(x* + (5 +
4\/§)y2 — 4+ 4\/§)xy) are extremal polynomials for cpe; (SD (zD (%)))

Theorem 9.20 (Jiménez et al. [34]) If D (%) is the circular sector defined in
Sect. 4.3, then cpo (73 (2D (%))) = 2. Furthermore, P(x,y) = +(x% + y* — 4xy)
are extremal polynomials for cpe; (P (2D (%)))

Theorem 9.21 (Sarantopoulos [S3]) Let 1 < p < oo. We have cpo; (7) (%%)) =

2”’2;ZI (see Sect. 5). Furthermore, P(x, y) = £(x* — y?) are extremal polynomials

Jor cpol (P (%%,))

Remark 9.2 1Tt is important to mention that, although we know the extreme poly-
nomials on the spaces E%, the proof of Theorem 9.21 in [53] does not use the
Krein-Milman approach but a direct approach. It involves obtaining a sharper bound
C than that of Martin’s bound for every polynomial and then finding a polynomial
P such that ||L||c = C||P|c, where L is the polar of P.

An interesting question started by Harris in 1975 related to polarization constants
for polynomials on £, spaces states that, in a complex setting we have

o PO C < 0T D

2"n!
For the previous estimate consult [32] or [20] for a more modern and accessible
n n+1
.. . 2(+1) 2 .
exposition. The question as to whether c,o1(P(" €5, (C))) = % remains

unsolved nowadays.

Theorem 9.22 (Kim [37]) Letw € (0, 1).
2(1+w?)

(@) Ifw < /2 — 1, then cpol (so (203,)) = T
Px,y)== (ﬁxy) are extremal polynomials for cpe; (7’ (20120)>

(b) IF V2 — 1 < w, then cpor (50 (203,)) — | + wk Furthermore, P(x,y) =
= (x = y?) are extremal polynomials for cpor (P (203,))-

(see Sect. 6.1). Furthermore,
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Theorem 9.23 (Kim [39]) Let w = % We have cpo; (P (27{%/2)) = % (see
Sect. 6.2). Furthermore,

Px,y)==% (x2 — y2)

and

3 5 7
=4 (x> - =y?+-
0(x,y) <4x 6 4>

are extremal polynomials for cpe; (7) (Z‘H% /2)>.

9.3 Unconditional Constants

Let us denote by x* the monomial

x?l . .xf:lm’
where X = (x1,...,xp) e K" (K=RorC)and @ = (¢, ..., a,) withay € NU
{0} forevery k € {1, ..., m}. For P(x) = Z|oz\5n agx® (where |o| = a1+ +ay,)
a polynomial of degree n on K", we define the modulus | - | of P by |P|(x) =

ZMS" lag|x*. If C is a convex body in R, we denote by P(*C) the space of n-
homogeneous polynomials on R” endowed with the norm || P ||c (see Sect.9.2). Let
B, = {x*: |a| < n} be the canonical basis of P("C). The unconditional constant
of B, is equal to the best possible constant C (denoted by Cync(P("C))) in the
inequality

I1Plllc = CllPlic.

The following results show all the exact values of the unconditional constants that
are known of the spaces that have been presented on this survey.

Theorem 9.24 (Grecu et al. [30]) Ifm,n € N withm > n, then

3 if m and n have different parity,
1
Cunc Pmn,0oR)) = {1+ min (’Z—T) "™ ifm and n are even,
% if m and n are odd,

(see Sect. 3.1) where Ao comes from Theorem 3.1, and equality is attained for the
polynomials
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+2x™" - 1),

P(x) = +(—pox™ + yox" + 1) where yp = —min . (ﬂ) "y
m mlA |x71
+ (n—’ﬁl—)rcn)»() - n+l’?’l)\.(] ) ’
respectively.

Remark 9.3 (Grecu et al. [30]) In Theorem 9.24 it can be seen that for every k € N
with k > 1 and every n € N even we have

Cone P o ) = 14 k5T,
which is independent of .
Theorem 9.25 (Grecu et al. [30]) On the space P(2A) (see Sect. 4.1) we have
Cunc(PCA)) =2
and equality is attained for the polynomials
P(x,y) = £(x* — 6xy +y°).
Theorem 9.26 (Gamez et al. [23]) On the space P(*0)) (see Sect. 4.2) we have
CunePC)) =5
and equality is attained for the polynomials
P(x.y) = £ = 3xy + y?).

Theorem 9.27 (Gamez et al. [23]) On the space P (2D (%)) (see Sect. 4.3) we
have

20 (T _
Cune (P ( 0(4))) =5+42
and equality is attained for the polynomials
P(x,y) = (% + (5 + 4v2)y? — (4 + 4vV2)xy)).

Theorem 9.28 (Jiménez et al. [34]) On the space P (*D (%)) we have

(0 (5)) =
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and equality is attained for the polynomials
P(x,y) = £(x* + y* — 4xy).

Theorem 9.29 (Grecu et al. [30]) On the spaces P(3€3), P(>43) and P(*%) (see
Sects. 4.3, 5.1, and 5.2) we have, respectively, the unconditional constants given by

1442
2

V2,
142,

)

with equality attained for the polynomials

22— Y1) £ 2+ 2y,

+(x? 4+ y? + 2xy),
2+4«/§(x2 _ y2) + «/Tixy’

respectively.

Proof We will prove the result for the space P(zé%) since the other cases can be
done analogously. By Theorem 5.2, we know that the extreme polynomials of the
unit ball of 7’(26%) are

(@) P(x,y) = +x2+ y? +2xy,
2
(b) P(x,y) = £ Y02 _y2) 1 sxy, where || € (2,4].
Notice that if P is as in (a), then |||P|||£% = ||P||z% = 1. Hence, it is enough to

consider polynomials of type (b). If P is as in (b), then P attains its norm in E% at
(%, %) Thus,

VAt — 12
Cune® (261)) = sup § | Xm0 + 3% +lrlxy| : 1l € 2.4]
G
/45 — §2
= sup { | S 4y axy| s e 4]
G
4s — 52
- _M:se(m}
4
=242
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Theorem 9.30 (Araiijo et al. [2]) Let 1 < p < oo with p # 2 and take P(€3)
(see Sects. 5.3 and 5.4). Let us define the function

27 oo 1) ot 1 -a0 o+ 1-a0)]

fla) = 1 2
a(l—ab)r (a2 + (1 - otl’)ﬁ)
_1
and set My = sup {f(oz): o€ [2 P, 1]}, we have that C,MC(P(ZE%,)) = My.
Theorem 9.31 (Kim [37]) Let0 < w < 1.
2
(@) Ifw < V2 — 1, then cup (P (203)) _ Lo V200Y) o Seet. 6.1) and

(1+w)”
equality is attained for the polynomials P(x,y) = £ (mxy)
2 \/7
(b) If\/z — 1 < w, then cypc (P (2()%))) = Dt (12+w2)2+4w2 and equality is

attained for the polynomials

P(x,y) = :I:(otx2 — ozy2 + Va(l —a)xy),

14w?

=L, 4w

where o = 5 + N (e
Theorem 9.32 (Kim [39]) Letw = % Then, cync (P (2‘]—{% /2)> = % (see Sect. 6.2)
and equality is attained for the polynomials P(x,y) = =+ (x2 + ‘l—ty2 + xy) and

O(x,y) =+ <x2 +32 4 xy).

9.4 Bohnenblust-Hille and Hardy-Littlewood Constants

We begin by considering the following constants which are closely related to
the Bohnenblust—Hille and Hardy—Littlewood constants as we will see. Let « =
(a1, ...,0,) with n € N and let us consider the standard notation |¢| = |oq| +
-+ 4 |ay|. Let P("K™) denote the vector space of m-homogeneous polynomials on
K" (where K = R or C). Notice that if P € P("K"), then P can be written as

PX) =) anXx"

|e|=m

where a, € K and x* :xf” coexpt forx = (xq,...,x,) € K" If | - | is a norm on
K", then | - | induces a norm on P("K") called the polynomial norm and it is given
by
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I[Pl = sup{|P(x)|: x € By},

where By is the unit ball of the normed space X = (K", | - |). The space P("K")
endowed with the polynomial norm is denoted by £(" X). Besides the polynomial
norm, there are other interesting norms on P("K") such as the £,-norms on the
coefficients, i.e., if P € P("K") and 1 < g < oo, then

1
_ (ka\:m |aa|q)q if 1 <¢ < oo,
[Ply =

max{laq|: |@| =m} ifg = o0.

Let us represent by || - ||, the polynomial norm of the space P(’"ﬁ’; (K)), where
1 < p < oo. Since the space P("K") is finite dimensional, we have that the norms
[-lgand || - ]I, (1 < g, p < 00) are equivalent, i.e., there exist k, K > 0 such that

kiIPllp = 1Plg = KIPllp,

for any P € P("K"). Notice that the unit balls of the spaces (P("K"), | - |;) and
P ("L, (K)), denoted by By., and B, respectively, satisfy that the mapping By, >
P — || P|| is bounded by % and the mapping B, > P — |P|, is bounded by K.
Moreover, the continuity of such mappings and the compactness of By.|, and B,
satisfy the following maxima.

Definition 9.1 Let 1 < ¢, p < oo. We define the following constants

1
max {||P|l,: P € By}’

km,n,q,p =
Kimng.p = max{|P|q: P e B||'Hp} .

From now on, we are interested in calculating the exact values of ky, 5 4, and
Kin.n,q,p when we are considering polynomials whose coefficients are real numbers
(we will consider real polynomials and complex polynomials with real coefficients
separately). To do so, we will be applying the Krein-Milman approach to the
mappings By, > P — ||P|, and B, > P — |P],. Hence, we will need, for
instance, the extreme points of the unit ball B, . It is well known that the extreme
points of By, are

ep: 1 <k <m+ 1 =1,
(Hep: 1<k 1} ifg=1
[ 21:11 ek’ Sk = :tl} if g = oo,

S, ifl <g < oo,

where {e1, ..., en+1} stands for the canonical basis of R™+! and S\-Iq is the unit
sphere of (R™+1 | .],).
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The above problem is an extension of the polynomial Bohnenblust—Hille and
Hardy-Littlewood constants problem. The m-Bohnenblust-Hille constant for poly-

nomials is, in fact, an upper bound on K, . It was proved in [8] that if
m+l

q > ﬁ, then there exists a constant D, ;, > 0 depending only on m and ¢ such
that

|Plg < DmgllPlloo

for any P € P("¢% (K)) and every n € N. Furthermore, any constant in the latter
inequality for g < mz—fl depends necessarily on n. By construction, notice that any
viable choice of Dy, , satisfies Dy, 4 > sup{Ky n,q4,00: # € N}. This construction
allows us to define the Bohnenblust-Hille constants depending on the field (R or C)
since there are substantial differences.

Definition 9.2 The m-Bohnenblust-Hille constant for polynomials on K is defined
as

Dicm =inf{ 1P| 2n = Dul|Plloo, foralln € Nand P e P("eh, (K))}

If n € Nis fixed, then we define (m, n)-Bohnenblust-Hille constant for polynomials
on K as

Dy (n) = mf[D ()2 Pl an < D) Plloo, forall P e P2, (K))}

Also, if we consider a subset E of P("£] (K)) for some n € N, then we define the
(m, E)-Bohnenblust-Hille constant for polynomials on K as

Dic.(E) :inf{Dm(E): Pl 2 < Du(E)||Pll, forall P e E}
m+
It is easy to see that
1 < D]K,m(n) =< DK,ms
for all n € N. A similar result to that of Bohnenblust-Hille for values of p different
from oo can also be obtained. The proofs of the following results can be found in
[1, 18]. There exist constants Cy, , and Dy, , independent of n such that
|P|_»_ < Cm,p”P”p form < p <2m,
p—m

|P| 2mp SDm,pHPHPfOI‘ZmSpSOO,

mp+p—2m
forall P € ("¢}, (K)) and every n € N. If p = oo, then we simply put mpi’% =
ij_’l Moreover, the exponents —L— form < p <2m and m for2m < p <
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oo are optimal in the sense that any constant H that satisfies
|Plg < HI|Pllp,

forall P € (mZ’;, (K)) depends necessarily on n. The above construction allows us
to define the following constants.

Definition 9.3 Let m < p < oo. The (m, p)-Hardy-Littlewood constant for
polynomials on K is defined as

Ckom.p = inf{cm,p: Pl_o < CupllPllp, foralln € Nand P ¢ so(me';,(K))},

form < p <2m, and

D]K,m,p :inf{Dm,p: [P|__2mp = Dm,p”P”ps

mp+p—2m

foralln e Nand P € SD(mE’;,(K))},

for 2m < p < oo. If n € Nis fixed, then we define the (m, n, p)-Hardy-Littlewood
constant for polynomials on K as

Citm,p@) = inf {Cp )3 1P| < Conp) Pl forall P e PCUEKD)|
form < p <2m, and

Ditn,p®) = inf { Don p )3 1P|y < Doy P,

mp+p—2m

forall P € P(’"z';,(K))},

for 2m < p < oo. Also, if we consider a subset E of P(" % (K)) for some n € N,
then we define

Cim.p(E) = inf{cm,p(E): IPl_z. = Cup(E)|Pll,, forall P e P(”’E)],

form < p < 2m, and

mp+p—2m

Dy, p(E) = inf{Dm,p(E): |P|_2mp < Dy p(E)||P]lp, forall P e P(mE)}
2

for 2m < p < o0.
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Notice that Dk ,, = DK m.co- S0 essentially the Hardy-Littlewood constants
are in fact a generalization of the Bohnenblust-Hille constants. But furthermore, the
constants K, , 4, p are also a generalization of the Hardy-Littlewood constants since
Cxmp(n) =K, , _» p form < p < 2m and Dk ;,p(n) = K 2mp for

p—m m,n,m,p

2m < p < oco. Hence we have

CK,m,,,zsup{Kmn P p:neN} form < p <2m,
5 E
Dg m,p > sup1 K 2mp :neN for 2m < p < oo.
m,n, mp+p—2m>

This section is about providing some of the constants ky; .4, p» Km,n,q,p» and in
particular, the Hardy-Littlewood and Bohnenblust-Hille constants, that have been
obtained through the Krein-Milman approach.

9.4.1 On the Complex Case

Assume that K = C.

Theorem 9.33 (Jiménez et al. [33]) Let Ewr be the real subspace of P(Zﬂgo((C))
given by {az* + bw? + czw: (a, b, ¢) € R3}. We have

3
Dc(ER) = Dc2(2) = \4/;

with extremal polynomials

9.4.2 On the Real Case

Assume that K = R. All the results that are presented have been obtained for the
cases whenm =n = 2.

Theorem 9.34 (Jiménez et al. [33]) Let f: [% l] — R be given by

3

f() = [2z§+(2 t(1—z))§T.

We have
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Dr2(2) = f(to),

where

1
=3¢ (2\3/107 1+ 9V/T29 + /856 — 724/129 + 16) :

In particular, the exact value of f (to) is given by

(A+ B)3,
where
4
(23/107 T 9129 + /856 — 724129 + 16) 3
A=
1863
and
|
B =

I

91 —

3
7 7
23 107+9~/129+(107+9~/129) 303/ 1o7f9~/129+(10779~/129) 3 _60

Moreover, the following polynomials are extremal

P(x,y) =+ <t0x2 —toy? +2V10(1 — to)xy> .

Theorem 9.35 (Aratjo et al. [3]) Ifq, p € {1, oo}, then

fq=p=1,
kos _ ifg=1and p = o0,
oap ifg=o0cand p =1,

ifq=p=o00,

W= = = =

with extremal polynomials given, respectively, by
Pii(x,y) = £2°, +y7,
Pioo(x, y) = £x%, £)%, +xy,
Poo,1(x, y) = £x° £ y* £ xy,

Poooo(x, ) = £(x* + y* £ xy).
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Theorem 9.36 (Araujo et al. [3]) Ifg, p € {1, oo}, then

242V2 ifg=p=1,
142  ifg=1land p = o0,
4 ifg=o00and p =1,
1 ifqg=p=o0,

K2,2,q,p =

with extremal polynomials given, respectively, by

2
Pii(x,y) = i%_(xz — ) + 2+ V2)xy,

24V2 , 24V2, V2
YTy Y EDY)

Pioo(x,y) ==+ < 1

Poo,1(x, y) = 4xy,

1 1
POO,OO(-xv y) = :I:xz, :I:yz, + <§X2 — Eyz :I:xy) .

Theorem 9.37 (Araijo et al. [3]) For every g € [1,00), let f; 1:[2,4] — R and
Jq.00: [%, 1] — R be given by

1
fq,l(t) = <2l_q(4t — tZ)% _|_tll)‘1 )
1

Jg.00(t) = (2tq +29(t — tz)%)a )
We have
Kypg1 =max{fy1(t): 1t €[2,4]},

1
K2.2,4,00 = max {fq’oo(t): te |:§ li“ .
1
In particular, K2341 = 4 and Kz 400 = 29 for every q > 2, with extremal
polynomials given, respectively, by
Py 1(x,y) = £4xy,
Pyoo(x,y) = £(x* — y?).

Remark 9.4 (Araiijo et al. [3]) The exact value of the maximum of the functions
fq,1 and fy o or the points of attainment of the maximum seems to be a much



9.4 Bohnenblust-Hille and Hardy-Littlewood Constants 131

harder task. However, by using the symbolic calculus tool of MATLAB, we are able
to obtain the exact values where the functions reach its maximum for certain values

of g. For instance, for g = %, the maximum of f, () and f; ~(?) is attained at

1
=3 (2\3/181 +OVIT3 4\ 1448 — 72323 + 14) :

and

1 (.
=1 (2{/107 1 9V/T29 + /856 — 724125 + 16) :

respectively. Also, for g = %, the maximum of f; 1(¢) is attained at

A+24

1
=5 | Ve@T29 + 6<—A+204

+48) + 181,

where

[ 2
0232 e 23
A=-10-3 9+\/ﬁ+5 2 3(9+«/93).

And also for g = % the maximum of f,; - (¢) is attained at

1 1 9
[:—\/B —\/C D =,
20 +2 + +20

where
5 _ 10V9+ V273 40 .
- 32/3 - ’
93 (9 + «/273)
3
J9+4273 1 2
€= _JT tsot T
593 (9 1 «/273)
and
40
D =
50 103/9+v273 40 1

3 \3/ 3 (9+Jﬁ)
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9 Applications
Theorem 9.38 (Aratjo et al. [3]) If p € (1, 00), then

1 ifqg=1,
2
kaog.p = ZTP ifq:ooandpz;‘,
21 T ifq:ooandl<p<%,
max{x2+(1—xp)17+x(1—xp)? : xe[O,l]}
with extremal polynomials given, respectively, by

P p(x,y) = +x? :I:yz,

Poo p(x,y) =+ <x2 +y? +xy) :

Qoo p(x,y) =+ <x2 +y’ +Xy) :
R be given by

Theorem 9.39 (Aratjo et al. [3]) Foreveryq > 1and p > 2, let f; ,: [0,1] —

1
(2(1 —s)% +2‘1s%)q
fq,P(S) = {2|1—2S\‘1+24|:(1—s) %s% 1

11797
+(1=s)Ps P]}
2 2

(1=s)P +sP
We have

1—

if p=2,

ifp#2.

K22.4.p =max{fy ,(0): 1 €[0,1]}.
See also [13] in connection to the previous result.

Corollary 9.2 (Aradjo et al. [3]) For4 < p < oo, we have
DR,Z,p(z) = K2 9 4p_
25,5

7P

Ap Ap -1 1 19
201 — 25|77 4257 [(1 — ) PSP+ (1 —s5)Ps
= maxXx

sE[O,l]

3p—4
4p 4p
_l] 3p—4
P
2 2 :
1—=s)r 4sv»

Theorem 9.40 (Aradjo et al. [3]) Ifq > 1, then
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2 ifqg =2,

()’

) 2f1427= )
K2242= - ifl<qg <2,

2¢q=D\ 2

<1+2 q-2 )
with extremal polynomials given by
+(? —y?) ifq =2,

Pyolx,y) =
e Y (N I ART

2(1—q) *%
where ag = (1 +2 4q2 ) .

Theorem 9.41 (Aradjo et al. [3]) Ifq, p > 2, then

Koy p = zmaxgé,%}'

If fq,p is as in Theorem 9.39 and q, p > 2, then the following polynomials are
extremal

2
+27xy ifq >
+(x2—y?)  ifg <

’

Pq,p(x»)’) = {

[STRSISTpS

Corollary 9.3 (Aradjo et al. [3]) If p > 2, then

2
K22 00,p =27

with extremal polynomials given by

+(x*—y?) ifp=2,

Poo,p(x,y) = 2 .
+2rxy ifp>2.

Corollary 9.4 (Araujo et al. [3]) For2 < p < 4, we have

ST}

Cr2p() =Kyp p, =27

It is important to mention that Corollary 9.4 was first proven in [13].
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Corollary 9.5 (Araujo et al. [3]) We have
Dr24(2) = Cr24(2) = K224,y = V2
with all extremal polynomials given by
P(x,y) = (" =),
0, y) = % (@ = B = ) +2apxy),

witha, B > 0 and o* + B* = 1.

Theorem 9.42 (Araiijo et al. [3]) For p > 2, let fi [0, %] > R be defined by

1 1 1 1
2(1 = 25) 42 [(1 o) Trsr 4 (1 - s)Fsl‘ﬁ]

fl,p(s)z 2 2
(I—s)r 457

We have

1
K>2.1,p = sup {fl,p(t)l te [0, 5“

Remark 9.5 (Araiijo et al. [3]) The exact calculation of the above supremum seems
to be a harder task. However, by using the symbolic calculus tool of MATLAB, we
can obtain the exact value of the supremum of fi ,(¢) as well as the point where it
attains its maximum for certain values of p. For p = 4, the function f] 4(¢) attains

its maximum on [O, %] att = %E and, therefore, K> 1,4 = J6.
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