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Chapter 1 )
Introduction Check for

This book was completed after the passing of the first named author. The rest of authors
would like to dedicate the book to the loving memory of their friend and colleague
Jests Ferrer (1952-2022).

The study and classification of the extreme points of the unit ball of a Banach
space is a classical problem in functional analysis. This question is particularly
interesting in the case of Banach spaces of polynomials. The case of integral,
nuclear or orthogonally additive polynomials in Banach spaces have been studied,
for instance, in [10, 11, 17, 20]. We devote Chap. 8 to show a selection of results
where extreme integral, nuclear or orthogonally additive polynomials have been
characterized in several different settings. As a matter of fact the geometry of the
unit ball of polynomial spaces has been studied intensively for decades. Special
attention has to be given to polynomial spaces of finite dimension. The case of
polynomials on the real line of degree at most n endowed with the norm

[Pl = sup{| P(x)] : x € [=1, 1]},

which we will represent by #,,(R), was solved by Konheim and Rivlin in [40] as
early as in 1966 providing a characterization of the extreme polynomials of the
unit ball B,, of #,,(R). The search for characterizations of the extreme polynomials
of other finite dimensional polynomial spaces has been intensified since the late
90’s of the twentieth century, motivating dozens of publications. In this paper we
present a thorough revision of the most relevant results in this topic with special
emphasis in the polynomial spaces of dimension 3. The fact that in dimension three
we are able to provide a visual representation of the unit ball of a polynomial space
is in itself a powerful tool in the study of the geometry of polynomial spaces.
Although Konheim and Rivlin characterization of the extreme polynomials in B,
is not explicit, we will see in the next chapters that in many finite-dimensional
Banach spaces of polynomials extreme polynomials can be fully described. Some
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2 1 Introduction

representative examples of the spaces which have been studied so far are listed
below:

e The subspaces P> (R) and P3(R) of P, (R) (see [4, 5]).

* The space of the quadratic polynomials on the complex plane with real coeffi-
cients, P, (C), endowed with the sup norm over the unit disk D (see [5]).

* The subspace Py n.00(R) (m > n) of P, (R) consisting of all the trinomials of
the form ax™ + bx™ + ¢ (see [50]).

« The trinomials ax™ + bx"y™™ + cy™ (m > n) on R2, represented by
P,ﬁyn’oo(Rz), endowed with the sup norm on the unit ball of £2_(R) (see [35]).

* The spaces of quadratic forms on E% R) (1 < p < 00), namely P(ZE%), endowed
with the sup norm over the unit ball of E% (R) (see for instance [14-16, 25-28]).

* The space 50(36%), of 3-homogeneous polynomials on R? endowed with the sup
norm over the unit ball of £3(R) (see [29]).

* The spaces P(*A) and P(>0)) of the quadratic forms on R? endowed with the sup
norm over the simplex A and the square [J = [0, 172 respectively (see [23, 46]).

* The space P>(A) of polynomials of degree at most 2 on R? endowed with the
supremum norm over the simplex A (see[43]).

* The space PCD(a, B)) with @ < B (see [6, 45]) of the quadratic forms on R2
endowed with the sup norm on the sectors

D(a, B) = {ré'’ : r €0, 1] and 0 € [a, B1}.
» The space P(202w) of the quadratic forms on R? endowed with the norm
IPllpz = sup{lP(x, y)|: 1Cx, W loctw) = 11,

where

x| + Iyl}

X, = max { |x]|, |y],
1G5 Y oct(w) {I , 1yl T w

for a fixed w € [0, 1] (see [38]).

Having an explicit description of the extreme points of the unit ball of a
polynomial space has many interesting applications. The Krein-Milman approach
allows us to prove many sharp polynomial inequalities. Recall that, as a direct
consequence of the Krein-Milman theorem, any convex function on a convex body
of a finite dimensional Banach space attains its maximum at an extreme point.
Using this idea combined with a description of the extreme points of a polynomial
space one can derive a number of polynomial inequalities. Sharp Bernstein and
Markov inequalities are among the applications of the Krein-Milman approach.
Other problems of interest where the geometry of the unit ball of polynomial
spaces yield excellent results are the calculation of exact unconditional constants
in polynomial spaces, the calculation of polarization constants or the calculation
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of sharp Bohnenblust-Hile and Hardy-Littlewood constants. Chapter 9 is devoted
to present a selection of the many achievements that can be obtained by using the
Krein-Milman approach.

In this book we pursuit three main achievements. The first is to provide the reader
with a visual perspective of each of the Banach spaces of polynomials we study by
representing their unit spheres. To this end the following steps are implemented in
most of the cases:

1. First we give an explicit formula to calculate the polynomial norm.

2. Then we parametrize the unit sphere of the space, for which it might be of help
to calculate the projection of the unit ball onto a plane.

3. The parametrization of the unit sphere is a valuable source of information that
allows us to identify and classify the extreme points of the unit ball of each
polynomial space.

The third point above accomplishes the second of the main objective of this
monograph, providing the reader with explicit characterizations of the extreme poly-
nomials in several Banach spaces of polynomials. The third objective is to highlight
the many applications of having an explicit classification of the extreme points of
the unit ball of a space of polynomials. In particular, we will show a number of
interesting sharp Bernstein and Markov type inequalities and Bohnenblust-Hille
inequalities obtained using the already mentioned Krein-Milman approach. We can
also obtain exact unconditional constants, polarization constants and other related
results.

This book is arranged as follows: In Chap.2 we study the spaces P, (R) with
n = 2,3. Polynomials with majorants are also considered. In Chap.3 we study
several spaces of trinomials including #,, ,(R) and Pf,zyn(Rz) (m > n) defined
above, but also other related problems. Trinomials with the L ,-norm or trinomials
on the complex plane are studied as well. In Chap. 4 we consider several polynomial
spaces where the norm is calculated as the supremum over a non-symmetric convex
body. In particular, Chap. 4 comprises the spaces PEA), PCO) and PCD(a, B)).
In Chap.5 we treat the case of polynomials defined on several £,-spaces. More
specifically we investigate the spaces 7)(222) for all p € [1, oo] and the spaces of
quadratic forms on cg, £; and £, for p > 2. In Chap. 6 we consider the space of
quadratic forms in R? with the sup norm over an octagon, represented as P(zOzw)
above, and with the sup norm over the hexagon defined by

ey Y llhex(w) = max {[y[, [x| + (1 —w)[yl} =1

for w € [0, 1]. In Chap. 7 we study polynomials on real or complex Hilbert spaces.
In Chap.8 extreme integral, nuclear or orthogonally additive polynomials are
regarded. Finally, in Chap. 9 we gather a number of applications of the geometrical
results included in Chaps. 2-8.



Chapter 2 )
Polynomials of Degree n e

Abstract This chapter focuses on the study of the geometry of the unit ball of the
space of polynomials in one variable of degree at most n € N endowed with the
supremum norm defined on the interval [—1, 1] (when the polynomial is defined
over R) or on the unit disk (when the polynomial is defined over C). More precisely,
we are interested on the parametrization of the unit ball as well as the extreme points
when we are dealing with the space of polynomials of degree at most 2. For the space
of polynomials of arbitrary degree with the supremum norm defined on [—1, 1], we
are only interested on the extreme polynomials of the unit ball.

2.1 On the Real Line

Let us endow the vector space of real polynomials of the degree at most n € N, that
is, of the form P(x) = a,x" +---+ajx +ag where a; € R foreveryi € {1, ..., n}
and x € R, with the supremum norm

[Pllr = max{|P(x)|: x € [-1, 1]}.

We denote this normed space by £, (R) . Now consider the following construction:
let us define the mapping 7 from P, (R) to R"*! that assigns to each polynomial
apx"+- - -+ayx+ag the vector (a,, ..., ai, ap), i.e., each polynomial is mapped into
the vector formed by its coefficients. This mapping T is a topological isomorphism
between P, (R) and R"*! when we endow R**! with the norm

l(an, ..., a1, a0)llr := lla,x" + - - -+ a1x + apl|r.

Let us denote the unit ball and the unit sphere of @R Ir) by B, (R) and
S, (R), respectively. Thus, in particular, on the space P2 (R), we can give a visual
representation of the unit ball.

The geometry of P, (R) was already studied by A. G. Konheim and T. J. Rivlin in
1966 [40]. They were able to characterize when a polynomial of degree at most n €
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6 2 Polynomials of Degree n

N that belongs to the unit ball is an extreme polynomial based on the multiplicity of
intersection of the polynomial with 1 and —1.

Definition 2.1 Let P be a real polynomial of degree at most n. We denote by
N (P, y) the total multiplicity with which the value y is assumed by P and, in
particular, let us define the multiplicity of P by the number N(P) := N(P, 1) +
N(P,—1).

Theorem 2.1 (Konheim and Rivlin [40]) Ler P € P, (R) with || P|| < 1. We have
that P is an extreme polynomial if, and only if, N(P) > n.

Although Konheim and Rivlin gave a characterization of the extreme polynomi-
als of the unit ball of #,, (R), they do not give an explicit formula for the values of the
extreme polynomials. However, R. M. Aron and M. Klimek [5] were able to obtain
an explicit formula for the extreme polynomials in the unit ball of > (R) by using an
approach that will appear in many results of this survey. Firstly, they gave an explicit
formula for the norm of a polynomial of degree at most 2. Secondly, they found the
projection of the unit ball onto a plane. And finally, using this information, they were
able to parametrize the unit ball and, in the process, find the extreme polynomials
of the unit ball. The results that Aron and Klimek provided are shown below.

Theorem 2.2 (Aron and Klimek [5]) Let P(x) = ax? + bx + ¢. We have

. 2
@bl %—c‘ if bl <2lalt and & +1 < (| 2] = 1),
9 9 R:
la +c| + |b| otherwise.

Let us define the sets
U ={(a,b) €R%: a <0and |b| < min{2|a|,2(m— |a|)}] ,

11
V= {(a,b) € [—5 E} x [—1,1]: |b| = 2|a|},
W= {(a, b) € R?: a > 0 and |b| < min {2|a|, 2 (,/2|a| _ |a|)}} .
Theorem 2.3 (Aron and Klimek [5]) The projection of B> (R) onto the ab-plane
is the set U UV UW (see Fig. 3.5 for a representation of U UV U W withn = 1).

Theorem 2.4 (Aron and Klimek [5]) Let us define the functions

Sf+(a,b) =1 —|b] —|al,
2
9b - - 17
g+(a,b) 1

and also the functions f_(a,b) = — fy(—a,b) and g_(a,b) = —g+(—a, b). We
have
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(i) S2(R) = graph ( f4|vuw))Ugraph (f-|wuv))Ugraph (g4+|w)Ugraph (g—|v)
(see Fig. 3.6 for a representation of By(R) withn = 1).
(ii) The set of extreme points (denoted by ext) is

ext (Bo(R)) = {:l: (r, +2(V2t —1), 1 +1— 2«/27) te B 2“
J=0.0. 1}

The following results of this section are devoted to the study of extreme
polynomials of degree at most 3.

Theorem 2.5 (Aratjo et al. [4]) The extreme polynomials of the unit ball of P3(R)
are given by

(i) Pi(x)=
(i) Pa(r) = 4|1 Lkx + 1) ]
(iii) P3(x) ==+ _2x —1);
(iv) Pa(x) = _1 = W(x — @)P(4gx +2+2¢) | and
Ps(x) = 1 + 2)2 (x + q)2(4qx -2 2q2)] forevery q € ( O);
(v) Pe(x) = _1 + m(x — )2 (x — 1)] and
Pi(x) ==+ :1 (l+t)2 (x +1)2(x + 1)] foreveryt € ( 1 1);
(vi) Py() = £ |1+ (e =2 (x = 277 ) | and
Py(x) = — (S_4r)3 (x +7r)? (x + 3S;r)],f0r every —1 <r < s <1 such

that s 2min{3r+2 r+2}

2.1.1 Polynomials Bounded by a Majorant

Assume that P is a polynomial of degree at most n such that P is constrained on the
interval [—1, 1] by a mapping ¢: [—1, 1] — [0, 400) called the majorant, i.e.,
|[P(x)] < @(x) for every x € [—1,1]. We will denote by ¥ (R) the space of
polynomials on the real line of degree at most n that are bounded by a majorant
¢ endowed with the supremum norm over the interval [—1, 1]. In this section we
are interested in studying the extreme points of the unit ball of the space Pg R)
when ¢ is a circular majorant, that is, ¢(x) = /1 — x2 for any x € [—1, 1].

Notice that if a polynomial P belongs to Pg (R), where ¢ is a circular majorant,
then P has roots at +1. Hence all polynomials of degree not greater than 3 bounded
by a circular majorant are of the form P, 5(x) = (1 —x%)(ax+Db) forsomea, b € R.
Thus, in fact, we have the following inequality |(1 —x?)(ax+b)| < +/1 — x2 for any
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x € [—1, 1], which is equivalent to ‘«/1 — x2(ax —i—b)‘ < 1 forany x € [—1,1].
The latter shows that we can study the unit ball of the space 7’? (R), when ¢ is a
circular majorant, by studying the unit ball of the norm space (RZ, I lloo,p), where

1@ D)ooy = sup”\/l — 2(ax +b)’ xe[—1, 1]}_

We begin by showing an explicit formula for the norm || - [lo0,¢-

Theorem 2.6 (Muiioz et al. [47]) If ¢: [—1, 1] — [0, +00) is defined by ¢(x) =
A1 = x2, then for every (a, b) € R2 we have

(3\b|+\/8a2+b2)\/4a2—b2+|b\«/8a2+b2 ifa #0
I(a, b)lloo.y = 8+/2lal ’

b ifa =0.

As an easy consequence of Theorem 2.6 we have the following characterization
of the unit ball of % (R).

Theorem 2.7 (Mufioz et al. [47]) Let ¢: [—1,1] — [0, +00) be defined by
o(x) =+1—x2 If (a,b) € R2, then l(a, b)llco,p < 1if, and only if,

(VaaZ+ 12+ 3|b|)3 =32(V8a + 2+ 1bl).

where equality is satisfied if, and only if, ||(a, b)|loc,py = 1. Moreover, the set of
extreme points of the unit ball of the space (R?, || - loo,p) are the points of the unit
sphere.

Figure 2.1 shows an approximate representation of the unit sphere of the space
R, [ - lloo.p)-

2.2  On the Complex Plane

Let us consider now the vector space of complex polynomials with real coefficients
of degree at most n € N, that is, we have polynomials of the form P(z) = a,z" +
...+ aiz + ag where a; € R and z € C, endowed with the following norm

[Pllc = sup [P(2)].

lzI=1

We denote this normed space by Pr_, (C). Using the mapping 7 defined on Sect. 2.1,
there is a topological isomorphism between the space Pg ,(C) and R"*! endowed
with the norm
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Fig. 2.1 Unit sphere of the space R2, | - lloo,)

l(@n, ... a1, a0)llc = lla,2" + ... + a1z + aolic.

Let us denote the unit ball and the unit sphere of (R™*!, | - ||c) by Br.»(C) and
Sg.»(C), respectively. Furthermore, we can a give a visual representation of the
unit ball of the space Pg »(C) on R3. We use the same approach as in the previous
section. We begin by showing an explicit formula for the norm of the space Pr 2 (C).

Theorem 2.8 (Aron and Klimek [5]) If P(z) = az’> + bz +c € Pr.2(C), then

la + c| + |b] ifac > 0or|b(a + ¢)| > 4lac|,
l(a,b,0)lc = 7 .
(lal +1chy/ 1+ g5 otherwise.

We continue by showing the projection of the unit ball onto a coordinate plane.
To do so, we define the following sets

A={@ o) eR: lal+le| < Tand Ja + ¢l = (al + [c)?],
B = [(a,c) € R%: |a|+ || < 1and |a +¢| > (|a] + |c|)2}.

Figure 2.2 shows a representation of A and B.

Theorem 2.9 (Aron and Klimek [5]) The projection of Br 2(C) onto the ac-plane
is the set AU B.

Finally, we show a parametrization of Sg 2(C) as well as the extreme points of
Br2(0).
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Fig. 2.2 Projection of

Br,2(C) onto the ac-plane (0,1)

a

(=100 (1,0)

(0,-1)

Theorem 2.10 (Aron and Klimek [5]) Let us define the function

1 .
fla,o) = \/4'“' (G —1) V@A,
1—la+c| if (a,c) € B.

We have

(i) Sr2(C) = graph(f) U graph(— f).

(ii)
1
eXt(BR’z(C)) = { ((1, :I:\/4|ac| (m - 1), C) .

a,c#0, la| +|c| < 1andla +c| < (lal + |C|)2}-




Chapter 3 )
Spaces of Trinomials e

Abstract A trinomial is a polynomial that consists of three monomials. This
chapter is about studying the geometry of the normed space of trinomials on
different scenarios. To be more precise, we will study the geometry of the space
of real trinomials in one variable with the supremum norm and the L” norm, the
space of real trinomials in two variables with the supremum norm and finally the
space of complex trinomials with the supremum norm.

3.1 On the Real Line with the Supremum Norm

We are using trinomials of the form ax™ + bx" + ¢ with m,n € N, m > n and
a,b,c € R. Let Pyy.n.00(R) denote the vector space of trinomials of the previous
form endowed with the supremum norm on the unit interval [—1, 1] where m, n € N
with m > n. Notice that the space P, ».00 (R) is a 3-dimensional space because the
set {x, x", 1} is a basis of Py, 5,00 (R).

Now consider the mapping 7 (defined in Chap. 2) from Py, n 00 (R) to R3. This
mapping 7 is a topological isomorphism between $,, .~ (R) and R3 endowed with
the norm

(@, b, O)llm,n,00 = max{[lax™ + bx" +c||: x € [-1, 1]}.

Therefore we can give a geometrical representation of the unit ball of the space
Pn.oo(R) in R3.

To do so, we begin by showing an explicit formula for the norm || - ||;.5,00-
The explicit formula of || - ||;4.n,00 depends on the four different kinds of parity
of m,n € N which will be treated separately. This formula is used to obtain a
parametrization of the unit sphere and, therefore, a sketch of the unit sphere of the

normed space (R3, Il - llm.n.00). We denote by S, .00 and By, . o0 the unit sphere
and unit ball of the space (R>, || - [l72.n,00), TESPECtiVEly.
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12 3 Spaces of Trinomials
3.1.1 The Geometry of By, 00 for Odd Numbers m, n

In this case, to illustrate in a better way how this approach of finding a parametriza-
tion and the extreme polynomials of the unit sphere is done, we provide the complete
proofs of all the results that are needed. On the other hand, many results of this paper
follow the same pattern and, therefore, most of the time the proofs will be omitted. In
order to show the formula for the norm, we begin by proving the following lemma.

Lemma 3.1 (Muiioz and Seoane [50]) If m,n € N with m > n odd, then the
equation

In 4+ my| = (m —n)|y|»==

has only three solutions, one is y = —1, another is at a point Ao € (—”1—11, ) and the
last one at a point A1 > 0. Furthermore, the inequality

|n +my| < (m — n)|y|m=—n

is satisfied if, and only if, y € (—o0, o) U (A1, 00).

Proof Let us define the functions f(y) = |n + my| and g(y) = (m — n)|y|ﬁ
for every y € R. Notice that the function f consists of two straight lines and g is a
convex function. Therefore f and g intersect in at most four points. First of all, since
m > n,if y = —1, then f(—1) = g(—1). Also, it is easy to see that f (—2) =0,
f(0) >0,¢g (—%) > 0 and g(0) = 0, thus f (—%) <g (—%) and f(0) > g(0).
This implies by continuity that there exists Ag € (—%, 0) such that f(xo) = g(Xo).
On the other hand, as limy—, 5o (g(y) — f(y)) = oo and f(0) > g(0) we have that
there exists A; > O such that f(A1) = g(x1). The inequality f(y) < g(y) on the
set (—oo, Ap) U (A1, 0o) follows from the strict convexity of g. O

Theorem 3.1 (Muiioz and Seoane [50]) Ifm,n € N are odd with m > n, then

(m—m)lal | nb |mn ~ b
(@b, e = | |l ™ el ifa # 0and =1 < S5 <o,
o la + b| + |c| otherwise,

where Aq is one of the three roots of the equation
_m_
In+my| = (m —n)ly|m—

such that —% < Ao < 0, with the other two roots at Ay = —1 and Ay > 0.

Remark 3.1 (Muiioz and Seoane [50]) Notice that by the definition of the norm
I - llm.n.00 and the assumption that m and n are odd natural numbers, then we have

l(a, b, Hllm,n,co = (@, b, 0)llm,n,00 + Icl
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for all a, b, c € R. This means that the norm || - ||;4.n,00 1S symmetric with respect
to the ab-plane. However in the following cases related to the parity of m and n, the
property of being symmetric to a certain plane is not always satisfied (for example,
when m and n are even, there is no symmetry). But if m and n have different parity,
then we have symmetry with respect to some coordinate plane.

Proof Let (a, b, ¢) € R and take P(x) = ax™ + bx™. By Remark 3.1 it suffices to
prove that

(m=m)lal | nb|m=m nb
@b, Ol = | 7 mal e #0and 1< 35 <o,

la + b| otherwise.

Notice that the polynomial P is symmetric with respect to the origin, which
implies that || Pl n,00 = maXye[—1,0] | P(x)|. Furthermore, since P(0) = 0, the
latter maximum is attained either at —1 or at a critical point of P in the interval
(—1, 0). We are looking now for the critical points of the polynomial P. To do so,
we solve the equation P’(x) = 0, that is, since m > n, we solve the equation

P'(x) = amx" ' + bnx""' = x" Y amx""" + bn) = 0. (3.1

It can be easily seen that Eq. (3.1) has, at most, one solution in the interval (—1, 0)

which is ¥ = — |22 |"=" provided that a # 0 and —1 < 2 < 0. Hence, P has

nb
ma

1
a critical point in the interval (—1,0) atx = — | m=n provided that a # 0 and
—1 < 22 < 0, which implies that

I(a, b, O)”m,n,oo

_max{IP(DI, IP@I} ifa#0and —1 <22 <0,
|P(1)] otherwise,

max {la + b|, #2275 ) £ 0and — 1< 22 <0,

ma

la + b| otherwise.

It suffices to show when |a + b| < W . ]% m=n provided that @ # 0 and
nb

—1 < 22 < 0.If a # 0, then by multiplying inequality |a —1'—nb| < W : |:TZ n=n
m=n_which can be seen as

In+my| < (m—n)|y|%,wherey = r’;—Z.Since —l<y= r’;—’; < 0, by Lemma 3.1

we have that —1 < :1—2 < Mo and therefore

by 2 we have, equivalently, that |n + 'Zl—b| < (m—n) |Z—Z
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(m=mlal || nb (i ,
@b Olypnoe =1 lma ifa#0and — 1 < 22 < 3,
- la + b otherwise,

which finishes the proof. O

We know by Remark 3.1 that By, ,, ~ is symmetric with respect to the ab-plane.
Hence the projection of By, ,, o Will be onto the ab-plane. Let us define the function

I'(a) = — . |a|n and the sets
(m—n) m nm

b
V=1{@hb) eR*:a+0, —lfn—fkoand|b|§F(a)},
ma

Wi=1@b) eR:b>-"4, bzxoﬂandbgl—a},
n n

Wy =1 b) eR:b<-"4a, ngoﬁandbz—l—a},
n n
W = W; U W,.

Figure 3.1 shows a representation of V and W whenm = 3 andn = 1.

Theorem 3.2 (Muiioz and Seoane [50]) Ifm,n € N are odd with m > n, then the
projection onto the ab-plane of By, , o is the set V.U W.

Proof By Theorem 3.1, notice that || (a, b, ¢)|lm.n.co = (@, b, —C)|lm.n.c0 fOr every
a,b,c € R. This symmetric property shows that the projection of the unit ball
onto the ab-plane is just the intersection of the unit ball with the ab-plane, i.e.,
the projection is the set {(a,b) € R?: |(a, b, Ollmn.0c0 < 1} and, furthermore,
the projection is bounded by the curved defined implicitly by ||(a, b, 0)|[n.n.c0 = 1.
Thus, if [|(@, b, 0) .00 = 1,a # Oand —1 < 22 < ¢, then Z=mlal | nb m=
1. Solving b in terms of a in the latter we have b = =£I"(a) and, in particular, using
the restrictions on a and b we see that

b:F(a)providedae(— A )
m —+ mhg m-—n

and

b:—[‘(a)providedae( & ,L),
m—n n+mhio

where the limits in the first and second interval are obtained by intersecting the
straight lines b = —%'a and b = mT)‘Oa withb = —1—-agandb=1—a.

On the other hand, if ||(a, b, 0)[|;.n,00 = 1 and eithera = O or ;’1—'; € (—oo, —1]U
[Ag, 00), then |a + b| = 1. Now we have that b = £1 — a and, furthermore, using
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b
b= g2
n
b=TY(a)
1%
b=-1—-a k
a
v b=1-a
p— M 14
n
b=—-T(a)

Fig. 3.1 Projection of B3 | o onto the ab-plane. The general case when m,n € N are odd with
m > n is of similar shape

the restrictions on a and b we see that

b= —1—aprovideda € [—L, L],
n+miy m—n

or

b:l—aprovidedae[— " ,L:|,
m—n n—+mig

where the limits in the intervals are obtained in the same way as before. This
completes the proof. O

So far we have given an explicit formula for the norm || - ||,»,n,00 and a projection
of By,.n,00 Onto the ab-plane. Now we are capable of finding a parametrization of
Sin.n.00 and also we can obtain the values of the extreme polynomials of By, ; cc-

For the following theorem, it is very useful to know a more general result on real
normed spaces that states the following.

Lemma 3.2 (Muﬁgz and Seoane [50]) Ler E be a real normed space with norm
| - |g and define E = E @ R as the space of pairs (x, L) € E x R endowed with
the norm given by ||(x, M) |lg = lIxllg + Al Then, if f1(x) =1~ |lx||g forx € E
and f_ = — f4, we have
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(i) Sg = graph (f+ls, ) U graph (f-Is,)-
(ii) ext (BE) ={(x,0) : x € ext(Bg)} | J{£(0, 1)}, where 0 denotes the null vector
in E.

Proof 1t is easy to see part (i) of the theorem. On the other hand, for part (ii), notice
that the graphs of f} and f_ are affine on half-lines coming from the origin in E.
Thus, the extreme points of the unit ball of E are inside the set of points where
the graphs of the functions f and f_ intersect, i.e., the extreme points are either
in the set {(x,0): x € Sg} or they are one of the points £(0, 1). It is easy to
prove that if x ¢ ext(Bg), then (x,0) ¢ Bg. Hence, it is enough to prove now
that ext(Bg) = {(x,0): x € ext(Bg)} U {£(0, 1)}. Firstly, since the hyperplane
M = {(x,=£1): x € E} intersects the unit ball of E at +(0, 1), we have that the
points £(0, 1) are extreme points of Bz. Indeed, if (y, £1) € M N By, then 1 <
Iy, £Dllg = llylle + 1, which implies that y = 0. Lastly, if x € ext(Bg), then
(x, 0) is an extreme point of Bz by definition of extreme point. O

Theorem 3.3 (Muiioz and Seoane [50]) Let m,n € N be odd with m > n. If for
every (a, b) € R* we define

(m=mlal |nb|m=m b
f+(a,b):{1_%.|% ifa#0and —1 < 22 < ho,

1 —la+ b| otherwise,

and f_ = — fy (notice that f1(a,b) =1 —|(a,b,0)|m.n.00) then

(i) Sm‘n,oo = graph (f4|v) U graph (f—|w) .
(ii)

m n n n
eXt(Bm)n’oo)Z + t,—w'tm,o . <t ———
(m—n)m nm m—n n+ mig

J=0.0. 1}

Proof Let us endow the space £ = R? with the following norm: ||(a, b)| =
[(a, b, 0)|lm.n.00 for every (a, b) € E.Itis straightforward to prove that the unit ball
of E is the projection of By, ,, oo onto the ab-plane and the set of extreme of points of

By.n.00 s the set {:I: (t,-T@®): ;5 <t = nJr"TM)

to the normed space E and the fact that ||(a, b, ¢)|lm.n.co = (@, b, 0)|lm.n.00 + ||
for every (a, b, c) € R3, we have the desired result. O

]. Thus, by Lemma 3.2 applied

Figure 3.2 is a sketch of B, ;.oo whenm =3 and n = 1.
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Fig. 3.2 Unit ball of 3 | o (R). In the general case the unit ball of P, ;, oo (R) withm, n € N odd
and m > n has a similar shape

3.1.2 The Geometry of By, 00 for m Odd and n Even

In this case we consider the space R> endowed with the norm | - lim.n,00 Where
m € Nis odd and n € N is even. As in the previous case we begin by showing an
explicit formula for the norm || - ||4,1,00-

Theorem 3.4 (Muiioz and Seoane [50]) Let m,n € N with m odd, n even and
m > n. For every (a, b, c) € R3 we have

(@, b, ) llmn.co = max{lcl, la] + b+ cl},

that is

b
Ic] ifc;EOand‘——i—l
c

a
<1-|2
C

: (3.2)

||(a7 bv C)”m,n,OO =
la] + |b + c| otherwise.

In this case, By, n.00 is symmetric with respect to the bc-plane. But instead of
projecting By, , oo onto the bc-plane (in contrast with the argument used in the
previous case), we are going to project By, , oo onto the ab-plane.

Let us define the sets

U={@hb)eR: |a|+|b+1] <1},
V ={(a,b) eR*: |b| < |a| <1}, and
W ={(a,b) eR*: |a| +|b—1] < 1}.

Figure 3.3 shows what U, V and W look like when m = 3 and n = 2.
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Fig. 3.3 Projection of B3 2
onto the ab-plane. The
general case when m is odd
and n is even has a similar
form

Theorem 3.5 (Muiioz and Seoane [50]) Let m,n € N with m odd, n even and
m > n. The projection of By, .« onto the ab-plane is the set U UV U W.

We have an explicit formula of the norm || - ||;;,.n,00 and we know the projection
of Byy.n.0o Onto the ab-plane. Now, we can find a parametrization of S, ,, oo and
obtain the extreme points of By, ;. cc-

Theorem 3.6 (Muiioz and Seoane [50]) Let m,n € N with m odd, n even and
m > n. For every (a, b) € R?, we define

fia,b) =1—la| —b,
g+(a,b) =1,

and also the functions f_(a,b) = —f+(a,—b) and g_(a,b) = —gi(a,b). We
have that

(i) Sm.n,00 = graph (g+|y) U graph (g |w) U graph ( f1|vuw) U graph (f~|uuv) -
(ii) ext (Bumn,00) = {£(0,2, 1), (1,1, —1), £(—1,1,—1), £(0,0, —1)}.

Figure 3.4 shows a sketch of the unit ball of P32 o (R).

3.1.3 The Geometry of By, o0 for m Even and n Odd

In this case we study the space R endowed with the norm || - || m.n,00 Where m is
even and 7 is odd. We start off with the explicit formula of the norm || - [l,..00-
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1.0 4
0.8 -
0.6
0.4 1
0.2 {
C 0.0
-0.2]
—0.41
-0.6
—-0.81
-1.0]

Fig. 3.4 Unit ball of P32 0 (R). The general case for m odd and n even looks similar

Theorem 3.7 (Muiioz and Seoane [50]) Ifm,n € N are such that m is even, n is
odd and m > n, defining I, , as the set of triples (a, b, c) € R3 such that

c 1|{m—n (nb =1
<landl+ - < = — —
a 2 n ma

a#0,

we have that

(m—n)a ﬂ mn—ln _ ‘ f( b ) .[
s c| if(a,b,c) € Iy,

(@, b, &) llmn.co = ‘ 7 (na) " (3.3)
la + c| + |b| otherwise.

Remark 3.2 (Muiioz and Seoane [50]) In Theorem 3.7, if n € Nis odd and m = 2n,
then the formula (3.3) is given by

2| if a0,

la +c| +|b| otherwise.

B <tand g1 <3 (|41

”(as b7 C)”Zn,n,oo = i

(3.4)
for all (a, b, c) € R3. Moreover, if n € N is odd and (a,b,c) € R3, then, by using
the fact that x" is a bijection from the interval [—1, 1] into itself, we obtain the
following equality

(@, b, ¢)ll2nn,00 = max{lax® + bx" +c|: x € [—1, 1]}
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= max{|ax® + bx +c|: x € [~1, 11} = [(a, b, ¢) |k

Consequently the calculations done with the norm || - ||24,2,00 When 7 is odd can be
obtained simply by using the norm || - ||g.

We are interested in obtaining a parametrization of S, , o to show a sketch of
Sin.n.00 and to find the extreme points of By, ,, . To do so, we project B, ,, « onto
the ab-plane.

Consider the following equation

m

>m" —2—a—b, (3.5)

nb

ma

(m —n)a <

n

where m,n € N with m > n. The Implicit Function Theorem states that formula
(3.5) defines implicitly a unique differentiable curve b = I', ,(a) on (0, co) such
that I'y, ,(2) = 0and I'y, ,(n/m) = 1. Also, if n is odd and m = 2n, then

Tounn(a) = 2(v2a — a).

Now consider the following sets in the ab-plane

Unn=1(a,b) e R?:a < 0and |b|] < min{M, Fm,,,(|a|)”,
n

n n m|al
Vin = (a,b)e[—g%]x[—l,u:wm ; }

Wyn = {(a,b) € R*:a > 0 and |b| < min {M, Fm,n(|a|)” .
n

Figure 3.5 shows what Uy, ,,, V2,., and W2, , look like when n € N is odd.

Theorem 3.8 (Muiioz and Seoane [50]) Let m,n € N with m even, n odd and
m > n. The projection of By, n.o0 onto the ab-plane is the set Uy, , U Vi y U Wy, .

Finally, we can give a parametrization of S;, , « and show the extreme points of

Bm,n,oo'

Theorem 3.9 (Muiioz and Seoane [50]) Let m,n € N with m even, n odd and
m > n. If for every (a, b) € R? we define

fe@by=1—a—1bl, f-(a.b)=—fr(~a,b),

and for every (a, b) € R? with a # 0 we define
(m —n)a nb
gila by = 22 (—

) =1, g_(a.b)=—g4(—a,b),
n ma
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(—1/2,1) (1/2,1)
b= r?n.rr( |ﬂ|}

b= F'Eri_ri(a')

WQn.,_n. 2,0)

V_) T,mn b

= —Tonpn {'-q)

(=1/2,-1) (1/2,-1)

Fig. 3.5 Projection of B, ;o Onto the ab-plane with n € N odd

then

(i) Smnoo = graph (f1Iw, ,uv,,) Y graph (f=|v,, ,0V,..) U graph (g4+lw,,,) U
graph (g—|u,,.,)-
(ii)

ext (Bun.oo) = {:I:(z, AT (), 1 — 1 — Ton(1): 1 € [% 2]]

J=0.0. 1}

Corollary 3.1 (Muiioz and Seoane [S0]) Let n € N be odd. If for every (a, b) €
R? we define

frla,b)=1—1b|—a, f-(a,b)=—fi(=a,b),

and for every (a, b) € R? with a # 0 we define

b2

g+(a,b) = Pl 1, g-(a,b) =—g4(—a,b),
a
then
(i)
Son.n,00 = graph (fi|vy, ,uws,,) U graph (f=|us, ,UVan.,)
U graph (g+|W2n,n) U graph (g_|U2n,n)'
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N
> X‘\\\\§\§\
C 00 Q&\\\\Q\\\\
| S

N\
\\\\:\
N

SN

1.0

Fig. 3.6 Unit ball of £, »,c0(R) when n € Nis odd
(ii)

ext (Bay n.o0) = {j: (n2(Var—1) 141 -2v2) i1 e [% 2”

0,0, D).

Figure 3.6 shows an approximation of how By, » o looks like when n € N is
odd.

3.1.4 The Geometry of B, ;0 for Even Numbers m, n

Consider the space R? endowed with the norm || - [lm.n.00 Where m, n € N are even
and m > n. The biggest difference in this case with respect to the previous ones is
that there is no symmetry with some coordinate plane, however the way to tackle
this case is very similar to the immediate previous one. Let us begin by giving an
explicit formula of || - [|;.1,00-

Theorem 3.10 (Muiioz and Seoane [50]) For every m,n € N with m and n even
numbers and m > n, let us define I, ,, as the set of triples (a, b, ¢) € R3 such that
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m
> m—n

nb b b 2c m—n (|nb
a #0, 0<——<1and I+—-+[|14+—-||+—< —
a a

ma a n ma

We have that

)(m ma (| b |\ c’ if @, b, c) € T

(3.6)
|atb 4 c| 4 |adb| otherwise.

I(a, b, C)”m,n,oo =

Proof Let (a,b,c) € R? and let P(x) = ax™ + bx" + ¢. Notice that if a = 0
or b = 0, then we have the desired result. Thus, assume that a £ 0 and b # 0.
Since || - |lm.n,00 18 symmetric with respect to the origin, we can also assume that
a > 0. On the other hand, since P(x) = P(—x) (m and n are even), we can restrict
our attention to the interval [0, 1] instead of the interval [—1, 1] in order to find the
maximum of | P (x)| in the interval [—1, 1]. Thus, the maximum of | P (x)| is attained
at either one of the endpoints of the interval [0, 1] or at one of the critical points of

P in (0, 1). In fact, there is only one critical point ¥ = (—2& )’” " provided that

— n”TZ € (0, 1) (this critical point has been found by solving the equation P’(x) = 0).
Furthermore,

which shows that if P(x) > 0, then max{|P(0)|, |P(1)|} > |P(x)|. Hence,

nb

ma

PE) =c_ MTma (

n

max{|P(0), |[P(1)], |P(®)|} if0 <% < 1and P(¥) <O,

”P”m,n,oo - )
max{|P0)[, |[P(D]} otherwise.

Notice that max{| P(0)|, |[P(1)|} = max{lc|, |a + b + cl} = |%52 +¢[ + |452]. I
is enough to show when max{|P(0)|, |P(1)|} < |P(x)| = —P(x) or, equivalently,

when
m
m-—n
—c.

Since a # 0, we can multiply the previous inequality by % and, then, add 1+ 5’—1 + %—;
to both sides, which gives us
m—n
n ma

b\ b b
" ) +1+——‘1+—'. (3.7)
a a

nb
ma

a+b+
c
2

a—i—b‘ (m—n)a(
<
2

n

b 2c b 2c
1+—4+—4+|14+-4+—
a a a a

Notice that the right-hand side of inequality (3.7) is non-negative since it is equal to
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1 (|2 ) ’—%ﬁ%+q if14+2 <o,
"GMD if1+3 20,

ma

and the mapping i (x) =
Hence, inequality (3.7) is in fact of the following form

1 b b 2c m-—n nb
—1+-4+1+—-||+—< —
2 a a a n ma

_m_
) m—n

which finishes the proof. O

Now let us define the following two curves

m

m \m la|m n
o= (22 (2

Am,n(a) = _Fm,n(|a|)»

and

where b = Ty, (a) for every a € (0, 00) is the curve given by (3.5) using the
Implicit Function Theorem. Notice that according to the Implicit Function Theorem,
b = Ap.n(a) for every a € (—o0, 0) is the unique differentiable curve passing
through (-2, 0), satisfying the equation

nb

ma

(m —n)a (

n

)mnz—z—a—h (3.8)

If m = 2n, then both curves Y, ,(a) and A, ,(a) have an explicit formula given
by

T20.0(@) = 2y/2la] and Azy, (@) =2 (Jal — y2lal) .

The curves b = Yy, 4(a) and b = A, ,»(a) with a € (—o0, 0) intersect in one
single point (Yo, —yo) such that

In fact, if m = 2n, then yo = —&. Now if we also consider the curve b = 2 —a, then
this curve intersects b = Y, ,(a) with a € (—o0, 0) at one single point (y;, v1) =

( —2n ) Notice that, if m = 2n, then (y1, v1) = (-2, 4).

m—n’ m—n
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Now, let us define the following sets contained in the ab-plane

U = {(a, b)eR2:aelyy, 0), max{0, A, ,(a)} <b <min {_n—ma Tm,n(a)} } :

Winn = { (@) €R?:a € (0, =y, — max(0, Apn(@))

C[-m
5b§—m1n!—a,Tm,n(a)”’
n

V,,ll’n {(a,b)eRz:ae[yl,ﬂ,max{O,ﬂa}§b§2—a},

n

Vo y = (a,b)GRziaG[)/1,2],—2—aSbfmin{O,ﬂa}},
' n

Vien =V, UV .

Figure 3.7 shows what Us,, ,,, V2,., and W2, ,, when n € N is even, look like.
The projection of B, ,, oo Withm, n € N even can be stated in the following way.

(_87 8)

b = Agn,n(a)

(87 _8)

Fig. 3.7 Projection of By, ;o Onto the ab-plane with n € N even
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Theorem 3.11 (Muiioz and Seoane [50]) Ifm,n € N are even with m > n, then
the projection of By, n.co onto the ab-plane is the set Uy, , U Vigp U Wiy .

Proof By symmetry, we can restrict our attention to three different cases depending
on the value of (a, b) € R2:

(@) Ay ={(a,b) eR*>: b=2—aanda € [y,2]},
(b) Ay ={(a,b) € R*: b ="y ,(a)anda € [y, 1)},
() A3 ={(a,b) eR*: b= A, (a)anda € (yo, —2)}.

We want to prove that if (a, b) belongs to one of these sets and ¢ € R is such that
(@, b, ¢)|lm.n.0o = 1, then c is unique.

Firstly, assume that (a,b) € Aj. Notice that if a < 0, then —Z—Z > 1
which implies that (a, b, ¢) ¢ J,.,. Furthermore, if a = 0, then we also have
that (a,b,¢) ¢ Jm.n. Hence, on the one hand, if a < O, notice that 1 =
@, b, O)llmmoe = |2 +c|+|“L|. Thus, ¢ = —1 since a +b = 2. On

the other hand, if a > 0, then —% < 1. Suppose that (a,b,c) € Jp.,, then

| e (|85 )75 — | = 1 if, and only if,

ma

m

o e ()

n ma

Since a,b > 0,b =2 —a and (a, b, ¢) € J,, », notice that we have the following
inequality

2 m—n (nb\n7

—(1+4¢) < — .

a n ma
It can be easily seen that the last inequality is not satisfied for any of the two possible
values of c. We have reached a contradiction, thus (a, b, ¢) ¢ J,, . This implies

that since [[(@, b, ¢)llmn,00 = 1 and (a, b, ¢) & Ty, then |“F2 +¢| + | 52| = 1,

and, by the calculations previously done, we have that c = —1.

Secondly, assume that (a,b) € Aj;. Notice that in this case —;‘1—{’1 e (0,1).
Assume first that (a,b,c) € Jp.,, then, since |[(a,b,)llmnco = 1, ¢ =
(n=ma (| b ym=n 4 ] = —2 + 1. However, in both cases of c, the inequality

= =1 (|22 )™ is not satisfied and we have a
contradiction. Thus, (a,b,c) ¢ J,,. Notice that in this case a + b > 0, and

b fieb]+ 2 < oman

therefore, by solving the equation ‘# + c’ + ‘#] = 1, we have thatc = —1 or
¢ = —1 — a — b. But the latter form of ¢ guarantees that (a, b, ¢) € J}, ,, which is
a contradiction. So, ¢ = —1.

Finally, assume that (a, b) € A3. Once again we have that — r'r’l—l; € (0, 1). Assume
that (a, b, ¢) ¢ Jm.n, then in this case, using the same procedure as in the previous
case, but now using the fact thata + b < 0, we have thatc = lorc = —1 —a — b.
However, both forms of ¢ guarantee that (a, b, ¢) € J,, , which is a contradiction.
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Therefore, assume that (a, b, ¢) € . ,. Since ||(a, b, ¢)|lm,n,00 = 1, we have that
¢c=—1—a—borc = —-3—a— b. However, the latter form of ¢ implies that
(a,b,c) ¢ Jm.n and we conclude thatc = —1 —a — b. O

To this end let us give a parametrization of S, , .o When m,n € N are even,
which is used to sketch By, .o and also show the extreme points of By, ;, co-

Theorem 3.12 (Muiioz and Seoane [S0]) Let m,n € N be even with m > n. If for
every (a, b) € R? we define

frlab)y=1-

f—(av b) = _f+(_a’ _b)’

a+b a—+b
2 2 7

and for every (a, b) € R? with a # 0 we define

co(a.b) = M(

m

)'"" 1 (@ b) = —gi(—a, —b),

nb

n ma

then

(i) Smn.co = graph (frlw,,,uv,,,,) U graph (f-lu,,,uv,,,) U graph (g+1w,,) U
graph (g* | Um,n)'
(ii)

ext (Bm,n,oo) = {i(sa Am,n(s)a —1—-s5- Am,n(s))5 s € [yo, _2]}

U {=E =Y. D £ € (=11, =01} (=0, 0, D).

Proof Notice that part (i) is a direct consequence of Theorems 3.10 and 3.11. For
part (ii), it is easy to see that fi, f_, g+ and g_ are affine half-lines radiating
from the origin, which directly implies that the candidates to being extreme
points are the points (0,0, f41(0,0)) = (0,0, 1), (0,0, f~(0,0)) = (0,0, —1)
and the points where the graphs of the functions fy|w, ,uv,.» J=|Un,UVia
&+|W,, and g_ly, , intersect along a non-affine line. Thus, we only need to
find the intersection of the graphs of the functions. To do so, notice that by
symmetry, we can suppose that a + b < 0. On the one hand, it is easy to
prove that graph (f4 1w, ,uv,,,) N graph (£-[v,,,0v,.,). graph (filw,,0v,,) N
graph (g_ |Um.n) and graph ( /- |Um,nUVm,n) N graph (g+|Wm‘n) are the segments (thus
contained in affine lines) {(a, =2 —a,1) e R3: a € [y1,2)},{(a,0,1) e R*: a €
[y1,0)} and {(a, —%a, —1+ %a) eR3:q € (0, 2]}, respectively. On the other
hand, it is also easy to prove that the intersection of the graphs of g |w,, , and
g-lu,,., is the empty set. Thus, the only other possible extreme points in By, ,,, o are
the following cases:

(a) graph (f|w,.,uv,,) N graph (g+lw,,,) = graph(f) N graph(g1) N Wy,
(b) graph (f-|y,,,uv,,,) N graph (g—|v,,,) = graph(f-) N graph(g_) N Up.n.
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In case (a), from equation f; = g4 along the set W, , (which guarantees that
the b coordinate is negative), we have that b = -7, ,(a) with a € [—y1, —p0l.
Therefore, the graphs of the functions f4|w,, ,uv,,, and g+|w,,, intersect along a
non-affine curve of the form (f, —=Yn (1), fr (£, =Ymn(®))) = (¢, =T n(®), 1),
where ¢ € [—y1, —pol. In case (b), from f_ = g_ restricted to the set U, ,, which is
equivalent to Eq. (3.8), we have that the graphs intersect along a non-affine curve of
the form (s, Apn(8), f= (S, Amn(5))) = (5. Amn(s), =1 —5 — Ay n(s)), where
s € [y, 2].

Finally, for each one of the previous points p that are candidates to extreme
points, it is easy to construct a plane IT C R? such that TT N By, ;.o = {p}, which
guarantees that p is an extreme point (this is left as an exercise to the reader) and
the proof is complete. O

Corollary 3.2 (Muiioz and Seoane [S0]) Let n € N be even. If for every (a, b) €
R? we define

frlab)y=1-

f-(a,b) = —fy(—a, =),

a+b a+b
2 2
and for every (a, b) € R? with a # 0 we define
b2
g+(avb):4__1v g_(a,b):—g+(—a, _b)v
a
then

(i) S2nn,00 = graph(filw,, ,uvs,,) U graph(f-|u,, ,uvs,.,) Y graph(g+|w,,,) U
graph(g—|u,,.,)-
(ii)

ext (Ban,n,o0) = [ﬂ: (t, 2 (\/2_t— t) 41— 2\/2_t) (1 e 2, 8]}
U {j: (s, 22, 1) sel2, 8]} |Ji£0.0, D).

Using the previous parametrization we show in Fig. 3.8 a sketch of By, » o0 With
n € Neven.

3.2 On the Real Line with the L ,-Norm

Let us consider the space of trinomials with real coefficients of the form P(x) =
ax™ + bx" + ¢, endowed with the L ,-norm (where 1 < p < 00). We denote this
normed space of polynomials by #;, . (R). Once again, the mapping T defined at
the beginning of Sect. 2.1, can be used to represent each trinomial ax™ + bx" + ¢
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Fig. 3.8 Unit ball of P2, .00 (R) with n € N even

of the space Py, 5, p (R) in R3. To do so, we begin by defining the norm || - ||, 5, p in
R3 by

1

1 P
1@ b, )l p = ( / ax™ 4 by —i—cI”dx)
-1

for every a,b,c € R. In this case once again, the mapping T is a topological

isomorphism between $y, ., (R) and (R3, || - i, p)-
In this section, we give a parametrization of the unit sphere S;, ,, , of the normed
space (R37 - N, p)-

The main results of this section are from [48] where the authors obtain an explicit
formula for || - ||;5.»,2. In this survey we go deeper in this study by finding an explicit

formula for || - [l,u,n,, When p is even. It is interesting to observe that the norms
Il - llm,n,p are uniformly convex and therefore all the elements of the unit sphere of
the space @3- m,n,p) are extreme points of the closed unit ball.

Theorem 3.13 Let m,n € N and p € N even. For every (a, b, c) € R3 we have
that

p a'bick
b, =12 mitni+1
l(a, b, lm.n.p l;{ (i, j, k) mi +nj+1

where (l. P k) denotes %,'k, and the sum is taken over all i, j, k € N U {0} such that

i+ j+ k= pandmi+ nj is even.
Proof Let (a,b,c) € R3, then
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1

1 »
(@, b, ) mn,p = (/ lax™ + bx" + CI”dX>

1

1
1 P
= (/ (ax™ + bx" —i—c)pdx) .
-1

By the trinomial expansion, we have

= |-

] . .
(a, b, ) lmn,p = /1 Z < I.jk>(axm)l(bx")1ck dx

i.j.keNUfo} N
i+j+k=p

1
_ Z ( p )aibjck/ xmi+”jdx
k -1

i
i,j.keNU{0} Js
i+j+k=p

S| =

ik
— Z p a'blc I:xnzi+izj+l]l dx
i,j,k)mi+nj+1 -1

i, j,keNU{0}
i+j+k=p

=

i 1, Kk
_ Z p a'b’lc [1 . (_l)mi+nj+1]dx
i,j,k)mi+nj+1

i, j,keNU{0}
i+j+k=p

_ 22 )4 a'blck
i,j,k)mi+nj+1

i,j.k

where the last sum is taken over all i, j, kK € NU {0} such thati 4+ j + k = p and
mi + nj is even. O

Corollary 3.3 (Muiioz et al. [48]) For every m,n € N with m > n and every
a,b, c € R, we have that ||(a, b, c)||3n,n)2 is equal to

z,z,fil + 231[3:1 +2c%2 + mi‘;ﬁrl if m and n are odd,
% + 23113:1 +2¢2 + ri(fl if m is even and n is odd,
251‘{;1 + 23113:1 +2¢2 + % if m is odd and n is even,
231“;1 + 2311231 +20% + 38 + 24 4 A2C ifm and n are even.
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We also have an explicit formula for || - ||;n.n.1-

Theorem 3.14 (Muiioz et al. [48]) Ifa,b,c e R, A = b%—4ac and, when A > 0,
b f b+JK

ry = andry, = , then
l(a, b, c)ll2,1.1
2atbe ifa=0o0rA <0or min{|r], |r2]} > 1,
3
o 3 2 2 .
= | den@Cathe ot s ifa #0, A > 0and max{|ri|, |r2|} > 1,
» 3
i —b34+6a2 2 .
sign(b)(—b +6ﬁc;2b+6abc)+A otherwise.

We now proceed to show the projection onto a coordinate plane of the unit ball
of the spaces Py, » 2(R) by defining the following sets:

2
{(a By eR2: 2% Lop2 4 4ﬂ1<1},

2k + 1 k +
where k € N,
2 2
a b 2ab 1
Fpn=1{(a,b) e R?: <t
mn {(a ) € 2m+1+2n+1+m+n+1—2}
and
2 2
m n
Gpmn=1(a,b)eR?: 2 b2
e {(“ ) mi2em+ 0 T arzant
2mn 1}
+ ab < —t.
m+n+1DHm+DE+1) 2

Notice that Ex, Fy, » and G, , are in fact ellipses.

It is important to mention at this point that the following two results can be found
in [48] but only for the cases when m and n have different parity. The case when
m and n have the same parity, can be easily deduced from Corollary 3.3 and is
presented in Theorems 3.17 and 3.18.

Theorem 3.15 (Muiioz et al. [48]) Letm,n € N withm > n.

(i) If m is even and n is odd, then the projection of By, .2 onto the ac-plane is the
set E,,.

(ii) If m is odd and n is even, then the projection of By, .2 onto the be-plane is the
set E,,.

By knowing the projection of the unit ball onto some coordinate plane, we can
find a parametrization of the unit sphere and therefore the extreme points of the
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unit ball. As pointed out right before Theorem 3.13 recall that we always have
ext (Bu,n,p) = Sm.n,p due to the uniform convexity of the spaces (R, || - lm.n, p)-

Theorem 3.16 (Muiioz et al. [48]) Let m, n € N withm > n, and let us define the

mappings
2n +1 2a? dac
,C) = 1- —2¢2 - ,
Jmn(@. ) \/ 2 < mt1 C m+1>

2n+1 2b? 4bc
b,c) = 1 - —2c2 — .
8mn(b, ) \/ ) < m 1 c o 1)

(i) If m is even and n is odd, then

We have

Sm,n,2 = graph (fmn |Em) U graph (_fmn |E,,,)

and ext (anz) = Smn2
(ii) If m is odd and n is even, then

Sm,n,2 = graph (gm,n |E,l) U graph (_gm,n |En)

and ext (Bm,ng) =Sunn
Theorem 3.17 Let m,n € N withm > n.

(i) If m and n are odd, then the projection of By, , 2 onto the ab-plane is the set
Fin n.

(ii) If m and n are even, then the projection of By, 2 onto the ab-plane is the set
Gumn.

Proof Assume that m and n are odd natural numbers (the case when m and n are
even is done in a similar way). We want prove that if (a, b) belongs to F;,, , and ¢ €
Ris suchthat ||(a, b, ¢)|lm,n,2 = 1, then |c| is unique (notice that we have considered
|c| instead of ¢ since ||(a, b, ¢)|lm,n2 = |I(a, b, —¢)|lm 0,2 by Theorem 3.3). Thus,
assume that (a,b) € F, , and ¢ € R is such that ||(a, b, ¢)|n.n.2 = 1. Then,

— 2 _ 2% 2? 2 4ab . .
L =1a,b,0)l; 02 = 3m77 T 3057 T 2¢” + 77 Solving ¢ in terms of a and

b in the latter equation we have that

c=:i:\/l a2 b2 2ab

2 2m+1 2n4+1 mAn+1

Since (a, b) € Fy, », we have that ¢ € R and |c| is unique. |

Theorem 3.18 Let m,n € N withm > n, and let us define the mappings
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ho(a.b) 1 a? b2 2ab
a,b)=,- — — — ,
+ 2 2m+1 2n4+1 man+1

a b
k+(aa b) = - 1 - + vV (Sm,n,

m+ n+1
a b
k_(a,b)=——— — —— — /Sn»
@ b) m+1 n+1 e
where
1 2 2
Sun == — 7 a? - T b?
T2 m+1D)2@2m+ 1) (n+ 1)22n+ 1)
2mn
— ab,
(m+n+1im+DxE+1)
and h_ = —hy. We have

(i) If m and n are odd, then Sy, > = graph (hyl|F,,) U graph (h_|f,,) and

ext (Bm,n,Z) = Sm,n,2-
(ii) If m and n are even, then Sy, 2 = graph (k4|g,,,) U graph (k_|g,,,) and

ext (Bm,n,Z) = Sm,n,Z-

Proof 1t is easy to see that the result is a direct consequence of Corollary 3.3 and
Theorem 3.17. |

3.3 On the Real Plane

In this section we will study the geometry and extreme polynomials of the space of
real homogeneous trinomials over the real plane, i.e., polynomials of the form

P(x,y) = ax™ + bx""y" + cy™,

where (x, y) € R2,a,b,c € Rand m,n € N are such that m > n; endowed with
the supremum norm over the unit square [—1, 1]%. We will denote this space by

Pf’mn’oo(RZ). As in the previous sections, the mapping 7 defined at the beginning
. h . . . .
of Sect. 2.1 and considered over Pm,nm(ﬂy) is a topological isomorphism between
o0 ®?) and R, [ - llm.n,00,2,), where
(@, b. )llm.n.co.2.n = sup{lax™ + bx""y" + cy™|: (x,y) € [-1, 1]},
We will denote the unit ball and the unit sphere of R3] - lm.1.00.2.1) by Bf;l,n,OO,Z
and S}r’n’n’ o0.2> TESpectively.
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Analogously to Sect.3.1, we will distinguish several cases depending on the
parity of m and n. To be more precise, we will study the cases when m = 2n
and when m is odd.

3.3.1 The Geometry of By ;00,2 for n Odd

Let n € N be odd. It is straightforward to see that
R:[—1,11*> = [—1, 1]* with R(x, y) = (", y")
is a bijection since n is odd. Hence,
@, b. )llannco2n = supllax® + bxy + cy?|: (x,y) € [=1, 112},

Therefore observe that the space Pgn,n’ Oo(RQ) is isometric to P (zﬁgo) which will
studied in Sect. 5.2.

3.3.2 The Geometry of By, 5,00,2 for n Even

Let n € N be even. Although the function R defined in Sect. 3.3.1 is not a bijection
in the case when n is even, note that R maps [—1, 17?2 onto [0, 1]%. Thus, we have
that

(@, b, ) ll2nn,00,2,n = sup{lax? + bxy + cy?|: (x,y) € [0, 11%}.

In this case the space Pg‘n’n, Oo(]1%2) is isometric to the space of polynomials ¥ (ZD)

which will be analyzed in Sect. 4.2.

3.3.3 The Geometry of By, 00,2 for m Odd

Let m,n € N be such that m > n and m is odd. The case when n is odd can be
reduced to the case when 7 is even since it is easy to see that

l(a, b, C)”m,n,oo,Z,h = |l(c, b, a)”m,mfn,oo,Z,h’

for every (a, b, ¢) € R3.
Assume that m is odd and » is even with m > n. Recall from Lemma 3.1 that the
equation
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In +myl = (m —n)|y|m—n
has a root 19 € (—2%,0). Clearly, Ao depends on the values of m and n which
justifies the notation Ag(m, n). Let us consider wo = po(m,n) = ro(m,m — n)

which, by definition, belongs to the interval (”r_n’” , O) and is a root of

lm —n+my|=nly|».

The following theorem provides an explicit formula for the norm || - |[;11.1,00,2-

Theorem 3.19 (Jiménez et al. [35]) Let m,n € N be such that m > n, m is odd

and n is even. Take the number Ky, = "~ (%)7 the interval I, , = [n1, 2],
where ) = — -,y = - \Lo, and the sets Ay, Fu.n, Bm.n and B (see Figs. 3.9

and 3.10) defined as

Apn = {(x,y) eR2:x €lypand|yl > 1— Km’n|x|%},

2
15— —
y=1- K,,,\,Jzﬁ
ik |
05 —
T
0
T
05— —
A+ —
=—(1— Kpnlz|
1.5+ —
2 I I I
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Fig. 3.9 Regions appearing in the definition of || - ||,4,1,00,2 When m is odd, n is even, m > n and

L < 2. The figure corresponds to the values m = 3 and n = 2
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15 Am.n

y=1— K|z

05

-0.5

Y= _{1 T I\'m.ul‘r _)

2 L 1 I ]
25 -2 -15 -1 -0.5 0 05 1

Fig. 3.10 Regions appearing in the definition of || - [[z,1,00,2 When m is odd, n is even, m > n and

% > 2. The figure corresponds to the values m = 5 and n = 2

Fun={x,y) € R%: x ¢ Iy ,and 1 — Km,n|x|'nﬂ <yl <1—1|14+x|},

B={(x,y) e R*: |x + 1]+ |y| < 1},

By, = B\ Foun.
Then,
lal | m-mb| " : b oc
ol N@=mb " el ifa #Oand (2,€) € Ap,
€@, b, ) llmn,co2h = 1 |a| ifa#0and (2,€) € Bun,

la + b| + |c| otherwise.



3.3 On the Real Plane 37

Theorem 3.20 (Jiménez et al. [35]) Ler m,n € N be such that m > n, m is odd

n
and n is even. Consider the numbers ay = " and Ly, = = (%)"’ If

m m—n
n < 2, let

Run= {(a,b) eR?>: —1<a<0and ma <b < min[ma, Lm’,,|a|mm;n”,

Unn = {(a,b) cR?: —ag <a < 1and max{nia,na} <b <1 —a},

Sm,n = _Rm,n’
Vm,n = _Um,n-
If’f—l > 2, let

Rm,n:{(a,b)eRz: —15a§0and;7m<b<ma},

Unn = {(a,b) eR?: —1 <a <1and max{nia, ma} <b <1 —a},
Sm,n = _Rm,ru
Vm,n = _Um,n~

Then, the projection ofBZm,oo’2 onto the ab-plane is the set Ry, , U Spyp U Upy p U
Vin,n (see Figs. 3.11 and 3.12).

h

Finally, the following theorem shows a parametrization of S,

h

m,n,00,2°

, as well as
the extreme points of B

Theorem 3.21 Let m,n € N be such that m > n, m is odd and n is even. Define
the function

m
n

- Km,n|a| |§ if(a, b) € Rm,n U Sm,ns
1_|a+b| lf(asb)EUm,nUVm,ny

Gm,n(av b) = {

and the set

r . {(=1,b,0) € R3:0 <b=<Lpupand|c| < Gnun(—1,b)} lf% <2,
" =1.b,¢) eR3:0 < b < 2and |c| < Gypn(—1,b)} ifm 2,

where Ky n, Lin.n, ao, N1 and 0y are as in Theorems 3.19 and 3.20. Then,

(i) Sl,/ln,n,oo,z = graph(Gm,n) ) graph(_Gm,n) ) 1—‘m,n ) (_Fm,n)-
(ii) If 7 < 2, then

eXtB), 000) = | (=11, 50 = Kpaltl ) 11 € =2, L)
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b
AR B mtrees = Lm.u
15} | men
\ —+b=Lyalal™

1l

05 A =
b= Naa—""
—1 1 a

0

0.5
b= -1

o
19}

-2 1.5 -1 05 0 0.5 1 1.5 2

Fig. 3.11 Projection of Bf:wl.oo’2 onto the ab-plane with m odd, n even, m > n and %t < 2. The
picture corresponds to the case whenm = 5,n =4

U {05, Lunals ) 5 € =1, —a01}
Ji1,0.0). 0.0+ D).

If % > 2, then

XUB),  000) = | (=11, (0 = Kpalt ) 11 € [=n2, =11

U{(:l:l, 0,0),(0,0£ 1), £(1, =2,0)}.

See Figs. 3.13 and 3.14.
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Fig. 3.12 Projection of Bﬁl, n.00,2 OVer the ab-plane with % > 2. The picture corresponds to the

case whenm =5, n=2

3.4 On the Complex Plane

A (trigonometric) trinomial in the field of complex numbers C is a trinomial of the
form:

P(z) = ae™1? 4 be*?? 4 et (3.9)
where a, b, ¢ are real numbers such that a,b,c > 0 and A; € Z for every i €
{1,2,3}. Let A = {M1, A2, A3} and consider P 5 (C) the vector space of trinomials
spanned by {e*: A € A} where e, denotes the function z > e*%. Let us also endow
P A (C) with the maximum modulus norm, that is, if P is a polynomial of the form
(3.9), then

[|P[la = max{|P(z)|: |z|] < 1}.

We will denote the unit ball of (P (C), || - ||a) by Ba.



40 3 Spaces of Trinomials

Fig. 3.13 Sketch of SZ 1002 Withm odd, n even, m > n and %> < 2. The picture corresponds to
the case when m = 5 and n’ = 4. The extreme points appear with a thicker line or big dots. The

surfaces that form Sm 1.00.2 re delimited by thin lines

Theorem 3.22 (Neuwirth [51]) A polynomial P € P p(C) of the form (3.9) is an
extreme point of By if, and only if, P is either a trigonometric monomial of the form
@) ywith o € Rand » € A or P satisfies that 1 — | P|* has four zeros that are
multiples of 27”, counted with multiplicities, and where d = gcd(Ay — A1, A3 — A2).
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Fig. 3.14 Sketch of Sh 0.2 Withm odd, n even, m > n and % > 2. The picture corresponds to
the case whenm = 5 and n = 2. The extreme points appear w1th a thicker line or big dots. The

surfaces that form Sm 1.00,2 are delimited by thin lines



Chapter 4 )
Polynomials on Non-Balanced Convex Qs
Bodies

Abstract We investigate some geometrical properties of polynomials of degree
2 on non-balanced convex bodies with respect to the origin in R?, providing an
explicit formula to calculate their norm and a full description of the extreme points
of the corresponding unit balls. We review all the cases considered up to now in the
literature in this context.

A convex body in a topological space is a closed convex bounded set with nonempty
interior. It is well known that in finite dimensional normed vector spaces, closed
bounded sets are, in fact, compact (in infinite dimensional normed vector spaces this
is not true in general). Therefore, a convex body over a finite dimensional normed
vector space is a convex compact set with nonempty interior. A symmetric (with
respect to the origin) convex body K in a normed vector space is a convex body
such that K satisfies the following condition: x € K if, and only if, —x € K.

Most of the norms that we are considering for polynomials in this expository
work are taken over the unit ball of a normed vector space. However, in this chapter,
we are interested in studying the geometry of normed vector spaces of polynomials
where the norm is taken over a non-balanced convex body in R2.

In a real finite dimensional space, we say that a polynomial P is a 2-
homogeneous polynomial on R2 if P(x,y) = ax? + by2 + cxy where a, b, c € R.
Let K be a non-balanced convex body and let P be a 2-homogeneous polynomial
on R? endowed with the following norm

|P|lxk = max{|P(x)| : x € K}.

The space of 2-homogeneous polynomials on R? endowed with the norm || - || x will
be denoted by P(*K).

Adapting the definition of the mapping 7 defined in Sect.2.1 to 2-homogenous
polynomials, we have a topological isomorphism between P(*K) and the normed
space (R3, || - ||x), where

@, b, O)llx = llax* + by + cxylik,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 43
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for any (a, b, ¢) € R. This means that the unit sphere can be represented in R3.
From now on, the sets Sk and Bg will denote, respectively, the unit sphere and the
unit ball of the space @®3 1 -11k)-

Many of the results of this chapter deal with 2-homogeneous polynomials of
degree 2. However, in Sect. 4.1, we will also study the extreme points of the unit
ball of the vector space of polynomials of degree at most 2 in R? endowed with the
supremum norm over a non-balanced convex body K. We will denote this space by
P> (K).

4.1 The Simplex A

Let A be the region in R2 enclosed by the triangle of vertices (0, 0), (0, 1) and (1, 0)
called the simplex. Notice that the simplex is a non-balanced convex body of R?.
We use the same approach that appeared in the previous chapters by showing first
an explicit formula for || - || A.

Theorem 4.1 (Muiioz et al. [46]) Let a, b, c € R. We have

b*4ac
4(a—btc)

max{lal, |c|} otherwise.

2(a—btc)

max{|a|,|c|,) } i]‘a—b+c;é0and0<ﬂ<1,

l(a,b,c)lla=

Proof Let (a,b,c) € R? and take P(x,y) = ax®> + by? + cxy. Notice that the
maximum of | P| defined over A is attained at the boundary of A or at an interior
point of A.

We will analyze first | P| over the boundary of A. On the one hand, notice that
the maximum of | P| over the segment {(t, 1 —¢): ¢t € [0, 1]} (which is one of the
sides of A) is equal to

M =max{(a —b+c)t>+ b —2c)+c: t €[0, 1]}

b*—4ac
4(a—b+c)

max{lal, |c|} otherwise.

} ifa—b4+c#0and0 < 5275 <1,

max{lal, lcl, | 2t

On the other hand, it is easy to see that the maximum of | P| over the segments
{(¢,0): t € [0, 1]} and {(O, t): ¢ € [0, 1]} are |a| and |c|, respectively. It is also easy
to see that max{|al, |c|} < M, hence the maximum of | P| over the boundary of A
is equal to M.

On the interior of A, notice that if P has a critical point (x, y) different from
(0,0), then P along the line {#(x, y): t € R} has the form P(rx,ty) = at’x* +
bt>y? +ct*xy = at?, where @ = ax’>+by® +cxy. Hence, necessarily we have that
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o« = 0 which implies that P (x, y) = 0. Therefore (x, y) is neither a local maximum
nor minimum unless P = 0. This concludes the proof. O

The second thing that is often used to parametrize S, is to project Bo onto a
plane. In this case, we project Bao onto the ac-plane. Interestingly, the projection
of B, onto the ac-plane is none other than the unit ball on R? endowed with the
supremum norm. The space R? endowed with the supremum norm will be denoted
by £2, and the unit ball and the unit sphere in €2 will be denoted by Blgo and Slgc ,
respectively.

Theorem 4.2 (Muiioz et al. [46]) The projection of B onto the ac-plane is ngo .

Proof Let (a,b,c) € Sa, then ||(a,¢)]lcc < |l(a,b,c)lla = 1. Hence, the
projection of B onto the ac-plane is contained in ngo . Furthermore, since it is easy
to see that the projection of Bo onto the ac-plane is a convex subset of the plane
{(a,b,c): b = 0}, it is enough to prove that Sggo is contained in the projection of
B, onto the ac-plane.

If (a,c) € Szgc, then

ac

max{l, atc

ifa+c#0and0 < % < 1,
1@, 0, ¢)l|a = } # a+e

otherwise.

Also, notice that s prws

concludes the proof since this implies that ||(a, 0, ¢)||a = 1. O

ﬂ‘<|a|51providedthata+c;é0and0< ¢ 1, which

Now we have the tools to give a parametrization of Sa and a characterization of
the extreme points of Bx. Figure 4.1 shows an approximate representation of the
unit ball of PCA).

Theorem 4.3 (Muiioz et al. [46]) If we define the mappings
fr@ o) =2+2/1-a)1—c)
and
f-(a,¢0)=—fi(=a,—c)=-2-2y/(A+a)d +o),
for every (a, c) € ngo and the set
F={(a,b,c)eR: (a,c) e Ségc and f_(a,c) <b < fi(a, o)},

then

(i) Sa = graph (fls, ) Ugraph (f-ls, ) UF.
(ii)
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Fig. 4.1 Unit ball of P(*A)

ext(Bp) = {j: (1, 22,20 +t),t) rel-1, 1]}
U{:t (s, 2 -2/2( 1), 1) s e[-1, 1]}
Jea, 1y,

Proof Part (i) is a direct consequence of Theorems 4.1 and 4.2. For part (ii), on one
hand, notice that every (ag, bo, cg) € F with f_(ag, co) < by < f+(ao, co) is in
the interior of the segment {(a, b, c) € R3: (a,¢) € Sy and f_(ap,co) < b <
f+(ao, co)}. On the other hand, for every (ao, co) € Sj2 ,c?he graph of the function
f (respectively f_) is affine along the straight line (1 z co)a = (1 —ap)c+ag —
co (respectively (1 4+ cp)a = (1 + ag)c — ap + cp). This shows that the extreme

points are at the points where graph ( f+|BZ2 ), graph ( f,||3g2 ) and F intersect
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along a non-affine curve. It can be easily proved that this happens only at the points

(1, =2 =22+ 1), 1) and £ (1, =2 — 2421 + 1), 1), where t € [—1, 1]. O

4.1.1 Polynomials of Degree at Most 2

We will study now the extreme points of the unit ball of the space of polynomials
of degree at most 2 in 2 real variables endowed with the supremum norm over A.
We say that a polynomial P in R? has degree at most 2 provided that P(x, y) =
a+bx+cy +dx? +exy + fyz, where a, b, c,d, e, f € R.
In order to show the extreme points of the unit ball of P> (A), we will distinguish
between strictly definite, semidefinite and indefinite polynomials of degree exactly
d e/2
e/2 f

Definition 4.1 Let P(x,y) = a + bx + cy + dx*> + exy + fy*, where

a,b,c,d,e, f € R, be apolynomial of degree 2 and take M = <ec/i2 e]/02>.
(i) We say that P is strictly positive (resp. negative) definite provided that the
eigenvalues of M are positive (resp. negative).
(i) We say that P is positive (resp. negative) semidefinite provided that one
eigenvalue of M is positive (resp. negative) and the other is 0.
(iii)) We say that P is indefinite provided that the eigenvalues of M are non-zero
and have distinct sign.

2. Notice that in this case one of the eigenvalues of M = ( ) is non-zero.

Let us consider now the following construction and notation. Let {T; }?Zl
be the affine transformations from R? to R? that map A onto itself given by
(TG, Y ={(. 9), (7. 0), (I—x =y, y), (x, I—=x—y), (I—x —y, x), (y, | =
x — y)}. Notice that if P is an extreme polynomial of the unit ball of P,(A), then
the polynomials {£ P (T; (x, y))}?zl, known as symmetrical to P, are also extreme
points. Given a polynomial P, we denote by M(P) the set of points (x, y) in A such
that | P (x, y)| = [ Plla.

Theorem 4.4 (Milev and Naidenov [43, 44]) Let P be a polynomial of degree at
most 2 in R2. If P has degree at most 1, then P is an extreme point of the unit ball
of P2(A) if, and only if, P = 1. Assume now that P has degree 2.

(i) If P is strictly (positive or negative) definite, then P is an extreme point of the
unit ball of P>(A) if, and only if, P is of the form
P(x.y) = £[1+ a(x — x0)* + B(x — x0)(y — yo) + ¥y — y0)*].

2(2y0—1) — _2@x—1)Q@2yo—D — _2Q@2x=D
xo(I-x0—y0)” B = 20y (T—x0—y0) * 7 = JoU—x0—0) and. (xo. o)

belongs to the interior of the triangle with vertices (%, %), (0, %) and (%, 0).

where @ =
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(ii) Assume that P is negative semidefinite (all positive semidefinite extreme
points of the unit ball of P2(A) have the form —P, where P is negative
semidefinite).

(a) If there exists (xo, yo) in the interior of A such that P (xo, yo) = 1, then P
is an extreme point of the unit ball of P>(A) if, and only if, P satisfies the
following conditions

(1) P(x,y) =1—[a(x —x0) + By —y)1? ( p) # (0,0),
(2) min{P(0,0), P(1,0), P(0, 1)} = —1.

(b) If P(x,y) # 1 for every (x, y) in the interior of A, then P is an extreme
point of the unit ball of P>(A) if, and only if, P is one of the following
polynomials

(1) Pi(x,y)=1=2(x+y)%
(2) Py(x,y)=1-2(x—1)72
(3) P3(x,y)=1-2(y — 1)?,
(4) Py(x,y)=1-2(x+y—172
(5) Ps(x,y)=1-—2x2

(6) Ps(x,y)=1-2y%

(iii) Assume that P is indefinite.

(a) If M(P) is infinite, then P is an extreme point of the unit ball of P>(A) if,
and only if, P is symmetrical to

4 2(1 = 2a) ,
Q(x,)’)=1——x)"|' P Yo,
o o
_ 2 _
whereot—ﬁ+mand,3€[ 1, 1].

(b) If M(P) is finite, then P is an extreme point of the unit ball of P>(A) if,
and only if, P is symmetrical to

Ox,y)=a+ bx +cy+dx2+exy+fy2,

where

a=y,
b=2/1—yT—a+/1-y),
c=2/T—y(/T=B+1-p),
d=-T—a+/1-y),
e=—WT+a+ T+’ - VT—a+1-y)
~WT=B+VT=7),
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f=-(1-B+/1-p)7
with (a, B, y) € U?:l P; and

Pi={eB.v):a, By e (=1 1), a# B},
Pr={&LB8.v): By € (=1, D}U{(er, £1,y)
ca,ye (=L, DIU{(e, B, =), B € (—1, D},
P; ={(a, £1,-D: o e (-1, D} U {(£L, B, —1)
e (=1, DIU{(xl, Fl,y):y € (=1, D},
Ps = {(£1,F1,-1),(1,1,-D}.

4.2 The Unit Square

Consider the quadrilateral region in R? enclosed by the vertices (0, 0), (1, 0), (0, 1)
and (1, 1). We will denote this region by L. It is easy to see that the set [ is a non-
balanced convex body. We want to sketch the set S on R3, so we begin by showing
an explicit formula for || - ||g.

Theorem 4.5 (Gamez et al. [23]) If (a, b, ¢) € R>, then ||(a, b, ¢)||q is equal to

max {|al, |c], la + b + c|, b?—dac ifb®> —4ac > 0, ¢ # 0and —2% € (0, 1);

4c|
max {lal, |c|, la + b + c|, bzﬂj‘“c ifb*> —4ac >0, a #0and — % € (0, 1);
max {|al, |c|, la + b + cl|} otherwise.

Just as we did in the previous case, we project B onto the ac-plane. This
projection of By onto the ac-plane is once again the set B@%o . However, due to
technical difficulties in the proof of this theorem, the set BE%O 1s divided into three
regions defined by

A:{(a,c)eB@%O: —l<a<Oanda+1=<c<l1},
B:{(a,c)eBego: —1<a<1and max{—l,a—l}fcfmin{l,a—f—l}},
C:{(a,c)eBego:OSafland—1§c§a—l}.

Figure 4.2 shows how the set Blgo is decomposed into the sets A, B and C.

Theorem 4.6 (Gamez et al. [23]) The projection of B onto the ac-plane is BE%O .
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Fig. 4.2 The projection of c
B onto the ac-plane

Given the explicit formula for || - |5 and the projection of B onto the ac-plane,
we can show a parametrization of S as well as the extreme points of St. Figure 4.3
shows a sketch of Sp.

Theorem 4.7 (Gamez et al. [23]) Iffor every (a,c) € ngo we define the mappings

2 /ac+la|l if(a,c) € A,
F(a,c) ={2ac+]|c| if(a,c) €C,
l—a—-c if (a,c) € B,

G(a,c) = —F(—a, —c),
where A, B and C are as in Fig. 4.2 and the set
H= {(a, b.c) R’ : (a,c) € 9By and Ga.c) <b < F(a, c)} :

where 0By, is the boundary of By , then

(a) S = graph(F) U graph(G) U H.
(b)

ext(B) = {j: <t, 21 -1, —1) 1 elo, 1]}
Ufx(-1.2vT=5.5) s e 0,11
Ja, -1y Ja = 3. Dy, 0,03 0.0, D).
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Fig. 4.3 Unit ball of P(*0))

4.3 Circular Sectors

For every «, 8 € [0, 2] with « < B we define the sector D(«, B) as
D(w, B) = {rem:Oﬁrﬁ 1, af@fﬁ}.

If « = 0, we use D(B) instead of D(0, ). Notice that D(«, 8) is a non-balanced
convex body in R

The mapping T defined in Sect. 2.1 over the space P(>D(a, B)) is a topological
isomorphism between the space PCD(a, B)) and (R3, || - | D(a,p))> Where

(@, b, p@.p) = IPlD@.p)-
The sets Bp(q,g) and She. ) denote the unit ball and the unit sphere of (R3, I -
| D(a, ) respectively.
Remark 4.1 For every a, B € [0, 2], the spaces P(>D(a, o + B)) and P(>D(B))
are isometric. Indeed, the mapping
Q : PCD(a, + B)) — PCD(P))
P~ Pod
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where @ is a rotation of angle  in R? and with center the origin given by
d(x,y) = (xcosa — ysing, x sina + y cosw),

for all (x, y) € R?, is an isometry between P(>D(a, o + 8)) and P(>D(B)). In fact,
the rotation ® is a bijection from D(«, « + ) onto D(f). It can be easily seen that
the mapping Q is defined by the matrix

2 2, sin2e

cos“a sin“«

sinffa cos?a —%

—sin 2« sin 2« cos 2a

Hence, it suffices to study the geometry of Bp(g).

In this section, we are interested in studying the geometry of the unit sphere of
P(CD(B)) where B > 0. In particular, we study different cases. The case when
b b

B > m, the extreme cases when 8 = T 5 37” and finally the remaining cases.

4.3.1 The Geometry of Bp) When B > nt

As in the previous sections, we begin by giving an explicit formula for || - || p(s)
when 8 > 7.

Theorem 4.8 (Muiioz et al. [45]) Let (a, b, c¢) € R3. If B > &, then

1
l(a,b, )b = 3 (Ia +b|++/(a —b)? —|—c2).

Moreover, the norm does not depend on the angle f.

Proof Let (a,b,c) € R? and take P(x,y) = ax?> + by> + cxy. Since
|P(—x,—y)| = |P(x,y)|, notice that the supremum of |P| over the whole
unit disk is equal to the supremum of |P| taken over D(B). Hence, we can
calculate the supremum of |P| over the whole unit disk in order to obtain the
desired result. The polynomial P restricted to the unit circle parametrized by
{(cosB,sinf): O € [0, 2]} is of the form

f(@) = P(cos6,sinf) =a cos? 0 + bsin® @ + ¢ sin cos O

4 1+ cgs(29) n bl — 025(20) n Csin(229)

= % [a+ b+ (a — b) cos(20) + csin(260)]

for every 8 € [0, 2rr]. Thus, it is easy to see that
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1
@ b. )iy = supll fO): 6 € 0. 21} = 5 (Ia + bl + (@ = b.0)] )
=3 (e +bl+Va— 021 ).

O

Remark 4.2 (Murioz et al. [45]) By the proof of Theorem 4.8, notice that the case
for B > m is the same as the case for the space 02, that is:

If P(x,y) = ax? + by? + cxy where (x, y) € E%, then the norm of P over E% is
defined as

I1P1lz = sup{|P(x, )= I1(x, iz = 1}

Notice that ||P||E% = ||Plipp) for B > m. Thus, Bpp) = Bz§~ This case for the
space 6% has been done in a different way in [15].

The easy explicit formula for the norm allows us to simplify the calculations
and instead of using a projection onto a plane, we can give directly an explicit

parametrization of Spg). A sketch of the unit ball of P(ZD(ﬂ)) can be seen in
Fig.4.4.

Theorem 4.9 (Mufioz et al. [45]) Ler 8 > m. If we define

f(a,b) =21 +ab—|a+b|,
forall (a,b) € [—1, 1]%, then

(i) Sp(py = graph(f) U graph(—f).
(ii)

ext (Bp(p)) = {i (a, —a, V1 - a2) cael=1, 1 U {1, 1, 0)} .

Proof Part (i) of the proof is an easy consequence of solving ¢ in terms of a and b
in the equation 1 = [[(a, b, ¢)ll p(g) = 1 (|a +b+Va—b2+ c2). For part (i),
let a € [—1, 1] and consider the segment that joins (—1, 1) and (a, —a) which has
the form S = {(—=1+A(@a+ 1), =1 +A(—a+1)): A € [0, 1]}. If we restrict f (and
also — f) to S, then we have

f(=14+r@+1), =1+ r(=a+1) =2x/1—a?,

where A € [0, 1]. Notice that f(—1+X(a+ 1), —1 4+ A(—a + 1)), where A € [0, 1],
is a segment. Analogously, if we restrict f (and also — f) to the segment joining
(1, 1) with the point (a, —a), then we have also a segment. And this is true for every
a € [—1, 1]. Thus, the extreme points of Bpg) are contained in the set
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Fig. 4.4 Unit ball of
PCD(B)) when g > 7. The
extreme points of the unit ball
are drawn with a thicker line
and dots

M ={(a, —a,£f(a,—a)):a e[, 1]}U{x£,1,0)}.

It is easy to prove that for every p € M, there exists a plane IT C R3 such that
IT N M = {p} and this concludes the proof. O

3
4.3.2 The Geometry of Bpg) When 8 = 7, 5, I
We begin by giving an explicit formula of || - || p¢g)-

Theorem 4.10 (Muiioz et al. [45]) For all a,b,c € R, we have that
I (a, b, c)||D(%), I (a, b, c)||D(%) and ||(a, b, c)||D(3T,,) are given, respectively,

by

max{|a|,%|a+b+c|,%|a+b+sign(c) (a—b)z—i-cZ“ ifc(a —b) >0,
max{lal, la + b + c|} ifcla—b) <0,

1
max{|a|, |b|,5 )a—i—b—l—sign(c) (a—b)2+c2)}, and
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%(Ia+b|+ (a—b)2+c2) ifc(a—b) >0,

a+ b+ sign(c) (a—b)2+c2} ifcla—b) <0.

max{|a|, Na+b—cl| )

In contrast with the previous case, we proceed as in other sections by projecting
B D(%) B D(%) and B p(3x) Onto the ab-plane. Once we have the projection, we

4
can give a parametrization of S D(%) S D(%) and SD (371)- Let us begin with the
T

case B D(Z)- To do so, let us define first the following sets

A={(a,b): ac[-1,1], a <b < yi(a)}, “4.1)
B={(@,b): ael[-1,1], ya(a) <b < a}, 4.2)

where y1, y» are functions defined by

vi(a)=4+a+4v1+a,
y(a) = —yi(—a) = —4+a —4J/1 —a,

where a € [—1, 1].

Theorem 4.11 (Muiioz et al. [45]) The projection of B D(%) onto the ab-plane is
the set {(a,b) : a € [—1,1], y2(a) <b < y1(a)}.

An approximate representation of the projection of B p(%) onto the ab-plane can
be seen in Fig. 4.5.

Theorem 4.12 (Muioz et al. [45]) Let A and B be defined as before Theorem 4.1 1
and let us define the mappings

Fl(a,b):{z_a_b if (a,b) € A,
2y =a)(I =b) if(a b)eB,

and F>(a,b) = —F1(—a, —b) forall (a, b) € myp (SD(%)) If

r= {(j:l,b, &) eR%: (1,b) € d7map (BD(%)) , Fy(£l,b) <c < Fl(jzl,b)},

then

(i) SD(%) = graph(F) U graph(F,) UT.
(i)

ext (BD(%)> - {j: (t, A4t+4a/TH1,—2 -2 — 4¢1_H) rel-1, 1]}
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N=4+a+4vV1l+a

(1,1)

(—L—l)

Yo=—-4+a—-4vV1—a

I | I |
-10 -5 5 10

Fig. 4.5 Projection of B D(Z) onto the ab-plane

U{j:(l,s, —2M) se [1,5+4f2]}
J=a. 1oy

A representation of the unit sphere of P (D (%)) appears in Fig. 4.6.
Now we turn our attention to the space $ (2D %))

Theorem 4.13 (Muiioz et al. [45]) The projection of B D(%) onto the ab-plane is
Bez .

Theorem 4.14 (Muioz et al. [45]) If we define the mappings

Gi(a,b) =2/ (1 —a)(1 — b)

and
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1 g 6 b

-10

Fig. 4.6 Unit ball of (> D(B8)). The extreme points of the unit ball are drawn with a thicker line
and dots

Ga(a,b) = —fy(—a,—b) = =2\/(1 +a)(1 + b),

for every (a, b) € Bzgo and the set

T = {(a,b, c) € R3: (a,b) € BB%O and Gy(a,b) <c < Gl(a,b)},

then

(i) SD(%) = graph(G) U graph(G,) U Y.
(ii)

ext (BD(%)> = {:I: (1,;, —2/201 —|—t)> rel-1, 1]}
U{:I:(s,l,—Z 2(1+s)):se[—l,l]}U{:l:(],l,O)}.

Figure 4.7 shows what the unit sphere of ? (D (%)) looks like.
Due to difficult calculations, to prove that the projection of B p(3x) Onto the ab-

7
plane is BE%O , we define the following sets: Let C, D and F be as in Fig. 4.8, namely
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Fig. 4.7 Unit ball of

P (D (%)). The extreme
points of the unit ball are
drawn with a thicker line and
dots

O(a)=—-4+a+4V/1-a

-1 4

-25 -2 -1 0 1 2 25

Fig. 4.8 Projection of B, () onto the ab-plane
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C={(a,b): ae[-1,0], 0<b < §(a)},
D={@a,b): ae[-1,1], =1 <b < —|al},
F =[-1,112\(CUD),

where §(a) = —4 + a + 41 — a for a € [—1, 0]. Notice that Bp =CUDUF.
Theorem 4.15 (Muiioz et al. [45]) The projection of B D ( 2 ) onto the ab-plane is
ngo .

Theorem 4.16 (Muiioz et al. [45]) Let us define the mappings

24+a+b if (a,b) € C,
Hi(a,b) =32/0+a)dA+b) if(a,b)eD,
2/ =a)(I =b) if(a,b)eF,

where C, D and F were defined before Theorem 4.15, and H>(a,b) =
—H(—a, —b) for all (a, b) € ngc. If

Q={t(=1,b,0)eR*: —1<b<1,0<c<HI(-1,b)}

then
(i) SD(%’) = graph(H;) U graph(H) U Q.
(ii)
ext(BDG%)) - {i (r, —4 4T 2420+ 4T 1) 1 e [—1,0]}
U{:I:(s,—s,Z 1—s2):se[0,1]}
Ul:l:(—],r,Z 231 —r)) re [—5+4J§, 1]}
e, 1,0y,

Figure 4.9 shows two different points of view of BD (3

B

3

+

4.3.3 The General Case of Bpg)

We have considered in Sects.4.3.1 and 4.3.2, the cases of P(*D(8)) when 8 >
mand B = 7,7, ST”. In this last segment we are interested in the geometry of
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Fig. 4.9 Two different perspectives of the unit ball of (2D (%)) The extreme points of the

unit ball have been drawn with a thicker line and dots

PCD() when f € (0.3), € (5.5). 8 (3.3 ).or p & (¥, 7). In fact,

it is easy to notice in the following results that the particular cases 8 = 7, 7, 37”

are just the limit cases of the previous ranges of 8. To simplify the notation, we are
using N and M to denote cos(28) and sin(2), respectively. We begin by showing
an explicit formula for the norm in each one of these four ranges of S.

Theorem 4.17 (Bernal et al. [6]) Ifa,b,c € R, then ||(a, b, ¢)| p) where 0 <

T on T on 3n f o .
B<7. 7<B<7%, —<ﬂ< = or - < B < m is given, respectively, by

max{|a| L1(1+ Mya + (1 = M)b+cN|

1 ‘a +b+ s1gn(C)\/m“
a

max{|al, §|(1+M)a+(l—M)b+cN|}, (2)

(1)

(1)ifc(a —b) > 0 and tan(26) > ﬁ,

(2) lf(c(a —b) > 0and tan(28) < ﬁ) or (cla—>b) <0),
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max{|a|, L1(1+ Mya + (1 = M)b+cN| ;
a4 b+ sign(c) (a—b)2+c2}, )
max{lal, 311+ M)a+ (1—Mb+cNI},  (4)

(3) if(c(a —b) < 0and tan(28) > ﬁ) or (cla—>b)>0) or (a=0>b),

(4) zf(c(a —b) < 0and tan(28) < ﬁ) or (c=0),

L (la+bl+V@=b2+), (5)
max{|a|, %|(1+M)a+(1—M)b+cN|, )
%‘a—i—b—i—sign(c) (a—b)z—i-CZH,
(5) lf(C(a —b) > 0and tan(28) > Lb) or (c=0),
a—
(6) if(c(a —b) > 0and tan(2B) < L})) or (cla—>b) <0) or (a=0>),
a—

L (la+bl+V@=b7+), (7)
max{|a|, Li(1+ Mya+ (1 = M)b +cN|,

Lo+ b+ signen/@ -7+,

(7) if(c(a —b) < 0and tan(2f) > ﬁ) or (cla—b) > 0),

(8)

(8) if c(a — b) < 0 and tan(2B) < ﬁ.

Since we know an explicit formula of the norm, we proceed to show the projec-
tion of the unit ball onto the ab-plane which is used to obtain a parametrization of
the unit sphere.

We begin with the cases when g € (O, %) and B € (%, %), because its approach
is not the same as the other two cases. Let us define first the following functions
from [—1, 1] to R and sets in R

(1+Ma+2Q+M)+4/0+ M)A +a)
1-M ’
(14+Ma—-2Q+M)—4/A+MA—-a)
1-M ’

vi(a) =

n(a) = —yi(-a) =
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h(B)

b="(a)

(L,1)

—
-
|
—
=
oy N
>
Ll
>
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o

b="(a)

~h(8)

Fig. 4.10 Sketch of the projection of Bp(g) onto the ab-plane with 8 € (0, 7). On the left we
have the case B = § — 0.4. The b axis has been rescaled by a factor 0.2. On the right we have

represented the case f = % 4+ 0.4. The axis here are scaled. In both cases h(8) = % W

14+ M)a—2M

A={(a,b)eR*: ac[-1,1], 8(a) <b < yi(a)},
B={a,b) eR*: ae[-1,1], y2(a) <b < 8(a)}.

The definition of these sets is to simplify the parametrization of the unit sphere.

Theorem 4.18 (Bernal etal. [6]) Let 8 € (0, Z)U(%, 5). The projection of Bp(g)
onto the ab-plane is the set Bpgy = {(a,b) € R%Z: a e [—1,1], ya(a) < b <
y1(a)}. See Fig. 4.10 for a sketch of the projections.

The next result shows a parametrization of Sp(gy when g € (0, Z) U (%, Z).

Theorem 4.19 (Bernal et al. [6]) Ler B € (0,%) U (%, %) and let A and B be
defined as before Theorem 4.18. Define the mappings
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+[2— 1 +Ma—(1-M>b] if(ab)e A,
2/ =a)(1=b) if (a,b) € B,

and F>(a, b) = —F(—a, —b) for all (a, b) € mqpy(Bps)). If

Fi(a,b) = {

r={@1b,0) eR2: (£1,) € 07asBpp). F(E1 D) < ¢ < Fi(EL b)Y,

then

(i) SD(/g) = graph(F1) U graph(F>) U I'r. See Figs.4.11 and 4.12 for a sketch of

Spp)-
(ii) The set ext(Bpg)) consists of the elements

j:(t 1+ Mt +2Q+M)+4/A+ M)A +1)
9 1—M 9
1

N[—2(1+M)(1+t)—4 (1+M)(1+t)]) for tel=1,1],

3

1-M

1-M

:l:(l,s,—2 2(1+s)) for se[

1+3M 5+3M+42(1 +_M):|

and

Fig. 4.11 Unit ball of Pp g, with 8 = 7/6
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Fig. 4.12 Unit ball of PD(ﬁ)

with B = 37/8
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Notice that B, = CUDUE. The reason why we define these sets is just to simplify
the parametrization of the unit sphere.
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1 1
E SN = () E
b= 3(a) (=M, M)

S C

0 C 0
(—M, M) e
b=—a
b= A(a) b= —a
D
D

g l 0 11 - 0 1

Fig. 4.13 Scaled pictures of the projections onto the ab-plane of Bpg) with 8 € (% 37”) U

37”, 7'[). On the left we depict the sets C, D and E for 8 = 7 /4 — 0.1. On the right, we have C,
D and E for p = m/4 4 0.1. In both cases, we draw the case 8 = 7 /4 with a dashed line

Theorem 4.20 (Bernal et al. [6]) Ler 8 € (%, 37”) U (3%, n). The projection of

Bpg) onto the ab-plane is ngc. See Fig.4.13 for a better understanding of the
projection.

Theorem 4.21 (Bernal et al. [6]) Let S € (%, 3%) U (3%, n) and let C, D and

E be the sets defined before Theorem 4.20. Define

— 4[24+ A+ Mya+(1—Mb] if(a,b)eC,

Gi(a,b) = {2/ +a)(1 +b) if (a,b) € D,
2T =a)(1 =) if (a,b) € E,

and Ga(a, b) = —G1(—a, —b) for all (a, b) € mwap,(Bp(p)). Define also the set
QG = {(l,b, ) €R2: (1,b) € dmap(Bpp). 0= ¢ > Gl(l,b)}
U {(—l,b, ) eR%: (=1,b) € 3mapBpeg)). 0 < ¢ < Gi(—1, b)} .

We have

(a) Spy = graph(G1) U graph(G2) U Qg. See Fig. 4.14 for a representation of
the unit sphere.
(b) The set ext(Bpg)) consists of the elements
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Fig. 4.14 Unit ball of Ppg) with 8 = 37/4 — 0.5 and unit ball of Pp(g) with 8 = 37w /4 + 0.5

i(f (1+ M)t —2Q2+ M)+ 4/ + M)A —1)
: T :

_ % [2(1 LM —1) + 4/ + M) — t)]) for tel-1,—M],
:I:(s,—s,Z\/l—sz) for se[-M,1],

—5-3M +420+ M) 1}
1 _ M 9 9

:I:(—l,r,Z 2(1—r)> for r€|:

and

+(1,1,0).

Remark 4.3 To finish this chapter, notice that the projections obtained, as well as
the unit spheres, when the angle B varies in the interval (0, co) are continuous
transformations since the norm is a continuous operator. This explains in an informal
way why the projections and unit spheres are so similar when the angles are close.



Chapter 5 )
Sequence Banach Spaces e

Abstract This chapter is dedicated to the study of the geometry of polynomial
spaces on E?, for certain values of p, g, presenting all known results for these classes
of spaces.

5.1 The Space 2%

Let P(x, y) = ax? 4 by* + cxy be a 2-homogeneous polynomial where (x, y) € Z%
and Z% is considered over the real or complex numbers. The supremum norm of P
over ¢ is denoted by

1PNz = sup{| P (x, W[ [ICx, )l < 1.

The space of 2-homogeneous polynomials over E% endowed with the norm || - || Iz

is denoted by P (26%). If E% is defined over the real numbers, then (using the same
arguments as in the previous chapters) the adaptation of the mapping 7' defined in
Sect. 2.1 helps us to give a visual representation of the unit ball of the space P (25%)
on R? endowed with the norm | - ||¢,(2 2) defined by

l@. b, ) lpeg) = llax® +by* + exyll 2

for every (a,b,c) € R3. We denote the unit ball and the unit sphere of (R3, I -
||¢,(2£%)) by Bp(zé%) and SP(%%)’ respectively.

In this section we are using a different approach. Until now, we have given an
explicit formula for the norm of the polynomial. However, in this case, the problem
can be solved using a more direct approach. We can find directly the projection and
parametrization of the unit sphere in the real case as well as the extreme points of
the unit ball. In the complex case we are going to show a parametrization of the unit
sphere as well as the extreme points when c is a pure imaginary number.

In the real case let us consider the following sets

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 67
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Mathematics, https://doi.org/10.1007/978-3-031-23676-1_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23676-1protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5
https://doi.org/10.1007/978-3-031-23676-1_5

68 5 Sequence Banach Spaces

? 1 0 1 2

Fig. 5.1 Projection of By, » &) onto the ab-plane and where 6% is defined over the real numbers

A={(a,b)eR2:b<—a},
B:{(a,b)eRz:bz—a}.

Notice that Bz = AU B.

Theorem 5.1 (Choi et al. [16]) Let E% be defined over the real numbers. The
projection of BP(%%) onto the ab-plane is ngo.

Figure 5.1 shows a representation of the projection of the unit ball onto the ab-
plane.

Notice that we distinguish between the sets A and B. The explanation is given in
the following result that gives a parametrization of the unit ball. It is important to
mention that the result comes from Y. S. Choi et al. [16], but in the sense that they
gave an implicit characterization of when a polynomial belongs to the unit ball and,
furthermore, when such polynomial is an extreme polynomial of the unit ball. In this
survey we go further by giving a parametrization of the unit ball and by showing the
explicit forms of the extreme polynomials of the unit ball. We omit the proofs of
such constructions since they are easy to obtain from [16].
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Theorem 5.2 Let E% be defined over the real or complex numbers and P(x,y) =
ax? + by? + cxy be a 2-homogeneous polynomial in P (%%). If |l P”e% < 1, then
lal <1, |b| < 1and|c| < 4.

Assume that E% is defined over the real numbers, and let us define

2(1+ VT T A TD) if(@.b) € A,

Fi(a,b) =
WD =214 VT=0T=B) i b < B

Fy(a,b) = —F(a, b), and
sz ={(a,b,c): ((Ja|=1and |b| <1) or (Jb| =1and |a|l <1)) & (|c| <2)}.

Then,
(i) SP(ZK%) = graph(F)) U graph(F,) U Fe% (see Fig. 5.2).

(i)
— 12 — 2
ext (BP(ZE%)) = {(\/4|t|2 t ’_\/4|t|2 ! ’,) D t] € (2, 4]}

2 — 12
U {(_\/4|l|2 t ’+\/4|t£ t ,t) Dt e (2,4]}

U{(:I:l, +1, £2)}.

Assume now that 6% is defined over the complex numbers, a,b € R and c is a
pure imaginary number. We have the following results:

(a) If |c| <2, then ||P||@% = 1if, andonly if, lal =1o0r|b| = 1.
(b) If2 < |c| <4, then

1Pllgz = 1if, and only if, 4ic| — |c|* = 4(la + b| + ab).

Remark 5.1 Notice that we could have also given a parametrization of the unit
sphere in Theorem 5.2 in the complex case when c¢ is a pure imaginary number
(which would be the same as in the real case). The reason why we have not done
this is that the assumption that a and b are real numbers can be avoided since the
same result is also true when a and b are complex numbers (to see this simply rotate
the complex variables x and y).

Furthermore, due to difficult calculations in [16], we do not know what happens
when the real part of c is different than zero.
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Fig. 5.2 SP(ZL’%)' The
extreme points of B¢)(2 () are

drawn with a thicker line and
dots

5.2 The Space €2

Assume that €2 is defined over the real numbers or complex numbers. Let
P(x,y) = ax? + by2 + cxy be a 2-homogeneous polynomial, where (a, b, ¢) € R3
and (x, y) € £%,. The supremum norm of P over £2 is defined by

1Pllg2, = sup{|P(x, y)|: 1Cx, Wz, < 1}.
The space of 2-homogeneous polynomials over Ego with the supremum norm is
denoted by P (2z§o). The mapping T defined in Sect. 2.1 helps us to give a visual

representation of the unit ball of the space £ (2Ego) on R? endowed with the norm
Il - ||¢>(2ng) defined by

@, b, Ollpeez,y = llax? +by* + exylla,

for every (a, b, c) € R3. We denote the unit ball and the unit sphere of (R3, || -
lpez,)) by Bp(2e2, ) and Sp2z ), respectively.
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Notice that the case when Ego is defined over the complex numbers has already
been tackled in Sect. 2.2. Thus, assume that Ego is defined over R.

Remark 5.2 The case of Ego is a simple consequence of the case 6%. The reason why
comes from the following approach:
Let us define the function Q on R? by

1
Q(an) = E(x_yﬂ'x-i_y)

Notice that this function Q is just the rotation of angle % on R? scaled by */75 and
it transforms P (2¢%,) isometrically onto P (22%). Therefore, if P € P (*£2,), then
PoQ e P (22%). Using this transformation in Sect. 5.1, we can give the projection of
Bp(z ¢2,) onto the ab-plane, the parametrization of SP(Z ¢2,) and its extreme points.

The reader can check easily that: if P(x, y) = ax? 4+ by? + cxy, then

1
PoQx,y)=Px—y.x+y)

1 5 1 , 1
=Z(a~|—b+c)x +Z(a+b—c)y +§(b—a)xy.

Using the same procedure from the space Z%, we begin by showing the projection
of B,D(z ¢2,) onto the ab-plane. Let us define the following sets in R?:

11
A = Triangle of vertices (—1, 1), (0, 1), (—5, 5) .

11
B = Triangle of vertices (—1, 1), (—5 5) , (—1,0).
C = Square of vertices (0, 1), (1,0), (0, —1), (—1,0).

1 1
D = Triangle of vertices (1, 0), (1, —1), (E’ —§> .

1 1
E = Triangle of vertices (1, —1), (0, —1), (E’ —§> .

A sketch of A, B, C, D and E can be found in Fig. 5.3.

Theorem 5.3 (Jiménez et al. [35]) The projection of BP(Z 2, onto the ac-plane is
AUBUCUDUE.

Finally, we show a parametrization of SP(Zego ) in R3 as well as the extreme
points. See Fig.5.4 for a sketch of B"’(Z’Z%c ) Notice that Bp(z[go )is just a scaled
rotation of B(P(z @)
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Fig. 5.3 Projection of By ¢2,) onto the ac-plane

Theorem 5.4 (Choi and Kim [15]; Jiménez et al. [35]) Let G be the mapping
definedon AU B UCU DU E by

We have

G(a,c) =

2Va(c=1) if(a,c) € A,
2Jcla+1) if(a,c) € B,
1—la+c| if(a,c)eC,
2Jcla—1) if(a,c) €D,

2Ja(c+1) if(a,c) € E.

(i) Sp(2ego) = graph(G) U graph(—G).

(it)

ext (BP(2£§O)>

{:I: (—t,t,:tzm) ‘te [% 1“

e a. 0.0 . 1.0)).
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Fig. 5.4 Unit ball P(zﬁgo). The extreme points are drawn with a thicker line and dots

5.3 The Space ¢2 when1 < p <2

Let1 < p < 2andlet P(x, y) = ax’>+by>+ cxy be a 2-homogeneous polynomial
such that (x, y) € Ef, where 62 is defined over R. We define the norm of P over Ef,

as

1PNz = sup{|P(x, I 1Cxe, Wiz = 1)

Let P 26%, denote the space of all 2-homogeneous polynomials in Zf, endowed
with the norm || - || o Just like in the previous sections we can identify the space

P zﬂi with R3 endowed with the norm

2 2
@, b, o)l 23) = llax® +by” +cxylle,
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for every (a, b, ¢) € R3, via the mapping T from Sect. 2.1. Therefore, we can give

: : 3 : 292
a representation in R” of the unit ball of ( 14 p). Let us denote by B SD(Z 8

) and
S P(Z 8 ) the unit ball and the unit sphere of ®R3, || - ”P 2 ), respectively.

Now, in this case the approach is very different to the previous ones. In this
section we are going to begin by providing the extreme points of the unit ball of
P (ZZ%). Interestingly enough this can be used to find a parametrization of the
unit sphere by noticing that by definition every point of the unit sphere that is not
an extreme point lies in the interior of the segment that joins two extreme points.
Therefore we only need to find the segments of the unit sphere that join two extreme
points.

Proposition 5.1 (Grecu [26]) If1 < p < 2, then the 2-homogeneous polynomials
x2 & y? are extreme points of the unit ball of P (26%).

Proposition 5.2 (Grecu [26]) Let 1 < p < 2 and a, B > 0 with o? + P = 1.
The 2-homogeneous polynomials +P with P(x,y) = a(x> — y*) + cxy where
o B ind ¢ = 2% prapr”]

a = —5——»

a2+/32 0{2+ﬂ2
unit ball of P (22%). Furthermore, £(a, B) are the only points where P takes the

have norm one and are extreme points of the

value 1 and £(—B, ) are the only points where P takes the value —1.

Proposition 5.3 (Grecu [26]) Let 1 < p < 2 and o, B = 0 whith a? + P =1
and o # B. The 2-homogeneous polynomial P(x,y) = a(x® + y?) + cxy where

o ap_pr _ algp—l_a/)—lﬂ
a= g and c = 2—0[2_ﬂ2

ball of P (26?,). Furthermore, the only points where P takes the value 1 are (a, )
and (B, o).

has norm one and is an extreme point of the unit

Proposition 5.4 (Grecu [26]) Let 1 < p < 2. The 2-homogeneous polynomial
2 2
P(x,y) =272 p(x® + y?) +271(2 — p)xy has norm one and is an extreme point
of the unit ball of P (ZE%,). Furthermore, the only point where P takes the value 1
1 1
is(277,2°7).
Proposition 5.5 (Grecu [26]) Let1 < p <2and o, B > 0O witho? + BP = 1 and
o # B. The 2-homogeneous polynomials £P with P(x,y) = a(x® + y?) & cxy

by and ¢ = 2" b

the unit ball of P (zﬁﬁ). Furthermore, the only points where P takes the value 1 are
+(o, £B).

where a = have norm one and are extreme points of

The following result shows the form of the polynomials that belong to the line
segments in the unit sphere that join two extreme points, and although the result
itself does not appear in [26], it can be deduced from the proofs.
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Theorem 5.5 (Grecu [26]) Let 1 < p < 2 and P be a polynomial that belongs
to the unit sphere of P (2637). We have that P lies in the segment that joins two

extreme points P| and P of the unit ball of P (2@,), where the pair (P, P2) is of
the following forms

(i)
— BP afP~ 4 al~1B
Pi(x,y) 1 g (x? —y2)+2TﬂzX}’,
P _ BP p—1 aP 1
P, y) = ﬁz R R o By
(ii)
B ap?~! +ar !B
Pi(x.y) = =) O
_ RP p—1_ ,p—1
Py(x,y) =— gz (2 4 y?) —2%F > ;2 -
(iii)
Pl(x,Y)=—m(xz—y2)+2ny,
- p=1 _ yr—1
Py(x,y) =— 2 gz 4y )+2'3T;2ﬂxy;
(iv)
a? — pP apP~! + ol
Pi(x,y) =— Tﬂz(x ¥ - Y
— BP p=1 _ gr-1
Py(x,y) = — ﬁ(x2 +5%) - 2%)@;

where a, 8 > 0 satisfy that a? + P = 1.

We can use Theorem 5.5 to give a sketch of one of these unit spheres which can
be found in Fig. 5.5.
Finally, we provide a characterization of the extreme points of the unit ball of

P(22).
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Fig. 5.5 Unit ball of
PCE)

Theorem 5.6 (Grecu [26]) Let 1 < p < 2. A 2-homogeneous polynomial of unit
norm P(x,y) = ax? + by? + cxy is an extreme point of the unit ball of P (262) if,
and only if,
(i) a+b=0,or

2
(ii) a=b>2r72p,

5.4 The Space ¢2 when2 < p < oo

In this section we consider the space of 2-homogeneous polynomials on Ef, defined
over R with 2 < p < oo. Following the same techniques as in the case of the
space Ef, with 1 < p < 2, we begin by showing the extreme points of the unit
ball of (ZE%). Then we find all the polynomials that belong to the unit sphere

by providing the line segments contained in the unit sphere that join two extreme
points, and finally we show a characterization of when a polynomial in the unit ball

of P (263,) is an extreme polynomial.
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Proposition 5.6 (Grecu [26]) Let 2 < p < o0. A 2-homogeneous polynomial
P(x,y) = ax® + by?* is an extreme point of the unit ball P (%%) if, and only
if, ab > 0 and |a|ﬁ + |b|ﬁ =1orab < 0and P(x,y) = +(x? — y?).

Notice that Proposition 5.6 can be used to find a projection onto the ac-plane as
it is shown in the following result which does not appear in [26]. Let us consider the
sets

p—2

A= {(a,c) eR*>:ae[0,1], ce |:()’ (1 _appz)pi“
p=2
U{(G@ eR*:ae[-1,0], ce [— (1—ap‘iz)ﬂ,o]},

B= {(a,c) eR’:acl0,1], be [—1,0]}

Ul@aer:aer-101 beo 1},

Corollary 5.1 The projection of B P(
be found in Fig. 5.6.

2(%,) onto the ac-plane is AU B. A sketch can

0.8
0.6
0.4
0.2

Co

0.2
-0.4
0.6
0.8

A8 2 0.5 0 05 1 1.5
d

Fig. 5.6 Sketch of the projection of the unit ball of 7’(262) onto the ac-plane
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Proposition 5.7 (Grecu [26]) Let2 < p <ococanda > B > 0witha? + P = 1.
The 2-homogeneous polynomial P(x,y) = a(x?> — y2) 4+ cxy where a = ”

p—2 p—2 . . .
and ¢ = Zaﬁ% has norm one and is an extreme point of the unit ball of

P (ZZ?,). Furthermore, =(o, B) are the only points where P takes the value 1.

Proposition 5.8 (Grecu [26]) Let2 < p < oo and o, B > 0 such that o? + P =
-2 —2

1 and a = %, c = Zaﬁ%. The polynomials =P where P(x,y) =

a(x? — y*) + cxy are extreme points of the unit ball of P (ZZ?U) with P(a, B) =

—P(=B, ) =1

Theorem 5.7 (Grecu [26]) Let 2 < p < oo and P be a polynomial of the unit

sphere of P (22%) We have that P lies in the segment that joins two extreme points

P1 and P, of the unit ball of P (22%), where the pair (Py, P>) is of the following

forms

(i)
Pi(x,y) =m(x2 +y)+ ZUﬂTﬂzx%
Pyx,y) =aP~2x + P72y
(ii)
o _IBP ap—2+’3p—2
Pi(x,y) =— m(xz +y%) — Zaﬂwﬂh
Py(x,y) =BP 2% + P2y
(iii)
— BP aP=2 4 pp—2
Pi(x,y) = — 5 ——— P+ ) + 2 ﬂTﬂQxy,
Py(x,y) =— ﬁ"’zxz — a7y
(iv)
— BP aP2 4 pr—2
Pi(x,y) =— 2 p (x> +y%) — 2 ,BWX)’,
Py(x,y) =— ozp72x2 — BP2y2,

where a, 8 > 0 satisfy that o 4+ 8P =1 (Fig. 5.7).
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0.5+

Fig. 5.7 Sketch of the unit sphere of P(2¢2)

By using Theorem 5.7, we can give a visual representation of the unit sphere of
P (ZZ%,). A sketch of one of these unit spheres can be found in Fig. 5.7.

Theorem 5.8 (Grecu [26]) Let2 < p < 00. A 2-homogeneous polynomial of the
unit ball of P (222) of the form P(x,y) = ax? + by?> + cxy is an extreme point of

the unit ball of P (%%) if, and only if,

(i) a+b=0,or
_p_ _p_
(ii) ¢ = 0and ab > 0 with |a|P—2 + |b|P-2 = 1.

5.5 The Space ¢y

Notice that until now all the vector spaces that we have considered have been finite
dimensional. However, in this section, we focus our attention for the first time on
the infinite dimensional case. To do so, we begin by defining an n-homogeneous
polynomial over an arbitrary normed space.
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Let E be a normed space defined over K (where K = R or C). For every n € N,
a continuous n-homogeneous polynomial on E is a mapping defined on E that takes
values on K such that there exists a continuous symmetric n-linear form L from E"
to K such that P(x) = L(x,...,x), for every x € E. Furthermore, L is unique
by the Polarization Formula (see, for instance, [19]) and we call L the polar of
P. At first glance this definition of a homogeneous polynomial of degree n on a
normed space is a bit puzzling but, on the one hand, it is technically very efficient
and, on the other, it extends the classical notion of an n-homogeneous polynomial
in several variables in a very natural way since it is a very well-known result in the
theory of polynomials that a continuous mapping P : E — K s an n-homogeneous
polynomial on a real or complex normed space E, if and only if the restriction of P
to any finite dimensional subspace F of E is a homogeneous polynomial of degree
n in real or complex variables with respect to the coefficients of any basis of F.

Regarding the continuity of polynomials on normed spaces we have to say that
all homogeneous polynomials on a finite dimensional Banach are continuous. This
is far from being true for polynomials on infinite dimensional normed spaces. As a
matter of fact the set of noncontinuous homogeneous polynomials on any infinite
dimensional normed space is not only infinite, but also has an enormous size in
terms of algebraic genericity (see, for instance, [21] and [22]). In any case, another
conventional result in the theory of polynomials on normed spaces states that the
n-homogeneous polynomial P : E — K on the normed space E is continuous if
and only if P is bounded on the unit ball of E. This allows us to define the following
norm in the space of n-homogeneous polynomials on E:

I Plle = sup{|P(x)|: [lx]l < 1}.

We denote this normed space by (" E) and also we denote the unit ball of P(* E)
by Bp(i).

In this section, we provide some insight regarding the extreme polynomials of
Bp(i¢,)- In particular, we are interested in studying when a homogenous polynomial
defined on the infinite dimensional Banach space cq that takes values over C or R is
an extreme polynomial of the unit ball.

Theorem 5.9 (Choi and Kim [14]) Assume that co is defined over C. Let
P(x) = D << Gif.inXiy - Xi, € P("co) be such that |Plle, = 1 and
Zhsmsin la;,.....i,| = 1. We have that P is an extreme polynomial of Bpn) if, and
only if, P is a monomial.

Proof Firstly, we will prove that if P is an extreme polynomial of the unit ball of
P("co), then P is a monomial. By way of contradiction, assume that P is not a
monomial. We will show that there exist Q and R in Sp(¢,) such that P = %(Q +
R). Since P is not a monomial, there exist j; < --- < j, and k] < --- < k,, with
(t1s--sJn) # (k1, ..., ky) such that O < |aj, . | < land 0 < |a,
Choose ¢ > Osuch that 0 < |aj,,.. j,l£& < land0 < |ak, . x| E€e < 1,and let
us define

.....
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Ox) = Z biy,...inXiy -+ Xi,
i< <ip

and

R(x) = Z CiyseensinXiy *** iy

[ <-<ip

where bj, j, = aj, .. j, —sign(aj,...j,)e biy,.. .k, = aky,..k, T sign(ax,, ...k, )¢,
Ctromin = Gjtmn TSIy j)E Chyyky = .k, — SIEN(aKy,.. K, )€ and
biy,.in = Ciy,oin i, for any other iy < ... < i, with (ji,..., ju) #
(i1,...,0n) # (ki,...,ky). Observe that here sign(z) = z/|z| for every z €
C \ {0}, that is, sign(z) = ¢ where 6 is an argument for z. By construction, it
is straightforward that Q # R, [|Qllco = [Rll¢, = 1 and P = %(Q + R), which is
a contradiction.

Finally, assume that P is a monomial. Without loss of generality, we can assume

.....

that P(x) = x;, ---x;,. Fixe > Oand let§ = 83—2 We will prove that P is in fact a
strong extreme polynomial (that is, for every ¢ > 0, there exists § > 0 such that if
|P£Qll¢, < 1+6 for some polynomial Q, then || Q|l¢, < &). If [PE Q¢ < 1+6

for some polynomial Q then, by the maximum modulus theorem, we have that

1P £ Qllcy = supflxi; - - - xi, & Q)| X = (Xm)meN € co, With [|x[lc, <1

and |x;; | = -+~ = |x;,] = 1}
and

1Qllc, = sup{lQ(X)|: x = (Xm)meN € co, With [[x[l, <1
and [x; | = --- = |x;,| = 1}.
Thus, by Choi et al. [16, lemma 2.1], notice that ||Q|l,, < e. Itis easy to see that
every strong extreme point is an extreme point and this concludes the proof. O

If we just focus our attention on 2-homogeneous polynomials, then we can find
some relations with other Banach spaces such as the finite dimensional space ﬁ’c‘,o.

Theorem 5.10 (Choi and Kim [14]) Identifying Z’;O with the subspace of co
generated by ey, , . . ., ey, we have that ext (Bp,)) NP (2€5,) C ext (BP(ZZQO))'

Furthermore, if g is defined over C, then ext (Bp(z ek, )) C ext (B’P(ZCO))'

Remark 5.3 Unfortunately, we do not have yet a characterization of the extreme
points of BP(Q &) in the complex case.
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In the real case, we do not know also if ext (Bp(z ek, )) is a subset of ext (BP(ZCO)),
except for k = 2 (Sect.5.2) since it is shown in [14] (see also [15, section 4]) that

ext (BP(ZZEO)> C ext (BP(ZC()))'

5.6 The Space ¢;

In Sect. 5.5, we studied several cases of when a polynomial in the infinite dimen-
sional space cq that has norm one is an extreme polynomial of the unit ball. In this
section, we study similar results but considering the infinite dimensional space ¢;
instead of cg.

The following results show how to obtain extreme polynomials in B¢>(2 o) by
using extreme polynomials in Bp(z 2) (see Sect. 5.1) independently of the field K €
{R, C}.

For every i < j and every P € P2e)), let us define Pij(x,y) = P(xe; +
ye;j). Itis easy to see that P;; € P(ZE%). The following result guarantees when the
polynomial P that defines the polynomial P;; is an extreme polynomial.

Theorem 5.11 (Choi et al. [16]) Let P € Bpy,). If P;j € ext (Bp(zl%)) for every
i < j, then P € ext (Bp(2£])).

Proof Assume that there exists Q € P(3¢;) of the form Q(x) = Zifj bijxix;
such that | P & Q|l¢, = 1. Clearly, we have || P;; £ Qij”zf < lforalli < j. Hence,

since P;; is an extreme polynomial of the unit ball of P(zﬁf), we have that Q;; =0
for any i < j, which implies that Q is the zero polynomial. O

Remark 5.4 Using Theorem 5.11 and [24, theorem 2.1], it follows that every
polynomial of the form

o0
P(x) = aZx,-2 —l—beixj
i=1 i<j
where |a| = 1 and |b| = 2 is an extreme polynomial of Bp(Z )

Let A and B be disjoint subsets of N and take P(x, y) = ax® + by> + cxy €
P (2¢2), where a, b, ¢ € K. Take (a;) € KY such that |a;| = 1, and let us define

P((xi)ien) = P (Z aixi, Zaix1> ~

icA ieB

It is easy to prove that || P”e% = ||F||g1.
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Theorem 5.12 (Choi et al. [16]) If A and B form a partition of N, then P €
ext (BP(ZZf)) if. and only if, P € ext (BP(%))-

Proof Assume first that P is an extreme polynomial of BP(ZZI) but P is not an
extreme point of Bp(z ) Then, there exist Q and R in the unit ball of P (26%) with
QO # R such that P = %(Q + R). Hence, P = %(a + R), where clearly O

R are distinct polynomials of the unit ball of P (221). Thus, P is not an extreme
polynomial of B¢,(z ) which is a contradiction.

Suppose now that P € ext (BP(ZE%))- Say P(x,y) = ax? + by* + cxy. First,
assume that there exists x € K with |x| = 1 such that |P(x,0)] = 1, then |a| = 1
(the same can be said if |P(0, x)| = 1 but in this case |b| = 1). Hence, since
P € ext (Bp(ze%)), by Theorem 5.2 (ii), we have that |b|] = 1 and |c|] = 2.

Therefore, by Theorem 5.11, we have that P € ext (B;D(z El)) . Thus, assume without

loss of generality that there exist xg, yo € K\ {0} with |xg| + |yo| = 1 such that
[P (xo0, yo)| = 1. L

By way of contradiction, suppose that there exist distinct Q and R in BP(%)
such that P = %(a + R). Let us decompose Q and R into Q = P + S and
R = P — S, where S((x;)ien) = Y ;- ; bijxix; € P(3¢1) with b;; € K for every
i < j. The latter can be done by construction of 6 and R.

We will prove that by = byy = by; = 0forany k € Aand!/ € B,orl € A and
k € B. Assume that k € A and / € B (the following reasoning can be applied also
in the case when / € A and k € B). Take o = sign(ax) and B = sign(a;). Then,

i<j

since P € ext (BP(%f)) and

1P Cxies x1) = (@ biexi; + Bbuxi + aBbuxex)| 2
= sup{| (P % S)(axxer + Bxien)|: xo, yo € K\ {0} with |xo| + |yol = 1} < 1,

we have that by = by = by = 0.

Now take k,l € A with k < [ and fix m € B. Let us take x;, x; € K\ {0} such
that xo = xx +x; and |xg| = |xx|+|x;], and let us define o = sign(ax), B = sign(a;)
and y = sign(a,,). Then,

1> [(P =+ S)(axkex + Bxie; + v yoem)|
= |P(axpex + Bxier + yyoem) £ (afbuxixr)|
= | P(x0, yo) £ (Bbrixix1)|.

Hence, by; = O for any k, [ € A with k < [. Since the above can also be applied in
the case when &, [ € B, it follows that S = 0 and the proof is complete. O
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5.7 The Space £, when p > 2

To finish this chapter of polynomials defined over sequence Banach spaces, we
analyze when a polynomial defined over £, when p > 2 is an extreme polynomial
of B,D(z €))" In particular, we will study when a diagonal polynomial is an extreme

point of the unit ball of P (2¢,,).

Theorem 5.13 (Grecu [26]) If p > 2 and (oy)neN € £p/(p—2) has unit norm with
alla, > 0oralla, <0, then P(x) = ZneN anxz is an extreme point ofB(SD(ZZP)).

Proof Let (0;)nen € £p/(p—2) be with unit norm and all o, > 0. Notice that if we
prove the result for all «, > 0, then we clearly have the case when all «r;, < 0.
Firstly, the polynomial P(x) = ZneN oznx,% is in the unit sphere of P »)-

Indeed, clearly we have that @ = (ot,i/ » _2)> N has unit norm in £, and
ne

— 2/(p—2 -2
P(a)zzanan/(P ):Za'li/”’ ):1

neN neN

Furthermore, by Holder’s inequality,

(p=2)/p 2/p
|P(x)| < (Z |an|”/<”—2)) (Z(xﬁ)ﬂ/z) = |xlle,

neN neN

Hence, [|Pl¢, = 1.
Now suppose that there exist polynomials P; and P with unit norm in P(>¢ »)
such that P = %(Pl + P,). It is enough to show that P = P; = P,. Let P, =

D oneN ot,gk))c2 + D 1<nem a,(jf),xnxm with k = 1, 2. Fix r € N and take x,, = 0 for
every n > r, then

k 2 2
Za() Z otnmx,,xm < ||x||[p.

l<n<m<r
If we replace now x, by —x,, then we have by the triangle inequality that
2 4 k 2
Za() Yo eparn| < X7
l<n<m<r-—1

Hence, repeating the same argument with x,_; down to x, we have

.
k) .2 2
> ax| < lx1z,

n=1
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for any r € N. Thus the polynomials Qx(x) = ZneN oz,(1 )xz with k = 1,2 are
in the unit ball of P(%¢ p). Moreover, the latter polynomials are in the unit sphere
of 7’(251,) because, since o, = ( (D + a,(,2)> for every n € N, we have P =
3(Q1 + Q2), which implies that P(@) = 1 only if both Q; and Q, are in the unit
sphere. Notice that we also have Q(a) = Q»(a) = 1, which implies that 01( ) >0

for any n € N and k = 1, 2. Indeed, take k = 1 and let Np = {n Ol,(l ) } and
Ny = {n; ald < o}. It Ny + &, then

Z 0((1) 2/(p—2) _ Z oz(l) 2/(17 2) <1,

neNy neN,

which is a contradiction.
As we have already proven that ‘ZneN a,(f)xrzl

‘ZneN a" by

k .
a® = ( f))neN € 05y = Ly with la®[lg,,, ) < 1 for every k = 1,2.

||x||§p, it is obvious that

< |Iblle,,, for every b = (bu)nen € £p/2. The latter implies that

p/2

Hence, o = 1 (¢V + @) in ¢, which yields & = o)) = ¢®. It remains to prove
thatoz,,m = Oforevery l1<n<mwithk =1,2.

Applying the same techniques of fixing r € N, taking x, = O for every n > r
and replacing the coordinates from x,, down to x3 by their opposites, we have that

Zaf/(P*Z) iaig)ail/(pfb)a;/@*% — ‘1 :I:(xig)a}/(pfz)a;/@fz) <1,

neN

which implies ozg)all/(p_z)aé/(p_z) = 0. If o and a5 are not 0, then afg) = 0 for

every k = 1, 2. Assume that both 1 and « are 0 (a similar argument can be applied
in the case when only one is 0), then Pk can be written as

Pr(x) —“12 X1x2 + Za X1x; + Z%n X2Xj

n>3 n>3

+Zanx + Z a xnxm

n>3 3<n<m
with

-2 1/(p=2) 1/(p=2
Zaf/(p )+ Z a,ﬁ’i)lan/(” )am/(p )=1'

n>3 3<n<m
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By taking x; = xp = l and x,, = :I:rot,i/(p_z) for n > 3 and tending then r to oo it
is easy to see that a}? < 0. By construction ag) + ozg) = 0, which yields a,(lli,), =0

forany l <n <mandk =1, 2. O

Corollary 5.2 (Grecu [26]) Let p > 2. If A and B are disjoint sets of N, (¢tg)aca €
Lp/(p—2)(A), (Bo)beB € Lpj(p—2)(B) withay > 0 for everya € A, By > 0 for every
b € B, |[(aa)aealle, ;2 a) = L and |[(ap)peBlie,, > B) = 1, then the polynomial
P(X) =23 4en ogx2 — Y beB ﬁbe is an extreme point opr(zgp).

The following result shows that the polynomials described in Corollary 5.2 are
the only diagonal extreme polynomials of Bgp )

eorem 5. recu p > 2an x) = YuX; where x =
Th 5.14 (G [26]) 2 and P(x) weN YnX2 wh

Xn)neN € €, then € . Furthermore, P is an extreme polynomial o
(xn) €y, then P € P(>¢,). Furth Pi l jal
B’P(zl,,) if, and only if, there exist A and B disjoint sets of natural numbers and
(tg)aca € BZp/(p—m(A) and (Bp)bep € B(})/(pfz)(g) positive sequences of unit norm

such that P(x) = Y e 0ix? — Y e p BoXi.

Proof By Corollary 5.2, given P(x) = ZZEN ynx,% where x = (x;)nen € £p an
extreme polynomial of Bp(2, ). it is enough to find A and B disjoint sets of natural
numbers and (¢a)aea € By, 5 (a) and (Bv)ven € By, » (8) positive sequences
of unit norm such that P(x) = Y, .4 oz,-xl.2 — Y beB ,Bbxg.

Let A={neN:y, >0}and B = {n € N: y, < 0}. Take a, = y, provided
a € A, and B, = —yp, provided b € B. Notice that by construction we have ¢, > 0
foreverya € A, B > Oforeveryb € Band P(x) =) .4 ()t,-xi2 - beB ,Bbxg. It
suffices to show that o = (@4)qea is an extreme point of the unit ball of £,,/(,—2)(A)
and has unit norm.

First, by using a duality argument (see the proof of Theorem 5.13), « belongs
to the unit ball of £,,,—2)(A). The same reasoning shows that 8 = (Bp)peB
belongs to the unit ball of €,/(,—2)(B). Suppose that there exist @) and o®
in the unit ball of £,/,—2)(A) such that @ = % (@ +a®@), and let us define
Px) = Y ,eaPx2 =3, 5 Bpx} for k = 1,2. By Holder’s inequality and
the triangle inequality, notice that || P|| ¢, = 1. Also, by construction, we have
P = %(Pl + P;). Hence, P = P; = P, since P is an extreme polynomial
of the unit ball of P(*¢,). Thus, we have @ = oV = a®, which yields that
o is an extreme point of By, , (a) and, therefore, & is in the unit sphere of
Lp/(p—2)(A). Analogously, B is the unit sphere of £,/,—2)(B) and is an extreme

point of ng/(p_2>(3). O



Chapter 6 )
Polynomials with the Hexagonal and Qs
Octagonal Norms

Abstract In this chapter we focus on the extreme points of the unit ball of quadratic
forms on R? endowed with the octagonal and hexagonal norms.

6.1 Octagonal Norm

Let us endow the vector space R? with the following octagonal norm with weight
w € [0, 1]: for every (x, y) € R?,

x| +|y|}

X, = max { |x|, |y[,
1G5 ) loct(w) {I l, 1] T+ w

For the rest of this section, we denote by 02w the space R? endowed with the
octagonal norm || - ||oct(w)-

Let us endow the space of 2-homogeneous real polynomials with the following
norm: for every P(x, y) = ax? + by> + cxy, where a, b, ¢ € R3,

1Pllgz = sup{|P(x, y)I: 11Cx, ) lloctw) = 1}

We will denote by P(z()zw) the space of 2-homogeneous real polynomials endowed
with the norm || - [| 2 . As in previous chapters, we have that the mapping 7' defined

on Sect. 2.1 and considered on the space 7’(205)) is a topological isomorphism from
7’(203,) to the normed space (R3, || - lloct(w)), where || - ”50(20,2,) is defined as follows:

for every (a, b, ¢) € R,
@, b, )llpez) = llax® +by* + exyllgn

. 3 .
The unit ball of (R-, || - ”7’(20%;)) will be denoted by B7’(20i>'
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We are interested in studying the extreme points of the unit ball of P(ZOZw).
Notice that 0(2) = E% and O% = Ego which have already been analyzed in Sects. 5.1

and 5.2.
We begin by providing an explicit formula for the norm of the space P(ZOZw).

First of all, notice that
lax® + by? + cxyllge = |bx? + ay? + cxylge = Il = bx* —ay’ + cxyllge

Therefore we may assume that @ > |b| and ¢ > 0 since the remaining cases can be
easily deduced.

Theorem 6.1 (Kim [38]) Ler P(x,y) = ax? + by2 + cxy where (a, b, c) € R3,
a > |b| and ¢ > 0. We have

2

a+éﬁ ifb<0,0<c<—2band — 55 < w,
bwr+cw+a ifQ2lb] <c<2a), or(b>0and0 <c <?2b),
Pllpz = or (2a < c and £3% < w),

w

or(b<0, 0§c<—2band—2“—b>w),

(2—4ab)(14+w)? . c—2a
" He—a—b) lf2a<cand072bzw.

Although the following result does not appear explicitly in [38], it is remarked at
the beginning of [38, section 2].

Theorem 6.2 (Kim [38]) The projection of BP(ZOZ ) onto the ab-plane is Bzgo-

Now we are ready to show the extreme points of Bp(z )

Theorem 6.3 (Kim [38]) The set of extreme points of BP(ZOZ) consist of the
elements

t(B )—{j: t,—t,+ 2 2 ! 2] :
1—w
e, ——m8
[ (1+w)(1+w2)”
U :I:(s, —s, £24/s(1 —s)) = |: ! 1:“

1+ w?’
TR ST )
(1+w)2 s 1y

1
U L 0)} . 1,003 1,0, 0)).

C
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Fig. 6.1 Extreme points of \
BP(ZO,Z,,) with w = 1/4

25— |

-1.5 - b

2

-2.5-]

Unfortunately the authors have not been able to obtain a parametrization of the
unit sphere of (R3, || - || PR )). However, we provide a visual representation of the
extreme points of the unit ball BP(202) in Figs. 6.1 and 6.2.

6.2 Hexagonal Norm

Let us endow R? with the following norm known as the hexagonal norm with weight
w € [0, 1]: for every (x, y) € R?,

G ) lhexwy := max {[y|, |x[ + (1 — w)[y|}.

The space R? endowed with || - Ihex(w) s denoted by 7-{%) Notice that 7-{% = 6% and

7-{% = Ego, which have already been treated in Sects. 5.1 and 5.2. Nonetheless, in

this section we are interested in studying the case when w = %
Let P be a 2-homogeneous real polynomial of the form P (x, y) = ax? + by* +

cxy and consider the following norm

IPllga,, = sup{l PG, y)I: 166 ¥ lhexci/2) = 1}-
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Fig. 6.2 Extreme points of
BP(ZO,Z,,) with w = 3/4

Let us denote by £ (271% /2> the space of 2-homogeneous real polynomials endowed
with the norm || - ||7{%/2. As in the previous cases treated in this survey, the mapping

T defined on Sect.2.1 and restricted to the space 7’(27{%/2> is a topological

isomorphism from P (27-(% /2) to the normed space <R3, Il - ”7) (27{%/2)>, where
_ 2 2
l(a, b, C)Ilq,(zw%/z) = |lax” + by +cxy||q{%/2,

for every (a,b,c) € R3. Let us denote the unit ball of <R3, -l p(298 ) by
(*#6,)
B_/,,» \. Once again, just as in the case of the octagonal norm (Sect.6.1), we
(248 ,)

begin by showing an explicit formula for the hexagonal norm || - ||(H%/2.

Theorem 6.4 (Kim [39]) Ler P(x,y) = ax? + by2 + cxy witha > 0, ¢ > 0 and
a® 4+ b* + c? # 0. We have

max a,él—‘a—l—b—l—%c} ifc <aanda < 4b,
2—dab .
max {a, |b|, A—I‘a+b)+%c, e 4aa |} ifc <aanda > 4b,
P =
l ||«;-{%/2 1 bl |2—4ab) . da<4b
maxa, za + b+ 3¢, semma ifc>aanda < 4b,

ma

>

a, |b|,

%a +b) + %c, 2‘0'2_;4:15[)] ifc>aanda > 4b.
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We now proceed to show the projection of B P ( onto the ab-plane.

27‘(%/2)

Theorem 6.5 (Kim [38]) The projection of B 7)( onto the ab-plane is ngo .

27‘{%/2)

Theorem 6.6 (Kim [39]) The set of extreme points of BP(QH%/Z) consists of
t+4J1 —t
xBpayg ) = {:I: (r, L[+ t]) L1 elo, 1]}

U{i<1,§—1,is> :se[O,l]}
U {:I: (1, %,o)} U {:I: (1, %,:I:l)} U{:I:(O, 1,0)}.

Just as in the case of the octagonal norm (Sect. 6.1), the authors were not able

to provide a parametrization of the unit sphere of <R3, [l P (2 7 )>, but Fig. 6.3
172

shows the extreme points of B .

p 7)(27_{%/2>

Fig. 6.3 The extreme points

of the unit ball of 2 (443, 2

1.5
0.5

-0.5

-1.5

b




Chapter 7 )
Hilbert Spaces e

Abstract Let H denote a Hilbert space over K (K = R or C), i.e., H is a Banach
space which norm || - || g comes from a bilinear product (-, -): H x H — K which
verifies that ||x|| g = «/[{x, x)] for every x € H. In this chapter, we are interested
in studying the extreme points of 2-homogeneous polynomials defined over Hilbert
spaces.

Recall that the spaces of polynomials mentioned above have already been studied
when H is a 2-dimensional Hilbert space. Indeed, given two Hilbert spaces of
dimension 2, H; and H», there exists an isometry between H| and H,. Therefore, the
results follow from Sect. 4.3.1. Let us denote by P(" H) the space of n-homogeneous
polynomials over H, where the norm of an n-homogeneous polynomial P over H
is defined as

[Pl = sup{|P(X)|: |Ix]|m = 1}

Also, let Bpp gy and Sprgy denote the unit ball and the unit sphere of P(" H),
respectively.

7.1 The Real and Complex Case for 2-Homogeneous
Polynomials

Assume first that K = R. We begin by providing a characterization of the set of
extreme points of By gy where H is defined over the real numbers and is finite
dimensional.

Theorem 7.1 (Sundaresan [54]) Let H be a Hilbert space of dimensionn > 2. A
2-homogeneous polynomial P is an extreme polynomial of Bp 2y if, and only if, the
matrix A = (a;;) defined by a;; = %(P(e,- +ej)—P(e))—Pej))withl <i,j<n
has only unimodular eigenvalues.
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Proof By Sundaresan [54, section 1], there exists a linear isometry

Fo(Sn Il lloo) = (Sns Il - lloo),
where S, is the real vector space of symmetric n X n matrices and
[Allcc = sup{llAx|lz: lxllz < 1}

for every A € S, such that F'(A) is a diagonal matrix B = (b;j)1<i,j<n With
b;; being the eigenvalues of A in no particular order. Clearly, since F is a linear
isometry, we have that A is an extreme point of the unit ball of (S, || - |lco) if, and
only if, B is an extreme point of the unit ball of (S, || - [|c). Hence, it is enough to
show that B is an extreme point of the unit ball of (S, || - ||co) if, and only if, the
diagonal entries of B are unimodular.

Assume first that |b;;| = 1 forevery 1 <i < n. By way of contradiction, suppose
that there exist distinct matrices C = (c;;) and D = (d;;) in (S, || - lloo) of norm
one such that B = %(C + D). Hence,

n

n n u
Zl 1
2 2 )
an]:biiZ E(Cii"'dii)fE(glcii—k.gldﬁ)Sn_
1= ie

i=1 i=

Clearly we have "7, 3 (cii +dii) = % (37—, ¢% + Y_, d?) and therefore p;; =
gii for every 1 < i < n. The latter implies that b;; = ¢;; = d;; forany 1 <i < n.
To reach a contradiction, it is enough to show that the non-diagonal entries of C and
D are 0. Let (4;)7_, be the eigenvalues of C. Then, by the Frobenius equation and
using the fact that ||C|lcc = sup{|A;|: | <i <n} =1, we have

n

n n
ZZCU ZZK? <n.
i=1

i=1i=1

Hence,

2
>, citnsn

1<i,j<n, i#j

which implies that ¢;; = 0 forevery 1 < i, j < n withi # j.

Assume now that B is an extreme point of the unit ball of (S,, || - ||ec)- Suppose
that there exists i9p € {1,...,n} such that |b;;;|] < 1. Choose § > 0 such that
|diyi, &= 8] < 1, and choose P = (p;;) and Q = (g;;) diagonal matrices such that
Pjj =qjj = bjjif j #io, Piyiy = biyio + 6 and giyiy = bipi, — 8. By construction it
iseasy to see that P # Q, B = %(P + Q) and also P and Q belong to the unit ball
of (Sy, || - lloo), Which is a contradiction. |
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For the rest of this section, assume that H is a Hilbert space of finite or infinite
dimension. The following theorem is an extension of Theorem 7.1 to arbitrary real
Hilbert spaces, but in order to prove it we will use another result related to the self-
adjoint operator of a polynomial.

Remark 7.1 Let P be a 2-homogeneous polynomial on H and L the polar of P (see
the beginning of Sect.5.5). Notice that for a fixed y € H, the mapping H > x >
L(x, y) is linear and continuous. Hence, by Riesz representation theorem, there
exists a unique bounded linear operator T: H — H such that L(x,y) = (x, Ty),
T is self-adjoint and || T|| = ||L|| = || P||. We say that T is the self-adjoint linear
operator of P.

Proposition 7.1 (Grecu [25]) Let H be a real Hilbert space and P be an extreme
2-homogeneous real polynomial of the unit ball of P(>H) with T the self-adjoint
linear operator of P. We have that T*> = Id.

Proof As |P|| = 1, we have that ||T|| = 1 by Remark 7.1. Furthermore, as

T: H — H is self-adjoint, there exist a positive measure @, g € Loo(u) with

llglloc = IT|| and a unitary operator U : H — L>(u) suchthat UT = M U, where

Mg : Ly(u) — La(u) is defined by M, (f) = gf forevery f € La(u) (see [31]).
Hence

P(x)=(Tx,x)=(Tx, x)

= (gUx,Ux) = /g(Ux)zd,u.

Now suppose that there exist g1, g2 € Loo(it) With ||g1]lcc = [l€2]lco such that
g = %(g 1 + g2), and let us define the 2-homogeneous real polynomials P;(x) =
f gi(Ux)*du fori = 1,2. By construction, it is easy to see that P = %(Pl + Pp)
with O < |Pillg < llgillec < 1. As P is an extreme polynomial, the latter implies
that P; = P,. Now take f € Li(u) arbitrary and decompose f as f = f+ — f~,
where fT, f~ > 0. Clearly, \/fT \/F € Ly(u), and so there exists x € H such

that Ux = \/F Thus,
/ (g1 —g) fTdu= / (g1 — g2)(Ux)*dp = Pi(x) — P2(x) = 0.

Applying the same arguments for f~, we have that [ (g1 — g2) fdu = 0 for every
f € Li(n), which proves that g = g».

We have proven that g is an extreme point of Lo, (1) and therefore we have that
|g| = 1 a.e. Thus, we have that

U(sz) =gU(Tx) = gzUx =Ux.

Since U is injective (as it preserves the inner product), we have that 72 = Id. O
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Theorem 7.2 (Grecu [25]) Let H be a real Hilbert space. A 2-homogeneous real
polynomial P is an extreme point of Bp ) if, and only if, there exists an orthogonal
decomposition of H = Hy @ Hy such that P(x) = |1 (x)||> — ||m2(x)||? for every
x € H, where m1 and m> denote the orthogonal projections of H onto Hy and H»,
respectively.

Proof Firstly, assume that there exists an orthogonal decomposition of H = H; &
H, such that P(x) = |1 (x)||? — ||m2(x)]||? for every x € H. Clearly, —||m2(x)|*> <
P(x) < || (x)||* for any x € H and P(x) = ||x||*> when x € Hj. Hence, | P|ly =
1. Assume that there exist P; and P> in Bp(z H) such that P = %(P] + P>). Then,
forany x € Hi, we have that |x|> = L(Py(x) + P,(x)) < ||x||, which implies that
Pi(x) = Pa(x) = ||x||* on H,. Analogously, we have Pi(x) = Py(x) = —|IxlI* on
H,. Let Ly and Tj be the polar and self-adjoint linear operator of Py for k = 1, 2,
respectively. Then, for every x = x| + xo» € H; & H;, we have

Pi(x) = Pi(x1 +x2) = L1(x1 + x2, x1 + x2)
= Pi(x1) +2L1(x1, x2) + P1(x2)

= lx1)l? 4 2L (x1, x2) — [lx2]|*.

As Pi(xp) = —||x2||2 we have (xp, Tix2) = —||x2||2. Hence, we have Tjx, = —xp
because ||T1|| = || P1||g < 1. Therefore, L{(x1, x3) = (x1, —x2) = 0 since H; and
H; are an orthogonal decomposition of H. The latter implies that Py = P and the
proof is complete.

Secondly, assume that P is an extreme point of By ;) and let T be the associated
self-adjoint linear operator of P. By Proposition 7.1, T? = Id. Let us define the
continuous linear operators 71 = (I + T)/2and m, = (I — T)/2, and take H} =
m1(H) and Hy = 7> (H). On the one hand, since T is self-adjoint and T2 = 1d,

(1 (x), m2(x)) = = (x + Tx,x — Tx)

(x,x) 4+ (Tx,x)—(x, Tx) — (Tx, Tx))

— = K=

= 7(x, x) = (T%x,x)) =0

forany x € H.Onthe otherhandx = (x +Tx)/2+ (x — Tx)/2 = m1(x) + m(x).
Hence, H = H| ® H,. Moreover, Tx = m1(x) — m2(x), which implies that P(x) =
721 COII* = flm2 (o). O

Assume now that K = C. We are going to show a characterization of the set of
extreme points of By ).

Theorem 7.3 (Grecu [25]) Let H be a Hilbert space defined over C. A 2-
homogeneous complex polynomial P is an extreme point of Bpay) if; and only
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if, there exists an orthonormal basis {e;}jcy of H such that P(x) = Zje] sz. for
everyx =3} ;c;a;jx;j € H.

Last but not least, we show a characterization of the extreme points of Bp(z H)»
when H is defined over R or C, but in a more practical way since it uses the
coefficients of the polynomial. If {e;};c; is an orthonormal basis of H, then a 2-
homogeneous polynomial P with polar L is of the form P(x) = ) aAjjXiXj
with ajj =aj = L(e;, e]‘).

i,jed

Theorem 7.4 (Grecu [25]) Let P be a 2-homogeneous polynomial of unit norm
on a separable Hilbert space H defined over R or C and let L be the polar of P.
If {ej}jey is an orthonormal basis for H and A is the matrix whose entries are
the coefficients a;j = L(e;, e;) of P, then the polynomial P is an extreme point of
Bpep) if, and only if, AA = I (where 1 is the identity matrix).

7.2 Polynomials of Degree n

Now we aim to give a more general approach. In most of the results that we have
given, we are mostly interested in 2-homogeneous polynomials. But in this section
we go further by showing a characterization of the extreme points on Bp gy where
n € {3,4} and H is a real Hilbert space. Unfortunately this characterization is not
true when n > 5 but we are able to give some insight nonetheless.

Theorem 7.5 (Grecu [28]) Let P be a 3-homogeneous real polynomial of unit
norm on a two dimensional real Hilbert space H. We have that P is an extreme
polynomial of By if, and only if, for any orthonormal basis {e1, e2} of H such
that P((x1, x2)) = x13 + 3bx1x§ + cxg, the coefficients b and c satisfy the condition
=B+ 1D*2b—1).

Theorem 7.6 (Grecu [27]) Let P be a 4-homogeneous real polynomial of unit
norm on a two dimensional real Hilbert space H. We have that P is an extreme
polynomial of Bpy if, and only if; either P(x) = £||x ||‘;1 or for any orthonormal
basis {ej}jes of H such that P((x1,x2)) = xf + 6bx12x§ + 4cx1x§’ + dxg, the
coefficients b, ¢ and d satisfy one of the following conditions:

(i) b= @and(;ziz\/@,h - /5

(ii) b= =222 gpg ¢ = 0,
where in both cases d € [—1, 1].

Let us show now the general results for arbitrary n.

Theorem 7.7 (Grecu [27]) Let H be a two dimensional real Hilbert space.
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(i) If nis odd and P is an n-homogeneous real polynomial of unit norm such that
|P(x)| = 1 at n + 1 distinct points of the unit ball of H, then P is an extreme
polynomial of Bp ).

(ii) Ifn is even and P is an n-homogeneous real polynomial of unit norm such that
|P(x)| = 1 at n + 2 distinct points of the unit ball of H, then P is an extreme
polynomial of Bp ).

The following result in this general setting gives exact values for some extreme
points.

Theorem 7.8 (Grecu [27]) Let H be a two dimensional real Hilbert space and
n > 5.

(i) If n is odd, then the polynomial
%
n=214+2)(n—-2l4+4)---n , 5
P(x)=Z PR X7

=0

is an extreme polynomial of Bp ).
(ii) If n is even, then the polynomials

P(x) = |lxIy

and

nj2—1

P(x) = Z <n§2)xf_21x221 — x5

=0
are extreme polynomials of Bp ).

To finish this section, we show a characterization for the extreme points of 3-
homogeneous polynomials on a two dimensional complex Hilbert space.

Theorem 7.9 (Grecu et al. [29]) Let H be a two dimensional complex Hilbert
space. A 3-homogeneous complex polynomial P € Bpiyy of unit norm is an
extreme polynomial of By if, and only if, P attains its norm at two or more
linearly independent points.



Chapter 8 ®
Banach Spaces e

Abstract In this chapter we will show some results on the extreme points of the unit
ball of certain polynomial spaces in arbitrary Banach spaces. More particularly, we
are interested in studying integral, nuclear and orthogonally additive polynomials.

8.1 Integral and Nuclear Polynomials

First, we begin by defining what are known as n-homogeneous integral polynomials
on Banach spaces.

Definition 8.1 Let X be a Banach space. We say that a continuous n-homogeneous
polynomial P is integral if there is a regular Borel measure u of total variation on
(Bx+, »*) such that

P(x) =/ p(x)"du(p), (8.1)
BX*

for every x € X, where w* stands for the weak*-topology. We denote by P; (" X)
the space of continuous n-homogeneous integral polynomials.

Let X be a Banach space, we endow the space P (" X) with the norm given by
IP|l; = inf {|u|(Bx+): u satisfies (8.1)}.

The normed space (P;("X), || - |l;) is in fact a Banach space. For simplicity, let
us denote (P;("X), |l - Il7) by Pr(*X). We will denote the unit balls of X and
Pi1("X), |l - 1), respectively, by Bx and Bp, (1 x).

The following result characterizes the set of extreme polynomials of By, x)
when X is real Banach space. Although such characterization is proven in [17], it
is worth mentioning that the study of the extreme polynomials of By, » x) has also
been done by several authors prior to the final characterization (see [9, 10, 52]).

Theorem 8.1 (Dimant et al. [17]) If X is a real Banach space and n > 2, then
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ext(Bp, (nx)) = {£¢": ¢ € Sx+}.

The following results shed some light on the extreme complex polynomials on
arbitrary Banach spaces. We begin by defining what is known as an extreme complex
point on a normed space. The standard definition that we have considered for a point
on a normed space X to be an extreme point of By is the following: given a normed
space X defined over R or C, we say that x € By is a (real) extreme point of By
provided that if x + Ly € By for some A € C with A € [—1, 1], then y = 0.
Now, analogously, given X a normed space defined over C, we say that x € By is
a complex extreme point of By provided that if x + Ay € By for some A € C with
[A] < 1,theny =0.

Given a normed space X defined over C, let us denote for the rest of this section
the set of real and complex extreme points of By by extr(By) and extc(By),
respectively. Clearly, extr (Bx) C extc(By).

Theorem 8.2 (Boyd and Ryan [10]) If X is a complex Banach space and n > 2,
then

extr(Bp, (nx)) S {£¢": ¢ € Sx+}.

For the following result we need the next definition.

Definition 8.2 Let X be a Banach space, we say that A C X* is X-transitive if for
all ¢, ¢ € A, there exists an isometry 7 of X onto itself such that ¢ o T = ¢.

Theorem 8.3 (Dineen [20]) Let X be a complex Banach space. If extc(X*) is X-
transitive and n > 1, then

extr(Bp,(nx)) = {£¢": ¢ € extc(Bx+)} = {£¢": ¢ € extr(Bx+)}.

Theorem 8.4 (Dineen [20]) If X is a finite dimensional complex Banach space and
n > 1, then

extr (Bp, (nx)) 2 {£¢": ¢ € extr(Bx+)}.

Theorem 8.5 (Dineen [20]) If X™* is a strictly convex finite dimensional complex
Banach space and n > 1, then

CXtR(BpI(nx)) = {:f:(pni (S BX*}

Finally, we provide some insight on arbitrary infinite dimensional complex
Banach spaces. To do so, we begin by providing the definition of weak*-exposed
points of complex Banach spaces.

Definition 8.3 Let X be a Banach space. We say that x € By is an exposed point
of By if there exists ¢ € By such that ¢(x) = 1 and ¢(y) < 1 forevery y € By=.
We say that x € X is a weak*-exposed point of the unit ball of X if x is an exposed
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point of the weak*-closure of Bx in X**. We denote by exp,,«(Bx) the set of weak*-
exposed points of By.

Theorem 8.6 (Dineen [20]) If X is a complex Banach space and n > 1, then
extr(Bp, (nx)) 2 {£¢": ¢ € exp,«(Bx+)}.

The inclusion in Theorem 8.6 can be improved in the sense that the equality is
satisfied for specific Banach spaces such as ¢ [20].

Finally, we will study the extreme nuclear polynomials. Let us begin by defining
what is known as a nuclear polynomial on a Banach space.

Definition 8.4 Let X be a Banach space. We say that a continuous n-homogeneous
polynomial P on X is nuclear if there exists a bounded sequence (¢;);2; C X* and
()72, € €1 such that

P(x) =) higi(x)", (8.2)
i=1

for every n € N. We denote by Pn("X) the space of nuclear n-homogeneous
polynomials on X.

The space Py (" X) is a Banach space when it is endowed with the norm || P|| 5
defined as the infimum of Z?i] [Ailllgi I taken over all representations of P of
the form (8.2). It is not difficult to prove that given a Banach space X we have
Py(X) CP;("X) CP(*X) and for every P € Py(*X) we have ||P|| < || P|l; <
| P||x. Moreover, if ¢ € X*, then ¢" is an n-homogeneous nuclear polynomial and
le™lln = lle"llr = ll"ll.

Theorem 8.7 (Boyd and Ryan [10]) If X is a Banach space, then

extr(Bp, x)) C extr(Bpy :x)),

where Bp,, (n x) is the unit ball of Py (" X).

8.2 Orthogonally Additive Polynomials

In this section we will be interested in studying the extreme polynomials of the unit
ball of the space of orthogonally additive polynomials on Banach lattices endowed
with two different norms. First, we begin by defining orthogonally additive n-
homogeneous polynomials on Banach lattices.

Definition 8.5 Let X be a Banach lattice. We say that a continuous n-homogeneous
polynomial P on X is orthogonally additive if P(x + y) = P(x) + P(y) whenever
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x and y are disjoint. We denote the space of orthogonally additive n-homogeneous
polynomials by Poa (" X).

One of the main advantages when working with Banach lattices in this scenario
is that we only have to study the space of orthogonally additive n-homogeneous
polynomials on C(K) for every compact Hausdorff topological space K. Indeed,
let X be a Banach lattice. For every positive a € X, we can consider the principal
ideal

X, ={x € X: |x| < na for some n € N},

with lattice structure inherited from X. The space X, is a Banach lattice endowed
with the norm ||x|, = inf{C > 0: |x| < Ca}. By the Kakutani representation
theorem [36], the Banach lattice X, is canonically a Banach lattice isometrically
isomorphic to C(K) for some compact Hausdorff topological space K, with a being
identified with the unit function on K. It is known that the Banach lattice structure
of X is uniquely determined by its principal ideals. Hence, the study of the space
Poa("C(K)) is crucial to understanding the behaviour of P4 (" X) for arbitrary
Banach lattices X.

We will consider in Pp 4 (" X) two natural ways to norm the space. The standard
one is the uniform convergence norm on the unit ball of X, i.e.,

[Plloc = sup{|P(x)]: x € Bx},

which makes the normed space (Poa("X), || - lloo) into a Banach space (in fact,
notice that (Poa (" X), || - llco) is a closed subspace of (P("X), || - llco))-

Another way to norm Pp 4 (" X) is developed below. Since X is a Banach lattice
we can define a partial order < on P(" X): we say that P < Q with P, O € P("X)
if, and only if, L(xy,...,x,) < M(xy,...,x,), for every x1,...,x, € X and
where L and M are the polars of P and Q, respectively. Hence, we say that
an n-homogeneous polynomial is positive if P > 0 with this partial order <.
Furthermore, we can define the absolute value of an n-homogeneous polynomial.

Definition 8.6 Let P € P("X). We say that P is regular if P is the difference
of two positive n-homogeneous polynomials. We denote by P, (" X) the space of
regular n-homogeneous polynomials

All regular n-homogeneous polynomials are those that have absolute value given
by the formula

IPl)=supy > [LGx).....x")l:x' . x" M) ¢,

ST in

for every x > 0 and where I1(x) denotes all finite sets of positive vectors of X
whose sum is x. Notice that the vector space P,("X) is in fact a Banach lattice
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when it is endowed with the regular norm
1Pl = [l1P]lloo-

For more information on regular polynomials see [7].

Now, every orthogonally additive n-homogeneous polynomial is regular. This
was first proved by M. A. Toumi in [55, theorem 1] but another proof can be found
in [11]. Hence, we can consider the space P 4 (" X) in two scenarios: endowed with
the supremum norm or the regular norm. It is important to mention that the norms
|l lloc and || - ||, are equivalent in P 4 (* X) for any Banach lattice X as the following
result shows, but the geometric properties of the two Banach spaces are not the same
as we will see.

Theorem 8.8 (Boyd et al. [11]) Let X be a Banach lattice. If P € Pos (" X), then
IPll; = IPlloo ifnis odd and || Plleo < || Pl < 2||P|lco if 1 is even. Moreover, the
inequalities are sharp.

See [11] for more information on the supremum and regular norm defined on
Poa"X).

We now proceed to state the main results of this section which are an extension
of [12].

Theorem 8.9 (Boyd et al. [11]) Let K be a compact Hausdorff topological space.
A polynomial P € Pos("C(K)) is an extreme polynomial of the unit ball of the
space (Poa("C(K)), || - II) if, and only if, P(x) = £6}(x), where t € K and
8 (x) = x(t)™.

Theorem 8.10 (Boyd et al. [11]) Let K be a compact Hausdorff topological
space.

(i) If n is odd, then a polynomial P € Pos("C(K)) is an extreme polynomial of
the unit ball of the space (Poa("C(K)), |- o) if, and only if, P(x) = %45} (x),
where t € K and &} (x) = x(t)".

(ii) If n is even, then a polynomial P € Pos("C(K)) is an extreme polynomial of
the unit ball of the space (Poa("C(K)), || - llco) if, and only if, P is one of the
following polynomials:

(a) P(x) = %5 (x), wheret € K and 8] (x) = x(t)";
(b) P(x) = (8 —&})(x), wheres,t € K and (6} — 8')(x) = x(s)" —x()".



Chapter 9 )
Applications Qs

Abstract As we know, one of the main goals of this book has been to find a
parametrization of the unit sphere of spaces of polynomials endowed with different
norms whose unit balls can be described in R3, but mainly we have tried to
obtain the extreme polynomials of the unit balls. We have also studied some of
the extreme polynomials in arbitrary dimensions and we have even described some
of the extreme polynomials of arbitrary degree. The reason behind this is that a full
description of the extreme polynomials of the unit ball has, as a matter of fact, can
be applied to obtain many sharp polynomial inequalities (as we will see in this final
chapter).

If the extreme polynomials of the unit ball are known, then we can simplify the
problems that involve finding sharp inequalities between norms that depend on
polynomials by using a simple consequence of the Krein-Milman Theorem.

Theorem 9.1 (Krein-Milman Theorem [41]) Let X be a normed space. If C is
a compact convex subset of X, then C coincides with the closed convex hull of its
extreme points.

Corollary 9.1 If C is a convex body in a normed space X and f: C — Risa
convex function that attains its maximum, then there exists an extreme point p € C
such that f(p) = max{f(x): x € C}.

The main idea to apply Corollary 9.1 is the following: Let B be a convex body in a
normed space of polynomials and f be a convex function defined on B which attains
its maximum and takes real values, then f attains its maximum at an extreme point
of B by Corollary 9.1. Furthermore, if we have a full description of the extreme
points of B, then we can find the maximum of f by evaluating f in the extreme
points of B (this is the Krein-Milman Approach). This can be used in the case of
norms of polynomials since it is known that the norm function is convex.

The rest of this chapter involves finding well known sharp inequalities for norms
of polynomials that have appeared in this survey.

Let (X, || - ||) be a normed space and consider the normed space P (" X) (see the
beginning of Sect. 5.5). Now, let us also consider the space of continuous symmetric
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n-linear forms of X denoted by L, (" X) and endowed with the following norm:
LIl = sup{|L(x1, ..., x0)|: Ilxill = 1, foreveryi €{l,...,n}},

for every L € L (" X). By the beginning of Sect. 5.5, for every P € P("X), there
exists a unique L € L;("X) such that P(x) = L(x, ..., x), for every x € X, the
polar of P.

9.1 Bernstein-Markov Type Inequalities

Bernstein type inequalities for polynomials are inequalities of the following form:
if P € P("X), there exists a function ¥ (x) defined over C such that

ID* P < ¥ P],

where DX P denotes the k-th derivative of P (the optimal function W(x) is known
as the Bernstein function). On the other hand, Markov type inequalities are of the
same fashion as Bernstein type inequalities but we are also taking the supremum
of || DFP(x)|| over all x € C (the optimal constant in Markov type inequalities is
known as the Markov constant). The results of this section focus on finding the
Bernstein function and the Markov constant that are known for the spaces that have
been presented in this survey.

Theorem 9.2 (Aratjo et al. [4]) Take P3(R) (see Sect. 2.1). The Bernstein function
for the inequality

|P'(0)] = W) PR

is given by
31-4%) 0 < |x| < Y2,
RES if Y2 < ) < 2L
e L <y <
e ir 30 <y < 2,
3@x2—1)  iflx| = Y2,

The Bernstein function for the inequality
P70 < W) PR

is given by
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4 . 1
1—9x2 lfo = |x| = 9>
32 e 1
9(|x\—1)2 lf§ =< |-x| < 3
. 1
24|x| iflxl = 3.

Theorem 9.3 (Mufioz et al. [47]) Let ¢: [—1,1] — [0, +00) be defined by
@(x) = ~/1 — x2. On the space 7’%’ (R) (see Sect. 2.1.1), the Bernstein function for
the inequality

|P'(x)| < W()[IPllr

is given by

201 — 3x2] if x| € o,V43ﬁ}u[V4§ﬁ,1],

4x2 l‘fl.x| c \/4_\/7 V4+\ﬁ
—9x4110x2-1 33

Theorem 9.4 (Muiioz et al. [48]) Let m,n € N be odd and such that m > n. On
the space P n,00(R) (see Sect. 3.1), the Bernstein function for the inequality

|P/(x)| S VNP llmn,00

is given by

{,,1%0 U ol i lx] € [0, 11\ D,

n
n—n 1 .
n ()™ o if x| € In.n,

where Ly comes from Theorem 3.1 and

mo=[ (22)™. ()77

The Markov constant is given by

mn(1 + Ag)
n—+ mig

and equality is attained for the polynomials

P(x) = :i:;(nxm + Aomx™)
n 4+ mkig ’
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In order to prove Theorem 9.4, we will prove first the following technical
lemmas.

Lemma 9.1 (Munoz et al. [48]) Let m, n € N be odd and such that m > n and let
Ao be the number from Theorem 3.1. We have

n
n 1 — |Ag|m—n n
Aol — < [Aol ————== < —
m

— aolmm  m
Proof Recall from Lemma 3.1 that [Ao] < ;- < 1 and consider the inequality

n 1 —x"
— < .
m 1 —xm

9.1

We will show when (9.1) holds. If 0 < x < 1, then inequality (9.1) is equivalent
tom —n > mx" — nx™. Now, since the function x +— mx" — nx™ is strictly
increasing on (0, 1), the curves y = mx" — nx™ and y = m — n intersect in,
at most, one point which is x = 1. Hence, it is easy to check that the inequality

m —n > mx" —nx" is satisfied on (0, 1), which implies that m —n > mx" — nx™
i
holds when x € (0, (%) m=n ) and we have proven the first inequality of the lemma.

The second inequality follows after doing some simple calculations and using the
fact that Ag satisfies n + mig = (m — n)|Ag|m-7. 0

Lemma 9.2 (Muioz et al. [48]) Let m, n € N be odd and such that m > n and let
Lo be the number from Theorem 3.1. If we define the functions

Fl) = gl mem g,
m—n
mn n—1; . .m—m
X)) = ——Xx X + Aol,
g(x) e I ol

then g(x) > f(x) provided x satisfies

1 1
[Aoln | m=n ANT=T
0=<lx| =< or | — <|x| =L

m m

Proof By symmetry, assume that x > 0. After some calculations, it is easy

1
to check that the functions f and g intersect at the points x; = (%) m=n and
1
Xy = (me) . By Lemma 9.1, the points x; and x; are not in the
]7|)Lo|mfn

L 1
intervals (0, (%’”)_) or ((%)m” : 1). Hence, either f > g or f < g in each
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e
one of the previous intervals. Now, notice that (1) < g(1) and f ((Ik%n) m—n> -

m

1
g ( (M) " ) Indeed, the former is trivial and the latter is true because of the

_1 1
following reasoning. Notice that the inequality f ((%) " ) <g <<|)‘%> " )

A
ZOLS 1‘ < —L
g 77

is equivalent to

’\% — Ao‘. Moreover, it is also equivalent to

[Ao|m=7 < |Ao| which is satisfied since —1 < — < Ao < 0 (see Lemma 3.1) and

the proof is complete. O

Lemma 9.3 (Muiioz et al. [48]) Let m,n € N be odd and such that m > n and let
Ao be the number from Theorem 3.1. If we define the functions

mn
f@) = ———x" " 1,
nm—n

mn n—1, _m—m
X)) = ——X X Mo,
g(x) P | + Ao
=
h(x):n(i) —,
m |x]

then h(x) > max{f(x), g(x)} provided x satisfies

1
A n\
(' OI) <lki= ()"
m m

1
m—n L . .
Proof Assume that [2oln ) m=n < x| < (ﬂ)’"*” holds, then it is enough to show
m m

that 2(x) > f(x) and h(x) > g(x).
Firstly, notice that the function x” — x™ is strictly increasing on the interval

1
<O, (%) m—n > since the derivative is positive. Hence, the maximum of x +— x" —x™

1\ . . L T
on (0, (%)’"") is attained at x = (£)”~" with value m=mn 71 hyg, x"—x™M <
mm—n
1

n
— m—n M m—n —_— . . . .
mona ™ [2oln < |x| < (£)™, which implies after rearranging the

m—n m
inequality that f(x) < h(x).

_n_ .
Secondly, notice that the inequality nﬁ;‘koxn—l X gl < n (%) n—n |)lc_‘ is

for (

equivalent to ;72— [x" + Aox"| < (Z)™. Since the derivative of x™ + Aox" is

1
only O when x = Qorx = & (%) "™ we have that x" 4+ Aox" is monotone on

m

P i
the interval [(%) , (i) m=n ] Hence, it is enough to evaluate x” + Agx™ at



110 9 Applications

the endpoints of the interval and after some simple evaluations notice that the proof
is complete. O

Proof (of Theorem 9.4) Notice that the Bernstein function on the space Py, . 0o (R)
is given by

Binon.oo(x) = sup{|P’(x)|: P belongs to the unit sphere of Prm.n,ooR)}.
However it is enough to find the above supremum over the set of extreme points of

the unit ball by Corollary 9.1.
We know from Theorem 3.3 that the set of extreme points of By, ,, o is

m n n n
+(t,——————— 1w, 0] : <t<— +(0,0, D}.
[ ( PR ) — n+m0}U{< )

Observe that the extreme polynomials P(x) = =1 are irrelevant to find the
Bernstein function. Hence we focus our attention on the extreme polynomials

m n
P = & (t _ —t) ,

m—n n
(m—n)» nm

IA

where ¢ € [ 1 L] Thus,

m—n’ n+mkig

n n
B (x) =sup{|P/(x)]:t e ,—
m,n, oo p1lP | m—n'n+mho
_ mntm _ n n
= sup mtx™ 1—Wx" ! t e ,
(m—n)n nm m—n n+mky
_ _ n moon
= sup { |mx" 1|:txm ”—< > tm:H
m—n

n n
re , —— .
[m—n n+mk0j|}

m—n

Let us define R(z) = mx"~! |:txm_” — ( n ) " trlrz:|. Notice that the above

m—n

supremum is attained at either r = -~ ort = —2—,
m—n n+mhg

or at a critical point of

n n
m—n’ n+mig

R(?) inside the open interval ( ) It is easy to show that there exists only

one critical point of R(r) which is fo = —— (£)»=" \xll’" and
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R(to) = n (%)F €

|x|

Now, notice that the series of inequalities —— < fyp < —— is equivalent to
m—n n+mhg

1
Aoln | m—n A=
al <kl =(2)"".
m m

Hence, after some easy calculations, we have

n n
B = R()|: t € —
m,n, 00 (X) sup{l Q] |:m_n n+mko]}
1

mnfni 1 [Aoln | m=n R \m—n
_ maX{h(ﬁ) R(MT%) o () \x|} 1f< ;31 )m Pl = ()
- 1 1

o )| )] 0= () 07 21

where, after evaluating the function R in the above points, we have

)

and
n—1
R n _ mnx 4 ],
n—+ mig n+mig
By applying Lemmas 9.2 and 9.3 the result follows. O

Theorem 9.5 (Muiioz et al. [48]) Let m, n € N be such that m > n, m is odd and
n is even. On the space P, .00 (R), the Bernstein function for the inequality

[P ) < WP lmn,00

is given by

1

2nx|"! if x| € [0, (&)™ |,

mxm—1+n|x|n—l lf|x|€ (%)ml—n’l

The Markov constant is given by

m+n
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and equality is attained for the polynomials
Px)=£x"+£x"-1).

Theorem 9.6 (Muiioz et al. [48]) Letn € N be odd. On the space P2y n,00(R), the
Bernstein function for the inequality

|P/()] < WP ll2n,n,00

is given by
n—1
. 1
Sl if x| €10, 751
2n—1 1
4n|x| if |x| € %,l .

The Markov constant is given by 4n and equality is attained for the polynomials
P(x) = £(2x2" — 1).

Theorem 9.7 (Muiioz et al. [48]) Let n € N be even. On the space Pap n,0o(R),
the Bernstein function for the inequality

|P/(x)| =< \IJ(X)HPHZn,n,oo

is given by
r 1
8n(—20x|"" +x""") iflx| € |0, (5)]
r 1 1
H e | (1) (3) ]
n—1 M 1 %
e rire [ ()" (3)]
r 1
8n(2lx21=1 — |x"~1)  if|x| e (g) , 1].

The Markov constant is given by 8n and equality is attained for the polynomials
P(x) = £(8x2" — 8x" + 1).

Theorem 9.8 (Muiioz et al. [47]) Let m,n € N be such that m is odd, n is even
and m > n. On the normed subspace of P n,00(R) given by trinomials that are
bounded by the linear mapping ¢(x) = |x| over the interval [—1, 1], the Bernstein
function for the inequality
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|P' ()] < WO Plm.n.0o0
is given by

(m+Dix[™ =+ Dx"+ 1 if|x] <1,

2(n+ Dx" —1 iftn < |x| < "
(m+ Dlx™ 4+ (n+ Dx" — 1 if "2 < x| <1,

where t1 € R is the unique solution of
m+Dx" =3n+Dx"+2=0

. 1 1 L.
on the interval (—('/Z(rTl)’ Tm) The Markov constant is given by m +n + 1 and
equality is attained for the polynomials

P(x) = £[x" £ (" — D]
Theorem 9.9 (Mufioz et al. [47]) On the normed subspace of P2.1,00(R) given by
trinomials that are bounded by the linear mapping ¢(x) = |x| over the interval
[—1, 1], the Bernstein function for the inequality

[P/ < WP lmn,00

is given by

9 ’ 9 ’
16x2 — 1 if 1x] |0, @*2] U [@ 1].

3x22—1‘+2|x| l:f|x|€ J13—=2 J/13+42

9

Theorem 9.10 (Muiioz et al. [49]) Let m, n € N be with different parity and such
that m > n. On the space Py, .2 (R), the Bernstein function for the inequality

[P/ < WPl n 2

is given by

2 2(n—1) 2 2(m—1) . . .
\/" @ntDx H”;‘H) (Zm+D)x if m is even and n is odd,

\/m2(2m+1)xz(”’_l)+(n+1)2(2n+1)x2("—')
2

if m is odd and n is even.

The Markov constant is given by



114 9 Applications

(m+ 1),/ 22+l if m is even and n is odd,

2m—1
m\/% ifmis odd, n is evenand m > n + 1,
m —%ZZ% ifmisoddandn =m — 1.
Remark 9.1 On Theorem 9.10, notice that if we consider n = 1, then we have

Bernstein’s function and Markov’s constant for the space P, (R) (see Sect.2.1)
which are given, respectively, by

1 : 1
{W if0 < |x] < 5,

x| Ix] = 4,
and
4,
with equality attained for the polynomials
P(x) = £(1 — 2x?).

Theorem 9.11 (Muiioz et al. [46]) Tuke P(*A) (see Sect.4.1). The Markov con-
stant for the inequality

IDPx, e, =W (x, MIPla
is given by
2v10
and equality is attained for the polynomials
P(x,y) = £(x% — 6xy + y?).
The Bernstein function for the inequality
IDP(x, y)lla =¥(x, MIPla

is given by
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[2x — 6y| ifx=00rx#0and (2 <—1ori=>2),
2x—|—2y—|—yx—2 ifx #0and % €[1,2],
2x +2y + 5| ify #0and £ €[1,2],
|6x — 2y| ify:Oory;éOand(féf—lorizﬂ.

The Markov constant is given by 6 and equality is attained for the polynomials
_ 2 2
P(x,y) =+ —6xy + y°).

Theorem 9.12 (Gamez et al. [23]) Take P(*0)) (see Sect.4.2). The Bernstein
function for the inequality

IDP(x, Y)lle, = Mx, MIIPlo

is given by

if0<aox <y <ux,

3
\/24y4+l2x2)72+x4+x(8y2+x2) 2
8y2

3
\/ 24x4+12x2y2 +y4+y (832 +y?) 2
8x2

\/13x2 — 24xy + 132 otherwise,

if0<x§y§aio,

where « is the unique root of the equation
800t — 19203 + 920% — 1 = (8a2 + 1)2

in the interval [3_7‘5, %5] The Markov constant is given by

V13

and equality is attained for the polynomials
P(x,y) = +(x* = 3xy + ).

The Bernstein function for the inequality
IDP(x, o =¥, »IPIo

is given by
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3x —2y if0<y=<2-Dx,
%x—y—i—g ifx;éOand(\/E—l)xfyg%x,
2x+% ifx;éOand%xSyfx,
2y+§—y ify#0andx <y < 2x,
Sy—x+% ify#0and2x <y <2+,
3y —2x f(W2+Dx<y<l.

The Markov constant is given by 3 and equality is attained for the polynomials

P(x,y) = £(x? = 3xy + y?).

Theorem 9.13 (Aratjo et al. [2]) Tuke P (>D (%)) (see Sect. 4.3). The Bernstein

function for the inequality
IDPx, y)lle, = W(x, MIPlp(z)

is given by

4 [(13 n 8ﬁ) X2+ (69 n 48ﬁ) ¥ -2 (28 + 20ﬁ) xy] if (a),

£ +4(2+)7) if (b),

(3x2—2xy+3y2)2 .

Sy} if (©),
where

(a) 0<y< “/22_]x0r<4\/§—5)x§y§x,
(b) Flx =y (V2-1)x
() (V2-1)x=y=(42-5)x

The Markov constant is

4(13+38v2)
and equality is attained for the polynomials
P(x,y) = £(x? + (5 +4v2)y? — 4(1 + V2)xy).
The Bernstein function for the inequality

IDPCx. Mlipezy = ¥x. MIPlpx)

is given by
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V2[(1+2v2)x - (3+2v2)y] 0=y < 2Ly,

Y2 ) 22 <y < (Vi-1)x,
2 x+xyT2y) if V2 - )x<y<<2—\/§)x,
4 1+ﬁ)y—2x if 2—ﬁ)xgy5x.

The Markov constant is given by
442
and equality is attained for the polynomials
P(x,y) = £ + (5 +4v/2)y% — 4(1 + vV2)xy).

Theorem 9.14 (Jiménez et al. [34]) Take P (*D (%)). The Bernstein function for
the inequality

IDPCx, e, < @, MIPlp(x)

is given by

\/16<x—y>2+4 3432 f0<y<i.

(
‘/7+4( ¥?) f0<3<y<=<x,
,/%+4( ) if0<x <y <2,

\/16(y—x)2+4(x2+y2) if2x <y <1.

The Markov constant is given by 2/5 and equality is attained for the polynomials
P(x,y) = £(x* +? — 4xy).
The Bernstein function for the inequality
IDPG. Wlnesy < W NPl
is given by

22x—y) if0<y<3y,
2(y+% f3 <y<ux,
2(x+% ifx <y<2x,
22y —x)  ify=2x.
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The Markov constant is given by 4 and equality is attained for the polynomials
P(x,y) = £(x* + y* — 4xy).

Theorem 9.15 (Jiménez et al. [34]) On P((3) for p € {1,2,00} (see
Sects. 4.3, 5.1, and 5.2), the Markov constant in the inequality

IDP(x, Ml = Wx, WP

is

(i) 4ifp=1,
(ii)) 2ifp=2,
(iii) 2+/2if p = oo

9.2 Polarization Constants

It is easy to see just by the definition of the norms defined on (" X) and L; (" X)
that: for every P € P("X),

1Pl =< IILII,

where L is the polar of P. But furthermore, the converse is also true, i.e., there exists
C > 1 such that |[L|| < C||P||. In particular, we have the following result that can
be applied for any normed space X.

Theorem 9.16 (Martin [42]) Let X be a normed space. If P € P(* X), then

n

n
Pl <Ll = —1Pl,
n:

where L is the polar of P.

Notice that throughout this survey we have considered the norm over the space
of n-homogeneous polynomials to be, not only defined over the unit ball of a certain
normed space, but also over a convex body of a normed space. To be more precise,
let X be a normed space and take C a convex body in X. We define the following
norm over the space of continuous n-homogeneous polynomials of X: for every
continuous n-homogeneous polynomial P,

I[Pllc = sup{|P(x)|: x € C};

and we also define the following norm over the space of symmetric n-linear forms
of X: for every symmetric n-linear form L,
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ILlIc = sup{|L(x1,...,xp)|: x; € C, foreveryi € {l,...,n}}.

Notice that the condition “every continuous n-homogeneous polynomial P has a
unique continuous symmetric n-linear form L (the polar of P) such that P(x) =
L(x,...,x)” is purely algebraic. Therefore, it does not depend on the topology
that we consider over the space of n-homogenous polynomials or over the space of
symmetric n-linear forms.

It is easy to see by the definition of the above norms that ||Pllc < |Lllc.
However, the reverse inequality as in Martin’s Theorem is not true as it can be seen
later on. Furthermore, there is not yet an analogous version of Martin’s Theorem
when the norm is defined over an arbitrary convex body. Thus it is still an open
problem to find a result similar to the one of Martin’s Theorem when we consider
the norm defined over other convex bodies apart from the unit ball of X.

We are able to define now what is known as the n-polarization constant of a
space of continuous n-homogeneous polynomials on a convex body. Let X be a
normed space and C C X a convex body. Let (" C) be the space of n-homogeneous
polynomials on X bounded on C endowed with the norm defined by

[ Pllc = sup{|P(x)| : x € C}.
Similarly, if L is the polar of P € P("C) we define
ILllc = sup{|L(x1,...,x5)|:x1,...,x, € C}L.
We define the n-polarization constant cpol (P (" C)) of P("C) as the following value:
inf{K: ||L|lc < K|IP|lc, where P € P("C) and L is the polar of P} .
Furthermore, assume that there exists P € P("C) such that
ILllc = cpat(PCCONIPlc,

where L is the polar of P, then we say that P is an extremal polynomial for
Cpol (PCO)).

The following results show the known exact values of the polarization constants
of the spaces of homogeneous polynomials that have been dealt with in this survey
(most of them use the Krein-Milman approach, specially those whose norm involve
convex bodies different from the unit ball).

Theorem 9.17 (Muioz et al. [46]) If A is the simplex defined in Sect. 4.1, then
c,ml(?’(zA)) = 3. Furthermore, P(x,y) = +(x* 4+ y> — 6xy) are extremal
polynomials for cpor (PCA)).

Proof The result follows from the Markov constant in Theorem 9.11 for the
inequality ||DP(x, y)|la < W(x, y)||P||a since
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DP(x, y)(u,v) =2L((x, y), (u, v))

for all (x, y), (u,v) € R? and where L is the polar of P. m]

Theorem 9.18 (Gamez et al. [23]) If U is the unit square defined in Sect. 4.2,
then cpol(P(ZD)) = % Furthermore, P(x,y) = +(xZ + y2 — 3xy) are extremal
polynomials for cpo (P(ZD)).

Theorem 9.19 (Araijo et al. [2]) If D (%) is the circular sector defined in

Sect. 4.3, then cpoy (P (2D (%))) =2+ @ Furthermore, P(x,y) = +(x* + (5 +
4\/§)y2 — 4+ 4\/§)xy) are extremal polynomials for cpe; (SD (zD (%)))

Theorem 9.20 (Jiménez et al. [34]) If D (%) is the circular sector defined in
Sect. 4.3, then cpo (73 (2D (%))) = 2. Furthermore, P(x,y) = +(x% + y* — 4xy)
are extremal polynomials for cpe; (P (2D (%)))

Theorem 9.21 (Sarantopoulos [S3]) Let 1 < p < oo. We have cpo; (7) (%%)) =

2”’2;ZI (see Sect. 5). Furthermore, P(x, y) = +(x* — y?) are extremal polynomials

Jor cpol (P (%%,))

Remark 9.2 1Tt is important to mention that, although we know the extreme poly-
nomials on the spaces E%, the proof of Theorem 9.21 in [53] does not use the
Krein-Milman approach but a direct approach. It involves obtaining a sharper bound
C than that of Martin’s bound for every polynomial and then finding a polynomial
P such that ||L||c = C||P|c, where L is the polar of P.

An interesting question started by Harris in 1975 related to polarization constants
for polynomials on £, spaces states that, in a complex setting we have

o PO C < 0T D

2"n!
For the previous estimate consult [32] or [20] for a more modern and accessible
n n+1
.. . 2(+1) 2 .
exposition. The question as to whether c,o1(P(" €5, (C))) = % remains

unsolved nowadays.

Theorem 9.22 (Kim [37]) Letw € (0, 1).
2(1+w?)

(@) Ifw < /2 — 1, then cpol (so (203,)) =
Px,y)== (ﬁxy) are extremal polynomials for cpe; (7’ (20120)>

(b) IF V2 — 1 < w, then cpor (50 (203,)) — | + wk Furthermore, P(x,y) =
= (x = y?) are extremal polynomials for cpor (P (203,))-

(see Sect. 6.1). Furthermore,
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Theorem 9.23 (Kim [39]) Let w = % We have cpo; (P (27{%/2)) = % (see
Sect. 6.2). Furthermore,

Px,y)==% (x2 — y2)

and

3 5 7
=4 (x> - —=y?+-
0(x,y) <4x 6 4>

are extremal polynomials for cpe; (7) (Z‘H% /2)>.

9.3 Unconditional Constants

Let us denote by x* the monomial

x?l . .xf:lm’
where X = (x1,...,xp) e K" (K=RorC)and @ = (¢, ..., a,) withay € NU
{0} forevery k € {1, ..., m}. For P(x) = Z|oz\5n agx® (where |o| = a1+ +ay,)
a polynomial of degree n on K", we define the modulus | - | of P by |P|(x) =

ZMS" lag|x*. If C is a convex body in R, we denote by P(*C) the space of n-
homogeneous polynomials on R” endowed with the norm || P ||c (see Sect.9.2). Let
B, = {x*: |a| < n} be the canonical basis of P("C). The unconditional constant
of B, is equal to the best possible constant C (denoted by Cync(P("C))) in the
inequality

I1Plllc = CllPlic.

The following results show all the exact values of the unconditional constants that
are known of the spaces that have been presented on this survey.

Theorem 9.24 (Grecu et al. [30]) Ifm,n € N withm > n, then

3 if m and n have different parity,
1
Cunc Pmn,0oR)) = {1+ min (’Z—T) "™ ifm and n are even,
% if m and n are odd,

(see Sect. 3.1) where Ao comes from Theorem 3.1, and equality is attained for the
polynomials
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+2x™" - 1),

P(x) = +(—pox™ + yox" + 1) where yp = —min . (ﬂ) "y
m mlA |x71
+ (n—’ﬁl—)rcn)»() - n+l’?’l)\.(] ) ’
respectively.

Remark 9.3 (Grecu et al. [30]) In Theorem 9.24 it can be seen that for every k € N
with k > 1 and every n € N even we have

Cone P o ) = 14 kA,
which is independent of .
Theorem 9.25 (Grecu et al. [30]) On the space P(2A) (see Sect. 4.1) we have
Cunc(PCA)) =2
and equality is attained for the polynomials
P(x,y) = £(x* — 6xy +y°).
Theorem 9.26 (Gamez et al. [23]) On the space P(*0)) (see Sect. 4.2) we have
CunePC)) =5
and equality is attained for the polynomials
Px.y) = £ = 3xy + y?).

Theorem 9.27 (Gamez et al. [23]) On the space P (2D (%)) (see Sect. 4.3) we
have

20 (T _
Cune (P ( 0(4))) =5+42
and equality is attained for the polynomials
P(x,y) = (% + (5 + 4v2)y? — (4 + 4v2)xy)).

Theorem 9.28 (Jiménez et al. [34]) On the space P (*D (%)) we have

(0 (5)) =
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and equality is attained for the polynomials
P(x,y) = £(x* + y* — 4xy).

Theorem 9.29 (Grecu et al. [30]) On the spaces P(3€3), P(>43) and P(*%) (see
Sects. 4.3, 5.1, and 5.2) we have, respectively, the unconditional constants given by

1442
2

V2,
142,

)

with equality attained for the polynomials

22— Y1) £ 2+ 2y,

+(x? 4+ y? + 2xy),
2+4«/§(x2 _ y2) + «/Tixy’

respectively.

Proof We will prove the result for the space P(zé%) since the other cases can be
done analogously. By Theorem 5.2, we know that the extreme polynomials of the
unit ball of 7’(26%) are

(@) P(x,y) = +x2+ y? +2xy,
2
(b) P(x,y) = £ Y02 _y2) 1 sxy, where || € (2,4].
Notice that if P is as in (a), then |||P|||£% = ||P||z% = 1. Hence, it is enough to

consider polynomials of type (b). If P is as in (b), then P attains its norm in E% at
(%, %) Thus,

VAt — 12
Cune® (261)) = sup § | Xm0 + 3% +lrlxy| : 1l € 2.4]
G
/45 — §2
= sup { | S 4y axy| s e 4]
G
4s — 52
- _M:se(m}
4
=242
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Theorem 9.30 (Araiijo et al. [2]) Let 1 < p < oo with p # 2 and take P(€3)
(see Sects. 5.3 and 5.4). Let us define the function

27 oo 1) ot 1 -a0 o+ 1-a0)]

fla) = 1 2
a(l—ab)r (a2 + (1 - otl’)ﬁ)
_1
and set My = sup {f(oz): o€ [2 P, 1]}, we have that C,MC(P(ZE%,)) = My.
Theorem 9.31 (Kim [37]) Let0 < w < 1.
2
(@) Ifw < V2 — 1, then cup (P (203)) _ Lo V200Y) o Seet. 6.1) and

(1+w)”
equality is attained for the polynomials P(x,y) = £ (mxy)
2 \/7
(b) If\/z — 1 < w, then cypc (P (2()%))) = Dt (12+w2)2+4w2 and equality is

attained for the polynomials

P(x,y) = :I:(otx2 — ozy2 + Va(l —a)xy),

14w?

=L, 4w

where o = 5 + N (e
Theorem 9.32 (Kim [39]) Letw = % Then, cync (P (2‘]—{% /2)> = % (see Sect. 6.2)
and equality is attained for the polynomials P(x,y) = =+ (x2 + ‘l—ty2 + xy) and

O(x,y) =+ <x2 +32 4 xy).

9.4 Bohnenblust-Hille and Hardy-Littlewood Constants

We begin by considering the following constants which are closely related to
the Bohnenblust—Hille and Hardy—Littlewood constants as we will see. Let « =
(a1, ...,0,) with n € N and let us consider the standard notation |¢| = |oq| +
-+ 4 |ay|. Let P("K™) denote the vector space of m-homogeneous polynomials on
K" (where K = R or C). Notice that if P € P("K"), then P can be written as

PX) =) anXx"

|e|=m

where a, € K and x* :xf” coexpt forx = (xq,...,x,) € K" If | - | is a norm on
K", then | - | induces a norm on P("K") called the polynomial norm and it is given
by
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I[Pl = sup{|P(x)|: x € By},

where By is the unit ball of the normed space X = (K", | - |). The space P("K")
endowed with the polynomial norm is denoted by £(" X). Besides the polynomial
norm, there are other interesting norms on P("K") such as the £,-norms on the
coefficients, i.e., if P € P("K") and 1 < g < oo, then

1
_ (ka\:m |aa|q)q if 1 <¢ < oo,
[Ply =

max{laq|: |@| =m} ifg = o0.

Let us represent by || - ||, the polynomial norm of the space P(’"ﬁ’; (K)), where
1 < p < oo. Since the space P("K") is finite dimensional, we have that the norms
[-lgand || - ]I, (1 < g, p < 00) are equivalent, i.e., there exist k, K > 0 such that

kiIPllp = 1Plg = KIPllp,

for any P € P("K"). Notice that the unit balls of the spaces (P("K"), | - |;) and
P ("L, (K)), denoted by By., and B, respectively, satisfy that the mapping By, >
P — || P|| is bounded by % and the mapping B, > P — |P|, is bounded by K.
Moreover, the continuity of such mappings and the compactness of By.|, and B,
satisfy the following maxima.

Definition 9.1 Let 1 < ¢, p < oo. We define the following constants

1
max {||P|l,: P € By}’

km,n,q,p =
Kimng.p = max{|P|q: P e B||'Hp} .

From now on, we are interested in calculating the exact values of ky, 5 4, and
Kin.n,q,p when we are considering polynomials whose coefficients are real numbers
(we will consider real polynomials and complex polynomials with real coefficients
separately). To do so, we will be applying the Krein-Milman approach to the
mappings By, > P — ||P|, and B, > P — |P],. Hence, we will need, for
instance, the extreme points of the unit ball B, . It is well known that the extreme
points of By, are

ep: 1 <k <m+ 1 =1,
(Hep: 1<k 1} ifg=1
[ 21:11 ek’ Sk = :tl} if g = oo,

S, ifl <g < oo,

where {e1, ..., en+1} stands for the canonical basis of R™+! and S\-Iq is the unit
sphere of (R™+1 | .],).
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The above problem is an extension of the polynomial Bohnenblust—Hille and
Hardy-Littlewood constants problem. The m-Bohnenblust-Hille constant for poly-

nomials is, in fact, an upper bound on K, . It was proved in [8] that if
m+l

q > ﬁ, then there exists a constant D, ;, > 0 depending only on m and ¢ such
that

|Plg < DmgllPlloo

for any P € P("¢% (K)) and every n € N. Furthermore, any constant in the latter
inequality for g < mz—fl depends necessarily on n. By construction, notice that any
viable choice of Dy, , satisfies Dy, 4 > sup{Ky n,q4,00: # € N}. This construction
allows us to define the Bohnenblust-Hille constants depending on the field (R or C)
since there are substantial differences.

Definition 9.2 The m-Bohnenblust-Hille constant for polynomials on K is defined
as

Dicm =inf{ 1P| 2n = Dul|Plloo, foralln € Nand P e P("eh, (K))}

If n € Nis fixed, then we define (m, n)-Bohnenblust-Hille constant for polynomials
on K as

Dy (n) = mf[D ()2 Pl an < D) Plloo, forall P e P2, (K))}

Also, if we consider a subset E of P("£] (K)) for some n € N, then we define the
(m, E)-Bohnenblust-Hille constant for polynomials on K as

Dic.(E) :inf{Dm(E): Pl 2 < Du(E)||Pll, forall P e E}
m+
It is easy to see that
1 < D]K,m(n) =< DK,ms
for all n € N. A similar result to that of Bohnenblust-Hille for values of p different
from oo can also be obtained. The proofs of the following results can be found in
[1, 18]. There exist constants Cy, , and Dy, , independent of n such that
|P|_»_ < Cm,p”P”p form < p <2m,
p—m

|P| 2mp SDm,pHPHPfOI‘ZmSpSOO,

mp+p—2m
forall P € ("¢}, (K)) and every n € N. If p = oo, then we simply put mpi’% =
ij_’l Moreover, the exponents —L— form < p <2m and m for2m < p <
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oo are optimal in the sense that any constant H that satisfies
|Plg < HI|Pllp,

forall P € (mZ’;, (K)) depends necessarily on n. The above construction allows us
to define the following constants.

Definition 9.3 Let m < p < oo. The (m, p)-Hardy-Littlewood constant for
polynomials on K is defined as

Ckom.p = inf{cm,p: Pl_o < CupllPllp, foralln € Nand P ¢ so(me';,(K))},

form < p <2m, and

D]K,m,p :inf{Dm,p: [P|__2mp = Dm,p”P”ps

mp+p—2m

foralln e Nand P € SD(mE’;,(K))},

for 2m < p < oo. If n € Nis fixed, then we define the (m, n, p)-Hardy-Littlewood
constant for polynomials on K as

Citm,p@) = inf {Cp )3 1P| < Conp) Pl forall P e PCUEKD)|
form < p <2m, and

Ditn,p®) = inf { Don p )3 1P|y < Doy P,

mp+p—2m

forall P € P(’"z';,(K))},

for 2m < p < oo. Also, if we consider a subset E of P(" % (K)) for some n € N,
then we define

Cim.p(E) = inf{cm,p(E): IPl_z. = Cup(E)|Pll,, forall P e P(”’E)],

form < p < 2m, and

mp+p—2m

Dy, p(E) = inf{Dm,p(E): |P|_2mp < Dy p(E)||P]lp, forall P e P(mE)}
2

for 2m < p < o0.
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Notice that Dk ,, = DK m.co- S0 essentially the Hardy-Littlewood constants
are in fact a generalization of the Bohnenblust-Hille constants. But furthermore, the
constants K, , 4, p are also a generalization of the Hardy-Littlewood constants since
Cxmp(n) =K, , _» p form < p < 2m and Dk ;,p(n) = K 2mp for

p—m m,n,m,p

2m < p < oco. Hence we have

CK,m,,,zsup{Kmn P p:neN} form < p <2m,
5 E
Dg m,p > sup1 K 2mp :neN for 2m < p < oo.
m,n, mp+p—2m>

This section is about providing some of the constants ky; .4, p» Km,n,q,p» and in
particular, the Hardy-Littlewood and Bohnenblust-Hille constants, that have been
obtained through the Krein-Milman approach.

9.4.1 On the Complex Case

Assume that K = C.

Theorem 9.33 (Jiménez et al. [33]) Let Ewr be the real subspace of P(Zﬂgo((C))
given by {az* + bw? + czw: (a, b, ¢) € R3}. We have

3
Dc(ER) = Dc2(2) = \4/;

with extremal polynomials

9.4.2 On the Real Case

Assume that K = R. All the results that are presented have been obtained for the
cases whenm =n = 2.

Theorem 9.34 (Jiménez et al. [33]) Let f: [% l] — R be given by

3

f() = [2z§+(2 t(1—z))§T.

We have
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Dr2(2) = f(to),

where

1
=3¢ (2\3/107 1+ 9V/T29 + /856 — 724/129 + 16) :

In particular, the exact value of f (to) is given by

(A+ B)3,
where
4
(23/107 T 9129 + /856 — 724129 + 16) 3
A=
1863
and
|
B =

I

91 —

3
7 7
23 107+9~/129+(107+9~/129) 303/ 1o7f9~/129+(10779~/129) 3 _60

Moreover, the following polynomials are extremal

P(x,y) =+ <t0x2 —toy? +2V10(1 — to)xy> .

Theorem 9.35 (Aratjo et al. [3]) Ifq, p € {1, oo}, then

fq=p=1,
kos _ ifg=1and p = o0,
oap ifg=o0cand p =1,

ifq=p=o00,

W= = = =

with extremal polynomials given, respectively, by
Pii(x,y) = £2°, +y7,
Pioo(x, y) = £x%, £)%, +xy,
Poo,1(x, y) = £x° £ y* £ xy,

Poooo(x, ) = £(x* + y* £ xy).
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Theorem 9.36 (Araujo et al. [3]) Ifg, p € {1, oo}, then

242V2 ifg=p=1,
142  ifg=1land p = o0,
4 ifg=o00and p =1,
1 ifqg=p=o0,

K2,2,q,p =

with extremal polynomials given, respectively, by

2
Pii(x,y) = i%_(xz — ) + 2+ V2)xy,

24V2 , 24V2, V2
YTy Y EDY)

Pioo(x,y) ==+ < 1

Poo,1(x, y) = 4xy,

1 1
POO,OO(-xv y) = :I:xz, :I:yz, + <§X2 — Eyz :I:xy) .

Theorem 9.37 (Araijo et al. [3]) For every g € [1,00), let f; 1:[2,4] — R and
Jq.00: [%, 1] — R be given by

1
fq,l(t) = <2l_q(4t — tZ)% _|_tll)‘1 )
1

Jg.00(t) = (2tq +29(t — tz)%)a )
We have
Kypg1 =max{fy1(t): 1t €[2,4]},

1
K2.2,4,00 = max {fq’oo(t): te |:§ li“ .
1
In particular, K2341 = 4 and Kz 400 = 29 for every q > 2, with extremal
polynomials given, respectively, by
Py 1(x,y) = £4xy,
Pyoo(x,y) = £(x* — y?).

Remark 9.4 (Araiijo et al. [3]) The exact value of the maximum of the functions
fq,1 and fy o or the points of attainment of the maximum seems to be a much
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harder task. However, by using the symbolic calculus tool of MATLAB, we are able
to obtain the exact values where the functions reach its maximum for certain values

of g. For instance, for g = %, the maximum of f, () and f; ~(?) is attained at

1
=3 (2\3/181 +OVIT3 4\ 1448 — 72323 + 14) :

and

1 (.
=1 (2{/107 1 9V/T29 + /856 — 724125 + 16) :

respectively. Also, for g = %, the maximum of f; 1(¢) is attained at

A+24

1
=5 | Ve@T29 + 6<—A+204

+48) + 181,

where

[ 2
0232 e 23
A=-10-3 9+\/ﬁ+5 2 3(9+«/93).

And also for g = % the maximum of f,; - (¢) is attained at

1 1 9
[:—\/B —\/C D =,
20 +2 + +20

where
5 _ 10V9+ V273 40 .
- 32/3 - ’
93 (9 + «/273)
3
J9+4273 1 2
€= _JT tsot T
593 (9 1 «/273)
and
40
D =
50 103/9+v273 40 1

3 \3/ 3 (9+Jﬁ)
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9 Applications
Theorem 9.38 (Aratjo et al. [3]) If p € (1, 00), then

1 ifqg=1,
2
kaog.p = ZTP ifq:ooandpz;‘,
21 T ifq:ooandl<p<%,
max{x2+(1—xp)17+x(1—xp)? : xe[O,l]}
with extremal polynomials given, respectively, by

P p(x,y) = +x? :I:yz,

Poo p(x,y) =+ <x2 +y? +xy) :

Qoo p(x,y) =+ <x2 +y’ +Xy) :
R be given by

Theorem 9.39 (Aratjo et al. [3]) Foreveryq > 1and p > 2, let f; ,: [0,1] —

1
(2(1 —s)% +2‘1s%)q
fq,P(S) = {2|1—2S\‘1+24|:(1—s) %s% 1

11797
+(1=s)Ps P]}
2 2

(1=s)P +sP
We have

1—

if p=2,

ifp#2.

K22.4.p =max{fy ,(0): 1 €[0,1]}.
See also [13] in connection to the previous result.

Corollary 9.2 (Aradjo et al. [3]) For4 < p < oo, we have
DR,Z,p(z) = K2 9 4p_
25,5

7P

Ap Ap -1 1 19
201 — 25|77 4257 [(1 — ) PSP+ (1 —s5)Ps
= maxXx

sE[O,l]

3p—4
4p 4p
_l] 3p—4
P
2 2 :
1—=s)r 4sv»

Theorem 9.40 (Aradjo et al. [3]) Ifq > 1, then
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2 ifqg =2,

()’

) 2f1427= )
K2242= - ifl<qg <2,

2¢q=D\ 2

<1+2 q-2 )
with extremal polynomials given by
+(? —y?) ifq =2,

Pyolx,y) =
e Y (N e N AR

2(1—q) *%
where ag = (1 +2 4q2 ) .

Theorem 9.41 (Aradjo et al. [3]) Ifq, p > 2, then

Koy p = zmaxgé,%}'

If fq,p is as in Theorem 9.39 and q, p > 2, then the following polynomials are
extremal

2
+27xy ifq >
+(x2—y?)  ifg <

’

Pq,p(x»)’) = {

[STRSISTpS

Corollary 9.3 (Aradjo et al. [3]) If p > 2, then

2
K22 00,p =27

with extremal polynomials given by

+@xr—y?) ifp=2,

Poo,p(x,y) = 2 .
+2rxy ifp>2.

Corollary 9.4 (Araujo et al. [3]) For2 < p < 4, we have

ST}

Cr2p() =Kyp p, =27

It is important to mention that Corollary 9.4 was first proven in [13].
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Corollary 9.5 (Araujo et al. [3]) We have
Dr24(2) = Cr24(2) = K224,y = V2
with all extremal polynomials given by
P(x,y) = (" =),
0, y) = % (@ = B = ) +2apxy),

witha, B > 0 and o* + B* = 1.

Theorem 9.42 (Araiijo et al. [3]) For p > 2, let fi [0, %] > R be defined by

1 1 1 1
2(1 = 25) 42 [(1 o) Trsr 4 (1 - s)Fsl‘ﬁ]

fl,p(s)z 2 2
(I—s)r 457

We have

1
K>2.1,p = sup {fl,p(t)l te [0, 5“

Remark 9.5 (Araiijo et al. [3]) The exact calculation of the above supremum seems
to be a harder task. However, by using the symbolic calculus tool of MATLAB, we
can obtain the exact value of the supremum of fi ,(¢) as well as the point where it
attains its maximum for certain values of p. For p = 4, the function f] 4(¢) attains

its maximum on [O, %] att = %E and, therefore, K> 1,4 = J6.
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