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Chapter 1
Introduction

This book was completed after the passing of the first named author. The rest of authors
would like to dedicate the book to the loving memory of their friend and colleague
Jesús Ferrer (1952–2022).

The study and classification of the extreme points of the unit ball of a Banach
space is a classical problem in functional analysis. This question is particularly
interesting in the case of Banach spaces of polynomials. The case of integral,
nuclear or orthogonally additive polynomials in Banach spaces have been studied,
for instance, in [10, 11, 17, 20]. We devote Chap. 8 to show a selection of results
where extreme integral, nuclear or orthogonally additive polynomials have been
characterized in several different settings. As a matter of fact the geometry of the
unit ball of polynomial spaces has been studied intensively for decades. Special
attention has to be given to polynomial spaces of finite dimension. The case of
polynomials on the real line of degree at most n endowed with the norm

.‖P‖ = sup{|P(x)| : x ∈ [−1, 1]},

which we will represent by .Pn(R), was solved by Konheim and Rivlin in [40] as
early as in 1966 providing a characterization of the extreme polynomials of the
unit ball .Bn of .Pn(R). The search for characterizations of the extreme polynomials
of other finite dimensional polynomial spaces has been intensified since the late
90’s of the twentieth century, motivating dozens of publications. In this paper we
present a thorough revision of the most relevant results in this topic with special
emphasis in the polynomial spaces of dimension 3. The fact that in dimension three
we are able to provide a visual representation of the unit ball of a polynomial space
is in itself a powerful tool in the study of the geometry of polynomial spaces.
Although Konheim and Rivlin characterization of the extreme polynomials in .Bn

is not explicit, we will see in the next chapters that in many finite-dimensional
Banach spaces of polynomials extreme polynomials can be fully described. Some

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Ferrer et al., Geometry of the Unit Sphere in Polynomial Spaces, SpringerBriefs in
Mathematics, https://doi.org/10.1007/978-3-031-23676-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23676-1protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1
https://doi.org/10.1007/978-3-031-23676-1_1


2 1 Introduction

representative examples of the spaces which have been studied so far are listed
below:

• The subspaces .P2(R) and .P3(R) of .Pn(R) (see [4, 5]).
• The space of the quadratic polynomials on the complex plane with real coeffi-

cients, .P2(C), endowed with the sup norm over the unit disk .D (see [5]).
• The subspace .Pm,n,∞(R) (.m > n) of .Pm(R) consisting of all the trinomials of

the form .axm + bxn + c (see [50]).
• The trinomials .axm + bxnym−n + cym (.m > n) on .R

2, represented by
.Ph

m,n,∞(R2), endowed with the sup norm on the unit ball of .�2∞(R) (see [35]).
• The spaces of quadratic forms on .�2p(R) (.1 ≤ p ≤ ∞), namely .P(2�2p), endowed

with the sup norm over the unit ball of .�2p(R) (see for instance [14–16, 25–28]).

• The space .P(3�22), of 3-homogeneous polynomials on .R
2 endowed with the sup

norm over the unit ball of .�22(R) (see [29]).
• The spaces .P(2�) and .P(2�) of the quadratic forms on .R

2 endowed with the sup
norm over the simplex .� and the square .� = [0, 1]2 respectively (see [23, 46]).

• The space .P2(�) of polynomials of degree at most 2 on .R
2 endowed with the

supremum norm over the simplex .� (see[43]).
• The space .P(2D(α, β)) with .α ≤ β (see [6, 45]) of the quadratic forms on .R

2

endowed with the sup norm on the sectors

.D(α, β) = {reiθ : r ∈ [0, 1] and θ ∈ [α, β]}.

• The space .P(2O2
w) of the quadratic forms on .R

2 endowed with the norm

.‖P ‖O2
w

= sup{|P(x, y)| : ‖(x, y)‖oct(w) ≤ 1},

where

.‖(x, y)‖oct(w) = max

{
|x|, |y|, |x| + |y|

1 + w

}

for a fixed .w ∈ [0, 1] (see [38]).
Having an explicit description of the extreme points of the unit ball of a

polynomial space has many interesting applications. The Krein-Milman approach
allows us to prove many sharp polynomial inequalities. Recall that, as a direct
consequence of the Krein-Milman theorem, any convex function on a convex body
of a finite dimensional Banach space attains its maximum at an extreme point.
Using this idea combined with a description of the extreme points of a polynomial
space one can derive a number of polynomial inequalities. Sharp Bernstein and
Markov inequalities are among the applications of the Krein-Milman approach.
Other problems of interest where the geometry of the unit ball of polynomial
spaces yield excellent results are the calculation of exact unconditional constants
in polynomial spaces, the calculation of polarization constants or the calculation
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of sharp Bohnenblust-Hile and Hardy-Littlewood constants. Chapter 9 is devoted
to present a selection of the many achievements that can be obtained by using the
Krein-Milman approach.

In this book we pursuit three main achievements. The first is to provide the reader
with a visual perspective of each of the Banach spaces of polynomials we study by
representing their unit spheres. To this end the following steps are implemented in
most of the cases:

1. First we give an explicit formula to calculate the polynomial norm.
2. Then we parametrize the unit sphere of the space, for which it might be of help

to calculate the projection of the unit ball onto a plane.
3. The parametrization of the unit sphere is a valuable source of information that

allows us to identify and classify the extreme points of the unit ball of each
polynomial space.

The third point above accomplishes the second of the main objective of this
monograph, providing the reader with explicit characterizations of the extreme poly-
nomials in several Banach spaces of polynomials. The third objective is to highlight
the many applications of having an explicit classification of the extreme points of
the unit ball of a space of polynomials. In particular, we will show a number of
interesting sharp Bernstein and Markov type inequalities and Bohnenblust-Hille
inequalities obtained using the already mentioned Krein-Milman approach. We can
also obtain exact unconditional constants, polarization constants and other related
results.

This book is arranged as follows: In Chap. 2 we study the spaces .Pn(R) with
.n = 2, 3. Polynomials with majorants are also considered. In Chap. 3 we study
several spaces of trinomials including .Pm,n(R) and .Ph

m,n(R
2) (.m > n) defined

above, but also other related problems. Trinomials with the .Lp-norm or trinomials
on the complex plane are studied as well. In Chap. 4 we consider several polynomial
spaces where the norm is calculated as the supremum over a non-symmetric convex
body. In particular, Chap. 4 comprises the spaces .P(2�), .P(2�) and .P(2D(α, β)).
In Chap. 5 we treat the case of polynomials defined on several .�p-spaces. More
specifically we investigate the spaces .P(2�2p) for all .p ∈ [1,∞] and the spaces of
quadratic forms on .c0, .�1 and .�2 for .p > 2. In Chap. 6 we consider the space of
quadratic forms in .R

2 with the sup norm over an octagon, represented as .P(2O2
w)

above, and with the sup norm over the hexagon defined by

.‖(x, y)‖hex(w) := max {|y|, |x| + (1 − w)|y|} = 1

for .w ∈ [0, 1]. In Chap. 7 we study polynomials on real or complex Hilbert spaces.
In Chap. 8 extreme integral, nuclear or orthogonally additive polynomials are
regarded. Finally, in Chap. 9 we gather a number of applications of the geometrical
results included in Chaps. 2–8.



Chapter 2
Polynomials of Degree n

Abstract This chapter focuses on the study of the geometry of the unit ball of the
space of polynomials in one variable of degree at most .n ∈ N endowed with the
supremum norm defined on the interval .[−1, 1] (when the polynomial is defined
over .R) or on the unit disk (when the polynomial is defined over .C). More precisely,
we are interested on the parametrization of the unit ball as well as the extreme points
when we are dealing with the space of polynomials of degree at most 2. For the space
of polynomials of arbitrary degree with the supremum norm defined on .[−1, 1], we
are only interested on the extreme polynomials of the unit ball.

2.1 On the Real Line

Let us endow the vector space of real polynomials of the degree at most .n ∈ N, that
is, of the form .P(x) = anx

n +· · ·+a1x +a0 where .ai ∈ R for every .i ∈ {1, . . . , n}
and .x ∈ R, with the supremum norm

.‖P‖R = max{|P(x)| : x ∈ [−1, 1]}.

We denote this normed space by .Pn(R) . Now consider the following construction:
let us define the mapping T from .Pn(R) to .R

n+1 that assigns to each polynomial
.anx

n+· · ·+a1x+a0 the vector .(an, . . . , a1, a0), i.e., each polynomial is mapped into
the vector formed by its coefficients. This mapping T is a topological isomorphism
between .Pn(R) and .R

n+1 when we endow .R
n+1 with the norm

.‖(an, . . . , a1, a0)‖R := ‖anx
n + · · · + a1x + a0‖R.

Let us denote the unit ball and the unit sphere of .(Rn+1, ‖ · ‖R) by .Bn(R) and
.Sn(R), respectively. Thus, in particular, on the space .P2(R), we can give a visual
representation of the unit ball.

The geometry of .Pn(R) was already studied by A. G. Konheim and T. J. Rivlin in
1966 [40]. They were able to characterize when a polynomial of degree at most .n ∈
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6 2 Polynomials of Degree n

N that belongs to the unit ball is an extreme polynomial based on the multiplicity of
intersection of the polynomial with 1 and .−1.

Definition 2.1 Let P be a real polynomial of degree at most n. We denote by
.N(P, y) the total multiplicity with which the value y is assumed by P and, in
particular, let us define the multiplicity of P by the number .N(P ) := N(P, 1) +
N(P,−1).

Theorem 2.1 (Konheim and Rivlin [40]) Let .P ∈ Pn(R) with .‖P ‖ ≤ 1. We have
that P is an extreme polynomial if, and only if, .N(P ) > n.

Although Konheim and Rivlin gave a characterization of the extreme polynomi-
als of the unit ball of .Pn(R), they do not give an explicit formula for the values of the
extreme polynomials. However, R. M. Aron and M. Klimek [5] were able to obtain
an explicit formula for the extreme polynomials in the unit ball of .P2(R) by using an
approach that will appear in many results of this survey. Firstly, they gave an explicit
formula for the norm of a polynomial of degree at most 2. Secondly, they found the
projection of the unit ball onto a plane. And finally, using this information, they were
able to parametrize the unit ball and, in the process, find the extreme polynomials
of the unit ball. The results that Aron and Klimek provided are shown below.

Theorem 2.2 (Aron and Klimek [5]) Let .P(x) = ax2 + bx + c. We have

.‖(a, b, c)‖R =
⎧
⎨

⎩

∣
∣
∣ b2

4a − c

∣
∣
∣ if |b| < 2|a|t and c

a
+ 1 < 1

2

(∣
∣ b
2a

∣
∣ − 1

)2
,

|a + c| + |b| otherwise.

Let us define the sets

.U =
{
(a, b) ∈ R

2 : a ≤ 0 and |b| ≤ min
{
2|a|, 2

(√
2|a| − |a|

)}}
,

V =
{

(a, b) ∈
[

−1

2
,
1

2

]

× [−1, 1] : |b| ≥ 2|a|
}

,

W =
{
(a, b) ∈ R

2 : a ≥ 0 and |b| ≤ min
{
2|a|, 2

(√
2|a| − |a|

)}}
.

Theorem 2.3 (Aron and Klimek [5]) The projection of .B2(R) onto the ab-plane
is the set .U ∪ V ∪ W (see Fig. 3.5 for a representation of .U ∪ V ∪ W with .n = 1).

Theorem 2.4 (Aron and Klimek [5]) Let us define the functions

.f+(a, b) =1 − |b| − |a|,

g+(a, b) = b2

4a
− 1,

and also the functions .f−(a, b) = −f+(−a, b) and .g−(a, b) = −g+(−a, b). We
have
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(i) .S2(R) = graph
(
f+|(V ∪W)

)∪graph
(
f−|(U∪V )

)∪graph (g+|W)∪graph (g−|U)

(see Fig. 3.6 for a representation of .B2(R) with .n = 1).
(ii) The set of extreme points (denoted by .ext) is

. ext (B2(R)) =
{

±
(
t,±2(

√
2t − t), 1 + t − 2

√
2t

)
: t ∈

[
1

2
, 2

]}

⋃
{±(0, 0, 1)}.

The following results of this section are devoted to the study of extreme
polynomials of degree at most 3.

Theorem 2.5 (Araújo et al. [4]) The extreme polynomials of the unit ball of .P3(R)

are given by

(i) .P1(x) = ±1;

(ii) .P2(x) = ±
[
1 − 1

4 (±x + 1)3
]
;

(iii) .P3(x) = ±(2x2 − 1);

(iv) .P4(x) = ±
[
1 − 1

(1−q2)2
(x − q)2(4qx + 2 + 2q2)

]
and

.P5(x) = ±
[
1 + 1

(1−q2)2
(x + q)2(4qx − 2 − 2q2)

]
, for every .q ∈

(
− 1

3 , 0
)
;

(v) .P6(x) = ±
[
1 + 1

(1+t)2
(x − t)2(x − 1)

]
and

.P7(x) = ±
[
1 − 1

(1+t)2
(x + t)2(x + 1)

]
, for every .t ∈

(
− 1

2 , 1
)
;

(vi) .P8(x) = ±
[
1 + 4

(s−r)3
(x − r)2

(
x − 3s−r

2

)]
and

.P9(x) = ±
[
1 − 4

(s−r)3
(x + r)2

(
x + 3s−r

2

)]
, for every .−1 ≤ r < s ≤ 1 such

that .s ≥ min
{
3r + 2, r+2

3

}
.

2.1.1 Polynomials Bounded by a Majorant

Assume that P is a polynomial of degree at most n such that P is constrained on the
interval .[−1, 1] by a mapping .ϕ : [−1, 1] → [0,+∞) called the majorant, i.e.,
.|P(x)| ≤ ϕ(x) for every .x ∈ [−1, 1]. We will denote by .Pϕ

n(R) the space of
polynomials on the real line of degree at most n that are bounded by a majorant
.ϕ endowed with the supremum norm over the interval .[−1, 1]. In this section we
are interested in studying the extreme points of the unit ball of the space .Pϕ

3 (R)

when .ϕ is a circular majorant, that is, .ϕ(x) = √
1 − x2 for any .x ∈ [−1, 1].

Notice that if a polynomial P belongs to .Pϕ
3 (R), where .ϕ is a circular majorant,

then P has roots at .±1. Hence all polynomials of degree not greater than 3 bounded
by a circular majorant are of the form .Pa,b(x) = (1−x2)(ax+b) for some .a, b ∈ R.
Thus, in fact, we have the following inequality .|(1−x2)(ax+b)| ≤ √

1 − x2 for any
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.x ∈ [−1, 1], which is equivalent to .

∣
∣
∣
√
1 − x2(ax + b)

∣
∣
∣ ≤ 1 for any .x ∈ [−1, 1].

The latter shows that we can study the unit ball of the space .Pϕ
3 (R), when .ϕ is a

circular majorant, by studying the unit ball of the norm space .(R2, ‖ · ‖∞,ϕ), where

.‖(a, b)‖∞,ϕ = sup
{∣
∣
∣
√
1 − x2(ax + b)

∣
∣
∣ : x ∈ [−1, 1]

}
.

We begin by showing an explicit formula for the norm .‖ · ‖∞,ϕ .

Theorem 2.6 (Muñoz et al. [47]) If .ϕ : [−1, 1] → [0,+∞) is defined by .ϕ(x) =√
1 − x2, then for every .(a, b) ∈ R

2 we have

.‖(a, b)‖∞,ϕ =
⎧
⎨

⎩

(3|b|+
√

8a2+b2)

√

4a2−b2+|b|
√

8a2+b2

8
√
2|a| if a 
= 0,

|b| if a = 0.

As an easy consequence of Theorem 2.6 we have the following characterization
of the unit ball of .Pϕ

3 (R).

Theorem 2.7 (Muñoz et al. [47]) Let .ϕ : [−1, 1] → [0,+∞) be defined by
.ϕ(x) = √

1 − x2. If .(a, b) ∈ R
2, then .‖(a, b)‖∞,ϕ ≤ 1 if, and only if,

.

(√
8a2 + b2 + 3|b|

)3 ≤ 32
(√

8a2 + b2 + |b|
)

,

where equality is satisfied if, and only if, .‖(a, b)‖∞,ϕ = 1. Moreover, the set of
extreme points of the unit ball of the space .(R2, ‖ · ‖∞,ϕ) are the points of the unit
sphere.

Figure 2.1 shows an approximate representation of the unit sphere of the space
.(R2, ‖ · ‖∞,ϕ).

2.2 On the Complex Plane

Let us consider now the vector space of complex polynomials with real coefficients
of degree at most .n ∈ N, that is, we have polynomials of the form .P(z) = anz

n +
. . . + a1z + a0 where .ai ∈ R and .z ∈ C, endowed with the following norm

.‖P ‖C = sup
|z|≤1

|P(z)|.

We denote this normed space by .PR,n(C). Using the mapping T defined on Sect. 2.1,
there is a topological isomorphism between the space .PR,n(C) and .R

n+1 endowed
with the norm
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1.0
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−0.8

0.0

−1.0

−0.6

−0.4−1.6 −1.2−2.0
a

b

Fig. 2.1 Unit sphere of the space .(R2, ‖ · ‖∞,ϕ)

.‖(an, . . . , a1, a0)‖C = ‖anz
n + . . . + a1z + a0‖C.

Let us denote the unit ball and the unit sphere of .(Rn+1, ‖ · ‖C) by .BR,n(C) and
.SR,n(C), respectively. Furthermore, we can a give a visual representation of the
unit ball of the space .PR,2(C) on .R

3. We use the same approach as in the previous
section. We begin by showing an explicit formula for the norm of the space .PR,2(C).

Theorem 2.8 (Aron and Klimek [5]) If .P(z) = az2 + bz + c ∈ PR,2(C), then

.‖(a, b, c)‖C =
⎧
⎨

⎩

|a + c| + |b| if ac ≥ 0 or |b(a + c)| > 4|ac|,
(|a| + |c|)

√

1 + b2

4|ac| otherwise.

We continue by showing the projection of the unit ball onto a coordinate plane.
To do so, we define the following sets

.A =
{
(a, c) ∈ R

2 : |a| + |c| ≤ 1 and |a + c| ≤ (|a| + |c|)2
}

,

B =
{
(a, c) ∈ R

2 : |a| + |c| ≤ 1 and |a + c| > (|a| + |c|)2
}

.

Figure 2.2 shows a representation of A and B.

Theorem 2.9 (Aron and Klimek [5]) The projection of .BR,2(C) onto the ac-plane
is the set .A ∪ B.

Finally, we show a parametrization of .SR,2(C) as well as the extreme points of
.BR,2(C).
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Fig. 2.2 Projection of
.BR,2(C) onto the ac-plane

Theorem 2.10 (Aron and Klimek [5]) Let us define the function

.f (a, c) =

⎧
⎪⎨

⎪⎩

√

4|ac|
(

1
(|a|+|c|)2 − 1

)
if (a, c) ∈ A,

1 − |a + c| if (a, c) ∈ B.

We have

(i) .SR,2(C) = graph(f ) ∪ graph(−f ).

(ii)

. ext(BR,2(C)) =
{ (

a,±
√

4|ac|
(

1

(|a| + |c|)2 − 1

)

, c

)

:

a, c 
= 0, |a| + |c| < 1 and |a + c| ≤ (|a| + |c|)2
}

.



Chapter 3
Spaces of Trinomials

Abstract A trinomial is a polynomial that consists of three monomials. This
chapter is about studying the geometry of the normed space of trinomials on
different scenarios. To be more precise, we will study the geometry of the space
of real trinomials in one variable with the supremum norm and the .Lp norm, the
space of real trinomials in two variables with the supremum norm and finally the
space of complex trinomials with the supremum norm.

3.1 On the Real Line with the Supremum Norm

We are using trinomials of the form .axm + bxn + c with .m, n ∈ N, .m > n and
.a, b, c ∈ R. Let .Pm,n,∞(R) denote the vector space of trinomials of the previous
form endowed with the supremum norm on the unit interval .[−1, 1] where .m, n ∈ N

with .m > n. Notice that the space .Pm,n,∞(R) is a 3-dimensional space because the
set .{xm, xn, 1} is a basis of .Pm,n,∞(R).

Now consider the mapping T (defined in Chap. 2) from .Pm,n,∞(R) to .R
3. This

mapping T is a topological isomorphism between .Pm,n,∞(R) and .R
3 endowed with

the norm

.‖(a, b, c)‖m,n,∞ := max{‖axm + bxn + c‖: x ∈ [−1, 1]}.

Therefore we can give a geometrical representation of the unit ball of the space
.Pm,n,∞(R) in .R

3.
To do so, we begin by showing an explicit formula for the norm .‖ · ‖m,n,∞.

The explicit formula of .‖ · ‖m,n,∞ depends on the four different kinds of parity
of .m, n ∈ N which will be treated separately. This formula is used to obtain a
parametrization of the unit sphere and, therefore, a sketch of the unit sphere of the
normed space .(R3, ‖ · ‖m,n,∞). We denote by .Sm,n,∞ and .Bm,n,∞ the unit sphere
and unit ball of the space .(R3, ‖ · ‖m,n,∞), respectively.
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3.1.1 The Geometry of Bm,n,∞ for Odd Numbers m,n

In this case, to illustrate in a better way how this approach of finding a parametriza-
tion and the extreme polynomials of the unit sphere is done, we provide the complete
proofs of all the results that are needed. On the other hand, many results of this paper
follow the same pattern and, therefore, most of the time the proofs will be omitted. In
order to show the formula for the norm, we begin by proving the following lemma.

Lemma 3.1 (Muñoz and Seoane [50]) If .m, n ∈ N with .m > n odd, then the
equation

.|n + my| = (m − n)|y| m
m−n

has only three solutions, one is .y = −1, another is at a point .λ0 ∈ (− n
m

, 0
)
and the

last one at a point .λ1 > 0. Furthermore, the inequality

.|n + my| < (m − n)|y| m
m−n

is satisfied if, and only if, .y ∈ (−∞, λ0) ∪ (λ1,∞).

Proof Let us define the functions .f (y) = |n + my| and .g(y) = (m − n)|y| m
m−n

for every .y ∈ R. Notice that the function f consists of two straight lines and g is a
convex function. Therefore f and g intersect in at most four points. First of all, since
.m > n, if .y = −1, then .f (−1) = g(−1). Also, it is easy to see that .f

(− n
m

) = 0,
.f (0) > 0, .g

(− n
m

)
> 0 and .g(0) = 0, thus .f

(− n
m

)
< g

(− n
m

)
and .f (0) > g(0).

This implies by continuity that there exists .λ0 ∈ (− n
m

, 0
)
such that .f (λ0) = g(λ0).

On the other hand, as .limy→∞(g(y) − f (y)) = ∞ and .f (0) > g(0) we have that
there exists .λ1 > 0 such that .f (λ1) = g(λ1). The inequality .f (y) < g(y) on the
set .(−∞, λ0) ∪ (λ1,∞) follows from the strict convexity of g. ��
Theorem 3.1 (Muñoz and Seoane [50]) If .m, n ∈ N are odd with .m > n, then

.‖(a, b, c)‖m,n,∞ =
{

(m−n)|a|
n

· ∣∣ nb
ma

∣∣
m

m−n + |c| if a 	= 0 and − 1 < nb
ma

< λ0,

|a + b| + |c| otherwise,

where .λ0 is one of the three roots of the equation

.|n + my| = (m − n)|y| m
m−n

such that .− n
m

< λ0 < 0, with the other two roots at .λ1 = −1 and .λ2 > 0.

Remark 3.1 (Muñoz and Seoane [50]) Notice that by the definition of the norm
.‖ · ‖m,n,∞ and the assumption that m and n are odd natural numbers, then we have

.‖(a, b, c)‖m,n,∞ = ‖(a, b, 0)‖m,n,∞ + |c|
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for all .a, b, c ∈ R. This means that the norm .‖ · ‖m,n,∞ is symmetric with respect
to the ab-plane. However in the following cases related to the parity of m and n, the
property of being symmetric to a certain plane is not always satisfied (for example,
when m and n are even, there is no symmetry). But if m and n have different parity,
then we have symmetry with respect to some coordinate plane.

Proof Let .(a, b, c) ∈ R
3 and take .P(x) = axm + bxn. By Remark 3.1 it suffices to

prove that

.‖(a, b, 0)‖m,n,∞ =
{

(m−n)|a|
n

· ∣∣ nb
ma

∣∣
m

m−n if a 	= 0 and − 1 < nb
ma

< λ0,

|a + b| otherwise.

Notice that the polynomial P is symmetric with respect to the origin, which
implies that .‖P ‖m,n,∞ = maxx∈[−1,0] |P(x)|. Furthermore, since .P(0) = 0, the
latter maximum is attained either at .−1 or at a critical point of P in the interval
.(−1, 0). We are looking now for the critical points of the polynomial P . To do so,
we solve the equation .P ′(x) = 0, that is, since .m > n, we solve the equation

.P ′(x) = amxm−1 + bnxn−1 = xn−1(amxm−n + bn) = 0. (3.1)

It can be easily seen that Eq. (3.1) has, at most, one solution in the interval .(−1, 0)

which is .x = − ∣∣ nb
ma

∣∣
1

m−n provided that .a 	= 0 and .−1 < nb
ma

< 0. Hence, P has

a critical point in the interval .(−1, 0) at .x = − ∣∣ nb
ma

∣∣
1

m−n provided that .a 	= 0 and
.−1 < nb

ma
< 0, which implies that

.‖(a, b, 0)‖m,n,∞

=
{
max{|P(1)|, |P(x)|} if a 	= 0 and − 1 < nb

ma
< 0,

|P(1)| otherwise,

=
⎧
⎨

⎩
max

{
|a + b|, (m−n)|a|

n
· ∣∣ nb

ma

∣∣
m

m−n

}
if a 	= 0 and − 1 < nb

ma
< 0,

|a + b| otherwise.

It suffices to show when .|a + b| <
(m−n)|a|

n
· ∣∣ nb

ma

∣
∣

m
m−n provided that .a 	= 0 and

.−1 < nb
ma

< 0. If .a 	= 0, then by multiplying inequality .|a+b| <
(m−n)|a|

n
· ∣∣ nb

ma

∣∣
m

m−n

by .
n
a
we have, equivalently, that .

∣
∣n + nb

a

∣
∣ < (m−n)

∣
∣ nb
ma

∣
∣

m
m−n , which can be seen as

.|n+my| < (m−n)|y| m
m−n , where .y = nb

ma
. Since .−1 < y = nb

ma
< 0, by Lemma 3.1

we have that .−1 < nb
ma

< λ0 and therefore
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.‖(a, b, 0)‖m,n,∞ =
{

(m−n)|a|
n

· ∣∣ nb
ma

∣∣
m

m−n if a 	= 0 and − 1 < nb
ma

< λ0,

|a + b| otherwise,

which finishes the proof. ��
We know by Remark 3.1 that .Bm,n,∞ is symmetric with respect to the ab-plane.

Hence the projection of .Bm,n,∞ will be onto the ab-plane. Let us define the function
.�(a) = m

(m−n)
m−n
m n

n
m

· |a| n
m and the sets

.V =
{
(a, b) ∈ R

2 : a 	= 0, −1 ≤ nb

ma
≤ λ0 and |b| ≤ �(a)

}
,

W1 =
{
(a, b) ∈ R

2 : b ≥ −m

n
a, b ≥ λ0

ma

n
and b ≤ 1 − a

}
,

W2 =
{
(a, b) ∈ R

2 : b ≤ −m

n
a, b ≤ λ0

ma

n
and b ≥ −1 − a

}
,

W = W1 ∪ W2.

Figure 3.1 shows a representation of V and W when .m = 3 and .n = 1.

Theorem 3.2 (Muñoz and Seoane [50]) If .m, n ∈ N are odd with .m > n, then the
projection onto the ab-plane of .Bm,n,∞ is the set .V ∪ W .

Proof By Theorem 3.1, notice that .‖(a, b, c)‖m,n,∞ = ‖(a, b,−c)‖m,n,∞ for every
.a, b, c ∈ R. This symmetric property shows that the projection of the unit ball
onto the ab-plane is just the intersection of the unit ball with the ab-plane, i.e.,
the projection is the set .{(a, b) ∈ R

2 : ‖(a, b, 0)‖m,n,∞ ≤ 1} and, furthermore,
the projection is bounded by the curved defined implicitly by .‖(a, b, 0)‖m,n,∞ = 1.

Thus, if .‖(a, b, 0)‖m,n,∞ = 1, .a 	= 0 and .−1 < nb
ma

< λ0, then .
(m−n)|a|

n
·∣∣ nb

ma

∣∣
m

m−n =
1. Solving b in terms of a in the latter we have .b = ±�(a) and, in particular, using
the restrictions on a and b we see that

.b = �(a) provided a ∈
(

− n

m + mλ0
,− n

m − n

)
,

and

.b = −�(a) provided a ∈
(

n

m − n
,

n

n + mλ0

)
,

where the limits in the first and second interval are obtained by intersecting the
straight lines .b = −m

n
a and .b = mλ0

n
a with .b = −1 − a and .b = 1 − a.

On the other hand, if .‖(a, b, 0)‖m,n,∞ = 1 and either .a = 0 or . nb
ma

∈ (−∞,−1]∪
[λ0,∞), then .|a + b| = 1. Now we have that .b = ±1 − a and, furthermore, using
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a

b

W

W

V

V

b = Γ(a)

b = 1 − a

b = −Γ(a)

b = −1 − a

b = λ0
ma

n

b = −ma

n

Fig. 3.1 Projection of .B3,1,∞ onto the ab-plane. The general case when .m, n ∈ N are odd with
.m > n is of similar shape

the restrictions on a and b we see that

.b = −1 − a provided a ∈
[
− n

n + mλ0
,

n

m − n

]
,

or

.b = 1 − a provided a ∈
[
− n

m − n
,

n

n + mλ0

]
,

where the limits in the intervals are obtained in the same way as before. This
completes the proof. ��

So far we have given an explicit formula for the norm .‖ · ‖m,n,∞ and a projection
of .Bm,n,∞ onto the ab-plane. Now we are capable of finding a parametrization of
.Sm,n,∞ and also we can obtain the values of the extreme polynomials of .Bm,n,∞.

For the following theorem, it is very useful to know a more general result on real
normed spaces that states the following.

Lemma 3.2 (Muñoz and Seoane [50]) Let E be a real normed space with norm
.‖ · ‖E and define .Ẽ = E ⊕ R as the space of pairs .(x, λ) ∈ E × R endowed with
the norm given by .‖(x, λ)‖Ẽ = ‖x‖E + |λ|. Then, if .f+(x) = 1 − ‖x‖E for .x ∈ E

and .f− = −f+, we have



16 3 Spaces of Trinomials

(i) .SẼ = graph
(
f+|BE

)⋃
graph

(
f−|BE

)
.

(ii) .ext
(
BẼ

) = {(x, 0) : x ∈ ext(BE)}⋃{±(0, 1)}, where .0 denotes the null vector
in E.

Proof It is easy to see part (i) of the theorem. On the other hand, for part (ii), notice
that the graphs of .f+ and .f− are affine on half-lines coming from the origin in E.
Thus, the extreme points of the unit ball of .Ẽ are inside the set of points where
the graphs of the functions .f+ and .f− intersect, i.e., the extreme points are either
in the set .{(x, 0) : x ∈ SE} or they are one of the points .±(0, 1). It is easy to
prove that if .x /∈ ext(BE), then .(x, 0) /∈ BẼ . Hence, it is enough to prove now
that .ext(BẼ) = {(x, 0) : x ∈ ext(BE)} ∪ {±(0, 1)}. Firstly, since the hyperplane
.M = {(x,±1) : x ∈ E} intersects the unit ball of .Ẽ at .±(0, 1), we have that the
points .±(0, 1) are extreme points of .BẼ . Indeed, if .(y,±1) ∈ M ∩ BẼ , then .1 ≤
‖(y,±1)‖Ẽ = ‖y‖E + 1, which implies that .y = 0. Lastly, if .x ∈ ext(BE), then
.(x, 0) is an extreme point of .BẼ by definition of extreme point. ��
Theorem 3.3 (Muñoz and Seoane [50]) Let .m, n ∈ N be odd with .m > n. If for
every .(a, b) ∈ R

2 we define

.f+(a, b) =
{
1 − (m−n)|a|

n
· ∣∣ nb

ma

∣
∣

m
m−n if a 	= 0 and − 1 < nb

ma
< λ0,

1 − |a + b| otherwise,

and .f− = −f+ (notice that .f+(a, b) = 1 − ‖(a, b, 0)‖m,n,∞), then

(i) .Sm,n,∞ = graph (f+|V )
⋃

graph (f−|W) .

(ii)

. ext
(
Bm,n,∞

) =
{

±
(

t,− m

(m − n)
m−n
m n

n
m

· t
n
m , 0

)

: n

m − n
≤ t ≤ n

n + mλ0

}

⋃
{±(0, 0, 1)}.

Proof Let us endow the space .E = R
2 with the following norm: .‖(a, b)‖ =

‖(a, b, 0)‖m,n,∞ for every .(a, b) ∈ E. It is straightforward to prove that the unit ball
ofE is the projection of .Bm,n,∞ onto the ab-plane and the set of extreme of points of

.Bm,n,∞ is the set .
{
± (t,−�(t)) : n

m−n
≤ t ≤ n

n+mλ0

}
. Thus, by Lemma 3.2 applied

to the normed space E and the fact that .‖(a, b, c)‖m,n,∞ = ‖(a, b, 0)‖m,n,∞ + |c|
for every .(a, b, c) ∈ R

3, we have the desired result. ��
Figure 3.2 is a sketch of .Bm,n,∞ when .m = 3 and .n = 1.
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Fig. 3.2 Unit ball of .P3,1,∞(R). In the general case the unit ball of .Pm,n,∞(R) with .m, n ∈ N odd
and .m > n has a similar shape

3.1.2 The Geometry of Bm,n,∞ for m Odd and n Even

In this case we consider the space .R
3 endowed with the norm .‖ · ‖m,n,∞ where

.m ∈ N is odd and .n ∈ N is even. As in the previous case we begin by showing an
explicit formula for the norm .‖ · ‖m,n,∞.

Theorem 3.4 (Muñoz and Seoane [50]) Let .m, n ∈ N with m odd, n even and
.m > n. For every .(a, b, c) ∈ R

3 we have

.‖(a, b, c)‖m,n,∞ = max {|c|, |a| + |b + c|} ,

that is

.‖(a, b, c)‖m,n,∞ =
⎧
⎨

⎩
|c| if c 	= 0 and

∣
∣∣∣
b

c
+ 1

∣
∣∣∣ ≤ 1 −

∣∣∣
a

c

∣∣∣ ,

|a| + |b + c| otherwise.
(3.2)

In this case, .Bm,n,∞ is symmetric with respect to the bc-plane. But instead of
projecting .Bm,n,∞ onto the bc-plane (in contrast with the argument used in the
previous case), we are going to project .Bm,n,∞ onto the ab-plane.

Let us define the sets

.U = {(a, b) ∈ R
2 : |a| + |b + 1| ≤ 1},

V = {(a, b) ∈ R
2 : |b| ≤ |a| ≤ 1}, and

W = {(a, b) ∈ R
2 : |a| + |b − 1| ≤ 1}.

Figure 3.3 shows what U , V and W look like when .m = 3 and .n = 2.
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Fig. 3.3 Projection of .B3,2,∞
onto the ab-plane. The
general case when m is odd
and n is even has a similar
form

Theorem 3.5 (Muñoz and Seoane [50]) Let .m, n ∈ N with m odd, n even and
.m > n. The projection of .Bm,n,∞ onto the ab-plane is the set .U ∪ V ∪ W .

We have an explicit formula of the norm .‖ · ‖m,n,∞ and we know the projection
of .Bm,n,∞ onto the ab-plane. Now, we can find a parametrization of .Sm,n,∞ and
obtain the extreme points of .Bm,n,∞.

Theorem 3.6 (Muñoz and Seoane [50]) Let .m, n ∈ N with m odd, n even and
.m > n. For every .(a, b) ∈ R

2, we define

.
f+(a, b) = 1 − |a| − b,

g+(a, b) = 1,

and also the functions .f−(a, b) = −f+(a,−b) and .g−(a, b) = −g+(a, b). We
have that

(i) .Sm,n,∞ = graph (g+|U)∪ graph (g−|W)∪ graph (f+|V ∪W)∪ graph (f−|U∪V ) .

(ii) .ext
(
Bm,n,∞

) = {±(0, 2,−1), ±(1, 1,−1), ±(−1, 1,−1), ±(0, 0,−1)}.
Figure 3.4 shows a sketch of the unit ball of .P3,2,∞(R).

3.1.3 The Geometry of Bm,n,∞ for m Even and n Odd

In this case we study the space .R
3 endowed with the norm .‖ · ‖m,n,∞ where m is

even and n is odd. We start off with the explicit formula of the norm .‖ · ‖m,n,∞.
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Fig. 3.4 Unit ball of .P3,2,∞(R). The general case for m odd and n even looks similar

Theorem 3.7 (Muñoz and Seoane [50]) If .m, n ∈ N are such that m is even, n is
odd and .m > n, defining .Im,n as the set of triples .(a, b, c) ∈ R

3 such that

.a 	= 0,

∣∣∣
∣
nb

ma

∣∣∣
∣ < 1 and 1 + c

a
<

1

2

[
m − n

n

(
nb

ma

) m
m−n −

∣∣∣
∣
b

a

∣∣∣
∣ + 1

]

,

we have that

.‖(a, b, c)‖m,n,∞ =
⎧
⎨

⎩

∣∣∣ (m−n)a
n

(
nb
ma

) m
m−n − c

∣∣∣ if (a, b, c) ∈ Im,n,

|a + c| + |b| otherwise.
(3.3)

Remark 3.2 (Muñoz and Seoane [50]) In Theorem 3.7, if .n ∈ N is odd and .m = 2n,
then the formula (3.3) is given by

.‖(a, b, c)‖2n,n,∞ =
⎧
⎨

⎩

∣∣∣ b2

4a −c

∣∣∣ if a 	=0,
∣∣ b
2a

∣∣<1 and c
a
+1< 1

2

( ∣∣ b
2a

∣∣−1
)2

,

|a + c| + |b| otherwise.
(3.4)

for all .(a, b, c) ∈ R
3. Moreover, if .n ∈ N is odd and .(a, b, c) ∈ R

3, then, by using
the fact that .xn is a bijection from the interval .[−1, 1] into itself, we obtain the
following equality

.‖(a, b, c)‖2n,n,∞ = max{|ax2n + bxn + c| : x ∈ [−1, 1]}
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= max{|ax2 + bx + c| : x ∈ [−1, 1]} = ‖(a, b, c)‖R.

Consequently the calculations done with the norm .‖ · ‖2n,n,∞ when n is odd can be
obtained simply by using the norm .‖ · ‖R.

We are interested in obtaining a parametrization of .Sm,n,∞ to show a sketch of
.Sm,n,∞ and to find the extreme points of .Bm,n,∞. To do so, we project .Bm,n,∞ onto
the ab-plane.

Consider the following equation

.
(m − n)a

n

(∣∣∣
∣
nb

ma

∣∣∣
∣

) m
m−n = 2 − a − b, (3.5)

where .m, n ∈ N with .m > n. The Implicit Function Theorem states that formula
(3.5) defines implicitly a unique differentiable curve .b = �m,n(a) on .(0,∞) such
that .�m,n(2) = 0 and .�m,n(n/m) = 1. Also, if n is odd and .m = 2n, then

.�2n,n(a) = 2(
√
2a − a).

Now consider the following sets in the ab-plane

.Um,n =
{
(a, b) ∈ R

2 : a < 0 and |b| ≤ min

{
m|a|

n
, �m,n(|a|)

}}
,

Vm,n =
{
(a, b) ∈

[
− n

m
,

n

m

]
× [−1, 1] : |b| ≥ m|a|

n

}
,

Wm,n =
{
(a, b) ∈ R

2 : a > 0 and |b| ≤ min

{
m|a|

n
, �m,n(|a|)

}}
.

Figure 3.5 shows what .U2n,n, .V2n,n and .W2n,n look like when .n ∈ N is odd.

Theorem 3.8 (Muñoz and Seoane [50]) Let .m, n ∈ N with m even, n odd and
.m > n. The projection of .Bm,n,∞ onto the ab-plane is the set .Um,n ∪ Vm,n ∪ Wm,n.

Finally, we can give a parametrization of .Sm,n,∞ and show the extreme points of
.Bm,n,∞.

Theorem 3.9 (Muñoz and Seoane [50]) Let .m, n ∈ N with m even, n odd and
.m > n. If for every .(a, b) ∈ R

2 we define

.f+(a, b) = 1 − a − |b|, f−(a, b) = −f+(−a, b),

and for every .(a, b) ∈ R
2 with .a 	= 0 we define

.g+(a, b) = (m − n)a

n
·
(

nb

ma

) m
m−n − 1, g−(a, b) = −g+(−a, b),
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Fig. 3.5 Projection of .B2n,n,∞ onto the ab-plane with .n ∈ N odd

then

(i) .Sm,n,∞ = graph
(
f+|Wm,n∪Vm,n

) ∪ graph
(
f−|Um,n∪Vm,n

) ∪ graph
(
g+|Wm,n

) ∪
graph

(
g−|Um,n

)
.

(ii)

. ext
(
Bm,n,∞

) =
{
±(t,±�m,n(t), 1 − t − �m,n(t)) : t ∈

[ n

m
, 2

]}

⋃
{±(0, 0, 1)}.

Corollary 3.1 (Muñoz and Seoane [50]) Let .n ∈ N be odd. If for every .(a, b) ∈
R
2 we define

.f+(a, b) = 1 − |b| − a, f−(a, b) = −f+(−a, b),

and for every .(a, b) ∈ R
2 with .a 	= 0 we define

.g+(a, b) = b2

4a
− 1, g−(a, b) = −g+(−a, b),

then

(i)

.S2n,n,∞ = graph
(
f+|V2n,n∪W2n,n

) ∪ graph
(
f−|U2n,n∪V2n,n

)

∪ graph
(
g+|W2n,n

) ∪ graph
(
g−|U2n,n

)
.
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Fig. 3.6 Unit ball of .P2n,n,∞(R) when .n ∈ N is odd

(ii)

. ext
(
B2n,n,∞

) =
{
±
(
t,±2

(√
2t − t

)
, 1 + t − 2

√
2t
)

: t ∈
[
1

2
, 2

]}

⋃
{±(0, 0, 1)}.

Figure 3.6 shows an approximation of how .B2n,n,∞ looks like when .n ∈ N is
odd.

3.1.4 The Geometry of Bm,n,∞ for Even Numbers m,n

Consider the space .R
3 endowed with the norm .‖ · ‖m,n,∞ where .m, n ∈ N are even

and .m > n. The biggest difference in this case with respect to the previous ones is
that there is no symmetry with some coordinate plane, however the way to tackle
this case is very similar to the immediate previous one. Let us begin by giving an
explicit formula of .‖ · ‖m,n,∞.

Theorem 3.10 (Muñoz and Seoane [50]) For every .m, n ∈ N with m and n even
numbers and .m > n, let us define .Jm,n as the set of triples .(a, b, c) ∈ R

3 such that
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.a 	= 0, 0 < − nb

ma
< 1 and

1

2

[
1 + b

a
+

∣∣∣∣1 + b

a

∣∣∣∣

]
+ 2c

a
<

m − n

n

(∣∣∣∣
nb

ma

∣∣∣∣

) m
m−n

.

We have that

.‖(a, b, c)‖m,n,∞ =
⎧
⎨

⎩

∣∣
∣ (m−n)a

n

(∣∣ nb
ma

∣∣)
m

m−n − c

∣∣
∣ if (a, b, c) ∈ Jm,n,

∣∣ a+b
2 + c

∣∣ + ∣∣ a+b
2

∣∣ otherwise.
(3.6)

Proof Let .(a, b, c) ∈ R
3 and let .P(x) = axm + bxn + c. Notice that if .a = 0

or .b = 0, then we have the desired result. Thus, assume that .a 	= 0 and .b 	= 0.
Since .‖ · ‖m,n,∞ is symmetric with respect to the origin, we can also assume that
.a > 0. On the other hand, since .P(x) = P(−x) (m and n are even), we can restrict
our attention to the interval .[0, 1] instead of the interval .[−1, 1] in order to find the
maximum of .|P(x)| in the interval .[−1, 1]. Thus, the maximum of .|P(x)| is attained
at either one of the endpoints of the interval .[0, 1] or at one of the critical points of
P in .(0, 1). In fact, there is only one critical point .x = (− nb

ma

) 1
m−n provided that

.− nb
ma

∈ (0, 1) (this critical point has been found by solving the equation .P ′(x) = 0).
Furthermore,

.P(x) = c − (m − n)a

n

(∣∣∣
∣
nb

ma

∣∣∣
∣

) m
m−n

,

which shows that if .P(x) ≥ 0, then .max{|P(0)|, |P(1)|} ≥ |P(x)|. Hence,

.‖P ‖m,n,∞ =
{
max{|P(0)|, |P(1)|, |P(x)|} if 0 < x < 1 and P(x) < 0,

max{|P(0)|, |P(1)|} otherwise.

Notice that .max{|P(0)|, |P(1)|} = max{|c|, |a + b + c|} = ∣∣ a+b
2 + c

∣∣ + ∣∣ a+b
2

∣∣. It
is enough to show when .max{|P(0)|, |P(1)|} < |P(x)| = −P(x) or, equivalently,
when

.

∣
∣∣∣
a + b

2
+ c

∣
∣∣∣ +

∣
∣∣∣
a + b

2

∣
∣∣∣ <

(m − n)a

n

(∣∣∣∣
nb

ma

∣
∣∣∣

) m
m−n − c.

Since .a 	= 0, we can multiply the previous inequality by .
2
a
and, then, add .1+ b

a
+ 2c

2a
to both sides, which gives us

.1+ b

a
+ 2c

a
+
∣∣∣∣1 + b

a
+ 2c

a

∣∣∣∣ < 2
m − n

n
·
(∣∣∣∣

nb

ma

∣∣∣∣

) m
m−n +1+ b

a
−
∣∣∣∣1 + b

a

∣∣∣∣ . (3.7)

Notice that the right-hand side of inequality .(3.7) is non-negative since it is equal to
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.

⎧
⎨

⎩
2
[

m−n
n

(∣∣ nb
ma

∣
∣)

m
m−n − m

n

∣
∣ nb
ma

∣
∣ + 1

]
if 1 + b

a
< 0,

2m−n
n

(∣∣ nb
ma

∣∣)
m

m−n if 1 + b
a

≥ 0,

and the mapping .h(x) = m−n
n

x
m

m−n −m
n
x+1 defined on the interval .(0, 1) is positive.

Hence, inequality (3.7) is in fact of the following form

.
1

2

[
1 + b

a
+

∣∣
∣∣1 + b

a

∣∣
∣∣

]
+ 2c

a
<

m − n

n

(∣∣
∣∣
nb

ma

∣∣
∣∣

) m
m−n

,

which finishes the proof. ��
Now let us define the following two curves

.ϒm,n(a) =
(

2m

m − n

)m−n
m ·

( |a|m
n

) n
m

and

.�m,n(a) = −�m,n(|a|),

where .b = �m,n(a) for every .a ∈ (0,∞) is the curve given by (3.5) using the
Implicit Function Theorem. Notice that according to the Implicit Function Theorem,
.b = �m,n(a) for every .a ∈ (−∞, 0) is the unique differentiable curve passing
through .(−2, 0), satisfying the equation

.
(m − n)a

n

(∣∣∣∣
nb

ma

∣
∣∣∣

) m
m−n = −2 − a − b, (3.8)

If .m = 2n, then both curves .ϒm,n(a) and .�m,n(a) have an explicit formula given
by

.ϒ2n,n(a) = 2
√
2|a| and �2n,n(a) = 2

(
|a| − √

2|a|
)

.

The curves .b = ϒm,n(a) and .b = �m,n(a) with .a ∈ (−∞, 0) intersect in one
single point .(γ0,−γ0) such that

.γ0 = − 2

m − n
·
(

mm

nn

) 1
m−n

< −2.

In fact, if .m = 2n, then .γ0 = −8. Now if we also consider the curve .b = 2−a, then
this curve intersects .b = ϒm,n(a) with .a ∈ (−∞, 0) at one single point .(γ1, υ1) =( −2n

m−n
, 2m

m−n

)
. Notice that, if .m = 2n, then .(γ1, υ1) = (−2, 4).
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Now, let us define the following sets contained in the ab-plane

.Um,n =
{
(a, b)∈R

2 : a∈[γ0, 0),max{0,�m,n(a)}≤b≤min

{−m

n
a,ϒm,n(a)

}}
,

Wm,n =
{
(a, b)∈R

2 : a∈(0,−γ0],−max{0,�m,n(a)}

≤b≤−min

{−m

n
a,ϒm,n(a)

}}
,

V 1
m,n =

{
(a, b) ∈ R

2 : a ∈ [γ1, 2],max

{
0,

−m

n
a

}
≤ b ≤ 2 − a

}
,

V 2
m,n =

{
(a, b) ∈ R

2 : a ∈ [γ1, 2],−2 − a ≤ b ≤ min

{
0,

−m

n
a

}}
,

Vm,n = V 1
m,n ∪ V 2

m,n.

Figure 3.7 shows what .U2n,n, .V2n,n and .W2n,n, when .n ∈ N is even, look like.
The projection of .Bm,n,∞ with .m, n ∈ N even can be stated in the following way.

a

b

(−8, 8)

(−2, 4)

(2, 0)

(8,−8)

(2,−4)

(−2, 0)

b = 2 − a

b = −2 − a

b = Υ2n,n(a)

b = −Υ2n,n(a)

b = Λ2n,n(a)

b = −Λ2n,n(a)

U2n,n

V2n,n

V2n,n

W2n,n

Fig. 3.7 Projection of .B2n,n,∞ onto the ab-plane with .n ∈ N even
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Theorem 3.11 (Muñoz and Seoane [50]) If .m, n ∈ N are even with .m > n, then
the projection of .Bm,n,∞ onto the ab-plane is the set .Um,n ∪ Vm,n ∪ Wm,n.

Proof By symmetry, we can restrict our attention to three different cases depending
on the value of .(a, b) ∈ R

2:

(a) .A1 = {(a, b) ∈ R
2 : b = 2 − a and a ∈ [γ1, 2]},

(b) .A2 = {(a, b) ∈ R
2 : b = ϒm,n(a) and a ∈ [γ0, γ1)},

(c) .A3 = {(a, b) ∈ R
2 : b = �m,n(a) and a ∈ (γ0,−2)}.

We want to prove that if .(a, b) belongs to one of these sets and .c ∈ R is such that
.‖(a, b, c)‖m,n,∞ = 1, then c is unique.

Firstly, assume that .(a, b) ∈ A1. Notice that if .a < 0, then .− nb
ma

≥ 1
which implies that .(a, b, c) /∈ Jm,n. Furthermore, if .a = 0, then we also have
that .(a, b, c) /∈ Jm,n. Hence, on the one hand, if .a ≤ 0, notice that .1 =
‖(a, b, c)‖m,n,∞ = ∣

∣ a+b
2 + c

∣
∣ + ∣

∣ a+b
2

∣
∣. Thus, .c = −1 since .a + b = 2. On

the other hand, if .a > 0, then .− nb
ma

< 1. Suppose that .(a, b, c) ∈ Jm,n, then

.

∣∣
∣ (m−n)a

n

(∣∣ nb
ma

∣
∣)

m
m−n − c

∣∣
∣ = 1 if, and only if,

.c = ±1 + (m − n)a

n

(
nb

ma

) m
m−n

.

Since .a, b ≥ 0, .b = 2 − a and .(a, b, c) ∈ Jm,n, notice that we have the following
inequality

.
2

a
(1 + c) <

m − n

n

(
nb

ma

) m
m−n

.

It can be easily seen that the last inequality is not satisfied for any of the two possible
values of c. We have reached a contradiction, thus .(a, b, c) /∈ Jm,n. This implies
that since .‖(a, b, c)‖m,n,∞ = 1 and .(a, b, c) /∈ Jm,n, then .

∣∣ a+b
2 + c

∣∣ + ∣∣ a+b
2

∣∣ = 1,
and, by the calculations previously done, we have that .c = −1.

Secondly, assume that .(a, b) ∈ A2. Notice that in this case .− nb
ma

∈ (0, 1).
Assume first that .(a, b, c) ∈ Jm,n, then, since .‖(a, b, c)‖m,n,∞ = 1, .c =
(m−n)a

n

(∣∣ nb
ma

∣∣)
m

m−n ± 1 = −2 ± 1. However, in both cases of c, the inequality

.
1
2

[
1 + b

a
+ ∣

∣1 + b
a

∣
∣] + 2c

a
< m−n

n

(∣∣ nb
ma

∣
∣)

m
m−n is not satisfied and we have a

contradiction. Thus, .(a, b, c) /∈ Jm,n. Notice that in this case .a + b ≥ 0, and
therefore, by solving the equation .

∣
∣ a+b

2 + c
∣
∣ + ∣

∣ a+b
2

∣
∣ = 1, we have that .c = −1 or

.c = −1 − a − b. But the latter form of c guarantees that .(a, b, c) ∈ Jm,n, which is
a contradiction. So, .c = −1.

Finally, assume that .(a, b) ∈ A3. Once again we have that .− nb
ma

∈ (0, 1). Assume
that .(a, b, c) /∈ Jm,n, then in this case, using the same procedure as in the previous
case, but now using the fact that .a + b < 0, we have that .c = 1 or .c = −1 − a − b.
However, both forms of c guarantee that .(a, b, c) ∈ Jm,n which is a contradiction.
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Therefore, assume that .(a, b, c) ∈ Jm,n. Since .‖(a, b, c)‖m,n,∞ = 1, we have that
.c = −1 − a − b or .c = −3 − a − b. However, the latter form of c implies that
.(a, b, c) /∈ Jm,n and we conclude that .c = −1 − a − b. ��

To this end let us give a parametrization of .Sm,n,∞ when .m, n ∈ N are even,
which is used to sketch .Bm,n,∞ and also show the extreme points of .Bm,n,∞.

Theorem 3.12 (Muñoz and Seoane [50]) Let .m, n ∈ N be even with .m > n. If for
every .(a, b) ∈ R

2 we define

.f+(a, b) = 1 −
∣∣∣
∣
a + b

2

∣∣∣
∣ − a + b

2
, f−(a, b) = −f+(−a,−b),

and for every .(a, b) ∈ R
2 with .a 	= 0 we define

.g+(a, b) = (m − n)a

n

(∣∣∣∣
nb

ma

∣
∣∣∣

) m
m−n − 1, g−(a, b) = −g+(−a,−b),

then

(i) .Sm,n,∞ = graph
(
f+|Wm,n∪Vm,n

) ∪ graph
(
f−|Um,n∪Vm,n

) ∪ graph
(
g+|Wm,n

) ∪
graph

(
g−|Um,n

)
.

(ii)

. ext
(
Bm,n,∞

) = {±(s,�m,n(s),−1 − s − �m,n(s)) : s ∈ [γ0,−2]}
⋃{±(t,−ϒm,n(t), 1) : t ∈ [−γ1,−γ0]

}⋃{±(0, 0, 1)}.

Proof Notice that part (i) is a direct consequence of Theorems 3.10 and 3.11. For
part (ii), it is easy to see that .f+, .f−, .g+ and .g− are affine half-lines radiating
from the origin, which directly implies that the candidates to being extreme
points are the points .(0, 0, f+(0, 0)) = (0, 0, 1), .(0, 0, f−(0, 0)) = (0, 0,−1)
and the points where the graphs of the functions .f+|Wm,n∪Vm,n , .f−|Um,n∪Vm,n ,
.g+|Wm,n and .g−|Um,n intersect along a non-affine line. Thus, we only need to
find the intersection of the graphs of the functions. To do so, notice that by
symmetry, we can suppose that .a + b ≤ 0. On the one hand, it is easy to
prove that .graph

(
f+|Wm,n∪Vm,n

) ∩ graph
(
f−|Um,n∪Vm,n

)
, .graph

(
f+|Wm,n∪Vm,n

) ∩
graph

(
g−|Um,n

)
and .graph

(
f−|Um,n∪Vm,n

) ∩ graph
(
g+|Wm,n

)
are the segments (thus

contained in affine lines) .{(a,−2 − a, 1) ∈ R
3 : a ∈ [γ1, 2)}, .{(a, 0, 1) ∈ R

3 : a ∈
[γ1, 0)} and .

{(
a,−m

n
a,−1 + m−n

n
a
) ∈ R

3 : a ∈ (0, 2]}, respectively. On the other
hand, it is also easy to prove that the intersection of the graphs of .g+|Wm,n and
.g−|Um,n is the empty set. Thus, the only other possible extreme points in .Bm,n,∞ are
the following cases:

(a) .graph
(
f+|Wm,n∪Vm,n

) ∩ graph
(
g+|Wm,n

) = graph(f+) ∩ graph(g+) ∩ Wm,n,
(b) .graph

(
f−|Um,n∪Vm,n

) ∩ graph
(
g−|Um,n

) = graph(f−) ∩ graph(g−) ∩ Um,n.
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In case (a), from equation .f+ = g+ along the set .Wm,n (which guarantees that
the b coordinate is negative), we have that .b = −ϒm.n(a) with .a ∈ [−γ1,−γ0].
Therefore, the graphs of the functions .f+|Wm,n∪Vm,n and .g+|Wm,n intersect along a
non-affine curve of the form .

(
t,−ϒm,n(t), f+

(
t,−ϒm,n(t)

)) = (t,−ϒm,n(t), 1),
where .t ∈ [−γ1,−γ0]. In case (b), from .f− = g− restricted to the set .Um,n, which is
equivalent to Eq. (3.8), we have that the graphs intersect along a non-affine curve of
the form .

(
s,�m,n(s), f−

(
s,�m,n(s)

)) = (
s,�m,n(s),−1 − s − �m,n(s)

)
, where

.s ∈ [γ0, 2].
Finally, for each one of the previous points p that are candidates to extreme

points, it is easy to construct a plane .� ⊂ R
3 such that .� ∩ Bm,n,∞ = {p}, which

guarantees that p is an extreme point (this is left as an exercise to the reader) and
the proof is complete. ��
Corollary 3.2 (Muñoz and Seoane [50]) Let .n ∈ N be even. If for every .(a, b) ∈
R
2 we define

.f+(a, b) = 1 −
∣∣
∣∣
a + b

2

∣∣
∣∣ − a + b

2
, f−(a, b) = −f+(−a,−b),

and for every .(a, b) ∈ R
2 with .a 	= 0 we define

.g+(a, b) = b2

4a
− 1, g−(a, b) = −g+(−a,−b),

then

(i) .S2n,n,∞ = graph(f+|W2n,n∪V2n,n
) ∪ graph(f−|U2n,n∪V2n,n

) ∪ graph(g+|W2n,n
) ∪

graph(g−|U2n,n
).

(ii)

. ext
(
B2n,n,∞

) =
{
±
(
t, 2

(√
2t − t

)
, 1 + t − 2

√
2t
)

: t ∈ [2, 8]
}

⋃{
±
(
s,−2

√
2s, 1

)
: s ∈ [2, 8]

}⋃
{±(0, 0, 1)}.

Using the previous parametrization we show in Fig. 3.8 a sketch of .B2n,n,∞ with
.n ∈ N even.

3.2 On the Real Line with the Lp-Norm

Let us consider the space of trinomials with real coefficients of the form .P(x) =
axm + bxn + c, endowed with the .Lp-norm (where .1 ≤ p < ∞). We denote this
normed space of polynomials by .Pm,n,p(R). Once again, the mapping T defined at
the beginning of Sect. 2.1, can be used to represent each trinomial .axm + bxn + c



3.2 On the Real Line with the Lp-Norm 29

0
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a

Fig. 3.8 Unit ball of .P2n,n,∞(R) with .n ∈ N even

of the space .Pm,n,p(R) in .R
3. To do so, we begin by defining the norm .‖ · ‖m,n,p in

.R
3 by

.‖(a, b, c)‖m,n,p =
(∫ 1

−1
|axm + bxn + c|pdx

) 1
p

for every .a, b, c ∈ R. In this case once again, the mapping T is a topological
isomorphism between .Pm,n,p(R) and .(R3, ‖ · ‖m,n,p).

In this section, we give a parametrization of the unit sphere .Sm,n,p of the normed
space .(R3, ‖ · ‖m,n,p).

The main results of this section are from [48] where the authors obtain an explicit
formula for .‖ ·‖m,n,2. In this survey we go deeper in this study by finding an explicit
formula for .‖ · ‖m,n,p when p is even. It is interesting to observe that the norms
.‖ · ‖m,n,p are uniformly convex and therefore all the elements of the unit sphere of
the space .(R3, ‖ · ‖m,n,p) are extreme points of the closed unit ball.

Theorem 3.13 Let .m, n ∈ N and .p ∈ N even. For every .(a, b, c) ∈ R
3 we have

that

.‖(a, b, c)‖m,n,p =
⎛

⎝2
∑

i,j,k

(
p

i, j, k

)
aibj ck

mi + nj + 1

⎞

⎠

1
p

,

where .
(

p
i,j,k

)
denotes .

p!
i!j !k! and the sum is taken over all .i, j, k ∈ N ∪ {0} such that

.i + j + k = p and .mi + nj is even.

Proof Let .(a, b, c) ∈ R
3, then
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.‖(a, b, c)‖m,n,p =
(∫ 1

−1
|axm + bxn + c|pdx

) 1
p

=
(∫ 1

−1
(axm + bxn + c)pdx

) 1
p

.

By the trinomial expansion, we have

.‖(a, b, c)‖m,n,p =

⎛

⎜⎜
⎝

∫ 1

−1

⎡

⎢⎢
⎣

∑

i,j,k∈N∪{0}
i+j+k=p

(
p

i, j, k

)
(axm)i(bxn)j ck

⎤

⎥⎥
⎦ dx

⎞

⎟⎟
⎠

1
p

=

⎛

⎜⎜
⎝

∑

i,j,k∈N∪{0}
i+j+k=p

(
p

i, j, k

)
aibj ck

∫ 1

−1
xmi+nj dx

⎞

⎟⎟
⎠

1
p

=

⎛

⎜⎜
⎝

∑

i,j,k∈N∪{0}
i+j+k=p

(
p

i, j, k

)
aibj ck

mi + nj + 1

[
xmi+nj+1

]1

−1
dx

⎞

⎟⎟
⎠

1
p

=

⎛

⎜⎜
⎝

∑

i,j,k∈N∪{0}
i+j+k=p

(
p

i, j, k

)
aibj ck

mi + nj + 1

[
1 − (−1)mi+nj+1

]
dx

⎞

⎟⎟
⎠

1
p

=
⎛

⎝2
∑

i,j,k

(
p

i, j, k

)
aibj ck

mi + nj + 1

⎞

⎠

1
p

,

where the last sum is taken over all .i, j, k ∈ N ∪ {0} such that .i + j + k = p and
.mi + nj is even. ��
Corollary 3.3 (Muñoz et al. [48]) For every .m, n ∈ N with .m > n and every
.a, b, c ∈ R, we have that .‖(a, b, c)‖2m,n,2 is equal to

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2a2
2m+1 + 2b2

2n+1 + 2c2 + 4ab
m+n+1 if m and n are odd,

2a2
2m+1 + 2b2

2n+1 + 2c2 + 4ac
m+1 if m is even and n is odd,

2a2
2m+1 + 2b2

2n+1 + 2c2 + 4bc
n+1 if m is odd and n is even,

2a2
2m+1 + 2b2

2n+1 + 2c2 + 4ab
m+n+1 + 4ac

m+1 + 4bc
n+1 if m and n are even.
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We also have an explicit formula for .‖ · ‖m,n,1.

Theorem 3.14 (Muñoz et al. [48]) If .a, b, c ∈ R, .	 = b2−4ac and, when .	 > 0,

.r1 = −b−√
	

2a and .r2 = −b+√
	

2a , then

.‖(a, b, c)‖2,1,1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣∣ 2a+6c
3

∣∣∣ if a = 0 or 	 ≤ 0 or min{|r1|, |r2|} ≥ 1,

sign(a)(2a3+6a2c)+	
3
2

3a2
if a 	= 0,	 > 0 and max{|r1|, |r2|} > 1,

sign(b)(−b3+6a2b+6abc)+	
3
2

6a2
otherwise.

We now proceed to show the projection onto a coordinate plane of the unit ball
of the spaces .Pm,n,2(R) by defining the following sets:

.Ek =
{
(α, β) ∈ R

2 : 2α2

2k + 1
+ 2β2 + 4αβ

k + 1
≤ 1

}
,

where .k ∈ N,

.Fm,n =
{
(a, b) ∈ R

2 : a2

2m + 1
+ b2

2n + 1
+ 2ab

m + n + 1
≤ 1

2

}
,

and

.Gm,n =
{
(a, b) ∈ R

2 : m2

(m + 1)2(2m + 1)
a2 + n2

(n + 1)2(2n + 1)
b2

+ 2mn

(m + n + 1)(m + 1)(n + 1)
ab ≤ 1

2

}
.

Notice that .Ek , .Fm,n and .Gm,n are in fact ellipses.
It is important to mention at this point that the following two results can be found

in [48] but only for the cases when m and n have different parity. The case when
m and n have the same parity, can be easily deduced from Corollary 3.3 and is
presented in Theorems 3.17 and 3.18.

Theorem 3.15 (Muñoz et al. [48]) Let .m, n ∈ N with .m > n.

(i) If m is even and n is odd, then the projection of .Bm,n,2 onto the ac-plane is the
set .Em.

(ii) If m is odd and n is even, then the projection of .Bm,n,2 onto the bc-plane is the
set .En.

By knowing the projection of the unit ball onto some coordinate plane, we can
find a parametrization of the unit sphere and therefore the extreme points of the
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unit ball. As pointed out right before Theorem 3.13 recall that we always have
.ext

(
Bm,n,p

) = Sm,n,p due to the uniform convexity of the spaces .(R3, ‖ · ‖m,n,p).

Theorem 3.16 (Muñoz et al. [48]) Let .m, n ∈ N with .m > n, and let us define the
mappings

.fm,n(a, c) =
√
2n + 1

2

(
1 − 2a2

2m + 1
− 2c2 − 4ac

m + 1

)
,

gm,n(b, c) =
√
2n + 1

2

(
1 − 2b2

2m + 1
− 2c2 − 4bc

m + 1

)
.

We have

(i) If m is even and n is odd, then

.Sm,n,2 = graph
(
fm,n|Em

) ∪ graph
(−fm,n|Em

)

and .ext
(
Bm,n,2

) = Sm,n,2.
(ii) If m is odd and n is even, then

.Sm,n,2 = graph
(
gm,n|En

) ∪ graph
(−gm,n|En

)

and .ext
(
Bm,n,2

) = Sm,n,2.

Theorem 3.17 Let .m, n ∈ N with .m > n.

(i) If m and n are odd, then the projection of .Bm,n,2 onto the ab-plane is the set
.Fm,n.

(ii) If m and n are even, then the projection of .Bm,n,2 onto the ab-plane is the set
.Gm,n.

Proof Assume that m and n are odd natural numbers (the case when m and n are
even is done in a similar way). We want prove that if .(a, b) belongs to .Fm,n and .c ∈
R is such that .‖(a, b, c)‖m,n,2 = 1, then .|c| is unique (notice that we have considered
.|c| instead of c since .‖(a, b, c)‖m,n,2 = ‖(a, b,−c)‖m,n,2 by Theorem 3.3). Thus,
assume that .(a, b) ∈ Fm,n and .c ∈ R is such that .‖(a, b, c)‖m,n,2 = 1. Then,

.1 = ‖(a, b, c)‖2m,n,2 = 2a2
2m+1 + 2b2

2n+1 + 2c2 + 4ab
m+n+1 . Solving c in terms of a and

b in the latter equation we have that

.c = ±
√
1

2
− a2

2m + 1
− b2

2n + 1
− 2ab

m + n + 1
.

Since .(a, b) ∈ Fm,n, we have that .c ∈ R and .|c| is unique. ��
Theorem 3.18 Let .m, n ∈ N with .m > n, and let us define the mappings
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.h+(a, b) =
√
1

2
− a2

2m + 1
− b2

2n + 1
− 2ab

m + n + 1
,

k+(a, b) = − a

m + 1
− b

n + 1
+ √

δm,n,

k−(a, b) = − a

m + 1
− b

n + 1
− √

δm,n,

where

.δm,n =1

2
− m2

(m + 1)2(2m + 1)
a2 − m2

(n + 1)2(2n + 1)
b2

− 2mn

(m + n + 1)(m + 1)(n + 1)
ab,

and .h− = −h+. We have

(i) If m and n are odd, then .Sm,n,2 = graph
(
h+|Fm,n

) ∪ graph
(
h−|Fm,n

)
and

.ext
(
Bm,n,2

) = Sm,n,2.
(ii) If m and n are even, then .Sm,n,2 = graph

(
k+|Gm,n

) ∪ graph
(
k−|Gm,n

)
and

.ext
(
Bm,n,2

) = Sm,n,2.

Proof It is easy to see that the result is a direct consequence of Corollary 3.3 and
Theorem 3.17. ��

3.3 On the Real Plane

In this section we will study the geometry and extreme polynomials of the space of
real homogeneous trinomials over the real plane, i.e., polynomials of the form

.P(x, y) = axm + bxm−nyn + cym,

where .(x, y) ∈ R
2, .a, b, c ∈ R and .m, n ∈ N are such that .m > n; endowed with

the supremum norm over the unit square .[−1, 1]2. We will denote this space by
.Ph

m,n,∞(R2). As in the previous sections, the mapping T defined at the beginning
of Sect. 2.1 and considered over .Ph

m,n,∞(R2) is a topological isomorphism between
.Ph

m,n,∞(R2) and .(R3, ‖ · ‖m,n,∞,2,h), where

.‖(a, b, c)‖m,n,∞,2,h = sup{|axm + bxm−nyn + cym| : (x, y) ∈ [−1, 1]2}.

We will denote the unit ball and the unit sphere of .(R3, ‖ · ‖m,n,∞,2,h) by .Bh
m,n,∞,2

and .Sh
m,n,∞,2, respectively.
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Analogously to Sect. 3.1, we will distinguish several cases depending on the
parity of m and n. To be more precise, we will study the cases when .m = 2n
and when m is odd.

3.3.1 The Geometry of B2n,n,∞,2 for n Odd

Let .n ∈ N be odd. It is straightforward to see that

.R : [−1, 1]2 → [−1, 1]2 with R(x, y) = (xn, yn)

is a bijection since n is odd. Hence,

.‖(a, b, c)‖2n,n,∞,2,h = sup{|ax2 + bxy + cy2| : (x, y) ∈ [−1, 1]2}.

Therefore observe that the space .Ph
2n,n,∞(R2) is isometric to .P (

22∞
)
which will

studied in Sect. 5.2.

3.3.2 The Geometry of B2n,n,∞,2 for n Even

Let .n ∈ N be even. Although the function R defined in Sect. 3.3.1 is not a bijection
in the case when n is even, note that R maps .[−1, 1]2 onto .[0, 1]2. Thus, we have
that

.‖(a, b, c)‖2n,n,∞,2,h = sup{|ax2 + bxy + cy2| : (x, y) ∈ [0, 1]2}.

In this case the space .Ph
2n,n,∞(R2) is isometric to the space of polynomials .P (

2�
)

which will be analyzed in Sect. 4.2.

3.3.3 The Geometry of Bm,n,∞,2 for m Odd

Let .m, n ∈ N be such that .m > n and m is odd. The case when n is odd can be
reduced to the case when n is even since it is easy to see that

.‖(a, b, c)‖m,n,∞,2,h = ‖(c, b, a)‖m,m−n,∞,2,h,

for every .(a, b, c) ∈ R
3.

Assume that m is odd and n is even with .m > n. Recall from Lemma 3.1 that the
equation
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.|n + my| = (m − n)|y| m
m−n

has a root .λ0 ∈ (− n
m

, 0
)
. Clearly, .λ0 depends on the values of m and n which

justifies the notation .λ0(m, n). Let us consider .µ0 = µ0(m, n) = λ0(m,m − n)

which, by definition, belongs to the interval .
(

n−m
m

, 0
)
and is a root of

.|m − n + my| = n|y|m
n .

The following theorem provides an explicit formula for the norm .‖ · ‖m,n,∞,2.

Theorem 3.19 (Jiménez et al. [35]) Let .m, n ∈ N be such that .m > n, m is odd

and n is even. Take the number .Km,n = n
m−n

(
m−n
m

)m
n , the interval .Im,n = [η1, η2],

where .η1 = − m
m−n

, .η2 = m
m−n

µ0, and the sets .Am,n, .Fm,n, .Bm,n and .B (see Figs. 3.9
and 3.10) defined as

.Am,n =
{
(x, y) ∈ R

2 : x ∈ Im,n and |y| ≥ 1 − Km,n|x|m
n

}
,

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3.9 Regions appearing in the definition of .‖ · ‖m,n,∞,2 when m is odd, n is even, .m > n and
.m
n

< 2. The figure corresponds to the values .m = 3 and .n = 2
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Fig. 3.10 Regions appearing in the definition of .‖ · ‖m,n,∞,2 when m is odd, n is even, .m > n and
.m
n

> 2. The figure corresponds to the values .m = 5 and .n = 2

Fm,n = {(x, y) ∈ R
2 : x ∈ Im,n and 1 − Km,n|x|m

n < |y| < 1 − |1 + x|},
B = {(x, y) ∈ R

2 : |x + 1| + |y| < 1},
Bm,n = B \ Fm,n.

Then,

.‖(a, b, c)‖m,n,∞,2,h =

⎧
⎪⎪⎨

⎪⎪⎩

n|a|
m−n

·
∣
∣∣ (m−n)b

ma

∣
∣∣

m
n + |c| if a 	= 0 and

(
b
a
, c

a

) ∈ Am,n,

|a| if a 	= 0 and
(

b
a
, c

a

) ∈ Bm,n,

|a + b| + |c| otherwise.
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Theorem 3.20 (Jiménez et al. [35]) Let .m, n ∈ N be such that .m > n, m is odd

and n is even. Consider the numbers .a0 = m−n
n

and .Lm,n = m
m−n

(
m−n

n

) n
m . If

.
m
n

< 2, let

.Rm,n =
{
(a, b) ∈ R

2 : −1 ≤ a ≤ 0 and η2a < b < min
{
η1a, Lm,n|a|m−n

m

}}
,

Um,n =
{
(a, b) ∈ R

2 : −a0 ≤ a ≤ 1 and max{η1a, η2a} ≤ b ≤ 1 − a
}

,

Sm,n = −Rm,n,

Vm,n = −Um,n.

If .m
n

> 2, let

.Rm,n =
{
(a, b) ∈ R

2 : −1 ≤ a ≤ 0 and η2a < b < η1a
}

,

Um,n =
{
(a, b) ∈ R

2 : −1 ≤ a ≤ 1 and max {η1a, η2a} ≤ b ≤ 1 − a
}

,

Sm,n = −Rm,n,

Vm,n = −Um,n.

Then, the projection of .Bh
m,n,∞,2 onto the ab-plane is the set .Rm,n ∪ Sm,n ∪ Um,n ∪

Vm,n (see Figs. 3.11 and 3.12).

Finally, the following theorem shows a parametrization of .Sh
m,n,∞,2 as well as

the extreme points of .Bh
m,n,∞,2.

Theorem 3.21 Let .m, n ∈ N be such that .m > n, m is odd and n is even. Define
the function

.Gm,n(a, b) =
{
1 − Km,n|a| ∣∣ b

a

∣
∣

m
n if (a, b) ∈ Rm,n ∪ Sm,n,

1 − |a + b| if (a, b) ∈ Um,n ∪ Vm,n,

and the set

.�m,n =
{

{(−1, b, c) ∈ R
3 : 0 ≤ b ≤ Lm,n and |c| ≤ Gm,n(−1, b)} if m

n
< 2,

{(−1, b, c) ∈ R
3 : 0 ≤ b ≤ 2 and |c| ≤ Gm,n(−1, b)} if m

n
> 2,

where .Km,n, .Lm,n, .a0, .η1 and .η2 are as in Theorems 3.19 and 3.20. Then,

(i) .Sh
m,n,∞,2 = graph(Gm,n) ∪ graph(−Gm,n) ∪ �m,n ∪ (−�m,n).

(ii) If .m
n

< 2, then

. ext(Bh
m,n,∞,2) =

{
±
(
−1, t,±(1 − Km,n|t |m

n )
)

: t ∈ [−η2, Lm,n]
}
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Fig. 3.11 Projection of .Bh
m,n,∞,2 onto the ab-plane with m odd, n even, .m > n and .m

n
< 2. The

picture corresponds to the case when .m = 5, .n = 4

⋃{
±(0, s, Lm,n|s|m

n ) : s ∈ [−1,−a0]
}

⋃
{(±1, 0, 0), (0, 0 ± 1)}.

If .m
n

> 2, then

. ext(Bh
m,n,∞,2) =

{
±
(
−1, t,±(1 − Km,n|t |m

n )
)

: t ∈ [−η2,−η1]
}

⋃
{(±1, 0, 0), (0, 0 ± 1),±(1,−2, 0)}.

See Figs. 3.13 and 3.14.
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Fig. 3.12 Projection of .Bh
m,n,∞,2 over the ab-plane with .m

n
> 2. The picture corresponds to the

case when .m = 5, .n = 2

3.4 On the Complex Plane

A (trigonometric) trinomial in the field of complex numbers .C is a trinomial of the
form:

.P(z) = aeiλ1z + beiλ2z + ceiλ3z, (3.9)

where .a, b, c are real numbers such that .a, b, c ≥ 0 and .λi ∈ Z for every .i ∈
{1, 2, 3}. Let .� = {λ1, λ2, λ3} and consider .P�(C) the vector space of trinomials
spanned by .{eiλ : λ ∈ �} where .eλ denotes the function .z �→ eλz. Let us also endow
.P�(C) with the maximum modulus norm, that is, if P is a polynomial of the form
(3.9), then

.||P ||� := max{|P(z)| : |z| ≤ 1}.

We will denote the unit ball of .(P�(C), || · ||�) by .B�.
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-1
1.5

-0.5

0

1

0.5

0.5

1

0 1
-0.5 0.5

0-1
-0.5-1.5 -1

Fig. 3.13 Sketch of .Sh
m,n,∞,2 with m odd, n even, .m > n and .m

n
< 2. The picture corresponds to

the case when .m = 5 and .n = 4. The extreme points appear with a thicker line or big dots. The
surfaces that form .Sh

m,n,∞,2 are delimited by thin lines

Theorem 3.22 (Neuwirth [51]) A polynomial .P ∈ P�(C) of the form (3.9) is an
extreme point of .B� if, and only if, P is either a trigonometric monomial of the form
.ei(α+λz) with .α ∈ R and .λ ∈ � or P satisfies that .1 − |P |2 has four zeros that are
multiples of . 2π

d
, counted with multiplicities, and where .d = gcd(λ2 − λ1, λ3 − λ2).
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Fig. 3.14 Sketch of .Sh
m,n,∞,2 with m odd, n even, .m > n and .m

n
> 2. The picture corresponds to

the case when .m = 5 and .n = 2. The extreme points appear with a thicker line or big dots. The
surfaces that form .Sh

m,n,∞,2 are delimited by thin lines



Chapter 4
Polynomials on Non-Balanced Convex
Bodies

Abstract We investigate some geometrical properties of polynomials of degree
2 on non-balanced convex bodies with respect to the origin in .R

2, providing an
explicit formula to calculate their norm and a full description of the extreme points
of the corresponding unit balls. We review all the cases considered up to now in the
literature in this context.

A convex body in a topological space is a closed convex bounded set with nonempty
interior. It is well known that in finite dimensional normed vector spaces, closed
bounded sets are, in fact, compact (in infinite dimensional normed vector spaces this
is not true in general). Therefore, a convex body over a finite dimensional normed
vector space is a convex compact set with nonempty interior. A symmetric (with
respect to the origin) convex body K in a normed vector space is a convex body
such that K satisfies the following condition: .x ∈ K if, and only if, .−x ∈ K .

Most of the norms that we are considering for polynomials in this expository
work are taken over the unit ball of a normed vector space. However, in this chapter,
we are interested in studying the geometry of normed vector spaces of polynomials
where the norm is taken over a non-balanced convex body in .R

2.
In a real finite dimensional space, we say that a polynomial P is a 2-

homogeneous polynomial on .R
2 if .P(x, y) = ax2 + by2 + cxy where .a, b, c ∈ R.

Let K be a non-balanced convex body and let P be a 2-homogeneous polynomial
on .R

2 endowed with the following norm

.‖P‖K = max{|P(x)| : x ∈ K}.

The space of 2-homogeneous polynomials on .R
2 endowed with the norm .‖ ·‖K will

be denoted by .P(2K).
Adapting the definition of the mapping T defined in Sect. 2.1 to 2-homogenous

polynomials, we have a topological isomorphism between .P(2K) and the normed
space .(R3, ‖ · ‖K), where

.‖(a, b, c)‖K = ‖ax2 + by + cxy‖K,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Mathematics, https://doi.org/10.1007/978-3-031-23676-1_4
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for any .(a, b, c) ∈ R
3. This means that the unit sphere can be represented in .R

3.
From now on, the sets .SK and .BK will denote, respectively, the unit sphere and the
unit ball of the space .(R3, ‖ · ‖K).

Many of the results of this chapter deal with 2-homogeneous polynomials of
degree 2. However, in Sect. 4.1, we will also study the extreme points of the unit
ball of the vector space of polynomials of degree at most 2 in .R

2 endowed with the
supremum norm over a non-balanced convex body K . We will denote this space by
.P2(K).

4.1 The Simplex �

Let .� be the region in .R
2 enclosed by the triangle of vertices .(0, 0), .(0, 1) and .(1, 0)

called the simplex. Notice that the simplex is a non-balanced convex body of .R
2.

We use the same approach that appeared in the previous chapters by showing first
an explicit formula for .‖ · ‖�.

Theorem 4.1 (Muñoz et al. [46]) Let .a, b, c ∈ R. We have

.‖(a, b, c)‖� =
⎧
⎨

⎩

max
{
|a|, |c|,

∣
∣
∣ b2−4ac
4(a−b+c)

∣
∣
∣

}
if a−b+c �=0 and 0< 2c−b

2(a−b+c)
<1,

max{|a|, |c|} otherwise.

Proof Let .(a, b, c) ∈ R
3 and take .P(x, y) = ax2 + by2 + cxy. Notice that the

maximum of .|P | defined over .� is attained at the boundary of .� or at an interior
point of .�.

We will analyze first .|P | over the boundary of .�. On the one hand, notice that
the maximum of .|P | over the segment .{(t, 1 − t) : t ∈ [0, 1]} (which is one of the
sides of .�) is equal to

.M = max{(a − b + c)t2 + (b − 2c)t + c : t ∈ [0, 1]}

=
⎧
⎨

⎩

max{|a|, |c|,
∣
∣
∣ b2−4ac
4(a−b+c)

∣
∣
∣} if a − b + c �= 0 and 0 < 2c−b

2(a−b+c)
< 1,

max{|a|, |c|} otherwise.

On the other hand, it is easy to see that the maximum of .|P | over the segments
.{(t, 0) : t ∈ [0, 1]} and .{(0, t) : t ∈ [0, 1]} are .|a| and .|c|, respectively. It is also easy
to see that .max{|a|, |c|} ≤ M , hence the maximum of .|P | over the boundary of .�

is equal to M .
On the interior of .�, notice that if P has a critical point .(x̄, ȳ) different from

.(0, 0), then P along the line .{t (x̄, ȳ) : t ∈ R} has the form .P(tx̄, t ȳ) = at2x̄2 +
bt2ȳ2+ct2x̄ȳ = αt2, where .α = ax̄2+bȳ2+cx̄ȳ. Hence, necessarily we have that
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.α = 0 which implies that .P(x̄, ȳ) = 0. Therefore .(x̄, ȳ) is neither a local maximum
nor minimum unless .P ≡ 0. This concludes the proof. ��

The second thing that is often used to parametrize .S� is to project .B� onto a
plane. In this case, we project .B� onto the ac-plane. Interestingly, the projection
of .B� onto the ac-plane is none other than the unit ball on .R

2 endowed with the
supremum norm. The space .R

2 endowed with the supremum norm will be denoted
by .�2∞ and the unit ball and the unit sphere in .�2∞ will be denoted by .B�2∞ and .S�2∞ ,
respectively.

Theorem 4.2 (Muñoz et al. [46]) The projection of .B� onto the ac-plane is .B�2∞ .

Proof Let .(a, b, c) ∈ S�, then .‖(a, c)‖∞ ≤ ‖(a, b, c)‖� = 1. Hence, the
projection of .B� onto the ac-plane is contained in .B�2∞ . Furthermore, since it is easy
to see that the projection of .B� onto the ac-plane is a convex subset of the plane
.{(a, b, c) : b = 0}, it is enough to prove that .S�2∞ is contained in the projection of
.B� onto the ac-plane.

If .(a, c) ∈ S�2∞ , then

.‖(a, 0, c)‖� =
⎧
⎨

⎩

max
{
1,

∣
∣
∣ ac
a+c

∣
∣
∣

}
if a + c �= 0 and 0 < c

a+c
< 1,

1 otherwise.

Also, notice that .
∣
∣
∣ ac
a+c

∣
∣
∣ < |a| ≤ 1 provided that .a + c �= 0 and .0 < c

a+c
< 1, which

concludes the proof since this implies that .‖(a, 0, c)‖� = 1. ��
Now we have the tools to give a parametrization of .S� and a characterization of

the extreme points of .B�. Figure 4.1 shows an approximate representation of the
unit ball of .P(2�).

Theorem 4.3 (Muñoz et al. [46]) If we define the mappings

.f+(a, c) = 2 + 2
√

(1 − a)(1 − c)

and

.f−(a, c) = −f+(−a,−c) = −2 − 2
√

(1 + a)(1 + c),

for every .(a, c) ∈ B�2∞ and the set

.F = {(a, b, c) ∈ R
3 : (a, c) ∈ S�2∞ and f−(a, c) ≤ b ≤ f+(a, c)},

then

(i) .S� = graph
(
f+|B

�2∞

)
∪ graph

(
f−|B

�2∞

)
∪ F .

(ii)
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Fig. 4.1 Unit ball of .P(2�)

. ext(B�) =
{
±

(
1,−2 − 2

√
2(1 + t), t

)
: t ∈ [−1, 1]

}

⋃ {
±

(
s,−2 − 2

√
2(1 + s), 1

)
: s ∈ [−1, 1]

}

⋃
{±(1, 1, 1)}.

Proof Part (i) is a direct consequence of Theorems 4.1 and 4.2. For part (ii), on one
hand, notice that every .(a0, b0, c0) ∈ F with .f−(a0, c0) < b0 < f+(a0, c0) is in
the interior of the segment .{(a, b, c) ∈ R

3 : (a, c) ∈ S�2∞ and f−(a0, c0) ≤ b ≤
f+(a0, c0)}. On the other hand, for every .(a0, c0) ∈ S�2∞ , the graph of the function
.f+ (respectively .f−) is affine along the straight line .(1 − c0)a = (1 − a0)c + a0 −
c0 (respectively .(1 + c0)a = (1 + a0)c − a0 + c0). This shows that the extreme

points are at the points where .graph
(
f+|B

�2∞

)
, .graph

(
f−|B

�2∞

)
and F intersect
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along a non-affine curve. It can be easily proved that this happens only at the points
.
(
1,−2 − 2

√
2(1 + t), t

)
and .± (

t,−2 − 2
√
2(1 + t), 1

)
, where .t ∈ [−1, 1]. ��

4.1.1 Polynomials of Degree at Most 2

We will study now the extreme points of the unit ball of the space of polynomials
of degree at most 2 in 2 real variables endowed with the supremum norm over .�.
We say that a polynomial P in .R

2 has degree at most 2 provided that .P(x, y) =
a + bx + cy + dx2 + exy + fy2, where .a, b, c, d, e, f ∈ R.

In order to show the extreme points of the unit ball of .P2(�), we will distinguish
between strictly definite, semidefinite and indefinite polynomials of degree exactly

2. Notice that in this case one of the eigenvalues of .M =
(

d e/2
e/2 f

)

is non-zero.

Definition 4.1 Let .P(x, y) = a + bx + cy + dx2 + exy + fy2, where

.a, b, c, d, e, f ∈ R, be a polynomial of degree 2 and take .M =
(

d e/2
e/2 f

)

.

(i) We say that P is strictly positive (resp. negative) definite provided that the
eigenvalues of M are positive (resp. negative).

(ii) We say that P is positive (resp. negative) semidefinite provided that one
eigenvalue of M is positive (resp. negative) and the other is 0.

(iii) We say that P is indefinite provided that the eigenvalues of M are non-zero
and have distinct sign.

Let us consider now the following construction and notation. Let .{Ti}6i=1
be the affine transformations from .R

2 to .R
2 that map .� onto itself given by

.{Ti(x, y)}6i=1 = {(x, y), (y, x), (1−x −y, y), (x, 1−x −y), (1−x −y, x), (y, 1−
x − y)}. Notice that if P is an extreme polynomial of the unit ball of .P2(�), then
the polynomials .{±P(Ti(x, y))}6i=1, known as symmetrical to P , are also extreme
points. Given a polynomial P , we denote by .M(P ) the set of points .(x, y) in .� such
that .|P(x, y)| = ‖P ‖�.

Theorem 4.4 (Milev and Naidenov [43, 44]) Let P be a polynomial of degree at
most 2 in .R

2. If P has degree at most 1, then P is an extreme point of the unit ball
of .P2(�) if, and only if, .P ≡ ±1. Assume now that P has degree 2.

(i) If P is strictly (positive or negative) definite, then P is an extreme point of the
unit ball of .P2(�) if, and only if, P is of the form

.P(x, y) = ±[1 + α(x − x0)
2 + β(x − x0)(y − y0) + γ (y − y0)

2],

where .α = 2(2y0−1)
x0(1−x0−y0)

, .β = − 2(2x0−1)(2y0−1)
x0y0(1−x0−y0)

, .γ = 2(2x0−1)
y0(1−x0−y0)

and .(x0, y0)

belongs to the interior of the triangle with vertices .

(
1
2 ,

1
2

)
, .
(
0, 1

2

)
and .

(
1
2 , 0

)
.
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(ii) Assume that P is negative semidefinite (all positive semidefinite extreme
points of the unit ball of .P2(�) have the form .−P , where P is negative
semidefinite).

(a) If there exists .(x0, y0) in the interior of .� such that .P(x0, y0) = 1, then P

is an extreme point of the unit ball of .P2(�) if, and only if, P satisfies the
following conditions

(1) .P(x, y) = 1 − [α(x − x0) + β(y − y0)]2, (α, β) �= (0, 0),
(2) .min{P(0, 0), P (1, 0), P (0, 1)} = −1.

(b) If .P(x, y) �= 1 for every .(x, y) in the interior of .�, then P is an extreme
point of the unit ball of .P2(�) if, and only if, P is one of the following
polynomials

(1) .P1(x, y) = 1 − 2(x + y)2,
(2) .P2(x, y) = 1 − 2(x − 1)2,
(3) .P3(x, y) = 1 − 2(y − 1)2,
(4) .P4(x, y) = 1 − 2(x + y − 1)2,
(5) .P5(x, y) = 1 − 2x2,
(6) .P6(x, y) = 1 − 2y2.

(iii) Assume that P is indefinite.

(a) If .M(P ) is infinite, then P is an extreme point of the unit ball of .P2(�) if,
and only if, P is symmetrical to

.Q(x, y) = 1 − 4

α
xy + 2(1 − 2α)

α2 y2,

where .α =
√
2√

2+√
1+β

and .β ∈ [−1, 1].
(b) If .M(P ) is finite, then P is an extreme point of the unit ball of .P2(�) if,

and only if, P is symmetrical to

.Q(x, y) = a + bx + cy + dx2 + exy + fy2,

where

. a = γ,

b = 2
√
1 − γ (

√
1 − α + √

1 − γ ),

c = 2
√
1 − γ (

√
1 − β + √

1 − γ ),

d = −(
√
1 − α + √

1 − γ )2,

e = −(
√
1 + α + √

1 + β)2 − (
√
1 − α + √

1 − γ )2

− (
√
1 − β + √

1 − γ )2,
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f = −(
√
1 − β + √

1 − γ )2,

with .(α, β, γ ) ∈ ⋃4
i=1 Pi and

. P1 = {(α, β, γ ) : α, β, γ ∈ (−1, 1), α �= β},
P2 = {(±1, β, γ ) : β, γ ∈ (−1, 1)} ∪ {(α,±1, γ )

: α, γ ∈ (−1, 1)} ∪ {(α, β,−1) : α, β ∈ (−1, 1)},
P3 = {(α,±1,−1) : α ∈ (−1, 1)} ∪ {(±1, β,−1)

: β ∈ (−1, 1)} ∪ {(±1,∓1, γ ) : γ ∈ (−1, 1)},
P4 = {(±1,∓1,−1), (1, 1,−1)}.

4.2 The Unit Square

Consider the quadrilateral region in .R
2 enclosed by the vertices .(0, 0), .(1, 0), .(0, 1)

and .(1, 1). We will denote this region by .�. It is easy to see that the set .� is a non-
balanced convex body. We want to sketch the set .S� on .R

3, so we begin by showing
an explicit formula for .‖ · ‖�.

Theorem 4.5 (Gámez et al. [23]) If .(a, b, c) ∈ R
3, then .‖(a, b, c)‖� is equal to

.

⎧
⎪⎪⎨

⎪⎪⎩

max
{
|a|, |c|, |a + b + c|, b2−4ac

4|c|
}

if b2 − 4ac > 0, c �= 0 and − b
2c ∈ (0, 1);

max
{
|a|, |c|, |a + b + c|, b2−4ac

4|a|
}

if b2 − 4ac > 0, a �= 0 and − b
2a ∈ (0, 1);

max {|a|, |c|, |a + b + c|} otherwise.

Just as we did in the previous case, we project .B� onto the ac-plane. This
projection of .B� onto the ac-plane is once again the set .B�2∞ . However, due to
technical difficulties in the proof of this theorem, the set .B�2∞ is divided into three
regions defined by

.A = {(a, c) ∈ B�2∞ : − 1 ≤ a ≤ 0 and a + 1 ≤ c ≤ 1},
B =

{
(a, c) ∈ B�2∞ : − 1 ≤ a ≤ 1 and max{−1, a − 1} ≤ c ≤ min{1, a + 1}

}
,

C = {(a, c) ∈ B�2∞ : 0 ≤ a ≤ 1 and − 1 ≤ c ≤ a − 1}.

Figure 4.2 shows how the set .B�2∞ is decomposed into the sets A, B and C.

Theorem 4.6 (Gámez et al. [23]) The projection of .B� onto the ac-plane is .B�2∞ .
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Fig. 4.2 The projection of
.B� onto the ac-plane

a

c

11

1

1

A
B

C

Given the explicit formula for .‖ · ‖� and the projection of .B� onto the ac-plane,
we can show a parametrization of .S� as well as the extreme points of .S�. Figure 4.3
shows a sketch of .S�.

Theorem 4.7 (Gámez et al. [23]) If for every .(a, c) ∈ B�2∞ we define the mappings

.F(a, c) =

⎧
⎪⎪⎨

⎪⎪⎩

2
√

ac + |a| if (a, c) ∈ A,

2
√

ac + |c| if (a, c) ∈ C,

1 − a − c if (a, c) ∈ B,

G(a, c) = −F(−a,−c),

where A, B and C are as in Fig. 4.2 and the set

.H =
{
(a, b, c) ∈ R

3 : (a, c) ∈ ∂B�2∞ and G(a, c) ≤ b ≤ F(a, c)
}

,

where .∂B�2∞ is the boundary of .B�2∞ , then

(a) .S� = graph(F ) ∪ graph(G) ∪ H .
(b)

. ext(B�) =
{
±

(
t, 2

√
1 − t,−1

)
: t ∈ [0, 1]

}

⋃ {
±

(
−1, 2

√
1 − s, s

)
: s ∈ [0, 1]

}

⋃
{±(1,−1, 1)}

⋃
{±(1 − 3, 1)}

⋃
{±(1, 0, 0)}

⋃
{±(0, 0, 1)}.
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Fig. 4.3 Unit ball of .P(2�)

4.3 Circular Sectors

For every .α, β ∈ [0, 2π ] with .α ≤ β we define the sector .D(α, β) as

.D(α, β) :=
{
reiθ : 0 ≤ r ≤ 1, α ≤ θ ≤ β

}
.

If .α = 0, we use .D(β) instead of .D(0, β). Notice that .D(α, β) is a non-balanced
convex body in .R

2.
The mapping T defined in Sect. 2.1 over the space .P(2D(α, β)) is a topological

isomorphism between the space .P(2D(α, β)) and .(R3, ‖ · ‖D(α,β)), where

.‖(a, b, c)‖D(α,β) = ‖P ‖D(α,β).

The sets .BD(α,β) and .SD(α,β) denote the unit ball and the unit sphere of .(R3, ‖ ·
‖D(α,β)), respectively.

Remark 4.1 For every .α, β ∈ [0, 2π ], the spaces .P(2D(α, α + β)) and .P(2D(β))

are isometric. Indeed, the mapping

.Q : P(2D(α, α + β)) → P(2D(β))

P �→ P ◦ 




52 4 Polynomials on Non-Balanced Convex Bodies

where .
 is a rotation of angle .α in .R
2 and with center the origin given by

.
(x, y) = (x cosα − y sinα, x sinα + y cosα),

for all .(x, y) ∈ R
2, is an isometry between .P(2D(α, α +β)) and .P(2D(β)). In fact,

the rotation .
 is a bijection from .D(α, α + β) onto .D(β). It can be easily seen that
the mapping Q is defined by the matrix

.

⎛

⎝
cos2 α sin2 α sin 2α

2
sin2 α cos2 α − sin 2α

2
− sin 2α sin 2α cos 2α

⎞

⎠ .

Hence, it suffices to study the geometry of .BD(β).

In this section, we are interested in studying the geometry of the unit sphere of
.P(2D(β)) where .β ≥ 0. In particular, we study different cases. The case when
.β ≥ π , the extreme cases when .β = π

4 , π
2 , 3π

4 and finally the remaining cases.

4.3.1 The Geometry of BD(β) When β ≥ π

As in the previous sections, we begin by giving an explicit formula for .‖ · ‖D(β)

when .β ≥ π .

Theorem 4.8 (Muñoz et al. [45]) Let .(a, b, c) ∈ R
3. If .β ≥ π , then

.‖(a, b, c)‖D(β) = 1

2

(
|a + b| +

√
(a − b)2 + c2

)
.

Moreover, the norm does not depend on the angle .β.

Proof Let .(a, b, c) ∈ R
3 and take .P(x, y) = ax2 + by2 + cxy. Since

.|P(−x,−y)| = |P(x, y)|, notice that the supremum of .|P | over the whole
unit disk is equal to the supremum of .|P | taken over .D(β). Hence, we can
calculate the supremum of .|P | over the whole unit disk in order to obtain the
desired result. The polynomial P restricted to the unit circle parametrized by
.{(cos θ, sin θ) : θ ∈ [0, 2π ]} is of the form

.f (θ) = P(cos θ, sin θ) = a cos2 θ + b sin2 θ + c sin cos θ

= a
1 + cos(2θ)

2
+ b

1 − cos(2θ)

2
+ c

sin(2θ)

2

= 1

2
[a + b + (a − b) cos(2θ) + c sin(2θ)]

for every .θ ∈ [0, 2π ]. Thus, it is easy to see that
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.‖(a, b, c)‖D(β) = sup{|f (θ)| : θ ∈ [0, 2π ]} = 1

2

(
|a + b| + ‖(a − b, c)‖�22

)

= 1

2

(
|a + b| +

√
(a − b)2 + c2

)
.

��
Remark 4.2 (Muñoz et al. [45]) By the proof of Theorem 4.8, notice that the case
for .β ≥ π is the same as the case for the space .�22, that is:

If .P(x, y) = ax2 + by2 + cxy where .(x, y) ∈ �22, then the norm of P over .�22 is
defined as

.‖P ‖�22
= sup{|P(x, y)| : ‖(x, y)‖�22

≤ 1}.

Notice that .‖P ‖�22
= ‖P ‖D(β) for .β ≥ π . Thus, .BD(β) = B�22

. This case for the

space .�22 has been done in a different way in [15].

The easy explicit formula for the norm allows us to simplify the calculations
and instead of using a projection onto a plane, we can give directly an explicit
parametrization of .SD(β). A sketch of the unit ball of .P(2D(β)) can be seen in
Fig. 4.4.

Theorem 4.9 (Muñoz et al. [45]) Let .β ≥ π . If we define

.f (a, b) = 2
√
1 + ab − |a + b|,

for all .(a, b) ∈ [−1, 1]2, then
(i) .SD(β) = graph(f ) ∪ graph(−f ).
(ii)

. ext
(
BD(β)

) =
{
±

(
a,−a,

√
1 − a2

)
: a ∈ [−1, 1]} ∪ {±(1, 1, 0)

}
.

Proof Part (i) of the proof is an easy consequence of solving c in terms of a and b

in the equation .1 = ‖(a, b, c)‖D(β) = 1
2

(
|a + b| + √

(a − b)2 + c2
)
. For part (ii),

let .a ∈ [−1, 1] and consider the segment that joins .(−1, 1) and .(a,−a) which has
the form .S = {(−1+ λ(a + 1),−1+ λ(−a + 1)) : λ ∈ [0, 1]}. If we restrict f (and
also .−f ) to S, then we have

.f (−1 + λ(a + 1),−1 + λ(−a + 1)) = 2λ
√
1 − a2,

where .λ ∈ [0, 1]. Notice that .f (−1+λ(a + 1),−1+λ(−a + 1)), where .λ ∈ [0, 1],
is a segment. Analogously, if we restrict f (and also .−f ) to the segment joining
.(1, 1) with the point .(a,−a), then we have also a segment. And this is true for every
.a ∈ [−1, 1]. Thus, the extreme points of .BD(β) are contained in the set
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Fig. 4.4 Unit ball of
.P(2D(β)) when .β ≥ π . The
extreme points of the unit ball
are drawn with a thicker line
and dots

.M = {(a,−a,±f (a,−a)) : a ∈ [−1, 1]} ∪ {±(1, 1, 0)}.

It is easy to prove that for every .p ∈ M , there exists a plane .� ⊂ R
3 such that

.� ∩ M = {p} and this concludes the proof. ��

4.3.2 The Geometry of BD(β) When β = π
4 , π

2 , 3π
4

We begin by giving an explicit formula of .‖ · ‖D(β).

Theorem 4.10 (Muñoz et al. [45]) For all .a, b, c ∈ R, we have that
.‖(a, b, c)‖D(π

4 )
, .‖(a, b, c)‖D(π

2 )
and .‖(a, b, c)‖

D
(
3π
4

) are given, respectively,

by

.

⎧
⎨

⎩

max
{
|a|, 1

2 |a + b + c|, 1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}
if c(a − b) ≥ 0,

max{|a|, 1
2 |a + b + c|} if c(a − b) ≤ 0,

max

{

|a|, |b|, 1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}

, and
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⎧
⎨

⎩

1
2

(
|a + b| + √

(a − b)2 + c2
)

if c(a − b) ≥ 0,

max
{
|a|, 1

2 |a + b − c|, 1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}
if c(a − b) ≤ 0.

In contrast with the previous case, we proceed as in other sections by projecting
.BD(π

4 )
, BD(π

2 )
and .B

D
(
3π
4

) onto the ab-plane. Once we have the projection, we

can give a parametrization of .SD(π
4 )

, SD(π
2 )

and .S
D

(
3π
4

). Let us begin with the

case .BD( π
4 ). To do so, let us define first the following sets

.A = {(a, b) : a ∈ [−1, 1], a < b ≤ γ1(a)}, . (4.1)

B = {(a, b) : a ∈ [−1, 1], γ2(a) ≤ b ≤ a}, (4.2)

where .γ1, .γ2 are functions defined by

.γ1(a) = 4 + a + 4
√
1 + a,

γ2(a) = −γ1(−a) = −4 + a − 4
√
1 − a,

where .a ∈ [−1, 1].
Theorem 4.11 (Muñoz et al. [45]) The projection of .BD(π

4 )
onto the ab-plane is

the set .{(a, b) : a ∈ [−1, 1], γ2(a) ≤ b ≤ γ1(a)}.
An approximate representation of the projection of .BD(π

4 )
onto the ab-plane can

be seen in Fig. 4.5.

Theorem 4.12 (Muñoz et al. [45]) Let A and B be defined as before Theorem 4.11
and let us define the mappings

.F1(a, b) =
{
2 − a − b if (a, b) ∈ A,

2
√

(1 − a)(1 − b) if (a, b) ∈ B,

and .F2(a, b) = −F1(−a,−b) for all .(a, b) ∈ πab

(
SD(π

4 )

)
. If

. =
{

(±1, b, c) ∈ R
2 : (±1, b) ∈ ∂πab

(
BD(π

4 )

)
, F2(±1, b) ≤ c ≤ F1(±1, b)

}

,

then

(i) .SD(π
4 )

= graph(F1) ∪ graph(F2) ∪ .
(i)

. ext
(
BD( π

4 )

)
=

{
±

(
t, 4 + t + 4

√
1 + t,−2 − 2t − 4

√
1 + t

)
: t ∈ [−1, 1]

}
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Fig. 4.5 Projection of .BD( π
4 ) onto the ab-plane

⋃ {
±

(
1, s,−2

√
2(1 + s)

)
: s ∈

[
1, 5 + 4

√
2
]}

⋃
{±(1, 1, 0)}.

A representation of the unit sphere of .P (
2D

(
π
4

))
appears in Fig. 4.6.

Now we turn our attention to the space .P (
2D

(
π
2

))
.

Theorem 4.13 (Muñoz et al. [45]) The projection of .BD( π
2 ) onto the ab-plane is

.B�2∞ .

Theorem 4.14 (Muñoz et al. [45]) If we define the mappings

.G1(a, b) = 2
√

(1 − a)(1 − b)

and
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Fig. 4.6 Unit ball of .P(2D(β)). The extreme points of the unit ball are drawn with a thicker line
and dots

.G2(a, b) = −f+(−a,−b) = −2
√

(1 + a)(1 + b),

for every .(a, b) ∈ B�2∞ and the set

.ϒ =
{
(a, b, c) ∈ R

3 : (a, b) ∈ ∂B�2∞ and G2(a, b) ≤ c ≤ G1(a, b)
}

,

then

(i) .SD(π
2 )

= graph(G1) ∪ graph(G2) ∪ ϒ .
(ii)

. ext
(
BD(π

2 )

)
=

{
±

(
1, t,−2

√
2(1 + t)

)
: t ∈ [−1, 1]

}

⋃ {
±

(
s, 1,−2

√
2(1 + s)

)
: s ∈ [−1, 1]

} ⋃
{±(1, 1, 0)}.

Figure 4.7 shows what the unit sphere of .P (
2D

(
π
2

))
looks like.

Due to difficult calculations, to prove that the projection of .B
D

(
3π
4

) onto the ab-

plane is .B�2∞ , we define the following sets: Let C, D and F be as in Fig. 4.8, namely
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Fig. 4.7 Unit ball of
.P (

2D
(

π
2

))
. The extreme

points of the unit ball are
drawn with a thicker line and
dots

Fig. 4.8 Projection of .B
D( 3π4 )

onto the ab-plane
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.C = {(a, b) : a ∈ [−1, 0], 0 < b ≤ δ(a)},
D = {(a, b) : a ∈ [−1, 1], −1 ≤ b ≤ −|a|},
F = [−1, 1]2\(C ∪ D),

where .δ(a) = −4 + a + 4
√
1 − a for .a ∈ [−1, 0]. Notice that .B�2∞ = C ∪ D ∪ F .

Theorem 4.15 (Muñoz et al. [45]) The projection of .B
D

(
3π
4

) onto the ab-plane is

.B�2∞ .

Theorem 4.16 (Muñoz et al. [45]) Let us define the mappings

.H1(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

2 + a + b if (a, b) ∈ C,

2
√

(1 + a)(1 + b) if (a, b) ∈ D,

2
√

(1 − a)(1 − b) if (a, b) ∈ F,

where C, D and F were defined before Theorem 4.15, and .H2(a, b) =
−H1(−a,−b) for all .(a, b) ∈ B�2∞ . If

.� = {±(−1, b, c) ∈ R
3 : − 1 ≤ b ≤ 1, 0 ≤ c ≤ H1(−1, b)},

then

(i) .S
D

(
3π
4

) = graph(H1) ∪ graph(H2) ∪ �.

(ii)

. ext
(
BD(3 π

4 )

)
=

{
±

(
t,−4 + t + 4

√
1 − t,−2 + 2t + 4

√
1 − t

)
: t ∈ [−1, 0]

}

⋃ {
±

(
s,−s, 2

√
1 − s2

)
: s ∈ [0, 1]

}

⋃ {
±

(
−1, r, 2

√
2(1 − r)

)
: r ∈

[
−5 + 4

√
2, 1

]}

⋃
{±(1, 1, 0)}.

Figure 4.9 shows two different points of view of .B
D

(
3π
4

).

4.3.3 The General Case of BD(β)

We have considered in Sects. 4.3.1 and 4.3.2, the cases of .P(2D(β)) when .β ≥
π and .β = π

4 , π
2 , 3π

4 . In this last segment we are interested in the geometry of
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Fig. 4.9 Two different perspectives of the unit ball of .P
(
2D

(
3π
4

))
. The extreme points of the

unit ball have been drawn with a thicker line and dots

.P(2D(β)) when .β ∈ (
0, π

4

)
, .β ∈ (

π
4 , π

2

)
, .β ∈

(
π
2 , 3π

4

)
, or .β ∈

(
3π
4 , π

)
. In fact,

it is easy to notice in the following results that the particular cases .β = π
4 , π

2 , 3π
4

are just the limit cases of the previous ranges of .β. To simplify the notation, we are
using N and M to denote .cos(2β) and .sin(2β), respectively. We begin by showing
an explicit formula for the norm in each one of these four ranges of .β.

Theorem 4.17 (Bernal et al. [6]) If .a, b, c ∈ R, then .‖(a, b, c)‖D(β) where .0 <

β < π
4 , π

4 < β < π
2 , π

2 < β < 3π
4 or .

3π
4 < β < π is given, respectively, by

.

⎧
⎪⎪⎨

⎪⎪⎩

max
{
|a|, 1

2 |(1 + M)a + (1 − M)b + cN | ,
1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}
,

(1)

max{|a|, 1
2 |(1 + M)a + (1 − M)b + cN |}, (2)

(1) if c(a − b) > 0 and tan(2β) >
c

a − b
,

(2) if

(

c(a − b) > 0 and tan(2β) ≤ c

a − b

)

or (c(a − b) ≤ 0) ,



4.3 Circular Sectors 61

⎧
⎪⎪⎨

⎪⎪⎩

max
{
|a|, 1

2 |(1 + M)a + (1 − M)b + cN | ,
1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}
,

(3)

max{|a|, 1
2 |(1 + M)a + (1 − M)b + cN |}, (4)

(3) if

(

c(a − b) < 0 and tan(2β) >
c

a − b

)

or (c(a − b) > 0) or (a = b) ,

(4) if

(

c(a − b) < 0 and tan(2β) ≤ c

a − b

)

or (c = 0) ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
|a + b| + √

(a − b)2 + c2
)

, (5)

max
{
|a|, 1

2 |(1 + M)a + (1 − M)b + cN | ,
1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}
,

(6)

(5) if

(

c(a − b) > 0 and tan(2β) >
c

a − b

)

or (c = 0) ,

(6) if

(

c(a − b) > 0 and tan(2β) ≤ c

a − b

)

or (c(a − b) < 0) or (a = b) ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
|a + b| + √

(a − b)2 + c2
)

, (7)

max
{
|a|, 1

2 |(1 + M)a + (1 − M)b + cN | ,
1
2

∣
∣
∣a + b + sign(c)

√
(a − b)2 + c2

∣
∣
∣

}
,

(8)

(7) if

(

c(a − b) < 0 and tan(2β) >
c

a − b

)

or (c(a − b) ≥ 0) ,

(8) if c(a − b) < 0 and tan(2β) ≤ c

a − b
.

Since we know an explicit formula of the norm, we proceed to show the projec-
tion of the unit ball onto the ab-plane which is used to obtain a parametrization of
the unit sphere.

We begin with the cases when .β ∈ (
0, π

4

)
and .β ∈ (

π
4 , π

2

)
, because its approach

is not the same as the other two cases. Let us define first the following functions
from .[−1, 1] to .R and sets in .R

2:

.γ1(a) = (1 + M)a + 2(2 + M) + 4
√

(1 + M)(1 + a)

1 − M
,

γ2(a) = −γ1(−a) = (1 + M)a − 2(2 + M) − 4
√

(1 + M)(1 − a)

1 − M
,
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Fig. 4.10 Sketch of the projection of .BD(β) onto the ab-plane with .β ∈ (0, π
2 ). On the left we

have the case .β = π
4 − 0.4. The b axis has been rescaled by a factor .0.2. On the right we have

represented the case .β = π
4 +0.4. The axis here are scaled. In both cases .h(β) = 5+3M+4

√
2(1+M)

1−M

δ(a) = (1 + M)a − 2M

1 − M
,

A = {(a, b) ∈ R
2 : a ∈ [−1, 1], δ(a) ≤ b ≤ γ1(a)},

B = {(a, b) ∈ R
2 : a ∈ [−1, 1], γ2(a) ≤ b ≤ δ(a)}.

The definition of these sets is to simplify the parametrization of the unit sphere.

Theorem 4.18 (Bernal et al. [6]) Let .β ∈ (
0, π

4

)∪(
π
4 , π

2

)
. The projection of .BD(β)

onto the ab-plane is the set .BD(β) = {(a, b) ∈ R
2 : a ∈ [−1, 1], γ2(a) ≤ b ≤

γ1(a)}. See Fig. 4.10 for a sketch of the projections.

The next result shows a parametrization of .SD(β) when .β ∈ (
0, π

4

) ∪ (
π
4 , π

2

)
.

Theorem 4.19 (Bernal et al. [6]) Let .β ∈ (
0, π

4

) ∪ (
π
4 , π

2

)
and let A and B be

defined as before Theorem 4.18. Define the mappings
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.F1(a, b) =
{

1
N

[2 − (1 + M)a − (1 − M)b] if (a, b) ∈ A,

2
√

(1 − a)(1 − b) if (a, b) ∈ B,

and .F2(a, b) = −F1(−a,−b) for all .(a, b) ∈ πab(BD(β)). If

.F =
{
(±1, b, c) ∈ R

2 : (±1, b) ∈ ∂πab(BD(β)), F2(±1, b) ≤ c ≤ F1(±1, b)
}

,

then

(i) .SD(β) = graph(F1) ∪ graph(F2) ∪ F . See Figs. 4.11 and 4.12 for a sketch of
.SD(β).

(ii) The set .ext(BD(β)) consists of the elements

.±
(

t,
(1 + M)t + 2(2 + M) + 4

√
(1 + M)(1 + t)

1 − M
,

1

N

[
−2(1 + M)(1 + t) − 4

√
(1 + M)(1 + t)

] )

for t ∈ [−1, 1],

. ±
(
1, s,−2

√
2(1 + s)

)
for s ∈

[
1 + 3M

1 − M
,
5 + 3M + 4

√
2(1 + M)

1 − M

]

,

and

. ± (1, 1, 0).
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Fig. 4.11 Unit ball of .PD(β) with .β = π/6
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Fig. 4.12 Unit ball of .PD(β)

with .β = 3π/8
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To finish the section, we show the projection of the unit ball, a parametrization of

the unit sphere and its extreme points when .β ∈
(

π
2 , 3π

4

)
and .β ∈

(
3π
4 , π

)
. Using

the same arguments as in the previous cases, we begin by defining the following sets
in .R

2:

.C =
{
(a, b) ∈ R

2 : a ∈ [−1, 1], b ≤ γ3(a) and b ≥ δ̂(a)
}

,

D =
{
(a, b) ∈ R

2 : a ∈ [−1, 1], b ≤ −a and b ≤ δ̂(a)
}

,

E = [−1, 1]2\(C ∪ D),

where

.γ3(a) = (1 + M)a − 2(2 + M) + 4
√

(1 + M)(1 − a)

1 − M
,

δ̂(a) = (1 + M)a + 2M

1 − M
.

Notice that .B�2∞ = C∪D∪E. The reason why we define these sets is just to simplify
the parametrization of the unit sphere.
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Fig. 4.13 Scaled pictures of the projections onto the ab-plane of .BD(β) with .β ∈
(

π
2 , 3π

4

)
∪

(
3π
4 , π

)
. On the left we depict the sets C, D and E for .β = π/4 − 0.1. On the right, we have C,

D and E for .β = π/4 + 0.1. In both cases, we draw the case .β = π/4 with a dashed line

Theorem 4.20 (Bernal et al. [6]) Let .β ∈
(

π
2 , 3π

4

)
∪

(
3π
4 , π

)
. The projection of

.BD(β) onto the ab-plane is .B�2∞ . See Fig. 4.13 for a better understanding of the
projection.

Theorem 4.21 (Bernal et al. [6]) Let .β ∈
(

π
2 , 3π

4

)
∪

(
3π
4 , π

)
and let .C, D and

E be the sets defined before Theorem 4.20. Define

.G1(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
N

[2 + (1 + M)a + (1 − M)b] if (a, b) ∈ C,

2
√

(1 + a)(1 + b) if (a, b) ∈ D,

2
√

(1 − a)(1 − b) if (a, b) ∈ E,

and .G2(a, b) = −G1(−a,−b) for all .(a, b) ∈ πab(BD(β)). Define also the set

.�G =
{
(1, b, c) ∈ R

2 : (1, b) ∈ ∂πab(BD(β)), 0 ≥ c ≥ G1(1, b)
}

⋃ {
(−1, b, c) ∈ R

2 : (−1, b) ∈ ∂πab(BD(β)), 0 ≤ c ≤ G1(−1, b)
}

.

We have

(a) .SD(β) = graph(G1) ∪ graph(G2) ∪ �G. See Fig. 4.14 for a representation of
the unit sphere.

(b) The set .ext(BD(β)) consists of the elements
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Fig. 4.14 Unit ball of .PD(β) with .β = 3π/4 − 0.5 and unit ball of .PD(β) with .β = 3π/4 + 0.5

.±
(

t,
(1 + M)t − 2(2 + M) + 4

√
(1 + M)(1 − t)

1 − M
,

− 1

N

[
2(1 + M)(t − 1) + 4

√
(1 + M)(1 − t)

] )

for t ∈ [−1,−M] ,

. ±
(
s,−s, 2

√
1 − s2

)
for s ∈ [−M, 1] ,

. ±
(
−1, r, 2

√
2(1 − r)

)
for r ∈

[−5 − 3M + 4
√
2(1 + M)

1 − M
, 1

]

,

and

. ± (1, 1, 0).

Remark 4.3 To finish this chapter, notice that the projections obtained, as well as
the unit spheres, when the angle .β varies in the interval .(0,∞) are continuous
transformations since the norm is a continuous operator. This explains in an informal
way why the projections and unit spheres are so similar when the angles are close.



Chapter 5
Sequence Banach Spaces

Abstract This chapter is dedicated to the study of the geometry of polynomial
spaces on .�

q
p for certain values of .p, q, presenting all known results for these classes

of spaces.

5.1 The Space �21

Let .P(x, y) = ax2 +by2 + cxy be a 2-homogeneous polynomial where .(x, y) ∈ �21
and .�21 is considered over the real or complex numbers. The supremum norm of P

over .�1 is denoted by

.‖P‖�21
= sup{|P(x, y)| : ‖(x, y)‖�21

≤ 1}.

The space of 2-homogeneous polynomials over .�21 endowed with the norm .‖ · ‖�21

is denoted by .P (
2�21

)
. If .�21 is defined over the real numbers, then (using the same

arguments as in the previous chapters) the adaptation of the mapping T defined in
Sect. 2.1 helps us to give a visual representation of the unit ball of the space .P (

2�21

)

on .R
3 endowed with the norm .‖ · ‖P(

2�21

) defined by

.‖(a, b, c)‖P(2�21)
= ‖ax2 + by2 + cxy‖�21

for every .(a, b, c) ∈ R
3. We denote the unit ball and the unit sphere of .(R3, ‖ ·

‖P(
2�21

)) by .BP(
2�21

) and .SP(
2�21

), respectively.
In this section we are using a different approach. Until now, we have given an

explicit formula for the norm of the polynomial. However, in this case, the problem
can be solved using a more direct approach. We can find directly the projection and
parametrization of the unit sphere in the real case as well as the extreme points of
the unit ball. In the complex case we are going to show a parametrization of the unit
sphere as well as the extreme points when c is a pure imaginary number.

In the real case let us consider the following sets

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Ferrer et al., Geometry of the Unit Sphere in Polynomial Spaces, SpringerBriefs in
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Fig. 5.1 Projection of .BP(2�21)
onto the ab-plane and where .�21 is defined over the real numbers

.A =
{
(a, b) ∈ R

2 : b < −a
}

,

B =
{
(a, b) ∈ R

2 : b ≥ −a
}

.

Notice that .B�2∞ = A ∪ B.

Theorem 5.1 (Choi et al. [16]) Let .�21 be defined over the real numbers. The
projection of .BP(

2�21

) onto the ab-plane is .B�2∞ .

Figure 5.1 shows a representation of the projection of the unit ball onto the ab-
plane.

Notice that we distinguish between the sets A and B. The explanation is given in
the following result that gives a parametrization of the unit ball. It is important to
mention that the result comes from Y. S. Choi et al. [16], but in the sense that they
gave an implicit characterization of when a polynomial belongs to the unit ball and,
furthermore, when such polynomial is an extreme polynomial of the unit ball. In this
survey we go further by giving a parametrization of the unit ball and by showing the
explicit forms of the extreme polynomials of the unit ball. We omit the proofs of
such constructions since they are easy to obtain from [16].
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Theorem 5.2 Let .�21 be defined over the real or complex numbers and .P(x, y) =
ax2 + by2 + cxy be a 2-homogeneous polynomial in .P (

2�21

)
. If .‖P ‖�21

≤ 1, then
.|a| ≤ 1, .|b| ≤ 1 and .|c| ≤ 4.

Assume that .�21 is defined over the real numbers, and let us define

.F1(a, b) =
{
2
(
1 + √

(1 + a)(1 + b)
)

if (a, b) ∈ A,

2
(
1 + √

(1 − a)(1 − b)
)

if (a, b) ∈ B,

.F2(a, b) = −F1(a, b), and

.��21
= {(a, b, c) : ((|a| = 1 and |b| ≤ 1) or (|b| = 1 and |a| ≤ 1))& (|c| ≤ 2)} .

Then,

(i) .SP(
2�21

) = graph(F1) ∪ graph(F2) ∪ ��21
(see Fig. 5.2).

(ii)

. ext
(
BP(

2�21

)
)

=
{(√

4|t | − t2

2
,−

√
4|t | − t2

2
, t

)

: |t | ∈ (2, 4]
}

⋃
{(

−
√
4|t | − t2

2
,+

√
4|t | − t2

2
, t

)

: |t | ∈ (2, 4]
}

⋃
{(±1,±1,±2)}.

Assume now that .�21 is defined over the complex numbers, .a, b ∈ R and c is a
pure imaginary number. We have the following results:

(a) If .|c| ≤ 2, then .‖P ‖�21
= 1 if, and only if, .|a| = 1 or .|b| = 1.

(b) If .2 < |c| ≤ 4, then

.‖P ‖�21
= 1 if, and only if, 4|c| − |c|2 = 4(|a + b| + ab).

Remark 5.1 Notice that we could have also given a parametrization of the unit
sphere in Theorem 5.2 in the complex case when c is a pure imaginary number
(which would be the same as in the real case). The reason why we have not done
this is that the assumption that a and b are real numbers can be avoided since the
same result is also true when a and b are complex numbers (to see this simply rotate
the complex variables x and y).

Furthermore, due to difficult calculations in [16], we do not know what happens
when the real part of c is different than zero.
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Fig. 5.2 .SP(
2�21

). The

extreme points of .BP(
2�21

) are
drawn with a thicker line and
dots

5.2 The Space �2∞

Assume that .�2∞ is defined over the real numbers or complex numbers. Let
.P(x, y) = ax2 + by2 + cxy be a 2-homogeneous polynomial, where .(a, b, c) ∈ R

3

and .(x, y) ∈ �2∞. The supremum norm of P over .�2∞ is defined by

.‖P ‖�2∞ = sup{|P(x, y)| : ‖(x, y)‖�2∞ ≤ 1}.

The space of 2-homogeneous polynomials over .�2∞ with the supremum norm is
denoted by .P (

2�2∞
)
. The mapping T defined in Sect. 2.1 helps us to give a visual

representation of the unit ball of the space .P (
2�2∞

)
on .R

3 endowed with the norm
.‖ · ‖P(2�2∞) defined by

.‖(a, b, c)‖P(2�2∞) := ‖ax2 + by2 + cxy‖�2∞

for every .(a, b, c) ∈ R
3. We denote the unit ball and the unit sphere of .(R3, ‖ ·

‖P(2�2∞)) by .BP(2�2∞) and .SP(2�2∞), respectively.
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Notice that the case when .�2∞ is defined over the complex numbers has already
been tackled in Sect. 2.2. Thus, assume that .�2∞ is defined over .R.

Remark 5.2 The case of .�2∞ is a simple consequence of the case .�21. The reason why
comes from the following approach:

Let us define the function Q on .R
2 by

.Q(x, y) = 1

2
(x − y, x + y).

Notice that this function Q is just the rotation of angle .
π
4 on .R

2 scaled by .

√
2
2 and

it transforms .P (
2�2∞

)
isometrically onto .P (

2�21

)
. Therefore, if .P ∈ P (

2�2∞
)
, then

.P ◦Q ∈ P (
2�21

)
. Using this transformation in Sect. 5.1, we can give the projection of

.BP(2�2∞) onto the ab-plane, the parametrization of .SP(2�2∞) and its extreme points.

The reader can check easily that: if .P(x, y) = ax2 + by2 + cxy, then

.P ◦ Q(x, y) = 1

4
P(x − y, x + y)

= 1

4
(a + b + c)x2 + 1

4
(a + b − c)y2 + 1

2
(b − a)xy.

Using the same procedure from the space .�21, we begin by showing the projection
of .BP(2�2∞) onto the ab-plane. Let us define the following sets in .R

2:

.A ≡ Triangle of vertices (−1, 1), (0, 1),

(
−1

2
,
1

2

)
.

B ≡ Triangle of vertices (−1, 1),

(
−1

2
,
1

2

)
, (−1, 0).

C ≡ Square of vertices (0, 1), (1, 0), (0,−1), (−1, 0).

D ≡ Triangle of vertices (1, 0), (1,−1),

(
1

2
,−1

2

)
.

E ≡ Triangle of vertices (1,−1), (0,−1),

(
1

2
,−1

2

)
.

A sketch of A, B, C, D and E can be found in Fig. 5.3.

Theorem 5.3 (Jiménez et al. [35]) The projection of .BP(2�2∞) onto the ac-plane is
.A ∪ B ∪ C ∪ D ∪ E.

Finally, we show a parametrization of .SP(2�2∞) in .R
3 as well as the extreme

points. See Fig. 5.4 for a sketch of .BP(2�2∞). Notice that .BP(2�2∞)is just a scaled
rotation of .BP(

2�21

).
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Fig. 5.3 Projection of .BP(2�2∞) onto the ac-plane

Theorem 5.4 (Choi and Kim [15]; Jiménez et al. [35]) Let G be the mapping
defined on .A ∪ B ∪ C ∪ D ∪ E by

.G(a, c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2
√

a(c − 1) if (a, c) ∈ A,

2
√

c(a + 1) if (a, c) ∈ B,

1 − |a + c| if (a, c) ∈ C,

2
√

c(a − 1) if (a, c) ∈ D,

2
√

a(c + 1) if (a, c) ∈ E.

We have

(i) .SP(2�2∞) = graph(G) ∪ graph(−G).
(ii)

. ext
(
BP(2�2∞)

)
=

{
±

(
−t, t,±2

√
t (1 − t)

)
: t ∈

[
1

2
, 1

]}

⋃
{± (1, 0, 0)}

⋃
{± (0, 1, 0)}.
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Fig. 5.4 Unit ball .P(2�2∞). The extreme points are drawn with a thicker line and dots

5.3 The Space �2p when 1 < p < 2

Let .1 < p < 2 and let .P(x, y) = ax2+by2+cxy be a 2-homogeneous polynomial
such that .(x, y) ∈ �2p where .�2p is defined over .R. We define the norm of P over .�2p
as

.‖P ‖�2p
= sup{|P(x, y)| : ‖(x, y)‖�2p

≤ 1}.

Let .P
(
2�2p

)
denote the space of all 2-homogeneous polynomials in .�2p endowed

with the norm .‖ · ‖�2p
. Just like in the previous sections we can identify the space

.P
(
2�2p

)
with .R

3 endowed with the norm

.‖(a, b, c)‖P(
2�2p

) = ‖ax2 + by2 + cxy‖�2p
,
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for every .(a, b, c) ∈ R
3, via the mapping T from Sect. 2.1. Therefore, we can give

a representation in .R
3 of the unit ball of .P

(
2�2p

)
. Let us denote by .BP

(
2�2p

) and

.SP
(
2�2p

) the unit ball and the unit sphere of .(R3, ‖ · ‖P(
2�2p

)), respectively.

Now, in this case the approach is very different to the previous ones. In this
section we are going to begin by providing the extreme points of the unit ball of

.P
(
2�2p

)
. Interestingly enough this can be used to find a parametrization of the

unit sphere by noticing that by definition every point of the unit sphere that is not
an extreme point lies in the interior of the segment that joins two extreme points.
Therefore we only need to find the segments of the unit sphere that join two extreme
points.

Proposition 5.1 (Grecu [26]) If .1 < p < 2, then the 2-homogeneous polynomials

.x2 ± y2 are extreme points of the unit ball of .P
(
2�2p

)
.

Proposition 5.2 (Grecu [26]) Let .1 < p < 2 and .α, β ≥ 0 with .αp + βp = 1.
The 2-homogeneous polynomials .±P with .P(x, y) = a(x2 − y2) + cxy where

.a = αp−βp

α2+β2 and .c = 2αp−1β+αβp−1

α2+β2 have norm one and are extreme points of the

unit ball of .P
(
2�2p

)
. Furthermore, .±(α, β) are the only points where P takes the

value 1 and .±(−β, α) are the only points where P takes the value .−1.

Proposition 5.3 (Grecu [26]) Let .1 < p < 2 and .α, β ≥ 0 whith .αp + βp = 1
and .α �= β. The 2-homogeneous polynomial .P(x, y) = a(x2 + y2) + cxy where

.a = αp−βp

α2−β2 and .c = 2αβp−1−αp−1β

α2−β2 has norm one and is an extreme point of the unit

ball of .P
(
2�2p

)
. Furthermore, the only points where P takes the value 1 are .(α, β)

and .(β, α).

Proposition 5.4 (Grecu [26]) Let .1 < p < 2. The 2-homogeneous polynomial

.P(x, y) = 2
2

p−2 p(x2 + y2) + 2
2

p−1 (2− p)xy has norm one and is an extreme point

of the unit ball of .P
(
2�2p

)
. Furthermore, the only point where P takes the value 1

is .(2− 1
p , 2− 1

p ).

Proposition 5.5 (Grecu [26]) Let .1 < p < 2 and .α, β ≥ 0 with .αp + βp = 1 and
.α �= β. The 2-homogeneous polynomials .±P with .P(x, y) = a(x2 + y2) ± cxy

where .a = αp−βp

α2−β2 and .c = 2αβp−1−αp−1β

α2−β2 have norm one and are extreme points of

the unit ball of .P
(
2�2p

)
. Furthermore, the only points where P takes the value 1 are

.±(α,±β).

The following result shows the form of the polynomials that belong to the line
segments in the unit sphere that join two extreme points, and although the result
itself does not appear in [26], it can be deduced from the proofs.
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Theorem 5.5 (Grecu [26]) Let .1 < p < 2 and P be a polynomial that belongs

to the unit sphere of .P
(
2�2p

)
. We have that P lies in the segment that joins two

extreme points .P1 and .P2 of the unit ball of .P
(
2�2p

)
, where the pair .(P1, P2) is of

the following forms

(i)

.P1(x, y) =αp − βp

α2 + β2
(x2 − y2) + 2

αβp−1 + αp−1β

α2 + β2
xy,

P2(x, y) =αp − βp

α2 − β2
(x2 + y2) + 2

αβp−1 − αp−1β

α2 − β2
xy;

(ii)

.P1(x, y) =αp − βp

α2 + β2 (x2 − y2) − 2
αβp−1 + αp−1β

α2 + β2 xy,

P2(x, y) =αp − βp

α2 − β2 (x2 + y2) − 2
αβp−1 − αp−1β

α2 − β2 xy;

(iii)

.P1(x, y) = − αp − βp

α2 + β2 (x2 − y2) + 2
αβp−1 + αp−1β

α2 + β2 xy,

P2(x, y) = − αp − βp

α2 − β2
(x2 + y2) + 2

αβp−1 − αp−1β

α2 − β2
xy;

(iv)

.P1(x, y) = − αp − βp

α2 + β2 (x2 − y2) − 2
αβp−1 + αp−1β

α2 + β2 xy,

P2(x, y) = − αp − βp

α2 − β2 (x2 + y2) − 2
αβp−1 − αp−1β

α2 − β2 xy;

where .α, β ≥ 0 satisfy that .αp + βp = 1.

We can use Theorem 5.5 to give a sketch of one of these unit spheres which can
be found in Fig. 5.5.

Finally, we provide a characterization of the extreme points of the unit ball of

.P
(
2�2p

)
.
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Fig. 5.5 Unit ball of
.P(2�23/2)

Theorem 5.6 (Grecu [26]) Let .1 < p < 2. A 2-homogeneous polynomial of unit

norm .P(x, y) = ax2 + by2 + cxy is an extreme point of the unit ball of .P
(
2�2p

)
if,

and only if,

(i) .a + b = 0, or

(ii) .a = b ≥ 2
2

p−2 p.

5.4 The Space �2p when 2 < p < ∞

In this section we consider the space of 2-homogeneous polynomials on .�2p defined
over .R with .2 < p < ∞. Following the same techniques as in the case of the
space .�2p with .1 < p < 2, we begin by showing the extreme points of the unit

ball of .P
(
2�2p

)
. Then we find all the polynomials that belong to the unit sphere

by providing the line segments contained in the unit sphere that join two extreme
points, and finally we show a characterization of when a polynomial in the unit ball

of .P
(
2�2p

)
is an extreme polynomial.
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Proposition 5.6 (Grecu [26]) Let .2 < p < ∞. A 2-homogeneous polynomial

.P(x, y) = ax2 + by2 is an extreme point of the unit ball .P
(
2�2p

)
if, and only

if, .ab ≥ 0 and .|a| p
p−2 + |b| p

p−2 = 1 or .ab < 0 and .P(x, y) = ±(x2 − y2).

Notice that Proposition 5.6 can be used to find a projection onto the ac-plane as
it is shown in the following result which does not appear in [26]. Let us consider the
sets

.A =
{

(a, c) ∈ R
2 : a ∈ [0, 1], c ∈

[

0,
(
1 − a

p
p−2

) p−2
p

]}

⋃
{

(a, c) ∈ R
2 : a ∈ [−1, 0], c ∈

[

−
(
1 − a

p
p−2

) p−2
p

, 0

]}

,

B =
{
(a, c) ∈ R

2 : a ∈ [0, 1], b ∈ [−1, 0]
}

⋃ {
(a, c) ∈ R

2 : a ∈ [−1, 0], b ∈ [0, 1]
}

.

Corollary 5.1 The projection of .BP
(
2�2p

) onto the ac-plane is .A ∪ B. A sketch can

be found in Fig. 5.6.

Fig. 5.6 Sketch of the projection of the unit ball of .P(2�25) onto the ac-plane
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Proposition 5.7 (Grecu [26]) Let .2 < p < ∞ and .α ≥ β ≥ 0 with .αp + βp = 1.
The 2-homogeneous polynomial .P(x, y) = a(x2 − y2) + cxy where .a = αp−βp

α2+β2

and .c = 2αβ
αp−2+βp−2

α2+β2 has norm one and is an extreme point of the unit ball of

.P
(
2�2p

)
. Furthermore, .±(α, β) are the only points where P takes the value 1.

Proposition 5.8 (Grecu [26]) Let .2 < p < ∞ and .α, β ≥ 0 such that .αp + βp =
1 and .a = αp−βp

α+β2 , .c = 2αβ
αp−2+βp−2

α2+β2 . The polynomials .±P where .P(x, y) =
a(x2 − y2) + cxy are extreme points of the unit ball of .P

(
2�2p

)
with .P(α, β) =

−P(−β, α) = 1.

Theorem 5.7 (Grecu [26]) Let .2 < p < ∞ and P be a polynomial of the unit

sphere of .P
(
2�2p

)
. We have that P lies in the segment that joins two extreme points

.P1 and .P2 of the unit ball of .P
(
2�2p

)
, where the pair .(P1, P2) is of the following

forms

(i)

.P1(x, y) =αp − βp

α2 − β2 (x2 + y2) + 2αβ
αp−2 + βp−2

α2 + β2 xy,

P2(x, y) =αp−2x2 + βp−2y2;

(ii)

.P1(x, y) = − αp − βp

α2 − β2 (x2 + y2) − 2αβ
αp−2 + βp−2

α2 + β2 xy,

P2(x, y) =βp−2x2 + αp−2y2;

(iii)

.P1(x, y) =αp − βp

α2 − β2
(x2 + y2) + 2αβ

αp−2 + βp−2

α2 + β2
xy,

P2(x, y) = − βp−2x2 − αp−2y2;

(iv)

.P1(x, y) = − αp − βp

α2 − β2
(x2 + y2) − 2αβ

αp−2 + βp−2

α2 + β2
xy,

P2(x, y) = − αp−2x2 − βp−2y2.

where .α, β ≥ 0 satisfy that .αp + βp = 1 (Fig. 5.7).
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Fig. 5.7 Sketch of the unit sphere of .P(2�25)

By using Theorem 5.7, we can give a visual representation of the unit sphere of

.P
(
2�2p

)
. A sketch of one of these unit spheres can be found in Fig. 5.7.

Theorem 5.8 (Grecu [26]) Let .2 < p < ∞. A 2-homogeneous polynomial of the

unit ball of .P
(
2�2p

)
of the form .P(x, y) = ax2 + by2 + cxy is an extreme point of

the unit ball of .P
(
2�2p

)
if, and only if,

(i) .a + b = 0, or

(ii) .c = 0 and .ab ≥ 0 with .|a| p
p−2 + |b| p

p−2 = 1.

5.5 The Space c0

Notice that until now all the vector spaces that we have considered have been finite
dimensional. However, in this section, we focus our attention for the first time on
the infinite dimensional case. To do so, we begin by defining an n-homogeneous
polynomial over an arbitrary normed space.
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Let E be a normed space defined over .K (where .K = R or .C). For every .n ∈ N,
a continuous n-homogeneous polynomial on E is a mapping defined on E that takes
values on .K such that there exists a continuous symmetric n-linear form L from .En

to .K such that .P(x) = L(x, . . . , x), for every .x ∈ E. Furthermore, L is unique
by the Polarization Formula (see, for instance, [19]) and we call L the polar of
P . At first glance this definition of a homogeneous polynomial of degree n on a
normed space is a bit puzzling but, on the one hand, it is technically very efficient
and, on the other, it extends the classical notion of an n-homogeneous polynomial
in several variables in a very natural way since it is a very well-known result in the
theory of polynomials that a continuous mapping .P : E → K is an n-homogeneous
polynomial on a real or complex normed space E, if and only if the restriction of P

to any finite dimensional subspace F of E is a homogeneous polynomial of degree
n in real or complex variables with respect to the coefficients of any basis of F .

Regarding the continuity of polynomials on normed spaces we have to say that
all homogeneous polynomials on a finite dimensional Banach are continuous. This
is far from being true for polynomials on infinite dimensional normed spaces. As a
matter of fact the set of noncontinuous homogeneous polynomials on any infinite
dimensional normed space is not only infinite, but also has an enormous size in
terms of algebraic genericity (see, for instance, [21] and [22]). In any case, another
conventional result in the theory of polynomials on normed spaces states that the
n-homogeneous polynomial .P : E → K on the normed space E is continuous if
and only if P is bounded on the unit ball of E. This allows us to define the following
norm in the space of n-homogeneous polynomials on E:

.‖P ‖E = sup{|P(x)| : ‖x‖ ≤ 1}.

We denote this normed space by .P(nE) and also we denote the unit ball of .P(nE)

by .BP(nE).
In this section, we provide some insight regarding the extreme polynomials of

.BP(nc0). In particular, we are interested in studying when a homogenous polynomial
defined on the infinite dimensional Banach space .c0 that takes values over .C or .R is
an extreme polynomial of the unit ball.

Theorem 5.9 (Choi and Kim [14]) Assume that .c0 is defined over .C. Let
.P(x) = ∑

i1≤···≤in
ai1,...,inxi1 · · · xin ∈ P(nc0) be such that .‖P ‖c0 = 1 and

.
∑

i1≤···≤in
|ai1,...,in | = 1. We have that P is an extreme polynomial of .BP(nc0) if, and

only if, P is a monomial.

Proof Firstly, we will prove that if P is an extreme polynomial of the unit ball of
.P(nc0), then P is a monomial. By way of contradiction, assume that P is not a
monomial. We will show that there exist Q and R in .SP(nc0) such that .P = 1

2 (Q +
R). Since P is not a monomial, there exist .j1 ≤ · · · ≤ jn and .k1 ≤ · · · ≤ kn with
.(j1, . . . , jn) �= (k1, . . . , kn) such that .0 < |aj1,...,jn | < 1 and .0 < |ak1,...,kn | < 1.
Choose .ε > 0 such that .0 < |aj1,...,jn | ± ε < 1 and .0 < |ak1,...,kn | ± ε < 1, and let
us define



5.5 The Space c0 81

.Q(x) =
∑

i1≤···≤in

bi1,...,inxi1 · · · xin

and

.R(x) =
∑

i1≤···≤in

ci1,...,inxi1 · · · xin,

where .bj1,...,jn = aj1,...,jn − sign(aj1,...,jn)ε, .bk1,...,kn = ak1,...,kn + sign(ak1,...,kn)ε,
.cj1,...,jn = aj1,...,jn + sign(aj1,...,jn)ε, .ck1,...,kn = ak1,...,kn − sign(ak1,...,kn)ε and
.bi1,...,in = ci1,...,in = ai1,...,in for any other .i1 ≤ · · · ≤ in with .(j1, . . . , jn) �=
(i1, . . . , in) �= (k1, . . . , kn). Observe that here .sign(z) = z/|z| for every .z ∈
C \ {0}, that is, .sign(z) = eiθ where .θ is an argument for z. By construction, it
is straightforward that .Q �= R, .‖Q‖c0 = ‖R‖c0 = 1 and .P = 1

2 (Q + R), which is
a contradiction.

Finally, assume that P is a monomial. Without loss of generality, we can assume

that .P(x) = xi1 · · · xin . Fix .ε > 0 and let .δ = ε2

3 . We will prove that P is in fact a
strong extreme polynomial (that is, for every .ε > 0, there exists .δ > 0 such that if
.‖P ±Q‖c0 ≤ 1+δ for some polynomial Q, then .‖Q‖c0 ≤ ε). If .‖P ±Q‖c0 ≤ 1+δ

for some polynomial Q then, by the maximum modulus theorem, we have that

.‖P ± Q‖c0 = sup{|xi1 · · · xin ± Q(x)| : x = (xm)m∈N ∈ c0, with ‖x‖c0 ≤ 1

and |xi1 | = · · · = |xin | = 1}

and

.‖Q‖c0 = sup{|Q(x)| : x = (xm)m∈N ∈ c0, with ‖x‖c0 ≤ 1

and |xi1 | = · · · = |xin | = 1}.

Thus, by Choi et al. [16, lemma 2.1], notice that .‖Q‖c0 ≤ ε. It is easy to see that
every strong extreme point is an extreme point and this concludes the proof. �

If we just focus our attention on 2-homogeneous polynomials, then we can find
some relations with other Banach spaces such as the finite dimensional space .�k∞.

Theorem 5.10 (Choi and Kim [14]) Identifying .�k∞ with the subspace of .c0

generated by .en1 , . . . , enk
, we have that .ext

(
BP(2c0)

) ∩ P (
2�k∞

) ⊂ ext
(
BP(

2�k∞
)
)
.

Furthermore, if .c0 is defined over .C, then .ext
(
BP(

2�k∞
)
)

⊂ ext
(
BP(2c0)

)
.

Remark 5.3 Unfortunately, we do not have yet a characterization of the extreme
points of .BP(2�k∞) in the complex case.
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In the real case, we do not know also if .ext
(
BP(

2�k∞
)
)
is a subset of .ext

(
BP(2c0)

)
,

except for .k = 2 (Sect. 5.2) since it is shown in [14] (see also [15, section 4]) that

.ext
(
BP(2�2∞)

)
⊂ ext

(
BP(2c0)

)
.

5.6 The Space �1

In Sect. 5.5, we studied several cases of when a polynomial in the infinite dimen-
sional space .c0 that has norm one is an extreme polynomial of the unit ball. In this
section, we study similar results but considering the infinite dimensional space .�1
instead of .c0.

The following results show how to obtain extreme polynomials in .BP(2�1) by
using extreme polynomials in .BP(

2�21

) (see Sect. 5.1) independently of the field .K ∈
{R,C}.

For every .i < j and every .P ∈ P(2�1), let us define .Pij (x, y) = P(xei +
yej ). It is easy to see that .Pij ∈ P(2�21). The following result guarantees when the
polynomial P that defines the polynomial .Pij is an extreme polynomial.

Theorem 5.11 (Choi et al. [16]) Let .P ∈ BP(2�1). If .Pij ∈ ext
(
BP(

2�21

)
)
for every

.i < j , then .P ∈ ext
(
BP(2�1)

)
.

Proof Assume that there exists .Q ∈ P(2�1) of the form .Q(x) = ∑
i≤j bij xixj

such that .‖P ±Q‖�1 = 1. Clearly, we have .‖Pij ±Qij‖�21
≤ 1 for all .i < j . Hence,

since .Pij is an extreme polynomial of the unit ball of .P(2�21), we have that .Qij = 0
for any .i < j , which implies that Q is the zero polynomial. �
Remark 5.4 Using Theorem 5.11 and [24, theorem 2.1], it follows that every
polynomial of the form

.P(x) = a

∞∑

i=1

x2
i + b

∑

i<j

xixj

where .|a| = 1 and .|b| = 2 is an extreme polynomial of .BP(2�1).

Let A and B be disjoint subsets of .N and take .P(x, y) = ax2 + by2 + cxy ∈
P (

2�21

)
, where .a, b, c ∈ K. Take .(ai) ∈ K

N such that .|a1| = 1, and let us define

.P((xi)i∈N) = P

(
∑

i∈A

aixi,
∑

i∈B

aixI

)

.

It is easy to prove that .‖P ‖�21
= ‖P ‖�1 .
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Theorem 5.12 (Choi et al. [16]) If A and B form a partition of .N, then .P ∈
ext

(
BP(

2�21

)
)
if, and only if, .P ∈ ext

(
BP(2�1)

)
.

Proof Assume first that .P is an extreme polynomial of .BP(2�1) but P is not an

extreme point of .BP(
2�21

). Then, there exist Q and R in the unit ball of .P (
2�21

)
with

.Q �= R such that .P = 1
2 (Q + R). Hence, .P = 1

2 (Q + R), where clearly .Q

.R are distinct polynomials of the unit ball of .P (
2�1

)
. Thus, .P is not an extreme

polynomial of .BP(2�1), which is a contradiction.

Suppose now that .P ∈ ext
(
BP(

2�21

)
)
. Say .P(x, y) = ax2 + by2 + cxy. First,

assume that there exists .x ∈ K with .|x| = 1 such that .|P(x, 0)| = 1, then .|a| = 1
(the same can be said if .|P(0, x)| = 1 but in this case .|b| = 1). Hence, since

.P ∈ ext
(
BP(

2�21

)
)
, by Theorem 5.2 (ii), we have that .|b| = 1 and .|c| = 2.

Therefore, by Theorem 5.11, we have that .P ∈ ext
(
BP(2�1)

)
. Thus, assume without

loss of generality that there exist .x0, y0 ∈ K \ {0} with .|x0| + |y0| = 1 such that
.|P(x0, y0)| = 1.

By way of contradiction, suppose that there exist distinct .Q and .R in .BP(2�1)

such that .P = 1
2 (Q + R). Let us decompose .Q and .R into .Q = P + S and

.R = P − S, where .S((xi)i∈N) = ∑
i≤j bij xixj ∈ P(2�1) with .bij ∈ K for every

.i ≤ j . The latter can be done by construction of .Q and .R.
We will prove that .bkk = bll = bkl = 0 for any .k ∈ A and .l ∈ B, or .l ∈ A and

.k ∈ B. Assume that .k ∈ A and .l ∈ B (the following reasoning can be applied also
in the case when .l ∈ A and .k ∈ B). Take .α = sign(ak) and .β = sign(al). Then,

since .P ∈ ext
(
BP(

2�21

)
)
and

.‖P(xk, xl) ± (α2bkkx
2
k + β2bllx

2
l + αβbklxkxl)‖�21

= sup{|(P ± S)(αxkek + βxlel)| : x0, y0 ∈ K \ {0} with |x0| + |y0| = 1} ≤ 1,

we have that .bkk = bll = bkl = 0.
Now take .k, l ∈ A with .k < l and fix .m ∈ B. Let us take .xk, xl ∈ K \ {0} such

that .x0 = xk +xl and .|x0| = |xk|+|xl |, and let us define .α = sign(ak), .β = sign(al)

and .γ = sign(am). Then,

.1 ≥ |(P ± S)(αxkek + βxlel + γy0em)|
= |P(αxkek + βxlel + γy0em) ± (αβbklxkxl)|
= |P(x0, y0) ± (αβbklxkxl)|.

Hence, .bkl = 0 for any .k, l ∈ A with .k < l. Since the above can also be applied in
the case when .k, l ∈ B, it follows that .S = 0 and the proof is complete. �
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5.7 The Space �p when p > 2

To finish this chapter of polynomials defined over sequence Banach spaces, we
analyze when a polynomial defined over .�p when .p > 2 is an extreme polynomial
of .BP(2�p). In particular, we will study when a diagonal polynomial is an extreme

point of the unit ball of .P (
2�p

)
.

Theorem 5.13 (Grecu [26]) If .p > 2 and .(αn)n∈N ∈ �p/(p−2) has unit norm with
all .αn ≥ 0 or all .αn ≤ 0, then .P(x) = ∑

n∈N αnx
2
n is an extreme point of .B(P(2�p)).

Proof Let .(αn)n∈N ∈ �p/(p−2) be with unit norm and all .αn ≥ 0. Notice that if we
prove the result for all .αn ≥ 0, then we clearly have the case when all .αn ≤ 0.

Firstly, the polynomial .P(x) = ∑
n∈N αnx

2
n is in the unit sphere of .P(2�p).

Indeed, clearly we have that .α =
(
α
1/(p−2)
n

)

n∈N has unit norm in .�p and

.P(α) =
∑

n∈N
αnα

2/(p−2)
n =

∑

n∈N
α

p/(p−2)
n = 1.

Furthermore, by Holder’s inequality,

.|P(x)| ≤
(

∑

n∈N
|αn|p/(p−2)

)(p−2)/p (
∑

n∈N
(x2

n)p/2

)2/p

= ‖x‖�p .

Hence, .‖P ‖�p = 1.
Now suppose that there exist polynomials .P1 and .P2 with unit norm in .P(2�p)

such that .P = 1
2 (P1 + P2). It is enough to show that .P = P1 = P2. Let .Pk =

∑
n∈N α

(k)
n x2

n + ∑
1≤n<m α

(k)
nmxnxm with .k = 1, 2. Fix .r ∈ N and take .xn = 0 for

every .n > r , then

.

∣
∣∣∣∣∣

r∑

n=1

α(k)
n x2

n +
∑

1≤n<m≤r

αk
nmxnxm

∣
∣∣∣∣∣
≤ ‖x‖2�p

.

If we replace now .xr by .−xr , then we have by the triangle inequality that

.

∣
∣∣∣∣∣

r∑

n=1

α(k)
n x2

n +
∑

1≤n<m≤r−1

αk
nmxnxm

∣
∣∣∣∣∣
≤ ‖x‖2�p

.

Hence, repeating the same argument with .xr−1 down to .x2, we have

.

∣
∣∣∣∣

r∑

n=1

α(k)
n x2

n

∣
∣∣∣∣
≤ ‖x‖2�p

,
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for any .r ∈ N. Thus the polynomials .Qk(x) = ∑
n∈N α

(k)
n x2

n with .k = 1, 2 are
in the unit ball of .P(2�p). Moreover, the latter polynomials are in the unit sphere

of .P(2�p) because, since .αn = 1
2

(
α

(1)
n + α

(2)
n

)
for every .n ∈ N, we have .P =

1
2 (Q1 + Q2), which implies that .P(α) = 1 only if both .Q1 and .Q2 are in the unit

sphere. Notice that we also have .Q1(a) = Q2(a) = 1, which implies that .α(k)
n ≥ 0

for any .n ∈ N and .k = 1, 2. Indeed, take .k = 1 and let .NP =
{
n : α

(1)
n ≥ 0

}
and

.NN =
{
n : α

(1)
n ≤ 0

}
. If .NN �= ∅, then

.1 < 1 −
∑

n∈NN

α(1)
n α

2/(p−2)
n =

∑

n∈Np

α(1)
n α

2/(p−2)
n ≤ 1,

which is a contradiction.
As we have already proven that .

∣∣∣
∑

n∈N α
(k)
n x2

n

∣∣∣ ≤ ‖x‖2�p
, it is obvious that

.

∣∣∣
∑

n∈N α
(k)
n bn

∣∣∣ ≤ ‖b‖�p/2 for every .b = (bn)n∈N ∈ �p/2. The latter implies that

.α(k) =
(
α

(k)
n

)

n∈N ∈ �∗
p/2 = �p/(p−2) with .‖α(k)‖�p/(p−2) ≤ 1 for every .k = 1, 2.

Hence, .α = 1
2

(
α(1) + α(2)

)
in .�p which yields .α = α(1) = α(2). It remains to prove

that .α(k)
nm = 0 for every .1 ≤ n < m with .k = 1, 2.

Applying the same techniques of fixing .r ∈ N, taking .xn = 0 for every .n > r

and replacing the coordinates from .xr down to .x3 by their opposites, we have that

.

∣∣∣∣∣

∑

n∈N
α

p/(p−2)
n ± α

(k)
12 α

(1/(p−2))
1 α

1/(p−2)
2

∣∣∣∣∣
=

∣∣∣1 ± α
(k)
12 α

1/(p−2)
1 α

1/(p−2)
2

∣∣∣ ≤ 1,

which implies .α
(k)
12 α

1/(p−2)
1 α

1/(p−2)
2 = 0. If .α1 and .α2 are not 0, then .α

(k)
12 = 0 for

every .k = 1, 2. Assume that both .α1 and .α2 are 0 (a similar argument can be applied
in the case when only one is 0), then .Pk can be written as

.Pk(x) =α
(k)
12 x1x2 +

∑

n≥3

α
(k)
1n x1xi +

∑

n≥3

α
(k)
2n x2xi

+
∑

n≥3

αnx
2
n +

∑

3≤n<m

α(k)
nmxnxm

with

.

∑

n≥3

α
p/(p−2)
n +

∑

3≤n<m

α(k)
nmα

1/(p−2)
n α

1/(p−2)
m = 1.
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By taking .x1 = x2 = 1 and .xn = ±rα
1/(p−2)
n for .n ≥ 3 and tending then r to .∞ it

is easy to see that .α(k)
12 ≤ 0. By construction .α

(1)
12 + α

(2)
12 = 0, which yields .α

(k)
nm = 0

for any .1 ≤ n < m and .k = 1, 2. �
Corollary 5.2 (Grecu [26]) Let .p > 2. IfA andB are disjoint sets of .N, .(αa)a∈A ∈
�p/(p−2)(A), .(βb)b∈B ∈ �p/(p−2)(B) with .αa > 0 for every .a ∈ A, .βb > 0 for every
.b ∈ B, .‖(αa)a∈A‖�p/(p−2)(A) = 1 and .‖(αb)b∈B‖�p/(p−2)(B) = 1, then the polynomial
.P(x) = ∑

a∈A αax
2
a − ∑

b∈B βbx
2
b is an extreme point of .BP(2�p).

The following result shows that the polynomials described in Corollary 5.2 are
the only diagonal extreme polynomials of .BP(2�p).

Theorem 5.14 (Grecu [26]) If .p > 2 and .P(x) = ∑
n∈N γnx

2
n where .x =

(xn)n∈N ∈ �p, then .P ∈ P(2�p). Furthermore, P is an extreme polynomial of
.BP(2�p) if, and only if, there exist A and B disjoint sets of natural numbers and
.(αa)a∈A ∈ B�p/(p−2)(A) and .(βb)b∈B ∈ B�p/(p−2)(B) positive sequences of unit norm

such that .P(x) = ∑
a∈A αix

2
i − ∑

b∈B βbx
2
b .

Proof By Corollary 5.2, given .P(x) = ∑∞
n∈N γnx

2
n where .x = (xn)n∈N ∈ �p an

extreme polynomial of .BP(2�p), it is enough to find A and B disjoint sets of natural
numbers and .(αa)a∈A ∈ B�p/(p−2)(A) and .(βb)b∈B ∈ B�p/(p−2)(B) positive sequences
of unit norm such that .P(x) = ∑

a∈A αix
2
i − ∑

b∈B βbx
2
b .

Let .A = {n ∈ N : γn ≥ 0} and .B = {n ∈ N : γn < 0}. Take .αa = γa provided
.a ∈ A, and .βb = −γb provided .b ∈ B. Notice that by construction we have .αa ≥ 0
for every .a ∈ A, .βb ≥ 0 for every .b ∈ B and .P(x) = ∑

a∈A αix
2
i − ∑

b∈B βbx
2
b . It

suffices to show that .α = (αa)a∈A is an extreme point of the unit ball of .�p/(p−2)(A)

and has unit norm.
First, by using a duality argument (see the proof of Theorem 5.13), .α belongs

to the unit ball of .�p/(p−2)(A). The same reasoning shows that .β = (βb)b∈B

belongs to the unit ball of .�p/(p−2)(B). Suppose that there exist .α(1) and .α(2)

in the unit ball of .�p/(p−2)(A) such that .α = 1
2

(
α(1) + α(2)

)
, and let us define

.Pk(x) = ∑
a∈A α

(k)
a x2

a − ∑
b∈B βbx

2
b for .k = 1, 2. By Holder’s inequality and

the triangle inequality, notice that .‖P ‖�p ≤ 1. Also, by construction, we have

.P = 1
2 (P1 + P2). Hence, .P = P1 = P2 since P is an extreme polynomial

of the unit ball of .P(2�p). Thus, we have .α = α(1) = α(2), which yields that
.α is an extreme point of .B�p/(p−2)(A) and, therefore, .α is in the unit sphere of
.�p/(p−2)(A). Analogously, .β is the unit sphere of .�p/(p−2)(B) and is an extreme
point of .B�p/(p−2)(B). �



Chapter 6
Polynomials with the Hexagonal and
Octagonal Norms

Abstract In this chapter we focus on the extreme points of the unit ball of quadratic
forms on .R

2 endowed with the octagonal and hexagonal norms.

6.1 Octagonal Norm

Let us endow the vector space .R
2 with the following octagonal norm with weight

.w ∈ [0, 1]: for every .(x, y) ∈ R
2,

.‖(x, y)‖oct(w) = max

{
|x|, |y|, |x| + |y|

1 + w

}
.

For the rest of this section, we denote by .O2
w the space .R

2 endowed with the
octagonal norm .‖ · ‖oct(w).

Let us endow the space of 2-homogeneous real polynomials with the following
norm: for every .P(x, y) = ax2 + by2 + cxy, where .a, b, c ∈ R

3,

.‖P‖O2
w

= sup{|P(x, y)| : ‖(x, y)‖oct(w) ≤ 1}.

We will denote by .P(2O2
w) the space of 2-homogeneous real polynomials endowed

with the norm .‖ · ‖O2
w
. As in previous chapters, we have that the mapping T defined

on Sect. 2.1 and considered on the space .P(2O2
w) is a topological isomorphism from

.P(2O2
w) to the normed space .(R3, ‖·‖oct(w)), where .‖·‖P(2O2

w)
is defined as follows:

for every .(a, b, c) ∈ R
3,

.‖(a, b, c)‖P(2O2
w)

= ‖ax2 + by2 + cxy‖O2
w
.

The unit ball of .(R3, ‖ · ‖P(2O2
w)

) will be denoted by .BP
(
2O2

w

).
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We are interested in studying the extreme points of the unit ball of .P(2O2
w).

Notice that .O2
0 = �21 and .O2

1 = �2∞ which have already been analyzed in Sects. 5.1
and 5.2.

We begin by providing an explicit formula for the norm of the space .P(2O2
w).

First of all, notice that

.‖ax2 + by2 + cxy‖O2
w

= ‖bx2 + ay2 ± cxy‖O2
w

= ‖ − bx2 − ay2 ± cxy‖O2
w
.

Therefore we may assume that .a ≥ |b| and .c ≥ 0 since the remaining cases can be
easily deduced.

Theorem 6.1 (Kim [38]) Let .P(x, y) = ax2 + by2 + cxy where .(a, b, c) ∈ R
3,

.a ≥ |b| and .c ≥ 0. We have

.‖P ‖O2
w

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a + c2

4|b| if b < 0, 0 ≤ c < −2b and − c
2b ≤ w,

bw2 + cw + a if (2|b| ≤ c ≤ 2a), or (b > 0 and 0 ≤ c < 2b),

or
(
2a < c and c−2a

c−2b < w
)
,

or
(
b < 0, 0 ≤ c < −2b and − c

2b > w
)
,

(c2−4ab)(1+w)2

4(c−a−b)
if 2a < c and c−2a

c−2b ≥ w.

Although the following result does not appear explicitly in [38], it is remarked at
the beginning of [38, section 2].

Theorem 6.2 (Kim [38]) The projection of .BP
(
2O2

w

) onto the ab-plane is .B�2∞ .

Now we are ready to show the extreme points of .BP(2O2
w)
.

Theorem 6.3 (Kim [38]) The set of extreme points of .BP(2O2
w)

consist of the
elements

. ext

(
BP

(
2O2

w

)
)

=
{

±
(

t,−t,±
[

2

(1 + w)2
+ 2

√
1

(1 + w)4
− t2

])
:

t ∈
[
0,

1 − w

(1 + w)(1 + w2)

]}

⋃ {
±

(
s,−s,±2

√
s(1 − s)

)
: s ∈

[
1

1 + w2
, 1

]}

⋃ {
± 1

(1 + w)2
(1, 1,±2)

}

⋃ {
± 1

1 + w2
(1, 1, 0)

} ⋃
{±(0, 1, 0)}

⋃
{±(1, 0, 0)}.
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Fig. 6.1 Extreme points of
.BP(2O2

w)
with .w = 1/4
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Unfortunately the authors have not been able to obtain a parametrization of the
unit sphere of R

3
.( , 2 2 ). However, we provide a visual representation of the

( )w
‖ · ‖P O

extreme points of the unit ball .BP(2O2
w)

in Figs. 6.1 and 6.2.

6.2 Hexagonal Norm

Let us endow .R
2 with the following norm known as the hexagonal norm with weight

.w ∈ [0, 1]: for every .(x, y) ∈ R
2,

.‖(x, y)‖hex(w) := max {|y|, |x| + (1 − w)|y|} .

The space .R
2 endowed with .‖ · ‖hex(w) is denoted by .H2

w. Notice that .H2
0 = �21 and

.H2
1 = �2∞, which have already been treated in Sects. 5.1 and 5.2. Nonetheless, in

this section we are interested in studying the case when .w = 1
2 .

Let P be a 2-homogeneous real polynomial of the form .P(x, y) = ax2 + by2 +
cxy and consider the following norm

.‖P‖H2
1/2

= sup{|P(x, y)| : ‖(x, y)‖hex(1/2) ≤ 1}.
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Fig. 6.2 Extreme points of
.BP(2O2

w)
with .w = 3/4
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Let us denote by .P
(
2H2

1/2

)
the space of 2-homogeneous real polynomials endowed

with the norm .‖ · ‖ .H2 As in the previous cases treated in this survey, the mapping
1/2

T defined on Sect. 2.1 and restricted to the space .P
(
2H2

1/2

)
is a topological

isomorphism from P
(
2H2 3

. 1/2

)
to the normed space .

(
R , ‖ · ‖P(

2H2 here
/2

)
)
, w

1

.‖(a, b, c)‖P(
2H2

1/2

) = ‖ax2 + by2 + cxy‖H2
1/2

,

for every .(a, b, c) ∈ R
3. Let us denote the unit ball of .

(
R
3, ‖ · ‖P(

2H2
1/2

)
)

by

.BP
(
2H2

1/2

). Once again, just as in the case of the octagonal norm (Sect. 6.1), we

begin by showing an explicit formula for the hexagonal norm .‖ · ‖H2
1/2
.

Theorem 6.4 (Kim [39]) Let .P(x, y) = ax2 + by2 + cxy with .a ≥ 0, .c ≥ 0 and
.a2 + b2 + c2 �= 0. We have

.‖P‖H2
1/2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
a, 1

4a + b + 1
2c

}
if c < a and a ≤ 4b,

max

{
a, |b|,

∣∣∣ 14a + b

∣∣∣ + 1
2c,

∣∣c2−4ab
∣∣

4a

}
if c < a and a > 4b,

max

{
a, 1

4a + b + 1
2c,

∣∣c2−4ab
∣∣

2c+a+4b

}
if c ≥ a and a ≤ 4b,

max
{
a, |b|,

∣∣∣ 14a + b

∣∣∣ + 1
2c,

c2−4ab
2c−a−4b

}
if c ≥ a and a > 4b.
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We now proceed to show the projection of .BP
(
2H2

1/2

) onto the ab-plane.

Theorem 6.5 (Kim [38]) The projection of .BP
(
2H2

1/2

) onto the ab-plane is .B�2∞ .

Theorem 6.6 (Kim [39]) The set of extreme points of .BP(2H2
1/2)

consists of

. ext(BP(2H2
1/2)

) =
{

±
(

t,
t + 4

√
1 − t

4
− 1,±

[
t + 2

√
1 − t

])
: t ∈ [0, 1]

}

⋃{
±

(
1,

s2

4
− 1,±s

)
: s ∈ [0, 1]

}

⋃{
±

(
1,

3

4
, 0

)}⋃ {
±

(
1,

1

4
,±1

)}⋃
{±(0, 1, 0)}.

Just as in the case of the octagonal norm (Sect. 6.1), the authors were not able

to provide a parametrization of the unit sphere of .

(
R
3, ‖ · ‖P(

2H2
1/2

)
)
, but Fig. 6.3

shows the extreme points of .BP
(
2H2

1/2

).

Fig. 6.3 The extreme points

of the unit ball of .P
(
2H2

1/2

)
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Chapter 7
Hilbert Spaces

Abstract Let H denote a Hilbert space over .K (.K = R or .C), i.e., H is a Banach
space which norm .‖ · ‖H comes from a bilinear product .〈·, ·〉 : H × H → K which
verifies that .‖x‖H = √|〈x, x〉| for every .x ∈ H . In this chapter, we are interested
in studying the extreme points of 2-homogeneous polynomials defined over Hilbert
spaces.

Recall that the spaces of polynomials mentioned above have already been studied
when H is a 2-dimensional Hilbert space. Indeed, given two Hilbert spaces of
dimension 2, .H1 and .H2, there exists an isometry between .H1 and .H2. Therefore, the
results follow from Sect. 4.3.1. Let us denote by .P(nH) the space of n-homogeneous
polynomials over H , where the norm of an n-homogeneous polynomial P over H

is defined as

.||P ||H = sup{|P(x)| : ||x||H ≤ 1}

Also, let .BP(nH) and .SP(nH) denote the unit ball and the unit sphere of .P(nH),
respectively.

7.1 The Real and Complex Case for 2-Homogeneous
Polynomials

Assume first that .K = R. We begin by providing a characterization of the set of
extreme points of .BP(nH) where H is defined over the real numbers and is finite
dimensional.

Theorem 7.1 (Sundaresan [54]) Let H be a Hilbert space of dimension .n ≥ 2. A
2-homogeneous polynomial P is an extreme polynomial of .BP(2H) if, and only if, the

matrix .A = (aij ) defined by .aij = 1
2 (P (ei +ej )−P(ei)−P(ej )) with .1 ≤ i, j ≤ n

has only unimodular eigenvalues.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Proof By Sundaresan [54, section 1], there exists a linear isometry

.F : (Sn, ‖ · ‖∞) → (Sn, ‖ · ‖∞),

where .Sn is the real vector space of symmetric .n × n matrices and

.‖A‖∞ = sup{‖Ax‖H : ‖x‖H ≤ 1}

for every .A ∈ Sn, such that .F(A) is a diagonal matrix .B = (bij )1≤i,j≤n with
.bii being the eigenvalues of A in no particular order. Clearly, since F is a linear
isometry, we have that A is an extreme point of the unit ball of .(Sn, ‖ · ‖∞) if, and
only if, B is an extreme point of the unit ball of .(Sn, ‖ · ‖∞). Hence, it is enough to
show that B is an extreme point of the unit ball of .(Sn, ‖ · ‖∞) if, and only if, the
diagonal entries of B are unimodular.

Assume first that .|bii | = 1 for every .1 ≤ i ≤ n. By way of contradiction, suppose
that there exist distinct matrices .C = (cij ) and .D = (dij ) in .(Sn, ‖ · ‖∞) of norm
one such that .B = 1

2 (C + D). Hence,

.n =
n∑

i=1

b2ii =
n∑

i=1

1

2
(cii + dii) ≤ 1

2

(
n∑

i=1

c2ii +
n∑

i=1

d2
ii

)
≤ n.

Clearly we have .
∑n

i=1
1
2 (cii + dii) = 1

2

(∑n
i=1 c2ii + ∑n

i=1 d2
ii

)
and therefore .pii =

qii for every .1 ≤ i ≤ n. The latter implies that .bii = cii = dii for any .1 ≤ i ≤ n.
To reach a contradiction, it is enough to show that the non-diagonal entries of C and
D are 0. Let .(λi)

n
i=1 be the eigenvalues of C. Then, by the Frobenius equation and

using the fact that .‖C‖∞ = sup{|λi | : 1 ≤ i ≤ n} = 1, we have

.

n∑

i=1

n∑

i=1

cij =
n∑

i=1

λ2i ≤ n.

Hence,

.

∑

1≤i,j≤n, i �=j

c2ij + n ≤ n,

which implies that .cij = 0 for every .1 ≤ i, j ≤ n with .i �= j .
Assume now that B is an extreme point of the unit ball of .(Sn, ‖ · ‖∞). Suppose

that there exists .i0 ∈ {1, . . . , n} such that .|bi0i0 | < 1. Choose .δ > 0 such that
.|di0i0 ± δ| ≤ 1, and choose .P = (pij ) and .Q = (qij ) diagonal matrices such that
.pjj = qjj = bjj if .j �= i0, .pi0i0 = bi0i0 + δ and .qi0i0 = bi0i0 − δ. By construction it
is easy to see that .P �= Q, .B = 1

2 (P + Q) and also P and Q belong to the unit ball
of .(Sn, ‖ · ‖∞), which is a contradiction. �
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For the rest of this section, assume that H is a Hilbert space of finite or infinite
dimension. The following theorem is an extension of Theorem 7.1 to arbitrary real
Hilbert spaces, but in order to prove it we will use another result related to the self-
adjoint operator of a polynomial.

Remark 7.1 Let P be a 2-homogeneous polynomial on H and L the polar of P (see
the beginning of Sect. 5.5). Notice that for a fixed .y ∈ H , the mapping .H � x �→
L(x, y) is linear and continuous. Hence, by Riesz representation theorem, there
exists a unique bounded linear operator .T : H → H such that .L(x, y) = 〈x, T y〉,
T is self-adjoint and .‖T ‖ = ‖L‖ = ‖P ‖. We say that T is the self-adjoint linear
operator of P .

Proposition 7.1 (Grecu [25]) Let H be a real Hilbert space and P be an extreme
2-homogeneous real polynomial of the unit ball of .P(2H) with T the self-adjoint
linear operator of P . We have that .T 2 = Id.

Proof As .‖P ‖ = 1, we have that .‖T ‖ = 1 by Remark 7.1. Furthermore, as
.T : H → H is self-adjoint, there exist a positive measure .μ, .g ∈ L∞(μ) with
.‖g‖∞ = ‖T ‖ and a unitary operator .U : H → L2(μ) such that .UT = MgU , where
.Mg : L2(μ) → L2(μ) is defined by .Mg(f ) = gf for every .f ∈ L2(μ) (see [31]).

Hence

.P(x) = 〈T x, x〉 = 〈T x, x〉

= 〈gUx,Ux〉 =
∫

g(Ux)2dμ.

Now suppose that there exist .g1, g2 ∈ L∞(μ) with .‖g1‖∞ = ‖g2‖∞ such that
.g = 1

2 (g1 + g2), and let us define the 2-homogeneous real polynomials .Pi(x) =∫
gi(Ux)2dμ for .i = 1, 2. By construction, it is easy to see that .P = 1

2 (P1 + P2)

with .0 < ‖Pi‖H ≤ ‖gi‖∞ ≤ 1. As P is an extreme polynomial, the latter implies
that .P1 = P2. Now take .f ∈ L1(μ) arbitrary and decompose f as .f = f + − f −,
where .f +, f − ≥ 0. Clearly, .

√
f +,

√
f − ∈ L2(μ), and so there exists .x ∈ H such

that .Ux = √
f +. Thus,

.

∫
(g1 − g2)f

+dμ =
∫

(g1 − g2)(Ux)2dμ = P1(x) − P2(x) = 0.

Applying the same arguments for .f −, we have that .
∫
(g1 − g2)f dμ = 0 for every

.f ∈ L1(μ), which proves that .g1 = g2.
We have proven that g is an extreme point of .L∞(μ) and therefore we have that

.|g| = 1 a.e. Thus, we have that

.U(T 2x) = gU(T x) = g2Ux = Ux.

Since U is injective (as it preserves the inner product), we have that .T 2 = Id. �
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Theorem 7.2 (Grecu [25]) Let H be a real Hilbert space. A 2-homogeneous real
polynomial P is an extreme point of .BP(2H) if, and only if, there exists an orthogonal
decomposition of .H = H1 ⊕ H2 such that .P(x) = ‖π1(x)‖2 − ‖π2(x)‖2 for every
.x ∈ H , where .π1 and .π2 denote the orthogonal projections of H onto .H1 and .H2,
respectively.

Proof Firstly, assume that there exists an orthogonal decomposition of .H = H1 ⊕
H2 such that .P(x) = ‖π1(x)‖2 −‖π2(x)‖2 for every .x ∈ H . Clearly, .−‖π2(x)‖2 ≤
P(x) ≤ ‖π1(x)‖2 for any .x ∈ H and .P(x) = ‖x‖2 when .x ∈ H1. Hence, .‖P ‖H =
1. Assume that there exist .P1 and .P2 in .BP(2H) such that .P = 1

2 (P1 + P2). Then,

for any .x ∈ H1, we have that .‖x‖2 = 1
2 (P1(x)+P2(x)) ≤ ‖x‖2, which implies that

.P1(x) = P2(x) = ‖x‖2 on .H1. Analogously, we have .P1(x) = P2(x) = −‖x‖2 on

.H2. Let .Lk and .Tk be the polar and self-adjoint linear operator of .Pk for .k = 1, 2,
respectively. Then, for every .x = x1 + x2 ∈ H1 ⊕ H2, we have

.P1(x) = P1(x1 + x2) = L1(x1 + x2, x1 + x2)

= P1(x1) + 2L1(x1, x2) + P1(x2)

= ‖x1‖2 + 2L1(x1, x2) − ‖x2‖2.

As .P1(x2) = −‖x2‖2 we have .〈x2, T1x2〉 = −‖x2‖2. Hence, we have .T1x2 = −x2
because .‖T1‖ = ‖P1‖H ≤ 1. Therefore, .L1(x1, x2) = 〈x1,−x2〉 = 0 since .H1 and
.H2 are an orthogonal decomposition of H . The latter implies that .P1 = P and the
proof is complete.

Secondly, assume that P is an extreme point of .BP(2H) and let T be the associated
self-adjoint linear operator of P . By Proposition 7.1, .T 2 = Id. Let us define the
continuous linear operators .π1 = (I + T )/2 and .π2 = (I − T )/2, and take .H1 =
π1(H) and .H2 = π2(H). On the one hand, since T is self-adjoint and .T 2 = Id,

.〈π1(x), π2(x)〉 = 1

4
〈x + T x, x − T x〉

= 1

4
(〈x, x〉 + 〈T x, x〉 − 〈x, T x〉 − 〈T x, T x〉)

= 1

4
(〈x, x〉 − 〈T 2x, x〉) = 0

for any .x ∈ H . On the other hand .x = (x + T x)/2+ (x − T x)/2 = π1(x)+π2(x).
Hence, .H = H1 ⊕H2. Moreover, .T x = π1(x)−π2(x), which implies that .P(x) =
‖π1(x)‖2 − ‖π2(x)‖2. �

Assume now that .K = C. We are going to show a characterization of the set of
extreme points of .BP(2H).

Theorem 7.3 (Grecu [25]) Let H be a Hilbert space defined over .C. A 2-
homogeneous complex polynomial P is an extreme point of .BP(2H) if, and only
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if, there exists an orthonormal basis .{ej }j∈J of H such that .P(x) = ∑
j∈J x2

j for
every .x = ∑

j∈J aj xj ∈ H .

Last but not least, we show a characterization of the extreme points of .BP(2H),
when H is defined over .R or .C, but in a more practical way since it uses the
coefficients of the polynomial. If .{ej }j∈J is an orthonormal basis of H , then a 2-
homogeneous polynomial P with polar L is of the form .P(x) = ∑

i,j∈J aij xixj

with .aij = aji = L(ei, ej ).

Theorem 7.4 (Grecu [25]) Let P be a 2-homogeneous polynomial of unit norm
on a separable Hilbert space H defined over .R or .C and let L be the polar of P .
If .{ej }j∈J is an orthonormal basis for H and A is the matrix whose entries are
the coefficients .aij = L(ei, ej ) of P , then the polynomial P is an extreme point of
.BP(2H) if, and only if, .AA = I (where I is the identity matrix).

7.2 Polynomials of Degree n

Now we aim to give a more general approach. In most of the results that we have
given, we are mostly interested in 2-homogeneous polynomials. But in this section
we go further by showing a characterization of the extreme points on .BP(nH) where
.n ∈ {3, 4} and H is a real Hilbert space. Unfortunately this characterization is not
true when .n ≥ 5 but we are able to give some insight nonetheless.

Theorem 7.5 (Grecu [28]) Let P be a 3-homogeneous real polynomial of unit
norm on a two dimensional real Hilbert space H . We have that P is an extreme
polynomial of .BP(3H) if, and only if, for any orthonormal basis .{e1, e2} of H such

that .P((x1, x2)) = x3
1 + 3bx1x

2
2 + cx3

2 , the coefficients b and c satisfy the condition
.c2 = (b + 1)2(2b − 1).

Theorem 7.6 (Grecu [27]) Let P be a 4-homogeneous real polynomial of unit
norm on a two dimensional real Hilbert space H . We have that P is an extreme
polynomial of .BP(4H) if, and only if, either .P(x) = ±‖x‖4H or for any orthonormal

basis .{ej }j∈J of H such that .P((x1, x2)) = x4
1 + 6bx2

1x
2
2 + 4cx1x3

2 + dx4
2 , the

coefficients b, c and d satisfy one of the following conditions:

(i) .b = 4
√

1−d
2 −3

3 and .c = ±2
√

1−d
2

√
1 −

√
1−d
2 ,

(ii) .b = −1−√
2d+2

3 and .c = 0,

where in both cases .d ∈ [−1, 1].
Let us show now the general results for arbitrary n.

Theorem 7.7 (Grecu [27]) Let H be a two dimensional real Hilbert space.
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(i) If n is odd and P is an n-homogeneous real polynomial of unit norm such that
.|P(x)| = 1 at .n + 1 distinct points of the unit ball of H , then P is an extreme
polynomial of .BP(nH).

(ii) If n is even and P is an n-homogeneous real polynomial of unit norm such that
.|P(x)| = 1 at .n + 2 distinct points of the unit ball of H , then P is an extreme
polynomial of .BP(nH).

The following result in this general setting gives exact values for some extreme
points.

Theorem 7.8 (Grecu [27]) Let H be a two dimensional real Hilbert space and
.n > 5.

(i) If n is odd, then the polynomial

.P(x) =
n−1
2∑

l=0

(n − 2l + 2)(n − 2l + 4) · · · n
2 · 4 · · · 2l xn−2l

1 x2l
2

is an extreme polynomial of .BP(nH).
(ii) If n is even, then the polynomials

.P(x) = ‖x‖n
H

and

.P(x) =
n/2−1∑

l=0

(
n/2

l

)
xn−2l
1 x2l

2 − xn
2

are extreme polynomials of .BP(nH).

To finish this section, we show a characterization for the extreme points of 3-
homogeneous polynomials on a two dimensional complex Hilbert space.

Theorem 7.9 (Grecu et al. [29]) Let H be a two dimensional complex Hilbert
space. A 3-homogeneous complex polynomial .P ∈ BP(3H) of unit norm is an
extreme polynomial of .BP(3H) if, and only if, P attains its norm at two or more
linearly independent points.



Chapter 8
Banach Spaces

Abstract In this chapter we will show some results on the extreme points of the unit
ball of certain polynomial spaces in arbitrary Banach spaces. More particularly, we
are interested in studying integral, nuclear and orthogonally additive polynomials.

8.1 Integral and Nuclear Polynomials

First, we begin by defining what are known as n-homogeneous integral polynomials
on Banach spaces.

Definition 8.1 Let X be a Banach space. We say that a continuous n-homogeneous
polynomial P is integral if there is a regular Borel measure .μ of total variation on
.(BX∗ , ω∗) such that

.P(x) =
∫
BX∗

ϕ(x)ndμ(ϕ), (8.1)

for every .x ∈ X, where .ω∗ stands for the weak*-topology. We denote by .PI (
nX)

the space of continuous n-homogeneous integral polynomials.

Let X be a Banach space, we endow the space .PI (
nX) with the norm given by

.‖P‖I = inf {|μ|(BX∗) : μ satisfies (8.1)} .

The normed space .(PI (
nX), ‖ · ‖I ) is in fact a Banach space. For simplicity, let

us denote .(PI (
nX), ‖ · ‖I ) by .PI (

nX). We will denote the unit balls of X and
.(PI (

nX), ‖ · ‖I ), respectively, by .BX and .BPI (nX).
The following result characterizes the set of extreme polynomials of .BPI (nX)

when X is real Banach space. Although such characterization is proven in [17], it
is worth mentioning that the study of the extreme polynomials of .BPI (nX) has also
been done by several authors prior to the final characterization (see [9, 10, 52]).

Theorem 8.1 (Dimant et al. [17]) If X is a real Banach space and .n ≥ 2, then

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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. ext(BPI (nX)) = {±ϕn : ϕ ∈ SX∗}.

The following results shed some light on the extreme complex polynomials on
arbitrary Banach spaces.We begin by defining what is known as an extreme complex
point on a normed space. The standard definition that we have considered for a point
on a normed space X to be an extreme point of .BX is the following: given a normed
space X defined over .R or .C, we say that .x ∈ BX is a (real) extreme point of .BX

provided that if .x + λy ∈ BX for some .λ ∈ C with .λ ∈ [−1, 1], then .y = 0.
Now, analogously, given X a normed space defined over .C, we say that .x ∈ BX is
a complex extreme point of .BX provided that if .x + λy ∈ BX for some .λ ∈ C with
.|λ| ≤ 1, then .y = 0.

Given a normed space X defined over .C, let us denote for the rest of this section
the set of real and complex extreme points of .BX by .extR(BX) and .extC(BX),
respectively. Clearly, .extR(BX) ⊆ extC(BX).

Theorem 8.2 (Boyd and Ryan [10]) If X is a complex Banach space and .n ≥ 2,
then

. extR(BPI (nX)) ⊆ {±ϕn : ϕ ∈ SX∗}.

For the following result we need the next definition.

Definition 8.2 Let X be a Banach space, we say that .A ⊂ X∗ is X-transitive if for
all .ϕ,ψ ∈ A, there exists an isometry T of X onto itself such that .ψ ◦ T = ϕ.

Theorem 8.3 (Dineen [20]) Let X be a complex Banach space. If .extC(X∗) is X-
transitive and .n ≥ 1, then

. extR(BPI (nX)) = {±ϕn : ϕ ∈ extC(BX∗)} = {±ϕn : ϕ ∈ extR(BX∗)}.

Theorem 8.4 (Dineen [20]) If X is a finite dimensional complex Banach space and
.n ≥ 1, then

. extR(BPI (nX)) ⊇ {±ϕn : ϕ ∈ extR(BX∗)}.

Theorem 8.5 (Dineen [20]) If .X∗ is a strictly convex finite dimensional complex
Banach space and .n ≥ 1, then

. extR(BPI (nX)) = {±ϕn : ϕ ∈ BX∗}.

Finally, we provide some insight on arbitrary infinite dimensional complex
Banach spaces. To do so, we begin by providing the definition of weak*-exposed
points of complex Banach spaces.

Definition 8.3 Let X be a Banach space. We say that .x ∈ BX is an exposed point
of .BX if there exists .ϕ ∈ BX∗ such that .ϕ(x) = 1 and .ϕ(y) < 1 for every .y ∈ BX∗ .
We say that .x ∈ X is a weak*-exposed point of the unit ball of X if x is an exposed
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point of the weak*-closure of .BX in .X∗∗. We denote by .expω∗(BX) the set of weak*-
exposed points of .BX.

Theorem 8.6 (Dineen [20]) If X is a complex Banach space and .n ≥ 1, then

. extR(BPI (nX)) ⊇ {±ϕn : ϕ ∈ expω∗(BX∗)}.

The inclusion in Theorem 8.6 can be improved in the sense that the equality is
satisfied for specific Banach spaces such as .�1 [20].

Finally, we will study the extreme nuclear polynomials. Let us begin by defining
what is known as a nuclear polynomial on a Banach space.

Definition 8.4 Let X be a Banach space. We say that a continuous n-homogeneous
polynomial P on X is nuclear if there exists a bounded sequence .(ϕi)

∞
i=1 ⊂ X∗ and

.(λi)
∞
i=1 ∈ �1 such that

.P(x) =
∞∑
i=1

λiϕi(x)n, (8.2)

for every .n ∈ N. We denote by .PN(nX) the space of nuclear n-homogeneous
polynomials on X.

The space .PN(nX) is a Banach space when it is endowed with the norm .‖P ‖N

defined as the infimum of .
∑∞

i=1 |λi |‖ϕi‖n taken over all representations of P of
the form (8.2). It is not difficult to prove that given a Banach space X we have
.PN(nX) ⊆ PI (

nX) ⊆ P(nX) and for every .P ∈ PN(nX) we have .‖P ‖ ≤ ‖P ‖I ≤
‖P ‖N . Moreover, if .ϕ ∈ X∗, then .ϕn is an n-homogeneous nuclear polynomial and
.‖ϕn‖N = ‖ϕn‖I = ‖ϕn‖.
Theorem 8.7 (Boyd and Ryan [10]) If X is a Banach space, then

. extR(BPI (nX)) ⊆ extR(BPN (nX)),

where .BPN (nX) is the unit ball of .PN(nX).

8.2 Orthogonally Additive Polynomials

In this section we will be interested in studying the extreme polynomials of the unit
ball of the space of orthogonally additive polynomials on Banach lattices endowed
with two different norms. First, we begin by defining orthogonally additive n-
homogeneous polynomials on Banach lattices.

Definition 8.5 Let X be a Banach lattice. We say that a continuous n-homogeneous
polynomial P on X is orthogonally additive if .P(x + y) = P(x) + P(y) whenever
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x and y are disjoint. We denote the space of orthogonally additive n-homogeneous
polynomials by .POA(nX).

One of the main advantages when working with Banach lattices in this scenario
is that we only have to study the space of orthogonally additive n-homogeneous
polynomials on .C(K) for every compact Hausdorff topological space K . Indeed,
let X be a Banach lattice. For every positive .a ∈ X, we can consider the principal
ideal

.Xa = {x ∈ X : |x| ≤ na for some n ∈ N},

with lattice structure inherited from X. The space .Xa is a Banach lattice endowed
with the norm .‖x‖a = inf{C > 0 : |x| ≤ Ca}. By the Kakutani representation
theorem [36], the Banach lattice .Xa is canonically a Banach lattice isometrically
isomorphic to .C(K) for some compact Hausdorff topological space K , with a being
identified with the unit function on K . It is known that the Banach lattice structure
of X is uniquely determined by its principal ideals. Hence, the study of the space
.POA(nC(K)) is crucial to understanding the behaviour of .POA(nX) for arbitrary
Banach lattices X.

We will consider in .POA(nX) two natural ways to norm the space. The standard
one is the uniform convergence norm on the unit ball of X, i.e.,

.‖P ‖∞ = sup{|P(x)| : x ∈ BX},

which makes the normed space .(POA(nX), ‖ · ‖∞) into a Banach space (in fact,
notice that .(POA(nX), ‖ · ‖∞) is a closed subspace of .(P(nX), ‖ · ‖∞)).

Another way to norm .POA(nX) is developed below. Since X is a Banach lattice
we can define a partial order .≤ on .P(nX): we say that .P ≤ Q with .P,Q ∈ P(nX)

if, and only if, .L(x1, . . . , xn) ≤ M(x1, . . . , xn), for every .x1, . . . , xn ∈ X and
where L and M are the polars of P and Q, respectively. Hence, we say that
an n-homogeneous polynomial is positive if .P ≥ 0 with this partial order .≤.
Furthermore, we can define the absolute value of an n-homogeneous polynomial.

Definition 8.6 Let .P ∈ P(nX). We say that P is regular if P is the difference
of two positive n-homogeneous polynomials. We denote by .Pr (

nX) the space of
regular n-homogeneous polynomials

All regular n-homogeneous polynomials are those that have absolute value given
by the formula

.|P |(x) = sup

⎧⎨
⎩

∑
i1,...,in

|L(x1
i1
, . . . , xn

in
)| : x1, . . . , xn ∈ �(x)

⎫⎬
⎭ ,

for every .x ≥ 0 and where .�(x) denotes all finite sets of positive vectors of X

whose sum is x. Notice that the vector space .Pr (
nX) is in fact a Banach lattice
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when it is endowed with the regular norm

.‖P ‖r = ‖|P |‖∞.

For more information on regular polynomials see [7].
Now, every orthogonally additive n-homogeneous polynomial is regular. This

was first proved by M. A. Toumi in [55, theorem 1] but another proof can be found
in [11]. Hence, we can consider the space .POA(nX) in two scenarios: endowed with
the supremum norm or the regular norm. It is important to mention that the norms
.‖·‖∞ and .‖·‖r are equivalent in .POA(nX) for any Banach lattice X as the following
result shows, but the geometric properties of the two Banach spaces are not the same
as we will see.

Theorem 8.8 (Boyd et al. [11]) Let X be a Banach lattice. If .P ∈ POA(nX), then
.‖P ‖r = ‖P ‖∞ if n is odd and .‖P ‖∞ ≤ ‖P ‖r ≤ 2‖P ‖∞ if n is even. Moreover, the
inequalities are sharp.

See [11] for more information on the supremum and regular norm defined on
.POA(nX).

We now proceed to state the main results of this section which are an extension
of [12].

Theorem 8.9 (Boyd et al. [11]) Let K be a compact Hausdorff topological space.
A polynomial .P ∈ POA(nC(K)) is an extreme polynomial of the unit ball of the
space .(POA(nC(K)), ‖ · ‖r ) if, and only if, .P(x) = ±δn

t (x), where .t ∈ K and
.δn
t (x) = x(t)n.

Theorem 8.10 (Boyd et al. [11]) Let K be a compact Hausdorff topological
space.

(i) If n is odd, then a polynomial .P ∈ POA(nC(K)) is an extreme polynomial of
the unit ball of the space .(POA(nC(K)), ‖·‖∞) if, and only if, .P(x) = ±δn

t (x),
where .t ∈ K and .δn

t (x) = x(t)n.
(ii) If n is even, then a polynomial .P ∈ POA(nC(K)) is an extreme polynomial of

the unit ball of the space .(POA(nC(K)), ‖ · ‖∞) if, and only if, P is one of the
following polynomials:

(a) .P(x) = ±δn
t (x), where .t ∈ K and .δn

t (x) = x(t)n;
(b) .P(x) = (δn

s − δn
t )(x), where .s, t ∈ K and .(δn

s − δn
t )(x) = x(s)n − x(t)n.



Chapter 9
Applications

Abstract As we know, one of the main goals of this book has been to find a
parametrization of the unit sphere of spaces of polynomials endowed with different
norms whose unit balls can be described in .R

3, but mainly we have tried to
obtain the extreme polynomials of the unit balls. We have also studied some of
the extreme polynomials in arbitrary dimensions and we have even described some
of the extreme polynomials of arbitrary degree. The reason behind this is that a full
description of the extreme polynomials of the unit ball has, as a matter of fact, can
be applied to obtain many sharp polynomial inequalities (as we will see in this final
chapter).

If the extreme polynomials of the unit ball are known, then we can simplify the
problems that involve finding sharp inequalities between norms that depend on
polynomials by using a simple consequence of the Krein-Milman Theorem.

Theorem 9.1 (Krein-Milman Theorem [41]) Let X be a normed space. If C is
a compact convex subset of X, then C coincides with the closed convex hull of its
extreme points.

Corollary 9.1 If C is a convex body in a normed space X and .f : C → R is a
convex function that attains its maximum, then there exists an extreme point .p ∈ C

such that .f (p) = max{f (x) : x ∈ C}.
The main idea to apply Corollary 9.1 is the following: Let .B be a convex body in a

normed space of polynomials and f be a convex function defined on .B which attains
its maximum and takes real values, then f attains its maximum at an extreme point
of .B by Corollary 9.1. Furthermore, if we have a full description of the extreme
points of .B, then we can find the maximum of f by evaluating f in the extreme
points of .B (this is the Krein-Milman Approach). This can be used in the case of
norms of polynomials since it is known that the norm function is convex.

The rest of this chapter involves finding well known sharp inequalities for norms
of polynomials that have appeared in this survey.

Let .(X, ‖ · ‖) be a normed space and consider the normed space .P(nX) (see the
beginning of Sect. 5.5). Now, let us also consider the space of continuous symmetric
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n-linear forms of X denoted by .Ls(
nX) and endowed with the following norm:

.‖L‖ = sup{|L(x1, . . . , xn)| : ‖xi‖ ≤ 1, for every i ∈ {1, . . . , n}},

for every .L ∈ Ls(
nX). By the beginning of Sect. 5.5, for every .P ∈ P(nX), there

exists a unique .L ∈ Ls(
nX) such that .P(x) = L(x, . . . , x), for every .x ∈ X, the

polar of P .

9.1 Bernstein-Markov Type Inequalities

Bernstein type inequalities for polynomials are inequalities of the following form:
if .P ∈ P(nX), there exists a function .�(x) defined over .C such that

.‖DkP (x)‖ ≤ �(x)‖P ‖,

where .DkP denotes the k-th derivative of P (the optimal function .�(x) is known
as the Bernstein function). On the other hand, Markov type inequalities are of the
same fashion as Bernstein type inequalities but we are also taking the supremum
of .‖DkP (x)‖ over all .x ∈ C (the optimal constant in Markov type inequalities is
known as the Markov constant). The results of this section focus on finding the
Bernstein function and the Markov constant that are known for the spaces that have
been presented in this survey.

Theorem 9.2 (Araújo et al. [4]) Take .P3(R) (see Sect. 2.1). The Bernstein function
for the inequality

.|P ′(x)| ≤ �(x)‖P ‖R
is given by

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3(1 − 4x2) if 0 ≤ |x| ≤
√
7−2
6 ,

7
√
7+10

9(|x|+1) if
√
7−2
6 ≤ |x| ≤ 2

√
7−1
9 ,

−16x3

(1−9x2)(1−x2)
if 2

√
7−1
9 ≤ |x| ≤ 1+2

√
7

9 ,

7
√
7−10

9(1−|x|) if 1+2
√
7

9 ≤ |x| ≤
√
7+2
6 ,

3(4x2 − 1) if |x| ≥
√
7+2
6 .

The Bernstein function for the inequality

.|P ′′(x)| ≤ �(x)‖P ‖R
is given by
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.

⎧
⎪⎪⎨

⎪⎪⎩

4
1−9x2

if 0 ≤ |x| ≤ 1
9 ,

32
9(|x|−1)2

if 1
9 ≤ |x| ≤ 1

3 ,

24|x| if |x| ≥ 1
3 .

Theorem 9.3 (Muñoz et al. [47]) Let .ϕ : [−1, 1] → [0,+∞) be defined by
.ϕ(x) = √

1 − x2. On the space .Pϕ
3 (R) (see Sect. 2.1.1), the Bernstein function for

the inequality

.|P ′(x)| ≤ �(x)‖P ‖R
is given by

.

⎧
⎪⎪⎨

⎪⎪⎩

2|1 − 3x2| if |x| ∈
[

0,
√

4−√
7

3

]

∪
[√

4+√
7

3 , 1

]

,

4x2√
−9x4+10x2−1

if |x| ∈
[√

4−√
7

3 ,

√
4+√

7
3

]

.

Theorem 9.4 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n. On
the space .Pm,n,∞(R) (see Sect. 3.1), the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

{
mn

n+mλ0
· xn−1 · |xm−n + λ0| if |x| ∈ [0, 1] \ Im,n,

n
(

n
m

) n
m−n · 1

|x| if |x| ∈ Im,n,

where .λ0 comes from Theorem 3.1 and

.Im,n =
[( |λ0|n

m

) 1
m−n

,
( n

m

) 1
m−n

]

.

The Markov constant is given by

.
mn(1 + λ0)

n + mλ0

and equality is attained for the polynomials

.P(x) = ± 1

n + mλ0
(nxm + λ0mxn).
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In order to prove Theorem 9.4, we will prove first the following technical
lemmas.

Lemma 9.1 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n and let
.λ0 be the number from Theorem 3.1. We have

.|λ0| n

m
< |λ0|1 − |λ0| n

m−n

1 − |λ0| m
m−n

<
n

m
.

Proof Recall from Lemma 3.1 that .|λ0| < n
m

< 1 and consider the inequality

.
n

m
<

1 − xn

1 − xm
. (9.1)

We will show when (9.1) holds. If .0 < x < 1, then inequality (9.1) is equivalent
to .m − n > mxn − nxm. Now, since the function .x �→ mxn − nxm is strictly
increasing on .(0, 1), the curves .y = mxn − nxm and .y = m − n intersect in,
at most, one point which is .x = 1. Hence, it is easy to check that the inequality
.m − n > mxn − nxm is satisfied on .(0, 1), which implies that .m − n > mxn − nxm

holds when .x ∈
(

0,
(

n
m

) 1
m−n

)

and we have proven the first inequality of the lemma.

The second inequality follows after doing some simple calculations and using the
fact that .λ0 satisfies .n + mλ0 = (m − n)|λ0| m

m−n . �
Lemma 9.2 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n and let
.λ0 be the number from Theorem 3.1. If we define the functions

.f (x) = mn

m − n
xn−1|xm−m − 1|,

g(x) = mn

n + mλ0
xn−1|xm−m + λ0|,

then .g(x) ≥ f (x) provided x satisfies

.0 ≤ |x| ≤
( |λ0|n

m

) 1
m−n

or
( n

m

) 1
m−n ≤ |x| ≤ 1.

Proof By symmetry, assume that .x > 0. After some calculations, it is easy

to check that the functions f and g intersect at the points .x1 = (
n
m

) 1
m−n and

.x2 =
(

|λ0| 1−|λ0|
n

m−n

1−|λ0|
m

m−n

) 1
m−n

. By Lemma 9.1, the points .x1 and .x2 are not in the

intervals .

(

0,
( |λ0|n

m

) 1
m−n

)

or .

(
(

n
m

) 1
m−n , 1

)

. Hence, either .f ≥ g or .f ≤ g in each
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one of the previous intervals. Now, notice that .f (1) < g(1) and .f

(( |λ0|n
m

) 1
m−n

)

<

g

(( |λ0|n
m

) 1
m−n

)

. Indeed, the former is trivial and the latter is true because of the

following reasoning. Notice that the inequality .f

(( |λ0|n
m

) 1
m−n

)

< g

(( |λ0|n
m

) 1
m−n

)

is equivalent to .

∣
∣
∣
λ0n
m

+ 1
∣
∣
∣ < 1

|λ0|
m

m−n

∣
∣
∣
λ0n
m

− λ0

∣
∣
∣. Moreover, it is also equivalent to

.|λ0| m
m−n < |λ0| which is satisfied since .−1 < − n

m
< λ0 < 0 (see Lemma 3.1) and

the proof is complete. �
Lemma 9.3 (Muñoz et al. [48]) Let .m, n ∈ N be odd and such that .m > n and let
.λ0 be the number from Theorem 3.1. If we define the functions

.f (x) = mn

m − n
xn−1|xm−m − 1|,

g(x) = mn

n + mλ0
xn−1|xm−m + λ0|,

h(x) = n
( n

m

) n
m−n 1

|x| ,

then .h(x) ≥ max{f (x), g(x)} provided x satisfies

.

( |λ0|n
m

) 1
m−n ≤ |x| ≤

( n

m

) 1
m−n

.

Proof Assume that .

( |λ0|n
m

) 1
m−n ≤ |x| ≤ (

n
m

) 1
m−n holds, then it is enough to show

that .h(x) ≥ f (x) and .h(x) ≥ g(x).
Firstly, notice that the function .xn − xm is strictly increasing on the interval

.

(

0,
(

n
m

) 1
m−n

)

since the derivative is positive. Hence, the maximum of .x �→ xn −xm

on .

(

0,
(

n
m

) 1
m−n

)

is attained at .x = (
n
m

) 1
m−n with value .

(m−n)n
n

m−n

m
m

m−n
. Thus, .xn−xm ≤

(m−n)n
n

m−n

m
m

m−n
for .

( |λ0|n
m

) 1
m−n ≤ |x| ≤ (

n
m

) 1
m−n , which implies after rearranging the

inequality that .f (x) ≤ h(x).

Secondly, notice that the inequality .
mn

n+mλ0
xn−1|xm−m + λ0| ≤ n

(
n
m

) n
m−n 1

|x| is
equivalent to .

m
n+mλ0

|xm + λ0x
n| ≤ (

n
m

) n
m−n . Since the derivative of .xm + λ0x

n is

only 0 when .x = 0 or .x = ±
( |λ0|n

m

) 1
m−n

, we have that .xn + λ0x
n is monotone on

the interval .

[( |λ0|n
m

) 1
m−n

,
(

n
m

) 1
m−n

]

. Hence, it is enough to evaluate .xn + λ0x
n at
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the endpoints of the interval and after some simple evaluations notice that the proof
is complete. �
Proof (of Theorem 9.4) Notice that the Bernstein function on the space .Pm,n,∞(R)

is given by

.Bm,n,∞(x) = sup{|P ′(x)| : P belongs to the unit sphere of Pm,n,∞(R)}.

However it is enough to find the above supremum over the set of extreme points of
the unit ball by Corollary 9.1.

We know from Theorem 3.3 that the set of extreme points of .Bm,n,∞ is

.

{

±
(

t,− m

(m − n)
m−n
m n

n
m

· t
n
m , 0

)

: n

m − n
≤ t ≤ n

n + mλ0

}
⋃

{±(0, 0, 1)}.

Observe that the extreme polynomials .P(x) = ±1 are irrelevant to find the
Bernstein function. Hence we focus our attention on the extreme polynomials

.Pt (x) = ±
(

txm − m

(m − n)
m−n

n n
n
m

t
n
m xn

)

,

where .t ∈
[

n
m−n

, n
n+mλ0

]
. Thus,

.Bm,n,∞(x) = sup

{

|P ′
t (x)| : t ∈

[
n

m − n
,

n

n + mλ0

]}

= sup

{∣
∣
∣
∣
∣
mtxm−1 − mnt

n
m

(m − n)
m−n

n n
n
m

xn−1

∣
∣
∣
∣
∣
: t ∈

[
n

m − n
,

n

n + mλ0

]}

= sup

{∣
∣
∣
∣
∣
mxn−1

[

txm−n −
(

n

m − n

)m−n
m

t
n
m

]∣
∣
∣
∣
∣
:

t ∈
[

n

m − n
,

n

n + mλ0

]}

.

Let us define .R(t) = mxn−1
[

txm−n −
(

n
m−n

)m−n
m

t
n
m

]

. Notice that the above

supremum is attained at either .t = n
m−n

, or .t = n
n+mλ0

, or at a critical point of

.R(t) inside the open interval .
(

n
m−n

, n
n+mλ0

)
. It is easy to show that there exists only

one critical point of .R(t) which is .t0 = n
m−n

(
n
m

) m
m−n 1

|x|m and
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.R(t0) = n
( n

m

) n
m−n 1

|x| .

Now, notice that the series of inequalities .
n

m−n
≤ t0 ≤ n

n+mλ0
is equivalent to

.

( |λ0|n
m

) 1
m−n ≤ |x| ≤

( n

m

) 1
m−n

.

Hence, after some easy calculations, we have

.Bm,n,∞(x) = sup

{

|R(t)| : t ∈
[

n

m − n
,

n

n + mλ0

]}

=

⎧
⎪⎨

⎪⎩

max
{∣
∣
∣R

(
n

m−n

)∣
∣
∣ ,

∣
∣
∣R

(
n

n+mλ0

)∣
∣
∣ , n

(
n
m

) n
m−n 1

|x|
}
if

( |λ0|n
m

) 1
m−n ≤ |x| ≤ (

n
m

) 1
m−n ,

max
{∣
∣
∣R

(
n

m−n

)∣
∣
∣ ,

∣
∣
∣R

(
n

n+mλ0

)∣
∣
∣

}
if |x| ≤

( |λ0|n
m

) 1
m−n or

(
n
m

) 1
m−n ≤ |x| ≤ 1,

where, after evaluating the function R in the above points, we have

.R

(
n

m − n

)

= mnxn−1

m − n
|xm−n − 1|

and

.R

(
n

n + mλ0

)

= mnxn−1

n + mλ0
|xm−n + λ0|.

By applying Lemmas 9.2 and 9.3 the result follows. �
Theorem 9.5 (Muñoz et al. [48]) Let .m, n ∈ N be such that .m > n, m is odd and
n is even. On the space .Pm,n,∞(R), the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

⎧
⎪⎪⎨

⎪⎪⎩

2n|x|n−1 if |x| ∈
[

0,
(

n
m

) 1
m−n

]

,

mxm−1 + n|x|n−1 if |x| ∈
[
(

n
m

) 1
m−n , 1

]

.

The Markov constant is given by

.m + n
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and equality is attained for the polynomials

.P(x) = ±(xm ± xn − 1).

Theorem 9.6 (Muñoz et al. [48]) Let .n ∈ N be odd. On the space .P2n,n,∞(R), the
Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖2n,n,∞

is given by

.

⎧
⎨

⎩

n|x|n−1

1−xn if |x| ∈
[
0, 1

n√2

]
,

4n|x|2n−1 if |x| ∈
[

1
n√2

, 1
]
.

The Markov constant is given by 4n and equality is attained for the polynomials

.P(x) = ±(2x2n − 1).

Theorem 9.7 (Muñoz et al. [48]) Let .n ∈ N be even. On the space .P2n,n,∞(R),
the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖2n,n,∞

is given by

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8n(−2|x|2n−1 + |x|n−1) if |x| ∈
[

0,
(
1
4

) 1
n

]

,

n
|x| if |x| ∈

[(
1
4

) 1
n
,
(
1
2

) 1
n

]

,

n|x|n−1

1−xn if |x| ∈
[(

1
2

) 1
n
,
(
3
4

) 1
n

]

,

8n(2|x|2n−1 − |x|n−1) if |x| ∈
[(

3
4

) 1
n
, 1

]

.

The Markov constant is given by 8n and equality is attained for the polynomials

.P(x) = ±(8x2n − 8xn + 1).

Theorem 9.8 (Muñoz et al. [47]) Let .m, n ∈ N be such that m is odd, n is even
and .m > n. On the normed subspace of .Pm,n,∞(R) given by trinomials that are
bounded by the linear mapping .ϕ(x) = |x| over the interval .[−1, 1], the Bernstein
function for the inequality
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.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

⎧
⎪⎪⎨

⎪⎪⎩

(m + 1)|x|m − (n + 1)xn + 1 if |x| ≤ t1,

2(n + 1)xn − 1 if t1 ≤ |x| ≤ m−n

√
n+1
m+1 ,

(m + 1)|x|m + (n + 1)xn − 1 if m−n

√
n+1
m+1 ≤ |x| ≤ 1,

where .t1 ∈ R is the unique solution of

.(m + 1)xm − 3(n + 1)xn + 2 = 0

on the interval .
(

1
n
√
2(n+1)

, 1
n
√

n+1

)
. The Markov constant is given by .m + n + 1 and

equality is attained for the polynomials

.P(x) = ±[xm ± (xn − 1)].

Theorem 9.9 (Muñoz et al. [47]) On the normed subspace of .P2,1,∞(R) given by
trinomials that are bounded by the linear mapping .ϕ(x) = |x| over the interval
.[−1, 1], the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,∞

is given by

.

⎧
⎨

⎩

∣
∣
∣ 3x

2−1
2

∣
∣
∣ + 2|x| if |x| ∈

[√
13−2
9 ,

√
13+2
9

]
,

|6x2 − 1| if |x| ∈
[
0,

√
13−2
9

]
∪
[√

13+2
9 , 1

]
.

Theorem 9.10 (Muñoz et al. [49]) Let .m, n ∈ N be with different parity and such
that .m > n. On the space .Pm,n,2(R), the Bernstein function for the inequality

.|P ′(x)| ≤ �(x)‖P ‖m,n,2

is given by

.

⎧
⎨

⎩

√
n2(2n+1)x2(n−1)+(m+1)2(2m+1)x2(m−1)

2 if m is even and n is odd,
√

m2(2m+1)x2(m−1)+(n+1)2(2n+1)x2(n−1)

2 if m is odd and n is even.

The Markov constant is given by
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.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m + 1)
√

2m+1
2m−1 if m is even and n is odd,

m

√
2m+1
2m−1 if m is odd, n is even and m > n + 1,

m

√
2m−1
2m−3 if m is odd and n = m − 1.

Remark 9.1 On Theorem 9.10, notice that if we consider .n = 1, then we have
Bernstein’s function and Markov’s constant for the space .P2(R) (see Sect. 2.1)
which are given, respectively, by

.

{
1

1−|x| if 0 ≤ |x| ≤ 1
2 ,

4|x| if |x| ≥ 1
2 ,

and

.4,

with equality attained for the polynomials

.P(x) = ±(1 − 2x2).

Theorem 9.11 (Muñoz et al. [46]) Take .P(2�) (see Sect. 4.1). The Markov con-
stant for the inequality

.‖DP(x, y)‖�2 ≤ �(x, y)‖P ‖�

is given by

.2
√
10

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 6xy + y2).

The Bernstein function for the inequality

.‖DP(x, y)‖� ≤ �(x, y)‖P ‖�

is given by
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.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|2x − 6y| if x = 0 or x �= 0 and
( y

x
≤ −1 or y

x
≥ 2

)
,∣

∣
∣2x + 2y + y2

x

∣
∣
∣ if x �= 0 and y

x
∈ [1, 2],

∣
∣
∣2x + 2y + x2

y

∣
∣
∣ if y �= 0 and x

y
∈ [1, 2],

|6x − 2y| if y = 0 or y �= 0 and
(

x
y

≤ −1 or x
y

≥ 2
)
.

The Markov constant is given by 6 and equality is attained for the polynomials

.P(x, y) = ±(x2 − 6xy + y2).

Theorem 9.12 (Gámez et al. [23]) Take .P(2�) (see Sect. 4.2). The Bernstein
function for the inequality

.‖DP(x, y)‖�2 ≤ M(x, y)‖P ‖�
is given by

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√

24y4+12x2y2+x4+x(8y2+x2)
3
2

8y2
if 0 < α0x ≤ y ≤ x,

√

24x4+12x2y2+y4+y(8x2+y2)
3
2

8x2
if 0 < x ≤ y ≤ x

α0
,

√
13x2 − 24xy + 13y2 otherwise,

where .α0 is the unique root of the equation

.80α4 − 192α3 + 92α2 − 1 = (8α2 + 1)
3
2

in the interval .
[
3−√

5
2 , 12−3

√
3

13

]
. The Markov constant is given by

.
√
13

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 3xy + y2).

The Bernstein function for the inequality

.‖DP(x, y)‖� ≤ �(x, y)‖P ‖�
is given by
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.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x − 2y if 0 ≤ y ≤ (
√
2 − 1)x,

5
2x − y + y2

2x if x �= 0 and (
√
2 − 1)x ≤ y ≤ 1

2x,

2x + y2

2x if x �= 0 and 1
2x ≤ y ≤ x,

2y + x2

2y if y �= 0 and x ≤ y ≤ 2x,

5
2y − x + x2

2y if y �= 0 and 2x ≤ y ≤ (
√
2 + 1)x,

3y − 2x if (
√
2 + 1)x ≤ y ≤ 1.

The Markov constant is given by .3 and equality is attained for the polynomials

.P(x, y) = ±(x2 − 3xy + y2).

Theorem 9.13 (Araújo et al. [2]) Take .P (
2D

(
π
4

))
(see Sect. 4.3). The Bernstein

function for the inequality

.‖DP(x, y)‖�2 ≤ �(x, y)‖P ‖D(π
4 )

is given by

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4
[(

13 + 8
√
2
)

x2 +
(
69 + 48

√
2
)

y2 − 2
(
28 + 20

√
2
)

xy
]

if (a),

x2

y2
+ 4

(
x2 + y2

)
if (b),

(
3x2−2xy+3y2

)2

2(x−y)2
if (c),

where

(a) .0 ≤ y ≤
√
2−1
2 x or .

(
4
√
2 − 5

)
x ≤ y ≤ x,

(b) .

√
2−1
2 x ≤ y ≤

(√
2 − 1

)
x,

(c) .

(√
2 − 1

)
x ≤ y ≤

(
4
√
2 − 5

)
x.

The Markov constant is

.4
(
13 + 8

√
2
)

and equality is attained for the polynomials

.P(x, y) = ±(x2 + (5 + 4
√
2)y2 − 4(1 + √

2)xy).

The Bernstein function for the inequality

.‖DP(x, y)‖D(π
4 )

≤ �(x, y)‖P ‖D(π
4 )

is given by
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.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
2
[(

1 + 2
√
2
)

x −
(
3 + 2

√
2
)

y
]

if 0 ≤ y < 2
√
2−1
7 x,

√
2
(
x2+3y2

)

2y if 2
√
2−1
7 x ≤ y <

(√
2 − 1

)
x,

2
(
x + y2

x−y

)
if

(√
2 − 1

)
x ≤ y <

(
2 − √

2
)

x,

4
(
1 + √

2
)

y − 2x if
(
2 − √

2
)

x ≤ y ≤ x.

The Markov constant is given by

.4 + √
2

and equality is attained for the polynomials

.P(x, y) = ±(x2 + (5 + 4
√
2)y2 − 4(1 + √

2)xy).

Theorem 9.14 (Jiménez et al. [34]) Take .P (
2D

(
π
2

))
. The Bernstein function for

the inequality

.‖DP(x, y)‖�2 ≤ 	(x, y)‖P ‖D(π
2 )

is given by

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√

16 (x − y)2 + 4
(
x2 + y2

)
if 0 ≤ y ≤ x

2 ,
√

x4

y2
+ 4

(
x2 + y2

)
if 0 < x

2 < y ≤ x,
√

y4

x2
+ 4

(
x2 + y2

)
if 0 < x < y ≤ 2x,

√

16 (y − x)2 + 4
(
x2 + y2

)
if 2x < y ≤ 1.

The Markov constant is given by .2
√
5 and equality is attained for the polynomials

.P(x, y) = ±(x2 + y2 − 4xy).

The Bernstein function for the inequality

.‖DP(x, y)‖D(π
2 )

≤ �(x, y)‖P ‖D(π
2 )

is given by

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(2x − y) if 0 ≤ y < x
2 ,

2
(
y + x2

2y

)
if x

2 ≤ y < x,

2
(
x + y2

2x

)
if x ≤ y < 2x,

2(2y − x) if y ≥ 2x.
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The Markov constant is given by 4 and equality is attained for the polynomials

.P(x, y) = ±(x2 + y2 − 4xy).

Theorem 9.15 (Jiménez et al. [34]) On .P(2�2p) for .p ∈ {1, 2,∞} (see
Sects. 4.3, 5.1, and 5.2), the Markov constant in the inequality

.‖DP(x, y)‖�2p
≤ �(x, y)‖P ‖�2p

is

(i) 4 if .p = 1,
(ii) 2 if .p = 2,
(iii) .2

√
2 if .p = ∞.

9.2 Polarization Constants

It is easy to see just by the definition of the norms defined on .P(nX) and .Ls(
nX)

that: for every .P ∈ P(nX),

.‖P ‖ ≤ ‖L‖,

where L is the polar of P . But furthermore, the converse is also true, i.e., there exists
.C ≥ 1 such that .‖L‖ ≤ C‖P ‖. In particular, we have the following result that can
be applied for any normed space X.

Theorem 9.16 (Martin [42]) Let X be a normed space. If .P ∈ P(nX), then

.‖P ‖ ≤ ‖L‖ ≤ nn

n! ‖P ‖,

where L is the polar of P .

Notice that throughout this survey we have considered the norm over the space
of n-homogeneous polynomials to be, not only defined over the unit ball of a certain
normed space, but also over a convex body of a normed space. To be more precise,
let X be a normed space and take .C a convex body in X. We define the following
norm over the space of continuous n-homogeneous polynomials of X: for every
continuous n-homogeneous polynomial P ,

.‖P ‖C = sup{|P(x)| : x ∈ C};

and we also define the following norm over the space of symmetric n-linear forms
of X: for every symmetric n-linear form L,
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.‖L‖C = sup{|L(x1, . . . , xn)| : xi ∈ C, for every i ∈ {1, . . . , n}}.

Notice that the condition “every continuous n-homogeneous polynomial P has a
unique continuous symmetric n-linear form L (the polar of P ) such that .P(x) =
L(x, . . . , x)” is purely algebraic. Therefore, it does not depend on the topology
that we consider over the space of n-homogenous polynomials or over the space of
symmetric n-linear forms.

It is easy to see by the definition of the above norms that .‖P ‖C ≤ ‖L‖C.
However, the reverse inequality as in Martin’s Theorem is not true as it can be seen
later on. Furthermore, there is not yet an analogous version of Martin’s Theorem
when the norm is defined over an arbitrary convex body. Thus it is still an open
problem to find a result similar to the one of Martin’s Theorem when we consider
the norm defined over other convex bodies apart from the unit ball of X.

We are able to define now what is known as the n-polarization constant of a
space of continuous n-homogeneous polynomials on a convex body. Let X be a
normed space and .C ⊂ X a convex body. Let .P(nC) be the space of n-homogeneous
polynomials on X bounded on .C endowed with the norm defined by

.‖P ‖C = sup{|P(x)| : x ∈ C}.

Similarly, if L is the polar of .P ∈ P(nC) we define

.‖L‖C = sup{|L(x1, . . . , xn)| : x1, . . . , xn ∈ C}.

We define the n-polarization constant .cpol(P(nC)) of .P(nC) as the following value:

. inf
{
K : ‖L‖C ≤ K‖P ‖C, where P ∈ P(nC) and L is the polar of P

}
.

Furthermore, assume that there exists .P ∈ P(nC) such that

.‖L‖C = cpol(P(nC))‖P ‖C,

where L is the polar of P , then we say that P is an extremal polynomial for
.cpol(P(nC)).

The following results show the known exact values of the polarization constants
of the spaces of homogeneous polynomials that have been dealt with in this survey
(most of them use the Krein-Milman approach, specially those whose norm involve
convex bodies different from the unit ball).

Theorem 9.17 (Muñoz et al. [46]) If .� is the simplex defined in Sect. 4.1, then
.cpol(P(2�)) = 3. Furthermore, .P(x, y) = ±(x2 + y2 − 6xy) are extremal
polynomials for .cpol(P(2�)).

Proof The result follows from the Markov constant in Theorem 9.11 for the
inequality .‖DP(x, y)‖� ≤ �(x, y)‖P ‖� since
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.DP(x, y)(u, v) = 2L((x, y), (u, v))

for all .(x, y), (u, v) ∈ R
2 and where L is the polar of P . �

Theorem 9.18 (Gámez et al. [23]) If .� is the unit square defined in Sect. 4.2,
then .cpol(P(2�)) = 3

2 . Furthermore, .P(x, y) = ±(x2 + y2 − 3xy) are extremal
polynomials for .cpol(P(2�)).

Theorem 9.19 (Araújo et al. [2]) If .D
(

π
4

)
is the circular sector defined in

Sect. 4.3, then .cpol
(P (

2D
(

π
4

))) = 2 +
√
2
2 . Furthermore, .P(x, y) = ±(x2 + (5 +

4
√
2)y2 − (4 + 4

√
2)xy) are extremal polynomials for .cpol

(P (
2D

(
π
4

)))
.

Theorem 9.20 (Jiménez et al. [34]) If .D
(

π
2

)
is the circular sector defined in

Sect. 4.3, then .cpol
(P (

2D
(

π
2

))) = 2. Furthermore, .P(x, y) = ±(x2 + y2 − 4xy)

are extremal polynomials for .cpol
(P (

2D
(

π
2

)))
.

Theorem 9.21 (Sarantopoulos [53]) Let .1 ≤ p ≤ ∞. We have .cpol
(
P
(
2�2p

))
=

2
|p−2|
2 (see Sect. 5). Furthermore, .P(x, y) = ±(x2 − y2) are extremal polynomials

for .cpol
(
P
(
2�2p

))
.

Remark 9.2 It is important to mention that, although we know the extreme poly-
nomials on the spaces .�2p, the proof of Theorem 9.21 in [53] does not use the
Krein-Milman approach but a direct approach. It involves obtaining a sharper bound
C than that of Martin’s bound for every polynomial and then finding a polynomial
P such that .‖L‖C = C‖P ‖C, where L is the polar of P .

An interesting question started by Harris in 1975 related to polarization constants
for polynomials on .�p spaces states that, in a complex setting we have

.cpol(P(n�n∞(C))) ≤ n
n
2 (n + 1)

n+1
2

2nn! .

For the previous estimate consult [32] or [20] for a more modern and accessible

exposition. The question as to whether .cpol(P(n�n∞(C))) = n
n
2 (n+1)

n+1
2

2nn! remains
unsolved nowadays.

Theorem 9.22 (Kim [37]) Let .w ∈ (0, 1).

(a) If .w ≤ √
2 − 1, then .cpol

(
P
(
2O2

w

))
= 2

(
1+w2

)

(1+w)2
(see Sect. 6.1). Furthermore,

.P(x, y) = ±
(

4
(1+w)2

xy
)
are extremal polynomials for .cpol

(
P
(
2O2

w

))
.

(b) If .
√
2 − 1 < w, then .cpol

(
P
(
2O2

w

))
= 1 + w2. Furthermore, .P(x, y) =

± (
x2 − y2

)
are extremal polynomials for .cpol

(
P
(
2O2

w

))
.
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Theorem 9.23 (Kim [39]) Let .w = 1
2 . We have .cpol

(
P
(
2H2

1/2

))
= 5

4 (see

Sect. 6.2). Furthermore,

.P(x, y) = ±
(
x2 − y2

)

and

.Q(x, y) = ±
(
3

4
x2 − 5

16
y2 ± 7

4

)

are extremal polynomials for .cpol
(
P
(
2H2

1/2

))
.

9.3 Unconditional Constants

Let us denote by .xα the monomial

.x
α1
1 · · · xαm

m ,

where .x = (x1, . . . , xm) ∈ K
m (.K = R or .C) and .α = (α1, . . . , αm) with .αk ∈ N ∪

{0} for every .k ∈ {1, . . . , m}. For .P(x) = ∑
|α|≤n aαxα (where .|α| = α1+· · ·+αm)

a polynomial of degree n on .K
m, we define the modulus .| · | of P by .|P |(x) =∑

|α|≤n |aα|xα . If .C is a convex body in .R
m, we denote by .P(nC) the space of n-

homogeneous polynomials on .R
m endowed with the norm .‖P ‖C (see Sect. 9.2). Let

.Bn = {xα : |α| ≤ n} be the canonical basis of .P(nC). The unconditional constant
of .Bn is equal to the best possible constant C (denoted by .Cunc(P(nC))) in the
inequality

.‖|P |‖C ≤ C‖P ‖C.

The following results show all the exact values of the unconditional constants that
are known of the spaces that have been presented on this survey.

Theorem 9.24 (Grecu et al. [30]) If .m, n ∈ N with .m > n, then

.Cunc(Pm,n,∞(R)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 if m and n have different parity,

1 + 4
m−n

(
mm

nn

) 1
m−n

if m and n are even,
n−λ0m
n+λ0m

if m and n are odd,

(see Sect. 3.1) where .λ0 comes from Theorem 3.1, and equality is attained for the
polynomials
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.P(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

±(2xm − 1),

±(−γ0x
m + γ0x

n + 1) where γ0 = − 2
m−n

·
(

mm

nn

) 1
m−n

,

±
(

nxm

n+mλ0
− m|λ0|xn

n+mλ0

)
,

respectively.

Remark 9.3 (Grecu et al. [30]) In Theorem 9.24 it can be seen that for every .k ∈ N

with .k > 1 and every .n ∈ N even we have

.Cunc(Pkn,n,∞(R)) = 1 + 4

k − 1
· k

k
k−1 ,

which is independent of n.

Theorem 9.25 (Grecu et al. [30]) On the space .P(2�) (see Sect. 4.1) we have

.Cunc(P(2�)) = 2

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 6xy + y2).

Theorem 9.26 (Gámez et al. [23]) On the space .P(2�) (see Sect. 4.2) we have

.Cunc(P(2�)) = 5

and equality is attained for the polynomials

.P(x, y) = ±(x2 − 3xy + y2).

Theorem 9.27 (Gámez et al. [23]) On the space .P (
2D

(
π
4

))
(see Sect. 4.3) we

have

.Cunc

(
P
(
2D

(π

4

)))
= 5 + 4

√
2

and equality is attained for the polynomials

.P(x, y) = ±(x2 + (5 + 4
√
2)y2 − (4 + 4

√
2)xy)).

Theorem 9.28 (Jiménez et al. [34]) On the space .P (
2D

(
π
2

))
we have

.Cunc

(
P
(
2D

(π

4

)))
= 3
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and equality is attained for the polynomials

.P(x, y) = ±(x2 + y2 − 4xy).

Theorem 9.29 (Grecu et al. [30]) On the spaces .P(2�21), .P(2�22) and .P(2�2∞) (see
Sects. 4.3, 5.1, and 5.2) we have, respectively, the unconditional constants given by

.

⎧
⎪⎪⎨

⎪⎪⎩

1+√
2

2 ,√
2,

1 + √
2,

with equality attained for the polynomials

.

⎧
⎪⎪⎨

⎪⎪⎩

±
√
2
2 (x2 − y2) ± (2 + √

2)xy,

±(x2 + y2 + 2xy),

2+√
2

4 (x2 − y2) ±
√
2
2 xy,

respectively.

Proof We will prove the result for the space .P(2�21) since the other cases can be
done analogously. By Theorem 5.2, we know that the extreme polynomials of the
unit ball of .P(2�21) are

(a) .P(x, y) = ±x2 ± y2 ± 2xy,

(b) .P(x, y) = ±
√

4|t |−t2

2 (x2 − y2) + txy, where .|t | ∈ (2, 4].
Notice that if P is as in (a), then .‖|P |‖�21

= ‖P ‖�21
= 1. Hence, it is enough to

consider polynomials of type (b). If P is as in (b), then P attains its norm in .�21 at

.

(
1
2 ,

1
2

)
. Thus,

.Cunc(P
(
2�21

)
) = sup

⎧
⎨

⎩

∥
∥
∥
∥
∥

√
4|t | − t2

2
(x2 + y2) + |t |xy

∥
∥
∥
∥
∥

�21

: |t | ∈ (2, 4]
⎫
⎬

⎭

= sup

⎧
⎨

⎩

∥
∥
∥
∥
∥

√
4s − s2

2
(x2 + y2) + sxy

∥
∥
∥
∥
∥

�21

: s ∈ (2, 4]
⎫
⎬

⎭

= sup

{√
4s − s2 + s

4
: s ∈ (2, 4]

}

= 2 + √
2.

�
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Theorem 9.30 (Araújo et al. [2]) Let .1 < p < ∞ with .p �= 2 and take .P(2�2p)

(see Sects. 5.3 and 5.4). Let us define the function

.f (α) =
2

p−2
p

[
α(1 − αp)

(
α − (1 − αp)

1
p

)
+ αp (1 − αp)

1
p

(
α + (1 − αp)

1
p

)]

α (1 − αp)
1
p

(
α2 + (1 − αp)

2
p

)

and set .Mf = sup
{
f (α) : α ∈

[
2− 1

p , 1
]}

, we have that .Cunc(P(2�2p)) = Mf .

Theorem 9.31 (Kim [37]) Let .0 < w < 1.

(a) If .w ≤ √
2 − 1, then .cunc

(
P
(
2O2

w

))
= 1+w2+√

2(1+w4)
(1+w)2

(see Sect. 6.1) and

equality is attained for the polynomials .P(x, y) = ±
(

4
(1+w)2

xy
)
.

(b) If .
√
2 − 1 < w, then .cunc

(
P
(
2O2

w

))
= 1+w2+

√
(1+w2)2+4w2

2 and equality is

attained for the polynomials

.P(x, y) = ±(αx2 − αy2 ± √
α(1 − α)xy),

where .α = 1
2 + 1+w2

2
√

(1+w2)2+4w2
.

Theorem 9.32 (Kim [39]) Let .w = 1
2 . Then, .cunc

(
P
(
2H2

1/2

))
= 3

2 (see Sect. 6.2)

and equality is attained for the polynomials .P(x, y) = ±
(
x2 + 1

4y
2 + xy

)
and

.Q(x, y) = ±
(
x2 + 3

4y
2 + xy

)
.

9.4 Bohnenblust–Hille and Hardy–Littlewood Constants

We begin by considering the following constants which are closely related to
the Bohnenblust–Hille and Hardy–Littlewood constants as we will see. Let .α =
(α1, . . . , αn) with .n ∈ N and let us consider the standard notation .|α| = |α1| +
· · · + |αn|. Let .P(mKn) denote the vector space of m-homogeneous polynomials on
.K

n (where .K = R or .C). Notice that if .P ∈ P(mKn), then P can be written as

.P(x) =
∑

|α|=m

aαxα,

where .aα ∈ K and .xα = x
α1
1 · · · xαn

n for .x = (x1, . . . , xn) ∈ K
n. If .| · | is a norm on

.K
n, then .| · | induces a norm on .P(mKn) called the polynomial norm and it is given

by
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.‖P ‖ = sup{|P(x)| : x ∈ BX},

where .BX is the unit ball of the normed space .X = (Kn, | · |). The space .P(mKn)

endowed with the polynomial norm is denoted by .P(mX). Besides the polynomial
norm, there are other interesting norms on .P(mKn) such as the .�q -norms on the
coefficients, i.e., if .P ∈ P(mKn) and .1 ≤ q ≤ ∞, then

.|P |q =
⎧
⎨

⎩

(∑
|α|=m |aα|q

) 1
q

if 1 ≤ q < ∞,

max{|aα| : |α| = m} if q = ∞.

Let us represent by .‖ · ‖p the polynomial norm of the space .P(m�n
p(K)), where

.1 ≤ p ≤ ∞. Since the space .P(mKn) is finite dimensional, we have that the norms

.| · |q and .‖ · ‖p (.1 ≤ q, p ≤ ∞) are equivalent, i.e., there exist .k,K > 0 such that

.k‖P ‖p ≤ |P |q ≤ K‖P ‖p,

for any .P ∈ P(mKn). Notice that the unit balls of the spaces .(P(mKn), | · |q) and
.P(m�n

p(K)), denoted by .B|·|q and .B‖·‖p , respectively, satisfy that the mapping .B|·|q �
P → ‖P ‖p is bounded by .

1
k
and the mapping .B‖·‖p � P → |P |q is bounded by K .

Moreover, the continuity of such mappings and the compactness of .B|·|q and .B‖·‖p

satisfy the following maxima.

Definition 9.1 Let .1 ≤ q, p ≤ ∞. We define the following constants

.km,n,q,p = 1

max
{‖P ‖p : P ∈ B|·|q

} ,

Km,n,q,p = max
{|P |q : P ∈ B‖·‖p

}
.

From now on, we are interested in calculating the exact values of .km,n,q,p and
.Km,n,q,p when we are considering polynomials whose coefficients are real numbers
(we will consider real polynomials and complex polynomials with real coefficients
separately). To do so, we will be applying the Krein-Milman approach to the
mappings .B|·|q � P → ‖P ‖p and .B‖·‖p � P → |P |q . Hence, we will need, for
instance, the extreme points of the unit ball .B|·|q . It is well known that the extreme
points of .B|·|q are

.

⎧
⎪⎪⎨

⎪⎪⎩

{±ek : 1 ≤ k ≤ m + 1} if q = 1,
{∑m+1

k=1 εkek : εk = ±1
}

if q = ∞,

S|·|q if 1 < q < ∞,

where .{e1, . . . , em+1} stands for the canonical basis of .R
m+1 and .S|·|q is the unit

sphere of .(Rm+1, | · |q).



126 9 Applications

The above problem is an extension of the polynomial Bohnenblust–Hille and
Hardy–Littlewood constants problem. The m-Bohnenblust–Hille constant for poly-
nomials is, in fact, an upper bound on .K

m,n, 2m
m+1 ,∞. It was proved in [8] that if

.q ≥ 2m
m+1 , then there exists a constant .Dm,q > 0 depending only on m and q such

that

.|P |q ≤ Dm,q‖P ‖∞,

for any .P ∈ P(m�n∞(K)) and every .n ∈ N. Furthermore, any constant in the latter
inequality for .q < 2m

m+1 depends necessarily on n. By construction, notice that any
viable choice of .Dm,q satisfies .Dm,q ≥ sup{Km,n,q,∞ : n ∈ N}. This construction
allows us to define the Bohnenblust-Hille constants depending on the field (.R or .C)
since there are substantial differences.

Definition 9.2 The m-Bohnenblust-Hille constant for polynomials on .K is defined
as

.DK,m = inf
{
Dm : |P | 2m

m+1
≤ Dm‖P ‖∞, for all n ∈ N and P ∈ P(m�n∞(K))

}
.

If .n ∈ N is fixed, then we define .(m, n)-Bohnenblust-Hille constant for polynomials
on .K as

.DK,m(n) = inf
{
Dm(n) : |P | 2m

m+1
≤ Dm(n)‖P ‖∞, for all P ∈ P(m�n∞(K))

}
.

Also, if we consider a subset E of .P(m�n∞(K)) for some .n ∈ N, then we define the
.(m,E)-Bohnenblust-Hille constant for polynomials on .K as

.DK,m(E) = inf
{
Dm(E) : |P | 2m

m+1
≤ Dm(E)‖P ‖∞, for all P ∈ E

}
.

It is easy to see that

.1 ≤ DK,m(n) ≤ DK,m,

for all .n ∈ N. A similar result to that of Bohnenblust-Hille for values of p different
from .∞ can also be obtained. The proofs of the following results can be found in
[1, 18]. There exist constants .Cm,p and .Dm,p independent of n such that

.|P | p
p−m

≤ Cm,p‖P ‖p for m < p ≤ 2m,

|P | 2mp
mp+p−2m

≤ Dm,p‖P ‖p for 2m ≤ p ≤ ∞,

for all .P ∈ (m�n
p(K)) and every .n ∈ N. If .p = ∞, then we simply put . 2mp

mp+p−2m =
2m

m+1 . Moreover, the exponents .
p

p−m
for .m < p ≤ 2m and .

2mp
mp+p−2m for .2m ≤ p ≤
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∞ are optimal in the sense that any constant H that satisfies

.|P |q ≤ H‖P‖p,

for all .P ∈ (m�n
p(K)) depends necessarily on n. The above construction allows us

to define the following constants.

Definition 9.3 Let .m < p ≤ ∞. The .(m, p)-Hardy-Littlewood constant for
polynomials on .K is defined as

.CK,m,p = inf
{
Cm,p : |P | p

p−m
≤ Cm,p‖P‖p, for all n ∈ N and P ∈ P(m�n

p(K))
}

,

for .m < p ≤ 2m, and

.DK,m,p = inf

{

Dm,p : |P | 2mp
mp+p−2m

≤ Dm,p‖P‖p,

for all n ∈ N and P ∈ P(m�n
p(K))

}

,

for .2m ≤ p ≤ ∞. If .n ∈ N is fixed, then we define the .(m, n, p)-Hardy-Littlewood
constant for polynomials on .K as

.CK,m,p(n) = inf
{
Cm,p(n) : |P | p

p−m
≤ Cm,p(n)‖P‖p, for all P ∈ P(m�n

p(K))
}

,

for .m < p ≤ 2m, and

.DK,m,p(n) = inf
{
Dm,p(n) : |P | 2mp

mp+p−2m
≤ Dm,p(n)‖P‖p,

for all P ∈ P(m�n
p(K))

}
,

for .2m ≤ p ≤ ∞. Also, if we consider a subset E of .P(m�n∞(K)) for some .n ∈ N,
then we define

.CK,m,p(E) = inf
{
Cm,p(E) : |P | p

p−m
≤ Cm,p(E)‖P‖p, for all P ∈ P(mE)

}
,

for .m < p ≤ 2m, and

.DK,m,p(E) = inf

{

Dm,p(E) : |P | 2mp
mp+p−2m

≤ Dm,p(E)‖P‖p, for all P ∈ P(mE)

}

for .2m ≤ p ≤ ∞.
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Notice that .DK,m = DK,m,∞. So essentially the Hardy-Littlewood constants
are in fact a generalization of the Bohnenblust-Hille constants. But furthermore, the
constants .Km,n,q,p are also a generalization of the Hardy-Littlewood constants since
.CK,m,p(n) = Km,n,

p
p−m

,p for .m < p ≤ 2m and .DK,m,p(n) = K
m,n,

2mp
mp+p−2m ,p

for

.2m ≤ p ≤ ∞. Hence we have

.

⎧
⎪⎨

⎪⎩

CK,m,p ≥ sup
{
Km,n,

p
p−m

,p : n ∈ N

}
for m < p ≤ 2m,

DK,m,p ≥ sup

{

K
m,n,

2mp
mp+p−2m ,p

: n ∈ N

}

for 2m ≤ p ≤ ∞.

This section is about providing some of the constants .km,n,q,p, .Km,n,q,p, and in
particular, the Hardy-Littlewood and Bohnenblust-Hille constants, that have been
obtained through the Krein-Milman approach.

9.4.1 On the Complex Case

Assume that .K = C.

Theorem 9.33 (Jiménez et al. [33]) Let .ER be the real subspace of .P(2�2∞(C))

given by .{az2 + bw2 + czw : (a, b, c) ∈ R
3}. We have

.DC,2(ER) = DC,2(2) = 4

√
3

2

with extremal polynomials

.P(x, y) = ±
(√

3

6
z2 −

√
3

6
w2 ±

√
2

3
zw

)

.

9.4.2 On the Real Case

Assume that .K = R. All the results that are presented have been obtained for the
cases when .m = n = 2.

Theorem 9.34 (Jiménez et al. [33]) Let .f :
[
1
2 , 1

]
→ R be given by

.f (t) =
[

2t
4
3 +

(
2
√

t (1 − t)
) 4

3
] 3

4

.

We have
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.DR,2(2) = f (t0),

where

.t0 = 1

36

(

2
3
√

107 + 9
√
129 + 3

√

856 − 72
√
129 + 16

)

.

In particular, the exact value of .f (t0) is given by

. (A + B)
3
4 ,

where

.A =
(
2

3
√
107 + 9

√
129 + 3

√
856 − 72

√
129 + 16

) 4
3

186
2
3

and

.B = 1

9

⎛

⎝− 3

−2
3
√

107+9
√
129+

(
107+9

√
129

) 2
3 −2

3
√

107−9
√
129+

(
107−9

√
129

) 2
3 −60

⎞

⎠

2
3

.

Moreover, the following polynomials are extremal

.P(x, y) = ±
(
t0x

2 − t0y
2 ± 2

√
t0(1 − t0)xy

)
.

Theorem 9.35 (Araújo et al. [3]) If .q, p ∈ {1,∞}, then

.k2,2,q,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if q = p = 1,

1 if q = 1 and p = ∞,

1 if q = ∞ and p = 1,
1
3 if q = p = ∞,

with extremal polynomials given, respectively, by

.P1,1(x, y) = ±x2, ±y2,

P1,∞(x, y) = ±x2, ±y2, ±xy,

P∞,1(x, y) = ±x2 ± y2 ± xy,

P∞,∞(x, y) = ±(x2 + y2 ± xy).
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Theorem 9.36 (Araújo et al. [3]) If .q, p ∈ {1,∞}, then

.K2,2,q,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + 2
√
2 if q = p = 1,

1 + √
2 if q = 1 and p = ∞,

4 if q = ∞ and p = 1,

1 if q = p = ∞,

with extremal polynomials given, respectively, by

.P1,1(x, y) = ±
√
2

2
(x2 − y2) + (2 + √

2)xy,

P1,∞(x, y) = ±
(
2 + √

2

4
x2 − 2 + √

2

4
y2 ±

√
2

2
xy

)

,

P∞,1(x, y) = ±4xy,

P∞,∞(x, y) = ±x2, ±y2, ±
(
1

2
x2 − 1

2
y2 ± xy

)

.

Theorem 9.37 (Araújo et al. [3]) For every .q ∈ [1,∞), let .fq,1 : [2, 4] → R and

.fq,∞ :
[
1
2 , 1

]
→ R be given by

.fq,1(t) =
(
21−q(4t − t2)

q
2 + tq

) 1
q

,

fq,∞(t) =
(
2tq + 2q(t − t2)

q
2

) 1
q

.

We have

.K2,2,q,1 = max
{
fq,1(t) : t ∈ [2, 4]} ,

K2,2,q,∞ = max

{

fq,∞(t) : t ∈
[
1

2
, 1

]}

.

In particular, .K2,2,q,1 = 4 and .K2,2,q,∞ = 2
1
q for every .q ≥ 2, with extremal

polynomials given, respectively, by

.Pq,1(x, y) = ±4xy,

Pq,∞(x, y) = ±(x2 − y2).

Remark 9.4 (Araújo et al. [3]) The exact value of the maximum of the functions
.fq,1 and .fq,∞ or the points of attainment of the maximum seems to be a much
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harder task. However, by using the symbolic calculus tool of MATLAB, we are able
to obtain the exact values where the functions reach its maximum for certain values
of q. For instance, for .q = 4

3 , the maximum of .fq,1(t) and .fq,∞(t) is attained at

.t = 1

9

(

2
3
√

181 + 9
√
273 + 3

√

1448 − 72
√
273 + 14

)

.

and

.t = 1

36

(

2
3
√

107 + 9
√
129 + 3

√

856 − 72
√
129 + 16

)

,

respectively. Also, for .q = 3
2 , the maximum of .fq,1(t) is attained at

.t = 1

15

⎛

⎝
√
6 (A + 24) +

√
√
√
√6

(

−A + 204

√
6

A + 24
+ 48

)

+ 18

⎞

⎠ ,

where

.A = −10 · 32/3 3

√
2

9 + √
93

+ 5 · 22/3 3

√

3
(
9 + √

93
)
.

And also for .q = 3
2 , the maximum of .fq,∞(t) is attained at

.t = 1

20

√
B + 1

2

√
C + D + 9

20
,

where

.B = 10
3
√
9 + √

273

32/3
− 40

3

√

3
(
9 + √

273
) + 1,

.C = −
3
√
9 + √

273

10 · 32/3 + 1

50
+ 2

5 3

√

3
(
9 + √

273
)

and

.D = 40

50

√
√
√
√

10
3
√

9+√
273

32/3
− 40

3
√

3
(
9+√

273
) + 1

.



132 9 Applications

Theorem 9.38 (Araújo et al. [3]) If .p ∈ (1,∞), then

.k2,2,q,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if q = 1,

2
2
p

3 if q = ∞ and p ≥ 4
3 ,

1

max

{

x2+(1−xp)
2
p +x(1−xp)

1
p : x∈[0,1]

} if q = ∞ and 1 < p < 4
3 ,

with extremal polynomials given, respectively, by

.P1,p(x, y) = ±x2, ±y2,

P∞,p(x, y) = ±
(
x2 + y2 + xy

)
,

Q∞,p(x, y) = ±
(
x2 + y2 + xy

)
.

Theorem 9.39 (Araújo et al. [3]) For every .q ≥ 1 and .p ≥ 2, let .fq,p : [0, 1] →
R be given by

.fq,p(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
2(1 − s)

q
2 + 2qs

q
2

) 1
q

if p = 2,
{

2|1−2s|q+2q

[

(1−s)
1− 1

p s
1
p +(1−s)

1
p s

1− 1
p

]q} 1
q

(1−s)
2
p +s

2
p

if p �= 2.

We have

.K2,2,q,p = max
{
fq,p(t) : t ∈ [0, 1]} .

See also [13] in connection to the previous result.

Corollary 9.2 (Araújo et al. [3]) For .4 ≤ p ≤ ∞, we have

.DR,2,p(2) = K2,2, 4p
3p−4 ,p

= max
s∈

[
0, 12

]

{

2|1 − 2s| 4p
3p−4 + 2

4p
3p−4

[
(1 − s)

1− 1
p s

1
p + (1 − s)

1
p s

1− 1
p

] 4p
3p−4

} 3p−4
4p

(1 − s)
2
p + s

2
p

.

Theorem 9.40 (Araújo et al. [3]) If .q > 1, then
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.K2,2,q,2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 if q ≥ 2,

2

(

1+2
1

q−2

) 1
q

(

1+2
2(q−1)
q−2

) 1
2

if 1 < q < 2,

with extremal polynomials given by

.Pq,2(x, y) =
⎧
⎨

⎩

±(x2 − y2) if q ≥ 2,

±
(

a0x
2 − a0y

2 + 2
√

1 − a20xy

)

if 1 < q < 2,

where .a0 =
(

1 + 2
2(1−q)
q−2

)− 1
2

.

Theorem 9.41 (Araújo et al. [3]) If .q, p > 2, then

.K2,2,q,p = 2
max

{
1
q
, 2
p

}

.

If .fq,p is as in Theorem 9.39 and .q, p > 2, then the following polynomials are
extremal

.Pq,p(x, y) =
{

±2
2
p xy if q ≥ p

2 ,

±(x2 − y2) if q <
p
2 .

Corollary 9.3 (Araújo et al. [3]) If .p ≥ 2, then

.K2,2,∞,p = 2
2
p

with extremal polynomials given by

.P∞,p(x, y) =
{

±(x2 − y2) if p = 2,

±2
2
p xy if p > 2.

Corollary 9.4 (Araújo et al. [3]) For .2 < p ≤ 4, we have

.CR,2,p(2) = K2,2, p
p−2 ,p = 2

2
p .

It is important to mention that Corollary 9.4 was first proven in [13].
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Corollary 9.5 (Araújo et al. [3]) We have

.DR,2,4(2) = CR,2,4(2) = K2,2,4,p = √
2

with all extremal polynomials given by

.P(x, y) = ±(x2 − y2),

Q(x, y) = ±
(
(α2 − β2)(x2 − y2) + 2αβxy

)
,

with .α, β ≥ 0 and .α4 + β4 = 1.

Theorem 9.42 (Araújo et al. [3]) For .p > 2, let .f1,p :
[
0, 1

2

]
→ R be defined by

.f1,p(s) =
2(1 − 2s) + 2

[
(1 − s)

1− 1
p s

1
p + (1 − s)

1
p s

1− 1
p

]

(1 − s)
2
p + s

2
p

.

We have

.K2,2,1,p = sup

{

f1,p(t) : t ∈
[

0,
1

2

]}

.

Remark 9.5 (Araújo et al. [3]) The exact calculation of the above supremum seems
to be a harder task. However, by using the symbolic calculus tool of MATLAB, we
can obtain the exact value of the supremum of .f1,p(t) as well as the point where it
attains its maximum for certain values of p. For .p = 4, the function .f1,4(t) attains

its maximum on .

[
0, 1

2

]
at .t = 3−2

√
2

6 and, therefore, .K2,1,4 = √
6.
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