)

Check for
updates

Towards a General Model for Intrusion
Detection: An Exploratory Study

Tommaso Zoppi(g) , Andrea Ceccarelli®, and Andrea Bondavalli

Department of Mathematics and Informatics, University of Florence, Viale Morgagni 65,
50142 Florence, Italy

tommaso.zoppi@unifi.it

Abstract. Exercising Machine Learning (ML) algorithms to detect intrusions
is nowadays the de-facto standard for data-driven detection tasks. This activity
requires the expertise of the researchers, practitioners, or employees of companies
that also have to gather labeled data to learn and evaluate the model that will then
be deployed into a specific system. Reducing the expertise and time required to
craft intrusion detectors is a tough challenge, which in turn will have an enormous
beneficial impact in the domain. This paper conducts an exploratory study that aims
at understanding to which extent it is possible to build an intrusion detector that is
general enough to learn the model once and then be applied to different systems
with minimal to no effort. Therefore, we recap the issues that may prevent building
general detectors and propose software architectures that have the potential to
overcome them. Then, we perform an experimental evaluation using several binary
ML classifiers and a total of 16 feature learners on 4 public attack datasets. Results
show that a model learned on a dataset or a system does not generalize well as is to
other datasets or systems, showing poor detection performance. Instead, building
a unique model that is then tailored to a specific dataset or system may achieve
good classification performance, requiring less data and far less expertise from
the final user.

Keywords: Intrusion detection - General model - Transferability - Machine
learning - Feature learning

1 Introduction

“Unfortunately, we cannot claim validity of our results beyond the system/datasets used
in this study”. This statement appears quite frequently when discussing threats to validity
or when remarking lessons learned from an experimental study. At a first glance, it may be
seen as a defensive statement, which discourages the reader from applying the proposed
technique in systems other than those considered in the study. However, generalizing
the results of an experimental study is together one of the main goals and at the same
time one of the most difficult achievements of those studies.

In the security domain, this aspect is extremely relevant as most of the mitigations,
defenses, and detection mechanisms are tightly tailored to a specific system, domain or

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
1. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 186-201, 2023.
https://doi.org/10.1007/978-3-031-23633-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23633-4_14&domain=pdf
http://orcid.org/0000-0001-9820-6047
http://orcid.org/0000-0002-2291-2428
http://orcid.org/0000-0001-7366-6530
https://doi.org/10.1007/978-3-031-23633-4_14

Towards a General Model for Intrusion Detection 187

attack to defend against. More specifically, intrusion detectors are nowadays built [48] by
feeding Machine Learning (ML) with performance indicators that are being continuously
monitored and analyzed to spot anomalous behaviors due to ongoing attacks. Those
ML algorithms are typically binary classifiers, which aim at distinguishing between
normal and attack-related behavior by processing feature values. This has proven to
be very effective for detecting a wide variety of attacks, and in the last two decades
originated a huge amount of research papers and industrial applications [41-47] that
have the potential to improve security attributes of ICT systems. However, researchers
and practitioners have to craft intrusion detectors for specific systems, network interfaces
and attack models, to name a few.

As a result, intrusion detectors that may have excellent detection performance for
a given system will not have comparable detection performance when applied to dif-
ferent systems, network topologies or attack types. On the other hand, the availability
of ML algorithms that are more robust, accurate and that orchestrate ensembles of ML
algorithms themselves (i.e., meta-learners [14, 17]) may offer the opportunity to build
intrusion detectors that generalize well to (slightly) different systems or domains.

Therefore, this paper conducts an exploratory study to understand to what extent, and
under which assumptions, it is possible to craft intrusion detectors that have satisfying
detection performance and generalize well to different systems. We start by listing the
main threats to building general intrusion detectors according to the literature on the
domain. This paves the way for proposing two software architectures that rely either
on feature mapping or feature learning and that allow building intrusion detectors that
are as general as possible, and can potentially be trained once and used in different
systems with minimal effort. We then conduct an experimental campaign embracing 4
public attack datasets that have overlapping feature sets and that suit the evaluation of
both feature mapping and feature learning architectures for intrusion detection. Results
clearly show that it is not possible to build an intrusion detector that is general enough to
be trained once and then be applied to other systems or datasets with no effort, achieving
satisfying detection performance. Instead, it is possible to build a detector to be used as
a baseline and then tailored to the specific system, requiring minimal expertise and less
data with respect to creating a system/specific intrusion detector, but having comparable
detection performance.

The paper is structured as follows. Section 2 summarizes related works and the main
issues in building general intrusion detectors, letting Sect. 3 propose software architec-
tures for building general intrusion detectors. Section 4 expands on our experimental
campaign, whose results are elaborated in Sect. 5. Section 6 concludes the paper.

2 On Generalizing Intrusion Detectors

The traditional flow for deriving intrusion detectors [48] starts from identifying security
problems and collecting data to be used for learning models. Their performance is then
evaluated and compared against potential competitors, and then the detection system
is deployed and put into operation. This is a consolidated flow that has been proven
effective in many studies [41, 43-47].

188 T. Zoppi et al.

2.1 Motivation and Novelty of this Study

However, the intrusion detector created at the end of this process is system-specific,
meaning that it is meant to be effective only in a specific system, against specific attacks
and under specific additional assumptions (if any).

This forces the security specialist to start almost from scratch whenever they have a
new problem to deal with. Companies or research institutes often already have system
monitors that can be used to gather the values of performance indicators of a system
over a period of time; however, the collection process is time-consuming, and labeling
monitored data has even an higher cost. That is why in recent years there were studies
[2, 49] aimed at building intrusion detectors that are not system-specific and could
generalize to other datasets, requiring far less data and knowledge for training, evaluating
and deploying the detector. Both studies rely on two datasets with similar feature sets,
learn the model (supervised in [2], unsupervised in [49]) using one dataset, and test
their model on the other dataset. Authors agree that a model learned on a dataset cannot
perform detection in another one with good detection performance.

In this paper, we are interested in conducting an exploratory study that spans across
a wider range of software architectures that could potentially build general intrusion
detectors. According to studies [2, 49], we do not expect models learned on a dataset
to have excellent detection capabilities on other systems or datasets when used as they
are. Instead, we explore the extent to which is it possible to tailor an existing model to
a new dataset or system to perform intrusion detection satisfactorily, and the amount of
knowledge that is required to perform such tailoring. Should this knowledge be small
enough, this would require less expertise and save time (i.e., money) as it will allow
building intrusion detectors starting from a general baseline instead of starting every
time from scratch [48].

2.2 Issues in Generalizing Intrusion Detectors

Here we summarize the obstacles to building a general intrusion detector.

I1: Domain and Purpose of the System. It is widely acknowledged that modern ICT
systems can be targeted by attackers [25, 26]. There is significant evidence on the risk of
cyber-attacks, both in terms of the likelihood of being targeted and the cost and impact of
asuccessful attack. The number of computer security incidents has been steadily growing
over the past few years: in 2021, SonicWall [26] reported an average of 28 million cyber-
attacks detected daily, with 140 000 of them being novel malware samples. Starting from
2020, the European Union Agency for Cybersecurity (ENISA) observed a spike in non-
malicious incidents, most likely because the COVID-19 pandemic became a multiplier
for human errors and system misconfigurations, and attributed them as the root cause
for the majority of security breaches [25].

Towards a General Model for Intrusion Detection 189

Consequently, virtually any system connected to a public (but also private) net-
work should be willing to adopt an intrusion detector to ensure that appropriate security
requirements are met. From a theoretical standpoint, a general intrusion detector should
achieve satisfying detection performance when processing data from any domain, which
is clearly unfeasible in practice. However, there could be small constraints to be applied
and that allow building an intrusion detector with a wide (albeit not complete) range of
applicability.

12: Monitoring. Regardless of the purpose, type and domain of a system, it is not
possible to conduct intrusion detection without monitoring specific attributes, areas,
components or layers of the system itself. Monitoring activities collect the value of
performance indicators of a system at given time-instants or when specific events occur:
examples include memory usage [19, 20], the throughput of buses [20], and system calls
[21]. Also, those indicators can be gathered at hardware or low-level [22], system-level
[20, 21], input/sensor [24], environment [19], or even coding-level [23]. Specifically for
intrusion detectors, indicators to be monitored are usually related to network usage: this
reduces the uncertainty regarding where a specific indicator is going to be monitored.
Unfortunately, different network monitors may provide different indicators, or similar
indicators with different measure units or sampling process, which still complicates the
data analysis process.

I3: Feature Extraction and Learning. The baseline upon which intrusion detectors
learn how to assign the “normal” or “anomaly/attack” binary label to a data point depends
on the features, which are defined as “individual measurable properties or characteristics
of a phenomenon being observed” [17]. Feature values related to the state of the system
at a given instant build a data point: collections of data points are typically in the form
of tabular datasets. Each data point contains values for each feature engineered from
monitored system indicators. Additional attributes, called meta-features, can be further
extracted from the corresponding dataset during the process [18]. Not all features help
in distinguishing between normal or anomalous data points, whereas some of them may
just represent noise. The importance of a thorough understanding of the underlying data
and their features, as well as the produced results, is stressed in [1].

Learning complex features from the training dataset is of utmost importance, espe-
cially in deep learners that exercise a backbone [16] composed of convolutional and
pooling layers, and forward its outputs to the connected layers that learn how the value
of those features is linked to either normal or anomalous behavior due to attacks.

I4: Availability and Quality of Data. It is of no surprise that the amount [7] and noise
[9, 13] contained in training data heavily affect the model building and consequently the
whole detection task. Relying on a small training data set may result in underfitting [8] the
model: this means that the model was created using poor or insufficient knowledge and
will not be accurate nor general. In addition, data pre-processing (or the ML algorithm
itself) should minimize uncertainty due to noisy labels [9] or in the training set [13]: a
noisy item should not have a major impact on the way an ML algorithm learns a model,
or on the way the model is used to assign labels to novel instances.

190 T. Zoppi et al.

IS: Learning Process. ML algorithms are trained using a training dataset [3], which
contains data points and the associated labels describing the binary class of each point.
When the model learned from the ML algorithm is not general, even small perturbations
can cause classifiers with high accuracy to produce an incorrect prediction on novel
samples [4]. Overfitting [8] happens when a classifier learns a model that corresponds
too closely or exactly to a particular set of data, and may therefore fail to generalize to
a different, albeit similar, input set.

Throughout years, ML algorithms and especially deep learners were made more
and more robust to overfitting through techniques such as pruning [15], early stopping
[12], batch normalization [5], dropout regularization [6], conjugate gradient [11], and
weight decay [10]. Altogether, those techniques are necessary to build models which
have satisfying generalization capabilities. Unfortunately, they are not sufficient, as “it
is very difficult to make a detailed characterization of how well a specific hypothesis
generated by a certain learning algorithm will generalize, in the absence of detailed
information about the given problem instance” [14].

3 Architectures for Building Generalized Intrusion Detectors

All the issues above constitute severe obstacles in building a generalized Intrusion Detec-
tor. However, there are efforts that could be made to overcome some of them and mitigate
the negative impact of other issues.

3.1 Dealing with Generalization Issues

The Domain and Purpose (I1) of the system will impact how the intrusion detector will
work regardless of all the efforts we could put. Intrusions will be at least partially related
to the target system: in this study, we limit the uncertainty on this aspect by assuming
that an intrusion detector is a binary classifier, which raises an alert if notices something
unexpected in the data flow. The data flow of performance indicators comes from Moni-
toring (I2) activities: each system has its own monitoring strategy we do not have control
about. Whereas it is likely that network indicators will be monitored through state of
the art (and usually open source) tools such as Wireshark, Nagios, Prometheus, Zabbix,
CICFlowMeter or slight variations of them, we cannot reasonably assume to know how
many and which indicators are going to be monitored for a given system. However, we
can manage the way we Extract and Learn Features (I3) from those data, to provide the
intrusion detector with a set of features of constant and predefined amount. This will
require exercising a system-dependent activity that processes monitored performance
indicators (PI) to extract a fixed amount of features to be fed into the intrusion detector
which is therefore decoupled from the target system.

Towards a General Model for Intrusion Detection 191

This way, it is possible to gather data from different systems or existing datasets,
merge them and build training and test datasets for intrusion detection that contain far
more data instances. This helps also with the issue of availability (I4) of data to make
the intrusion detector learn how to distinguish between normal and attack-related data.
This learning process (I5) is at this point may even be completely decoupled from the
target system(s), providing the system architect with extreme freedom in choosing the
binary classifier that has the best potential for building an accurate intrusion detector.

3.2 Feature Mapping and Feature Learning

Let us explore how we deal with I3 with the aid of Fig. 1. On top of the figure we find
three different sample target systems, each running a monitoring strategy that gathers
heterogeneous sets of performance indicators, whose cardinality may be different (size
a, b, c in the figure). As a result, the intrusion detector cannot assume to know the
contents and the size of the feature set. This requires crafting a System-Dependent Feature
Processing layer that is in charge of processing performance indicators to build a feature
set that contains a fixed amount of features and with known content, regardless of the
size and the contents of the monitored indicators from the target system. We foresee two
possible software architectures to implement this activity:

e Feature Mapping (on the left of Fig. 1): the first option creates a mapping function that
processes the set of performance indicators and maps them into a pre-defined set of
features of fixed length m {F1, F», ... Fh}. Suppose you want to process performance
indicators to build a set of 4 features (m = 4) {F; = protocol, F, = packet size, F3 =
packet length, F4 = header flags}. The feature mapper should process performance
indicators of a system or a dataset to extract those features: clearly, the mapper depends
on the target system since it has to know details about performance indicators and
then derive the mapping function to the defined feature set.

e Feature Learning (on the right of Fig. 1): differently, we can exercise an additional
layer of ML that does not aim at classifying, but is instead directed to learn a fixed
amount of features from the heterogeneous sets of performance indicators. Learned
features will then be provided to the intrusion detector for the second level of learning:
in other words, we are building a stacking meta-learner [27]. This approach employs a
set of k ML algorithms that are trained using the specific set of performance indicators
PI of a given system (and thus feature learning is system-dependent), whose output
has a fixed cardinality, regardless of the size of the input indicators. The outputs
of all the k ML algorithms are then assembled to build a feature set of n features
{F1, Fa, ... Fy}. For example, we could employ k = 3 ML algorithms: two binary
classifiers BC1 and BC2 each of them outputting two probabilities pN (probability of
data being normal) and pA (probability of data being an attack), and a deep learner
DL we use as backbone, extracting the 4 features it generates after convolutional and
pooling layers. This generates a set of n = 8 features {BC1_pN, BC1_pA, BC2_pN,
BC2_pA,DL_F1,DL_F2,DL_F3, DL_F4}, which has constant size regardless of the
input performance indicators.

192 T. Zoppi et al.

=1}
g = Feat ML 13t ML2d | MLk® ==
E & Lo u.res Classifier Classifier Classifier S g
s 2 Mapping E b=
=S =2 e
. |c2y| |Ck1|
L 1
Binary ML
AONAE yML | T - R
Classifier
Normal Detected
Behaviour Intrusion

Fig. 1. Architectures for building a General Intrusion Detector. Regardless of the size of the
feature set gathered from different systems (on top), exercising either Feature Mapping (on the
left) or Feature Learning provides the Binary ML classifier (bottom of the figure) in charge of
detecting intrusions with a feature set that has constant size.

3.3 Discussion, Advantages and Disadvantages

Those two software architectures have their strengths and weaknesses.

Feature mapping is clearly faster to execute and does not involve training ML algo-
rithms (other than the binary classifier) which may be a time-consuming and also a
complex task that involves optimizations, sensitivity analyses, and many more. On the
downside, mapping performance indicators into a set of features may lead to loss of
information, be very tricky and often unfeasible. For example, the NGIDS [50] dataset
has only 3 features (process_id, syscall, event_id) as well as ADFANet [50] (packets,
bytes, duration), whereas the CICIDS17, CICIDS18, AndMal17, and SDN20 share the
same feature set of 77 network indicators. Finding a feature set that can convey most
of the information contained in those datasets is not possible at all as there are no
overlapping indicators between NGDIS and the other datasets. Even excluding NGDIS,
ADFANet has far less indicators that other datasets and therefore it is very difficult to
map all datasets into a unique feature set without losing information. It follows that this
approach should be preferred whenever it is possible to tune the monitoring system to
extract relevant indicators, while it is less feasible when detecting intrusions in existing
datasets or in systems with non-customizable monitoring strategies.

Towards a General Model for Intrusion Detection 193

Differently, Feature Learning is a complex process that abstracts from all those
problems, which are masked by the learning process of ML algorithms used for feature
learning. Moreover, it is a flexible approach since the amount and the type of feature
learners can be tuned depending on the needs of the user e.g., the computational power
available for intrusion detection.

In the rest of the paper we will build an experimental campaign to quantify the
generalization capabilities of intrusion detectors that use either of those two architectures.
Since our data baseline can be only composed of existing datasets, we will choose those
that were built using the same monitoring strategy and tooling and have overlapping
feature sets to make feature mapping feasible.

4 Experimental Campaign

4.1 Datasets Collection

There is a wide variety of tabular datasets related to intrusion detection, ranging from
device data in Internet-of-Things (IoT) systems to network data for intrusion detection
[28, 29]. Those often have heterogeneous feature sets which may not fit our exploratory
study. Instead, AndMal17 [32], CICIDS17 [31], CICIDS18 [31], and SDN20 [30] were
collected using the same network monitoring tool and as such fit our analysis. Table 1
summarizes the datasets considered in this study, reporting domain, name, publication
year, number of data points, number of features, types, and percentages of attacks.
Those datasets are quite recent (not older than 2017), and they are well-known reference
datasets in the domain. Regarding the attacks logged in the datasets, (Distributed) Denial
of Service and scanning attacks (e.g., probing, port scanning, reconnaissance) appear in
all datasets but AndMall7. Other attacks such as malware (AndMall7, SDN20), web
attacks (CICIDS17, CICIDS18), botnets (CICIDS18), spam (AndMall7) and phising
(AndMal17) occur in a few datasets. Overall, these 4 datasets provide a view on most of
the common attacks in the current threat landscape [25] and therefore we believe they
provide a representative data baseline to experiment on. Also, the reader should notice
that different datasets log system behavior under different attacks and therefore diversity
among datasets is dual: both from the target system and the attack model standpoints.

Table 1. Selected datasets: name, reference, release year, size, number of features, number and
percentage of attacks.

Dataset name | Ref |Year |# Datapointsused |# Features |# Attacks | % Attacks
AndMal17 [32] 2017 | 100 000 77 4 15.5
CICIDS17 [31] |2017 | 500000 77 5 79.7
CICIDS18 [31] |2018 |200 000 77 8 26.2
SDN20 [30] |2020 | 205167 77 5 66.6

194 T. Zoppi et al.

4.2 Binary Classifiers for Intrusion Detection

We then choose the candidate binary classifiers for implementing the intrusion detector.
We do not aim at identifying a complete and broad set of classifiers: instead, we want
to use those that were widely used in the literature and that were proven to be effective
for tabular data. We ended up selecting Random Forests (RF, [35]), eXteme Gradient
Boosting (XGB, [36]) and the deep learner FastAl (FAI [37]), which has optimizations
for tabular data. Random Forests are a well-known bagging ensemble of decision trees
that saw a lot of applicability for intrusion detection in the last decade [33], while
XGBoost has proven to outperform many classifiers including deep learners [34] for
tabular data. Lastly, FastAl contains optimizations for processing tabular data and entity
embedding of categorical features.

4.3 ML Algorithms to Be Used for Feature Learning

Feature learners to be used in this study can be essentially any ML algorithm: supervised,
unsupervised, backbone deep learner, and so on and so forth. Since this is an exploratory
study, we aim at exercising as many feature learners as possible: then, we may filter out
those that learn weak features and keep only those that learn the strong ones. In our study,
each feature learner learns two features, which are the probability of being a normal data
point, or the probability of being an attack. Summarizing, this study employs 16 feature
learners, that learn a total of 32 features (2 each):

e 10 unsupervised ML algorithms from the library PYOD [38], namely: ECOD,
COPOD, FastABOD, HBOS, MCD, PCA, LOF, CBLOF, Isolation Forests, SUOD.

e 5 supervised ML algorithms from Scikit-Learn [39], different from those used for
intrusion detection in the previous section: k-th Nearest Neighbors, ADABoost, Naive
Bayes, Logistic Regression, Linear Discriminant Analysis.

e A deep learner used as backbone for feature learning (FastAl), which as motivated
before contains suitable optimizations to learn features from tabular data.

4.4 Experimental Setup and Methodology

Experiments are executed on a Dell Precision 5820 Tower with an Intel 19-9920X, GPU
NVIDIA Quadro RTX6000 with 24 GB VRAM, 192 GB RAM, and Ubuntu 18.04, and
they required approximately 6 weeks of 24 h execution.

The Pyod, Scikit-Learn and xgboost python packages contain all the code needed to
exercise ML algorithms. We created a Python script to load datasets, orchestrate feature
learners, train and evaluate intrusion detectors. The evaluation will mainly be carried out
by means of evaluation metrics for binary classification i.e., confusion matrix [40] and
especially using aggregated metrics as Accuracy and Matthews Correlation Coefficient
(MCC). Additionally, we compute the importance that intrusion detectors assign to their
features: those will help to break down the behavior of different intrusion detectors and
provide insights on the way they build their models. We split each of the dataset in half
(50-50 train-test split) and perform 5 series of experiments, which we explain below
and partially depict in Fig. 2:

Towards a General Model for Intrusion Detection 195

e RegularID: we exercise the ML algorithms Random Forests (RF), XGBoost (XGB),
and FastAl (FAI) on all datasets separately using the 50-50 train-test split and collect
metric scores. This is the usual way of training and evaluating an intrusion detector,
which is entirely system-dependent (i.e., not general).

e FeatL: we exercise the 16 feature learners on the train portion of each dataset but the
one used for testing, collecting their outputs. Those build a huge training set composed
of data instances with homogeneous structure (i.e., each of those data points has 32
feature values), even if they come from different datasets. Those are used to train the
intrusion detectors RF, XGB, FAI individually. For example, when testing the dataset
AndMall7, we train the detector using the train partition of CICIDS17, CICID18
and SDN20 (i.e., without using AndMal17 at all). The resulting model is then used to
detect intrusions using the test portion of AndMall7, which is completely unknown to
the intrusion detector. This quantifies how well the detector generalizes to a different
dataset.

e FeatL_TL: Thisis a process similar to FeatL, but it is not completely unrelated from the
dataset used for testing. Particularly, we partially use the train partition of the dataset
we want to evaluate to re-train the FeatL detector using transfer learning mechanics.
This way, the binary ML classifier gets tailored using some key information about
the system under test and is expected to have better classification performance than
FeatL, at a cost of a less general model. We will use either 1000, 5000, 10000, 20000
data points for transfer learning, labeling the corresponding detector as FeatlL._TLI,
Featl,_TL5, Featl._TL10, Featl._TL20.

e Map: it is a process similar to FeatL, but does not execute Feature Learning. Instead,
it maps directly features from different datasets to the same feature set, since the 4
datasets in this study all share the exact same feature set.

e Map_TL: it is a process similar to FeatL._TL, but does not execute Feature Learning.
Instead, it maps directly features from different datasets to the same feature set, since
the 4 datasets in this study all share the exact same feature set.

5 Results and Discussion

5.1 Regular, Feature Learning and Feature Mapping Intrusion Detectors

We start analyzing results with the aid of Table 2. The table reports the highest MCC
achieved either by RF, XGB, or FAI for a given intrusion detector: RegularID, FeatL. Map,
Featl._TL20, Map_TL20. We chose the TL20 variants of the FeatL._TL and Map_TL as
they were delivering higher MCC than their counterparts which are using less data for
transfer learning. It turns out evident how RF and XGB are the preferred ML algorithm
for intrusion detection in most of the cases: they achieve the highest MCC on most
configurations reported in the table. Also, the AndMall7 dataset is the hardest of the
four to perform detection on: while for CICIDS 17, CICIDS 18 and SDN20 we have MCC
scores over 0.90, for AndMal17 the MCC does not exceed 0.65, that corresponds to an
accuracy of 92.9 and a Recall of 48.3 (i.e., more than half of the attacks, the 51.7%, are
not detected by the intrusion detector).

Going into the detail of the 5 different intrusion detectors we instantiated in this study,
we can observe that — as expected — RegularID has the highest MCC being specific of

196 T. Zoppi et al.

Regular ID FeatL FeatL_TL
— o b o b -
— Vew aams A —
14 K7 'ugm? '

w ‘o) 'um Z
Pl P, | . [PI, WPJJ... PI, WW P, Plj - Pa] | [eufen
| | el = 7] lellpll T

Binary ML \ 4 A
Classifier Feature || Feature || Feature Feature Feature || Feature || Feature
Learning|| Learning || Learning Learning| | Learning || Learning || Learning

-4 - N

HE 7__. T

Binary ML Binary ML
Classifier Classifier
v 4
G- o4
.. - - II’ca-tu.re .. / Ll::‘::l;,
v. y — .earning — 4 4

Fig. 2. Experiments for building a RegularID, FeatL and Featl._TL intrusion detectors, separating
the system-dependent from the general part of those detectors. The Map and Map_TL detectors
work the same as the FeatL and Featl._TL, but do not perform feature learning.

a dataset and with no generalization capabilities. Using only 3 datasets for training a
unique model to be tested on another unknown dataset, either by mapping features (Map
in Table 2) or by feature learning (FeatL in the table) generates MCC scores that are far
lower than those of RegularID. Map scores are not even comparable with others, whereas
FeatL scores are better than those of Map but still noticeably lower than RegularID in all
datasets but SDN20, making those general detectors not applicable in a real setup due
to an excessive amount of False Positives and/or False Negatives. Scores of Map_TL20
and Featl._TL20 are clearly better than those of Map and FeatL, but still lower than
those of RegularID: additionally, transfer learning limits the generalization capabilities
of those detectors as it adds another system-specific training component.

Nevertheless, it is interesting to observe the impact transfer learning has on MCC
scores. We discuss this aspect with the aid of Fig. 3, which also allows remarking the
following important observations:

e Adopting transfer learning clearly improves capabilities of intrusion detectors:
Map_TL1 has better MCC than Map, and the MCC grows the more data is used
for transfer learning (i.e., Map_TL20 has better MCC than Map_TL10, which is bet-
ter than Map_TL5, which outperforms Map_TL1). The same applies to FeatL and
FeatL TL.

e Transfer learning has an outstanding impact when using detectors relying on feature
mapping. Map detectors have very poor scores, but improve dramatically even when
only 1000 data points are used for transfer learning (Map_TL1). This can be observed
in Fig. 3a and 3b looking at the two series of bars on the bottom of each bar chart.

Towards a General Model for Intrusion Detection 197

Table 2. MCC scores of the best ML algorithm (FAIL, RF, XGB) used as regular ID, FeatL, Map,
Featl_TL20, Map_TL20.

Dataset Map Map_TL20 FeatL FeatL_TL20 RegularID
AndMall7 | 0.023 |XGB |0.251 | XGB |0.313 |FAI |0.453 |XGB |0.647 |RF
CICIDS17 |0.626 | XGB |0.993 | XGB |0.975 |FAI |0.987 |RF 0.999 | XGB
CICIDS18 |0.260 |FAI |0.853 | XGB |0.890 |RF |0.908 |RF 0.928 | XGB
SDN20 0.180 | XGB [0.999 [XGB 0999 |RF [0.999 |RF 1.000 |RF

Average 0.272 0.774 0.794 0.837 0.893
MCC

o CL L L L T T T T T T T T T T T T T T T T T1
Regular]D AR TG | p e e e e e e e e e
I — e ——

N e e e e e e e e e
TFeatl, T'L20) | Feat L T L2 |y
—— ——

CURg=————————————————
——

Feall TL10 et
I

(LB = == = = ——————— FeatL_TLS
— Al —
I
Feall T | Featl, TL| S
I I
jElg——=————————— === . e e
I I
UERR(R=================————=—= WVEEBIR===========ssssssssss S
I I
M T 1O ey NI ===================- E—
I I
Map_TLS Map_TLS s
I —
VIR === - M L |
— L]
Map sesemamas Map EI_
] 1
0000 0200 0400 0.600 0.800 1.000 0000 0200 0400 0600 0800 1.000
SDN20 BCICIDSIS§ mCICIDSI7 mAndMall7 SDN20 BCICIDS18 mCICIDS17 ™ AndMall7

Fig. 3. a(left) and b (right). MCC scores for each of the four datasets (one bar series each). Each
bar chart has 11 series of bars, one for each intrusion detector. Scores using XGB are on the left
(Fig. 3a), while scores using RF are on the right (Fig. 3b).

e The FeatL detectors have overall better performance than Map and therefore their
performance improvement with transfer learning is less evident than those of Map.
Nevertheless, applying transfer learning brings Featl,_TL20 to achieve MCC scores
that are very similar to those of RegularID scores. This is an important results because
it shows how it is possible to achieve good detection performance tailoring an existing
model rather than crafting an intrusion detection from scratch, saving key amount of
time and thus money.

5.2 On the Contribution of Feature Learners

FeatL has better scores than Map: this is due to the feature learners, which are trained
using a small portion of the novel system under test to extract features. We explain the

198 T. Zoppi et al.

contribution each feature learner has on the overall detection process with the aid of
Table 3, which presents the importance of feature learners for FeatL and Featl._TL20
using either RF or XGB on the CICIDS18 dataset. Importance in each row of the table
sum up to 1, while each score ranges between 0 and 1: the higher, the most relevant
features learned from a feature learner are for training the intrusion detector. Additionally,
we report the difference in the importance of features between the Featl._TL20 and the
FeatL, which does not apply transfer learning. The importance using XGB or RF follow a
similar path: the FeatL detector learns a model that is almost entirely built over features
learned by KNN, which has 0.920 and 0.911 importance respectively for XGB and
RF. Other feature learners have marginal to negligible contribution, making the FeatL
detectors very dependent on the behavior of KNN features.

Table 3. Importance of feature learners in building the model for FeatL and Featl._TL20 using
either XGB or RF as ML algorithms for the CICIDS18 dataset.

Unsupervised Feature Learn. Supervised Feature Learn.

7] en
E S Q €3 > V) :
=E 2% |2 2 Q2 8 &o 5% £o|2 2 g2 = &
5 i 522¢g:28Sgis|zafz s

FeatL |.001 .030 .003 .002 .003.001 .002 .003.002.002|.003.002.000 .920 .020.003

XGB FeatL_TL20{.009 .012 .003 .001 .013.007 .001 .005.005.007(.033.088.000 .455 .221.139
Diff .007-.018.000-.002.011.005-.002.002.004.005/.030.086 .000-.465.201.136

FeatL |.001 .032 .004 .003 .003.002 .002 .003.002.002|.003.002.000 .911 .021.004

RF FeatL_TL20(.010 .006 .004 .002 .011.011 .001 .007.007.008|.027.107.000 .352 .327.108
Diff .009-.026.000-.001.008.009-.001.004.006.006|.024.105.000-.559.306.105

Differently, the Featl._TL20 models obtained using 20 000 data points of CICIDS18
(the system under test for building this table) for transfer learning do not rely entirely on
KNN to detect intrusions. The importance of KNN features decreases a lot, favoring FAI,
ADABoost and LDA features. Other feature learners, especially those unsupervised, still
have very marginal contribution to the overall detection process.

Overall, it is safe to say that transfer learning makes XGB and RF learn a model that
does not heavily depends on a single feature learner, but instead combines the output of
different feature learners: this results in a more general model.

6 Conclusions and Future Works

In this study we proposed and experimentally evaluated two software architectures for
building intrusion detectors that have good generalization capabilities. Briefly, we aimed
at learning the model once and then apply it to as many datasets the user wants with
minimal effort, still achieving satisfying detection performance.

Our experimental results are not fully encouraging: they tell us that no matter the
intrusion detector, it will not generalize well to other datasets as is. Instead, it will be

Towards a General Model for Intrusion Detection 199

outperformed by system-specific intrusion detectors, confirming the studies [2, 49]. A
non-zero amount of knowledge about the system under test is indeed required to make
intrusion detectors able to detect intrusions in other datasets with satisfactory perfor-
mance. Knowing only a few thousands of data points of the system under test allowed
intrusion detectors reaching satisfying detection scores in our experiments, without out-
performing traditional system-specific intrusion detectors. It follows that tailoring a
baseline model through transfer learning has the potential to obtain satisfactorily (albeit
not optimal) detection performance, requiring less data and minimal expertise from
the user standpoint, which does not have to train multiple ML algorithms nor running
complex performance evaluations.

Particularly, pre-processing datasets through different ML algorithms deployed as
feature learners clearly builds an intrusion detector that potentially has generalization
capabilities. Therefore, as future works we want to elaborate more on those detectors with
respect to three dimensions of analysis, namely: i) carefully selecting feature learners to
be used, ii) gathering training data from more datasets, hoping to build a detector which
is more solid and as such has better generalization capabilities, and iii) performing
sensitivity analyses aiming at clearly identifying the minimum amount of data which we
have to gather from the system under test to train feature learners and tailor the detector
to achieve satisfactory detection performance.

Acknowledgments. This work has been partially supported by the H2020 Marie Sklodowska-
Curie g.a. 823788 (ADVANCE), by the Regione Toscana POR FESR 2014-2020 SPaCe, and by
the NextGenerationEU programme, Italian DM737 — CUP B15F21005410003.

References

1. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network
intrusion detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 305-316. IEEE,
May 2010

2. Catillo, M., Del Vecchio, A., Pecchia, A., Villano, U.: Transferability of machine learning
models learned from public intrusion detection datasets: the CICIDS2017 case study. Softw.
Qual. J. 30, 955-981 (2022). https://doi.org/10.1007/s11219-022-09587-0

3. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85-117
(2015)

4. Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., Madry, A.: Adversarially robust general-
ization requires more data. In: Advances in Neural Information Processing Systems, vol. 31
(2018). Accessed 07 Apr 2022

5. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain
adaptation, November 2016. http://arxiv.org/abs/1603.04779. Accessed 07 Apr 2022

6. Jindal, I., Nokleby, M., Chen, X.: Learning deep networks from noisy labels with dropout
regularization. In: 2016 IEEE 16th International Conference on Data Mining (ICDM),
pp- 967-972, December 2016. https://doi.org/10.1109/ICDM.2016.0121

7. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2,
514-525 (2014)

8. Lawrence, S., Giles, C.L.: Overfitting and neural networks: conjugate gradient and backprop-
agation. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks, IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New
Millennium, vol. 1, pp. 114-119. IEEE, July 2000

https://doi.org/10.1007/s11219-022-09587-0
http://arxiv.org/abs/1603.04779
https://doi.org/10.1109/ICDM.2016.0121

200

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

T. Zoppi et al.

Song, H., et al.: Learning from noisy labels with deep neural networks: a survey. IEEE Trans.
Neural Netw. Learn. Syst. (2022, article in press). https://doi.org/10.1109/TNNLS.2022.315
2527

Krogh, A., Hertz, J.: A simple weight decay can improve generalization. In: Advances in
Neural Information Processing Systems, vol. 4 (1991)

Caruana, R., Lawrence, S., Giles, C.: Overfitting in neural nets: backpropagation, conjugate
gradient, and early stopping. In: Advances in Neural Information Processing Systems, vol.
13 (2000)

Prechelt, L.: Early stopping - but when? In: Orr, G.B., Miiller, K.-R. (eds.) Neural Networks:
Tricks of the trade. LNCS, vol. 1524, pp. 55-69. Springer, Heidelberg (1998). https://doi.org/
10.1007/3-540-49430-8_3

Sietsma, J., Dow, R.J.: Creating artificial neural networks that generalize. Neural Netw. 4(1),
67-79 (1991)

Kawaguchi, K., Kaelbling, L.P., Bengio, Y.: Generalization in deep learning. arXiv preprint
arXiv:1710.05468 (2017)

Cestnik, B., Bratko, I.: On estimating probabilities in tree pruning. In: Kodratoff, Y. (ed.)
Machine Learning — EWSL-91: European Working Session on Learning Porto, Portugal,
March 6-8, 1991 Proceedings, pp. 138—150. Springer, Heidelberg (1991). https://doi.org/10.
1007/BFb0017010

Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net: a new
multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652-662
(2019)

Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006). ISBN: 0-
387-31073-8

Rivolli, A., Garcia, L.P., Soares, C., Vanschoren, J., de Carvalho, A.C.: Meta-features for
meta-learning. Knowl.-Based Sys. 240, 108101 (2022)

Cotroneo, D., Natella, R., Rosiello, S.: A fault correlation approach to detect performance
anomalies in Virtual Network Function chains. In: 2017 IEEE 28th International Symposium
on Software Reliability Engineering (ISSRE), pp. 90-100. IEEE (2017)

Zoppi, T., Ceccarelli, A., Bondavalli, A.: MADneSs: a multi-layer anomaly detection frame-
work for complex dynamic systems. IEEE Trans. Dependable Secure Comput. 18(2), 796-809
(2019)

Murtaza, S.S., et al.: A host-based anomaly detection approach by representing system calls as
states of kernel modules. In: 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). IEEE (2013)

Wang, G., Zhang, L., Xu, W.: What can we learn from four years of data center hardware
failures? In: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 25-36. IEEE, June 2017

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: SySeVR: a framework for using deep
learning to detect software vulnerabilities. IEEE Trans. Dependable Secure Comput. 19(4),
2244-2258 (2022)

Robles-Velasco, A., Cortés, P., Mufiuzuri, J., Onieva, L.: Prediction of pipe failures in water
supply networks using logistic regression and support vector classification. Reliab. Eng. Syst.
Saf. 196, 106754 (2020)

Ardagna, C., Corbiaux, S., Sfakianakis, A., Douliger, C.: ENISA Threat Landscape 2021.
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends. Accessed 6
May 2022

Connell, B.: 2022 SonicWall Threat Report. https://www.sonicwall.com/2022-cyber-threat-
report/. Accessed 6 May 2022

Dzeroski, S., Zenko, B.: Is combining classifiers with stacking better than selecting the best
one? Mach. Learn. 54(3), 255-273 (2004). https://doi.org/10.1023/B:MACH.0000015881.
36452.6e

https://doi.org/10.1109/TNNLS.2022.3152527
https://doi.org/10.1007/3-540-49430-8_3
http://arxiv.org/abs/1710.05468
https://doi.org/10.1007/BFb0017010
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends
https://www.sonicwall.com/2022-cyber-threat-report/
https://doi.org/10.1023/B:MACH.0000015881.36452.6e

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Towards a General Model for Intrusion Detection 201

Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems:
techniques, datasets, and challenges. Cybersecurity 2(1) (2019). Article number: 20. https://
doi.org/10.1186/s42400-019-0038-7

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based
intrusion detection data sets. Comput. Secur. 86, 147-167 (2019)

Elsayed, M.S., Le-Khac, N.A., Jurcut, A.D.: InSDN: a novel SDN intrusion dataset. IEEE
Access 8, 165263-165284 (2020)

Sharafaldin, L., et al.: Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In: ICISSP, pp. 108-116, January 2018

Lashkari, A.H., et al.: Toward developing a systematic approach to generate benchmark
Android malware datasets and classification. In: 2018 International Carnahan Conference
on Security Technology (ICCST), pp. 1-7. IEEE, October 2018

Resende, P.A.A., Drummond, A.C.: A survey of random forest based methods for intrusion
detection systems. ACM Comput. Surv. (CSUR) 51(3), 1-36 (2018)

Shwartz-Ziv, R., Armon, A.: Tabular data: deep learning is not all you need. Inf. Fusion 81,
84-90 (2022)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001). https://doi.org/10.1023/A:
1010933404324

Chen, T., et al.: XGBoost: eXtreme gradient boosting. R Package Version 0.4-2, 1(4), 1-4
(2015)

Howard, J., Gugger, S.: Fastai: a layered API for deep learning. Information 11(2), 108 (2020)
Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. arXiv
preprint arXiv:1901.01588 (2019)

Buitinck, L., etal.: API design for machine learning software: experiences from the scikit-learn
project. arXiv preprint arXiv:1309.0238 (2013)

Luque, A., et al.: The impact of class imbalance in classification performance metrics based
on the binary confusion matrix. Pattern Recogn. 91, 216-231 (2019)

Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning techniques for malware
analysis. Comput. Secur. 81, 123-147 (2019)

Demetrio, L., et al.: Adversarial exemples: a survey and experimental evaluation of practical
attacks on machine learning for windows malware detection. ACM Trans. Priv. Secur. (TOPS)
24(4), 1-31 (2021)

Zhauniarovich, Y., Khalil, I., Yu, T., Dacier, M.: A survey on malicious domains detection
through DNS data analysis. ACM Comput. Surv. (CSUR) 51(4), 1-36 (2018)

Oliveira, R.A., Raga, M.M., Laranjeiro, N., Vieira, M.: An approach for benchmarking the
security of web service frameworks. Future Gener. Comput. Syst. 110, 833—-848 (2020)
Andresini, G., Appice, A., Malerba, D.: Autoencoder-based deep metric learning for network
intrusion detection. Inf. Sci. 569, 706-727 (2021)

Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., Marchetti, M.: On the effectiveness
of machine and deep learning for cyber security. In: 2018 10th International Conference on
Cyber Conflict (CyCon), pp. 371-390. IEEE, May 2018

Folino, F., et al.: On learning effective ensembles of deep neural networks for intrusion
detection. Inf. Fusion 72, 48-69 (2021)

Arp, D, et al.: Dos and don’ts of machine learning in computer security. In: Proceedings of
the USENIX Security Symposium, August 2022

Verkerken, M., D’hooge, L., Wauters, T., Volckaert, B., De Turck, F.: Towards model gen-
eralization for intrusion detection: unsupervised machine learning techniques. J. Netw. Syst.
Manag. 30 (2022). Article number: 12. https://doi.org/10.1007/s10922-021-09615-7
Haider, W., Hu, J., Slay, J., Turnbull, B.P., Xie, Y.: Generating realistic intrusion detection
system dataset based on fuzzy qualitative modeling. J. Netw. Comput. Appl. 87, 185-192
(2017)

https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1901.01588
http://arxiv.org/abs/1309.0238
https://doi.org/10.1007/s10922-021-09615-7

	Towards a General Model for Intrusion Detection: An Exploratory Study
	1 Introduction
	2 On Generalizing Intrusion Detectors
	2.1 Motivation and Novelty of this Study
	2.2 Issues in Generalizing Intrusion Detectors

	3 Architectures for Building Generalized Intrusion Detectors
	3.1 Dealing with Generalization Issues
	3.2 Feature Mapping and Feature Learning
	3.3 Discussion, Advantages and Disadvantages

	4 Experimental Campaign
	4.1 Datasets Collection
	4.2 Binary Classifiers for Intrusion Detection
	4.3 ML Algorithms to Be Used for Feature Learning
	4.4 Experimental Setup and Methodology

	5 Results and Discussion
	5.1 Regular, Feature Learning and Feature Mapping Intrusion Detectors
	5.2 On the Contribution of Feature Learners

	6 Conclusions and Future Works
	References

