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Preface

The European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD) is the premier European conference on
machine learning and data mining. In 2022, ECML PKDD took place in Grenoble,
France during September 19–23.

The program included workshops on specialized topics held during the first and last
day of the conference. This two-volume set includes the proceedings of the following
workshops:

1. 7th Workshop on Data Science for Social Good (SoGood 2022)
2. 10th Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2022)
3. 4thWorkshop on eXplainableKnowledgeDiscovery inDataMining (XKDD2022)
4. 1st Workshop on Uplift Modeling (UMOD 2022)
5. 3rd Workshop on IoT, Edge and Mobile for Embedded Machine Learning (ITEM

2022)
6. 7th Workshop on Mining Data for Financial Application (MIDAS 2022)
7. 4th Workshop on Machine Learning for Cybersecurity (MLCS 2022)
8. 2ndWorkshop onMachine Learning for Buildings Energy Management (MLBEM

2022)
9. 3rd Workshop on Machine Learning for Pharma and Healthcare Applications

(PharML 2022)
10. 1st Workshop on Data Analysis in Life Science (DALS 2022)
11. 3rd Workshop on IoT Streams for Predictive Maintenance (IoT-PdM 2022)

Each workshop section contains the papers from the workshop and a preface from
the organizers.

Wewould like to thank all participants and invited speakers, the ProgramCommittees
and reviewers, and the ECML PKDD conference and workshop chairs – thank you for
making the workshops successful events. We are also grateful to Springer for their help
in publishing the proceedings.

October 2022 Irena Koprinska
on behalf of the volume editors
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and José Camacho

Towards a General Model for Intrusion Detection: An Exploratory Study . . . . . . 186
Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli

Workshop on Machine Learning for Buildings Energy Management
(MLBEM 2022)

Conv-NILM-Net, a Causal and Multi-appliance Model for Energy Source
Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Mohamed Alami C., Jérémie Decock, Rim kaddah, and Jesse Read

Domestic Hot Water Forecasting for Individual Housing with Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Paul Compagnon, Aurore Lomet, Marina Reyboz, and Martial Mermillod

Workshop on Machine Learning for Pharma and Healthcare
Applications (PharML 2022)

Detecting Drift in Healthcare AI Models Based on Data Availability . . . . . . . . . . 243
Ylenia Rotalinti, Allan Tucker, Michael Lonergan, Puja Myles,
and Richard Branson

Assessing Different Feature Selection Methods Applied to a Bulk RNA
Sequencing Dataset with Regard to Biomedical Relevance . . . . . . . . . . . . . . . . . . . 259

Damir Zhakparov, Kathleen Moriarty, Nonhlanhla Lunjani,
Marco Schmid, Carol Hlela, Michael Levin, Avumile Mankahla,
SOS-ALL Consortium, Cezmi Akdis, Liam O’Mahony,
Katja Baerenfaller, and Damian Roqueiro



Contents – Part II xiii

Predicting Drug Treatment for Hospitalized Patients with Heart Failure . . . . . . . 275
Linyi Zhou and Ioanna Miliou

A Workflow for Generating Patient Counterfactuals in Lung Transplant
Recipients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Franco Rugolon, Maria Bampa, and Panagiotis Papapetrou

Few-Shot Learning for Identification of COVID-19 Symptoms Using
Generative Pre-trained Transformer Language Models . . . . . . . . . . . . . . . . . . . . . . 307

Keyuan Jiang, Minghao Zhu, and Gordon R. Bernard

A Light-Weight Deep Residual Network for Classification of Abnormal
Heart Rhythms on Tiny Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Rohan Banerjee and Avik Ghose

Workshop on Data Analysis in Life Science (DALS 2022)

I-CONVEX: Fast and Accurate de Novo Transcriptome Recovery
from Long Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Sina Baharlouei, Meisam Razaviyayn, Elizabeth Tseng, and David Tse

Italian Debate on Measles Vaccination: How Twitter Data Highlight
Communities and Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Cynthia Ifeyinwa Ugwu and Sofia Casarin

3rd Workshop and Tutorial on Streams for Predictive Maintenance
(IoT-PdM 2022)

Online Anomaly Explanation: A Case Study on Predictive Maintenance . . . . . . . 383
Rita P. Ribeiro, Saulo Martiello Mastelini, Narjes Davari,
Ehsan Aminian, Bruno Veloso, and João Gama

Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro
do Porto Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Narjes Davari, Bruno Veloso, Rita P. Ribeiro, and João Gama

An Online Data-Driven Predictive Maintenance Approach for Railway
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Emanuel Sousa Tomé, Rita P. Ribeiro, Bruno Veloso, and João Gama

curr2vib: Modality Embedding Translation for Broken-Rotor Bar Detection . . . 423
Amirhossein Berenji, Zahra Taghiyarrenani, and Sławomir Nowaczyk



xiv Contents – Part II

Incorporating Physics-Based Models into Data Driven Approaches for Air
Leak Detection in City Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Yuantao Fan, Hamid Sarmadi, and Sławomir Nowaczyk

Towards Geometry-Preserving Domain Adaptation for Fault Identification . . . . . 451
Zahra Taghiyarrenani, Sławomir Nowaczyk, Sepideh Pashami,
and Mohamed-Rafik Bouguelia

A Systematic Approach for Tracking the Evolution of XAI as a Field
of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Samaneh Jamshidi, Sławomir Nowaczyk, Hadi Fanaee-T,
and Mahmoud Rahat

Frequent Generalized Subgraph Mining via Graph Edit Distances . . . . . . . . . . . . 477
Richard Palme and Pascal Welke

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485



Contents – Part I

Workshop on Data Science for Social Good (SoGood 2022)

Gender Stereotyping Impact in Facial Expression Recognition . . . . . . . . . . . . . . . 9
Iris Dominguez-Catena, Daniel Paternain, and Mikel Galar

A Social Media Tool for Domain-Specific Information Retrieval - A Case
Study in Human Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Tito Griné and Carla Teixeira Lopes

A Unified Framework for Assessing Energy Efficiency of Machine Learning . . . 39
Raphael Fischer, Matthias Jakobs, Sascha Mücke, and Katharina Morik

Fault Detection in Wastewater Treatment Plants: Application
of Autoencoders Models with Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Rodrigo Salles, Jérôme Mendes, Rita P. Ribeiro, and João Gama

A Temporal Fusion Transformer for Long-Term Explainable Prediction
of Emergency Department Overcrowding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Francisco M. Caldas and Cláudia Soares

Exploitation and Merge of Information Sources for Public Procurement
Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Roberto Nai, Emilio Sulis, Paolo Pasteris, Mirko Giunta, and Rosa Meo

Geovisualisation Tools for Reporting and Monitoring
Transthyretin-Associated Familial Amyloid Polyneuropathy
Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Rúben X. Lôpo, Alípio M. Jorge, and Maria Pedroto

Evaluation of Group Fairness Measures in Student Performance Prediction
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Tai Le Quy, Thi Huyen Nguyen, Gunnar Friege, and Eirini Ntoutsi

Combining Image Enhancement Techniques and Deep Learning
for Shallow Water Benthic Marine Litter Detection . . . . . . . . . . . . . . . . . . . . . . . . . 137

Gil Emmanuel Bancud, Alex John Labanon, Neil Angelo Abreo,
and Vladimer Kobayashi



xvi Contents – Part I

Ethical and Technological AI Risks Classification: A Human Vs Machine
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Sónia Teixeira, Bruno Veloso, José Coelho Rodrigues, and João Gama

A Reinforcement Learning Algorithm for Fair Electoral Redistricting
in Parliamentary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Callum Evans and Hugo Barbosa

Study on Correlation Between Vehicle Emissions and Air Quality in Porto . . . . . 181
Nirbhaya Shaji, Thiago Andrade, Rita P. Ribeiro, and João Gama

Intelligently Detecting Information Online-Weaponisation Trends (IDIOT) . . . . 197
Fawzia Zehra Kara-Isitt, Stephen Swift, and Allan Tucker

Workshop on New Frontiers in Mining Complex Patterns (NFMCP
2022)

Multi-modal Terminology Management: Corpora, Data Models,
and Implementations in TermStar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Enrico Giai, Nicola Poeta, and David Turnbull

Cluster Algorithm for Social Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Emanuele d’Ajello, Davide Formica, Elio Masciari, Gaia Mattia,
Arianna Anniciello, Cristina Moscariello, Stefano Quintarelli,
and Davide Zaccarella

Sentimental Analysis of COVID-19 Vaccine Tweets Using BERT+NBSVM . . . 238
Areeba Umair, Elio Masciari, Giusi Madeo, and Muhammad Habib Ullah

Rules, Subgroups and Redescriptions as Features in Classification Tasks . . . . . . 248
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MIDAS 2022: The 7th Workshop on MIning
DAta for financial applicationS

Like the famous King Midas, popularly remembered in Greek mythology for his ability
to turn everything he touched with his hand into gold, the wealth of data generated by
modern technologies, with widespread presence of computers, users, and media con-
nected by Internet, is a goldmine for tackling a variety of problems in the financial
domain.

Nowadays, people’s interactions with technological systems provide us with gar-
gantuan amounts of data documenting collective behavior in a previously unimaginable
fashion. Recent research has shown that by properly modeling and analyzing these
massive datasets, for instance representing them as network structures, it is possible to
gain useful insights into the evolution of the systems considered (i.e., trading, disease
spreading, political elections). Investigating the impact of data arising from today’s
application domains on financial decisions is of paramount importance. Knowledge
extracted from data can help gather critical information for trading decisions, reveal
early signs of impactful events (such as stock market moves), or anticipate catastrophic
events (e.g., financial crises) that result from a combination of actions, and affect
humans worldwide.

The importance of data-mining tasks in the financial domain has been long rec-
ognized. For example, in the Web context, changes in the frequency with which users
browse news or look for certain terms on search engines have been correlated with
product trends, level of activity in certain given industries, unemployment rates, or car
and home sales, as well as stock-market trade volumes and price movements. Other
core applications include forecasting the stock market, predicting bank bankruptcies,
understanding and managing financial risk, trading futures, credit rating, loan man-
agement, and bank customer profiling. Despite its well-recognized relevance and some
recent related efforts, data mining in finance is still not stably part of the main stream of
data mining conferences. This makes the topic particularly appealing for a workshop
proposal, whose small, interactive, and possibly interdisciplinary context provides a
unique opportunity to advance research in a stimulating but still quite unexplored field.

The aim of the 7th Workshop on MIning DAta for financial applicationS (MIDAS
2022), held in conjunction with the 2022 European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD
2022), September 19–23, 2022, Grenoble, France, was to discuss challenges, poten-
tialities, and applications of leveraging data-mining and machine-learning tasks to
tackle problems in the financial domain. The workshop provided a premier forum for
sharing findings, knowledge, insights, experience, and lessons learned from mining
data generated in various domains. The intrinsic interdisciplinary nature of the work-
shop promoted the interaction between computer scientists, physicists, mathematicians,
economists, and financial analysts, thus paving the way for an exciting and stimulating
environment involving researchers and practitioners from different areas.

Topics of interest included, among others, trading models, discovering market
trends, predictive analytics for financial services, network analytics in finance, planning



investment strategies, portfolio management, understanding and managing financial
risk, customer/investor profiling, identifying expert investors, financial modeling,
anomaly detection in financial data, fraud detection, discovering patterns and correla-
tions in financial data, text mining and NLP for financial applications, sentiment
analysis for finance, financial network analysis, financial time series analysis, pitfalls
identification, financial knowledge graphs, learning paradigms in the financial domain,
explainable AI in financial services, quantum computing for finance.

MIDAS 2022 was structured as a full-day workshop. Participation to the workshop
followed a “hybrid” modality allowing participants to attend the workshop either in-
person or remotely. Most presentations were in-person, only a few (three out of a total
of 13, including the invited speaker) were remote. Remote presentations followed a
“live” mode, i.e., they happened in real-time, with the speaker remotely joining the
event.

We encouraged submissions of regular papers (long or short) and extended
abstracts. Regular papers were asked to report on novel, unpublished work, while
extended abstracts were required to summarize already published work. All submitted
regular papers were peer reviewed by three reviewers from the Program Committee,
and selected for presentation at the workshop and inclusion in the proceedings on the
basis of these reviews. Extended abstracts were presented at the workshop without peer
reviewing, and they were not included in the proceedings. MIDAS 2022 received 13
regular submissions, among which 10 papers were accepted, along with two extended
abstracts.

In accordance with the reviewers’ scores and comments, and also taking into
account the quality of the presentation, the paper entitled “Towards Data-Driven
Volatility Modeling with Variational Autoencoders”, authored by Thomas Dierckx,
Wim Schoutens, and Jesse Davis, and presented by Thomas Dierckx, was selected as
the best paper of the workshop. The paper entitled “Multi-Task Learning for Features
Extraction in Financial Annual Reports”, authored by Syrielle Montariol, Matej
Martinc, Andraž Pelicon, Senja Pollak, Boshko Koloski, Igor Lončarski, Aljoša
Valentinčič, Katarina Sitar Šuštar, Riste Ichev, and Martin Žnidaršič, and presented by
Syrielle Montariol, was recognized as runner up.

The program of the workshop was enriched by an invited speaker: José Antonio
Rodríguez-Serrano from Esade Business School, who gave a talk titled “Modernizing
Banking and Finance with Machine Learning: Techniques, Successes and Challenges”,
whose abstract is as follows:

Machine learning (ML) adoption in the banking and fintech industry is accelerating
and recently demonstrating success beyond the old-school applications of e.g. risk and
fraud. This leads to a modernization of the industry with interesting advances such as
more interactive apps, proactive advice, or shift in customer relation models. But
adoption still feels slow-paced, opportunistic, and unevenly distributed, not systemic;
and the sector is still undergoing a learning process.

This talk will review how ML has the potential to become an horizontal enabling
layer in several non-traditional domains of banking and finance (such personalization,
personal and corporate customer relations, or process optimization). This will include
a review of relevant ML techniques (e.g. forcasting with uncertainty, or graph-based
methods), real examples of known success cases, and also discussions of relevant
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challenges and cultural shifts that need to happen in this industry. The talk will also
draw from the speaker’s personal experience in research and applied data science in
an AI banking lab during the last 7 years.

September 2022 Ilaria Bordino
Ivan Luciano Danesi

Francesco Gullo
Giovanni Ponti

Lorenzo Severini
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Multi-task Learning for Features
Extraction in Financial Annual Reports

Syrielle Montariol1(B), Matej Martinc1, Andraž Pelicon1, Senja Pollak1,
Boshko Koloski1, Igor Lončarski2, Aljoša Valentinčič2, Katarina Sitar Šuštar2,

Riste Ichev2, and Martin Žnidaršič1
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syrielle.montariol@gmail.com

2 School of Economics and Business, University of Ljubljana, Kardeljeva pl. 17,

1000 Ljubljana, Slovenia

Abstract. For assessing various performance indicators of companies,
the focus is shifting from strictly financial (quantitative) publicly dis-
closed information to qualitative (textual) information. This textual data
can provide valuable weak signals, for example through stylistic features,
which can complement the quantitative data on financial performance or
on Environmental, Social and Governance (ESG) criteria. In this work,
we use various multi-task learning methods for financial text classifica-
tion with the focus on financial sentiment, objectivity, forward-looking
sentence prediction and ESG-content detection. We propose different
methods to combine the information extracted from training jointly on
different tasks; our best-performing method highlights the positive effect
of explicitly adding auxiliary task predictions as features for the final tar-
get task during the multi-task training. Next, we use these classifiers to
extract textual features from annual reports of FTSE350 companies and
investigate the link between ESG quantitative scores and these features.

Keywords: Multi-task learning · Financial reports · Corporate social
responsibility

1 Introduction

There is a slowly but steadily emerging consensus that qualitative (textual)
information, when aiming at analysing a company’s past, present and future
performance, is equally if not more informative than quantitative (numerical)
information. Traditionally, financial experts and economists have used such qual-
itative information for decision making in a manual way. However, the volume
of textual data increased tremendously in the past decades with the progressive
dematerialisation and the growing capacity to share and store data [15], making
the manual analysis practically infeasible.

Textual information about companies is found mainly in three contexts:
mandatory public disclosures, news articles, and social media. Among all these
data sources, periodic corporate reporting receives a particularly close attention
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 7–24, 2023.
https://doi.org/10.1007/978-3-031-23633-4_1
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from the research community, with an already plentiful literature in the finan-
cial domain and a growing one in natural language processing (NLP) [7,18,22].
The reports are made publicly available periodically by all companies above a
certain size and market value threshold, as defined by regulatory authorities of
each country. The content of these periodical financial reports is also controlled
by the regulators, with the goal of disclosing and communicating in great detail
the financial situation and practices of the companies to investors [29].

Apart from the strictly quantitative financial information, these reports are
rich in qualitative linguistic and structural information. This qualitative data
can yield information about various financial aspects of companies at the time of
filing, as well as predictions about future events in a company’s financial ecosys-
tem, such as future performance, stockholders’ reactions, or analysts’ forecasts
[2,14]. Especially in sections that allow for a more narrative style, there is room
for subjectivity and human influence in how financial data and prospects are
conveyed. Even though financial disclosures follow a reasonably well-established
set of guidelines, there is still a great deal of variation in terms of how the con-
tent of these disclosures is expressed. The choice of specific words and tone when
framing a disclosure can be indicative of the underlying facts about a company’s
financial situation that cannot be conveyed through financial indicators alone.

Extraction and processing of this information, however, prove to be much
more challenging than for quantitative information. There is a growing body
of literature dedicated to the analysis of non-financial information in financial
reports, where not only the content, but also stylistic properties of the text in
reports are considered (e.g., [21,30]). For example, capturing and understanding
the effect of information such as sentiment or subjectivity conveyed in the reports
might give indications to predict investor behavior and the impact on supply and
demand for financial assets [32].

Here, we study three key stylistic indicators associated with a text sequence:
its sentiment, its objectivity, and its forward-looking nature. On top of this, we
focus on a specific topic addressed by the annual reports: the Environmental,
Social and Governance (ESG) aspects. These are part of the global Corporate
Social Responsibility (CSR) framework, which refers to a set of activities and
strategies that a company conducts in order to pursue pro-social and environ-
mental objectives besides maximizing profit. Examples of these activities would
include minimization of environmental externalities and charity donations.

As CSR is subject to a growing interest from investors, regulators and share-
holders in the past few years, companies have become more aware of how their
actions and vocals impact the society and environment, prompting them to reg-
ularly report on their socio-environmental impact in the annual reports. The
first requirements with regards to corporate social responsibility reporting were
introduced by EU 2014/95 Directive (so called Non-Financial Reporting Direc-
tive or NFRD).1 One of the proposed measures of CSR are the ESG criteria. The
measure covers companies’ environmental impact (Environmental), relationships
with their stakeholders — e.g. workplace conditions and impact of company’s

1 https://ec.europa.eu/info/business-economy-euro/company-reporting-and-
auditing/company-reporting/corporate-sustainability-reporting en.

https://ec.europa.eu/info/business-economy-euro/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en
https://ec.europa.eu/info/business-economy-euro/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en
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behaviour on the surrounding community — (Social), and the integrity and
diversity of its leadership (Governance), which considers criteria such as the
accountability to shareholders and the accuracy and transparency of account-
ing methods. However, numerical indicators measuring the ESG performance of
a company are few and far from being enough to evaluate precisely this con-
cept. Similarly to other non-financial indicators, most ESG analyses are thus
performed manually by experts [17].

In this study, we aim at linking stylistic indicators with ESG-related concepts
through multi-task learning, by fine-tuning pre-trained language models jointly
on several classification tasks. More generally, we aim at proposing methods
to extract features from textual reports using signals such as objectivity and
forward-looking nature of sentences.

Our contributions are as follows. We highlight the challenges of grasping the
concepts of sentiment, objectivity and forward-looking in the context of finance
by classifying content inside financial reports according to these categories. We
compare several ways of exploiting these features jointly with the concept of
ESG, through various multi-task learning systems. We show that we are able
to make up for the difficulty of the tasks by training them in a multi-task set-
ting, with a careful task selection. Moreover, we show that our ExGF multi-task
learning system, where we Explicitly Give as Feature the predictions of auxiliary
tasks for training a target task, beats other classical parameter sharing multi-
task systems. Finally, we provide qualitative insight into the link between ESG
content, stylistic textual features and ESG numerical scores provided by press
agencies. Our code is available at https://gitlab.com/smontariol/multi-task-esg.

2 Related Works

2.1 Annual Reports

The literature on corporate Annual Reports (ARs) analysis is plentiful in the
financial research community. From the NLP perspective, research is more scarce
and much more recent. One of the most widely studied type of company reports
are 10-K filings [10]. These are AR required by the U.S. Securities and Exchange
Commission (SEC), and are so diligently studied thank to their format, which
is highly standardised and controlled by the SEC. Outside the US, companies
periodic reporting is less standardized and more shareholder-oriented. Here, we
focus on UK annual reports. Lewis and Young [15] report significant increase
in the size and complexity of UK annual report narratives: the median number
of words more than doubled between 2003 and 20162 while the median number
of items in the table of contents also doubled in the same period. In face of
these numbers, the automated analysis of financial reporting faces a growing
contradiction: on the one hand, the huge increase in volume leads to the increased
need for a solution from the NLP community to analyse this unstructured data
automatically. On the other hand, more reporting from more companies leads to

2 For a sample of 19,426 PDF annual reports published by 3252 firms listed on the
London Stock Exchange.

https://gitlab.com/smontariol/multi-task-esg
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more diversity in the shape of the documents; this lack of standardization and
structure makes the analysis tougher and requires more complex methods [15].

In particular, concepts such as ESG are too recent to be included in any
reporting standardization policy from the regulators, leading to very heteroge-
neous dedicated reporting. Consequently, as stated before, the work on detec-
tion of ESG-related content is somewhat scarce. Several works analyse the link
between the publication of ESG report by a firm and its market value, with-
out diving into the content of the report [27]. Purver et al. [26] use frequencies
to capture semantic change of ESG-related keywords in UK companies’ annual
reports between 2012 and 2019. They interpret it using contextualised represen-
tations. A shared task aiming at classifying sentences as “sustainable” or not
was organized in 2022 for the FinNLP workshop.3 The sentences were extracted
from financial and non-financial companies’ reports.

Another work closely related to our objective is the one from Armbrust et
al. [4]. They underline the limited impact of the quantitative information in US
companies annual reports, since detailed financial metrics and key performance
indicators are often disclosed by the company before the publishing of the annual
reports. Thus, as most of the financial information is redundant to the investors,
regulators and shareholders, we turn towards stylistic features.

2.2 Multi-task Learning

In this work, we investigate the methods to make use of various stylistic informa-
tion to extract features from annual reports. We use pre-trained language models
[9] in a supervised multi-task learning (MTL) setting. The idea behind MTL,
in which multiple learning tasks are solved in parallel or sequentially, relies on
exploiting commonalities and differences across several related tasks in order to
improve both training efficiency and performance of task-specific models.

The sequential MTL pre-training approach was formalized by Phang et al.
[24] under the denomination STILT (Supplementary Training on Intermediate
Labeled-data Tasks), improving the efficiency of a pre-trained language model
for a downstream task by proposing a preliminary fine-tuning on an intermediate
task. This work is closely followed by Pruksachatkun et al. [25], who perform
a survey of intermediate and target task pairs to analyze the usefulness of this
intermediary fine-tuning. They find a low correlation between the acquisition
of low-level skills and downstream task performance, while tasks that require
complex reasoning and high-level semantic abilities, such as common-sense ori-
ented tasks, had a higher benefit. Aghajanyan et al. [1] extend the multi-task
training to another level: they proposed “pre-fine-tuning”, a large-scale learning
step (50 tasks for around 5 million labeled examples) between language model
pre-training and fine-tuning. They demonstrate that, when aiming at learning
highly-generalizable representations for a wide range of tasks, the amount of
tasks is key in multi-task training. Indeed, some tasks may hurt the overall

3 https://sites.google.com/nlg.csie.ntu.edu.tw/finnlp-2022/shared-task-finsim4-esg.

https://sites.google.com/nlg.csie.ntu.edu.tw/finnlp-2022/shared-task-finsim4-esg
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performance of the system; but when performed in a large-scale fashion (e.g.
with about 15 tasks), performance improved linearly with the number of tasks.

When it comes to parallel multi-task learning, the studies on this topic are
abundant [36]. While the research on the topic pre-dates the deep learning era,
it has not been extensively researched until recently, when novel closely related
transfer learning and pre-training paradigms [9] proved very successful for a
range of NLP problems. At the same time, multiple-task benchmark datasets,
such as GLUE [34] and the NLP Decathlon [19] were released, offering new
multi-task training opportunities and drastically reduced the effort to evaluate
the trained models. Due to these recent developments, several studies research
weights sharing across networks and try to identify under which circumstances
and for which downstream tasks MTL can significantly outperform single-task
solutions [35]. The study by Standley et al. [31] suggested that MTL can be
especially useful in a low resource scenario, where the problem of data sparsity
can effect the generalization performance of the model. They claim that by
learning to jointly solve related problems, the model can learn a more generalized
internal representation. The crucial factor that determines the success of MTL
is task similarity [6]. To a large extent, the benefit of MTL is directly correlated
with the success of knowledge transfer between tasks, which improves with task
relatedness. In cases when tasks are not related or only loosely related, MTL
can result in inductive bias resulting in actually harming the performance of a
classifier. Another factor influencing the success of the MTL performance is the
neural architecture and design, e.g., the degree of parameters sharing between
tasks [28]. Here, we investigate several MTL architectures and methods and
apply them to an annotated dataset of annual reports.

3 Datasets

3.1 FTSE350 Annual Reports and Annotations

The analysis is conducted on the same corpus as [26].4 It is composed of annual
reports from the FTSE350 companies, covering the 2012–2019 time period. Only
annual reports for London Stock Exchange companies that were listed on the
FTSE350 list on 25th April 2020 are included. Altogether 1,532 reports are
collected in the PDF format and converted into raw text.

We use an annotated dataset associated with the FTSE350 corpus. The anno-
tated sentences are extracted from reports covering the period between 2017 and
2019. The annotators were given a sentence and asked to jointly label 5 tasks.
In total, 2651 sentences were annotated. Here, we list the task definitions and
label distributions.

– Relevance: business related text (1768)/general text (883). Indicates
whether the sentence is relevant from the perspective of corporate business.

– Financial sentiment: positive (1769)/neutral (717)/negative (165). Senti-
ment from the point of view of the financial domain.

4 Code and details to re-create the dataset are available at osf.io/rqgp4.

http://osf.io/rqgp4
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– Objectivity: objective (2015)/subjective (636). Indicates whether the sen-
tence expresses an opinion (subjectivity) or states the facts (objectivity).

– Forward looking: FLS (1561)/non-FLS (1090). Indicates whether the sen-
tence is concerned with or planning for the future.

– ESG: ESG related (1889)/not ESG related (762). Indicates whether the sen-
tence relates to sustainability issues or not.

Inter-annotator Agreement. In total, 13 annotators took part in the labeling
process, all graduate students of MSc in Quantitative Finance and Actuarial
Sciences. Among the annotated sentences, 48 sentences are annotated by all
annotators. We use them to compute the inter-annotator agreement. To build
the final corpus, we deduplicate the sentences used for inter-rater agreement,
performing a majority vote to select the label for each sentence.

We compute three global measures of agreement between all annotators:
Krippendorff’s α, Fleiss’ κ, and the percentage of samples where all annotators
agree. As a complement, we compute a pairwise measure: Cohen’s κ [8], which
we average between all pairs of annotators to obtain a global measure. It is
similar to measuring the percentage of agreement, but taking into account the
possibility of the agreement between two annotators to occur by chance for each
annotated sample. All these measures are indicated in Table 1.

Table 1. Global measures of agreement between the 13 annotators on 48 sentences,
for each of the 5 tasks.

Krippendorff α Fleiss κ Cohen κ Agreement (%)

Relevance 0.09 0.09 0.10 6

Financial sentiment 0.27 0.36 0.37 12

Objectivity 0.26 0.26 0.25 18

Forward looking 0.32 0.32 0.33 12

ESG/not-Esg 0.43 0.42 0.43 28

The agreement measures are consistently low. The tasks with the best inter-
annotators agreements are sentiment and ESG. The Cohen κ for ESG indicates
a “moderate” agreement according to [8], but it also indicates that less than one
third of the annotations are reliable [20]. However, similar studies performing
complex or subjective tasks such as sentiment analysis on short sentences also
show low agreement values [5].

4 Multi-task Classification Methods

Here, we tackle the classification tasks on the annotated dataset described in
Sect. 3.1. We use an encoder-decoder system for the classification tasks. A shared
encoder is used to encode each sentence into a representation space, while dif-
ferent decoders are used to perform the classification. Here, we use the term



Multi-task Learning for Features Extraction in Financial Annual Reports 13

‘decoders’ to denote the classification heads, which take as input the sentence
representation encoded by the encoder part.

We describe the encoding and decoding systems in the following sections.

4.1 Encoder: Pre-trained Masked Language Model

Transformers-based pre-trained language models are a method to represent lan-
guage, which establishes state-of-the-art results on a large variety of NLP tasks.
Here, we use the RoBERTa model [16]. Its architecture is a multi-layer bidi-
rectional Transformer encoder [33]. The key element to this architecture, the
bidirectional training, is enabled by the Masked Language Model training task:
15% of the tokens in each input sequence are selected as training targets, of
which 80% are replaced with a [MASK] token. The model is trained to predict
the original value of the training targets using the rest of the sequence.

Contextualized language models are mostly used in the literature following
the principle of transfer learning proposed by Howard and Ruder [12], where the
network is pre-trained as a language model on large corpora in order to learn
general contextualised word representations.

In our case, we perform domain adaptation [23] by fine-tuning RoBERTa
on the masked language model task on the FTSE350 corpus. Then, we perform
a task-specific fine-tuning step for our various sentence classification tasks. To
represent the sentences during the fine-tuning, we use the representation of the
[CLS] token, which is the first token of every sequence. The final hidden state of
the [CLS] token is usually used in sequence classification tasks as the aggregated
sequence representation [9].

4.2 Joint Multi-task Learning

In the classical MTL setting, we implement a simple architecture taking as input
each sentence’s representation encoded by the contextualised language model,
and feeding it to several decoders. Each decoder is a classification head associated
with one task. The sentence representation is passed through an architecture
consisting of linear and dropout layers, before being projected to a representation
space of the same dimension as the number of labels associated with the task.
As a reminder, the financial sentiment task has three labels while the other ones
have two. This final representation is called the logits. We use them to compute
the loss associated with each classification head.

To train all the decoders jointly with the encoder in an end-to-end fashion,
we sum the losses outputted by each decoder, at each step. By optimizing this
sum of losses, the model learns jointly on all tasks. In the results section, we
denote this method as Joint. We experiment with several task combinations to
evaluate the positive and negative effects of each task on the performance of the
classifier on other tasks.
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4.3 Weighting Tasks

Since the relatedness between tasks can vary, we also investigate an approach
where weights for each task (i.e., the influence each task has on an average
performance of the classifier across all tasks) are derived automatically. We train
weights associated with each task jointly with training the classifiers, by adding
an additional trainable “weight layer”, containing n scalars corresponding to n
tasks. These weights are first normalized (i.e. the sum of weights is always one in
order to prevent the model to reduce the loss by simply reducing all weights) and
then multiplied to the calculated losses obtained for each task during training
before summing up all losses and performing back-propagation.

The learned weights can both be used to improve the overall performance,
and to “probe” the importance of each task for the overall system.

4.4 Sequential Multi-task Learning

Sequential MTL is an alternative to the joint MTL setting presented in Sect. 4.2.
In the sequential setting, we use multi-task learning in an intermediary fashion,
as a “pre-fine-tuning” for a given target task. This is close to the concept of
STILT [24] and large-scale multi-task pre-fine-tuning presented in the related
works section. The model, through a preliminary multi-task training step, is
expected to acquire knowledge about all these training tasks and to accumulate
it in the weights of the encoder. Then, the encoder is fine-tuned only on the
downstream target task.

In this setting, we experiment with various task combinations trained jointly
before fine-tuning the encoder on one of the target tasks. We distinguish two
sequential settings. First, systematically excluding the target task from the pre-
fine-tuning step; for example, when the target task is the ESG classification, we
pre-fine-tune the encoder using classification on various combinations of the four
other tasks. Second, systematically including the target task; in that case, the
encoder has seen the training data for the target task during pre-fine-tuning. In
the results section, this method is referred to as Seq.

4.5 Explicitly Giving Features for Multi-task Learning
(ExGF - MTL)

As explained before, task-specific classification heads output logits for each task.
In this approach, we aim at performing multi-task learning by Explicitly Giving
the output of the classification heads for “auxiliary tasks” as additional Fea-
tures for the prediction of the final target task. These features are concatenated,
fed into a linear layer (i.e., the “common auxiliary task features’ classification
head”), and projected into a vector space of the same dimension as the logits of
the final target task. The features are then summed with the logits of the ESG
task, and this sum is used to compute the loss for the final target task. This
final target task loss is then summed with the losses of the four auxiliary tasks
(calculated on the logits outputted by the task-specific classification heads for
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each auxiliary task) and the backpropagation is performed the same way as for
the joint MLT system.

4.6 Task-aware Representations of Sentences (TARS)

Task-aware representations [11] were proposed as an alternative method to MTL
where one general model can be trained and used for any task while preserving
the maximum amount of information across tasks. The method transforms any
classification task into a binary “Yes/No” classification task. Informally, for each
task, a model is presented with a tuple consisting of a task label and an instance
to classify. The task for the model to solve is to classify if the presented label
matches with the presented instance or not. We adapt the proposed approach to
model all five tasks jointly in a multitask setting. For a task with M classes, M
<original label, instance> tuples are generated for each instance in the training
set. Each such generated instance is labeled with the generalized label “Yes”
if the original label and instance match and with the generalized label “No’
otherwise. Original labels are prepended to the instance in order to condition
the model both on the task and the instance to classify.

The model is trained jointly on instances for all tasks. Instances are generated
in the same way during evaluation phase. As predicted class, we consider the class
with the highest probability for the “Yes” generalized label. For example, given
the sentence “[...] colleagues were trained to deliver weekly walks targeted at
individuals aged over 65.” and the task of classifying if this sentence is ESG-
related or not, the original label is “ESG”. We create two instances and their
respective labels:

– “ESG [SEP] sentence”. Gold label: “Yes”. Probability of “Yes”: 0.92.
– “Not ESG [SEP] sentence”. Gold label: “No”. Probability of “Yes”: 0.37.

The model learns on all examples; at inference, given a similar pair of sentences
and their “Yes” probability predicted by the model, we assign to the sentence
the label associated with the highest probability of “Yes”.

The motivation behind this system is related to the core idea behind multi-
task training. All our systems implement a separate decoder for each task, as the
task labels are different. Thus, the sharing of weights is only at the encoder-level.
By gathering all tasks under a common setting, with the same binary labels, the
setting is both more generalizable and fully shares all parameters during training.
Recently, this idea of gathering all tasks under the same setting has gained a
large popularity in NLP through the sequence-to-sequence paradigm [3].

5 Multi-task Experiments

In this section, we report the performance of the mono-task (used as a baseline)
and the various multi-task settings introduced in the previous section.
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5.1 Experimental Framework

In all experiments, the metric used to compare the systems is the macro-F1
score. It is the most adapted for classification settings with class imbalance (see
Sect. 3.1 for the label distribution for each task), as it computes performance
for each label and averages them, without giving more importance to the over-
represented ones. We divide the annotated dataset into 3 parts, keeping 20% for
development and 20% for test. The test sets sampled from the original corpora
are relatively small (531 examples). To increase the robustness of the results, we
use five different seeds when fine-tuning the language model on the classification
tasks and report the average scores over the five runs.

We tune hyper-parameters for the mono-task setting using the development
set (batch size, learning rate, weight decay and number of epochs). The models
are trained for 5 epochs and the selected model is the best one out of the 5 epochs
in terms of average macro-F1 across all tasks (for joint multi-task learning)
or best macro-F1 of the target task (sequential MTL or mono-task training),
computed on the development set.

5.2 Results

Using each method for all task combinations, we compute the average macro-
F1 score (across the five seeds) on the test set of each task. To compare the
numerous methods and task combinations, we compute their rank in terms of
performance (i.e. average macro-F1) for each target task. Then, we define the
global performance of a method as the average rank of its performance across all
target tasks, with a total number of methods and task combinations of 66. Table 2
shows the best-ranked methods and task combinations as well as a few lower-
ranked methods for the sake of comparison. Task combinations are indicated by
lists of integers; each integers corresponds to a task, and the matching is indicated
in the caption. The N/As (Not Available) in the table correspond to the scores
for a target task on which the system was not trained nor evaluated, because
it is not part of the task combination.5 The last column of the table shows the
rank of the specific method and task combination among all approaches. For the
sake of the further analysis and comparison between distinct architectures and
task combinations, we include the last 4 lines of the table, which appear lower
in the overall systems’ ranking.

With a relatively large margin, the best performing method is the ExGF-
MTL system, leading to higher individual task scores compared with the mono-
task training (in italic in the table) for all tasks except financial sentiment.
It is especially efficient on the ESG task. In terms of task combinations, the
best systems exclude the Objectivity task (task #2) and often the Relevance
task (task #0). These tasks have low inter-rater agreement, making them more
difficult to tackle for the models. We further investigate their effect on MTL in
the next table.
5 Note that the N/As can only appear in the joint and weighted settings, where there

is no explicit final target task.
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The last 4 lines of the table show systems with lower rankings. They allow
us to compare the weighted MTL system trained on all task combinations, with
the unweighted one; and the sequential and joint systems for the best task com-
binations. Except for the best task combination (i.e. 0-1-3-4, where sequential
MTL beats joint MLT in terms of ranking (but by a low margin), the joint
training seems overall better than the sequential one in the rankings. We further
investigate this distinction in Table 3.

Table 2. Performance of all tested approaches according to the macro-F1 score
arranged according to the average rank across tasks, i.e. the ranking of a row is the
average of the five column-wise rankings, ignoring missing values (N/As). The task
combinations are indicated as a list of integers with the following matching: 0 = Rele-
vance; 1 = Financial-sentiment; 2 = Objectivity; 3 = Forward-looking; 4 = ESG. Mono
corresponds to the baseline classification results without multi-task learning.

Method Tasks Relevance Fin-sentiment Objectivity Fwd-looking ESG Rank

ExGF all 51.67 58.67 68.94 68.59 69.14 1

seq 0-1-3-4 50.26 53.13 66.28 69.66 60.64 2

joint 0-1-3-4 49.09 50.37 N/A 70.07 64.07 3

mono 50.13 63.11 64.29 64.24 64.52 4

weighted all 54.70 48.29 61.64 68.67 61.42 5

joint 1-3-4 N/A 50.94 N/A 64.77 61.06 6

joint 1–3 N/A 49.56 N/A 67.32 N/A 7

joint all 48.80 48.34 63.53 66.00 55.31 19

TARS all 49.48 46.42 59.62 66.49 59.86 24

seq 1-3-4 48.30 47.43 59.20 60.13 52.69 39

seq all 46.12 48.15 59.03 57.05 51.01 43

The last comparison is performed between weighted multi-task joint training
(rank #5) and non-weighted (rank #19) training on all tasks; the joint method
is outperformed by the weighted method on all tasks but one, the Objectiv-
ity task. The task importance according to the weights obtained during the
weighted training are as follows: {Relevance: −0.64; Fin-sentiment: 1.83; Objec-
tivity: −1.42; Fwd-looking: 1.6; ESG: −1.37}.

For the sake of clarity, instead of showing the raw weights, we report the
difference between the learned weights and the default uniform weights used in
the other multi-task settings. Higher weights are given to the financial sentiment
and the forward-looking tasks, while lower weights are given to the other three.
Note that among the three tasks with the lower weights, two of them – relevance
and objectivity – have the lowest inter-rater agreement (see Table 1).

To compare the various methods from a more global point of view, we aver-
age the scores of all task combinations for each method. Additionally, we also
report on results for averages across all tasks but tasks #0 (Relevance) and
#2 (Objectivity), the two tasks with the worst inter-annotator agreement, to
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further analyse the impact of removing low-performance tasks out of the MTL
framework. The results are reported in Table 36.

Removing the Objectivity and Relevance tasks leads to a small improvement
in several cases, particularly for the joint training, where the weights are more
directly impacted by the MTL system. The positive effect is less visible for the
sequential training. It shows that for a small amount of tasks, or when a limited
amount of data is available, more is often better.

The results also show that on average, regardless of the task combination,
joint MTL tends to lead to better performance. Moreover, as expected, including
the target task in the pre-fine-tuning step of the sequential training is highly
beneficial, as it allows the model to learn interactions between this task and
the auxiliary ones. However, note that this tactic is not in line with the initial
idea behind large-scale pre-fine-tuning, which is to allow the model to be able
to generalize to unseen tasks (i.e. it is assumed that the target task data is not
available during the preliminary step).

Table 3. Macro-F1 average score over the 5 seeds and over all tasks combinations
for the multi-task systems, except some selected tasks when indicated in the second
column. Seq-INCL means sequential training WITH the target task being already part
of the pre-fine-tuning step.

Method Except Relevance Fin-sentiment Objectivity Fwd-looking ESG

joint 47.9 48.78 57.38 66.18 56.80

joint 0 N/A 48.56 60.32 67.41 57.82

joint 2 49.33 48.41 N/A 67.17 54.88

seq 42.95 40.7 57.23 55.37 49.88

seq 0 N/A 38.59 56.78 54.57 49.44

seq 2 44.41 37.24 N/A 55.95 51.35

seq-INCL 47.46 46.17 58.13 59.23 51.13

6 Linking ESG Ratings with Textual Features

In the previous section, we identified ExGF-MTL as the best method to opti-
mally exploit the information from all five tasks to improve the overall perfor-
mance. We use this method to extract features from the annual reports, for all
target tasks. Our aim is to investigate, on the large corpus of entire FTSE350
reports (i.e. not just on the manually labeled sentences extracted from these
reports), the correlation between our extracted features and real-world numeri-
cal measures of ESG performance, obtained from Reuters, associated with each
report.
6 Note that the results for each method reported in Table 3 are lower than the results

reported in Table 2, since here we report the average method’s performance across
all task combinations, while in Table 2 we only report results for the best ranked
task combinations for each specific method.
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6.1 Inference on Reports

Pre-processing the Corpus. We filter sentences in the corpus according to
several conditions; these conditions are mainly related to the noise induced by
the transformation from pdf to text, and to the corpus artefacts inherent to the
format of the annual reports. We filter sentences depending on the proportion of
upper-cased words and the proportion of non-letter characters in the sentence.
We also filter short sentences not containing enough characters and words due to
corpus artefacts such as the presence of split words into space-separated letters.
Finally, we keep only sentences starting with a capital letter and ending with a
punctuation sign. Following the pre-processing, we obtain an average number of
around 1900 sentences by report.

Feature Extraction. Using the ExGF-MTL models trained in the previous
section, we perform inference on the full FTSE350 annual reports corpus. Thus,
for each sentence, we predict its label associated to each task. We extract the
following five features from each annual report: first, the proportion of ESG
sentences. Then, among ESG sentences, the proportion of positive, negative,
forward-looking, and objective sentences. Note that the Financial sentiment task
is divided into two features to only get a set of binary features to compute the
Spearman correlation.

6.2 Correlation Analysis

We use ESG scores from the financial press agency Reuters; for each company of
the FTSE350 index and for each year, one score per ESG pillar (Environment,
Governance and Social) and one Global ESG score are provided. They range
from 0 to 100. They are inferred by financial analysts through careful reading of
the financial reports of these companies.

We correlate these scores, using the Spearman correlation, with the five tex-
tual features extracted from the reports using the classification models. We also
correlated the textual features with the year of the report, as an ordinal variable.
We perform the correlation analysis by grouping companies by ICB industry
code (11 industries) and by extracting the 5 highest correlations between the
two groups of features (numerical an text-extracted) in Table 4.

First, we note that the pillar score (Environment, Governance or Social) most
correlated with the textual features is often related to the industry of the com-
pany (e.g. the Environment pillar for the Energy industry, the Governance pillar
for the Financial industry). Among the most correlated text features with the
ESG scores, the proportion of ESG sentences is often the highest, meaning that
writing more about ESG in the reports is often linked with having good ESG
scores. Following closely in terms of Spearman correlation, is the percentage of
negative and objective ESG sentences. We also note that the year is often cor-
related with the proportion of ESG sentences, meaning that ESG is increasingly
discussed in the recent years. The proportion of forward-looking sentences is sel-
dom correlated with the ESG scores; a notable correlation is the one between the
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Table 4. Top 5 highest pairwise Spearman correlations between textual features (pro-
portion of positive, negative, objective ESG sentences & proportion of ESG sentences
in the full report), Reuters ESG scores (Global, Env., Social and Gov.) and year, by
industry. Only Spearman correlations higher than 0.18 are displayed.

Industry
Reuters

Scores (%)

Textual

Features (%)
ρ

Energy

Environment Objective 0.49

Social Objective 0.45

Environment ESG 0.43

Social ESG 0.42

Global Objective 0.42

Consumer

Staples

Global ESG 0.43

Social ESG 0.42

Governance ESG 0.33

Environment ESG 0.33

Environment Negative 0.30

Industrials

Social Objective 0.41

Global Objective 0.38

Environment Objective 0.32

year Objective 0.26

year ESG 0.17

Telecom-

munication

year ESG 0.44

Environment ESG 0.41

year Positive 0.41

year Objective 0.38

Environment Fwd-looking 0.32

Real

Estate

year ESG 0.32

Environment Negative 0.28

Social ESG 0.26

year Objective 0.23

Global ESG 0.23

Basic

Materials

Governance Fwd-looking 0.22

year Objective 0.18

Industry
Reuters

Scores (%)

Textual

Features (%)
ρ

Utilities

Social ESG 0.55

Global Negative 0.39

Social Objective 0.33

Governance Negative 0.31

year ESG 0.29

Financials

Governance Fwd-looking 0.29

Governance Negative 0.28

Governance ESG 0.25

Global Objective 0.24

year Objective 0.22

Consumer

Discretionary

Environment Negative 0.31

Environment Objective 0.30

Global Objective 0.26

year Objective 0.21

Social Fwd-looking 0.20

Technology

Governance ESG 0.54

Environment Objective 0.42

Global ESG 0.39

Governance Negative 0.35

Social Negative 0.34

Health

Care

Social Objective 0.29

year Positive 0.29

year Objective 0.25

Global Objective 0.24

Governance Objective 0.20

forward-looking proportion and Governance Pillar score in the financial industry,
which indicates a specific writing style about governance in this industry.

7 Conclusion

The focus of this study was the joint use of stylistic features – financial sentiment,
objectivity and forward-looking – and ESG classification. We turned towards
ESG because it is a challenging concept to quantify and evaluate, partly because
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few numerical metrics exist to characterize it, and because it is a recent concept
that is still not perfectly defined and structured. But our experimental framework
and MTL methods are generic and can be applied to any other topic of interest,
for investigating the correlation between financial and textual data.

Methodologically, we showed that the best way to combine information from
related tasks is to explicitly provide the predictions of auxiliary tasks as features
for the prediction of a target task. This system is even efficient for tasks made
very challenging by a very low inter-rater agreement. Note that in the majority
of the literature, MTL is performed using different datasets for each task, while
in our case, all the tasks are included in a single dataset, each instance having a
label for each task. However, the proposed best approach, ExGF-MTL, can easily
be applied to the multi-dataset multi-task learning; the only difference being the
data loading implementation and encoder-decoder interactions. We also showed
the importance of task selection when performing multi-task learning with a low
number of tasks. We posit that a higher number of tasks would allow the system
to compensate for low-performance tasks. When identifying low-performance
tasks that harm the MTL system, we highlighted the link between performance
and annotation quality. Finally, following recent trends for large-scale NLP multi-
task learning, we compared sequential and joint fine-tuning, and experimented
with MTL using a unique decoder for all tasks (TARS). However, we could
not show any positive effect of this latter method. A better way to use a unique
decoder for MTL while making the most out of large pre-trained language models
would be to adopt the sequence-to-sequence paradigm for all tasks [3].

Qualitatively, we showed that our method allows us to extract meaningful
features from annual reports that correlate with numerical features provided by
press agencies, on the topic on corporate social responsibility. In future work,
we plan to extend our method to perform causal discovery and causal inference
between textual features, ESG scores and various financial performance indica-
tors for companies [13].
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1 Introduction

Acuity Trading1 produces a variety of news-based sentiment indicators for many
markets’ assets conveying different emotions, with the collaboration of a research
team lead by the author from the Polytechnical University of Catalonia.

This alternative data can be used in many ways in the financial business, and
the purpose of this note is to give some ideas to practitioners in the industry,
and consumers of this sentimental data, on how to make use of these sentiment
indicators in their investment decisions. We focus on ideas for the construction
of algorithmic trading rules, portfolio selection, and sentimental factor models,
which are useful in forecasting, assets’ return covariance estimation and assets’
industry classification. Hence, this is a survey paper of methods for exploiting
the news-based sentimental information on markets’ assets, intended for hedge
fund managers, traders and practitioners in the financial industry in general.

1.1 Sentiment Analysis in Finance

Several existing studies in behavioural finance have shown evidence to the fact
that investors do react to news. Usually, they show greater propensity for mak-
ing an investment move based on bad news rather than on good news (e.g. as
a general trait of human psychology [4,15], or due to specific investors trad-
ing attitudes [6]). Li [10] and Davis, Piger, and Sedor [5], analyse the tone of
qualitative information using term-specific word counts from corporate annual
reports and earnings press releases, respectively. Tetlock, Saar-Tsechansky and

1 https://acuitytrading.com/.
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Macskassy [18] examine qualitative information in news stories at daily hori-
zons, and find that the fraction of negative words in firm-specific news stories
forecasts low firm earnings. Loughran and McDonald [12] worked out particular
lists of words specific to finance, extracted from 10-K filings, and tested whether
these lists actually gauge tone. The authors found significant relations between
their lists of words and returns, trading volume, subsequent return volatility,
and unexpected earnings. The important corollary of these works is that the
selection of documents from where to build a basic lexicon has major influence
on the accuracy of the final forecasting model, as sentiment varies according to
context, and lists of words extracted from popular newspapers or social networks
convey emotions differently than words from financial texts. Being aware of this,
the sentimental lexicons used in this study are built from financial documents
provided by Dow Jones Newswires, and in a way similar to [12].

Once a sound sentiment lexicon is built (and as stated before much the sound-
ness relies on the choice of appropriate news sources), we build sentiment indi-
cators quantifying, on a daily basis (usually), the mood of the public towards a
financial entity. Ways of building sentiment indicators are well explained in [11].
Then financial modelling based on these sentiment indicators is done basically
from two perspectives: either use the sentiment indicators as exogenous features
in econometric or machine learning forecasting models, and test their relevance
in forecasting price movements, returns of price or other statistics of the price;
or use them as external advisors for ranking the subjects (target-entities) of the
news (e.g. exchange market stocks) and create a portfolio. A few selected exam-
ples from the vast amount of published research on the subject of forecasting and
portfolio management with sentiment data are [9,12,18,19], and further review
of econometric models that include text as data can be found in [8].

1.2 The Sentiment Indicators

Acuity trading tracks news for more than 90K companies worldwide, and pro-
duces news-based entity sentiment indicators for each one of these. The sentiment
indicators are based on proprietary lexicons, from which Acuity is able to extract
up to nine different emotions pertaining to a given entity. This article focus on
6 of these sentiment types, which can be grouped into Bullish and Bearish emo-
tions. In the Bullish emotions group we have indicators for (the terminology is
from Acuity):

Positivity, Certainty, FinancialUp;
and in the Bearish emotions group we have

Negativity, Uncertainty, FinancialDown.

We can make the following aggregations of the different sentiment indicators
exposed above to build general Bull/Bear signals:

– BULL = 0.33 · (Positivity + Certainty + FinancialUP ); that is, at each
time step consider the arithmetic average of bullish emotion scores. Likewise,
consider
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– BEAR = 0.33 · (Negativity + Uncertainty + FinancialDown);
– BBr = 100 · BULL/(BULL + BEAR);
– PNlog = 0.5 · ln((Positivity + 1)/(Negativity + 1)).

The BBr has been inspired by the well-known Bull-Bear ratio of Technical Anal-
ysis [1], which in the pre-internet era was concocted from market professionals
opinion polls. In the sentiment data it may well be that for particular stocks,
and for particular timestamps, all bullish and bearish sentiment scores are 0. In
this case we interpolate the non-existent (or NA) BBr score by leftmost and
rightmost non-NA values. The PNlog is of similar nature as BBr [3].

For readers who are new to sentiment analysis, and its particular application
to Finance, a good book to start is [11], and survey papers [2,3]. In particular
[3] gives details of the construction of the sentiment indicators presented above.
In the following sections I shall describe different ideas for using Acuity’s entity
sentiment indicators in your investment decisions.

2 Technical Trading with Sentiment

The general idea is to take your favorite trading rule from Technical Analysis
(the book by Achelis [1] presents a large list of these trading rules), and instead
of using the price of the stock in the rule substitute this by a sentiment indicator.
To illustrate this idea consider the Dual Moving Average Crossover rule.
This consist on computing two moving averages on the Closing price, one a
short term over s days, named MA(s), and the other a long term over m days,
MA(m), up to day t. The trading rule states to go long on the next day t + 1
if MA(s) > MA(m), or short otherwise. An example of parameters values is
s = 12, m = 50, but of course these can be tuned from data.

I applied this trading rule separately to each sentiment indicator Positivity,
Negativity, Bull, Bear, and BBr, in place of the price, for the JP Morgan Chase
& Co. stock (JPM:NYSE) from Jannuary 2, 2018 to May 22, 2020, an epoch
that reflects both bull and bear market conditions. Thus, I feed the sentiment
time series to the technical indicator, take position in the stock according to the
signal and hold it until the next signal. My main measure of performance is the
cumulative excess return given by the strategy with respect to buy-and-hold,
but I will also consider the strategy annualized return, annualized volatility, its
win-rate, maximum drawdown and Sharpe ratio (considering a risk-free interest
rate of 1%). There are other important performance measures that one may
consider, but the subset I propose give a fair idea of the health of the strategy
with respect to benefits and risk.

I repeated the experiment with different values for s and m (in fact, (s,m) ∈
{5, 10, 15, 20} × {25, 50, 100}), considered long-only and long-short trading, and
applied a rolling window analysis with window sizes of 254 d (a year) and 127 d
(6 months), both with 1 day increments. The results obtained showed that 96 out
of the 240 variants of the MA strategy yielded positive excess return. All results
are plotted in Fig. 1, where a code of diamond shape of different sizes and various
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shades of blue represent the combinations of pair values for (s,m); right boxes
show long-only trading whilst left boxes show long-short trades; upper boxes
show results of rolling window analysis with window size 127 (6 months), whilst
lower boxes contains results of rolling analysis with window size 254 (a year). We
readily observed that the best performing strategy (with respect to excess return)
was based on the BULL sentiment indicator, with s = 10, m = 25, window size
of a year and allowing long and short positions. This strategy yielded 33.9%
excess return and a Sharpe ratio of 1.74; its annualized volatility is 23.9% and
maximum drawdown of –15.9%. For a more conservative strategy with volatility
14% and maximum drawdown of –9%, and a reasonable excess return of 10.6%,
whilst offering a Sharpe ratio of 1.34, we have the BBr strategy with s = 15,
m = 25, trading long only and window size of a year. Table 1 exhibits a count
of successful strategies per sentiment. We can see there that the BEAR and
Negativity sentiments give the greater number of successful variants of the MA
strategy (i.e. with positive excess returns, ER).

Fig. 1. All combinations of MA trading strategy with the five sentiment indicators and
their performance with respect to excess return.

3 Sentiment Driven Portfolio Selection

The next idea is to use the sentiment indicators to rank stocks and use this
ranking in the popular heuristic of quintile portfolio weighting. Subsequently,
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Table 1. Count of successful strategies per sentiment.

Sentiment # MA with ER > 0 % of total

BEAR 28 29.2%

Negative 26 27.1%

Positive 15 15.6%

BBr 14 14.5%

BULL 13 13.5%

a backtesting approach is implemented to compare these sentiment-based quin-
tile portfolio selection with other popular portfolio selection and rebalancing
strategies, and across the trading performance measures already mentioned in
Sect. 2.

The quintile portfolio selection strategy is a popular simple strategy in finan-
cial investment. This consists on first sort the stocks according to some charac-
teristics (e.g. in our case, this will be done with respect to the sentiment scores),
and then the strategy equally longs the top 20% (i.e., top quintile) and possibly
shorts the bottom 20% (i.e., bottom quintile). In my experiments I will restrict
trading to long positions only. Despite its simplicity, the quintile portfolio strat-
egy has shown great advantage over more sophisticated portfolios in terms of
stable performance and easy deployment. Moreover, a recent paper [20] gives a
mathematical interpretation of quintile portfolios as solutions of robust portfolio
designs, with respect to some uncertainty sets for the expected returns.

In this study, I make use of the various functionalities of the R package
portfolioBacktest [14], which allows to automate the performance analysis of
backtests on a list of portfolios over multiple datasets on a rolling-window basis.
By performing a rolling-window analysis one can cover many of the performance
weakness of a single backtest and obtain more realistic results.

3.1 The Experiments and Results

The dataset consists of a set of 16 stocks from different sectors including the tech-
nological, oil, pharmaceutical, banking and financial services, and entertainment.
This includes the following companies (listed by their market ticker): AAPL,
ABBV, AMZN, DB, DIS, FB, GOOG, GRFS, HAL, HSBC, JPM, KO, MCD,
MSFT, PFE, XOM. Their price history is taken on a daily basis from January
1, 2015 to June 9, 2020.

Several types of portfolios are constructed on the basis of different approaches
for weighting the different stocks in the portfolio. As benchmarks, I use both the
Global Minimum Variance Portfolio (GMVP) and the classical Mean-Variance
(MV) portfolio due to Markowitz [13], which is the tangency portfolio con-
structed from the “efficient frontier” of optimal portfolios offering the maximum
possible expected return for a given level of risk. I also include a simple port-
folio in which the same weight is assigned to each stock (the uniform or equal
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weighted portfolio), as well as a quintile portfolio built simply on the basis of esti-
mated expected returns. I use these portfolios as reference points for comparison
with the sentiment-based portfolios, the Quintile-BBr and the Quintile-PNLog,
which are constructed using the sentiment indicators BBr and PNLog, respec-
tively, as the key input used for selecting stocks in a quintile portfolio strategy. I
apply a look-back rolling window of length 252, and optimize the portfolio every
20 (i.e. perform a selection of stocks roughly every month according to strat-
egy). For comparison purposes among the different portfolio selection strategies
I do not consider transaction costs. However, I have made a simulation of the
quintile portfolio with BBr selection considering transaction costs. Results are
summarized below. Table 2 exhibits the performance of the six different portfolio
selection strategies under the different measures considered (where Sharpe ratio
is abbreviated as Sharpe, Maximum Drawdown as Max-DD, Annualized return
as A return, and Annualized volatility as A volat).

Table 2. Performance of the six different portfolio selection strategies.

Strategy Perform.

Sharpe Max-DD A return A volat

Quintile 0.7106 0.2769 0.1743 0.2453

GMVP 0.3826 0.3359 0.0679 0.1774

MV 0.3339 0.3660 0.1077 0.3226

Quintile-BBr 0.9352 0.3139 0.1979 0.2116

Quintile-PNlog 0.6533 0.3282 0.1469 0.2248

Uniform 0.6078 0.3644 0.1216 0.2002

Performance can be also viewed in the plots below of cumulative returns and
bar-plots of the drawdown and Sharpe ratio (Figs. 2 and 3). It can be observed
that the quintile portfolio with BBr sentiment selection constructs relatively
more successful portfolios in terms of Sharpe ratio and annual return. More-
over, all methods result in an approximately similar maximum drawdown. Addi-
tionally, it is remarkable that the uniform approach to assign weights performs
comparably to other more sophisticated methods such as the Markowitz and
the GMVP. This is consistent with the literature on portfolio management and
highlights the key flaw in general Markowitz mean-variance optimization, as it
demonstrates that a large degree of instability in the covariance matrix makes
implementation of Markowitz not especially fruitful in practice (more on this in
Sect. 4).

Finally, I simulate the Quintile-BBr portfolio selection strategy with transac-
tion costs set at 15 bps, and compare to the same strategy without transaction
costs. It can be observed that both strategies performed quite similarly (Fig. 4).
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Fig. 2. Cumulative returns of the six portfolio’s strategies.

Fig. 3. Sharpe ratio and Maximum Drawdown of the six portfolio’s strategies.

Fig. 4. Performance Quintile-BBr strategy with transaction costs set at 15 bps (red)
and without (black). (Color figure online)

Overall, this study indicates that incorporation of sentiment analysis to port-
folio selection has the potential to enhance risk-adjusted returns when compared
with many of the standard portfolio choice frameworks. In particular, the Bull-
Bear sentiment scoring used as the criteria for sorting in the quintile portfolio
selection strategy performed substantially better than the reference portfolios,
and the PNlog-Quintile portfolio performed slightly better than the best refer-
ence portfolio (the equal-weighted portfolio).
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4 Sentiment Factor Model of Returns

In this section I go a step further and show how to leverage a macroeconomic
factor model for stock returns with a market sentiment indicator. Factor mod-
els are used to make good estimates of the covariance of capital asset returns.
Covariance matrices of asset returns are fundamental for choosing diversified
portfolios and are key inputs to portfolio optimization routines, dating back to
the now classical mean-variance model of Harry Markowitz [13].

The use of factor models to estimate large covariance matrices of asset returns
dates back to William Sharpe [16]. The most well known factor models for capital
assets are the capital asset pricing model, which uses excess market returns as
the only factor (Sharpe [17]), and the Fama-French 3-factor model (Fama and
French [7]).

Let us begin with a brief review of factor models (for full details see [21, Ch.
15]). Multifactor models for N asset returns and K factors have the general form

Rt = α + B · ft + εt, t = 1, . . . , T (1)

where Rt =

⎡
⎢⎣

R1t

...
RNt

⎤
⎥⎦ is the vector of N assets log-returns, ft =

[
f1t, . . . , fKt

]

is the vector of K factors, εt =
[
ε1t, . . . , εNt

]
is the vector of N assets specific

factors, α =
[
α1, . . . , αN

]
is the vector of N assets alpha (which in a macroe-

conomic model corresponds to the excess return or abnormal rate of return),
and

B =

⎡
⎢⎣

β′
1
...

β′
N

⎤
⎥⎦ =

⎡
⎢⎣

β11 · · · β1K

...
. . .

...
βN1 · · · βNK

⎤
⎥⎦

is matrix of factor loadings (each βki being the factor beta for asset i on the k-th
factor).

In the multifactor model it is assumed that the factor realizations are inde-
pendent with unconditional moments, and that the asset specific error terms are
uncorrelated with each of the common factors, and are serially uncorrelated and
contemporaneously uncorrelated across assets:

cov(εit, εjs) = σ2
i for all i = j and t = s, or 0 otherwise
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Under these assumptions the covariance matrix of asset returns has the form

cov(Rt) = Σ = Bcov(ft)B′ + D (2)

where D = cov(εt) = E[εtε′
t|ft] a diagonal matrix. From Eq. (2) we have that

the variance of each asset is given by

var(Rit) = β′
icov(ft)βi + σ2

i (3)

and the assets’ pairwise covariance is fully determined by the covariance of the
market factors:

cov(Rit, Rjt) = β′
icov(ft)βj (4)

4.1 Sentiment Factor Models for the US Market

I shall consider the following five factor models for stocks of companies trading
in the New York Stock Exchange:

1. macroeconomic 1-factor model based on the SP500 returns (factor name:
SP500)

2. macroeconomic 1-factor model based on a Sentiment index (factor name:
Sentiment)

3. fundamental 3-factor Fama-French model (factors: SMB, HML, Mkt.RF)
4. fundamental 4-factor Fama-French and Sentiment index model (factors: SMB,

HML, Mkt.RF, Sentiment)
5. macroeconomic 2-factor model based on SP500 and Sentiment index (factors:

SP500, Sentiment).

The Fama-French factors are constructed using 6 value-weight portfolios
formed on size and book-to-market. SMB (Small Minus Big market capital-
ization) is the average return on the three small portfolios minus the average
return on the three big portfolios; HML (High Minus Low book-to-market ratio)
is the average return on the two value portfolios minus the average return on
the two growth portfolios; Mkt.RF is the excess return on the market, value-
weight return of all CRSP firms incorporated in the US and listed on the NYSE,
AMEX, or NASDAQ. These factors are compiled and kept up to date by Pro-
fessor French in his web page at the University of Dartmouth. The Sentiment
factor will be Acuity’s PNlog described above.

I consider the set of stocks from NYSE, with the following tickers: AAPL,
ABBV, AMZN, DB, DIS, FB, GOOG, HAL, HSBC, JPM, KO, MCD, MSFT,
PFE, XOM, and sample their prices from 1-1-2015 to 31-12-2019, a bullish period
for the American stock market. Let S be the set containing the log-returns
of these stocks in the aforementioned period. I construct all our five factors
(Mkt.RF, SMB, HML, SP500, Sentiment) in the same period.

It is instructive to see first how the factors we are considering correlate to
each other. Table 3 shows the correlation between these factors.
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Table 3. Correlation matrix of factors

Mkt.RF SMB HML SP500 Sentiment

Mkt.RF 1 0.1429 –0.034 0.929 0.0174

SMB 0.149 1 –0.0491 0.0819 0.0139

HML –0.034 –0.0491 1 –0.0386 –0.0572

SP500 0.929 0.0819 –0.0386 1 0.0169

Sentiment 0.0174 0.0139 –0.0572 0.0169 1

We can observe that none of the correlations are statistically significant
(except of course between Mkt.RF and SP500 which are both quantifying basi-
cally the same statistic: Mkt.RF is the American’s markets joint excess return
while the other is the SP500 return). One can conclude from this correlation anal-
ysis that the Sentiment index does provide different information on the stocks
from the market.

Next, I fit a 1-factor model based on Sentiment to the log-returns of portfolio
S, and estimate the covariance matrix of the residuals of this factor model fit. I
apply a hierarchical clustering algorithm using as similarity metric the correla-
tion of these residuals. Figure 5 shows the covariance matrix of residuals and in
rectangular boxes the clusters obtained by correlation on these residuals.

Fig. 5. Covariance of sentiment factor model and clustering.
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We can see that the clustering performed on residuals (or asset’s sentiment-
specific factor) correctly identifies the sector of each stock: ABBV, PFE (phar-
maceuticals); AAPL, FB, AMZN, GOOG, MSFT (technologicals); DB, HSBC,
JPM (financials); HAL, XOM (oil); KD,MCD (consumption); DIS (entertain-
ment).

4.2 Comparison of Returns Covariance Matrix Estimation
via Different Factor Models

For further reference I will denote by SP500 the 1-factor model based on the
SP500 returns; by Sentiment the 1-factor model based on Sentiment index
(PNlog); by FF the 3-factor model due to Fama and French; by FFwSent
the 4-factor Fama-French and Sentiment index model; and by SPwSent the
2-factor model based on SP500 and Sentiment index.

I fit each one of these factor models to the log-returns of our considered port-
folio (the set S), and estimate for each the returns covariance matrix according
to Eq. (2). I will estimate the models during a training phase (first half of the
period considered) and then I will compare how well the estimated covariance
matrices do compared to the sample covariance matrix of the test phase (second
half of the period considered), and do this for different length periods to assess
the impact of the length of sample data on the estimations. The estimation error
will be evaluated in terms of the Frobenius norm ||Σ − Σtrue||2F as well as the
PRIAL (PeRcentage Improvement in Average Loss):

PRIAL(Σ) = 100 × ||Σscm − Σtrue||2F − ||Σ − Σtrue||2F
||Σscm − Σtrue||2F

which goes to 0 when the estimation Σ tends to the sample covariance matrix
Σscm and goes to 100 when the estimation Σ tends to the true covariance matrix
Σtrue (the sample covariance matrix of the test phase). Since one can not expect
perfect uncorrelated residuals across assets, nor with the factors, the PRIAL
can be negative when the sample covariance is very close to the true covariance
and the factor model estimation of the covariance is not as good. This can
(and surely) happen for example when taking large samples, which improves
the asymptotic convergence of the sample covariance to the true covariance, but
makes for a bad covariance matrix for portfolio management.

Tables 4 and 5 present the covariance estimation error and the PRIAL for
each one of the five considered factor models on a selection of different periods
varying their lengths and beginning date.

We can observe that in the period 2015-01-01/2017-12-31, the Sentiment-
factor model by itself beat all other models in covariance estimation. In the
periods where separately the SP500 and Sentiment factors have similar estima-
tion accuracy (marked in bold), their joint model (the 2-factor model of SP500
and Sentiment) remarkably improves the error in the covariance estimation to
the level of the Fama and French model. Considering a large sampling period
(2015-01-01/ 2019-12-20) improves notably the accuracy of the sample covari-
ance estimation (SCM), but deteriorates the estimation by all factor models,
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Table 4. Frobenius-norm error in covariance estimation by the different factor models
in different sampling periods

Period SCM SP500 Sentiment FF FFwSent SPwSent

2015-01-01/2017-12-31 0.00134 0.00137 0.00096 0.00134 0.00134 0.00136

2017-01-01/2019-12-20 0.00079 0.00148 0.00148 0.00083 0.00083 0.00085

2018-01-01/2019-12-20 0.00106 0.00131 0.00130 0.00108 0.00108 0.00110

2015-01-01/2019-12-20 0.00055 0.00063 0.00126 0.00059 0.00059 0.00062

Table 5. PRIAL in covariance estimation by the different factor models in different
sampling periods

Period SCM SP500 Sentiment FF FFwSent SPwSent

2015-01-01/2017-12-31 0 –4.4299 48.9348 –1.1015 –1.0675 –4.6621

2017-01-01/2019-12-20 0 –253.537 –253.008 –10.328 –10.217 –16.737

2018-01-01/2019-12-20 0 –53.127 –50.766 –3.380 –3.351 –7.613

2015-01-01/2019-12-20 0 –30.798 –433.022 –17.173 –17.203 –30.937

most notably that of the Sentiment factor model, as one may expect since old
news is no news.

To end, as it has been shown financial news sentiment is largely uncorrelated
to other well-known financial factors and, in consequence, it does give comple-
mentary information about the market. The assets’ sentiment-specific residuals
from the Sentiment factor model of log-returns can help identify assets with
similar risk, and the classification based on these residuals coincide with their
sector classification. Using sentiment as a factor on its own can often give good
estimations of assets’ returns covariance matrix, and in combination with the
SP500 returns series make a 2-factor model as comparatively as good as the
Fama-French 3-factor model.
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Abstract. We provide an overview on the development of a tracker of
economic activities and societal issues across EU member states mining
alternative data sources, that can be used to complement official statis-
tics. Considered alternative datasets include Google Searches, Dow Jones
Data, News and Analytics (DNA), and the Global Dataset of Events, Lan-
guage and Tone (GDELT). After providing an overview on the methodol-
ogy under current development, some preliminary findings are also given.

Keywords: Alternative (big) datasets · Economy and society · Social
media

1 Introduction

A number of novel big data sources have the potential to be useful for socio-
economic analyses [9]. These alternative sources of information include, for exam-
ple, administrative data (e.g., tax and hospital records), commercial data sets (e.g.,
consumer panels, credit or debit card transactions), and textual data (e.g., social
media, web searches, news data). In some cases, these data sets are structured and
ready for analysis, while in other cases, for instance text, the data is unstructured
and requires some preliminary steps to extract and organize the relevant informa-
tion [2]. These unconventional data sources have been particularly relevant during
the COVID-19 pandemic [14,24], when this information has been used to integrate
and augment the official statistics produced by national and international statisti-
cal agencies [4]. In general, the evolution of this field is contributing to the develop-
ment of various decision-making instruments that help policymakers in designing
policy interventions with the potential of fostering economic growth and societal
well-being. These trends are inspiring the research activities at the European Com-
mission’s Competence Center on Composite Indicators and Scoreboards (COIN)1

at the European Commission, Joint Research Centre (JRC)2. This contribution

1 European Commission’s Competence Center on Composite Indicators and Score-
boards (COIN): https://composite-indicators.jrc.ec.europa.eu/.

2 The Joint Research Centre (JRC) of the European Commission (EC): https://ec.
europa.eu/info/departments/joint-research-centre en.

c© The Author(s), 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 38–43, 2023.
https://doi.org/10.1007/978-3-031-23633-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23633-4_3&domain=pdf
https://composite-indicators.jrc.ec.europa.eu/
https://ec.europa.eu/info/departments/joint-research-centre_en
https://ec.europa.eu/info/departments/joint-research-centre_en
https://doi.org/10.1007/978-3-031-23633-4_3
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describes our currently on-going research work, aimed at developing a tracker of
economic activities and societal issues by obtaining policy-relevant insights from
data sets which are considered unconventional in social sciences as well as stimu-
lating the adoption of cutting hedge modeling technologies in the EU intuitions.

2 Google Search Data

Beginning with the work in [7], Google Search data have been used as a proxy of a
variety of economic measures, especially in those contexts in which official statis-
tics are not easily available. The JRC has studied the effects of Google Searches
in monitoring the interests of European citizens in three main fields related to
the pandemic crisis: health, economy and social isolation.3 Web searches heavily
depend on their link with the underlying phenomenon. As a result, scientists
are required to be able to find the most relevant set of queries in each lan-
guage and institutional environment. This task is especially difficult in a cross-
country context, since locating the relevant queries is either time-consuming or
even impossible (due to language barriers). To overcome this issue, authors in
[5,6,23] recently exploited Google Trends topics, that are language-independent
aggregations of various queries belonging to the same concept from a semantic
perspective, enabling cross-country studies. Through the Google Trends API4,
it is possible to get access to Google Search data by the Search Volume Index
(SVI) of both queries and topics, normalized to query time and location. Each
data point filtered by time range (either daily, weekly or monthly) and geogra-
phy (either country or ISO 3166-2), is divided by the total number of searches
to get a measure of relative popularity. The figures are based on a uniformly
distributed random sample of Google Searches updated once per day from 2004,
thus there may be some difference between similar requests. Google also displays
when possible the top-25 searches and topics linked to any particular topic or
query. Top queries and topics are the most frequently searched queries (or topics)
by users in the same session at any particular time and location.

3 DNA: Dow Jones Data, News and Analytics

We consider also newspaper articles as an alternative dataset. Several papers
have tried to understand the predictive value of news for measuring financial
and economic activities, such as GDP, stock returns, unemployment, or inflation
[3,15,20–22]. In particular, many works have used the sentiment extracted from
news as a useful addition to the toll-set of predictors that are commonly used to
monitor and forecast the business cycle [1,8,11–13]. For this task, we rely on a
commercial dataset of economic news obtained from the Dow Jones Data, News
and Analytics (DNA) platform.5 We use in particular the articles published by

3 See https://knowledge4policy.ec.europa.eu/projects-activities/tracking-eu-citizens
%E2%80%99-concerns-using-google-search-data en.

4 https://trends.google.com/trends/.
5 DNA platform: https://www.dowjones.com/dna/.

https://knowledge4policy.ec.europa.eu/projects-activities/tracking-eu-citizens%E2%80%99-concerns-using-google-search-data_en
https://knowledge4policy.ec.europa.eu/projects-activities/tracking-eu-citizens%E2%80%99-concerns-using-google-search-data_en
https://trends.google.com/trends/
https://www.dowjones.com/dna/
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Thomson Reuters News consisting of several million news texts, full-text, since
1988. The content is about a wide set of topics, ranging from financial matters, to
macro-economic announcements or political implications on national economies.
We use this news data set to build a set of real-time economic sentiment indi-
cators for the EU27 countries and the UK, focusing on a number of topics of
interest [3,10]. The sentiment indicators are: (i) fine-grained, i.e. they are bound
in the [–1, +1] interval; (ii) aspect-based, meaning that they are computed only
about the specific topic of interest [3,10]. Sentiment indicators are computed for
the different European countries by filtering directly on a direct mention in the
text of the articles. Along with this extracted sentiment signal, for each filtered
topic and country we also report the volume time-series, that is the number of
sentences dealing about that specific topic-country under analysis, representing
a measure of the popularity of the specific topic in the selected country. For each
time-series, daily averages of sentiment and volume scores are calculated. Lower-
frequency aggregations at monthly or quarterly frequencies, are also allowed.

4 GDELT: Global Dataset of Events, Language and Tone

GDELT6 is the global database of events, locations and tone that is maintained
by Google [17,18]. It is an open big data platform of news collected at worldwide
level, containing structured data mined from broadcast, print and web sources
in more than 65 languages. It connects people, organizations, quotes, locations,
themes, and emotions associated with events happening across the world. It
describes societal behavior through eye of the media, making it an ideal data
source for measuring social factors. The data set starts in February 2015 and
is freely available to users via REST APIs.7 GDELT processes over 88 million
articles a year and more than 150,000 news outlets, updating the output every
15 min.8 We use GDELT themes to filter out news related to certain social
or economic topics (e.g., “industrial production”, “unemployment”, “cultural
activities”, etc.), limiting only to the news of the European country we are
interested about. After this processing, we compute as output the (i) Article
Tone, that is, a score between −1 and +1 expressing whether a certain message
conveys a positive or negative sentiment with respect to a certain topic9; (ii)
Topic Popularity rate, that is, the number of articles referred to the searched
topic normalized by the total number of articles in the period.

In our application, we first select a list of representative keywords for the
topic of interest along with the country to focus on and the period of extraction.
The list of curated keywords is further extended programmatically by means of
synonyms, which are computed using the Sense2Vec python library10. By using

6 GDELT website: https://blog.gdeltproject.org/.
7 See https://blog.gdeltproject.org/gdelt-2-0-our-global-world-in-realtime/.
8 See http://data.gdeltproject.org/gdeltv2/lastupdate.txt for the English data, while

http://data.gdeltproject.org/gdeltv2/lastupdate-translation.txt for the translated
data.

9 https://blog.gdeltproject.org/vader-sentiment-lexicon-now-available-in-gcam/.
10 Sense2Vec library: https://pypi.org/project/sense2vec/.

https://blog.gdeltproject.org/
https://blog.gdeltproject.org/gdelt-2-0-our-global-world-in-realtime/
http://data.gdeltproject.org/gdeltv2/lastupdate.txt
http://data.gdeltproject.org/gdeltv2/lastupdate-translation.txt
https://blog.gdeltproject.org/vader-sentiment-lexicon-now-available-in-gcam/
https://pypi.org/project/sense2vec/
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the Word Embeddings [16] from the pre-trained GloVe model [19], we select only
the articles from GDELT such that the topics are related to one of the selected
themes of interest. Once collected the relevant news data, we are then able to
calculate the Articles Tone score and the Topic Popularity rate by averaging
the obtained measures from GDELT for the selected articles by the period of
extraction.

5 Data Visualization and Analytics

We construct alternative indicators using the described datasets on various social
and economic topics, representing broad categories of variables, such as: “econ-
omy”, “industrial production”, “unemployment”, “inflation”, “capital market”,
“cultural activities”, “housing market”, “international trade”, “monetary pol-
icy” or “loneliness”. We are building a number of services in order to provide
access to the processed data along with intuitive and user-friendly visualizations.
We rely on Business Intelligence (BI) and construct an interactive dashboard
by means of the Microsoft Power BI infrastructure.11 The dashboard allows
users to choose which data to visualise by filtering the country, topic and time,
and is available at https://knowledge4policy.ec.europa.eu/composite-indicators/
socioeconomic-tracker en.

We are also running a number of empirical exercises to analyse the relation-
ships between the information extracted from our unconventional datasets and
official releases of social and economic variables. We are particularly interested in
nowcasting social and economic variables, that is, forecast the value of a variable
during period t when the official release of the value will occur only in period
t∗, with t∗ > t. For European countries the typical delay in the release of official
statistics ranges from 30 to 45 days. The goal of our studies consists then in
nowcasting the value of the economic or social variable in real-time and before
the official release of the statistical agencies. We use standard forecasting models
augmented by the alternative indicators as additional regressors and compare
their performance relative to the models without them. Timely and reliable fore-
casts for these signals play a relevant role in planning policies in support to the
most vulnerable [6]. Given the delay and infrequent publication of official figures
from statistical agencies, the importance of reliable unconventional indicators
is even more prominent in times of high uncertainty, as also emphasized by the
recent COVID-19 pandemic. Our early results, that we plan to extensively report
in the form of an extended paper, show that our unconventional variables are
relevant predictors in various nowcasting applications.

6 Conclusions and Future Work

We present our work-in-progress related to the development of alternative eco-
nomic and social indicators from various unconventional data sets, including
GDELT, Google Search, and newspaper articles. The currently on-going project

11 Microsoft Power BI: https://powerbi.microsoft.com/.

https://knowledge4policy.ec.europa.eu/composite-indicators/socioeconomic-tracker_en
https://knowledge4policy.ec.europa.eu/composite-indicators/socioeconomic-tracker_en
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aims to provide intuitive and user-friendly access to the data analysed by using
an interactive BI dashboard, as well as producing improved nowcasting and fore-
casting methods to analyse various socio-economic measures for countries in the
EU. When mature, we will discuss the results of our nowcasting applications
by producing an extended version of this work which we plan to submit to a
scientific outlet.

We are in particular aiming at a specific case with the goal of nowcasting
inflation in different EU countries. In particular, at this purpose we intend to use
advanced neural forecasting methods using deep learning12 to obtain improved
performance over classical forecasting approaches. The obtained preliminaries
results seem to show that the information extracted from the considered alter-
native datasets have a predicting power for the inflation indicator in several EU
countries. A thorough statistical analysis of these results needs however to be
performed before we can release any robust conclusion on the subject.
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Abstract. The application of machine learning to insurance risk pre-
diction requires learning from sensitive data. This raises multiple ethi-
cal and legal issues. One of the most relevant ones is privacy. However,
privacy-preserving methods can potentially hinder the predictive poten-
tial of machine learning models. In this paper, we present preliminary
experiments with life insurance data using two privacy-preserving tech-
niques: discretization and encryption. Our objective with this work is to
assess the impact of such privacy preservation techniques in the accu-
racy of ML models. We instantiate the problem in three general, but
plausible Use Cases involving the prediction of insurance claims within a
1-year horizon. Our preliminary experiments suggest that discretization
and encryption have negligible impact in the accuracy of ML models.

Keywords: Machine learning · Privacy · Insurance risk prediction

1 Introduction

Machine learning (ML) models require large volumes of training data to achieve
good performance. This prerequisite often limits the potential usage of data-
driven applications in significant real-life problems, as several domains contain
privacy-sensitive data. In this context, there is a recent increase in research on
privacy-preserving ML (PPML) solutions, either by devising new ML approaches
or by assimilating well-accepted anonymization methods to the ML pipeline.
However, there is no single solution to privacy issues, and often a trade-off is
present. E.g. computation overhead can be an issue when applying modern cryp-
tosystems to sensitive data, and differential privacy (DP) usually comes with
model utility loss [6,13].

This paper reports the first results of ongoing work evaluating the impact
of two privacy-preserving techniques on ML models for risk prediction in life
insurance: discretization and cryptography. We instantiate three Use Cases where
the application of these techniques can be used to avoid certain types of attacks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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We aim to quantify the impact of each technique on the model’s utility. Our
main contribution is a set of experiments using real-world data from an insurance
company. The insights provided by our results clearly show the potential impact
of privacy-preserving methods on traditional ML tasks.

The remainder of this paper is organized as follows. Section 2 identifies related
work. In Sect. 3 we describe the privacy-preserving techniques. We describe three
application scenarios in Sect. 4, followed by experiments and results in Sect. 5.
We conclude in Sect. 6.

2 Related Work

Most works on assessing life insurance risk through machine learning do not
examine privacy issues. The primary concern is evaluating the performance of
supervised models. We argue that there is a shortcoming in evaluating models’
efficiency and cost savings without considering privacy concerns.

Boodhun & Jayabalan [4] applied ML techniques to a real-world publicly
available dataset to predict the risk level of applicants. Data contains more than
a hundred anonymized attributes from around fifty nine thousand applications.
Nonetheless, the work by Narayanan & Shmatikov [1] demonstrates that an
adversary can circumvent anonymization with background knowledge.

Maier et al. [8] developed a mortality model and a risk assessment indicator. A
life insurance company provided data collected during fifteen years. It contains
almost a million applicants’ health, behaviour, and financial attributes. The
model is regularly updated with new applicants’ and clients’ data. Concerns
about transparency and fairness are made, but privacy is not addressed.

Levantesi et al. [10] reviews the usage of ML in longevity risk management.
The reviewed contributions do not use individual-level data. Nevertheless, Dwork
& Naor [2] show that even aggregate data can leak individual sensitive informa-
tion.

There is also a great effort in recent research on privacy-preserving solutions.
Liu et al. [5] survey security threats and defense techniques of ML. Kenthapadi
et al. [7] concisely underline recent privacy breaches, lessons learned, and present
case studies in which privacy-preserving techniques were applied. Kaisis et al.
[9] present an overview of methods for federated, secure and privacy-preserving
artificial intelligence on medical imaging applications. Majeed et al. [12] survey
anonymization techniques for privacy-preserving data publishing. Liu et al. [11]
review the literature on privacy concerns and solutions in the context of ML.

3 Privacy Methods

The three most common categories of privacy preservation techniques rely on
(i) data obfuscation, (ii) data encryption, or (iii) differential privacy. This paper
reports results in the first two.
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3.1 Data Types

In a typical supervised machine learning problem, the data consists of a table
with multiple columns. Each line is a data example represented by a vector with
N attributes, i.e. the predictor variables/fields, and a label y, i.e. the target vari-
able. Each of these variables can contain numerical data (e.g. numbers, dates),
categorical data (e.g. marital status, postcode), or unstructured text such as
names and addresses. Specific techniques can be applied to different types of
variables. It is also relevant that the columns typically have a label that helps
identify what information is in that field. In this paper, we work exclusively with
numerical and categorical variables.

3.2 Obfuscation Methods

Obfuscation through aggregation is the most straightforward type of data manip-
ulation that can be performed to improve privacy. The main idea is to reduce the
granularity of the information so that the original values are harder to retrieve.
In this paper, we experiment with the discretization – or binning – of values.
The variable is divided into a relatively low number of intervals. Then it can
be represented as a one-hot encoding scheme, or the original values are replaced
with some value in that interval (i.e. mean, mode, median or even a random
value within the interval). In our experiments in Sect. 5, we apply binning to the
age field of a life insurance customer database.

3.3 Encryption Methods

Encryption is a widely used tool in privacy-preserving techniques. Essentially, it
achieves the replacement of values with data that is unreadable by humans or
machines in a way that is extremely hard to recover the original data. The most
commonly used types of encryption on privacy-preserving machine learning are
the following:

– Hashing passes values through a one-way function, that typically outputs a
fixed-size unreadable string;

– Order-preserving encryption (OPE) performs a similar operation to hashing,
but in a way that order between values is maintained before and after encryp-
tion – i.e. it is possible to reliably sort the encrypted items;

– Homomorphic encryption relies on an encryption function that is interchange-
able with other functions applied to data. The result of applying an operation
over an encrypted value, is the same as encrypting the result of the same oper-
ation over the unencrypted value. This property allows computations over
data to be performed by potentially untrusted parties, since, in principle,
only the entity that encrypts the data is able to make sense of the result of
such computations.

Our experiments use hashing with categorical variables and OPE with numer-
ical variables (see Sect. 5).
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3.4 Differential Privacy

While encryption aims to enclose private information fully, differential privacy
provides a mechanism to avoid individual identification of records, even if the
data itself is readable. The idea is to introduce a certain level of noise such that it
becomes impossible to reconstruct the original data, even with full access to the
model. Using differential privacy techniques, we can prevent an attacker from i)
inferring whether an individual record is in the dataset used to train the model
and ii) reconstructing data from individuals by querying the model.

4 Proposed Scenarios

Fig. 1. Use Case 1: External model train-
ing

Fig. 2. Use Case 2: External model train-
ing and hosting

Since privacy is mostly application-dependent, for this study we devised gen-
eralizeable real-world scenarios, with particular focus on risk prediction in life
insurance. Thus, we devise three Use Cases where an insurance company holds
data containing sensitive customer data. We assume customers have given per-
mission to the insurance company to process their data but not to share their
data in clear text with third parties, even if it is anonymized or pseudonymized.

In all cases, the underlying task is to produce an ML model to predict the
risk of a certain contract. We divide this in two complementary tasks:

– Task 1: predict if a contract will receive a claim within a 1-year horizon;
– Task 2: predict which type of claim is more likely to occur.

Figure 1 depicts the first Use Case. In this case, the life insurance company
wishes to delegate the training of the ML model to a third party – e.g. an IT
contractor specialized in AI. The third-party will train ML models for the two
tasks described above. After models are trained, they are transferred back to the
insurance company, which may integrate them into their IT infrastructure.
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Fig. 3. Use Case 3: External model with collaborative network

The second Use Case, depicted in Fig. 2, is similar to the first; however, in
this case, the model never leaves the realm of the entity that trains it. Instead,
this entity provides a hosting service that allows the insurance company to query
the model remotely – e.g. using a web service.

Finally, the third Use Case (Fig. 3) involves a series of insurance companies
and other interested entities that rely on a central entity responsible for building
a model using data from all parties (e.g. authorities, regulators, complementary
service providers, or customer associations). This scenario allows all participating
parties to take advantage of each other’s data without accessing it.

Privacy leak risks mostly reside in two interactions: data transfer from the
insurance company to an external entity (all Use Cases) and the querying of the
model (Use Cases 2 and 3). Table 1 summarizes the potential usefulness of each
of the techniques – discretization, encryption, and differential privacy – in each of
the presented use cases, both at the data transfer and model query stages. In the
case of data transfer, the effective solutions rely on (weak) aggregation methods,
or (strong) encryption methods. Discretization can obfuscate specific numeric

Table 1. Applicability of privacy strategies

Use Case Risk Discretization Encryption Differential privacy

1 Data transfer Yes Yes No
Model query No Yes No

2 Data transfer Yes Yes No
Model query Yes Yes No

3 Data transfer Yes Yes Yes
Model query Yes Yes Yes
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fields essentially by reducing the numerical resolution. This can be applied if
privacy requirements for the database fields in question are not high. Encryp-
tion is an obvious solution to protect data privacy when these requirements
increase. Differential privacy is mostly useful in Use Case 3, where multiple par-
ties contribute with their data. In this case, the model can leak information of
the data it was trained on and be vulnerable to the attacks identified in Sect. 3.4.

5 Experiments and Results

5.1 Dataset

The dataset comprises about 540 thousand cases of individual life insurance
registers. It was provided by a private life insurance company. It contains insured
individuals’ information such as gender, age, marital status, profession, city of
residence, and other variables related to their contract. The dataset also contains
the date on which an incident has occurred and its type. Incident types were
aggregated into a binary variable that denotes the occurrence of an incident.
Incident types and their binary aggregation were used as target variables for
model training. As the dataset is imbalanced only results for the minority class
are reported - incidents represent around 1% of examples.

5.2 Experimental Methodology

The performance of Random Forests models is evaluated in two classification
tasks: for the next year, 1) binary classification predicting incident occurrences,
and 2) multi-class classification predicting the type of incident of positive cases.
A test set with all incidents that occurred in the last year of the dataset is held.
Non-incident cases were randomly transferred from the training to the test set
until it contained 20% of examples (108252 cases). The performance impact of
privacy-preserving techniques was assessed for features individually.

Discretization of features was applied in two experiments. In the first exper-
iment, the feature age was discretized into 5, 10, and 20 bins. Each bin has
the same number of samples. In the second experiment, values in each bin are
substituted by the median of the interval.

Hashing was applied with the SHA256 algorithm to categorical variables
related to profession, location, gender, and marital status. An OPE implemen-
tation based on [3] was applied to age.

Experiments were run on a machine with a sixteen cores 2.20GHz processor
and 7.7Gb RAM.

5.3 Results

The test performance of the baseline model in the binary classification task can
be seen in Table 2. The results of the multi-class task are omitted. The baseline
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model for the multi-class task presents a high f1-score of 0.89 in the majority
class - 78% of covered incident cases belong to the class deceased. However,
the support of the remaining incident types is inferior to eighteen examples;
therefore, the performance is not representative of the model’s generalization
capability. Attempts to circumvent the issue were made by applying over and
undersampling techniques, but without success.

Table 2. Test performance scores of the binary baseline model in the minority class (i.e.
positive incident). Precision shows almost half of the positive predictions are correct,
while recall indicates a quarter of positive cases are identified.

Model Auc f1-score Precision Recall Support

Baseline 0.83 0.33 0.47 0.25 852.0

Results for age discretization experiments can be seen in Fig. 4. Binning
experiments are represented on the horizontal axis. The vertical axis presents
delta - the relative difference between the experiments’ scores and the baseline
scores shown in Table 2. Metrics are represented by coloured bars.

In both experiments, decreasing the number of bins is associated with per-
formance reduction across metrics. Using fewer bins reduces data variability,
which may be seen as a trade-off between available information and privacy.
AUC is slightly improved in the discretization with 20 and 10 bins when using
the median. We argue that the delta observed for AUC across experiments is
inferior to 1% in absolute terms; thus, the improvement could be spurious.

Binning with and without the median present similar performances across
metrics; excluding AUC, these range between [−2%, −4.5%] for twenty bins,
[−4%, −6%] for ten bins, and [−7%, −10%] for five bins. In this sense, using bins
without the median information might be more beneficial concerning privacy.

Fig. 4. Binning experiments. Each experiment is named on the horizontal axis. The
vertical axis shows delta - the relative difference between the test scores of experiments
and the baseline model. From left to right, overall performance diminishes with fewer
bins. Using the median did not improve results.
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Performance for the hashing experiments were identical to the baseline in all
metrics. This result is expected as each categorical label is mapped to a unique
string object; thus, the information contained in each feature is preserved.

Applying OPE to age resulted in a relative difference in performance inferior
to 1% across metrics. The result suggests privacy can be enhanced by using OPE
without sacrificing performance. Nonetheless, using OPE had a pre-processing
time overhead of eleven minutes, close to 20000% more than the baseline.

5.4 Discussion

The privacy-preserving techniques did not alter the performance of the baseline
model by more than 10%, while obfuscation with five bins had the most negative
impact. Techniques did not result in training and inference time overhead.

Using the median in conjunction with the bin aggregation of age proved to be
an unnecessary addition of information, as the experiments’ performances were
very similar. The number of bins might be adjusted based on the privacy and
performance requirements and the characteristics of the numeric variable.

Hashing categorical features did not affect performance. Data uniqueness is
preserved, while the original labels’ context is lost. It had a negligible effect on
the pre-processing time.

The model trained with OPE applied to age performs similarly to the baseline
as metrics did not vary more than 1%, indicating its usefulness in providing
computable encrypted data. OPE significantly increased pre-processing time.

6 Conclusions

This paper presents a set of experiments measuring the impact of privacy-
preserving techniques in life insurance risk prediction with machine learning
models. We present three Use Cases and identify where each technique holds
relevant privacy gains. Our experiments with each technique show that dis-
cretization and encryption have minimal impact on the accuracy of ML models,
which suggests that they are viable techniques. In our ongoing work, we are
experimenting with differentially private machine learning. In the future, we will
study more advanced encryption schemes (e.g. homomorphic encryption), and
further develop our framework to apply multiple techniques in conjunction.
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Abstract. Machine learning has been gradually introduced into corpo-
rate financial distress prediction and several prediction models have been
developed. Financial distress affects the sustainability of a company’s
operations and undermines the rights and interests of its stakeholders,
also harming the national economy and society. Therefore, we developed
an accurate predictive model for financial distress. Using 17 financial
attributes obtained from the financial statements of Indonesia’s consumer
cyclical companies, we developed a machine learning model for predicting
financial distress using decision tree, logistic regression, LightGBM, and
the k-nearest neighbor algorithms. The overall accuracy of the proposed
model ranged from0.60 to 0.87,which improved on using the one-year prior
growth data of financial attributes.

Keywords: Financial distress · Machine learning · Corporate finance ·
Consumer cyclical

1 Introduction

Financial distress refers to when a company or individual cannot generate suffi-
cient revenue or income because it cannot meet its financial obligations. This is
generally due to the high fixed costs, illiquid assets, or revenues that are sensitive
to economic downturns. A company experiencing financial distress exhibits the fol-
lowing characteristics: problematic operating cash flow, high loan interest, default,
increasing creditor or debtor days, and decreasing company margins. Some finan-
cial attributes related to financial distress conditions are ratios related to prof-
itability, solvency, liquidity, activity, and valuation [4]. Several previous studies
used classical statistical methods, such as logistic regression, to develop financial
distress prediction models [4,7,11]. Some have shown that the profitability ratios
of the return on assets and equity, solvency ratio (debt-to-asset ratio), and the val-
uation ratio (price-to-earnings ratio) influence financial distress.

Financial distress is also related to economic uncertainty, wherein the econ-
omy experiences a long-lasting downturn. Indonesia, as an example, has expe-
rienced significant economic recession. For instance, the trade war between the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 53–61, 2023.
https://doi.org/10.1007/978-3-031-23633-4_5
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United States and China as well as the economic recession due to the COVID-
19 pandemic that was still ongoing during this research affected various indus-
trial sectors in Indonesia. Some of the highly affected sectors include hotels and
tourism, air transportation services, restaurants, entertainment, retail, consumer
electronics, and automobiles. These sectors belong to the consumer cyclical sec-
tor, also referred to as the consumer discretionary sector, which is closely related
to economic conditions and has a greater chance of experiencing financial dis-
tress.

This study focused on creating a precise prediction model for financial distress
with such limited data. The main contribution of this preliminary study was that
we used the value of growth of each financial attribute data, instead of using
yearly raw financial attribute data. The remainder of this study is organized
as follows. The next section describes related works on financial distress and
its prediction models, as well as the machine learning algorithms considered for
the study. Section 3 presents the data, experimental setup, and results. Finally,
Sect. 4 presents the conclusions and outlines future directions for this work.

2 Related Works

Previous studies defined the term financial distress differently, with some pro-
viding contradicting definitions. In general, financial distress is the point when
cash flows are lower than a firm’s current obligations. Companies with finan-
cial distress have a negative operating cash flow from investing and financing
activities. Due to insufficient cash flow, they also default on loan payments and
start to enter the liquidation phase or file for bankruptcy [4]. Financial distress
captures a dynamic process of corporate failure.

In the Indonesian context, financial distress is also defined as companies
that are classified under some special notation, an additional letter (notation)
given to the Listed Company when the company meets certain conditions, as
referred to in Indonesian Circular Letter Number SE-00017/BEI/07-2021 con-
cerning the Addition of Information Display of Special Notation to the Listed
Company Code. This special notation is a warning provided by the Indone-
sian Stock Exchange to investors regarding the company’s condition. Indirectly,
this special notation also functions as an indicator to help investors determine
whether the company is facing financial difficulties. Although data on these spe-
cific notations are available, in this study, we used the operating cash flow amount
as the target for the prediction model because of the small sample representing
these notations.

Altman in 1968 [1] considered multivariate discriminant analysis (MDA) to
quantify the critical value of Z-score and proposed Z-score model in order to
check financial health of a company. Ohlson in 1980 [8] improved the bankruptcy
prediction model and used logistic regression (LR) to estimate the bankruptcy
probability of enterprises, avoiding common problems related to MDA. Some
basic linear processes are impractical for developing real-time prediction mod-
els because they are overly simplistic. With developing information technology,
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several financial distress prediction models have been built based on artificial
intelligence approaches, from simple to complex, transitioning from statistical
methods. To better predict financial distress, several methods, such as machine
learning and data mining techniques, such as logistic regression [7,11], support
vector machines [6], and survival analysis models [5], and deep learning models
are widely used for predicting financial distress [3,13,14].

3 Experimental Settings

3.1 Data Set

This study used a purposive sampling method to sample on the condition that
the financial ratio data are available. Data sources for both the dependent and
independent variables were obtained from the SP Capital IQ website and the
Indonesia Stock Exchange website (https://www.idx.co.id/). This preliminary
step used data on Indonesian companies in the consumer cyclical sector. The
consumer cyclical sector includes companies that produce or distribute prod-
ucts and services that are generally sold to consumers; however, the demand
for cyclical or secondary goods and services is directly proportional to economic
growth. This industry includes companies that manufacture passenger cars and
their components, durable household goods, clothing, shoes, textile goods, sports
goods, and goods related to hobbies. This industry also includes companies pro-
viding tourism, recreation, education, consumer support services, media, adver-
tising, entertainment providers, and secondary goods retail companies.

This article determined whether or not a company may be classified as being
in financial distress. For preprocessing, incomplete samples, missing data, and
null values were removed. Data from 117 companies were available; however, after
pre-processing, we excluded a few companies having incomplete data, leaving
us with data from 87 companies. The operating cash flow of the companies in
2019 was used as the target variable. When the operating cash flow value is
negative, the company will be categorized as having financial distress (class 1,
positive sample), and if the value is positive; the company will be categorized as
having non-financial distress (class 0, negative sample). The predictor variable
was determined by 17 variables: Quick Ratio (x1), Current Ratio (x2), Cash
Ratio (x3), Debt Ratio (x4), Debt to Equity Ratio (x5), Long Term Debt to
Equity Ratio (x6), Receivables Turnover (x7), Inventory Turnover (x8), Fixed
Asset Turnover (x9), Asset Turnover (x10), Gross Profit Margin (x11), Operating
Profit Margin (x12), Net Profit Margin (x13), Return on Equity (x14), Earning
per Share (x15), Return on Asset (x16), and Operating Cash Flow Margin (x17).

A new variable x2i was defined to calculate the growth rate of each variable
s1i from 2017 (two years before financial distress) and 2018 (one year before
financial distress). We used two scenarios to develop the model: Scenario 1 uti-
lized the data of the current year (x1 to x17) and one-year growth rate of financial
attributes (x11 to x117) as predictor variables, and Scenario 2 utilized the data
of the current year (x1 to x17) and two-year growth rate of financial attributes
(x21 to x217) as predictor variables.

https://www.idx.co.id/
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Table 1. Description of data set used in the modeling

Property Value

Country Indonesia

Businesses type Consumer cyclical

Selection procedure Purposive random sampling

Business number 87 (22 financial distress, 65 non financial distress)

Duration 2017–2019

3.2 Methodology

To estimate financial distress, we evaluated the default probability of a com-
pany. Each company is described by a set of variables (predictors) x (the finan-
cial attributes mentioned previously) and its class or target y that can be
either y = 0 (‘non-financial distress’) or y = 1 (‘financial distress’). Initially, an
unknown classifier function f : x → y is estimated on a training set of compa-
nies (xi, yi), i = 1, ..., n. The training set represents data for companies that are
known to have survived financial distress or have gone into financial distress in
2019. This study developed four machine learning models (decision tree, logistic
regression, LightGBM, and K-nearest neighbor). The optimal hyper-parameters
for each machine learning model were obtained using the grid search method
and five-fold cross-validation. Since the data experienced imbalance in negative
and positive classes as shown in Table 1, we employed synthetic minority over-
sampling technique (SMOTE) to overcome the overfitting in learning process.
After SMOTE is performed, we execute each of the following algorithm.

Decision Trees Classification. Decision trees, or classification trees, are a
non-parametric machine learning technique. The trees are built by a recursive
process of splitting data when moving from higher-to-lower levels [5]. Decision
trees are superior in their ability to illustrate the splitting rules that describe
how data are split. For instance, in financial distress, one example of a decision
we can expect is as follows:

– Financial Distress if a financial attribute ≤ some value, or
– Non Financial Distress if a financial attribute > some value.

Logistic Regression Model. The subject variable of the study is the financial
distress of a company; it takes the value of 1 in the case of financial distress,
and 0 otherwise. Based on this, we chose a logistic regression model to predict
the probability of occurrence of a distressing event. This binary model estimate
the probability Pi of the occurrence of the event yi = 1 (distress). The deci-
sion threshold (probability of P) most adopted by previous research and by the
software is 50%. Therefore, the decision rule can be written as follows:

yi = 1 if βixi + εi > 0 financial distress

yi = 0 if βixi + εi ≤ 0 non-financial distress
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LightGBM. LightGBM is an adaptive gradient boosting model, which is an
efficient implementation form of gradient boosting trees. To improve the algo-
rithm’s computing power and prediction accuracy, LightGBM primarily uses
the histogram algorithm and other algorithms [10]. While other tree-based algo-
rithms grow trees horizontally, Light GBM grows leaves-wise, or simply verti-
cally. Leaves with the greatest loss in delta will be chosen for growth. This helps
reduce the loss of Delta in subsequent iterations. This method results in much
better accuracy than existing gradient boosting algorithms.

K-Nearest Neighbor. k-nearest neighbor (KNN) is a simple classification algo-
rithm often used as a benchmark for more complex classifiers. The KNN classi-
fier is a non-parametric method, such as decision trees, which does not rely on
assumptions regarding the probability distribution of the input. It is based on the
Euclidean distance between a test sample and specified training samples. The basic
idea of the KNN algorithm is that as new data are collected, the k-nearest neigh-
bors of the current point are chosen to predict its value. The prediction of the new
point can be obtained by averaging the values of its k-nearest neighbors.

3.3 Classification Performance Evaluation

Correct classification or misclassification was quantified using four metrics: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN).
The classification results were analyzed using evaluation metrics, including pre-
cision, recall, F1-score, and accuracy, based on the formula shown below.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ TP

2 ∗ TP + FP + FN

4 Experimental Results

Using all the sample data mentioned in the previous section, we used the pro-
posed method to classify financial distress in a cyclical consumer company using
financial attribute data. Table 2 shows the evaluation performance of each algo-
rithm using five-fold cross-validation. The overall accuracy ranged from 0.60 to
0.87. Using the dataset in Scenario 1 with one-year prior growth data of financial
attributes resulted in better prediction performance. Among the four algorithms
used in model building, LightGBM was superior in accuracy score for both Sce-
narios 1 and 2, with a prediction accuracy score of over 80 (Table 3).
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Table 2. Performance measurement using 5-fold cross validation

Scenario Method Precision Recall Accuracy F-1 score

1 Decision Tree 0.65 0.85 0.77 0.73

LR 0.75 0.81 0.80 0.77

LightGBM 0.79 0.78 0.87 0.78

KNN 0.6 0.63 0.70 0.61

2 Decision Tree 0.70 0.85 0.77 0.76

LR 0.80 0.77 0.79 0.78

LightGBM 0.74 0.78 0.83 0.75

KNN 0.66 0.60 0.60 0.62

Table 3. Example of rules obtained from Decision Tree

|--- feature_assetturnovergrowth <= -0.88

| |--- class: 1

|--- feature_assetturnovergrowth > -0.88

| |--- feature_longtermdebttoequityratio <= 0.03

| | |--- feature_cashratio <= 0.02

| | | |--- class: 1

| | |--- feature_cashratio > 0.02

| | | |--- class: 0

| |--- feature_longtermdebttoequityratio > 0.03

| | |--- feature_debttoequityratio <= 0.09

| | | |--- class: 0

| | |--- feature_debttoequityratio > 0.09

| | | |--- class: 0

Fig. 1. Feature importance by LightGBM

4.1 Decision Tree Rules Interpretation

As previously mentioned, one of the advantages of using a decision tree is that it
generates interpretable and understandable rules. For example, these rules were
obtained from Scenario 1 using one year of prior growth data. From these rules,
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one can understand that the model will predict a company to be in financial
distress if the following conditions are met:

– The value of asset turn over growth in a year is lower than −0.88, or
– Long term debt to equity is smaller or equal to 0.03 and cash ratio value is

less than 0.02.

By definition, the asset turnover ratio is the ratio of the value of a company’s
sales or revenues to the value of its assets. This is an indicator of the efficiency
with which a company deploys its assets to produce revenue. With a growth
rate worse than 0.88, the model predicts the company status to be in financial
distress. In addition, if the long-term debt-to-equity score is below or equal to
0.03, and the cash ratio is less than or equal to 0.02, the company is predicted
to be in financial distress. Otherwise, the company is not experiencing financial
distress. This is supported by previous work results that indicated that lower
debt-to-equity ratio is better because it implies that the company is in less debt
and is less risky for lenders and investors [12].

4.2 Feature Importance by LightGBM

Along with developing prediction models, LightGBM can rank features accord-
ing to their importance in predicting financial distress. Figure 1 shows that in
developing the prediction model using Scenario 1 (better performance), the high-
est ranked features based on importance (from the first to the third rank) are
the growth rate of net profit, growth rate of gross profit, and growth rate of
debt-to-equity ratio, which is also in line with previous works [2,6,9].

5 Conclusion and Future Works

Difficulty in financing is a major hindrance to business development. Investors
want to invest money into creditworthy firms; thus, accurately predicting a com-
pany’s financial difficulties is crucial for both companies and investors. Based on
the predicted financial distress, a company can enhance the operation of the busi-
ness and boost its risk-resistance capacity, and based on the predicted financing
risk of each company, investors can target investments in companies with low
risk. This study proposed a prediction model based on several machine learn-
ing algorithms to forecast financial distress in the customer cyclical sector. Four
machine learning algorithms were implemented: decision tree, logistic regression,
LightGBM, and k-nearest neighbor.

The prediction accuracies of the proposed model ranged from 0.60 to 0.87,
with LightGBM leading in the accuracy score. As for the dataset, using the one-
year prior growth rate resulted in better performance compared to the two-year
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prior growth rate. The decision tree and LightGBM algorithms provided the
following interpretable results: (1) asset turnover growth rate, long-term debt-
to-equity ratio, and debt-to-equity ratio are variables that represent decisions of
financial distress of a company, and (2) growth rate of net profit, growth rate
of gross profit, and growth rate of debt-to-equity ratio are variables with the
highest importance in predicting financial distress using LightGBM.

This study had certain limitations that must be addressed. First, the lim-
ited sample size can be improved by using more samples from other sectors or
companies. In addition, the results of this study can be improved by introduc-
ing unsupervised learning, such as cluster analysis, to further analyze the types
of companies that suffer from financial distress. It would also be interesting to
integrate macroeconomic variables into a larger sample that includes all sectors
of Indonesian companies.
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Abstract. Finding a model to predict the default of a firm is a well-
known topic over the financial and data science community.

Bankruptcy prediction has been studied in the literature for more
than fifty years. Of course, despite the plethora of studies, predicting the
failure of a company remain a hard task.

We dedicated a special effort to the analysis of the highly unbalanced
context that characterizes bankruptcy prediction. Imbalanced classes are
a common problem in machine learning classification that typically is
addressed by removing the imbalance in the training set. We conjec-
ture that it is not always the best choice and propose the use of a
slightly unbalanced training set, showing that this approach contributes
to improve the performance.

1 Introduction

Bankruptcy prediction of a company is, not surprisingly, a topic that has
attracted a lot of research in the past decades by multiple disciplines [2,4–6,10–
13,15–17,21,22,26,27]. The importance of such research is closely connected
with financial stability since it stemming from its financial applications in bank
lending, investment, governmental support and bank supervisory activity.

In particular, default prediction is one of the most challenging activities for
managing credit risk. In fact, banks need to predict the possibility of default of a
potential counterpart before they extend or renew a loan. An effective predictive
system can lead to a sounder and profitable lending decisions leading to signifi-
cant savings for the banks and the companies and to a stable financial banking
system. This relevant topic has been studied in the literature for more than fifty
years and several techniques for predicting bankruptcy have been developed over
the years. Statistical techniques and Machine Learning (ML) approaches are the
two broad categories used to predict bankruptcy [4,5,15,27]. Of course, despite
the plethora of studies over the past fifty years, predicting the failure of a com-
pany remain a hard task. The need of an improvement in default prediction
is common to the main interested stakeholders which, in our opinion, fall into
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three main categories: 1) Private banks, 2) Supervisory Authorities, 3) Central
Governments (when, for example, they provide public guarantees to companies).

In this paper we face the problem of bankruptcy prediction of companies,
using ML techniques and historical data for predicting whether a company will
enter in default within the following year. We base our analysis on the use of a
very large dataset based both on credit data and balance sheet data. More in
particular, we try to analyze in detail the specific highly unbalanced scenario
that characterize our reference context, in order to obtain an improvement in
prediction performance.

Contributions. The main contributions of our paper are: (i) we analyze default
prediction in highly unbalanced context, using a very large dataset based on both
credit data and balance sheet data; (ii) we conjecture that the use of AuROC
like performance indicator may not represents the best choice in an unbalanced
context; (iii) we show that the use of a fully balanced training set (which maxi-
mizes the AuROC and Recall) does not represent the best approach in general,
when we work in a highly unbalanced context and we propose the use of a slightly
unbalanced training set.

Roadmap. In Sect. 2 we present some related work. In Sect. 3 we describe our
dataset and methods, while in Sect. 4 we provide our analysis related to predic-
tion in an unbalanced scenario; some conclusion are reported in Sect. 5.

2 Related Work

There has been an enormous amount of work on bankruptcy prediction. In order
to give a flavor of how the literature that concerns bankruptcy prediction models
has evolved, we briefly review the most influential previous studies below.

Initially, scholars focused on making a linear distinction between healthy
companies and the ones that will eventually default. Among the most influenc-
ing pioneers in this field we can distinguish Altman [2] and Ohlson [22], both of
whom made a traditional probabilistic econometric analysis. Altman, essentially
defined a score, the Z discriminant score, which depends on several financial
ratios to asses the financial condition of a company. Ohlson on the other side,
used a linear regression (LR) logit model that estimates the probability of failure
of a company and identifies the main factors that affect that probability. Some
papers criticize these methods as unable to classify companies as viable or non-
viable [6]. However, both approaches are used, in the majority of the literature,
as a benchmark to evaluate more sophisticated methods.

Since these early works there has been a large number of works based on
Machine learning (ML) techniques [18,20,24]. The most successful have been
based on decision trees [14,17,19,28] and neural networks [4,8,13,21,27]. Typi-
cally, all these works use different datasets and different sets of features, depend-
ing on the dataset. There exists a wide range of classification methods included
in the category of decision trees. Lee [16] by making a comparison of three



64 S. Piersanti

of them using a dataset of Taiwan listed electronic companies concludes that
the most efficient is the Generic Programming decision tree classifier. Zhou and
Wang [28] on the other side, starting from the traditional Random forest, pro-
pose the assignment of weights to each of the decision trees created, which
are retrieved from each tree’s past performance (out-of-bag errors in training
method). Chakraborty and Joseph (2017) [9] train a set of models to predict
distress in financial institutions based on balance sheet items, finding that ML
approaches generally outperform statistical models based on logistic regression.

In a recent very important study, Barboza et al. [5] compare such techniques
with Support vector machines and ensemble methods showing that ensemble
methods and Random forests perform the best. Recently, Andini et al. [3] have
used data from Italian Central Credit Register to assess the creditworthiness
of companies in order to propose an improvement in the effectiveness of the
assignment policies of the public guarantee programs.

Regarding the prediction in an unbalanced context, in [25] an accurate anal-
ysis about the performance of predictions is carried out, considering also a
dynamic variation of the training set. In that paper, a proposal of cost function
in order to measure the prediction results is also introduced. We try to use this
paper as a reference point in our following analysis. The problem of prediction
in highly unbalanced contexts has been addressed in recent years also in other
works (see, for example [23]). Some well-known techniques aim to rebalancing
the training set using sophisticated algorithms, including for example SMOTE
(see [7]).

3 Dataset and Methods

In this paper we use a very large dataset which we now describe. The dataset
combine credit information of companies from the Italian Central credit register
(CCR) with balance sheet data of a large subsample of medium-large Italian
firms. In the following we enter more in the details.

The Italian Central credit register is an information system on the debt of
the customers of the banks and financial companies supervised by the Bank
of Italy. It collects information on customers’ borrowings from the banks and
notifies the financial companies of the risk position of each customer towards
the entire banking system. In this paper we use a large dataset obtained from
Central credit register data that contains data related to almost 800K firms for
each quarter from 2014 to 2020. For each company and each quarter in this
period, the dataset contains about 20 different variables. On the other hand,
our balance sheet dataset consists of financial data for more than 500K Italian
firms (generally medium and large companies) and contains about 15 attributes.
In our study we use balance sheet information for the years from 2014 to 2020,
in combination with the credit dataset. The overall dataset (CCR + balance
sheet data) that we use in order to predict the default of companies contains
information related to over 300,000 Italian firms. In Table 1 we can observe the
main features of our dataset.
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Table 1. Main attributes for CCR dataset (on the left) and Balance sheet dataset (on
the right).

ID (1) CCR data ID (2) Balance sheet data

C1 Granted amount of loans B1 Rating

C2 Used amount of loans B2 Revenues

C3 Banks classification of firms B3 Return on equity (ROE)

C4 Average amount of used loans B4 Return on asset (ROA)

C5 Overdraft B5 Total turnover

C6 Margins B6 Total assets

C7 Past due (loans not returned) B7 Financial charges/operating margin

C8 Amount of problematic loans B8 EBITDA

C9 Amount of non-performing loans

Measurement of prediction results will play a key role in our work. We use
a variety of evaluation measures to assess the effectiveness of our prediction,
which we briefly define. As usually, in a binary classification context, we use
the confusion matrix and the related standard concept: True Positive (TP)
equivalent with “hit” (a positive successful classification); True Negative (TN)
equivalent with “correct rejection” (a negative successful classification); False
Positive (FP) equivalent with “false alarm” (a positive wrong classification,
Type I error); False Negative (FN) equivalent with “miss” (a negative wrong
classification, Type II error).

Our analysis will take into consideration some important performance indi-
cators, connected with the elementary components of the confusion matrix. We
report in the table below the most important that we will use in the following.

Precision: Pr =
TP

TP + FP
Recall: Re =

TP

TP + FN
F1-score: F1 = 2 · Pr · Re

Pr + Re

AuROC: The ROC curve shows the TPR value at various levels of TNR,
and AuROC is the area under this curve.

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(Matthews correlation coefficient)

A firms that has a good financial situation (no default) at time T and will be
in default at time T+1 year represents our target variable. In the following we
better explain the concept of default we use for predictions. In general, default
is the failure to pay interest or principal on a loan or security when due. In this
paper we consider the classification of adjusted default status (in line with [1]),
which is a classification that the Italian Central bank (Bank of Italy) gives to
a company that has a problematic debt situation towards the entire banking
system. According to this definition, a borrower is defined in default if its credit
exposure has became significantly negative. More in detail, to asses the status
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of adjusted default, Bank of Italy considers three types of negative exposures.
They are the following, in decreasing order of severity: (1) a bad (performing)
loan is the most negative classification; (2) an unlikely to pay (UTP) loan is
a loan for which the bank has high probability to loose money; (3) a loan is
past due if it is not returned after a significant period past the deadline. Bank
of Italy classifies a company in adjusted default if it has a total amount of
loans belonging to the aforementioned three categories exceeding certain pre-
established proportionality thresholds. If a company enters into an adjusted
default status then it is typically unable to obtain new loans.

Regarding the classifiers used in default prediction (Sect. 4), our study rep-
resents an extension of the work done in [1], in which we showed the superiority
of some tree-based ML techniques. Here, in particular, we perform the classifi-
cation using LGBM (Light gradient boosting) classifier, that show remarkable
performance in prediction, also in comparison with other well-known boosting
techniques. But, as we will see better later, in this analysis our goal is not the
comparison between classifiers but rather between different training set config-
urations and the evaluation of different performance indicators. In our exper-
iments we use Python scikit implementation of the classifier with the default
parameters. We split the datasets to training, performing a random stratified
split of the full training data into train set (80%) and validation set (20%). The
algorithm that we use in order to vary the imbalance of the training set (see
again Sect. 4) perform a gradual reduction of the majority class, starting from
the natural imbalance of the dataset until a perfect balance of the two, thus
implementing a procedure of undersampling.

4 Prediction Performance Analysis in an Unbalanced
Scenario

In general, in default prediction experiments the main objective is to reach the
best possible performance (see, for example Aliaj et al. [1]). Typically, it is
possible to obtain the best possible result using a balanced training set and
measuring performance using the AuROC. Moreover, this represents a choice
widely shared by the most important literature on the subject, in which generally
we can observe a tendency to maximize the Recall (TPR) and try to minimize
Type-1 and Type-2 errors (see for example [5]). This result is typically achieved
using a perfectly balanced training set, which guarantees a high Recall value
but at the expense of a lower Precision. Furthermore, also the choice of the
performance indicator can be relevant in the evaluation of the results. In [25]
an accurate analysis about the performance of predictions is carried out in an
unbalanced context, considering also a dynamic variation of the training set. In
that paper, a proposal of cost function in order to better measure the results
is also introduced. The proposed function takes into account the gain deriving
from correct predictions of the minority class and the losses arising from errors
in classification. The main finding in that paper show that the balanced training
set is not always the optimal choice, but only if the gain for a correct prediction
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(on the minority class) is much greater than the loss for an incorrect prediction
(always on the minority class). We try to use this paper as a reference point in
our following analysis. In particular, in Sect. 4.3 we will extend the approach in
[25], however, suggesting a new proposal of linear gain function that takes into
account both the results obtained on the minority class and those relating to the
majority class. In other word, our gain function take into account all the four
component of the confusion matrix: TP (True Positive), TN (True Negative),
FP (False Positive) and FN (False Negative).

Our goal will be to identify a structured framework to apply to default pre-
diction that helps to maximize the performance.

4.1 Prediction in a Highly Unbalanced Context: Which
Performance Measure is Best to Use?

In this section we try to discuss to what extent the use of AuROC represents
always a good choice when we consider a highly unbalanced scenario and even
if it is the best choice to use a perfectly balanced training set. First of all, we
observe that very different classification performances can match to the same
value of AuROC. For example, we can consider a binary classification over a
simple dataset of 1000 total elements (960 negative and 40 positive elements).
In the Table 1 we show two cases that have the same AuROC value. But we
observe that they represents two really different classification results (19 True
Positive for case 1 versus 40 True Positive for case 2, while 946 True Negative
for case 1 versus 441 for case 2: what is better?). In addition, we can mention
that the two cases obtain very different F1-score values and also very different
MCC values.

What is the best performance? The reply to this question is not always sim-
ple. It depends in a significant manner on whether we are interested in predicting
the minority class only or whether we are also interested in predicting the major-
ity class. If we are mainly interested in the correct identification of the minority
class, the case 2 could be the best option. In this case we obtain the correct
identification of all elements in the minority class: 40 True Positive classifica-
tions over 40 of total positive elements. On the other hand we have identified less
than half of the majority class: only 441 compared to a total of 960 elements.
Observing the performance indicators in Fig. 1, we can observe that F1-score
more rewards a balanced stance between Precision and Recall, while AuROC
rewards more the correct prediction of the minority class (and therefore a high
Recall).

In the following, we continue to consider our example of a sample of 1000
elements strongly unbalanced at 4%. In particular, here we want to analyze
the differences and the relationships between some widely used performance
indicators. In the Fig. 2 we considered all the possible values for the confusion
matrix (i.e. 960∗40 different combinations) and we calculated the correspondent
performance indicators. In the bottom right chart, we show the relation between
F1-score and AuROC for all the possible classification combinations. We can
observe that exists a large interval of F1-values in correspondence with a single
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Fig. 1. Comparison between two different binary classifications. We have considered a
sample of 1000 total elements highly unbalanced (960 negative and 40 positive). We
can observe that the two cases have the same AuROC but show very different values
for F1-score and MCC.

value of AuROC. This means that they exist a lot of cases for which we obtain
the same AuROC value but we obtain at the same time significantly different F1-
score values (like in the case 1 and case 2, in Fig. 1). This fact is particularly true
for high value of AuROC (from 0.6 upwards). Moreover, to a lesser extent, the
opposite situation is also true: we observe classification points that have the same
F1-score values but different values for the AuROC. In the other charts we report
scatter plots between some pairs of performance indicators. Moreover, in these
experiments we consider two different scenarios for each couple of indicators: a
balanced dataset (on the left of each of the figures) and an unbalanced scenario
(on the right). We can observe that F1-score and MCC show a similar behaviour
when we consider an unbalanced dataset (Fig. 2 on the right) while AuROC
and MCC have a good correspondence in balanced scenario. Instead, in the
other cases there are many classification points in which we observe the same
phenomenon described above, with many cases in which one indicator achieve
the same performance result in correspondence of very different performances
values for the other performance indicator we are comparing. To summarize, we
can assert that the choice of the performance indicator is certainly not irrelevant
in measuring the results.

4.2 Which Training Set Should We Use?

Here we are interested to evaluate what kind of training set should we use in
order to maximize the prediction performance. In particular, we analyze some
experiments that involve two cases with a different degree of imbalance. In both
cases, we perform the prediction as the training set varies, starting from a com-
pletely balanced scenario (training set with ratio = 1 between defaulted firms
and healthy firms). Then, gradually move to an increasingly unbalanced training
set up to the natural imbalance of the overall dataset, that is equivalent to the
imbalance of the test set.

We can observe the results in Fig. 3: AuROC is maximum for a com-
pletely balanced training set and it decrease as the imbalance of the training
set increases. More precisely, Recall is maximum when the training set is bal-
anced and decreases significantly as the train set imbalance increases. Instead,
F1-score shows a maximum point corresponding to the imbalance for which Pre-
cision and Recall assume the same value. Our results regarding the dynamic of
Precision, Recall and F1-score are absolutely in line with those reported in [25].
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Fig. 2. Scatter plot between some couples of performance indicators. On the left we
can observe the results for a balanced dataset of 1000 elements with 489 positive, while
on the right a highly unbalanced dataset of 1000 elements with 40 positive elements.

Fig. 3. Variations of some performance indicators as a function of the imbalance of
the training set. The numbers reported on the x-axes represent the imbalance of the
training set. We consider two different cases: Dataset 1 (default prediction in 2019)
and Dataset 2 (default prediction in 2014) that have two different degree of imbalance.
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However, we perform the prediction using two different dataset with a different
degree of unbalance (77 versus 23). In particular, we try to predict bank default
for 2019 and for 2014. The percentage of default firms in these two years are sig-
nificantly different since in 2014 we observe a higher firms default rate in Italy,
respect to 2019. So, we can add the observation that the degree of imbalance of
the training set for which F1-score reaches its maximum seems to depend on the
overall imbalance of the dataset. That is, in other words, equals to the imbalance
of the test set we used. In fact, we can see on the left in Fig. 3 that the point at
which Precision and Recall assume the same value falls in correspondence with
an imbalance equal to about 15 (ratio between majority class and minority class
in the training set). In this case the imbalance of the test set is equal to 77. On
the other hand, when the imbalance of the test set is equal to 23 (on the right
of Fig. 3) the point at which Precision and Recall assume the same value falls in
correspondence with an imbalance equal to 7.

Fig. 4. Confusion matrix in function of the imbalance of the training set. The numbers
reported on the x-axes represent the ratio between majority class and minority class.

In Fig. 4 we show the variation of the confusion matrix in function of the
training set imbalance, for the least unbalanced scenario (ratio equal to 23). But
we clarify that the results we obtained are the same also for the more unbalanced
dataset, in terms of dynamic of the several components of the confusion matrix.

We can observe (figure on the left) that the number of True positive (TP)
is maximum using a balanced training set but it decrease sharply if we increase
the training set imbalance. On the contrary the number of True Negative (TN)
shows an exactly opposite dynamic, even in terms of absolute numbers they
are very different, since the negative class represents the majority one. The
slopes of growth [decrease] of FN [of TP] are reduced only slightly instead as the
imbalance of the training set increases. It is interesting to note that there is a
value of the training set imbalance for which the TN [FP] growth [decrease] slope
is drastically reduced. Therefore, to the left of this point on the graph, increasing
the training set imbalance results in much more TN and much less FP; to the
right of this point an increase in imbalance will impact these variations much
less. This can be relevant in the research for an optimal prediction performance
which depends on how relevant we consider to have more TN at the expense of
less TP.
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According to the observed trend of the confusion matrix as the imbalance
of the training set varies, we can assert that the overall correct predictions
(TP+TN) are lower using a completely balanced training set, while the over-
all prediction errors (FP+FN) are larger. This result (highlighted in Fig. 4, on
the right) arise as a consequence of the different slope of the TP and TN curves
(and correspondingly FP and FN curves) as we reduce the imbalance of the
training set and tend towards a perfectly balanced training set scenario. We
conclude this section highlighting the fact that all the performance indicators
we used until now take into account only information contained in the confu-
sion matrix that result from the classification procedures. In the next section we
try to consider also another point of view, given that our prediction needs arise
from an important business problem. The attempt will be to incorporate in the
evaluation of the results also a business point of view.

4.3 A Model to Maximize the Value of Predictions

In this section we propose a linear gain function (Total Gain, GT) that take into
account all the four components of the confusion matrix. We define the total
gain function GT according to the following formula:

GT = α ∗ TP + β ∗ TN − γ ∗ FP − δ ∗ FN (1)

where α, β, γ, δ are positive values that we can use in order to determine the
relevance of each of the components of the confusion matrix.

This proposal extends the gain function introduced in [25], in which are con-
sidered only TP and FP. Therefore, in that paper the author suggest exclusive
relevance only to the prediction results relating to the minority class. This app-
roach is reasonable but it implies the risk of excessively rewarding the achieve-
ment of correct positive classification (TP). But we observe (Fig. 4) that when
we tend towards a balanced training set we obtain an increase of TP but at the
same time a greater reduction (in absolute number) of TN. Hence our choice to
consider all the four different components of the confusion matrix in our gain
function GT. Taking into account that: P = TP + FN (total positive) and
N = TN + FP (total negative), we can rewrite the Eq. (1) using a dependence
from only two of the confusion matrix components:

GT = (α + δ) ∗ TP − (β + γ) ∗ FP + β ∗ N − δ ∗ P (2)

But, in (2) we can observe that, given our generalization, the coefficient of TP
take into account both the value that we assign to a correct positive classification
(TP) and the loss that we consider respect to a FN classification.

It is also interesting to analyze the dynamic of GT function when we modify
the imbalance of the training set. In particular we refer to Fig. 4 and consider a
variation in the imbalance of the training set, that means a different point on the
x-axes in the graph. The correspondent variation ΔGT of the gain function is:

ΔGT = (α + δ) ∗ ΔTP − (β + γ) ∗ ΔFP (3)
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This means that if we go to the left in the graph, towards a balanced training
set, the total gain GT will increase only if:

(α + δ) ∗ ΔTP > (β + γ) ∗ ΔFP (4)

But, as we saw in Fig. 4, the ratio (ΔFP/ΔTP ) is very high in the left part
on the graph. So, we can write that:

ΔGT > 0 ↔ (β + γ) ∗ ΔFP

(α + δ) ∗ ΔTP
< 1 (5)

Since ΔFP
ΔTP � 1, our conclusion is that it is convenient to use a fully balanced

training set if and only if the following condition holds:

(α + δ) � (β + γ) (6)

This appear a really residual scenario. In the other cases we conclude that
it is useful to increase the imbalance of the training set in order to improve the
performance of the prediction. Moreover, we can observe immediately that the
previous scenario coincides with the case: α � γ, if we assume that δ � β.

This conclusion is perfectly in line with the results in [25] in which, in fact,
they are not considered the relevance of prediction about the majority class.
But, as we anticipate before, we think that it is not an effective approach to
consider irrelevant the contribution of the correct negative classification (TN)
and the negative impact of the False negative (FN) attribution (that is the same
as saying δ = β � 0). In addition, we consider that the condition reported in
(6) could be represent in many case a too strong requirement. For example, in
the case of a bank that would increase its credit portfolio or in a case in which
a Public Authorities would support the economy by issuing guarantees to firms
in order to obtain a new loan.

4.4 Some Case Studies

In this section we try to draw some more general consideration about the mea-
surement of prediction performance in a highly unbalanced context. A relevant
question could be: “Are we only interested in performance on the correct classi-
fication of the minority class?” In Sect. 4.3 we try to deal with issues introducing
a gain function GT that take into account both minority and majority class (and
both in terms of correct classification and errors). In the following, we report four
case studies, that represent different examples relating to our reference context
concerning the business failures. The choices we made in setting the parameters
of the gain functions GT (and the relative business justifications) are absolutely
questionable. But the main objective of our exercise is to show, however, how the
business-side evaluation related to the convenience of the prediction can signifi-
cantly change the final gain obtained from them. In fact, we think that the more
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effective way to measure a prediction performance framework should take into
account the business assessments of the stakeholders involved in the predictions
and should reflect their needs. In addition, our practical cases will confirm the
conjecture that to use a perfectly balanced training set is not necessarily the
best choice, even it leads to predict a much higher number of positive cases.

Example 1: Point of view of a private bank that gives a new loan.

– α = 0: to identify correctly a future default implies that the bank do not
extend a new loan

– β = 10: to identify correctly a no-default determine a gain (we assume 10%)
for the bank that extend a new loan of 100

– γ = 10: to have a FP determine a miss gain (10%) for the bank that does not
give a loan of 100

– δ = 100: to have a FN implies a loss for the bank that gives a loan to 100 to
a future default firm.

If we use a fully balanced training set we obtain a lower total gain (Fig. 5).

Example 2: Point of view of a private bank that manages its loan portfolio.

– α = 50: to identify correctly a future default implies that the bank can act
some measure in order to reduce losses, let’s assume 25% of the total portfolio

– β = 10: to identify correctly a no-default determine a gain for the bank that
can extend new loan to its client

– γ = 20: to have a FP determine a miss gain for the bank that act measure to
contain the risk and does not give a new loan to its client

– δ = 100: to have a FN implies a loss for the bank that can loss all the asset
due to the default of the firm.

Also in this case (Fig. 5) it isn’t convenient to use a fully balanced training set.

Fig. 5. Example 1 (left): Point of view of a bank that gives a new loan. Example 2
(right): Point of view of a bank that manages its loan portfolio. In this two examples
we consider the dynamic of gain function GT and its component in Eq. 1.
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Example 3: Point of view of bank Supervisory Authority.

– α = 100: to identify correctly a future default implies that the supervisor
can act measure to mitigate bank’s risk obtaining a gain in ensuring overall
financial stability

– β = 0: to identify correctly a no-default does not implies a gain for the
supervisor perspective

– γ = 0: to have a FP determine a not necessary measure imposed on the bank
(for example additional capital)

– δ = 150: to have a FN implies a case for which supervisor does not take
into account the individual risk of the bank by exposing the entire system to
serious risks.

In this case a balanced training set assure the maximum total gain GT.

Example 4: Point of view of bank Supervisory Authority (with a little integration).

– α = 100: to identify correctly a future default implies that the supervisor
can act measure to mitigate bank’s risk obtaining a gain in ensuring overall
financial stability

– β = 0: to identify correctly a no-default does not implies a gain for the
supervisor

– γ = 30: to have a FP determine a not necessary measure imposed on the
bank (for example additional capital). But we can assume that this measure
represent a loss for the bank profitability and can also involve risks for the
entire system

– δ = 150: to have a FN implies a case for which supervisor it does not take
into account the individual risk of the bank by exposing the entire financial
system to serious risks.

A little integration in the treatment of FP coefficient (compared to the previous
case) determines it is no longer convenient to use a fully balanced training set.

Fig. 6. Example 3 (left): Point of view of Supervisory Authority. Example 4 (right):
Again the point of view of Supervisory Authority but with a little integration.
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As we can see in the previous case studies, only one time the gain function
(GT, dashed black line in the figures) reach its maximum value in correspondence
of a fully balanced training set scenario (Example 3, on the left in Fig. 6). In
fact, we can note that in this case we met the conditions indicated in the formula
(6). In other words, in this scenario we are giving mainly relevance to correct
positive classification and to avoid false negative classification. This means that
we consider more important in GT function (formula 1) the values of α and
δ. But this approach pay also a cost in terms of less number of True negative
(TN) and a major number of False positive (FP). In particular, for each single
correct classification in the minority class (TP) that we gain, we pay a high cost
that means to obtain a higher number of errors (FP). But, if we let’s take it
to the extremes, we may be tempted to classify every case as positive in this
particular situation. In fact, in this case we would have the maximum of TP
and no occurrence of FN. In this case, since we are considering only α and δ
as relevant parameters in our GT function, we could claim to have achieved a
greatest result; but, obviously this is not what we are looking for. It is interesting
to note that if we use AuROC as performance indicator we obtain the maximum
results with a balanced training set, because AuROC particularly rewards a
high Recall and therefore the high number of TP . But, if we are interested also
in Precision we will instead be penalized by the increase in FP that derives
from a training set more balanced. In this case the use of F1-score (or MCC)
as performance indicator can represent a better choice. Finally, in the previous
case studies we found that also some gain functions set taking into account the
needs of some stakeholders would indicate that a fully balanced training set is
not always the best choice.

To conclude, we can assert that the convenience in the use of a more balanced
training set is highly dependent from the different slopes of the curve TP and
TN and from the relative values that we attribute to have each one of the four
element of the confusion matrix. We try to illustrate this evidence with some
figures that report the variation of AuROC, F1-score and our GT function
we used in the first use case. In particular, we calculate the dynamic of this
performance indicators in function of the variation of TP and TN over the dataset
composed of 1000 elements (of which only 40 positive). We can observe in Fig. 7
that AuROC is more sensible to the variation long the TP axis respect, for
example, to the GT function. Also the dynamic of the F1-score indicator seems

Fig. 7. The figure show the dynamic of the AuROC, F1-score and GT, in function of
TP and TN. In this case the coefficient of GT are α = 0, β = 10, γ = 10, δ = 100.
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less sensible to the variation of TP. This evidence motivate the convenience to
use a more balanced training set (that improve the number of TP) when we
measure the performance using AuROC.

5 Conclusion

Business-failure prediction is a very important topic of study for economic anal-
ysis and the regular functioning of the financial system. In our study, we try to
predict the default of Italian companies using Machine Learning techniques, in
line with a large part of the relevant recent literature. But our work is specifically
dedicated in developing a framework to maximize the performance of predictions,
taking into account the specific highly unbalanced scenario that characterize our
reference context. We conjecture that the use of a perfectly balanced training
set does not represent in many cases the right choice. We perform an in-depth
analysis and we propose a total gain function in order to establish a sound frame-
work for evaluating the performance of default predictions. With this regard, we
propose the following conclusions: (1) we show that the use of a fully balanced
training set (which maximizes the AuROC and the Recall) does not represent
the best approach in general, when we work in a highly unbalanced context and,
at the same time, the use of AuROC as performance indicator does not repre-
sents the best solution; (2) we conjecture that exist a well defined range in the
training set imbalance in which we can determine the optimal configuration and
this specific range depends to the imbalance of the dataset (and the test set) we
are considering; (3) we show that performance evaluation task is highly depen-
dent on the specific metrics that we use but also on the specific stakeholders
needs and we hypothesize that a gain function (that have to take into account
all the four components of the confusion matrix) could represent the best way
to evaluate results.

Finally, our analysis leads further to assert that in our specific scenario we
can obtain the best prediction results using a slightly unbalanced training set
(in particular, a ratio between majority class and minority class between 3 and 5
in the case considered in Fig. 3) and we conjecture that, among the best known
performance indicators, F1-score and MCC are the two metrics that appear best
suited to measure the results in such unbalanced scenario.
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Abstract. Occupational fraud within companies currently causes losses
of around 5% of company revenue each year. While enterprise resource
planning systems can enable automated detection of occupational fraud
through recording large amounts of company data, the use of state-of-
the-art machine learning approaches in this domain is limited by their
untraceable decision process. In this study, we evaluate whether machine
learning combined with explainable artificial intelligence can provide
both strong performance and decision traceability in occupational fraud
detection. We construct an evaluation setting that assesses the com-
prehensibility of machine learning-based occupational fraud detection
approaches, and evaluate both performance and comprehensibility of
multiple approaches with explainable artificial intelligence. Our study
finds that high detection performance does not necessarily indicate good
explanation quality, but specific approaches provide both satisfactory
performance and decision traceability, highlighting the suitability of
machine learning for practical application in occupational fraud detec-
tion and the importance of research evaluating both performance and
comprehensibility together.

Keywords: Fraud detection · Anomaly detection · XAI · ERP

1 Introduction

As a study by the Association of Certified Fraud Examiners shows, occupational
fraud, such as theft of materials or abuse of permissions by employees, is esti-
mated to cause average losses of around 5% of an organization’s revenue each
year [1]. Digitization of business operation, for example in Enterprise Resource
Planning (ERP) systems, unifies business processes and provides a standardized
data base, which also opens up new possibilities for automated occupational
fraud detection with Machine Learning (ML) [37,38,47].

To qualify for practical use, fraud detection systems must, on the one hand,
accurately detect fraud and, on the other hand, provide comprehensible sugges-
tions and decisions [19]. Consequently, prior studies on ML-based fraud detec-
tion name explainability explicitly as requirement [10,14] and future research
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 79–96, 2023.
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Fig. 1. Experimental setup for the evaluation of explainable occupational fraud detec-
tion in ERP system data.

[20]. However, for many state-of-the-art ML techniques, especially newly popu-
lar deep learning approaches, their high precision is attributed to a non-linear
decision function that makes explaining their decision process non-trivial and
turns them into a non-transparent black-box. This black-box nature is problem-
atic for detecting fraud in ERP systems, where applying algorithms that do not
act on reasonable fraudulent characteristics can introduce major consequences
for potential wrongly suspected persons, in addition to ethical and legal require-
ments regarding privacy, transparency, and antidiscrimination [13,18].

The research discipline of eXplainable Artificial Intelligence (XAI) has devel-
oped several approaches towards explaining a model’s decision and finally gaining
insight into the decision process of black box models [4]. The question of whether
ML approaches provide strong performance in detecting occupational fraud in
ERP systems while maintaining a comprehensible decision process when used in
combination with XAI, however, has not yet been answered in current research
to the best of our knowledge.

We therefore construct a three-fold evaluation setting to assess the explain-
ability of ML based occupational fraud detection approaches on ERP data based
on quantitative, qualitative and consistency criteria. We then conduct exten-
sive experiments on the detection performance and explainability of different
fraud detection approaches, as outlined in our experimental setup depicted in
Fig. 1: We combine five different ML-based fraud detection approaches, two clas-
sical anomaly detection approaches (One-Class SVM [36] and Isolation Forest
[21]), a linear approach (Principle Component Analysis based Anomaly Detec-
tion [40]), and two task specific Deep Learning based approaches (Autoencoder
[15] and improved Neural Arithmetic Logic Units [34]), with a state-of-the-art
XAI component (Shapley Additive exPlanations [22]) providing explanations for
the underlying decision process of each ML model. We evaluate the ML perfor-
mance and the explanations generated from each fraud detection approach based
on our three-tier XAI evaluation on ERP system data that includes fraudulent
transactions with labeled explanations. As datasets with labeled explanations
are rare and costly to obtain, we conduct an additional experiment investigating
whether our measured detection performance and explanation quality are trans-
ferable to other datasets without the need for repeating hyperparameter studies
that may require expensive labeling procedures in practice.
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Our experiments identify ML-based fraud detection approaches that are
capable of strong fraud detection performance on ERP system data, while also
acting upon reasonable fraudulent characteristics. However, our experiments also
show that strong detection performance does not automatically result in good
explanation quality, suggesting that joint evaluation of model performance and
explainability is essential in applications that require comprehensible decisions.

Our contributions can be summarized as follows:

– We construct a three-fold evaluation setting for the explainability of occupa-
tional fraud detection.

– We evaluate multiple ML approaches with respect to their detection perfor-
mance and explainability through our evaluation scheme.1

– We assess whether our results obtained transfer to new datasets without the
need for expensive labeling procedures.

The remaining paper is structured as follows: Sect. 2 gives an overview on occu-
pational fraud detection and ML explainability. Section 3 introduces data prepa-
ration, ML approaches, and ML evaluation measures used in this study. Section 4
describes the constructed XAI evaluation setting. Section 5 presents our experi-
ments and discusses results, while Sect. 6 concludes the paper.

2 Related Work

2.1 Fraud Detection

In the field of financial fraud detection, traditional ML, deep learning, and
anomaly detection methods, as well as approaches relying on expert knowledge
and auditors’ views, have been subject to studies on both synthetic and real-
world datasets. There are several surveys summarizing findings specifically from
the financial domain [44] or from the broader field of anomaly detection, includ-
ing financial fraud detection as an application domain [8,9]. While many of
these works utilize machine learning to detect frauds such as credit card misuse
[23,32], there are also works that focus on detecting occupational fraud within
ERP system data.

Earlier work on fraud detection in ERP systems leverages statistical, visual,
or clustering based approaches to detect frauds in database logs and transac-
tional data [26,30,41–43]. Process mining, sometimes extended with filtering
and rule based approaches, is another promising approach [5,12,24,33]. Instead
of transactional data, process mining uses event logs as main data source, which
introduces further layers of abstraction with the creation of process graphs.

Since the rise of neural networks, an increasing number of publications
directly utilize ERP data. Multiple works proposed autoencoder neural network
architectures for fraud detection directly on transactional data [37,38,47], or
conducted case studies that provide empirical evidence for the practical applica-
tion of autoencoder architectures on real data [25,39]. These approaches either
1 Our code is available under https://professor-x.de/xai-erp-fraud.

https://professor-x.de/xai-erp-fraud
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limit the ERP tables to few discriminative attributes used in their approach,
or directly rely on feature engineering to create audit-relevant aspects of entries
through domain knowledge. In contrast, our approach does not rely on explicit
modeling of domain knowledge or process mining. Instead, we focus on raw ERP
data without extensive feature selection or feature engineering.

2.2 Explainable Artificial Intelligence

With the rise of deep learning, assessing the decision process of non-transparent
black-box models has become a core field of research in the ML community,
which has been categorized by Arrieta et al. [4].

In the domain of fraud detection, multiple works have focused on detecting
and explaining fraud caused by malicious credit card transactions. In addition to
work proposing inherently explainable network architectures [48], multiple works
investigate the use of popular post hoc feature relevance XAI approaches [22,29]
in detecting credit card fraud [3,28]. Post hoc feature relevance XAI explains an
already trained ML model by finding the impact of each input feature toward
the model’s final decision. This allows insight into the reasoning behind single
model decisions, which has been identified in prior studies as desirable property
for ML-based fraud detection in general [10] and in occupational fraud detection
on ERP system data [14]. Due to their promising results in the related domain of
credit card fraud detection, we follow Antwarg et al. [3] and Psychoula et al. [28]
in utilizing a post hoc feature relevance approach to obtain explanations, but
propose a different XAI evaluation scheme: Rather than performing XAI evalu-
ations on artificial data [3] and comparing them to simple linear models [28], we
construct an evaluation on expert-labeled ground truth and derive requirements
for consistent XAI decisions in ERP system data. To our knowledge, we are the
first to investigate the performance of feature relevance XAI in the domain of
occupational fraud detection in ERP system data.

3 Machine Learning Methodology

This section introduces the data preprocessing schemes, ML approaches, and
ML performance metrics used in our study.

3.1 Data Preprocessing

With transactions in ERP systems that contain sparse information in many
columns, manual feature extraction in combination with the feedback of business
experts may seem like a promising approach for detecting common and known
fraud cases. However, we argue that in a live setting, attackers can continuously
create new and previously unseen frauds, which can only be detectable through
additional information contained in sparse columns of the ERP system. This
makes the ability of monitoring all available data appealing for a fraud detec-
tion system in a realistic setting. Therefore, we utilize established preprocessing
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techniques that largely retain the information contained in the ERP dataset and
do not require vast amounts of manual feature engineering.

Categorical Columns are transformed by one-hot encoding. We further
add a column for empty values, retaining the information of a column within
the ERP data being left empty and allowing us to distinguish between empty
columns and column entries that have not been observed during training time.

Numerical Columns can cause problems for many ML approaches due to
large value ranges, which is problematic in a domain where monetary amounts
or quantities vary from single digits to figures in millions. We test multiple estab-
lished scaling techniques on numerical ERP system data, implementing z-score
and minmax scaling [27], as well as quantization which transforms numerical
values into categorical buckets. To highlight outliers within the data, we adapt
the quantization technique to first choose two buckets that include the 1% high-
est and lowest numerical values and then choose buckets that equally distribute
the remaining data. This allows the data representation to highlight unusually
high or low values that may indicate fraudulent abuse of the system.

In our experiments, all preprocessing schemes are fitted purely on the train-
ing data and applied without fitting to both evaluation and test data. For the
quantization scheme, we use 5 buckets since we observed decreasing performance
with larger bucket sizes in preliminary testing.

3.2 ML Approaches

Common difficulties in the training and application of anomaly detection algo-
rithms are the unavailability of anomalies during training time, and the diverse
characteristics of potential anomalies [9]. These issues are further fortified in
occupational fraud detection by a very high ratio of normal to anomalous data-
points and the motivation of fraudsters to create frauds that are highly diverse,
novel, and difficult to detect. In this work, we therefore employ ML algorithms
that exclusively train with normal data and are designed to detect anomalous
datapoints that show deviating behavior. For our study, we investigate estab-
lished deep learning approaches, classical anomaly detection approaches, and a
linear model, which we introduce with the abbreviations and references used in
Table 1. To unify the approaches, we make the following adjustments:

Table 1. Utilized ML algorithms.

Approach Description Source

AE Autoencoder neural network architecture with ReLU activation [15]

iNALU AE with ReLU and improved neural arithmetic logic unit activation [34]

IF Isolation Forest [21]

OC-SVM One-Class Support Vector Machine using rbf kernel [36]

PCA Anomaly detection using Principle Component Analysis [40]
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iNALU is used in an autoencoder setup with linear layers at the beginning
and end and intermediate mixed layers that contain an even number of ReLU
and improved neural arithmetic logic unit activations [35]. While IF and PCA
have a direct anomaly scoring function, we use reconstruction loss to detect
anomalies with AE and iNALU. For the OC-SVM, we utilize the signed distance
from the datapoint to the hyperplane in feature space as our anomaly score.

3.3 ML Evaluation

Classification metrics such as precision, recall, and f-score are widely used in ML
applications to assess model performance [6] but require a direct classification of
transactions into normal or fraudulent datapoints. This, in turn, requires a fixed
threshold value on the anomaly scores of our ML approaches. Since the optimal
threshold choice depends on task, data, use case, ML approach, and possibly
even the ML model’s parameters used during training, setting this threshold
is non-trivial and requires striking a balance between detection rate and the
number of anomalies detected [7]. Area-Under-the-Curve (AUC) scores omit a
threshold by calculating scores over varying threshold values. A popular choice
for AUC scores, the well-known AUC Receiver-Operating-Characteristic (ROC)
score is sensitive to class imbalance, which skews its results in highly unbalanced
settings such as fraud detection. Therefore, we base our evaluation on the AUC
Precision-Recall (PR) score which addresses this issue [11].

Furthermore, we report the rank of the least suspicious fraud rmin, which
corresponds to the practical question of how many transactions would have to
be inspected until all frauds are found. Mathematically, the rank of the least
suspicious fraud of all frauds F ⊆ X of dataset X is given as

rmin = |{x ∈ X : score(x) ≥ min
f∈F

score(f)}| (1)

where score denotes the anomaly scoring function of the detection approach that
yields high values for anomalous samples.

4 XAI Methodology

To assess the decision process of different ML approaches during occupational
fraud detection, we construct a three-fold evaluation process based on quantita-
tive evaluation, qualitative inspection, and consistency testing.

4.1 XAI Approach

In previous work, the post hoc feature relevance approach Shapley Additive
exPlanations (SHAP) [22] has been identified as XAI approach providing good
comprehensibility both in the related area of credit card fraud detection [3,28]
and on categorical tabular data [45], which encompass a large number of columns
within ERP system data. We therefore employ SHAP on individual model pre-
dictions to find which features are most relevant for the model’s decision. SHAP
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utilizes game theory to find feature relevance by switching feature combinations
with background data and assessing the resulting behavior of the model. SHAP
is model-agnostic and can be employed on any ML model. In this work, we
employ SHAP’s KernelSHAP method that generates background data through
the centroids of k-means clustering with k = 20 clusters.

4.2 Quantitative XAI Evaluation

To measure the quality of the feature relevance explanations generated by SHAP,
a quantitative evaluation measure is required. Samek et al. [31] propose a quan-
titative evaluation procedure which assumes that perturbing relevant feature
entries leads to different model decisions. This evaluation may prove problem-
atic in heavily unbalanced domains such as anomaly or fraud detection, as find-
ing replacement values that form valid, non-anomalous datapoints is non-trivial.
While Hooker et al. [17] extend this approach by proposing to retrain the entire
model from scratch after perturbing the training data, their resulting scheme
requires repeating extensive training steps and potential repetition of entire
hyperparameter studies, which limits its use in practice.

To quantitatively evaluate XAI explanations in our occupational fraud detec-
tion scenario, we therefore propose an evaluation scheme based on suspicious
data entries of fraud cases: In the evaluation, we focus on fraudulent datapoints,
where feature entries that deviate from the normal business process can be seen
as indicative of the fraud case. For a given fraud, this requires identification of
indicative feature entries by auditing experts, which then serve as ground truth
for quantitatively evaluating feature relevance explanations, where indicative
feature entries should be rated as more relevant than normal features.

For the evaluation of explanation heatmaps through ground truth on image
data, Hägele et al. [16] proposes an evaluation scheme based on ROC scores.
We adopt this evaluation scheme for our tabular data, ranking the quality of
single datapoint explanations through ROC score against our ground truth. For
one datapoint, this results in a ranking score that increases when deviating data
entries are given higher feature relevance within the explanation. Additionally,
the ROC score is scale-invariant, focusing only on whether deviating entries are
found before normal entries. For all fraud cases, we aggregate the individual
ROC scores for each datapoint into an average ROC score and use this metric
as a quantitative measure that represents how highly features with information
concerning the fraud case rank in the given explanation.

4.3 Qualitative XAI Evaluation

Beyond examining individual metrics, we use qualitative inspection of explana-
tions as a more in-depth assessment of XAI explanation quality. To qualitatively
assess explanations, feature relevance of single datapoints may be visualized
using SHAP’s force plots, as seen in Fig. 2a. Here, feature names are listed at
the bottom of their corresponding bar, with a larger bar width corresponding
to a feature’s greater impact on the (negative) anomaly score shown above the
bars (e.g. feature f0 showing a greater impact than the features f1 or f2).
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(a) Exemplary SHAP force plot [22] (b) Exemplary explanation heatmap

Fig. 2. Demonstration plots of explanations for single datapoints (2a) and heatmaps
to compare datapoint explanations (2b).

4.4 XAI Consistency Evaluation

Cirqueira, Helfert, and Bezbradica [10] discover that auditors check previously
detected frauds and their explanations to assess new frauds, and define a require-
ment for XAI in fraud detection to allow comparison of frauds based on previous
explanation patterns. To evaluate new cases with explanations based on histor-
ical patterns, similar frauds need to be consistent in their explanations.

Approaches that assess the consistency of explanations are currently limited
to the robustness of XAI methods against adversarial attacks [2] and analyze
whether minimal changes to a single datapoint maintain a similar explanation.
In contrast, we propose an evaluation that focuses on the consistency of explana-
tions of similar frauds. We construct a heatmap for fraud datapoints that can be
used both to evaluate explanation similarity between different fraud cases and to
find similar anomalies for currently evaluated fraud cases during the application.

Consider a feature relevance explanation y ∈ R
d for a fraudulent datapoint

x ∈ F within the fraudulent subset F ⊆ X of dataset X with data dimensionality
d. We first binarize y by applying a threshold of 25% of the highest relevance
value, to focus our evaluation on highly relevant features and reduce noise.

ŷi =
{

1 , yi > 0.25 · max(y)
0 , yi ≤ 0.25 · max(y) (2)

We apply this transformation to the explanations of all fraudulent datapoints
and compute the Manhattan distance pairwise as a measure of explanation sim-
ilarity through dist(ŷ, ŷ′) = ‖ŷ − ŷ′‖1 for a pair of binarized explanations ŷ and
ŷ′. We then arrange explanations so that similar frauds are grouped together and
visualize the pairwise similarity of explanations in a heatmap. Therefore, consis-
tent explanations for similar frauds are expected to form a block-like structure
around the diagonal, as shown in Fig. 2b for the datapoints 0-3 and 4-7, which
features all similar fraud cases within one block of low pairwise distances.

5 Experiments

Using our XAI evaluation setting introduced in Sect. 4, we now evaluate multiple
ML approaches introduced in Sect. 3 with respect to performance and compre-
hensibility when detecting occupational fraud in ERP system data.
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Table 2. Total datapoints and fraud cases within the used ERP system data [46].

Group Dataset Transactions Frauds IK1 IK2 L1 L2 L3 L4 CI

Group 1 Normal 1 54677 0 0 0 0 0 0 0 0

Group 1 Fraud 1 39430 24 4 0 2 4 0 0 14

Group 2 Normal 2 32337 0 0 0 0 0 0 0 0

Group 2 Fraud 2 36778 50 6 18 2 4 10 6 4

Group 2 Fraud 3 37407 86 24 6 8 10 26 4 8

L = Larceny, IK = Invoice Kickback, CI = Corporate Injury

5.1 ERP System Data

For our experiments, we use publicly available ERP system data that contains
both normal business documents and fraudulent activities [46]. The data con-
tains five distinct datasets obtained from data generation of a simulated pro-
duction company with two participant groups, with two datasets consisting of
completely normal operation and three datasets including different fraud cases
within the normal business process. Frauds include different scenarios of mate-
rial theft (larceny), bribery in material procurement (invoice kickback), and
cause of malicious damage to the company (corporate injury), with details on
specific fraud cases introduced in the original paper [46]. Table 2 gives a brief
overview of the distribution of normal and fraudulent transactions within the
data. Beyond the separation of transactions into normal or fraudulent behav-
ior, these datasets also contain expert annotations of individual fraud cases. As
all fraudulent transactions have marked column entries that correspond to the
entries that are indicative of the underlying fraud, these annotations are used as
ground truth for our quantitative XAI evaluation of Sect. 4.2.

5.2 Experiment 1: Explainable Occupational Fraud Detection

Prior research into fraud detection has found both high performance and compre-
hensibility to be desirable properties of detection approaches [10,14,19]. In our
first experiment, we therefore evaluate multiple established ML approaches on
occupational fraud detection in ERP system data. We conduct a hyperparameter
study encompassing more than 1500 cpu core hours to assess the detection per-
formance of the algorithms studied. We further generate explanations for these
approaches through SHAP as described in Sect. 4.1, and analyze explanation
quality through our XAI evaluation setting from Sect. 4 to discover approaches
that deliver both high performance and satisfactory explanations.

Experimental Setup. In this experiment, we focus on the ERP datasets gen-
erated by the second participant group (normal 2, fraud 2, fraud 3), as intro-
duced in Sect. 5.1. We choose these datasets as they contain a larger amount and
broader spectrum of fraud cases, and additionally offer two fraudulent datasets
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Table 3. Best results of each approach on evaluation (1) and test (2) set.

Approach PR(1) PR(2) ROC(1) ROC(2) r
(1)
min r

(2)
min

OC-SVM 0.34 0.73 0.99 1.00 1201.0 740.0

iNALU† 0.34 0.52 0.99 1.00 1769.0 1022.4

AE† 0.31 0.69 0.99 1.00 1615.0 825.0

IF† 0.19 0.49 0.99 0.99 2232.0 1046.0

PCA 0.08 0.12 0.82 0.91 36778.0 37407.0
†Non-deterministic: averaged over 5 seeds to mitigate statistical fluctuation

that can be used as separate validation and test datasets. As training data, we use
the dataset normal 2, which only contains normal data and simulates training on
records that have previously been audited. While training of our ML algorithms
only requires normal data, all algorithms have additional hyperparameters that
influence the detection rate. Therefore, an audited dataset containing fraudulent
samples is required as evaluation dataset, which is potentially not available in
practice. The necessity of this dataset will be assessed in the subsequent exper-
iment in Sect. 5.3. In Experiment 1, the partially fraudulent dataset fraud 2 is
used as evaluation set to select hyperparameters and the overall performance is
evaluated on dataset fraud 3 as test set. This separation allows for tuning ML
hyperparameters on an evaluation dataset with fraudulent transactions, while
retaining an unseen test dataset for the evaluation of the resulting algorithms.

Parameter Search and Performance Results. To assess detection perfor-
mance, we utilize the metrics introduced in Sect. 3.3. To select the best perform-
ing hyperparameters, we rank architectures by PR score on the evaluation set.
Table 3 shows the best results of each approach for both evaluation set (1) and
test set (2), where we also report ROC and rmin denoting how many transac-
tions would have to be audited to find all frauds using the detectors. We make
the tested hyperparameters and results of individual runs available online for
reproducibility2. Our findings can be summarized as follows:

For the linear PCA we find no parameter setting capable of reliably detect-
ing fraudulent transactions, with even the best hyperparameters yielding poor
detection results on all metrics. Although IF is capable of detecting fraud cases,
it performs considerably worse than the remaining approaches in PR score. AE
and OC-SVM both show very strong detection performance, with OC-SVM high-
lighting all fraud cases within 1201 and 740 suspected datapoints for the evalu-
ation and test set, respectively. iNALU performs on par with AE and OC-SVM
on the evaluation data, but detects fraud cases considerably later on the test set.
Upon closer inspection, all well-performing approaches highlight the Larceny 4
and Corporate Injury frauds within the first anomalous transactions. Lowered
scores are caused mainly by Larceny 3 and Invoice Kickback 1 frauds. This may
be explained by the subtle and well-hidden nature of the two frauds. For Larceny

2 Supplementary material under https://professor-x.de/xai-erp-fraud-supplementary.

https://professor-x.de/xai-erp-fraud-supplementary
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Table 4. Quantitative explanation evaluation for Experiment 1 (see Sect. 4.2).

Approach ROC
(1)
XAI ROC

(2)
XAI

OC-SVM 0.542 0.579

iNALU 0.642 0.794

AE 0.603 0.658

3 only a small portion of materials is stolen and for Invoice Kickback 1 prices are
increased only by a small percentage that may well be within the range of normal
price fluctuations. As a result, while the approaches manage to find the frauds,
detection occurs later than on cases with clearly identifiable characteristics such
as items that have never been purchased before in Larceny 4.

Overall, we observe high performance for OC-SVM, iNALU and AE when
detecting occupational fraud in ERP data.

Model Explanation Results. To evaluate, whether well performing detection
systems can also provide a satisfactory decision process, we generate post hoc
feature relevance explanations for the best performing OC-SVM, iNALU and
AE approaches through the XAI approach SHAP as outlined in Sect. 3.3 and
evaluate the resulting explanations through our XAI evaluation setting.

Quantitative Evaluation. To quantitatively assess the explanation quality of
our trained models, we evaluate the explanations of fraudulent datapoints with
ground truth as described in Sect. 4.2. Table 4 shows the quality of the explana-
tion measured in the evaluation set (1) and the test set (2). The explanations
for OC-SVM show the smallest similarity to the ground truth, in spite of its
strong detection rate in our performance evaluation. While AE displays higher
explanation quality, iNALU explanations produce the highest ROC scores.

Qualitative Evaluation. To discover the reasons for this behavior, we qualitatively
evaluate SHAP plots across all frauds from the test data. To illustrate the fraud
visualization process, we show a non-cherry-picked explanation visualization of
a fraud case from the test set fraud 3 in Fig. 3.

In the Larceny 1 case shown in Fig. 3, only iNALU focuses on the anoma-
lous entry that marks the transaction as blocked by the ERP system (blocking
reason quantity). While AE focuses on suspiciously small quantities ordered
and in stock, OC-SVM highlights many features that are not related to fraud.
Approaches also show sensitivity towards columns, such as G/L account, valua-
tion class, or transaction, that describe the general transaction type (e.g. material
entry, withdrawal). This may be caused by value combinations that are anoma-
lous for the given transaction, but characteristic of another transaction type,
causing the transaction type to be seen as anomalous. OC-SVM is particularly
sensitive to this behavior and highlights many transaction-type features that are
not indicative of fraud. This pattern is also noticeable in other larceny frauds.

On invoice kickback frauds, where the fraudster’s activity causes atypically
high unit prices, both iNALU and AE highlight the amounts and quantities
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(a) OC-SVM on Larceny 1 G/L account posting

(b) iNALU on Larceny 1 G/L account posting

(c) AE on Larceny 1 G/L account posting

Fig. 3. SHAP explanations on a fraudulent Larceny 1 transaction, showing feature
influence through bar width. iNALU and AE focus on anomalous quantities and
amounts, while OC-SVM reacts to a variety of features.

required for inference. While OC-SVM is sensitive to some amount columns,
they carry only small influence over columns that are not related to fraud.

In the corporate injury scenario, fraudulent purchase activities result in high
purchase amounts and purchase quantities. Here, iNALU is strongly sensitive
to anomalous quantities and amounts, while AE additionally focuses on some
not directly relevant columns such as vendor or material entries, and OC-SVM
focuses on many columns that do not directly indicate fraudulent activities.

Overall, the qualitative observations are consistent with the quantitative
results, indicating that AE and iNALU consistently show sensitivity to columns
that are sufficient to explain and detect fraudulent transactions, with iNALU
providing the best explanations. OC-SVM, despite its slightly stronger detec-
tion performance observed in Table 3, produces explanations that are noisy and
difficult to interpret, potentially limiting its use in practice, when insights into
the decision process or justifications are required.

Explanation Consistency. To evaluate the consistency of trained approaches
when explaining similar anomalies, we create heatmap plots as described in
Sect. 4.4. For both iNALU and AE, Fig. 4 shows clear similarities between the
explanation of transactions from the same fraud scenarios, indicating that both
approaches react to fraud cases in a consistent way. While iNALU is capable of
producing slightly sharper contrasts between similar and dissimilar fraud cases
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OCSVM

iNALU

AE

evaluation data (fraud 2) test data (fraud 3)

Fig. 4. Manhattan distance of SHAP explanations for larceny frauds (L1, L2, L3,
L4), invoice kickback (I1, I2), and corporate injury (CI), ordered by type and time of
occurrence. Plots show consistent explanations for iNALU and AE.

in comparison to AE, OC-SVM focuses on very different features even when
considering very similar fraudulent data samples. Overall, both iNALU and AE
show consistency in their decisions, which may be used to compare explanations
with historical patterns of fraud cases.

5.3 Experiment 2: Performance After Retraining

Through the conducted hyperparameter study and evaluation of explanation
quality, Experiment 1 has produced models and hyperparameter configurations
that can explain fraud cases precisely and comprehensibly on the used dataset.
For practical applications, however, annotated data for selecting models and
parameters is usually not readily available. In particular, if the normal behavior
within a company shifts (for example, due to changing employees or opera-
tional changes), the model must also be retrained on the new normal data to
adopt for the changes. If an additional annotated dataset is necessary in these
cases to re-evaluate the model and parameter selection, this would be associated
with considerable costs that may prove prohibitive in practical applications. In
this experiment, we therefore evaluate to what extent previously found optimal
model parameters can also be transferred to a new dataset with changed business
circumstances and different employees, investigating how stable the respective
models are with regard to their hyperparameter selection on different datasets.
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Experimental Setup. We use the normal (normal 1) and fraudulent (fraud 1)
game runs introduced in Sect. 5.1 that originate from different ERP system users
than data from Experiment 1 and retrain our models with the hyperparameters
that showed the best performance during our first experiment in Sect. 5.2. To
gain further insights into whether re-evaluation of the approaches would have
allowed for choosing a better performing set of hyperparameters for each app-
roach, we also repeat our first experiment on the new dataset entirely. This
allows us to rank our previously best performing parameter configurations in
comparison to all other parameter settings that could have been chosen through
reevaluation with regard to each of our evaluation metrics.

Stability Results. For all the ML approaches evaluated, we report both the
performance metrics, as well as the ranking of the hyperparameters of Experi-
ment 1 compared to the optimal hyperparameter configurations in Table 5. We
further use the feature-level fraud annotations within the dataset to repeat our
quantitative explanation evaluation on the previously best performing detection
systems. Although the linear PCA initially shows strong performance through
a high PR score, the rmin metric reveals that the approach detected few frauds
very early at the expense of completely failing to detect other fraud cases, result-
ing in a high PR score that is sensitive to this behavior. As all other approaches
are detecting all fraud cases within a small number of audited datapoints, as
shown in their rmin scores, PCA remains a non-desirable detection approach
for this scenario. IF remains behind the three approaches that have been best
performing previously on the rmin metric. The previously best performing AE
and OC-SVM drop considerably in performance, with multiple better performing
hyperparameter configurations as seen in both rmin rank and PR rank, which
would require costly re-evaluation with an annotated evaluation dataset. iNALU,
on the other hand, is capable of maintaining its performance on the dataset with
a highly stable PR score and a very strong rmin score. Furthermore, there are
only a few parameter configurations for iNALU that improve over the previous
best parameter set on the rmin metric, with the lower rank on the PR score
being caused by the sensitive PR score behavior discussed above.

Table 5. Results for retraining the best models found in Experiment 1. The rankings
compare performance with other hyperparameter settings.

Approach PR ROC rmin PR rank ROC rank rmin rank ROCXAI

OC-SVM 0.16 1.00 228.00 50 10 17 0.582

iNALU† 0.34 1.00 146.60 46 5 6 0.859

AE† 0.21 1.00 253.20 36 34 19 0.820

IF† 0.22 1.00 366.40 187 66 31 0.783

PCA 0.44 0.95 19432.00 16 1 18 0.517
†Non-deterministic: averaged over 5 seeds to mitigate statistical fluctuation
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Overall, this study highlights iNALU as an approach that, while showing
slightly lower performance compared to AE and OC-SVM in Experiment 1, is
capable of providing satisfactory decision traceability and additionally proving
stable towards model retraining, making it a strong model choice within the
domain of occupational fraud detection.

6 Conclusion

In this study, we investigated whether different ML approaches could provide
strong performance and a satisfactory decision process in occupational fraud
detection. We first constructed an evaluation setting for the explanations of
occupational fraud detection approaches based on quantitative, qualitative, and
consistency criteria. We then conducted extensive experiments on multiple fraud
detection approaches combined with post hoc XAI, finding highly performing
detection approaches through a hyperparameter study and assessing the qual-
ity of their decision process through the XAI evaluation setting. Further, we
assessed whether ML approaches are capable of maintaining their performance
and explanation quality on company data with changed underlying character-
istics, by retraining and re-evaluating the approaches on an additional ERP
dataset.

Our results indicate that high detection performance does not necessar-
ily come with good explanation quality, as the OC-SVM approach displays a
strong detection rate with poorly performing explanations. However, the AE
and iNALU approaches provide satisfactory performance and decision traceabil-
ity. Despite its lower detection performance compared to the AE, our second
experiment reveals that iNALU is the more stable detection approach, manag-
ing to best retain its performance after retraining. Our findings demonstrate a
possible strong performance and explanation quality of ML-based occupational
fraud detection approaches and motivate the use of the investigated deep learn-
ing approaches for detecting occupational fraud in ERP system data.

In this work, we conducted a first broad evaluation on established ML-based
detection approaches covering deep learning, anomaly detection, and linear mod-
els. With the promising results of our experiments, we plan to systematically
extend our research to further detection architectures. Similarly, our explana-
tion experiments conducted with an established and proven XAI algorithm could
be extended to other types of explanations to provide additional comprehensi-
bility in occupational fraud detection. With this study, we took a first step
towards explainable ML-based occupational fraud detection systems on ERP
system data, and encourage future research by highlighting the need to investi-
gate detection performance and explainability in a joint fashion.

Acknowledgement. The authors acknowledge the financial support from the Ger-
man Federal Ministry of Education and Research as part of the DeepScan project
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Abstract. In this study, we show how S&P 500 Index volatility sur-
faces can be modeled in a purely data-driven way using variational
autoencoders. The approach autonomously learns concepts such as the
volatility level, smile, and term structure without leaning on hypotheses
from traditional volatility modeling techniques. In addition to introduc-
ing notable improvements to an existing variational autoencoder app-
roach for the reconstruction of both complete and incomplete volatility
surfaces, we showcase three practical use cases to highlight the relevance
of this approach to the financial industry. First, we show how the latent
space learned by the variational autoencoder can be used to produce syn-
thetic yet realistic volatility surfaces. Second, we demonstrate how entire
sequences of synthetic volatility surfaces can be generated to stress test
and analyze an options portfolio. Third and last, we detect anomalous
surfaces in our options dataset and pinpoint exactly which subareas are
divergent.

Keywords: Volatility modeling · Variational autoencoder · Synthetic
data · Market simulation · Anomaly detection · Portfolio stress testing

1 Introduction

The price of an option contract is mainly determined by the expected future
volatility of its underlying asset. When the market anticipates high (low) volatil-
ity, option prices rise (fall), and vice versa. Therefore, the prices of these deriva-
tives imply an expected volatility. This implied volatility is often used synony-
mously with trade price and its value varies across different contract strikes and
maturities. This in turn leads to the concept of a volatility surface, a three-
dimensional surface that expresses implied volatility in function of strike and
maturity for a given day and asset. This surface can take on a variety of shapes
depending on the state of the market. Well-documented phenomena include the
volatility smile (or skew), the volatility term structure, and volatility persistence.

In practice, volatility surfaces are produced by calibrating and fitting volatil-
ity models on observed market prices. Examples of such models are the Variance-
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Gamma model [13], Heston model [9], local volatility models [7], and arbitrage-
free SVI parameterization [8]. Each technique employs a different set of underly-
ing assumptions on concepts such as the stochastic process driving the underlying
asset and the shape of the volatility surface. These models are not perfect and
their underlying hypotheses often contribute to the varying degrees of success
they achieve in practice.

In recent years, researchers have explored machine learning techniques to
improve volatility modeling. For example, neural networks have been used to
correct estimation errors made by existing volatility models [2], or as standalone
models where the loss function is altered to include existing concepts such as the
Dupire formula [7] and no-arbitrage conditions [4]. However, these approaches
continue to hinge on traditional assumptions. Other work takes this one step
further through the use of variational autoencoders [10]. Here, a purely data-
driven approach was investigated, leaving it up to the model to learn the shapes
of FX volatility surfaces without an explicit bias towards hypotheses from the
traditional approaches [3]. They showed that their approach beat the Heston
model in reconstructing both complete and incomplete volatility surfaces. In
addition, because these are generative models, they can be used to generate
synthetic volatility surfaces.

The authors proposed a point-wise approach for reconstructing volatility sur-
faces. Here, the encoder first maps a surface to its smaller, latent representation.
The decoder then uses this surface representation, together with the strike price
and time to maturity of an option contract, to reconstruct a single point on the
surface. This process is repeated for each point on the surface. Note that this
is in contrast with a more conventional grid-wise approach where the decoder
reconstructs the entire surface in one go, and only relies on the latent repre-
sentation for reconstruction. The authors argue that the point-wise approach
is more expressive as surfaces of different granularity can be produced. This is
in contrast with the grid-wise approach, where the generated surfaces are lim-
ited to the dimension of the input surface. The authors did not compare the
reconstruction accuracy of the two different approaches.

In this work, we initially set out to replicate the results from [3] on US
equity indices. However, we ran into the problem of posterior collapse [12] using
their proposed point-wise architecture. This phenomenon is a well-known com-
plication for variational autoencoders in which the learned latent space becomes
uninformative. A common culprit is a decoder that relies too heavily on input
features other than the latent ones. We hypothesize that the given architecture is
sub-optimal for learning a proper latent space and suggest an alternative method
using two separate steps. First, we learn the latent space using a traditional grid-
wise approach and obtain the latent representations of the surfaces. This way,
the decoder can only rely on latent variables during training. Afterward, a sep-
arate point-wise decoder model then uses these latent representations, together
with the moneyness and time to maturity of an option contract, to reconstruct
individual points on the surface. In doing so, the learning of latent space and the
point-wise reconstruction of the surface is effectively decoupled, and we obtain a
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more informative latent space without sacrificing the expressivity of the original
point-wise approach. Another advantage is that, instead of neural networks, any
suitable machine learning technique can serve as the separate decoder model,
which may improve results even further.

The contribution of this chapter is three-fold. First, we replicate the FX
volatility surface approach from [3] on S&P500 Index options (SPX). We iden-
tify posterior collapse and suggest a decoupling approach that bypasses this
problem and beats the original method on all hyper-parameter settings. Sec-
ond, we suggest additional adjustments that further improve the reconstruction
error. We show that a better latent space can be learned using convolutional
layers instead of regular feed-forward ones, and that gradient boosted trees [5]
make better point-wise decoder models than neural networks. Third and last,
to highlight the impact of generative modeling with variational autoencoders
on the financial industry, we provide three concrete use case examples. Namely,
we show that our best approach learns latent factors that correspond to the
volatility smile, term structure, and level, and that these factors can be used
to generate synthetic yet realistic volatility surfaces. We then demonstrate how
synthetic volatility surfaces can be used to stress test an options portfolio. Lastly,
we show how the built model can be used to detect anomalous volatility surfaces
in a dataset.

2 Background on Variational Autoencoders for Volatility
Surfaces

Variational autoencoders belong to the family of generative models. Here, pat-
terns in input data are automatically learned and summarized such that the
trained model can produce new instances that are (ideally) indistinguishable
from observed instances. This is in contrast with discriminative modeling, where
models learn what differentiates instances and how to optimally assign labels to
them. For example, a generative model could generate new realistic pictures of
fruit, whereas a discriminitative model could identify whether a picture contains
either an apple or an orange.

The architecture of a variational autoencoder (VAE) [10] is closely aligned to
that of a regular autoencoder (AE). Here, a neural network (encoder) encodes
input into a smaller, latent representation. At the same time, a second neural
network (decoder) learns how to decode this latent representation into the orig-
inal input. In contrast to the AE, the encoding of a VAE is not deterministic.
Instead, latent representations are obtained by sampling from a (multivariate)
distribution parameterized by the encoder. The architecture of a standard VAE
is presented in Fig. 1 (a). The objective function L for training such model breaks
down into two components: a reconstruction error and the Kullback-Leibler (KL)
divergence [11] between the parameterized distribution and a prior distribution,
which is typically a multivariate standard normal distribution. More specifically,
the loss is computed by:
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MSE =
1
N

N∑

i=1

(yi − xi)2 (1)

KL =
1
2

K∑

k=1

(−1 − log σ2
k + σ2

k + μ2
k) (2)

L = MSE + β ∗ KL (3)

where N is the dimensionality of the input and output, yi is the ith input value,
xi the ith output value produced by the decoder, and μk and σk are the mean
and standard deviation of the kth latent variable.

Combining the reconstruction error with the KL divergence leads to a latent
space that is both continuous and complete. Indeed, points sampled from the
same distribution should produce similar output. Note that the KL-loss can be
weighted using hyper-parameter β and that a higher weight will force the VAE
to align the learned posterior distribution closer to that of the prior.

Two different VAE approaches can be used to reconstruct volatility surfaces
[3]. The grid-wise approach takes as input a volatility surface and reconstructs
the surface in its entirety based on the latent encoding. The point-wise approach
is equal in input, but only outputs one specific point on the surface. Moreover,
the decoder takes two additional input variables: the moneyness K and time to
maturity (in days) T of the relevant option contract. Note that the point-wise
approach requires the reconstruction procedure to be repeated for each point on
the grid. The architectures are visually laid out in Fig. 1.

3 Methodology

We tackle four objectives in this study:

1. Can we replicate and improve the point-wise approach taken by the authors
in [3]?

2. Can our approach generate realistic synthetic volatility surfaces?
3. Can our approach produce synthetic scenarios to backtest options portfolios?
4. Can our approach detect anomalous volatility surfaces in an options market

dataset?

In what follows, we explain the data we used, which architectures we investi-
gated to improve the original approach, and how they can be used to reconstruct
(partial) volatility surfaces.

3.1 Data

We used end-of-day market data of SPX call options from January 1st, 2010 to
May 1st, 2019 for our study. The data was obtained from IVolatility and contains
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(a) Grid-wise architecture

(b) Point-wise architecture

Fig. 1. This figure shows two different VAE architectures to reconstruct volatility sur-
faces: the grid-wise architecture (a), and the point-wise architecture (b). Note that
σ(Ti, Ki) denotes the implied volatility for a given option contract with moneyness K
and maturity T .

daily information on all available option contracts including trade price, implied
volatility derived from the Black-Scholes model, and the Greeks. We considered
volatility surfaces comprised of 30 gridpoints, made from five deltas (0.1, 0.25,
0.5, 0.75, 0.9) and six maturities (30, 60, 90, 180, 270, 365 calendar days). This
follows the decisions made by the authors in [3].

The data was partitioned into a training, validation, and test set. The training
and validation set were obtained by randomly sampling dates from January 1st,
2010 to December 31st, 2017. Their proportions were respectively 85% and 15%
of this period. The test set was comprised of data from January 1st, 2018 to
May 1st, 2019. All data was normalized so that values fall between zero and one.
This was done using training set statistics to prevent data leakage.

3.2 Model Architectures

We evaluated a total of five different variational autoencoder approaches.
First, VAEp is a replication of the point-wise model proposed by previous

work in [3]. The model uses a neural network architecture comprised of two
layers with 32 nodes for both the encoder and decoder. The encoder takes as
input a volatility surface represented as a 1-dimensional vector of dimension
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30 × 1 and outputs Z latent variables. The decoder takes as input Z latent
variables and two additional input variables delta (K) and time to maturity
(T ), and produces a single scalar that represents the implied volatility of one
option contract. We used the ReLU activation function on each layer and varied
the size of the encoded space z ∈ {2, 3, 4} and weighting of the KL-divergence
loss term β ∈ {0.01, 0.1, 1, 2}. The neural networks were built using the Python
package Tensorflow [1].

Second, VAEg is an implementation of the grid-wise model. Its architecture
is largely the same as that of VAEp. However, the decoder only takes Z latent
variables as input, and outputs a complete volatility surface represented by a
1-dimensional vector of dimension 30 × 1.

Third, VAEd combines the previous two approaches in a two-step process.
First, VAEg is fit on the data after which its encoder is used to transform said
data into a feature matrix of dimension T × Z where each row denotes the
Z-dimensional latent representation of the volatility surface on day t. After, a
separate decoder sharing the same architecture as the one from VAEp is trained
on this feature matrix to replicate the point-wise approach. Note that in contrast
to VAEp, we now have decoupled the process of learning a latent representation
and the estimation of individual gridpoints.

Fourth, VAExgb
d copies the approach of VAEd but uses a different decoder

model in the second step. Here, we hypothesize that gradient boosted trees
may learn more accurate pricing maps as demonstrated in earlier studies [6]. To
this end, gradient boosted trees are fit on the feature matrix T × Z containing
the latent representations of the volatility surfaces obtained by VAEg. We used
the Python package XGBoost [5] to built these models and tried different val-
ues for n estimators ∈ {25, 50, 100, 200}, max depth ∈ {3, 5, 7}, learning rate ∈
{0.01, 0.1}, subsample ∈ {0.5, 0.75, 1}, and colsample bytree ∈ {0.5, 1}. The opti-
mal hyper-parameter configuration was selected based on the best root mean
squared error obtained on the validation set.

Fifth and last, VAExgb
cnn combines the approach of both VAEg and VAExgb

d .
First, the latent representations are learned following the grid-wise approach of
VAEg using convolutional neural networks instead of regular ones. We believe
that explicitely exploiting surface locality this way will improve accuracy as
neighboring option contracts likely have stronger relationships. More specific, the
encoder consists of two convolutional layers with a kernel size of three and ReLU
as activation function. The decoder shares the same structure, but naturally
uses transposed convolutional layers. Both input and output of this encoder-
decoder architecture are now two-dimensional with dimension 6 × 5 (K×T) as
they directly a two. After, gradient boosted trees are fit on the feature matrix
T × Z to replicate the point-wise approach similar to the approach of VAExgb

d .
Note that all proposed methods ultimately reconstruct surfaces in a point-

wise fashion, except for VAEg which uses the grid-wise approach.
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3.3 Volatility Surface Reconstruction and Completion

There are two possible approaches for volatility surface reconstruction. In the
first approach, the volatility surface is fed into the encoder, after which the
obtained latent variables are used by the decoder to reconstruct the original
volatility surface (encoder approach). Note that this approach cannot be used
(as is) to complete volatility surfaces with missing gridpoints as the encoder
cannot handle missing input values.

In the second approach, an optimization algorithm is used to find the opti-
mal latent variables to feed into the decoder to reconstruct the original surface
(calibration approach). This method bypasses the encoder and is therefore suit-
able to complete volatility surfaces with missing gridpoints. In this case, latent
variables are tried until a surface is found that minimizes the error between the
produced surface and the known gridpoints. We used the L-BFGS-B optimiza-
tion algorithm [18], combined with a basin-hopping approach which prevents
local minima [17], to complete (partial) volatility surfaces with 5, 10, 20, and
30 (all) known gridpoints. All reconstruction approaches were compared to the
Heston model [9] and the reconstruction error was measured using the mean
absolute error (MAE). The known gridpoints (chosen randomly) were kept the
same throughout the experiments.

Note that both the grid-wise and point-wise architecture can be used in
these reconstruction methods. However, the grid-wise approach can only produce
volatility surfaces of the same dimension as the input, whereas the point-wise
approach is more flexible and can produce volatility surfaces of any arbitrary
dimension K × T .

4 Results and Applications

4.1 Reconstructing Volatility Surfaces

We first look at the results obtained using the encoder approach to reconstruct
complete volatility surfaces. After, we select our best performing architecture
and use the calibration approach to reconstruct incomplete surfaces. Here, we
compare it to both Heston and the original point-wise architecture [3]. The
encoder-based reconstruction errors obtained on the test set for all architectures
and hyper-parameters are presented in Table 1.

We notice several interesting outcomes. First, the point-wise architecture
VAEp beat the grid-wise architecture VAEg for all settings. This suggests that
the additional input variables K and T add value. However, looking at the KL-
loss in Table 2, it seems that the point-wise approach suffers from posterior col-
lapse for β >= 1. This might also explain why there seems to be little difference
in performance for β ≥ 1, as the decoder solely relies on the additional input vari-
ables K and T . The grid-wise approach VAEg does not seem to suffer from pos-
terior collapse. Second, our decoupled approach VAEd consistently beat VAEp.
This suggests that first learning the latent space using a grid-wise architecture,
and then training a point-wise decoder is indeed a sound approach. Although
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Table 1. Reconstruction error for different approaches expressed in mean absolute
error (basis points) on the test set ranging from January 1st, 2018 to May 1st, 2019.
The best performance for each hyper-parameter configuration is bold-faced.

β z VAEp VAEg VAEd VAExgb
d VAExgb

cnn

0.01 2 175.0 241.6 165.7 154.2 136.3

3 164.9 211.2 152.2 147.4 134.9

4 165.1 216.2 147.7 141.5 131.1

0.1 2 269.6 343.0 236.5 210.5 158.8

3 273.7 341.9 227.0 207.0 143.8

4 261.3 332.2 218.4 202.9 135.7

1 2 451.1 630.0 368.8 355.6 175.3

3 455.0 659.1 375.0 360.5 182.4

4 468.7 642.0 372.9 359.1 182.2

2 2 446.7 740.0 451.4 421.3 191.6

3 463.6 744.8 429.9 424.5 201.1

4 456.5 740.6 464.4 421.1 201.3

Table 2. The KL-loss obtained on the training set for architectures VAEp and VAEg

using a three-dimensional latent space. Bold-faced entries indicate posterior collapse.

β = 0.01 β = 0.1 β = 1 β = 2

VAEp 2.88 0.66 0.00 0.00

VAEg 4.56 1.28 0.41 0.19

K and T seem valuable input variables, they seem to hinder the encoder in
optimally learning a latent space. Third, VAExgb

d further improves the results
and shows that gradient boosted trees might be better point-wise decoders than
neural networks. Fourth and last, using both a decoupled approach with convo-
lutional layers instead of feed-forward ones, and gradient boosted trees as point-
wise decoder during the second step, yields a significantly better reconstruction
for all settings. Note that reconstruction errors are smaller for lower values of
β for all architectures. This makes sense as the latent space is less constrained
during training. However, this comes at the cost of reduced space continuity.
Although there does not seem to be a clear pattern for an optimal value of z,
scenarios with lower values for β seem to favor larger latent dimensions.
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Next, Table 3 outlines the reconstruction results using the calibration method
for completing partial volatility surfaces. We compare both the original approach
VAEp and Heston to our best approach VAExgb

cnn. For the sake of brevity, we only
compare the hyper-parameter settings for which the methods achieved their best
result.

Table 3. Reconstruction error expressed in mean absolute error (basis points) using
the L-BFGS-B optimization method to find the optimal (latent) input variables to
reconstruct incomplete volatility surfaces with different number of known points.

5 10 20 30

Heston - - - 510.3

VAEp(β = 0.1, z = 3) 361.2 283.6 247.3 238.4

VAExgb
cnn(β = 1, z = 3) 199.5 156.7 141.01 138.0

We find that both VAE approaches beat the Heston model, and that our
approach VAExgb

cnn consistently outperformed the original one. Remarkably, both
VAE approaches were able to outperform Heston using a complete surface with
only partial surfaces. For this reason, we did not further investigate the Heston
model on incomplete surfaces. Note that the reconstruction accuracy naturally
drops when fewer points are known, and that a three-dimensional latent space
seems optimal for both approaches. This is in contrast with work in [3] that found
a four-dimensional latent space to be optimal. This might be due to fundamental
differences between FX and equity volatility surfaces. Lastly, it seems that the
optimal value for β is larger in this exercise than the one suggested by results
found in Table 1. We hypothesize that lower values for β produce latent spaces
with less favorable loss landscapes for the L-BFGS-B optimization algorithm.

4.2 Use Case One: Synthetic Volatility Surfaces

The prime benefit of generative models is that they can produce new instances
with similar statistical properties as those found in the training dataset. In this
case, the learned n-dimensional latent spaces can be used to generate synthetic
volatility surfaces by feeding the decoder n-dimensional vectors drawn from the
prior distribution. In order to investigate the learned latent space of our three-
dimensional VAExgb

cnn with β = 1, we sampled twice from each separate coordinate
axis while keeping the others constant. The results can be seen in Fig. 2, where
each column shows two samples from one specific axis.

These results seem to suggest that our model has cleverly learned the term
structure (axis one), volatility smile/skew (axis two), and volatility level (axis
three). Note that the effect shifts from one extreme to the other when sampling
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Fig. 2. Synthetic call volatility surfaces sampled from a three-dimensional latent space
learned by VAEcnn with β = 1. Implied volatility (z-axis) and maturity (y-axis) are
denoted using percentages and months. Each column displays two samples from one
specific coordinate axis. The vector that was fed into the decoder is shown above each
subplot. The plots seem to suggest that the three axes respectively encode the volatility
term structure, smile and level.

along the same axis. For example, sampling from -1 to 1 on the first coordi-
nate axis seems to gradually increase the price of option contracts with shorter
maturities, and decrease the price of those with longer maturities (term struc-
ture). This ability to produce new realistic volatility surfaces using interpretable
latent factors is interesting for practitioners. Indeed, synthetic samples can be
produced to create additional what-if scenarios to make trading strategies and
risk management practices more robust.

4.3 Use Case Two: Stress Testing Options Portfolios

Options portfolios can be analyzed and stress tested using the interpretable
latent factors learned by a variational autoencoder. For instance, by generating
sequences of synthetic volatility surfaces through time, practitioners can backtest
their strategies on alternative what-if scenarios to gain more confidence in their
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approach. Because the latent factors correspond to real concepts such as the
volatility level, smile, and term structure, we have more control over what kind
of artificial scenarios we want to create. This is in contrast with existing methods
such as portfolio bootstrapping and Monte Carlo simulation that do not offer
this type of flexibility.

As an example, we backtest a random options portfolio that implements a
short volatility strategy during the period of January 1st, 2018 to May 1st, 2019
on both a real and artificial scenario. We measure the strategy by its volatility
performance approximated on each day by pnlt = vegat−1 ∗ (σt − σt−1) where
vega is the net volatility exposure of our portfolio measured by the options greek
vega, and σt is the implied volatility on day t. The synthetic data is generated
as follows. First, we fit VAExgb

cnn(β = 1, z = 3) on the real volatility surface
sequence during the given time period. In doing so, we obtain daily values for
each of the three latent factors. Second, we sample new paths for each latent
variable (i.e. using Monte Carlo). These are then used by the decoder to generate
a new and synthetic sequence of volatility surfaces, which in turn can be used
to backtest the portfolio. Figure 3 (a) shows the latent factors through time
obtained by VAExgb

cnn(β = 1, z = 3) applied to real options market data (left),
and the cumulative volatility pnl of the options portfolio (right). Figure 3 (b)
shows the resampled latent variables (left) and the cumulative volatility pnl of
the options portfolio (right) achieved on the synthetic data.

Unsurprisingly, the alternative scenario yields a different equity curve for the
portfolio. We can measure the sensitivity of the example portfolio to the latent
variables learned by the model. By using simple correlation, we find that the
portfolio is particularly sensitive to factor two (volatility level) and suffers when
the volatility level goes up (correlation of -50%). It is also sensitive to the term
structure (factor 0) and volatility smile/skew (factor 1), but to a smaller extent
(correlation of -20%). Note that practitioners can construct new paths for the
latent variables using any technique they see fit. An especially interesting case
is where shocks are introduced to one or more latent variables to assess the
performance of the portfolio.
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(a) Real scenario

(b) Synthetic scenario

Fig. 3. This figure shows two different backtest scenarios that each involve a different
sequence of volatility surfaces. The latent variables that produce the surfaces are dis-
played on the left, and the volatility performance of the options portfolio backtested
on those sequences is displayed on the right. The latent variables of the real scenario
(a) were obtained using VAExgb

cnn(β = 1, z = 3) on real options data, whereas those of
the synthetic scenario were taken from a Monte Carlo simulation. Note that the latent
factors encode the term structure (0), smile (1), and level (2)

4.4 Use Case Three: Detecting Anomalies

Variational autoencoders can be used to detect data anomalies. First, the recon-
struction errors are obtained on a given set of samples. After, a threshold is
chosen that defines when an error is too large and thus considered an outlier, or
anomaly.

We collected the reconstruction errors made by VAExgb
cnn on the test set which

ranges from January 1st, 2018 to May 1st, 2019. We considered errors that fall
above the 95th percentile as anomalies. Note that this cutoff point was chosen
arbitrarily for the sake of example. In reality, the threshold is usually care-
fully selected based on domain expertise. The reconstruction errors are plotted
through time in Fig. 4 (left), where anomalies lie above the red horizontal line. To
further explore what type of anomalous volatility surfaces our model detects, we
computed the point-by-point reconstruction error to see what part of the sur-
face is divergent. The median point-by-point reconstruction error on detected
anomalies is shown in Fig. 4 (right).
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Fig. 4. This figure shows the reconstruction error obtained on the test set through time
(left), and the median point-by-point reconstruction error on all anomalous volatility
surfaces (right). All errors are expressed in basis points.

These results show a clear pattern in divergence with long-term deep in-the-
money options (top right) being consistently over-estimated, and long-term deep
out-the-money contracts (top left) being consistently under-estimated. The error
seems significantly larger for the long-term deep out-the-money option contracts.
A closer look at the actual options data revealed that the anomalies correspond
to erroneous data provided by IVolatility.

Identifying anomalous volatility surfaces can be a useful exercise in practice.
First, in the case of real options market datasets, erroneous volatility surfaces
can be filtered out to not negatively affect downstream tasks. Moreover, diverg-
ing subareas not caused by data errors might offer fruitful trading opportunities.
Second, the approach can be used as a sanity check for surfaces produced by tra-
ditional volatility models. This way, practitioners can detect when their models
output surfaces that are not in line with expectations.

5 Conclusion

In this study, we successfully modeled SPX volatility surfaces using variational
autoencoders in a purely data-driven way. We showed that the approach is
autonomously able to learn concepts such as the volatility level, smile, and term
structure without leaning on hypotheses from traditional volatility modeling
techniques. We introduced an array of modifications to the original approach
[3] that drastically improve the reconstruction of both complete and incomplete
volatility surfaces. First, we showed that the original approach suffers from pos-
terior collapse, a phenomenon in which the learned latent space becomes uninfor-
mative. We overcame this problem using our decoupled approach that separates
the learning of latent space and point-wise reconstruction of the surface. More-
over, we demonstrated that convolutional networks learn more informative latent
spaces by explicitely modeling surface locality, and that gradient boosted trees
reconstruct volatility surfaces better.

We also showed three applications that follow from this modeling approach.
First, we established that the learned latent space can be interpreted, and that
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random samples produce synthetic yet realistic volatility surfaces. Second, we
demonstrated how an options portfolio can be stress tested and analyzed using
synthetic sequences of volatility surfaces. Third and last, we detected anomalies
in our options dataset and pinpointed exactly which subareas on the flagged
volatility surfaces were divergent.

We list a few interesting tracks for future research. First, this study would
benefit from an extensive analysis on multiple assets instead of SPX alone. Sec-
ond, we did not verify whether the produced volatility surfaces were arbitrage-
free. Although the authors using the point-wise variational autoencoder method
in [3] claim the majority of surfaces did not exhibit arbitrage, they did not show
concrete results. Third, more work is needed to determine the best machine
learning model to serve as the separate decoder. We chose gradient boosted
trees due to their incredible performance showcased in multiple domains, but
better options may exist. Fourth, there are multiple other generative models
that might do a better task than variational autoencoders. Examples include
models such as normalizing flows [15], and the more recent SurVAE [14]. Lastly,
the use of conditional variational autoencoders [16] or additional decoder input
features might improve reconstruction results even further.
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Abstract. We present a new clustering algorithm of financial reports
that is based on the reports’ formatting and style. The algorithm uses
layout and content information to automatically generate as many clus-
ters as needed. This allows us to reduce the effort of labeling the reports
in order to train text-based machine learning models for extracting per-
son or company names, addresses, financial categories, etc. In addition,
the algorithm also produces a set of sub-clusters inside each cluster,
where each sub-cluster corresponds to a set of reports made by the same
author (person or firm). The information about sub-clusters allows us to
evaluate the change in the author over time.

We have applied the algorithm to a dataset with over 38,000 financial
reports (last Annual Account presented by a company) from the Lux-
embourg Business Registers (LBR) and found 2,165 clusters between 2
and 850 documents with a median of 4 and an average of 14. When
adding 2,500 new documents to the existing cluster set (previous annual
accounts presented by companies), we found that 67.3% of the finan-
cial reports were placed in the correct cluster and sub-cluster. From the
remaining documents, 65% were placed in a different subcluster because
the company changed the formatting style, which is expected and cor-
rect behavior. Finally, labeling 11% of the entire dataset, we can replicate
these labels up to 72% of the dataset, keeping a high feature coverage.

Keywords: Clustering · NLP · Machine learning · Unstructured
data · Financial reports

1 Introduction

In many countries, public companies are required to submit and disclose finan-
cial reports promoting transparency and security of business trading. The most
commonly required type of document is the Annual Accounts where the company
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publishes the results of the business performance during one fiscal year1. The
annual account of a company consists of a balance sheet and an annex. The bal-
ance sheet is formal and follows the same style and format for all companies as
it is filled electronically. The annex, however, describes the company’s operation
in natural text and can differ significantly from company to company depending
on the person or firm drafting the reports. Nevertheless, the information in the
annexes contains valuable information that we would like to analyze.

In order to be able to use the annexes in supervised learning algorithms, we
need to label the data. Unfortunately, dataset labeling requires a huge effort and
we need to find ways to reduce it.

We propose in this paper an automatic clustering method grouping
documents (the annual account annexes) in clusters with the same sec-
tions/subsections and similar content so that it would be enough to label mean-
ingful information in just a very small subset inside each cluster and then sim-
ply replicate automatically these labels in each single document for each cluster.
For example, some labels can help us to identify person or company names,
addresses, positions or roles, workforce information, financial/accounting cat-
egories/subcategories, phrases denoting uncertainty or financial risk, etc. We
found that with this methodology if we do manual labeling of 11% of the dataset,
we could automatically replicate these labels in 72% of the complete dataset,
reducing significantly the labeling effort, covering 92% of the subtitles features.

Furthermore, inside each cluster of reports we do sub-clustering to group
even more similar reports (sharing the same document template). This similarity
represents the author’s fingerprint and implies that in a sub-cluster we find all
the reports made of a single author to multiple companies. This use case is a
common practice in financial reports. The author can here represent a person or
an accounting firm and we have confirm that they tend to use the same document
template and writing style in all of their reports for different companies.

Our methodology builds upon a clustering algorithm fed by format- and
content-based features extracted from the annual account annexes that creates as
many clusters and sub-clusters as needed depending on the threshold parameters.

We are using public annual accounts submitted to the Luxembourg Business
Registers and are able to use both digital native documents as well as the ones
where the PDF documents contain scanned pages.

Our work contributes insights on how to learn the similarity of the financial
reports based on the formatting style and author’s fingerprint and how to cluster
them together. Most of the uses cases for applying this algorithm in Financial
reports are directly or indirectly related to Internal and External Risk Analysis
business processes. This clustering information can allow us to:

– reduce and simplify the labeling effort for training supervised Deep Neural
Networks (DNN),

– identify authors (accounting firms) that attend to multiple companies; for
external risk analysis like analysis of possible fraudulent behavior,

1 We are here describing the situation in Luxembourg but similar structures exist in
many other countries.
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– train machine learning models that can discard all the common phrases among
the documents in a sub-cluster and identify the meaningful information,
and to

– analyze the behavior of a company with respect to their accountant (changes
over time) for internal risk analysis.

The algorithm is used in a larger project where the aim is to build an auto-
mated credit risk platform for small and medium sized enterprises (SME). The
algorithm is not limited to be applied to Financial Reports but these documents
fit perfectly in the main scenario: thousands of templates and thousands of hid-
den authors using similar terms for reporting (detailing them with their own
writing style). Also considering that different companies can share the same hid-
den author. It can, however, be generalized and used in any application where it
would be useful to find similarities (and differences) in form and content between
documents and cluster the documents based on these similarities.

2 Related Work

We have concentrated our research on Document Analysis, which in turn is
focused on processing whole documents in contrast to short-text processing. In
a longer document you typically find the use of many typesetting features such
as different text sizes, various styles such as bold, italics, underline, etc., and
whether or not the document will have features such as cover page or table
of contents. The position, and style of page numbers, logos, text footers and
so on also provide a Document Class-Specific Knowledge [2] and constitute a
fingerprint of the author of the document as the same author tends to use the
same style of writing for all documents of the same kind.

Existing approaches for document clustering like k-means, and k-medoids, all
need the number of clusters in advance, therefore they are not applicable for us
as we cannot know this beforehand. Other approaches more oriented to Natural
Language Processing were proposed like Latent Dirichlet Allocation (LDA) [4],
and Document-Term Matrix (DTM) [16]. However, these methods mostly suffer
from the same issue. Even though DBSCAN [7] does not require to know the
number of clusters in advance; but for this case, the number of features could be
infinite (features are generated based on the content and format that can have
huge amounts of variations according to the template used by the company and
the modifications made by the author). In addition to that, for checking dense
regions2 we need to compare each document with the whole dataset, having a
cubic complexity (comparison also at feature level).

The algorithm Hierarchical Agglomerative Clustering (HAC) [5] is a good
option for similar clustering tasks, but the main problem is that each new doc-
ument is added to the closest document (edge growing) and at the end the
distance of two edge documents can be big; or if we grow vertically, the resulting
dendrogram can be too complex to understand the results.
2 A dense region is a big group of elements that were plotted together in all dimensions.
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Xu et al. [16] performed document clustering by using Non-Negative Matrix
Factorization (NMF) of the document-term matrix. The algorithm assigns one
of the k topics to a document. Here the authors are filtering out stop words
and applying stemming. In our case, we are only replacing numeric and date
information with the [NUMBER] and [DATE] tags.

Most of the current algorithms are focused only on the evaluation of the
content for topic analysis. As we are dealing with clustering within a single
topic, we need to consider format features additionally to the content ones.

The use of graphs is another approach proposed by some authors. Hamza
et al. [9] use graph-matching in order to cluster administrative documents. Unlike
other approaches, they create as many clusters as required and is not topic-
clustering oriented. This algorithm uses content and relative position of each
document to create a set of features. They use graph-probing distance to evalu-
ate if a document is going to be added to an existing cluster or if it will create
its own cluster. It is also important to mention that this algorithm adopts incre-
mental learning, hence, there is no need for retraining. Inspired by this approach,
our algorithm also compares a document with a set of existing clusters based on
a list of text-oriented features. Compared to Hamza et al. [9], we added three
posterior phases, which allow us to work with large datasets, to remove insignif-
icant features and to perform a second clustering step inside each cluster. Our
algorithm considers that each feature can contribute distinctively, depending on
how many documents shares each feature. Each time a cluster accepts a new
document, it becomes more robust because of the shared features.

The selection of a distance function or similarity score is one of the most
important aspects of any clustering algorithm. Common distance functions are
Manhattan, Euclidean, Cosine, Mahalanobis, etc. These functions need numeric
values for calculation. In our case, the comparison of features are text-based
features, consequently, these functions are not suitable for us. Transforming the
features into embeddings or to do a one-hot enconding are also not feasible as
the number of features can be infinite. The graph-probing distance proposed
by Hamza et al. [9] computes the distance between two graphs based on the
frequency (freq) of the edges between the nodes of each cluster. Our approach
uses a similar metric that is the feature-set similarity score, which considers
the contribution of each feature according to a confidence score. This confidence
score highlights the feature’s importance (which is automatically updated by the
algorithm during the process). See Sect. 4.1 for more information.

As the first evaluation method, we are going to check a small part of the
dataset and manually assign the corresponding cluster and sub-cluster. Once we
have the labeled dataset, we need to specify the metrics to be used for evaluation,
as shown by Palacio-Niño & Berzal [13], the commonly used distance metrics are
Jaccard, Recall, Precision, Accuracy, Hubert statistics and Rand Index [15]. We
use Rand Index (RI) because it measures the correct assignment of an element
into a cluster as shown in Eq. 1, where a is the number of pairs of elements
belonging to the same cluster, and b is the number of pairs of elements belonging
to different clusters, according to the training dataset (T) and labeled dataset
(L) with a total of n elements. The second evaluation method consists in adding
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more reports from existing companies (previous years) and analyze the true-
positive ratio of the clustering.

RI(T,L) =
a + b

n(n − 1)/2
(1)

3 Dataset

Our data was obtained from the Luxembourg Business Registers3, which is a
public database for company data in Luxembourg. The information available at
the LBR contains annual accounts and their modifications, court orders (like
bankruptcy, judicial dissolution, temporal administration assignation, etc.), reg-
istration and so on.

As mentioned before. the Annual Accounts consists of structured or table-
oriented financial statements like balance sheets and profit and loss statements,
but also include an annex in free-form text that is not subject to a specific
document template. The annexes can be submitted in French, German or English
where French is the most common consisting of about 85% of the documents.
Examples of annexes are shown in Fig. 1 and Fig. 2.

The format of the annexes can be quite different. However, we have empir-
ically found that some of the annexes are more similar than others and we
conclude that they are prepared by the same author or accounting firm which
uses a template for all (or several) or their customers. A clustering algorithm
can group similar annexes, this allows us to label a small sub-set of documents
in a cluster and then replicate these labels to the entire cluster.

We have downloaded 53,210 Annual Accounts from 2015 on-wards from LBR.
In Table 1 we can see some statistics about our dataset. The total of working
pages is obtained removing empty pages and financial statements pages from
our dataset.

Table 1. Full dataset statistics.

Full dataset Last year dataset

Number of business types 452 452
Number of companies 38,644 37,999
Number of reports 53,210 38,455
* Number of reports in French 46,191 (86.8%) 32,943 (85.7%)
* Number of reports in German 4,214 (7.9%) 3,209 (9.3%)
* Number of report in English 2,805 (5.2%) 2,303 (6.0%)
Total of pages 375,544 277,798
Total working pages 195,546 (52.1%) 144,895 (52.1%)

3 https://www.lbr.lu.

https://www.lbr.lu
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The last year dataset is considering only the most recent Annual Accounts
presented by a company. A company can present two Annual accounts the same
year in case there is a need for a rectification.

For validating our algorithm’s performance we need to work with a labeled
dataset. There are many labeled datasets available for Document Analysis, like
DocBank [11], PubLayNet [18], DSSE-200 [17], ICDAR2015 [3], DocVQA [12],
Web Document dataset [14], TDT2 [8], TTC-3600 [10], and Reuters-21578 [1].
More datasets can be found in UCI Machine Learning repository [6]. These
datasets could be used for different kinds of tasks like text extraction and label-
ing [3,11,17,18]; for question answering based on images [12]; for document clus-
tering [1,8,14] and so on. Most of them only have the text available and not the
document itself.

None of the previous datasets can be used to identify clusters based on the
formatting style and/or author’s fingerprint. For this reason, we have labeled a
small part of our dataset in a semiautomatic way (explained in the Evaluation
section). This labeled test dataset is composed of 1,000 documents and more
details are given in Table 2.

Table 2. Test dataset statistics.

Number of documents 1,000
* Number of documents in French 905 (90.5%)
* Number of documents in German 91 (9.1%)
* Number of documents in English 4 (0.4%)
Number of business types 193

4 Auto-clustering Algorithm

Our algorithm is a two-level auto-clustering algorithm for financial reports. The
first level is a template-oriented clustering and the second level is an author’s
fingerprint-oriented clustering.

There is no need to specify the number of clusters but a few threshold param-
eters needs to be specified, see Table 3. The code for the clustering algorithm
and associated tools are publicly available in github4.

Table 3. Threshold parameters used in the algorithm.

Threshold parameter Notation Explanation

Clustering κc Min similarity for appending a document into a cluster

Merging κm Min similarity for considering merging two similar
clusters

Sub-clustering κs Min similarity for appending a document into a
sub-cluster

4 https://github.com/Script-2020/autoclusteringFinReports.

https://github.com/Script-2020/autoclusteringFinReports
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Algorithm 1. Main autoclustering algorithm.
function main_clustering(D, Sc, Sm, Ss) � D:List of documents,κc: clustering
threshold,κm: merging threshold,κs: sub-clustering threshold

C, Idmax ← {}, 0 � Phase I: Generation of candidates
for each d ∈ D do � Can be done in parallel

C, Idmax ← add_document_to_cluster(d, C, κc, Idmax)
end for
C ← do_feature_cleaning(C) � Phase II: Feature Cleaning
C ← merge_clusters(C, κm) � Phase III: Cluster Merging
for each c ∈ C do � Phase IV: Sub-clustering

Sc, Scidmax ← {}, 0
for each d ∈ c.documents do

Sc, Scidmax ← add_document_to_cluster(d, Sc, κs, Scidmax)
c.subclusters.add(Sc)

end for
end for

return C
end function

Preprocessing. For each document, the algorithm needs the extracted text and
some meta-data for each page. We have used a tool we developed for this process5
which uses PyTesseract6 to extract text from PDF documents (including PDFs
based on scanned pages) and most of the meta-data.

Our algorithm consists of four phases: (I) Generation of cluster candidates,
(II) Cluster feature cleaning, (III) Cluster merging and, (IV) Sub-clustering.

Algorithm 1 shows in detail how these phases are sequenced.

4.1 Phase I: Generation of Cluster Candidates

The algorithm to generate cluster candidates uses a set of format-based features
and a set of content-based features. Our OCR extractor tool provide us the
language, page orientation, text bounding box and the text. The format-based
features are:

– Language (French, German or English).
– Page orientation (portrait or landscape).
– Horizontal position of each line (frequency ≥ 2).
– Text line width and height (frequency ≥ 2).
– Enumerator patterns (e.g. 1. [arabic point], I) [roman parenthesis], etc. ).

We include only format features for lines that have at least two values being
the same (frequency ≥ 2). Language and Page orientation features are used
for clustering while position, text width and height are used for sub-clustering.

5 FDExt: Available in the repository.
6 https://pypi.org/project/pytesseract/.

https://pypi.org/project/pytesseract/
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Algorithm 2. Add a document into a existing cluster or create a new cluster
function add_document_to_cluster(d, C, κc, maxid) � d:document, C: Map
of clusters, κc: clustering threshold, maxid: Max id in the map C

fd ← get_features(d)
found ← False
for each c ∈ C do

fc ← c.features
χ ← calculate_similarity(fd, fc)
if χ ≤ κc then

c.features ← merge_features(fd, fc)
c.confidence ← update_confidence(c)
c.documents.add(d)
found ← True

end if
end for
if ¬found then

maxid ← maxid + 1
C[maxid].features ← fd
Cmaxid].documents.add(d)

end if
return C, maxid

end function

For enumerated text lines, we replace the enumerators with their correspond-
ing pattern (e.g. arabic, cardinal, letter). The enumerators are extracted using
regular expressions to identify alphanumeric, roman or mixed sequences and its
corresponding separators like dots, colons, dashes, or parenthesis. Enumerators
patters are used for clustering.

For the content-based feature set, the algorithm adds subtitles as features. A
text line is identified as a subtitle if it starts with an enumerator pattern. The
next consecutive line following a sub-title is added also as a text-line feature. Sub-
titles are used for clustering while text-line features are used for sub-clustering.

The algorithm begins iterating document by document, to assign a proper
cluster or create a new one if the document does not fit into any existing cluster
(Algorithm 2). At first, as there are no clusters, the first document creates a
cluster of one document (itself), the document’s features are copied to the cluster.
The iteration continue with the following document.

The candidate document is going to iterate through the existing clusters and
the document’s features are going to be compared with the cluster’s features.
If the feature-set similarity score (χ) of both set of features is bigger than the
clustering threshold (κc), the document is included into the cluster and the
cluster’s features are updated by merging in the features of the document.

The feature merging (method merge_features in Algorithm 2) consists of
adding the new document’s features to the cluster’s features and update the con-
fidence score of each cluster’s feature. When the cluster is created, each feature
has a confidence score equal to 1 (transferred directly from the single document).
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When a new feature is added to the cluster, this confidence score is updated.
For example, if a cluster of one document has a initial confidence score of 1, and
the new document also has the same feature, the confidence score will remain
1, but in case the new document does not have this feature, the new confidence
score is equals to 0.5. For a bigger cluster, the feature’s confidence score before
merging is equals to 0.2 in a cluster of 20 documents (this means that 4 of these
documents share the feature). In case the document is including an unseen fea-
ture to this cluster, the feature’s confidence score is 0.048 (1/21). The feature’s
confidence score (σ) is part of the similarity score (χ). The feature’s confidence
score allows the cluster to focus in the most important features that are more
common to most of the documents.

Our similarity metric is the feature-set similarity score (χ). Is based on the
graph-probing distance but considering the feature’s confidence score (σ). The
feature-set similarity score (χ) is shown in Eqs. 2 and 3. χ is used for comparing
the similarity of one cluster with a document (phase I) or between two clusters
(phase III).

avgfeatures(A,B) = (|f(A)| + |f(B)|)/2 (2)

χ(A,B) =
|f(AUB)|∑

i=0

{
σi/avgfeatures ,∃fiεA ∧ fiεB

0 , otherwise.
(3)

where |f(A)| is the number of features in the cluster A, |f(B)| is the number
of features in the document or cluster B; σi is the confidence score of the ith

feature in f(AUB) (the union of features of A and B).
When a new document is added to the cluster, the features are merged and

the confidence score of each feature is updated as shown in Eq. 4.

σ(ft+1) = (σ(ft) ∗ nt + 1)/nt+1 (4)

The new confidence score for each feature in the cluster σ(ft+1) is calculated
by multiplying the current confidence score σ(ft) with the current number of
documents (nt) plus 1, all divided by the number of new documents (nt+1).

Additionally, the sparsity measure of the cluster is calculated. This metric is
the cluster confidence (τc) and as shown in Eq. 5, is the average of all its features’
confidence score (σ).

τ =
n∑

i=0

(σ(fi))/n (5)

4.2 Phase II: Cluster’s Features Cleaning

In this phase, each cluster is analyzed and the less confident cluster’s features
are pruned. Only features with a confidence score σ(f) less than a forgetting
threshold (κf ) are kept. κf allows to remove features that are only in one or
two documents inside the cluster. This cleaning phase is applied only in clusters
with more than 4 documents. We empirically found that setting κf = 1/ndocs
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Algorithm 3. Cluster merging
processed_pairs ← {}
function merge_clusters(d, C, κm) � d:document, C: Map of clusters

adj_matrix ← get_similarity_matrix(C, κm)

high_confident_pairs ← get_highconfident_pairs(adj_matrix)

for each pair ∈ high_confident_pairs do
if pair �∈ processed_pairs then

recursive_pairs ← get_recursive_pairs(high_confident_pairs, pair[1])

for each pair_r ∈ recursive_pairs do
if pair_r �∈ processed_pairs then

C[pair[0]].features ← merge_features(pair[0].features, pair[1].features)

C[pair[0]].confidence ← update_confidence(C[pair[0]])

C[pair[0]].documents.extend(C[pair[1]].documents)

C[pair_r[1]] = Null

processed_pairs.add(pair_r)

end if
processed_pairs.add(pair)

end for
end if

end for
return C

end function

for clusters with 10 documents or less and κf = 2/ndocs otherwise, provided
good results. As some features could be removed in this process, the cluster’s
confidence (τc) is recalculated.

4.3 Phase III: Cluster Merging

In this phase we improve on the candidate clusters from phase I, merging sim-
ilar clusters. Documents that are similar to other documents but were placed
in other clusters because of the parallel processing are merged together into a
single cluster. For doing this instead of comparing the features of one document
with one cluster, features are compared between two clusters and the merging
threshold (κm) is used as parameter.

In this phase we are creating km groups of clusters to be distributed. Each
group with N clusters is going to create a N × N similarity matrix, where each
cell is the feature-set similarity score (χ) between a pair of clusters. Then all the
high-confident pairs are retrieved (τc ≤ κm). Then, each pair is analyzed, and
per each pair, all its high-confident clusters are also retrieved in a recursive way.
This allow us to get a chain of similar clusters to merge. Afterwards, we merge
all the chain of clusters, merging their features and the corresponding cluster
confidence (τc). We use Eq. 4 but instead of adding one, should be the product
of the feature’s confidence of the second cluster times the number of documents
in that cluster.

4.4 Phase IV: Sub-clustering

In this phase we repeat the algorithm used for the generation of candidates, but
this time is done cluster by cluster and only considering the documents inside
the cluster. The parameter is the sub-clustering threshold (κs).
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5 Evaluation

The clustering task usually falls under the unsupervised Machine Learning cat-
egory, but in this case, for our first evaluation method, we are going to use a
subset of the data to evaluate the performance of the clustering algorithm and
measure the success of the algorithm. For doing this we need to label a test
dataset as mentioned before.

Our labeling method consists of running our algorithm with lower threshold
parameters (κc & κm) in order to get similar documents together and then do
manual check. This labeling was done manually by a single person to achieve
consistency. The cluster and sub-cluster are assigned to each document (the
assigned sub-cluster number is subjective because is not too strict, allowing for
certain differences between documents). The main rules for considering to put
two documents into the same cluster are: i) if both are using the same document
template, and ii) they use the same words in the subtitles, left alignment and so
on.

Two documents in the same cluster are not going to be in the same sub-
cluster if they do not share the same format features such as: the same cover
page, table of contents, size, and location of the text etc. Some details can vary
if it is clear for the labeler that the same person/company used that template.
To make this labeling effort easier, we generate a report of cluster’s similarity,
where we include for each cluster the list of cluster which were not so similar to
be merged but the similarity is around 50% (not merged clusters with κm less
than 0.50), this allow us to check manually clusters discarded by the algorithm
that should be merged. This manual assignation is going to be considered as our
ground truth.

The final labeled dataset has 1,000 documents divided into 77 clusters and
175 sub-clusters in total. The biggest cluster contains 86 documents divided
into 19 sub-clusters. The biggest sub-cluster has 27 documents. On average each
cluster has 12 documents. 66% of the sub-cluster contains less than 6 documents
and 13% of the sub-clusters contains more than 10 documents. 50 clusters with
only one sub-cluster with an average of 8 documents each. Other metrics are
shown in Table 4.

Table 4. Metrics for ground truth labeled dataset.

Measure Max Min Average Median Mode

Clusters (doc/cluster) 87 4 12.7 8 5 (14)
Sub-clusters (doc/sub-cluster) 27 1 5.6 4 1 (45)

The Rand coefficient or Rand Index is the metric used for comparing simi-
larity of correct classified pairs over the total of pairs, and this can be used to
compare the ground truth with the results of our algorithm.
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For our second evaluation method, we are going to train the model consider-
ing only the Annual Accounts presented by the company in the last year (Last
year dataset) and then order by cluster size and do a manual checking of the
first 1,500 documents. The results of this evaluation is the true-positive ratio
for clustering. Later, we are going to append documents to the existing model,
which contains previous reports presented by the company (remaining reports
from the Full dataset) and then check if all the documents from one company
are in the cluster and sub-cluster. This is also measured as true-positive ratio
for sub-clustering or author’s fingerprint.

For labeling purposes, based on the final results, we define the number of
documents to be labeled (nlab), and the feature_coverage] (in total how many
features can be labeled with respect to the total of features). The selection of
documents to be labeled is first done by selecting the document that contains
most of the shared subtitle features. The next selected document in the clus-
ter is the next one which contains most of the remaining features. This iter-
ation continues until all of the features were covered or a minimum threshold
(min_feature_coverage_ratio) has been reached or a maximum number of
iterations were done (max_iterations). Only are considered clusters with more
than a minimum number of documents (min_docs_threshold).

The feature_coverage formula is shown in Eq. 6. It is calculated as the
average of the number of labeled features divided by the total number of features
in all clusters that has equals or more documents than min_docs_threshold.

feature_coverage = n_labeled_features ÷ n_features (6)

6 Experiment and Results

We ran the algorithm with our dataset with 38,455 reports. The following values
were used as threshold parameters: κc (clustering) = 0.20, κm (merging) = 0.30,
κs (sub-clustering) = 0.17.

Different threshold values were tested, these were the best comparing the
1,000 reports in our test dataset and the Rand Index (RI). As shown in Table 5,
the best Rand Index for clustering was 87% and 55% for sub-clustering. The
lower RI for sub-clustering is mainly because some documents should be placed
in the same sub-cluster according to the labeler because it looks like the same,
but in terms of content there are some mistypos or more additional information.

Table 5. Rand Index (RI) results

Metric Clustering Sub-clustering

Rand Index 87% 55%

As shown in Table 6, 6,119 clusters were found, 35.4% corresponds to clusters
with 2 documents or more, representing 81.3% of the dataset. 10.3% creates a
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cluster of one (itself) and 8.4% documents were discarded because they have less
than 5 features (usually scanned documents with few lines of readable text). If
we consider only clusters with a cluster confidence τc bigger than 0.85, we got
that 66.9% of the documents were clustered with a high confidence.

Table 6. Auto-clustering Results

Total clusters One document More than 2 docs discarded High confident clusters
Clusters Documents Clusters Documents

6,119 3,953 2,165 31,264 3,238 2,070 25,735
10.2% 81.3% 8.4% 66.9%

It is important to notice that because of the content features and language
features, all the documents within a cluster are the in same language. At this
point and for our goals, there is no need to translate into a single language and
then process it, even more because our main language is french and the current
tools are not well developed in French.

In Fig. 1 we see an example of two reports that belongs to the same cluster but
in different sub-cluster. The information in the two documents is quite similar,
but there are some differences. Also for this specific example, the first document
has a cover page and the second one does not.

Fig. 1. Two reports from the same cluster but different sub-cluster.

On the other hand, in Fig. 2, we can see that all the reports belongs to the
same cluster and the same sub-cluster, this is the author’s fingerprint. Basically
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what is changing is some part of the content (different specific company-related
information), but the layout and words to present the information is quite the
same.

Fig. 2. Two reports from the same sub-cluster: author’s fingerprint.

Checking only the clustering level, we have checked manually 1,322 reports
distributed into 37 clusters where the biggest cluster has 850 reports and the
smallest cluster has only 4 reports. We found that only 9 reports were placed in
the wrong cluster, having a true-positive ratio of 99.3%

We have checked manually, at a cluster and sub-cluster level, 502 reports
where we found 122 sub-clusters with an average of 4 reports per each sub-
cluster. The algorithm could place correctly 378 reports in its corresponding
sub-cluster, reaching a true-positive ratio of 75.3%. We identified that in some
cases two sub-clusters had to be considered in the same sub-cluster because
analyzing the report visually, looks alike, but usually one of the groups does not
change the format but increase the financial concepts to be described, when this
changes overpasses the threshold value, it splits into two different sub-clusters.

Considering the dataset which includes only the last presented report (38,455
documents), we use different threshold parameters for obtaining the documents
to be labeled. The results are shown in Table 7. We specified max_iterations =
10, but none of the clusters need more than 4 documents to be labeled.

In consequence labeling nlab = 4,190 documents (10.90%) will allow us repli-
cate up to 27,799 documents, that represents (72.29% of the entire dataset),
having a very good feature coverage (92.80%).

Finally we append to the existing model 2,500 new documents from 799
companies. One document from each of these companies were fed into the model
during the training phase. From all these new documents, 67.3% of the financial
reports where placed in the right subcluster. For the remaining documents, we
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Table 7. Number of documents to be labeled

min_docs_threshold 2 (81.3% of the dataset) 3 (72.29% of the dataset)
min_feature_coverage_ratio 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

nlab 7,694 6,556 5,902 5,749 6,360 5,091 4,365 4,190
% dataset (38,455) (20.01%) (17.05%) (15.35%) (14.95%) (16.54%) (13.24%) (11.35%) (10.90%)
feature_coverage 99.34% 97.51% 95.65% 95.03% 99.04% 96.39% 93.70% 92.80%

analyzed manually 100 reports chosen randomly, and we found that 65% of
them were placed in a different subcluster because the company had changed
the formatting style over the time.

For analyzing the contribution of each phase in the model’s outcomes, we
kept only the first phase and remove a phase for each test case. Removing the
cleaning phase does not change too much the results, only affects the quality of
the features, removing noisy features( 15%). Removing the cluster merging phase
we end up with 3.3 times more clusters. The contribution is significantly but can
be removed if the first phase is not distributed, in this sense the contribution of
this phase is zero because the number of clusters are almost the same7. Removing
the sub-clustering phase does not have any impact in the clustering because it
operates inside each cluster. The contribution at template-level clustering is zero
but very high for author’s fingerprint-level clustering.

7 Conclusions and Following Steps

We have demonstrated that our algorithm, using content and layout features, is
able to cluster different financial documents and even to identify the author’s
fingerprint. There is no need to define the number of clusters.

With a semi-manual labelling of about 11% of the dataset, we can use the
clusters from the algorithm to replicate them up to 72% of the dataset, effectively
reducing the labeling effort.

The sub-clustering results when a company has different documents in differ-
ent clusters can be later analyzed the whole dataset with a Temporal Machine
Learning Model to classify if the author has changed the formatting style or if
the company has changed of author.

This algorithm can be generalized to other domains differentiating the
content-based features with the format-based features, where the first group
should have a bigger weight. This allows to cluster documents focused on the
text more than the format. For example, applying in internal documents pro-
vided for the different departments in a company, to cluster documents inter-
departmental documents to label for training machine learning models. Similarly
can be applied to reports from external consultants to look for hidden patterns
between them.

7 This test was done only in a small dataset because it requires more memory resources,
for larger datasets the contribution of the phase is very high.
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Abstract. In recent years, BERT-like pretrained neural language mod-
els have been successfully developed and utilized for multiple finan-
cial domain-specific tasks. These domain-specific pre-trained models are
effective enough to learn the specialized language used in financial con-
text. In this paper, we consider the task of textual regression for the pur-
pose of forecasting financial volatility from financial texts, and designed
Infi-BERT (Indian Financial BERT ), a transformer-based pre-trained
language model using domain-adaptive pre-training approach, which
effectively learns linguistic-context from annual financial reports from
Indian financial texts. In addition, we present the first Indian financial
corpus for the task of volatility prediction. With detailed experimenta-
tion and result analysis, we demonstrated that our model outperforms
the base model as well as the previous domain-specific models for finan-
cial volatility forecasting task.

Keywords: Financial volatility prediction · Textual regression ·
Indian financial corpus · Transformer-based models · Domain-adaptive
Pre-training

Financial NLP is a relatively new research direction emerged in the past
decade due to the growing maturity of NLP techniques and resources in the
landscape of financial domain. Recently, there has been a growing interest in
exploiting the contextual embeddings using transformer-based language mod-
els, such as BERT [8], and RoBERTa [14] for different Financial NLP tasks,
e.g., volatility forecasting [4,24], financial sentiment analysis [1,15,25], structure
boundary detection in financial documents [3], document causality detection [17],
document summarization [26] and many more. These models are able to exploit
the linguistic-understandings from professional periodicals, aggregated financial
news, message boards, social media, financial reports and corporate disclosure,
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and showing better performance in comparison to traditional machine learning-
based NLP algorithms.

Most of the traditional approaches for volatility prediction tasks use time
series models for historical pricing data [11]. Recently, deep learning models
such as CNN [7], and RNN [13] have been utilized for volatility prediction using
financial text. Predicting the financial volatility from the annual reports has been
defined by Kogan et al. (2009) [10] as a text regression task, which refers to the
task of predicting a continuous quantity by analysing the textual information
related to the quantity. Stock pricing is influenced by many uncertainties and
exhibits a strong nonlinear characteristics and linguistic characteristics, which
makes traditional analytical methods ineffective. Pre-trained models, such as
BERT [8] are trained on very large corpora and initialised with weights learned
from the language modeling task, which helps them to represent the semantic
information. However, using these BERT-based general purpose language model
straight away would not be effective, since the financial reports and news articles
have a specialized language-semantics. Moreover, these model may not be able
to reflect the national financial context.

Following the recent trend, we have considered using the method of trans-
fer learning [20], as it has the ability of extending the applicability of pretrained
transformer-based language models to new domains. Previous works in this direc-
tion [4,5] utilized the BERT model for the purpose of generating the contextu-
alized embeddings only, whereas we have created a whole new financial pre-
trained model with the help of domain-adaptive pre-training approach [9]. More
specifically, our principal research interest is to come up with a domain-specific
pretrained model for Indian finance domain, which has knowledge of contextual
semantic relations of the Indian financial domain. For this purpose, we consid-
ered the domain-adaptive pre-training the base BERT model with the Indian
Financial dataset, and then fine-tuned the model for the task of prediction of
volatility of a company based on their financial annual reports. To the best of our
knowledge, this is the first attempt (thus, InFi-BERT 1.0) to design pretrained
Indian financial corpus and pre-trained model available for the tasks of volatil-
ity forecasting, which can be further explored for multiple Indian Financial NLP
tasks. The main contributions of this paper are as follows:

– An Indian Financial corpus for volatility prediction task containing the annual
reports and volatility of top Nifty 50 companies for the years 2010–2021.

– InFi-BERT 1.0 model - the first transformer-based pre-trained language
model for Indian Financial Domain.

– Detailed comparative study of InFi-BERT 1.0 with the base transformer-
based models for the task of volatility prediction.

1 Background

1.1 Pretrained Language Models

We employed pretrained transformer-based language models, that independently
learn semantic and syntactic meaning from a large amount of training data and
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are generally available for other related/extended purposes. Specifically, these
models provide contextual word embeddings with the help of stacked atten-
tion models. For an instance, BERT model [8] is trained on the BooksCorpus
(800M words) and English Wikipedia (2,500M words), for two unsupervised
tasks, namely Masked Language Model and Next Sentence Prediction to train
the model. RoBERTa [14], a variant of BERT, has similar architecture as BERT
which is pretrained only on Masked Language Model task on BERTLARGE

architecture with larger batch sizes and sequences to achieve optimised training
over BERT. Another variant, ALBERT [12], uses factorization of the embedding
matrix and cross-layer parameter sharing and inter sentence coherence prediction
to achieve improved results over BERT.

1.2 Financial Language Models

Domain-specific language models refer to models which are pretrained using a
domain specific corpora to achieve better performance on domain specific tasks,
keeping the model architecture similar. A number of Financial-BERTs or Fin-
BERTs are proposed by different research groups by following different pre-
training approaches. The first FinBERT was proposed in [1], which pre-trained the
based BERT model further on the financial data of Reuters TRC2 corpus. With the
help of extensive experiments it outperformed all the previous LSTM-like models,
as well as the base BERT. The second FinBERT [25] trained the model following
both the approaches: (1) further pre-training a BERT Base model on three differ-
ent corpora, and (2) training afresh. A good comparative study of these two mod-
els is provided in [18]. Another FinBERT was proposed in [16], which is trained in
multi-task self-supervised training approach with six new tasks.

1.3 Stock Volatility Prediction

Stock volatility prediction helps in indicating the financial risk of a company,
which is a great interest to anyone who invests money in stocks [10]. Studies have
shown that financial reports and news articles have affected the stock volatility to
a great extent. Predicting stock volatility from financial reports is another NLFF
task, where the financial reports from an organization are analysed to make
predictions of the stock volatility, which in turn benefit the organization as well
as the investors or shareholders in making valuable decisions. Stock Volatility is
characterized as the rate at which the cost of a stock increments or diminishes
over a given time period.

It can also be defined as standard deviation of the closing prices of the stock
over the period. Stock return volatility [7,19,22] for τ days is given as,

v[t−τ,t] =
τ∑

i=0

(Rt−i − Rt)2

τ
(1)

where Rt is the stock return of the day which is calculated as Rt = St

St−1
− 1 and

St is the adjusted closing stock price for the day t. Higher volatility indicates
the higher chance for the security to be at risk.
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2 Preparation of Indian Financial Corpus

In India, all publicly-traded companies produce annual reports, which contain
details about the history and organization of the company, cash flow statements
and other financial information. These reports are available at public domain
and on the website of Bombay Stock Exchange1. We have collected 550 such
reports published over the period of 2010-2021 of top NIFTY 50 companies. The
monthly stock prices are collected from money control website2. The dataset is
available here3. The volatility of a company for a year is calculated using these
monthly aggregated stock prices. If considered a annual report for year 2010, we
are trying to predict the volatility for the following year 2011.

For corpus preparation, each annual report is converted into a text document
using an online OCR tool4. The text documents are further pre-processed by
removing special characters, numerical data and continuous tab spaces and then
all the documents are copied into a single file, where each document is separated
by two new line characters, and the sentences in each document are separated by
a single new line character. New vocabulary has been created by using WordPiece
tokenizer [23] and Byte-Pair Encoding (BPE) [21], as the existing pretrained
tokenizers are unable to tokenize the Indian financial keywords.

3 InFi-BERT 1.0

In this section, we present our proposed models for the Indian financial domain.
Motivated from FinBERT [25], we have incorporated BERT pre-training lan-
guage model. We also experimented with its variant, RoBERTa. Likewise the
ALBERT can also be extended. The architecture and the process of pre-training
and fine-tuning are shown in Fig. 1 and Fig. 2 respectively. The fine-tuning of
the model involves adding additional layers to the pretrained model, namely, a
global max pooling layer followed by fully connected neural network layers.

We propose InFi-BERT model, which is a uncased version of pretrained
BERT model on Indian Financial dataset. Our model is pretrained on two
unsupervised tasks, Masked Language Model (MLM) and Next Sentence Predic-
tion (NSP) similarly to BERT. The model is built with similar configuration of
BERTBASE with 12 hidden layers and maximum sequence length of 128. The
model has been trained for 3 epochs with batch size being 32 and learning rate
being 3e-5. The new vocabulary is obtained by training a WordPiece tokenizer
with a size of 30,522. The pretrained model is further fine tuned by adding
a global max pooling layer followed by linear layers for volatility prediction
task. We also experimented with the RoBERTa model by pre-training it on our
Indian Financial corpus (InFi-RoBERTa). The architecture used is RobertaFor-
MaskedLM, which uses dynamic masked language modelling for the pre-training
1 https://www.bseindia.com/.
2 https://www.moneycontrol.com/.
3 https://github.com/MridulaVerma/Indian-financial-Corpus.
4 https://www.pdf2go.com/pdf-to-text.

https://www.bseindia.com/
https://www.moneycontrol.com/
https://github.com/MridulaVerma/Indian-financial-Corpus
https://www.pdf2go.com/pdf-to-text
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Fig. 1. Domain adaptive Pre-training of the proposed models

Fig. 2. Fine-tuning of the proposed models

process. The model has been trained with 6 hidden layers for 5 epochs with a
batch size of 32 and block size of 128. The newly created vocabulary uses The
Byte-Pair Encoding (BPE) and created a vocabulary of length 52,000. Similarly
to InFi-BERT, this model was also fine tuned further by adding additional layers
at the end to predict the volatility. Total number of parameters are approx. 100
million for InfiBERT, and 800 million for InfiRoBERTa.

From Table 1, it is observed that financial keywords like depository is not
considered as a single token by general purpose models (BERT, ALBERT,
RoBERTa). These general purpose models have split the words, where the ##
token means it is a suffix word when a word is split into prefix and suffix. But
financial domain models (FinBERT, InFi-BERT, InFi-RoBERTa) have properly
tokenized it as a single word. We have also observed that financial name-entities
which are specific to Indian financial domain like demat, SEBI (Securities and
Exchange Board of India), NECS (National Electronic Clearing Service) are
being tokenized properly only by the newly proposed models, InFi-BERT and
InFi-RoBERTa.

Table 1. Comparison of Words encoding for different pretrained models.

Word BERT AlBERT RoBERTa FinBERT InFi-BERT InFi-RoBERTa

shareholders shareholders shareholders shareholders shareholders shareholders shareholders

disclosures disclosure,##s disclosure s disclosures disclosures disclosures disclosures

depository deposit, ##ory deposit,ory dep,ository depository depository depository

demat dem,##at de,mat dem,at dem,##at demat demat

sebi se, ##bi se, bi se,bi seb,##i sebi sebi

necs nec,##s nec,s ne,cs nec,##s necs necs



InFi-BERT 1.0 133

4 Experimental Details

The experiments have been conducted to evaluate the performance of the pro-
posed models, InFi-BERT, and InFi-RoBERTa, and to compare their perfor-
mances with the following pretrained models: BERT, RoBERTa, ALBERT, and
FinBERT [25] for the task of volatility prediction. We are considering only one
FinBERT, since in this work, our objective is to investigate the domain-adaption
pre-training. For the purpose of comparison of performances for the task of finan-
cial text regression, traditional deep learning models - CNN [7] and RNN (with
single layer LSTM) [13] are also implemented. For the CNN model [7] is imple-
mented for the 10K dataset only, as the available word embeddings are trained
only for 10K dataset. This embedding is created by using word2vec with a dimen-
sion of 200 which only considers the semantic meaning. The maximum length
of document is fixed to 20,000 and truncated if processed text had words more
than 20,000. The 3 channels has different filter size as 3, 4, 5. The result from
all the 3 max pooling layers is then concatenated and dropout is applied and
flattened. The training has been done keeping the embedding layer to be further
fine tuned for the task of predicting the postreturn volatility. Similar to CNN
architecture, RNN was also implemented using the same word embedding and
is implemented only for the 10K dataset. The RNN architecture consists a layer
of LSTM with 64 nodes and a fully connected neural network layer with single
node to predict the output value.

BERT model was implemented for 10K dataset where the input tokenised
text is processed in 2 different ways (1) applying BERT summarizer to bring
down the length of the tokenized documents to 512 words (2) to truncate the doc-
uments whose length is more than 512. This resulted text data is tokenized using
the BertTokenizer which are pretrained from the ”bert-base-uncased” architec-
ture. RoBERTa is also fine tuned for predicting the stock volatility for the 10 K
dataset and Indian Financial domain. The input data is tokenised using Roberta-
Tokenizer which is the pretrained architecture of “roberta-base”. The pretrained
models are available in the transformers library5. InFi-BERT took 24 h for train-
ing where each epoch took 8 h approximately, whereas, InFi-RoBERT took 18 h
for training. We used Mean Square Error (MSE) as the evaluation metric, which
is calculated as

MSE =
1
n

n∑

i=1

(yi − ŷi)2 (2)

Targeting to the financial text regression task, we have conducted experi-
ments on 10K dataset from [22] and our own Indian Financial dataset. The 10K
dataset6 contains tokenized text documents. As part of tokenization, punctu-
ation are deleted, numerical values replaced with # and text has been lower-
cased. The reports are directly used as input for the pretrained models to create
the embedding. The dataset contains forecasting four different output values.
We have considered only post-event return volatility as the output parameter.
5 https://huggingface.co/transformers/v2.9.1/model doc/roberta.html.
6 https://clip.csie.org/10K/data.

https://huggingface.co/transformers/v2.9.1/model_doc/roberta.html
https://clip.csie.org/10K/data
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These output values have been normalised using Minmax normalisation. All
the experiments are performed on two GeForce RTX 2080 GPUs each of 8 GB
Memory.

For 10K dataset, the pretrained models have been applied by adding a dense
layer and applied dropout and flattening followed by the addition of a single
node dense layer. Adam optimiser has been used and models are trained for 10
epochs. All the results reported are after performing 5 fold cross-validation and
are the average of multiple experiments. Fine tuning is performed only on the
dense layers. The pretrained models have been applied with a learning rate of
0.01 and batch size of 32. The maximum sequence length used for the models
is 512. The documents have been summarised using BERT summarizer. The
target volatility values are the log of volatility because the publishers [22] found
it convenient to work in the logarithmic domain for the predicted variable. We
have used inverse logarithm to get the values of the volatility.

For the experimentation with the Indian dataset, the pretrained models were
applied as to the 10K dataset, except here all the documents were summarised
before applying tokenization. To predict the volatility of a specific year the pre-
vious 3 years dataset is used for training. Authors of [7] have mentioned that
including financial reports which are four years older than the test year does not
help and might even produce noise.

5 Results and Analysis

The experiments have been conducted on the two datasets and the performance
of the models are compared based on the MSE error rates obtained by the model
for each year. Table 2 shows MSE scores for 10K dataset for the years 2009 to
2013. Table 3 shows MSE scores for Indian dataset for the years 2015 to 2019 and
the average score throughout the years. Boldface indicates best results out of all
pretrained models for the corresponding years. Models which are suffixed with
” summ” represent that in the pre-processing, the text has been summarised
using BERT summarizer and others mean that the text has been truncated.

For Indian dataset, it can be observed from Table 3 that on average InFi-
BERT has performed better over all the other models. The proposed model is
trained on a comparatively smaller dataset, but has still performed better over
the models, which have been trained on larger corpus. It can also be observed
that the general purpose model RoBERTa has performed better over the Fin-
BERT model on Indian corpus. That is why, we chose to fine-tune the standard
BERT as well as RoBERT models for our purpose. For 10K dataset, FinBERT
produces better results over all the pretrained models. This might be because
the FinBERT training corpus includes the 10K dataset Reports.

The word tokens are inputs to the pretrained models. In order to understand
how the tokenization varies over the pretrained models, we have performed the
vocabulary similarity check [2] among all the models (shown in Table 4). It can be
observed from the table that the vocabulary of InFi-BERT and InFi-RoBERTa
are the most similar. Also the vocabulary is very dissimilar with existing models.
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Table 2. MSE scores for volatility prediction for 10K dataset

Model 2009 2010 2011 2012 2013 Average

CNN 0.2414 0.3688 0.2583 0.3841 0.3392 0.3183

RNN 0.0483 0.0556 0.0540 0.0496 0.0410 0.0497

BERT 0.0461 0.0566 0.0567 0.0561 0.0514 0.0533

BERTsumm 0.0465 0.0621 0.0524 0.0501 0.0396 0.0501

AlBERT 0.0525 0.0536 0.0504 0.0515 0.0435 0.0503

ALBERTsumm 0.0487 0.0619 0.0598 0.0509 0.0436 0.0529

RoBERTa 0.0482 0.0543 0.0509 0.0497 0.0413 0.0488

RoBERTasumm 0.0470 0.0607 0.0526 0.0475 0.0395 0.0494

FinBERT [25] 0.0446 0.0476 0.0441 0.0443 0.0391 0.0439

FinBERTsumm 0.0495 0.0822 0.0511 0.0454 0.0413 0.0539

InFi-BERT 0.0532 0.0538 0.0550 0.0505 0.0486 0.0522

InFi-BERTsumm 0.0506 0.0604 0.0566 0.0496 0.0466 0.0527

InFi-RoBERTa 0.0494 0.0677 0.0607 0.0640 0.0386 0.0560

InFi-RoBERTasumm 0.0629 0.0546 0.0707 0.0575 0.0423 0.0576

Table 3. MSE scores for volatility prediction for Indian Dataset

Models 2015 2016 2017 2018 2019 Average

BERTsumm 0.0541 0.0257 0.0435 0.0536 0.0594 0.0517

AlBERTsumm 0.0854 0.0319 0.1111 0.0343 0.0993 0.0775

RoBERTasumm 0.0136 0.0113 0.0114 0.0207 0.0371 0.0172

FinBERTsumm [25] 0.0247 0.0411 0.0575 0.0378 0.0175 0.0277

InFi-BERTsumm 0.0067 0.0230 0.0139 0.0087 0.0069 0.0144

InFi-RoBERTasumm 0.0338 0.0086 0.0233 0.0148 0.0490 0.0274

Table 4. Vocabulary overlap comparison of pre-trained models

Similarity BERT RoBERTa FinBERT [25] InFi-BERT InFi-RoBERTa

BERT 1.0 0.61 0.41 0.41 0.49

RoBERTa 0.41 1.0 0.28 0.32 0.38

FinBERT 0.41 0.42 1.0 0.40 0.45

InFi-BERT 0.41 0.47 0.40 1.0 0.94

InFi-RoBERTa 0.33 0.38 0.31 0.65 1.0

This also proves the need of Indian financial domain specific model. Vocabulary
similarity of the models is calculated by taking vocabulary of the models and
removing the special character used for suffix words and then getting a count
of the matching tokens and then divide it by vocabulary length of the model as
vocabulary length varies for each model.
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6 Conclusion and Future Scope

In this paper, we have proposed domain-adaptive transformer-based pretrained
models for Indian Financial sector for the task of financial volatility prediction.
The two models are compared with other pretrained base as well as domain-
specific language models. With the help of extensive experimentation, we observe
that the proposed models outperform the previous models for the task of Indian
financial volatility prediction, and conclude that, domain-adaptive pretrained
models perform well over general purpose models. In future, we aim to perform
deeper analysis in terms of effects of different volatility proxies [6].

References

1. Araci, D.: Finbert: Financial sentiment analysis with pre-trained language models.
CoRR abs/ arXiv: 1908.10063 (2019)

2. Arslan, Y., et al.: A comparison of pre-trained language models for multi-class
text classification in the financial domain. In: Companion Proceedings of the Web
Conference 2021, WWW 2021, pp. 260–268. Association for Computing Machinery,
New York (2021). https://doi.org/10.1145/3442442.3451375

3. Au, W., Ait-Azzi, A., Kang, J.: Finsbd-2021: The 3rd shared task on structure
boundary detection in unstructured text in the financial domain. In: Companion
Proceedings of the Web Conference 2021, pp. 276–279 (2021)

4. Barbaglia, L., Consoli, S., Wang, S.: Financial forecasting with word embeddings
extracted from news: A preliminary analysis. In: Kamp, M., et al. (eds.) Machine
Learning and Principles and Practice of Knowledge Discovery in Databases,
pp. 179–188. Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-93733-1 12

5. Chen, Q.: Stock movement prediction with financial news using contextualized
embedding from bert. arXiv preprint arXiv:2107.08721 (2021)

6. De Stefani, J., Caelen, O., Hattab, D., Bontempi, G.: Machine learning for multi-
step ahead forecasting of volatility proxies. In: MIDAS@ PKDD/ECML, pp. 17–28
(2017)

7. Dereli, N., Saraclar, M.: Convolutional neural networks for financial text regression.
In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pp. 331–337. Association for Computa-
tional Linguistics, Florence, Italy (Jul 2019). https://doi.org/10.18653/v1/P19-
2046, https://www.aclweb.org/anthology/P19-2046

8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR abs/ arXiv: 1810.04805
(2018)

9. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains
and tasks. arXiv preprint arXiv:2004.10964 (2020)

10. Kogan, S., Levin, D., Routledge, B.R., Sagi, J.S., Smith, N.A.: Predicting risk from
financial reports with regression. In: Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pp. 272–280. Association for Computational Lin-
guistics, Boulder, Colorado (Jun 2009), https://www.aclweb.org/anthology/N09-
1031

http://arxiv.org/abs/1908.10063
https://doi.org/10.1145/3442442.3451375
https://doi.org/10.1007/978-3-030-93733-1_12
https://doi.org/10.1007/978-3-030-93733-1_12
http://arxiv.org/abs/2107.08721
https://doi.org/10.18653/v1/P19-2046
https://doi.org/10.18653/v1/P19-2046
https://www.aclweb.org/anthology/P19-2046
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2004.10964
https://www.aclweb.org/anthology/N09-1031
https://www.aclweb.org/anthology/N09-1031


InFi-BERT 1.0 137

11. Kristjanpoller, W., Fadic, A., Minutolo, M.C.: Volatility forecast using hybrid neu-
ral network models. Expert Syst. Appli. 41(5), 2437–2442 (2014). https://doi.
org/10.1016/j.eswa.2013.09.043, https://www.sciencedirect.com/science/article/
pii/S0957417413007975

12. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT:
A lite BERT for self-supervised learning of language representations. CoRR abs/
arXiv: 1909.11942 (2019)

13. Lin, P., Mo, X., Lin, G., Ling, L., Wei, T., Luo, W.: A news-driven recurrent neural
network for market volatility prediction. In: 2017 4th IAPR Asian Conference on
Pattern Recognition (ACPR), pp. 776–781 (2017). https://doi.org/10.1109/ACPR.
2017.35

14. Liu, Y., et al.: Roberta: A robustly optimized BERT pretraining approach. CoRR
abs/ arXiv: 1907.11692 (2019)

15. Liu, Z., Huang, D., Huang, K., Li, Z., Zhao, J.: Finbert: A pre-trained financial
language representation model for financial text mining. In: Bessiere, C. (ed.) Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI 2020, pp. 4513–4519. International Joint Conferences on Artificial
Intelligence Organization (7 2020), special Track on AI in FinTech

16. Liu, Z., Huang, D., Huang, K., Li, Z., Zhao, J.: Finbert: A pre-trained finan-
cial language representation model for financial text mining. In: Proceedings of
the Twenty-Ninth International Conference on International Joint Conferences on
Artificial Intelligence, pp. 4513–4519 (2021)

17. Mariko, D., Labidurie, E., Ozturk, Y., Akl, H.A., de Mazancourt, H.: Data
processing and annotation schemes for fincausal shared task. arXiv preprint
arXiv:2012.02498 (2020)

18. Peng, B., Chersoni, E., Hsu, Y.Y., Huang, C.R.: Is domain adaptation worth your
investment? comparing bert and finbert on financial tasks. In: Proceedings of the
Third Workshop on Economics and Natural Language Processing, pp. 37–44 (2021)

19. Rekabsaz, N., Lupu, M., Baklanov, A., Dür, A., Andersson, L., Hanbury, A.:
Volatility prediction using financial disclosures sentiments with word embedding-
based IR models. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1712–1721. Associ-
ation for Computational Linguistics, Vancouver, Canada (Jul 2017). https://doi.
org/10.18653/v1/P17-1157, https://www.aclweb.org/anthology/P17-1157

20. Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural
language processing. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Tutorials, pp. 15–18.
Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019).
https://doi.org/10.18653/v1/N19-5004, https://aclanthology.org/N19-5004

21. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (vol.1: Long Papers), pp. 1715–1725. Association
for Computational Linguistics, Berlin, Germany (Aug 2016). https://doi.org/10.
18653/v1/P16-1162, https://aclanthology.org/P16-1162

22. Tsai, M., Wang, C.: Financial keyword expansion via continuous word vector rep-
resentations. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014, 25–29 Oct 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pp. 1453–1458. ACL (2014). https://doi.org/10.3115/v1/d14-
1152

https://doi.org/10.1016/j.eswa.2013.09.043
https://doi.org/10.1016/j.eswa.2013.09.043
https://www.sciencedirect.com/science/article/pii/S0957417413007975
https://www.sciencedirect.com/science/article/pii/S0957417413007975
http://arxiv.org/abs/1909.11942
https://doi.org/10.1109/ACPR.2017.35
https://doi.org/10.1109/ACPR.2017.35
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2012.02498
https://doi.org/10.18653/v1/P17-1157
https://doi.org/10.18653/v1/P17-1157
https://www.aclweb.org/anthology/P17-1157
https://doi.org/10.18653/v1/N19-5004
https://aclanthology.org/N19-5004
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.3115/v1/d14-1152
https://doi.org/10.3115/v1/d14-1152


138 S. Sasubilli and M. Verma

23. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. CoRR abs arXiv: 1609.08144 (2016)

24. Yang, L., Ng, T.L.J., Smyth, B., Dong, R.: Html: Hierarchical transformer-based
multi-task learning for volatility prediction. In: Proceedings of The Web Conference
2020, pp. 441–451 (2020)

25. Yang, Y., Uy, M.C.S., Huang, A.: Finbert: A pretrained language model for finan-
cial communications. CoRR abs/ arXiv: 2006.08097 (2020)

26. Zheng, S., Lu, A., Cardie, C.: Sumsum@ fns-2020 shared task. In: Proceedings of
the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial
Summarisation, pp. 148–152 (2020)

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2006.08097


Workshop on Machine Learning for
Cybersecurity (MLCS 2022)



Machine Learning for CyberSecurity
(MLCS 2022)

Cybersecurity research has been gaining attention and interest from both academia and
industry as current estimates project the cost of cybercrime to be up to 1 percent of
global GDP. The number, frequency, and sophistication of threats will only increase
and will become more targeted in nature. Furthermore, today’s computing systems
operate under increasing scales and dynamic environments, ingesting and generating
more and more functional and non-functional data.

The capability to detect, analyze, and defend against threats in (near) real-time
conditions is not possible without employing machine learning techniques and big data
infrastructure. This gives rise to cyber threat intelligence and analytic solutions, such as
(informed) machine learning on big data and open-source intelligence, to perceive,
reason, learn, and act against cyber adversary techniques and actions. Moreover,
organizations – security analysts have to manage and protect these systems and deal
with the privacy and security of all personal and institutional data under their control.
This calls for tools and solutions combining the latest advances in areas such as data
science, visualization, and machine learning. We strongly believe that the significant
advance of the state of the art in machine learning over the last years has not been fully
exploited to harness the potential of available data, for the benefit of systems-and-data
security and privacy.

In fact, while machine learning algorithms have been already proven beneficial for
the cybersecurity industry, they have also highlighted a number of shortcomings.
Traditional machine algorithms are often vulnerable to attacks, known as adversarial
learning attacks, which can cause the algorithms to misbehave or reveal information
about their inner workings. As machine learning-based capabilities become incorpo-
rated into cyber assets, the need to understand adversarial learning and address it
becomes clear. On the other hand, when a significant amount of data is collected from
or generated by different security monitoring solutions, big-data analytical techniques
are necessary to mine, interpret, and extract knowledge of these big data.

This workshop aims to provide researchers with a forum to exchange and discuss
scientific contributions, open challenges, and recent achievements in machine learning
and their role in the development of secure systems. The ethics guidelines for trust-
worthy artificial intelligence authored by the European Commission’s Independent
High Level Expert Group on Artifificial Intelligence in April 2019 have highlighted
that machine learning-based artificial intelligence developments in various fields,
including cybersecurity, are improving the quality of our lives every day, that AI
systems should be resilient to attacks and security, and that they should consider
security-by-design principles.

This year’s workshop followed the success of the three previous editions (MLCS
2019, MLCS 2020, and MLCS 2021) co-located with ECML-PKDD. In all the pre-
vious editions the workshop gained strong interest, with attendance of between 20 and
30 participants, lively discussions after the talks, amazing invited talks in all the
editions, and a vibrant panel discussion in both 2019 and 2021 editions.



As in its previous iterations, MLCS 2022 aimed at providing researchers with a
forum to exchange and discuss scientific contributions and open challenges, both
theoretical and practical, related to the use of machine-learning approaches in cyber-
security. We wanted to foster joint work and knowledge exchange between the
cybersecurity community, and researchers and practitioners from the machine learning
area, and its intersection with big data, data science, and visualization. The workshop
provided a forum for discussing novel trends and achievements in machine learning
and their role in the development of secure systems. It aimed to highlight the latest
research trends in machine learning, privacy of data, big data, deep learning, incre-
mental and stream learning, and adversarial learning. In particular, it aimed to promote
the application of these emerging techniques to cybersecurity and measure the success
of these less traditional algorithms. MLCS 2022 received 16 submissions which were
reviewed in a single-blind process, with each submission receiving at least 3 reviews.
In total, 4 full papers and 2 short-papers were selected for presentation at the work-
shop. We hope that the workshop contributed to identifying new application areas as
well as open and future research problems related to the application of machine-
learning in the cybersecurity field.
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Abstract. A massive amount of work has been carried out in the field
of Intrusion Detection Systems (IDS). Predictive models are used to
identify various attacks on the network traffic. Several machine learn-
ing approaches have been used to prevent malware attacks or network
intrusions. However, single classifiers have several limitations which cause
low performance in the classification between normal traffic and attacks.
In other words, they are not strong enough to be used in practical set-
tings. This is the reason why researchers seek to find more robust and
high-performing models. Examples of these stronger models are ensem-
ble models which are able to take advantage of the characteristics of
different base models combining them. The main goal of using ensemble
classifiers is to achieve higher performance.

In this paper, we propose two novel ensemble solutions for a network
intrusion problem. We use pairs of strong and weak learners based on five
different classifiers and combine them using weights derived through a
Particle Swarm Optimization algorithm. We propose a voting and a stack-
ing scheme to obtain the final predictions. We show the overwhelming
advantage of using our proposed stacking solution in the context of an
intrusion detection problem for multiple performance assessment metrics
including F1-Score, AUCROC and G-Mean, a rare outcome in this type of
problems. Another interesting outcome of this work concerns the finding
that the majority voting scheme is not competitive in the studied scenario.

Keywords: Ensemble classifier · Intrusion detection · NSL-KDD
dataset

1 Introduction

In recent days, financial losses and crippled services continue to increase due
to the development of more sophisticated cyber-attacks. As a result, the tra-
ditional firewalls and Intrusion Detection Systems (IDS) layers are not enough
to protect networks against intrusions. However, Machine Learning (ML) and
Artificial Intelligence (AI) can leverage Intrusion Detection Systems (IDS) along
with firewalls to provide an improved security against intrusions. The recent
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advancements in ML and AI have helped to identify with high accuracy any type
of network intrusion (e.g. [3,14]). Among Machine Learning algorithms, single
classifiers have been used extensively as a solution for intrusion detection prob-
lems. Nevertheless, single classifiers might not fully provide the expected perfor-
mance due to their inherent weaknesses when compared against, for instance,
ensembles. Thus, more recent works have been taking advantage of combining
different classifiers as base learners in order to achieve lower False Alarm Rate
(FAR) and better accuracy in terms of finding intrusions.

In this paper, we explore the use of five classifiers which are categorized as
weak and strong according to their performance. A novel ensemble approach is
implemented by pairing weak and strong base learners to increase the predictive
performance. We use the Particle Swarm Optimization (PSO) for weighting the
base learners and inject these weights into the ensemble classifiers. Moreover,
we explore the use of two different combination schemes for obtaining the final
predictions. Namely, we apply both majority voting and stacking and show that
stacking provides an advantage when considering multiple performance met-
rics for the intrusion detection problem selected. Our main contributions are
as follows: (i) we present a novel algorithm that uses 5 base classifiers which
are combined through weights derived from PSO; (ii) we use majority voting
and stacking to obtain the final predictions; and (iii) we provide an extensive
experimental evaluation using the well-known NSL-KDD dataset that shows the
advantage of our solution.

This paper is organized as follows. Section 2 provides a literature review
on intrusion detection solutions using ensemble methods. In Sect. 3 we present
our framework for building an ensemble. In Sect. 4 an extensive experimental
evaluation using the NSL-KDD dataset is carried out and Sect. 5 concludes this
paper and presents future research directions.

2 Related Work

The main strengths and weaknesses of using an ensemble-based approach rather
than using an individual learner have been pointed out by Sagi et al. [12]. The
authors mentioned how an ensemble-based approach can overcome the overfit-
ting by averaging different hypotheses which in turn reduces the risk of choosing
an incorrect hypothesis. In addition, they highlighted various unique advantages
that ensembles have when compared against single learners and clearly men-
tioned how these ensemble learners can tackle the problem of class imbalance,
concept drift and curse of dimensionality.

Given their advantages, multiple ensemble algorithms have been presented in
the intrusion detection context. For instance, Seth et al. [14] proposed a new app-
roach for multiclass attack detection using the ensemble algorithms. The approach
ranked the detection ability of different base classifiers for identifying different
types of attacks and rankings are based on the final F1-Score of each classifier for
their predictions. They used seven most famous base learners and based on the
performance of each classifier, a rank matrix was calculated. According to this
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matrix the results of the best classifier were used for the final prediction. The rea-
son behind using F1-Score is related to the fact that some classifiers can have high
recall but low precision, like Random Forest. The proposed method obtained 100%
for detecting Bots and DDoS attacks. Bhati and Rai [3] proposed an ensemble-
based approach without any optimization for intrusion detection using extra tree
classifiers. They combined the results of different classifiers to increase the power
of the classifier. The proposed algorithm achieved 99.97% accuracy on the KDD-
cup99 dataset and 99.32% on the NSL-KDD dataset. In a tentative to improve
the performance of an IDS, Pham et al. [11] used hybrid methods and feature
selection. The authors applied Bagging and Boosting, which are the most pop-
ular ensemble techniques, using tree-based classifiers. The tree-based algorithms
used can eliminate the irrelevant features as well as feature selection because of the
use of the best variable in each split of the tree. The authors selected several tree-
based algorithms: J48, RandomTree, REPTree, Random Forest. Leave-One-Out
was their selected feature extraction method for extracting 25 features and the
Gain Ration was used for extracting 35 features. The experiments carried out on
the NSL-KDD dataset showed that in the 25 features set, although Bagging with
REPTree increased the accuracy, it did not reduce the FAR. In this subset, the
J48 had the lowest FAR. However, in the 35 features subset, the authors achieved
the goal of having a higher accuracy with less FAR by using Bagging with J48.
Yousef Nezhad et al. [18] used eight versions of SVM and KNN (with different
hyperparameters) in the feature selection phase in addition to ensemble classi-
fication. The used kernels for SVM were RBF and Hermit Kernel with different
degrees for increasing the classification speed. The number of neighbors for KNN
are 3, 5, 8, and 10 for adding diversity. The output of SVM and KNN were con-
verted to probable values using a sigmoid function. This method can integrate
the numerical, signals, and multidimensional data. Based on their results, using
the Dempster-Shafer as an integrating module helped them in increasing the per-
formance. Another way to improve the performance is using the feature selection
optimizers. Zhou et al. [20] proposed an ensemble approach on the basis of the
modified adaptive boosting with the area under the curve (M-AdaBoost-A) algo-
rithm so that network intrusions will be identified. The authors combined many
M-AdaBoost-A-based classifiers to provide an ensemble classifier by employing
various strategies such as simple majority voting (SMV) and PSO. The proposed
approach, M-AdaBoost-A algorithm, takes into account the area under the curve
into the boosting process to be able to address class imbalance issue in network
intrusion detection. The PSO algorithm and SVM were used to combine multiple
M-AdaBoost-A-based classifiers into an ensemble for achieving improvements in
network intrusion detection; thus, this system can be considered as a multiple-
boosting-fused ensemble. Several other works (e.g. [7,10]) study ensembles in the
context of cybersecurity predictive problems.

The problem of huge network traffic data and the invisibility patterns have
posed a great challenge in the domain of intrusion detection. Zainal et al. [19]
proposed a way to address these challenges. The authors employed two strate-
gies: (i) selecting the appropriate important features which represent the patterns
of traffic, and (ii) forming an ensemble classifier model by engineering multiple
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classifiers with different learning paradigms. This study formed a 2-tier selection
process, by utilizing a hybrid approach where Rough Set Technique and Binary
Particle Swarm Optimization (BPSO) were hierarchically structured. In this case,
each class had one specific feature set since features were obtained based on class-
specific characteristics. Moreover, Rough Set techniques were used to remove the
redundant features and rank the top 15 features for each class of traffic. These
significant features are termed as reducts. Regarding the classification of the net-
work connection, ensemble machine learning techniques with different learning
paradigms, such as, Linear Genetic Programming (LGP), Adaptive Neural Fuzzy
Inference System (ANFIS) and Random Forest (RF) were used and the decision
function was determined based on the individual performances when considering
the overall accuracy and the true positive rates. The experimental results showed
an improvement in the detection accuracy for all classes of network traffic.

Our research is inspired by the work of Aburomman et al. [1], extending it to
consider: other alternative ensemble combinations, multiple base learners, and
considering pairs of weak and strong base learners.

3 Our Proposed Ensemble for Intrusion Detection

Figure 1 provides an overview of our proposed method, which builds on top of the
work proposed by Aburomman et al. [1]. After the data preprocessing and the
feature extraction steps, five different machine learning algorithms are chosen
and trained on the dataset. After training, the performance is inspected and
used to classify them into either weak or strong learners. The initial achieved
performance is used to manually build the weak/strong classification. On the
next step, by using PSO, an average weight for the base learners is obtained.
The following step takes advantage of two ensemble models namely, stacking
and majority voting. The following sections provide a description of the data
pre-processing and feature selection steps, the base learners and the ensemble
models. Then, the procedure of using PSO is explained in detail.

3.1 Data Pre-processing

As a very first step of each machine learning process, data pre-processing should
be done in an effective way. Typically, this step involves converting categorical
data into numerical data in order to have better results in the predictions. We
selected one hot encoding method for this procedure. Another standard pre-
processing step concerns the data normalization.

3.2 Feature Selection

The second step of the methodology is feature selection. The feature selection
refers to techniques that make a subset of most relevant and important features of
a dataset. Having fewer features allows the machine learning algorithm to occupy
less space while simultaneously running faster, an important characteristic of



Intrusion Detection Using Ensemble Models 147

Fig. 1. The overview of proposed method

systems dealing with network intrusion detection problems. We selected an
embedded method, the feature importance ranking of Random Forests as a
method for extracting the most relevant features. The motivation for this selection
is related to the fact that these methods are highly accurate and interpretable. In
the random forest, each tree of the random forest is a decision tree and can cal-
culate the importance of feature based on the feature’s ability in increasing the
pureness of the leaves. Then we used Recursive Feature Elimination (RFE) as
a wrapper-based feature selection. The idea of the RFE is to select features by
recursively considering the smaller and smaller sets of features. This method has
two main steps which are: first, an estimator will be trained on a set of features
and calculate the importance of each feature, and second step is to prune the least
important features from the current set of features. In this paper, the core machine
learning algorithm is Random Forest as mentioned before.

3.3 Base Learners

The third step in our proposed method is to select and train 5 base learners. We
used Support Vector Machine, Näıve Bayes, K-nearest Neighbor, Decision Tree,
and Logistic Regression for our base learners. This selection of base learners
is based on the literature study and by taking into account the strengths and
weaknesses of each particular classifier.

Support Vector Machines. The motivation for selecting Support Vector
Machines (SVMs) is related to the fact that this classifier is able to address space
complexity. Moreover, SVMs can handle non-linearity and are least impacted by
possible outliers in the data. In this paper, we use SVM with probability esti-
mates enabled, we set Gamma to 1/(number of features) and we used a radial
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basis function kernel. We considered the following values for the parameter C of
the SVM: 5, 2, 1, 0.5, 0.2, 0.1.

Näıve Bayes. The goal of selecting Näıve Bayes (NB) classifier is to include
one of the most simple algorithms. Although having strong assumption on the
data, it is easy and fast to obtain the predictions. This is a probabilistic classifier
which exhibits an overall good performance when compared to other algorithms
such as logistic regression when the assumption of the independence among the
features is verified. In particular, we used the Gaussian Näıve Bayes classifier due
to its suitability to be applied in an online learning setting, which is a possible
future research direction we are considering.

K-nearest Neighbor. The K-Nearest Neighbor (KNN) is a well-known lazy
learner. We used the Euclidean distance and varied the number of k of neighbors
being considered in the different models generated. In particular, we used 1, 3,
5, 7, 9, and 11 as the number of neighbors.

Decision Tree. We selected to use a Decision Tree (DT) algorithm due to its
ability to observe information and identify critical features that demonstrate the
malicious activities like the intrusions. In this paper, we considered the following
values for the max depth in the ensemble part: 2, 4, 6, 8, 10, and 12.

Logistic Regression. Logistic Regression (LR) is an efficient algorithm that
adds diversity to the learners we have selected. We used the Logistic regression
with the maximum number of iterations set to 100. For the parameter C, on the
ensemble part, we used the following values: 100, 10, 1, 0.1, 0.01, and 0.001.

3.4 Ensemble Models

An ensemble classifier is a method which uses or combines several classifiers to
develop robustness of a system as well as to improve the performance when com-
pared against any of the base classifiers used. Based on Schapire [13] and Dong
et al. [17], ensemble methods have the advantage of being able to adapt to any
changes in the monitored data stream more accurately than single model tech-
niques. As an important parameter for the success of an ensemble approach is the
diversity in the individual classifiers with respect to the misclassified instances.
Dietterich [6] reports three main reasons why an ensemble classifier is usually
significantly better than a single classifier: (i) the training data does not always
deliver enough information for selecting a single accurate hypothesis; (ii) the
learning process of the weak classifier may be imperfect; and (iii) the hypothesis
space being searched may not contain the true target function while an ensem-
ble classifier may be able to provide a good estimation. There are three main
types of ensembles: bagging, boosting, and stacking. Bagging and boosting are
alternatives to voting methods. In this paper, after training the base learners,
we used two different ensembles: Majority Voting and Stacking. The motivation
for this selection is associated to a previous successful use of the first one [1]
and the exploration of the second one as a different and possibly more robust
alternative.
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Particle Swarm Optimization. Particle swarm optimization (PSO) is a
population-based iterative optimization algorithm, formulated by Kennedy and
Eberhart [9]. PSO is derivative-free, zero-order method. This means that PSO
does not need to calculate gradients, so it can be applied to a variety of prob-
lems, including those with discontinuous, non-convex or multimodal problems.
The algorithm starts out with a set of agents, called particles, in random posi-
tions in the problem space. Each is also assigned a random velocity. A fitness
function is defined on a particle’s location. The optimization problem to be
solved is to find the best position, i.e. the position that minimizes the fitness
function. Through each iteration, the algorithm evaluates each particle’s fitness.
Then, its velocity is updated and a new position is computed. A particle’s new
velocity is a function of its current velocity, its distance from its best position
known and its distance from the population best position so far. The weights
obtained from PSO are used as the weights for the base learners, i.e., PSO is
only used to derive each base learner weights.

Majority Voting. A drawback of Voting Classifier is that it assumes that all
models in the ensemble are equally effective. This may not be the case as some
models may be better than others especially when different machine learning
algorithms are used to train each base model of the ensemble. An alternative
to voting is to assume that the base models are not all equally capable and
instead some models may be better and thus should have more votes when
making a prediction. This motivates the use of the weighted average ensemble
method. Weighted average ensembles weight the contribution of each base model
proportionally to the trust or performance of the model on a holdout dataset.
If we need to predict a class label, the prediction is obtained through the mode
of the models predictions. If we need to predict a class probability, then the
prediction is obtained through the argmax of the summed probabilities for each
class label. To ensure greater diversity in the classifiers and to maximize their use,
each one of the 5 classifiers selected is trained with 6 different parameters and
then combined with another classifier with 6 different parameters to utilize the
full potential of these classifiers. For example, in case of KNN-Logistic Regression
ensemble model, 6 KNN models with different values of K are combined with 6
logistic regression models with 6 different values of C for each model. Similarly,
all models are trained and tested with this novel ensemble method. Figure 2
shows the flow chart of the weighted ensemble models inspired by the proposal
in [1].

Stacking. Stacking [16] is a different technique of combining multiple classifiers.
Unlike bagging and boosting, stacking is usually used to combine various clas-
sifiers, such as decision tree, neural network, näıve bayes, or logistic regression,
where the learning process consists of two levels: base learning and meta-learning.
In the base learning, the initial (base) learners are trained with training data set
in order to create a new dataset for the next step which is the meta-learning.
The meta-learner is then trained with new training data set. The trained meta-
learner is used to classify the test set. A crucial part in stacking is the selection
of the most suitable base learners. In this paper, we choose the base algorithms
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Fig. 2. The flow chart for ensemble models [1]

which are frequently used in the literature review for intrusion detection and
then classified them into weak and strong based on their performance. The final
estimator in all stacking models, i.e., in the meta-learning stage, is the Logistic
Regression. We must highlight the novelty of using pairs of strong and weak
learners integrated with the stacking ensemble method. As far as we know, this
configuration has never been tried.

4 Experimental Evaluation

This section provides the details of our experiments. We begin by presenting
the dataset we selected, then we describe the performance metrics used and we
provide the results and a discussion. Finally we analyse the performance of the
competitor methods and we discuss the limitations and advantages of the two
ensembles tested.

4.1 Dataset and Experimental Settings

NSL-KDD [15] is a dataset that was proposed as an improved version of the
well-known KDD’99 dataset solving some of its issues. The NSL-KDD dataset
contains records of internet traffic that can be used for an intrusion detection
task. It is comprised of two general sub datasets: KDD Train+ and KDD Test+.
In this paper, we used KDD Train+ because it prevents the overfitting of the
model. The reasons behind using this dataset are first the fact that during most
of the previous studies mentioned this dataset was used as it contains complete
information about intrusions inside the internet traffic. Moreover, this dataset
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does not have redundant records in the train data, so the classifier will not
provide any biased results during prediction.

The NSL-KDD dataset consists of 41 features that correspond to the network
traffic input and a last column containing the target class label. The features
can be categorized into four categories such as Intrinsic, Content, Host-based,
and Time-based. Intrinsic features which are columns 1 to 9, contain the packet
information and can be derived from the header of the packet. Content features
which are columns 10 to 22, contain original packets information which can be
used by the system to access the payload. Time-based features which are columns
23 to 31, contain the information about how many connections it attempted to
make to the same host over two-second windows. Host-based features which are
columns 32 to 41, contain information about the number of requests made to the
same host over a certain number of connections. Also, the feature types in this
dataset can be broken down into 4 types which are categorical, binary, discrete,
and continuous. The distribution of the data types is as follow: 3 Categorical, 6
Binary, 23 Discrete, and 10 Continuous. We converted the categorical values into
numerical values using one hot encoding. We applied this method to columns
Protocol Type, Service and Flag. We also encoded the target label column into 0
and 1, where 1 represents an anomaly and 0 represents normal cases. In addition
to encoding the categorical data, since there are different values in the dataset,
we applied data normalization for increasing the cohesion of the dataset.

The final step consists of splitting the dataset into 70% for train and 30%
for test. Regarding the PSO settings we have set the number of particles to the
number of cases in the test set and the number of dimensions was set to the
number of columns. The remaining PSO hyperparameters were set as follows:
‘c1’ = 0.8, ‘c2’ = 0.6, ‘w’ = 0.9, ‘number of iterations’ = 1000. We used five base
learners in our experiments: DT, LR, SVM, NB and KNN. The parameters of
these learners are provided in Sect. 3.3.

4.2 Performance Metrics

We selected different evaluation metrics for this work. The main goal is to have
both an overall view of the performance, and a detailed view of the performance
on the anomalous and under-represented cases. For this reason, we use Accuracy
(as a standard reference metric), but also Precision, Recall, F1-Score, Specificity,
Geometric Mean (G-Mean) and Area Under the Curve ROC (AUCROC) as
recommended in [5]. These metrics assume the positive class or the minority
class is the class of interest and the most relevant to the end user. In our case,
the positive class is the anomalous class, while the negative (majority) class is
the normal class. We observe the performance on multiple metrics suitable for
tasks suffering from the class imbalance problem as suggested in [8]. We selected
the F1-Score, G-Mean and AUCROC to base our final analysis and conclusions.

Precision is the ratio between the True Positives and all the observed Positive
predictions. Recall quantifies the number of positive class predictions made out
of all positive examples in the data set. The F1-Score considers both precision
and recall metrics as being equally good indicators of how the model performs
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specially when there is a minority class present in the dataset. The F1-Score is
the harmonic mean of the precision and recall metrics. Accuracy is the fraction
of predictions that the model got right since it is calculated as the ratio of all true
predictions to all the possible predictions. Specificity is defined as the proportion
of actual negatives, which got predicted as the negative (or true negative).

The Receiver Operator Characteristic (ROC) curve is an evaluation metric
used for binary imbalanced classification problems that depends on two metrics:
the True Positive Rate (TPR) and the False Positive Rate (FPR). The TPR is the
proportion of correctly predicted positive values out of all positive values present,
while the FPR represents the ration between the false positive (values predicted
as positive that are actual negative) and the actual negative cases present in
the data. The ROC curve plots the TPR against the FPR at different threshold
values and essentially separates the ‘signal’ from the ‘noise’. The AUCROC
provides a numeric summary of the ROC curve. The higher the AUCROC, the
better the performance of the model at distinguishing between the positive and
negative classes. The G-Mean is the squared root of the product of the recall
of each class (positive and negative). By considering both recall values of the
problem classes, this metric provides more insights regarding the performance
on both classes giving a different perspective of the performance when compared
against, for instance, the F1-Score.

4.3 Results and Discussion

Table 1 shows the results of all our base learners. From these results we observe
that the Decision Tree is the best performing model for the vast majority of the
performance metrics. This algorithm achieved an F1-Score of 0.984, a G-Mean
of 0.982. However, for the AUCROC metric, the best performing algorithm was
the SVM with 0.995. The Decision Tree is closely followed by SVM, K-Nearest
Neighbor, Logistic Regression and Näıve Bayes. Among all these algorithms,
Näıve Bayes is the worst performing model in terms of F1-Score, G-Mean and
AUCROC, exhibiting a score of 0.912, 0.904 and 0.949 respectively.

Table 1. Base learners results across all the performance metrics.

Measure Decision Tree SVM LR Naive Bayes KNN

Accuracy 0.98255 0.96792 0.95801 0.90686 0.973536

Precision 0.9835 0.95983 0.94544 0.96384 0.974895

Recall 0.98557 0.98426 0.98216 0.86723 0.978221

F1-Score 0.98454 0.97189 0.96345 0.91298 0.976555

Specificity 0.97867 0.94683 0.92685 0.95801 0.967491

G-Mean 0.98241 0.96936 0.96048 0.90421 0.973331

AUCROC 0.98262 0.99536 0.98207 0.94987 0.993251
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Table 2. The overall results of the majority voting ensemble method on NSL-KDD
dataset.

Measure (LR, DT) (LR, KNN) (DT, KNN) (SVM, KNN) (SVM, DT) (SVM, LR)

Accuracy 0.965 0.944 0.960 0.946 0.961 0.962

Precision 0.961 0.941 0.957 0.957 0.954 0.956

Recall 0.978 0.961 0.972 0.981 0.979 0.979

F1-Score 0.969 0.951 0.954 0.969 0.966 0.967

Specificity 0.949 0.922 0.944 0.942 0.932 0.941

G-Mean 0.966 0.945 0.960 0.966 0.963 0.963

AUCROC 0.991 0.966 0.983 0.99 0.981 0.983

Table 3. The overall results of stacking ensemble method on NSL-KDD dataset.

Measure (LR, DT) (LR, KNN) (DT, KNN) (SVM, KNN) (SVM, DT) (SVM, LR)

Accuracy 0.973 0.984 0.972 0.983 0.973 0.984

Precision 0.977 0.983 0.971 0.979 0.975 0.985

Recall 0.976 0.989 0.979 0.992 0.977 0.986

F1-Score 0.976 0.986 0.975 0.985 0.976 0.986

Specificity 0.970 0.978 0.962 0.972 0.967 0.981

G-Mean 0.973 0.984 0.972 0.984 0.972 0.984

AUCROC 0.997 0.998 0.995 0.997 0.997 0.999

After assessing the performance of base classifiers we proceeded with their
categorization into strong and weak classifiers. Then, we built the two proposed
ensemble models through voting and stacking. Table 2 displays the performance
of various ensembles models that are built using the majority voting method,
while Table 3 displays the performance of the ensembles built using the stacking
method.

From Table 2, we observe that the pair (LR, DT) is the best performing
ensemble model followed by (SVM, KNN) when considering all the results on the
7 performance metrics analysed. The remaining pairs of algorithms all perform
worst than pairs (LR, DT) and (SVM, KNN). Furthermore, we also observe
that the overall performance of the ensemble models using the majority voting
scheme is worse than that of the baseline models. This is an interesting result
that indicates that the majority voting with pairs of weak and strong learners
is not effective in the intrusion detection context.

Our next step was to build ensembles using stacking and assess the perfor-
mance of the resulting models. Similarly to the previous evaluation, we present
the results of multiple metrics and focus our attention on the F1-Score, G-Mean
and AUCROC as the base metrics given the imbalance present between the two
classes of the problem.

From the results in Table 3, we can observe that the pair (SVM, LR) provides
the best results in 6 out of the 7 performance metrics calculated. The next
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Fig. 3. ROC plots for majority voting; (a) SVM&LR (b) SVM&DT (c) DT&KNN (d)
KNN&LR (e) SVM&KNN (f) DT&LR

pairs with the best results are (LR, KNN) and (SVM, KNN) wining in 3 and
2 out of 7 metrics, respectively. We must highlight that the use of the stacking
scheme provided enhanced results when compared to the base learners. This is
the opposite that we verified when compared to the use of the majority voting
scheme. Stacking provided the best overall results while majority voting provided
the worst ones. When considering the F1-Score we observe that the best results
of 0.986 are achieved with the stacking scheme on the pairs (SVM, LR) and (LR,
KNN), while the best base learner achieved 0.98454. The G-Mean results show
the same trend with 0.984 obtained on 3 stacking scheme ensemble pairs and
0.98241 obtained on the best base learner. Finally, for AUCROC we notice that
all stacking pairs provide a results higher than the best base learner. In this case
the SVM provides a resulting AUCROC of 0.99536 while all the stacking-based
ensemble pairs proposed achieve an AUCROC value higher or equal to 0.995,
with the best result being 0.999.
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Fig. 4. ROC plots for stacking ensembles; (a) SVM&LR (b) SVM&DT (c) LR&DT(d)
SVM&KNN (e) LR&KNN (f) DT&KNN

This shows the clear advantage of applying the stacking-based ensemble pro-
posed in this paper for the different performance assessment metrics considered.
We hypothesize that a possible reason for this trend could related to the fact that
stacking allows to use the strength of each individual estimator by using their
output as input of final estimator whereas voting classifier takes the most com-
mon output to be the output of final estimator. Figures 3 and 4 show the ROC
curves obtained for the pairs of models when voting and stacking are applied.

4.4 Competitor Method Analysis

This section presents a comparison and analysis between the results from the
literature survey and our proposed methodology.
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Table 4. Results comparison between proposed methods and previous solutions. (Best
result in bold and second best result underlined.)

Research Papers Dataset used Model used F1-Score (%) Accuracy (%) Precision (%)

[20] NSL-KDD M-AdaBoost using PSO 91.64 99.89 88.34

[3] NSL-KDD Ensemble Trees Classifier 97.8 99.32 99

[2] NSL-KDD Majority voting 87 92 –

Proposed Model NSL-KDD Majority voting with PSO 96.9 96.5 96.1

Proposed Model NSL-KDD Stacking method 98.6 98.4 98.3

Table 4 shows all the results of the different performance metrics of our pro-
posed ensemble methods and previously proposed solutions. We observe that,
compared to all previous solutions, the proposed method using the stacking
method performed better in terms of F1-Score, is the second best in terms of
Precision and the third best in terms of accuracy. Moreover, we must also high-
light that our proposed ensemble of majority voting with PSO has scores close to
the top overall scores achieving a competitive performance. Primarily, our mod-
els were trained and tested using the best hyper-parameters for each ensemble
learning. So, a greater diversity is obtained and the use of each classifier in the
ensemble model is maximized by using the approach of combining 6 LRs and 6
KNNs in our approach.

4.5 Limitations and Advantages

In the case of real-world intrusions, the number of false alarms is a problematic
aspect of these decision support systems. High false alarm rates may prevent
these solutions to be put in practice. Although we used a clean dataset, as
a limitation in the intrusion detection system, we can mention the presence
of noise in the dataset. The bad packet generated from different sources like
software bugs can severely limit the effectiveness of these systems. Moreover, the
hyper parameter tuning of SVM model was time-consuming and more powerful
hardware setup was required especially while training large datasets.

The fact that not always a combination of strong base learners would perform
better than other combinations, for instance including weak learners, is another
important lesson from this work. Finally, we think that more attention should
be given to the imbalance problem present in this dataset. Other works have
shown that the use of resampling methods can be effective for this problem [4].
However, our solution does not take into account any of these techniques, thus
we consider this to be a limitation of our solution. This means that, by combining
our stacking-based solution with resampling methods we could potentially obtain
an even more robust algorithm. We plan to explore this aspect as our future work.

5 Conclusions and Future Work

In this paper, we tackled the intrusion detection problem through the proposal of
two new stacking-based and majority voting-based ensemble methods. We used
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5 different base learners to form pairs of weak and strong classifiers and then,
by using these pairs, we performed classification with two ensemble learning
models: Majority Voting and Stacking. Moreover, we used PSO as a mean for
optimizing the weights of the ensemble models. Based on the results obtained in
the NSL-KDD dataset, we show that the stacking-based ensemble outperformed
the voting-based ensemble and the baseline models. Furthermore, out of all the
models tested, our stacking-based ensemble model using SVM and LR provided
the best overall performance across multiple metrics achieving an F1-Score of
0.986, a G-Mean of 0.984 and an AUCROC of 0.999. The fact that this solution
provides consistently better results than the competitors across a high diversity
of performance metrics is outstanding. On the other hand, the majority voting-
based ensemble provided the worst overall results leading to the conclusion that
this model is not the most suitable for the intrusion detection task.

For our future work, we will consider the extension of our work to more base
learners and datasets and will analyse the statistical significance of the results.
We also plan to study online ensemble learning and adapt the ensemble model
proposed to a data stream context while considering the concept drift problem.
Another interesting avenue regards the integration of resampling methods into
our stacking-based ensemble in order to deal with the class imbalance problem.
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Abstract. A fundamental assumption in machine learning is that train-
ing and test samples follow the same distribution. Therefore, for training
a machine learning-based network traffic classifier, it is necessary to use
samples obtained from the desired network. Collecting enough training
data, however, can be challenging in many cases. Domain adaptation
allows samples from other networks to be utilized. In order to satisfy
the aforementioned assumption, domain adaptation reduces the distance
between the distribution of the samples in the desired network and that of
the available samples in other networks. However, it is important to note
that the applications in two different networks can differ considerably.
Taking this into account, in this paper, we present a new domain adap-
tation method for classifying network traffic. Thus, we use the labeled
samples from a network and adapt them to the few labeled samples from
the desired network; In other words, we adapt shared applications while
preserving the information about non-shared applications. In order to
demonstrate the efficacy of our method, we construct five different cross-
network datasets using the Brazil dataset. These results indicate the
effectiveness of adapting samples between different domains using the
proposed method.

Keywords: Traffic classification · Domain adaptation · Transfer
learning

1 Introduction

Recently, machine learning (ML) has gained increasing attention in the field
of internet network security for various applications, including network traffic
classification. The emergence of machine learning-based traffic classification is a
consequence of the inefficiencies of traditional approaches such as port-based and
signature-based methods; dynamic port numbers and data encryption are among
the reasons for the inefficiency of traditional methods [2]. In order to resolve these
issues, ML methods employ and analyze flow level statistical properties rather
than port numbers or the content of flow data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Numerous ML-based approaches have been presented in the literature to clas-
sify the traffic in a network [13,14]. These methods employ information, namely
training samples, to learn a classification model. In ML, there is a core assump-
tion which holds that the training and test samples should be distributed inde-
pendently and identically (IID assumption) [16]. Intuitively, the training and test
samples should, therefore, be produced under the same condition. According to
this assumption, for a ML-based network traffic classification model, the training
samples should be updated and extracted from the desired network [13,14].

However, in practice when we want to construct a model specific to a net-
work, collecting enough samples from that network may be challenging. We may
access to outdated information from the desired network or related information
from other networks. Authors in [7], however, mentioned the problem of tem-
poral and spatial decays in network traffic classification; which mean how the
performance of a classification model get affected if training and test data are
not from the same network. They addressed these two issues using data gath-
ered at different times and from different sites so that the gathered data follow
different distributions.

Domain Adaptation (DA) is a machine learning technique that makes use
of samples that are generated from a different but related environment to the
desired environment [8,15,20]. To be more precise, DA reduces the difference
(distribution shift) between two different datasets by adapting the datasets. Typ-
ically, the training dataset is referred to as the source, while the test dataset is
referred to as the target. Similarly, we refer to a network with available labeled
data as the source network and to the desired network as the target network.

Data from two different networks may include different types of traffic. There-
fore, an appropriate DA should only adapt the shared types of traffic without
destroying the information about other types of traffic (which are not shared
between two networks).

In this paper, we propose a Domain Adaptation method for network traf-
fic classification. Our proposed method adapt two different datasets which may
include different applications, although they have some shared applications. To
this end we uses a small percentage of the labeled data in the desired network
as well as samples from other networks or outdated samples. we perform exper-
iments on 5 cross-network scenarios to evaluate the proposed method.

2 Related Works

In the last decades, machine learning methods have increasingly received atten-
tion for solving network security tasks, including network traffic classification
[13]. Some of these methods are Support Vector Machine [17], Neural Networks
[3,10], Bayesian Techniques [12]. In all of the mentioned methods, because of the
IID assumption of machine learning methods, the training and test datasets are
from one network.

Authors in [18] proposed utilizing samples from different datasets for intru-
sion detection purposes. Following the mentioned paper, authors in [9] proposed
incrementally constructing a model using samples from different datasets.



Domain Adaptation with Maximum Margin Criterion 161

A cross-domain network traffic classification is proposed in [5] to solve the prob-
lem in case the source and target networks are same but the samples are collected
in different times. This paper constructs a new latent space in which the distribu-
tion of source and target samples are minimized. On top of this space, a classifier
trained with samples from source network is generalized to target network.

An application-level traffic identification is proposed in [19] using data from
a small-scale and a large-scale network. In this method a classifier is trained with
small-scale network data; After that, using domain adaptation, this network is
adapted to a large-scale network data.

In last two mentioned methods, the label set (applications) of source and
target networks are identical. However, authors in [4] proposed a cross-domain
method that assume source and target network traffics are totally different in
terms of applications; the label set of source and target are different; tCLD-
Net, at first, is trained with samples from from source network. After that the
last layers of the network, which are task specific, are removed and replaced by
new layers. Theses new layers are retrained using the target samples. In such
methods, however, we need enough target training samples for retraining the
network.

In this paper, we assume there are some shared applications between the
source and target networks. We employ domain adaptation to adapt shared
applications as well as keeping information from non-shared applications. In
other words, our method is capable to transfer knowledge for non-shared appli-
cations between source to target networks.

3 Background

3.1 Domain Adaptation

Let Ds = (xi, yi)
n
i=1 is the source dataset consisting of n samples. Ds is drawn from

the distribution Ps(X,Y ). Similarly, Dt = (xj , yj)
m
j=1 is the target dataset con-

sisting of m samples and is drawn from distribution Pt(X,Y ) so that Ps(X,Y ) �=
Pt(X,Y ). Domain Adaptation aims to adapt source and target domains so that
Ps(X,Y ) = Pt(X,Y ) to use Ds as training samples to construct a model that is
generalizable to target domain; to predict the labels of the target samples Dt.

3.2 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) is a non parametric distribution distance
estimation criterion [1]. MMD measure the difference between source and target
domains as follow:

Dist(Ds,Dt) =‖ 1
n

n∑

i=1

φ(xi
s) − 1

m

m∑

j=1

φ(xj
t ) ‖2 (1)

where φ(x) : X → H and H is a universal Reproducing Kernel Hilbert Space
(RKHS).
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3.3 Maximum Margin Criterion

One of the most popular feature extraction methods with the classification goal
is Fisher Linear Discriminant Analysis (FLDA) [11]. To project samples into
a new space, FLDA finds a projection vector w by maximizing the following
objective function:

JF (w) =
wTSbw

wTSww
(2)

where Sb is between class scatter and Sw is within class scatter. Accordingly,
FLDA minimizes the distance between samples that share the same class and
maximizes the distance between samples with different classes.

To maximize Eq. 2, the transformation matrix w must be constituted by the
largest eigenvectors of S−1

w Sb. However, when within class scatter matrix is sin-
gular, the FLDA cannot be used. To overcome this problem, [6] proposed Maxi-
mum Margin Criterion (MMC) criterion that optimizes the following objective
function:

J(w) = tr(wT (Sb − Sw)w) (3)

4 Methodology

4.1 Problem Formulation

We propose a method to solve the cross-domain network traffic classification
problem with the following assumptions:

– There is only one source network and one target network.
– The applications are not the same for the source and target networks; There

are some applications in either source network or target network.
– Source and target networks have some common applications.
– Samples from the source network are labeled.
– A small percentage of samples from the target network are labeled and cor-

respond to all the applications in the target network.

More formally, we state the mentioned assumptions and the problem as fol-
lows.

Assume X as d − dimensional input space and Y an output spaces. Ds =
{xi

s, y
i
s}ni=1 is source traffic samples, Dt = Dl

t∪Du
t is target traffic samples where

Dl
t = {xi

t, y
i
t}ml

i=1 is labeled, Du
t = {xi

t}mu
i=1 is unlabeled target traffic samples;

m = ml + mu is the total number of target samples; so that x ∈ X and y ∈ Y .
Ds is drawn from distribution Ps(X,Y ), Dl

t and Du
t are drawn from distribution

Pt(X,Y ), where Ps(x, y) �= Pt(x, y).
There are Cc common applications in source and target networks. The num-

ber of the total set of applications in source and target is C.
w ∈ R

d×D is a projection matrix that maps x ∈ X to x ∈ X, where X is
a D − dimensional new shared feature space for both source and target traffic
domains.
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C : X → Y is a classifier that is trained on top of the new shared feature
representation.

We aim to construct the new shared space (X) so that a trained classifier on
top of that (C) generalizes to the target domain.

In the rest of the paper we refer to the new space with bold letters.

4.2 Proposed Method

In this subsection, we present a criterion for cross-domain feature extraction
for network traffic classification. To this end, we construct a new feature space
in which: (1) the distribution distance between the source and target network
traffics with the same applications are minimized, (2) the within-class sample
distances for both source and target samples are minimized (3) the between-class
sample distances of both source and target samples are maximized. Accordingly,
we use the following criterion:

J =
Cc∑

c=1

Dist(Ds
(c),Dt

(c)) +
C∑

c=1

S(c) − 1
2

C∑

c1=1

C∑

c2=1,c1 �=c2

diff(c1, c2) (4)

where Dist(., .) calculates the distance between two distributions. In fact, using
Dist(., .), we align the source and target networks samples. However, since the
assumption is that some domain-specific applications may exist, if we align all
samples from the source to all samples from the target domain without consider-
ing the applications, the application misalignment will happen. For this reason,
we only minimize the distribution distance between shared applications. Since
there are Cc common applications, we calculate Cc distribution distance. Ds

(c)

and Dt
(c) are the projected source and target samples in the new space with

class c. By minimizing this distance, we unify the distribution of the shared
application of source and target networks.

S(c) is within-class scatter of samples with application c, regardless of the
samples’ domain. The second term in Eq. 4 calculates the amount of scattering
of each application. To prepare the new space for classification, we are interested
in minimizing this scatter.

The third term in Eq. 4 calculates the distance between different applications.
By maximizing this difference, we force different applications in the new space
to be separated from each other and, consequently, easily classified. Besides,
maximizing this distance helps prevent application misalignment.

In continue, we will describe how we calculate each part of the Eq. 4 for
a linear feature extractor. The embedding of the samples in the new space is
calculated as x = wTx.

Distribution Distance Calculation: We utilize the MMD criterion to cal-
culate Dist(., ) for unifying the distribution distance between source and target
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samples with the common applications.

Cc∑

c=1

Dist(Ds
(c),Dt

(c)) =

Cc∑

c=1

‖ 1

n
(c)
s

∑

xs∈D
(c)
s

wTx(c)
s − 1

n
(c)
t

∑

xt∈D
t(c)
t

wTx
(c)
t ‖2=

Cc∑

c=1

tr(wTxL(c)xTw) = wTxLxTw

(5)

for x ∈ D(c) = [D(c)
s ,D

l(c)
t ] where,

L
(c)
ij =

⎧
⎪⎪⎨

⎪⎪⎩

1

n
(c)
s n

(c)
s

xi, xj ∈ D
(c)
s

1

n
(c)
t n

(c)
t

xi, xj ∈ D
(c)
t

−1

n
(c)
s n

(c)
t

otherwise

and, L =
Cc∑

c=1

Lc. (6)

Within Scatter Matrix Calculation. Assuming Sc as covariance matrix
which is calculated by the samples of application c and tr(Sc) as overall variance,
we calculate the second term in the Eq. 4 as follows:

C∑

c=1

S(c) =
C∑

i=1

tr(wTScw) = tr(
C∑

i=1

wTScw) = wT tr(
C∑

i=1

Sc)w = wT sww (7)

where sw is within scatter matrix. We calculate the within scatter matrix for
x ∈ D = [Ds,D

l
t].

Between Scatter Matrix Calculation. To calculate the difference between
samples with different applications, we calculate the distance between the mean of
the samples of different applications. Assuming μ(c) as the mean of samples with
application c in the new space, we calculate the third term in Eq. 4 as follows:

1
2

C∑

c1=1

C∑

c2=1

diff(c1, c2) = tr(
1
2

C∑

c1=1

C∑

c2=1

wT (μc1 − μc2)T (μc1 − μc2)w)

= wT tr(
1
2

C∑

c1=1

C∑

c2=1

(μc1 − μc2)T (μc1 − μc2))w = wT sbw

(8)

where sb is the between scatter matrix. We calculate the within scatter matrix
for x ∈ D = [Ds,D

l
t].

According to Eqs. 5, 7 and 8, the objective function in Eq. 4 is:

J(w) = wT (xTLx + sw − sb)w. (9)

We aim to find the best transformation matrix by minimizing the Eq. 9.
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Let w = [w1, w2, .., wd]. ; To avoid the trivial solution w = 0, we add the
constraint to the optimization problem:

min
d∑

k=1

wT
k (xTLx + sw − sb)wk

s.t. wT
k wk = I k = 1, 2, ..., d

(10)

To solve the optimization problem in Eq. 10, we define λ = diag(λ1, λ2, ..., λd)
as the Lagrange multiplier; Then we introduce a Lagrangian as follow:

L(wk, λk) =
d∑

k=1

wT
k (xL(c)x − Sb + Sw)wk

+ λk(I − wT
k wk)

(11)

The Lagrangian L must be minimized with respect to λk and wk. Setting
∂L(wk, λk)

wk
= 0, leads to

(xL(c)x − Sb + Sw)wk = λkwk

k = 1, 2, ..., d
(12)

which means that the λks are the eigenvalues of (xL(c)x−Sb +Sw) and the wks
are the corresponding eigenvectors. Therefore, the criterion is minimized when
w is composed of the first d smallest eigenvectors of (xL(c)x − Sb + Sw).

5 Experiments

5.1 Experimental Setup

Dataset: We carry out several experiments on the Brasil datasets [7] to examine
the effectiveness of our proposed method.

Brasil datasets are recorded from two communication networks, SiteA and
SiteB, which are research-centric networks. What differentiates SiteA and SiteB
is they are located in different countries; In addition, research in various disci-
plines is carried out there. SiteA consists of three day-long sub-datasets denoted
as Day1, Day2, and Day3. These datasets are taken on three weekdays in 2003,
2004, and 2006. As shown in Table 1, we construct five cross-domain datasets
using these four available sub-datasets(Day1, Day2, Day3, SiteB) to investigate
the effect of the domain adaptation between different networks. Two first cross-
domain datasets correspond to the spatial problem in which data are collected
from two different networks. The last three cross-domain correspond to temporal
decay in which data are from the same network but at different times;

In all datasets, each sample corresponds to a flow and is defined by 12
features; the details about the features can be found in [7]. The features are
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Table 1. Source and target datasets

Problem Source network Target network

Spatial Day3 SiteB

SiteB Day3

Temporal Day1 Day2

Day2 Day3

Day1 Day3

extracted from UDP, TCP, and IP headers of packets. For this paper, however,
we use TCP traffics to perform our experiments.

Assuming TP as true positives, FN as false negatives, FP as false
positives, and TN as true negatives, we calculate the overall accuracy as

Accuracy =
TP + TN

TP + TN + FP + FN
. In addition we calculate F-measure

as F measure =
2 ∗ (Recall ∗ Precision)

Recall + Precision
where Recall =

TP

TP + FN
and

Precision =
TP

TP + FP
.

In order to validate the effectiveness of the proposed method, we carry out
two sets of experiments: 1) With DA 2) Without DA. In the first case, we first
apply the proposed method to construct a new shared feature space. We then
train an SVM classifier on top of the constructed space using available labeled
source and target samples. In the second case, we simply train an SVM classifier
in the original space using available labeled source and target samples. We report
the prediction results on the unlabeled target samples in both cases.

For all experiments, we use 10 percent of the labeled samples from the target
network and the labeled samples from the source network. Although by adjusting
weights for sw, sb and L in Eq. 11, we can improve the results, for simplicity, we
ignore it.

Fig. 1. Accuracy of traffic prediction in 5 cross-network datasets.
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(a) Day1-Day2

(b) Day1-Day3

(c) Day2-Day3

(d) Day3-SiteB

(e) SiteB-Day3

Fig. 2. For 5 cross-domain scenarios the results are shown in terms of F-measure per
application in target network. The captions of sub-figures show the source and target
networks.
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5.2 Results

Figure 1 shows the overall accuracy on the target domains in five cross-domain
scenarios. This figure has five sets of bars, each corresponding to one cross-
domain scenario. The label of each set of bars shows the source and target
networks. For example, in the first one, Day1 is used as the source and Day2 as
the target. The provided results are the accuracy of traffic prediction in target
networks. For all cross-domain scenarios, we show the results With DA and
Without DA. Comparing With DA and Without DA confirms the effect of using
our proposed DA in prediction and turns out that DA has succeeded in improving
the overall accuracy for all cross-network scenarios.

In addition, for each cross-domain scenario, we show the results in terms of
the F-measure per application in Fig. 2. The results of the Day1-Day3 scenario
are shown in the Fig. 2b. In this case, we don’t have any sample from VOIP
and Chat applications from the source domain, i.e., Day1 network. However, our
method is able to detect them. This is also the case for the Day2-Day3 scenario
shown in the Fig. 2c. In these two scenarios (Day1-Day3 and Day2-Day3), we can
see a significant difference between the results of Without DA and With DA for
Interactive applications. The reason behind this difference is that the datasets
are imbalanced for this specific application; There are not enough samples for
this application, neither in source nor target networks. However, our method
can overcome this problem, resulting in a high F-measure. In the case of the
Day3-SiteB scenario also, the source and target datasets are highly imbalanced.
We can see the impact of our method in adapting the domains and overcoming
this issue in Fig. 2d.

6 Conclusion

In this paper, we propose a new domain adaptation method for the purpose of
network traffic classification. Since there may be different applications in source
and target networks, we propose to adapt only the shared applications while
retaining information about non-shared applications. As a result, the final con-
structed model will be applicable to all applications. This is achieved by min-
imizing the distribution distance between shared applications using the MMD
criterion. Additionally, regardless of the domain of the samples, we minimize the
distance between samples of each application and maximize the distance between
different applications. We construct five cross-network datasets in order to eval-
uate our method. In three cases, the source and target samples come from the
same network but are collected at different times; In two other cases, the source
and target networks are totally different. Results show that our proposed method
for ML-based network traffic classification is effective.
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Abstract. Machine learning is recognised as a relevant approach to
detect attacks and other anomalies in network traffic. However, there
are still no suitable network datasets that would enable effective detec-
tion. On the other hand, the preparation of a network dataset is not easy
due to privacy reasons but also due to the lack of tools for assessing their
quality. In a previous paper, we proposed a new method for data quality
assessment based on permutation testing. This paper presents a parallel
study on the limits of detection of such an approach. We focus on the
problem of network flow classification and use well-known machine learn-
ing techniques. The experiments were performed using publicly available
network datasets.
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1 Introduction

Network security is a key research area today. Development in the field of the
Internet goes hand in hand with increasing threats. Machine learning (ML) sys-
tems play a critical role in this field. However, ML techniques suffer of the
“garbage-in-garbage-out” (GIGO) problem, meaning they can only be as good
as the data they are trained on [26]. This is a fact that has serious consequences
because, despite its high performance, the model may be ineffective when trained
on a dataset that does not represent the real environment. This situation can
easily happen if the ML model is moved to another network or there is a drift
in input data.
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Although the network traffic can be easily captured from the network, many
papers noticed the lack of the high-quality network datasets [9,27] and the prob-
lem of assessing the quality of datasets is overlooked. Scientists and practitioners
tend to focus their efforts on optimizing ML models rather than on the quality
of the datasets [7], and the research area related to assessing the quality of the
dataset is overlooked. Dataset cleaning fixes well-known bugs in data but does
not fix the problem of the quality. After removing duplicates, outliers, and errors
resulting from technical problems or human activity, there are still problems with
the completeness of the dataset, its accuracy, consistency, or uniqueness of the
data, and these characteristics still remain difficult to assess [7]. In addition,
problems such as class imbalance [25], class overlapping [12], noisy data [15],
incorrect labels [10], or non-stationarity [33] are often unnoticed.

In this paper, we focus on the dataset quality assessment problem. In previous
work, we presented how to use permutation testing for this task [8]. Our approach
allows us to check whether the dataset contains enough information to predict a
specific labeling, i.e., assignation of traffic units to the legitime or attack class.
We showed that the proposed methodology is able to effectively assess the quality
of a network dataset by checking the relationship between the observations and
labels. In this article, we highlight the problem of the sensitivity of this method
to partial mislabeling, that is, the incorrect assignation of a subset of traffic
units to the normal/attack classes, and demonstrate how to use our approach to
capture even a small inconsistency.

The advantage of permutation testing [22,23] is that the permutation tests
create a null distribution that allows us to test the statistical significance of the
performance results of a given ML classifier or set of classifiers. Moreover, as
already shown in [21], permutation testing can be a useful tool to evaluate the
impact of noisy data on the model performance.

In this paper, our contributions are as follows:

– We describe challenges for dataset quality assessment which are crucial for
the effectiveness of machine learning-based network systems;

– We emphasize that a small problem in the network data may affect ML results;
– We experimentally investigate the limit of detection in our dataset quality

assessment method based on permutation testing (PerQoDA) presented in
[8,32] and propose the change in our original methodology;

– We show how by permuting (even extremely) a small number of labels, we
can detect small mislabeling problems in the dataset. These are important
research results because, to the best of our knowledge, there are no methods
that can detect mislabeling at such a high level of sensitivity.

The rest of the paper is organized as follows. Section 2 discusses related work
in the literature. Section 3 provides an introduction to permutation testing, the
details of the permutation-based methodology for assessing the quality of the
dataset, and how to interpret the results. Section 4 describes the problem of the
limit of detection in our method. Section 5 lists the results of the experiments
carried out on real network datasets. Finally, Sect. 6 concludes the paper and
discusses future work.
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2 Related Work

Dataset quality evaluation is key in the analysis and modeling of big data [4],
and it is of interest when developing new benchmarking datasets, critical for net-
work security. Evaluating the dataset quality is challenging and must be done
prior to any data modeling. While there are metrics that evaluate some impor-
tant properties of a dataset (accuracy, completeness, consistency, timeliness, and
others), these metrics often overlap [16]. Also, these metrics are more focused
on the quality of data, and there is a lack of complete and proven methodologies
for assessing the quality of datasets from a general perspective [30]. Soukup et
al. [28] proposed general dataset quality definitions and an evaluation methodol-
ogy of dataset quality based on selected performance measures between several
versions of the dataset. Statistical methods were used to compare their results.
However, no methods for overall evaluation were proposed.

Current research is mainly focused on data cleaning and optimization that
can indirectly improve the dataset’s quality. Taleb et al. [30] proposed qual-
ity evaluation scheme that analyzes the entire dataset and seeks to improve it.
More metrics and proposals are part of future work. Another method is crowd-
sourcing, where experts perform small tasks to address difficult problems. There
are many applications of this approach, for example, a query-oriented system
for data cleaning with oracle crowds [5] or a technique that improves the qual-
ity of labels by repeatedly labeling each sample and creating integrated labels
[34]. Another technique is metamorphic testing, originally developed to evalu-
ate software quality and verify relations among a group of test outputs with
corresponding test inputs [36]. Auer et al. [3] proposed to use this method to
assess the quality of data expressing data as functions and defining metamor-
phic relations on these functions. Ding et al. [11] showed another application of
metamorphic tests that were used to assess the fidelity, diversity, and validity
of datasets on a large scale. The authors of [31] proposed a black-box technique
that uses metamorphic tests to find mislabeled observations for which there is
a probability that the metamorphic transformations will cause an error. Erro-
neous labels are found using entropy analysis, which leverages information about
the output uncertainty. Additional options for dataset optimization are transfer
learning [24] and knowledge graphs [6] that were used to detect information gaps
and semantic problems. There is also an approach using reinforcement learning
[35]. This meta learning framework explores how likely it is that each training
sample will be used in training the predictive model.

Apruzzese et al. [2] proposed semisupervised methods within the framework
of active learning. This is very beneficial to improve the current dataset but
it cannot be used to evaluate quality. Moreover, Joyce et al. [17] is focused on
the unlabeled part of the dataset. The proposed solution can detect problematic
traits of dataset that can lead to over-fitting. However, the quality measure is
missing, and domain knowledge is required. Engelen et al. [14] is focused on
dataset quality assessment, however, the dataset is analyzed manually based on
deep domain knowledge.
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In the paper [8], we proposed a permutation-based assessment methodology
that allows the analyst to conveniently check whether the information contained
in the dataset is rich enough to classify observations precisely. Our method can
detect inconsistencies in the relationships between observations and labels in
multidimensional datasets. We also proposed a scalar metric allowing us to com-
pare two versions of a dataset (e.g., after some differential preprocessing) in
terms of quality [32]. We focus on supervised binary classification problems and
estimate dataset quality without input data or hyperparameters optimization.

In this article, we explore the detection limits of our approach and show how
to detect small imperfections in large datasets.

3 Background

In this section, we describe the permutation testing method, introduce an app-
roach that uses permutation tests to assess the quality of a dataset, and explain
how to interpret the results.

3.1 Permutation Testing

Permutation tests are a form of statistical inference which does not rely on
assumptions about the data distribution [23]. Thanks to this approach, we can
test if there is a significant relationship between the content of a traffic dataset
and its corresponding labeling. For that, we define the so-called null hypothesis
that the association of the traffic and the labeling is mild enough so that it
could be the result of randomness, and we test whether this hypothesis could be
rejected.

Permutation testing relies on random sampling. We repeatedly shuffle (i.e.,
permute) the selected data and check if the unpermitted (real) data comes from
the same population as the resamples. To compute the p-value, we typically
take the number of test statistics computed after permutations that are greater
than the initial test statistic and divide it by the number of permutations. If the
p-value is less than or equal to the selected significance level, we can reject the
null hypothesis and accept the alternative hypothesis, which reflects that the
relationship between traffic and labels is statistically significant.

3.2 Dataset Quality Assessment Based on the Permutation Testing

In short, our method presented in [8] is to calculate the model performance
after each permutation and see how many times that performance was better
than the model performance on the original data (true results). If this happens
many times, it would mean that our dataset is so random that it does not allow
classifiers to learn an accurate classification model. Since we want to assess the
quality of the dataset and not the quality of a specific ML classification strategy,
our approach is based on a pool of classifiers (from the simplest to complex and
from traditional to the state-of-the-art). In our method, we only permute labels
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and examine the relationship between observations and labels. For each classifier,
after P permutations, we obtain P performance results. Then we compare each
result with the true performance result and compute a p-value. The obtained
p-value table allows us to evaluate the quality of the dataset.

Let M be the model performance1 calculated from the original dataset and
M∗ the model performance computed after permutation. The p-value can be
defined as follows [1]:

p-value =
No. of (M∗ ≥ M) + 1
Total no. of M∗ + 1

(1)

In our method, we set the significance level to 0.01, and we define the null
hypothesis as that the association between observations and labels in the dataset
is the simple result of chance. This means that if the p-value > 0.01, the null
hypothesis cannot be rejected. Therefore the dataset has a weak relationship
between observations and labels. On the other hand, if the p-value ≤ 0.01, we
can reject the null hypothesis and conclude that the relationship is significantly
strong.

We assess the statistical significance of the performance results permuting
a selected part of the dataset, not just the whole dataset. We run permutation
tests for different label percentages (for example, 50%, 25%, 10%, 5%, 1%).
By taking an increasing number of labels into the permutation, we are able to
identify different levels of quality in the data, that is, of association between
data and labels. Note these set of tests are incremental and as such we did not
apply corrections on the significance level (e.g., Bonferroni corrections).

Let (X,y) be a dataset, where X is the set of observations and y is the set
of labels. To evaluate the quality of the dataset, we perform the following steps:

1. Train a pool of classifiers using the original dataset (X,y)
2. Evaluate each model using the selected metric
3. Permute selected percentage of the labels y to get new labels yp and new

dataset (X,yp)
4. Train the pool of classifiers on the dataset (X,yp)
5. Evaluate each model with the selected performance metric
6. For yp and y, compute the correlation coefficient
7. Repeat the steps 3 through 6, P times
8. Calculate p-value according to Eq. (1)
9. Repeat the steps 7 and 8 for each value of percentage

The proposed approach works for both balanced and imbalanced datasets
because it is finding trends in permutations [32].

3.3 Visualisation and Interpretation

After the procedure described in Sect. 3.2, we get a pool of performance results
after permutations and a p-value table. To assess the performance results, we
1 We can choose any performance metric such as accuracy, precision, recall, etc.
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combine a permutation chart and a p-value table. If at least one classifier shows
statistical significance in all permutation percentages, we can deem the dataset
as good. The reason is that we can find at least one ML method that can identify
the relationship between data and labels. If no ML method shows significant
results at any permutation level, the data should be considered of bad quality.
Any result in between these two extreme outputs reflect a partial level of quality,
which grows with the number of permutation percentages in which we find at
least one significant classification model.

An example of the visualisation of the performance results is shown in Fig. 1b.
Consider the dataset presented in Fig. 1a. This dataset is of good quality because
the classes are well separated, so we expect the ML algorithms to perform very
well on this data. In the permutation chart, we can see the true performance
results (shown by diamonds) and all the performance results after permutations
(shown by circles). Each performance result after permutation is located depend-
ing on the correlation between the original labeling and the permuted one [18].
We can notice that the true performance is high (equal to or close to 1) as
expected, and the results after each permutation are lower than the true results
(what is also expected if the dataset is of good quality). The lowest performance
at different percentage levels is marked with a red dashed horizontal line. This
can be interpreted as a baseline of randomness. This value can sometimes be
unexpectedly high and should therefore be observed (in this case, it is around
0.55).

(a) Dataset (b) Permutation chart

Fig. 1. Dataset (a) and the permutation chart (b) (Color figure online)

As can be seen in the p-value table (Table 1), all performance results are statis-
tically significant. All classifiers at all permutation levels reject the null hypothesis
(the symbol . represents the value ≤ 0.01). This means a very strong relationship
exists between the observations and the labels in the original dataset.

Additionally, in the previous work [32] we proposed a scalar metric for com-
paring datasets. We defined a slope metric that corresponds to the slope of the
regression line fitted to the points representing the classifier’s performance scores
(obtained after permutations) at different permutation levels (see Fig. 1b). Thus,
we got one slope per classifier, the largest of which was defined as a measure of
the quality of the dataset (in this case, the slope is approximately 0.75).
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Table 1. p-value table: p-values less than or equal to the significance level 0.01 are
replaced by a dot.

50% 25% 10% 5% 1%

KNN . . . . .

SVM . . . . .

DT . . . . .

RF . . . . .

AB . . . . .

XGB . . . . .

MLP . . . . .

4 Limits of Detection

In the dataset quality assessment method described in Sect. 3.2, we permute the
selected percentage of the labels. However, taking 1% of the labels in a large
dataset, we may not notice problems in the relationship between X and y in
a minor number of instances. Since we want to detect as minor mislabelling
problems as possible in the dataset, intuitively, we should permute the smallest
possible number of labels. This will allow us to establish the limit of detection
(LOD) of our approach. In chemistry, this term is defined as the lowest concen-
tration of an analyte that can be reliably detected with statistical significance
(for example, with 95% certainty) using a given analytical procedure [19]. Based
on these considerations, this paper examines the LOD of our approach, that is,
how well we can detect minor problems in datasets.

In order to investigate the limit of detection in our dataset quality evaluation
method, we will perform permutation tests on a very small number of observa-
tions (for example, 100, 50, 25, 10, 5, 1), regardless of the size of the dataset. By
permuting such a small fraction of the labels, we can evaluate the performance
loss (if any) at a high level of detection. This allows us to assess the relevance
of very small parts of the dataset and consequently assess the accuracy of the
labeling of the entire dataset, i.e., to evaluate its overall quality. It is also worth
noting that we will have high correlation coefficient values for a large dataset
because we only change a small part of the labels.

In practice, we make one change to the algorithm presented in Sect. 3.2.
We will permute the same small number of labels in each dataset instead of a
percentage (in step 3).

The theoretical foundations of the above considerations can be found in our
work [32], in which we explained why our method of assessing the quality of a
dataset is more sensitive at low permutation percentages.

5 Experiments

In this section, we present the results of the experiments with the LOD in
the permutation-based dataset quality assessment method. We also present ML



Evaluation of Detection Limit in Network Dataset Quality Assessment 177

techniques and performance metrics that were used in the procedure. We present
two case studies conducted on the publicly available real network datasets.

5.1 ML Algorithms

In our experiments, we used a pool of well-know supervised ML methods: K
Nearest Neighbours (KNN), kernel Support Vector Machine (SVM), Decision
Tree (DT), Random Forest (RF), AdaBoost (AB), XGBoost (XGB), and multi-
layer perceptron (MLP). The DT, RF, AB and XGB classifiers had a weight
class option set to “balanced”. The other hyperparameters were the default. We
used the standard stratified 2-fold cross-validation (CV) with shuffling the data
before splitting into batches. In other words, datasets were split into two sets
(for training and testing) keeping the percentage of samples for each class, the
models were then trained on one split and evaluated in the other twice, and the
performance results were averaged. Data has been scaled to range [0, 1]. We used
the Weles tool [29] to automate the generation of results.

5.2 Evaluation Metric

Our dataset quality assessment method can be used with different performance
metrics [32]. For this paper, we selected a recall metric, which directly reflects
the number of detected anomalies, i.e., the percentage of correctly classified pos-
itives, and which can arguably be considered especially relevant in cybersecurity
research. The recall is defined as follows:

Recall =
TP

TP + FN
(2)

where TP is the number of correctly predicted undesired traffic (True Positives),
and FN is the number of anomalous traffic classified as normal traffic (False
Negatives).

5.3 Case Studies

In this section, we present the results of the experiments on real datasets. We
used publicly available datasets: inSDN and UGR16. In all experiments, we con-
sidered the following fixed number of permuted labels (instead of percentages):
100, 50, 25, 10, 5, and 1 (from each class), and we conducted 200 permutations.
We focused on the binary classification problem.

Case Study 1: inSDN Dataset

The inSDN dataset is a publicly available network flow-based dataset that con-
tains 68,424 normal (legitimate) and 275,465 attack observations captured in a
Software Defined Network (SDN) environment [13]. The inSDN dataset includes
attacks on the Open vSwitch (OVS) machine as well as the server-directed
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(a) 2000 obs, 0% mislabels (b) 2000 obs, 5% mislabels (c) 2000 obs, 10% mislabels

(d) 10,000 obs, 0% mislabels(e) 10,000 obs, 5% mislabels(f) 10,000 obs, 10% mislabels

(g) 20,000 obs, 0% mislabels(h) 20,000 obs, 5% mislabels(i) 20,000 obs, 10% mislabels

Fig. 2. Permutation charts for the inSDN datasets

attacks: DoS, probe, brute force attacks (BFA), password-guessing (R2L), web
application attacks, and botnet. The inSDN dataset contains 83 traffic features.

In this scenario, we assessed the quality of the dataset against the problem of
distinguishing Probe attacks from normal traffic. We created balanced datasets
(prevalence2 = 0.5) with 2000, 10,000, and 20,000 observations. We removed the
following features: Timestamp, Flow ID, Src IP, Dst IP, Src Port, Dst Port, and
Protocol. To the original datasets, we introduced 0%, 5% and 10% mislabels.
Mislabels were injected randomly to both the normal data and attack data (in
the same proportions), and were present in the training set and test set. Our goal
was to capture the quality difference between original and mislabeled datasets.
Using the permutation strategy described in Sect. 4, we permute a maximum
of 5% (100/2000), 1% (100/10,000), and 0.5% (100/20,000) of the labels of the
first, second and third dataset, respectively.

The results of the dataset quality assessment with our permutation approach
is shown in Fig. 2 and Table 2. As expected, we can see that mislabeled datasets
are of lower quality than the original ones. All original samples are of a good
quality (even in case of the dataset with 20,000 observations and 0% mislabels
we have at least one classifier with statistically significant results). However, in

2 percentage of positives in the dataset.
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Table 2. p-value tables for the inSDN datasets. P-values above significance level 0.01
are marked in red, lower p-values are replaced by dot.

2000 obs
0% mislabels

2000 obs
5% mislabels

2000 obs
10% mislabels

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . . . . .02 .02 . . . . .01 .08 .16 . . . .05 .13 .18 .14

SVM . . . . . .02 .02 . . . . .02 .13 .15 . . . . .07 .25 .31

DT . . . . . . . . . .02 .18 .21 .33 .38 . .04 .26 .51 .66 .62 .64

RF . . . . . . . . . .12 .66 .81 .91 .89 . . .10 .32 .51 .52 .56

AB . . . . . . . . . .01 .13 .17 .24 .32 . .06 .26 .52 .70 .68 .68

XGB . . . . . . . . . .42 .86 .94 .95 .97 . . .05 .23 .38 .43 .41

MLP . . . . . .03 .01 . . . . .02 .17 .21 . . . .12 .34 .74 .74

10,000 obs
0% mislabels

10,000 obs
5% mislabels

10,000 obs
10% mislabels

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . . . . . . . . . .06 .15 .28 .30 . . .06 .17 .21 .22 .30

SVM . . . . . .02 .05 . . . . .02 .11 .10 . . . . .03 .15 .19

DT . . . . . . . . . .01 .05 .06 .10 .12 .01 .12 .35 .53 .56 .53 .55

RF . . . . . . . . . . .08 .13 .10 .15 . . . .05 .07 .05 .04

AB . . . . . . . . . .02 .03 .07 .06 .07 . .02 .08 .20 .17 .14 .16

XGB . . . . . . . . . . .01 .05 .11 .10 . . .01 .09 .15 .17 .19

MLP . . . . .03 .19 .21 . . . . .03 .19 .22 . . . .02 .06 .21 .26

20,000 obs
0% mislabels

20,000 obs
5% mislabels

20,000 obs
10% mislabels

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . . . . . . . . .10 .47 .60 .66 .69 . . .07 .17 .20 .23 .25

SVM . . . . .05 .22 .24 . . . .02 .09 .27 .24 . . . .02 .16 .48 .48

DT . . . . .05 .26 .27 . .06 .26 .46 .46 .49 .56 .11 .38 .55 .68 .67 .68 .68

RF . . . . .18 .46 .50 . . .05 .15 .15 .16 .18 .04 .21 .42 .55 .60 .61 .61

AB . . . . .08 .30 .44 . .05 .12 .28 .36 .32 .39 .14 .41 .54 .61 .73 .68 .68

XGB . . . .01 .30 .59 .65 . . . .02 .13 .43 .33 . . .15 .63 .80 .80 .81

MLP . . . .03 .03 .57 .56 . . . . .04 .19 .24 . . . .08 .27 .67 .65

the permutation charts depicted in Fig. 2, we see black circles indicating that the
performance results after permutations were better than in the original dataset.
In the case of mislabeled datasets, we cannot reject the hypothesis that the
dataset is random as all classifiers do not have significant results when we per-
mute 1, 2, and 5 labels. Note that if the smallest percentage were 1%, we would
not be able to detect relationship problems in datasets with 10,000 and 20,000
observations having 5% mislabels (because for these datasets 1% means 100 and
200 labels, respectively, and for these permutation levels the performance results
are statistically significant). Moreover, these datasets would most likely have sta-
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tistically significant performance scores for 5% permutation level as well, since
typically, if the results are statistically significant at some level of permutation,
they’re also statistically significant if more labels are permuted.

The slope analysis also confirms that the mislabeled datasets are worse than
the original dataset (Table 3). The original good-quality datasets have the highest
slope values, and the datasets with 10% incorrect labels have the lowest slope.

It is worth noting, however, that for all analyzed samples, we can find
ML techniques which achieved true performance results above 0.9 (Table 4),
and, in research practice, without the dataset quality evaluation, they could be

Table 3. The slopes computed for the inSDN consecutive normal observations and
Probe/OVS attack data (samples without and with mislabels)

Dataset 0% mislabels 5% mislabels 10% mislabels

2000 obs 0.97279 DT 0.78068 DT 0.60636 RF

10,000 obs 1.04494 AB 0.82356 DT 0.70278 AB

20,000 obs 1.04837 DT 0.85276 DT 0.63686 DT

Table 4. inSDN datasets - true performance results (recall)

2000 obs 0% mislabels 2000 obs 5% mislabels 2000 obs 10% mislabels

KNN 1.0 0.951 0.899

SVM 1.0 0.95 0.9

DT 1.0 0.907 0.814

RF 1.0 0.921 0.852

AB 1.0 0.908 0.816

XGB 1.0 0.926 0.881

MLP 1.0 0.95 0.9

10,000 obs 0% mislabels 10,000 obs 5% mislabels 10,000 obs 10% mislabels

KNN 1.0 0.948 0.891

SVM 1.0 0.951 0.902

DT 1.0 0.901 0.814

RF 1.0 0.93 0.854

AB 1.0 0.909 0.822

XGB 1.0 0.949 0.902

MLP 1.0 0.95 0.9

20,000 obs 0% mislabels 20,000 obs 5% mislabels 20,000 obs 10% mislabels

KNN 1.0 0.948 0.893

SVM 1.0 0.95 0.902

DT 1.0 0.9 0.809

RF 1.0 0.936 0.864

AB 1.0 0.91 0.82

XGB 1.0 0.95 0.9

MLP 1.0 0.95 0.901
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considered to be of good quality. In particular, the datasets with 5% mislabels
have quite high performance results (even 0.95), and without the analysis with
a method like the one we propose, they could be considered as good-quality
datasets.

Case Study 2: UGR16 Dataset

Another publicly available dataset we assessed was the UGR16 dataset [20]. This
dataset contains Netflow flows taken from a real Tier 3 ISP network composed
of virtualized and hosted services of many companies and clients. The network
traffic was captured on the border routers, so this dataset contains all the incom-
ing and outgoing traffic from the ISP. The UGR16 dataset contains 142 features
and includes attack traffic (DoS, port scanning, and botnet) against fake victims
generated by 25 virtual machines that were deployed within the network.

We tested three versions of this dataset depending on whether the flows
in the dataset were unidirectional or bidirectional and whether the traffic was
anonymized during parsing or not (Table 5). The original dataset (V1) con-
tains unidirectional flows that were obtained from Netflow using the nfdump
tool without using the -B option which creates bidirectional flows and maintain
proper ordering. After the V1 dataset was anonymized, we created two additional
datasets: V2 with the -B option enabled and V3 without this option. Addition-
ally, V2 and V3 datasets were devoid of features identifying Internet Relay Chat
(IRC) flows (Src IRC Port, Dst IRC Port) that were seen to have a deep impact
in the detection of the botnet in the test data. After parsing, the datasets con-
sisted of 12,960 observations containing flows aggregated at one-minute intervals
(1006 observations with attack data). These datasets were highly imbalanced
with prevalence = 0.078.

Table 5. UGR16 dataset versions

Dataset Direction -B option Anonymization IRC

V1 Unidirectional – – �
V2 Bidirectional � � –

V3 Unidirectional – � –

The results of the UGR16 dataset quality assessment with our permutation-
based approach are shown in Fig. 3, Table 6, and Table 7. As you can see, the
original dataset (V1) is not perfect, and the high quality of the labeling is ques-
tionable. All ML techniques do not produce significant results for 1, 2, 5, and 10
permuted labels. Additionally, enabling option -B (V2) resulted in deterioration
of the quality of the dataset (the RF algorithm is an exception, although it also
has statistically insignificant results). It is also worth noting that anonymization
lowered the quality of the dataset which is surprising and should be investigated
in the future in more detail. True performance results are presented in Table 8.
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(a) V1 (b) V2 (c) V3

Fig. 3. Permutation charts for the UGR16 datasets

Table 6. p-value tables for the UGR16 datasets. P-values above significance level 0.01
are marked in red, lower p-values are replaced by dot.

V1 V2 V3

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . .01 .07 .12 .13 .17 . .07 .30 .40 .50 .56 .54 . .04 .15 .28 .35 .46 .41

SVM . . . .15 .36 .53 .58 . .02 .04 .12 .18 .17 .22 . .01 .22 .62 .81 .86 .82

DT . . . .05 .18 .32 .37 .03 .26 .51 .63 .66 .70 .72 . . .12 .29 .42 .53 .52

RF . . . .08 .20 .24 .24 . . . .02 .04 .10 .04 . .03 .35 .64 .68 .77 .82

AB . . . .05 .21 .33 .35 .03 .09 .32 .41 .43 .54 .52 . .04 .22 .51 .54 .65 .65

XGB . . . .16 .48 .70 .64 . . .17 .57 .68 .78 .83 . . . .08 .20 .22 .29

MLP . . . .07 .15 .30 .31 .13 .55 .87 .96 .96 .99 .98 . .13 .41 .53 .58 .63 .58

Table 7. The slopes computed for the UGR16 datasets

V1 V2 V3

Slope 1.88207 AB 1.49998 MLP 1.48212 MLP

Table 8. UGR16 datasets - true performance results (recall)

V1 V2 V3

KNN 0.641 0.315 0.391

SVM 0.762 0.236 0.268

DT 0.917 0.565 0.753

RF 0.896 0.395 0.411

AB 0.916 0.575 0.746

XGB 0.926 0.807 0.903

MLP 0.923 0.62 0.778
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6 Conclusions

Machine learning techniques require high-quality datasets. An effective method
for assessing the quality of a dataset helps understand how the quality of the
dataset affects the performance results and can be instrumental to solve problems
related to the degradation of the model performance after the move to produc-
tion. We believe that the dataset quality has to be addressed and assessed prior
to any ML application.

In our previous papers [8,32], we presented an effective method for the dataset
quality assessment based on the permutation testing. The technique is based on
well-known ML classifiers. In this paper, we investigated the limits of detection of
this methodology, that is, how sensitive is our method to small quality problems
in the dataset. For that purpose, we investigated deep permutations, that is,
permutations of very small parts of the datasets. The theoretical basis and the
conducted experiments prove that the method is effective. It is worth adding,
however, that our method allows for the evaluation of a dataset, but does not
solve the problem of building a high-quality dataset.

In future work, we aim to define the general slope metric more appropriate
for assessing every dataset, which will include the solution of the detection limit.
Also, we would like to leverage available metadata to describe Root Cause Analy-
sis (RCA) of quality decrease. Moreover, we plan to improve the implementation
of the proposed method to allow higher adoption in the community.
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Abstract. Exercising Machine Learning (ML) algorithms to detect intrusions
is nowadays the de-facto standard for data-driven detection tasks. This activity
requires the expertise of the researchers, practitioners, or employees of companies
that also have to gather labeled data to learn and evaluate the model that will then
be deployed into a specific system. Reducing the expertise and time required to
craft intrusion detectors is a tough challenge, which in turn will have an enormous
beneficial impact in the domain. This paper conducts an exploratory study that aims
at understanding to which extent it is possible to build an intrusion detector that is
general enough to learn the model once and then be applied to different systems
withminimal to no effort. Therefore, we recap the issues that may prevent building
general detectors and propose software architectures that have the potential to
overcome them. Then,we perform an experimental evaluation using several binary
ML classifiers and a total of 16 feature learners on 4 public attack datasets. Results
show that a model learned on a dataset or a system does not generalize well as is to
other datasets or systems, showing poor detection performance. Instead, building
a unique model that is then tailored to a specific dataset or system may achieve
good classification performance, requiring less data and far less expertise from
the final user.

Keywords: Intrusion detection · General model · Transferability ·Machine
learning · Feature learning

1 Introduction

“Unfortunately, we cannot claim validity of our results beyond the system/datasets used
in this study”. This statement appears quite frequently when discussing threats to validity
orwhen remarking lessons learned froman experimental study.At a first glance, itmay be
seen as a defensive statement, which discourages the reader from applying the proposed
technique in systems other than those considered in the study. However, generalizing
the results of an experimental study is together one of the main goals and at the same
time one of the most difficult achievements of those studies.

In the security domain, this aspect is extremely relevant as most of the mitigations,
defenses, and detection mechanisms are tightly tailored to a specific system, domain or
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attack to defend against.More specifically, intrusion detectors are nowadays built [48] by
feedingMachineLearning (ML)with performance indicators that are being continuously
monitored and analyzed to spot anomalous behaviors due to ongoing attacks. Those
ML algorithms are typically binary classifiers, which aim at distinguishing between
normal and attack-related behavior by processing feature values. This has proven to
be very effective for detecting a wide variety of attacks, and in the last two decades
originated a huge amount of research papers and industrial applications [41–47] that
have the potential to improve security attributes of ICT systems. However, researchers
and practitioners have to craft intrusion detectors for specific systems, network interfaces
and attack models, to name a few.

As a result, intrusion detectors that may have excellent detection performance for
a given system will not have comparable detection performance when applied to dif-
ferent systems, network topologies or attack types. On the other hand, the availability
of ML algorithms that are more robust, accurate and that orchestrate ensembles of ML
algorithms themselves (i.e., meta-learners [14, 17]) may offer the opportunity to build
intrusion detectors that generalize well to (slightly) different systems or domains.

Therefore, this paper conducts an exploratory study to understand towhat extent, and
under which assumptions, it is possible to craft intrusion detectors that have satisfying
detection performance and generalize well to different systems. We start by listing the
main threats to building general intrusion detectors according to the literature on the
domain. This paves the way for proposing two software architectures that rely either
on feature mapping or feature learning and that allow building intrusion detectors that
are as general as possible, and can potentially be trained once and used in different
systems with minimal effort. We then conduct an experimental campaign embracing 4
public attack datasets that have overlapping feature sets and that suit the evaluation of
both feature mapping and feature learning architectures for intrusion detection. Results
clearly show that it is not possible to build an intrusion detector that is general enough to
be trained once and then be applied to other systems or datasets with no effort, achieving
satisfying detection performance. Instead, it is possible to build a detector to be used as
a baseline and then tailored to the specific system, requiring minimal expertise and less
data with respect to creating a system/specific intrusion detector, but having comparable
detection performance.

The paper is structured as follows. Section 2 summarizes related works and the main
issues in building general intrusion detectors, letting Sect. 3 propose software architec-
tures for building general intrusion detectors. Section 4 expands on our experimental
campaign, whose results are elaborated in Sect. 5. Section 6 concludes the paper.

2 On Generalizing Intrusion Detectors

The traditional flow for deriving intrusion detectors [48] starts from identifying security
problems and collecting data to be used for learning models. Their performance is then
evaluated and compared against potential competitors, and then the detection system
is deployed and put into operation. This is a consolidated flow that has been proven
effective in many studies [41, 43–47].
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2.1 Motivation and Novelty of this Study

However, the intrusion detector created at the end of this process is system-specific,
meaning that it is meant to be effective only in a specific system, against specific attacks
and under specific additional assumptions (if any).

This forces the security specialist to start almost from scratch whenever they have a
new problem to deal with. Companies or research institutes often already have system
monitors that can be used to gather the values of performance indicators of a system
over a period of time; however, the collection process is time-consuming, and labeling
monitored data has even an higher cost. That is why in recent years there were studies
[2, 49] aimed at building intrusion detectors that are not system-specific and could
generalize to other datasets, requiring far less data and knowledge for training, evaluating
and deploying the detector. Both studies rely on two datasets with similar feature sets,
learn the model (supervised in [2], unsupervised in [49]) using one dataset, and test
their model on the other dataset. Authors agree that a model learned on a dataset cannot
perform detection in another one with good detection performance.

In this paper, we are interested in conducting an exploratory study that spans across
a wider range of software architectures that could potentially build general intrusion
detectors. According to studies [2, 49], we do not expect models learned on a dataset
to have excellent detection capabilities on other systems or datasets when used as they
are. Instead, we explore the extent to which is it possible to tailor an existing model to
a new dataset or system to perform intrusion detection satisfactorily, and the amount of
knowledge that is required to perform such tailoring. Should this knowledge be small
enough, this would require less expertise and save time (i.e., money) as it will allow
building intrusion detectors starting from a general baseline instead of starting every
time from scratch [48].

2.2 Issues in Generalizing Intrusion Detectors

Here we summarize the obstacles to building a general intrusion detector.

I1: Domain and Purpose of the System. It is widely acknowledged that modern ICT
systems can be targeted by attackers [25, 26]. There is significant evidence on the risk of
cyber-attacks, both in terms of the likelihood of being targeted and the cost and impact of
a successful attack. The number of computer security incidents has been steadily growing
over the past few years: in 2021, SonicWall [26] reported an average of 28 million cyber-
attacks detected daily, with 140 000 of them being novel malware samples. Starting from
2020, the European Union Agency for Cybersecurity (ENISA) observed a spike in non-
malicious incidents, most likely because the COVID-19 pandemic became a multiplier
for human errors and system misconfigurations, and attributed them as the root cause
for the majority of security breaches [25].
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Consequently, virtually any system connected to a public (but also private) net-
work should be willing to adopt an intrusion detector to ensure that appropriate security
requirements are met. From a theoretical standpoint, a general intrusion detector should
achieve satisfying detection performance when processing data from any domain, which
is clearly unfeasible in practice. However, there could be small constraints to be applied
and that allow building an intrusion detector with a wide (albeit not complete) range of
applicability.

I2: Monitoring. Regardless of the purpose, type and domain of a system, it is not
possible to conduct intrusion detection without monitoring specific attributes, areas,
components or layers of the system itself. Monitoring activities collect the value of
performance indicators of a system at given time-instants or when specific events occur:
examples include memory usage [19, 20], the throughput of buses [20], and system calls
[21]. Also, those indicators can be gathered at hardware or low-level [22], system-level
[20, 21], input/sensor [24], environment [19], or even coding-level [23]. Specifically for
intrusion detectors, indicators to be monitored are usually related to network usage: this
reduces the uncertainty regarding where a specific indicator is going to be monitored.
Unfortunately, different network monitors may provide different indicators, or similar
indicators with different measure units or sampling process, which still complicates the
data analysis process.

I3: Feature Extraction and Learning. The baseline upon which intrusion detectors
learn how to assign the “normal” or “anomaly/attack” binary label to a data point depends
on the features,which are defined as “individualmeasurable properties or characteristics
of a phenomenon being observed” [17]. Feature values related to the state of the system
at a given instant build a data point: collections of data points are typically in the form
of tabular datasets. Each data point contains values for each feature engineered from
monitored system indicators. Additional attributes, called meta-features, can be further
extracted from the corresponding dataset during the process [18]. Not all features help
in distinguishing between normal or anomalous data points, whereas some of them may
just represent noise. The importance of a thorough understanding of the underlying data
and their features, as well as the produced results, is stressed in [1].

Learning complex features from the training dataset is of utmost importance, espe-
cially in deep learners that exercise a backbone [16] composed of convolutional and
pooling layers, and forward its outputs to the connected layers that learn how the value
of those features is linked to either normal or anomalous behavior due to attacks.

I4: Availability and Quality of Data. It is of no surprise that the amount [7] and noise
[9, 13] contained in training data heavily affect the model building and consequently the
whole detection task. Relying on a small training data setmay result in underfitting [8] the
model: this means that the model was created using poor or insufficient knowledge and
will not be accurate nor general. In addition, data pre-processing (or the ML algorithm
itself) should minimize uncertainty due to noisy labels [9] or in the training set [13]: a
noisy item should not have a major impact on the way an ML algorithm learns a model,
or on the way the model is used to assign labels to novel instances.



190 T. Zoppi et al.

I5: Learning Process. ML algorithms are trained using a training dataset [3], which
contains data points and the associated labels describing the binary class of each point.
When the model learned from the ML algorithm is not general, even small perturbations
can cause classifiers with high accuracy to produce an incorrect prediction on novel
samples [4]. Overfitting [8] happens when a classifier learns a model that corresponds
too closely or exactly to a particular set of data, and may therefore fail to generalize to
a different, albeit similar, input set.

Throughout years, ML algorithms and especially deep learners were made more
and more robust to overfitting through techniques such as pruning [15], early stopping
[12], batch normalization [5], dropout regularization [6], conjugate gradient [11], and
weight decay [10]. Altogether, those techniques are necessary to build models which
have satisfying generalization capabilities. Unfortunately, they are not sufficient, as “it
is very difficult to make a detailed characterization of how well a specific hypothesis
generated by a certain learning algorithm will generalize, in the absence of detailed
information about the given problem instance” [14].

3 Architectures for Building Generalized Intrusion Detectors

All the issues above constitute severe obstacles in building a generalized IntrusionDetec-
tor. However, there are efforts that could bemade to overcome some of them andmitigate
the negative impact of other issues.

3.1 Dealing with Generalization Issues

The Domain and Purpose (I1) of the system will impact how the intrusion detector will
work regardless of all the efforts we could put. Intrusions will be at least partially related
to the target system: in this study, we limit the uncertainty on this aspect by assuming
that an intrusion detector is a binary classifier, which raises an alert if notices something
unexpected in the data flow. The data flow of performance indicators comes fromMoni-
toring (I2) activities: each system has its ownmonitoring strategy we do not have control
about. Whereas it is likely that network indicators will be monitored through state of
the art (and usually open source) tools such as Wireshark, Nagios, Prometheus, Zabbix,
CICFlowMeter or slight variations of them, we cannot reasonably assume to know how
many and which indicators are going to be monitored for a given system. However, we
can manage the way we Extract and Learn Features (I3) from those data, to provide the
intrusion detector with a set of features of constant and predefined amount. This will
require exercising a system-dependent activity that processes monitored performance
indicators (PI) to extract a fixed amount of features to be fed into the intrusion detector
which is therefore decoupled from the target system.
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This way, it is possible to gather data from different systems or existing datasets,
merge them and build training and test datasets for intrusion detection that contain far
more data instances. This helps also with the issue of availability (I4) of data to make
the intrusion detector learn how to distinguish between normal and attack-related data.
This learning process (I5) is at this point may even be completely decoupled from the
target system(s), providing the system architect with extreme freedom in choosing the
binary classifier that has the best potential for building an accurate intrusion detector.

3.2 Feature Mapping and Feature Learning

Let us explore how we deal with I3 with the aid of Fig. 1. On top of the figure we find
three different sample target systems, each running a monitoring strategy that gathers
heterogeneous sets of performance indicators, whose cardinality may be different (size
a, b, c in the figure). As a result, the intrusion detector cannot assume to know the
contents and the size of the feature set. This requires crafting aSystem-DependentFeature
Processing layer that is in charge of processing performance indicators to build a feature
set that contains a fixed amount of features and with known content, regardless of the
size and the contents of the monitored indicators from the target system. We foresee two
possible software architectures to implement this activity:

• FeatureMapping (on the left of Fig. 1): the first option creates a mapping function that
processes the set of performance indicators and maps them into a pre-defined set of
features of fixed lengthm {F1, F2, … Fm}. Suppose you want to process performance
indicators to build a set of 4 features (m= 4) {F1 = protocol, F2 = packet size, F3 =
packet length, F4 = header flags}. The feature mapper should process performance
indicators of a systemor a dataset to extract those features: clearly, themapper depends
on the target system since it has to know details about performance indicators and
then derive the mapping function to the defined feature set.

• Feature Learning (on the right of Fig. 1): differently, we can exercise an additional
layer of ML that does not aim at classifying, but is instead directed to learn a fixed
amount of features from the heterogeneous sets of performance indicators. Learned
features will then be provided to the intrusion detector for the second level of learning:
in other words, we are building a stacking meta-learner [27]. This approach employs a
set of kML algorithms that are trained using the specific set of performance indicators
PI of a given system (and thus feature learning is system-dependent), whose output
has a fixed cardinality, regardless of the size of the input indicators. The outputs
of all the k ML algorithms are then assembled to build a feature set of n features
{F1, F2, … Fn}. For example, we could employ k = 3 ML algorithms: two binary
classifiers BC1 and BC2 each of them outputting two probabilities pN (probability of
data being normal) and pA (probability of data being an attack), and a deep learner
DL we use as backbone, extracting the 4 features it generates after convolutional and
pooling layers. This generates a set of n = 8 features {BC1_pN, BC1_pA, BC2_pN,
BC2_pA, DL_F1, DL_F2, DL_F3, DL_F4}, which has constant size regardless of the
input performance indicators.
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Fig. 1. Architectures for building a General Intrusion Detector. Regardless of the size of the
feature set gathered from different systems (on top), exercising either Feature Mapping (on the
left) or Feature Learning provides the Binary ML classifier (bottom of the figure) in charge of
detecting intrusions with a feature set that has constant size.

3.3 Discussion, Advantages and Disadvantages

Those two software architectures have their strengths and weaknesses.
Feature mapping is clearly faster to execute and does not involve training ML algo-

rithms (other than the binary classifier) which may be a time-consuming and also a
complex task that involves optimizations, sensitivity analyses, and many more. On the
downside, mapping performance indicators into a set of features may lead to loss of
information, be very tricky and often unfeasible. For example, the NGIDS [50] dataset
has only 3 features (process_id, syscall, event_id) as well as ADFANet [50] (packets,
bytes, duration), whereas the CICIDS17, CICIDS18, AndMal17, and SDN20 share the
same feature set of 77 network indicators. Finding a feature set that can convey most
of the information contained in those datasets is not possible at all as there are no
overlapping indicators between NGDIS and the other datasets. Even excluding NGDIS,
ADFANet has far less indicators that other datasets and therefore it is very difficult to
map all datasets into a unique feature set without losing information. It follows that this
approach should be preferred whenever it is possible to tune the monitoring system to
extract relevant indicators, while it is less feasible when detecting intrusions in existing
datasets or in systems with non-customizable monitoring strategies.
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Differently, Feature Learning is a complex process that abstracts from all those
problems, which are masked by the learning process of ML algorithms used for feature
learning. Moreover, it is a flexible approach since the amount and the type of feature
learners can be tuned depending on the needs of the user e.g., the computational power
available for intrusion detection.

In the rest of the paper we will build an experimental campaign to quantify the
generalization capabilities of intrusion detectors that use either of those twoarchitectures.
Since our data baseline can be only composed of existing datasets, we will choose those
that were built using the same monitoring strategy and tooling and have overlapping
feature sets to make feature mapping feasible.

4 Experimental Campaign

4.1 Datasets Collection

There is a wide variety of tabular datasets related to intrusion detection, ranging from
device data in Internet-of-Things (IoT) systems to network data for intrusion detection
[28, 29]. Those often have heterogeneous feature sets which may not fit our exploratory
study. Instead, AndMal17 [32], CICIDS17 [31], CICIDS18 [31], and SDN20 [30] were
collected using the same network monitoring tool and as such fit our analysis. Table 1
summarizes the datasets considered in this study, reporting domain, name, publication
year, number of data points, number of features, types, and percentages of attacks.
Those datasets are quite recent (not older than 2017), and they are well-known reference
datasets in the domain. Regarding the attacks logged in the datasets, (Distributed) Denial
of Service and scanning attacks (e.g., probing, port scanning, reconnaissance) appear in
all datasets but AndMal17. Other attacks such as malware (AndMal17, SDN20), web
attacks (CICIDS17, CICIDS18), botnets (CICIDS18), spam (AndMal17) and phising
(AndMal17) occur in a few datasets. Overall, these 4 datasets provide a view on most of
the common attacks in the current threat landscape [25] and therefore we believe they
provide a representative data baseline to experiment on. Also, the reader should notice
that different datasets log system behavior under different attacks and therefore diversity
among datasets is dual: both from the target system and the attack model standpoints.

Table 1. Selected datasets: name, reference, release year, size, number of features, number and
percentage of attacks.

Dataset name Ref Year # Data points used # Features # Attacks % Attacks

AndMal17 [32] 2017 100 000 77 4 15.5

CICIDS17 [31] 2017 500 000 77 5 79.7

CICIDS18 [31] 2018 200 000 77 8 26.2

SDN20 [30] 2020 205 167 77 5 66.6
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4.2 Binary Classifiers for Intrusion Detection

We then choose the candidate binary classifiers for implementing the intrusion detector.
We do not aim at identifying a complete and broad set of classifiers: instead, we want
to use those that were widely used in the literature and that were proven to be effective
for tabular data. We ended up selecting Random Forests (RF, [35]), eXteme Gradient
Boosting (XGB, [36]) and the deep learner FastAI (FAI, [37]), which has optimizations
for tabular data. Random Forests are a well-known bagging ensemble of decision trees
that saw a lot of applicability for intrusion detection in the last decade [33], while
XGBoost has proven to outperform many classifiers including deep learners [34] for
tabular data. Lastly, FastAI contains optimizations for processing tabular data and entity
embedding of categorical features.

4.3 ML Algorithms to Be Used for Feature Learning

Feature learners to be used in this study can be essentially anyML algorithm: supervised,
unsupervised, backbone deep learner, and so on and so forth. Since this is an exploratory
study, we aim at exercising as many feature learners as possible: then, we may filter out
those that learn weak features and keep only those that learn the strong ones. In our study,
each feature learner learns two features, which are the probability of being a normal data
point, or the probability of being an attack. Summarizing, this study employs 16 feature
learners, that learn a total of 32 features (2 each):

• 10 unsupervised ML algorithms from the library PYOD [38], namely: ECOD,
COPOD, FastABOD, HBOS, MCD, PCA, LOF, CBLOF, Isolation Forests, SUOD.

• 5 supervised ML algorithms from Scikit-Learn [39], different from those used for
intrusion detection in the previous section: k-th Nearest Neighbors, ADABoost, Naïve
Bayes, Logistic Regression, Linear Discriminant Analysis.

• A deep learner used as backbone for feature learning (FastAI), which as motivated
before contains suitable optimizations to learn features from tabular data.

4.4 Experimental Setup and Methodology

Experiments are executed on a Dell Precision 5820 Tower with an Intel I9-9920X, GPU
NVIDIA Quadro RTX6000 with 24 GB VRAM, 192 GB RAM, and Ubuntu 18.04, and
they required approximately 6 weeks of 24 h execution.

The Pyod, Scikit-Learn and xgboost python packages contain all the code needed to
exercise ML algorithms. We created a Python script to load datasets, orchestrate feature
learners, train and evaluate intrusion detectors. The evaluation will mainly be carried out
by means of evaluation metrics for binary classification i.e., confusion matrix [40] and
especially using aggregated metrics as Accuracy and Matthews Correlation Coefficient
(MCC). Additionally, we compute the importance that intrusion detectors assign to their
features: those will help to break down the behavior of different intrusion detectors and
provide insights on the way they build their models. We split each of the dataset in half
(50–50 train-test split) and perform 5 series of experiments, which we explain below
and partially depict in Fig. 2:
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• RegularID: we exercise the ML algorithms Random Forests (RF), XGBoost (XGB),
and FastAI (FAI) on all datasets separately using the 50–50 train-test split and collect
metric scores. This is the usual way of training and evaluating an intrusion detector,
which is entirely system-dependent (i.e., not general).

• FeatL: we exercise the 16 feature learners on the train portion of each dataset but the
one used for testing, collecting their outputs. Those build a huge training set composed
of data instances with homogeneous structure (i.e., each of those data points has 32
feature values), even if they come from different datasets. Those are used to train the
intrusion detectors RF, XGB, FAI individually. For example, when testing the dataset
AndMal17, we train the detector using the train partition of CICIDS17, CICID18
and SDN20 (i.e., without using AndMal17 at all). The resulting model is then used to
detect intrusions using the test portion of AndMal17, which is completely unknown to
the intrusion detector. This quantifies how well the detector generalizes to a different
dataset.

• FeatL_TL:This is a process similar to FeatL, but it is not completely unrelated from the
dataset used for testing. Particularly, we partially use the train partition of the dataset
we want to evaluate to re-train the FeatL detector using transfer learning mechanics.
This way, the binary ML classifier gets tailored using some key information about
the system under test and is expected to have better classification performance than
FeatL, at a cost of a less general model. We will use either 1000, 5000, 10000, 20000
data points for transfer learning, labeling the corresponding detector as FeatL_TL1,
FeatL_TL5, FeatL_TL10, FeatL_TL20.

• Map: it is a process similar to FeatL, but does not execute Feature Learning. Instead,
it maps directly features from different datasets to the same feature set, since the 4
datasets in this study all share the exact same feature set.

• Map_TL: it is a process similar to FeatL_TL, but does not execute Feature Learning.
Instead, it maps directly features from different datasets to the same feature set, since
the 4 datasets in this study all share the exact same feature set.

5 Results and Discussion

5.1 Regular, Feature Learning and Feature Mapping Intrusion Detectors

We start analyzing results with the aid of Table 2. The table reports the highest MCC
achieved either byRF,XGB, or FAI for a given intrusion detector:RegularID, FeatLMap,
FeatL_TL20, Map_TL20. We chose the TL20 variants of the FeatL_TL andMap_TL as
they were delivering higher MCC than their counterparts which are using less data for
transfer learning. It turns out evident how RF and XGB are the preferred ML algorithm
for intrusion detection in most of the cases: they achieve the highest MCC on most
configurations reported in the table. Also, the AndMal17 dataset is the hardest of the
four to perform detection on: while for CICIDS17, CICIDS18 and SDN20we haveMCC
scores over 0.90, for AndMal17 the MCC does not exceed 0.65, that corresponds to an
accuracy of 92.9 and a Recall of 48.3 (i.e., more than half of the attacks, the 51.7%, are
not detected by the intrusion detector).

Going into the detail of the 5 different intrusion detectorswe instantiated in this study,
we can observe that – as expected – RegularID has the highest MCC being specific of
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Fig. 2. Experiments for building aRegularID, FeatL and FeatL_TL intrusion detectors, separating
the system-dependent from the general part of those detectors. The Map and Map_TL detectors
work the same as the FeatL and FeatL_TL, but do not perform feature learning.

a dataset and with no generalization capabilities. Using only 3 datasets for training a
unique model to be tested on another unknown dataset, either by mapping features (Map
in Table 2) or by feature learning (FeatL in the table) generates MCC scores that are far
lower than those of RegularID.Map scores are not even comparable with others, whereas
FeatL scores are better than those of Map but still noticeably lower than RegularID in all
datasets but SDN20, making those general detectors not applicable in a real setup due
to an excessive amount of False Positives and/or False Negatives. Scores of Map_TL20
and FeatL_TL20 are clearly better than those of Map and FeatL, but still lower than
those of RegularID: additionally, transfer learning limits the generalization capabilities
of those detectors as it adds another system-specific training component.

Nevertheless, it is interesting to observe the impact transfer learning has on MCC
scores. We discuss this aspect with the aid of Fig. 3, which also allows remarking the
following important observations:

• Adopting transfer learning clearly improves capabilities of intrusion detectors:
Map_TL1 has better MCC than Map, and the MCC grows the more data is used
for transfer learning (i.e., Map_TL20 has better MCC than Map_TL10, which is bet-
ter than Map_TL5, which outperforms Map_TL1). The same applies to FeatL and
FeatL_TL.

• Transfer learning has an outstanding impact when using detectors relying on feature
mapping. Map detectors have very poor scores, but improve dramatically even when
only 1000 data points are used for transfer learning (Map_TL1). This can be observed
in Fig. 3a and 3b looking at the two series of bars on the bottom of each bar chart.
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Table 2. MCC scores of the best ML algorithm (FAI, RF, XGB) used as regular ID, FeatL, Map,
FeatL_TL20, Map_TL20.

Dataset Map Map_TL20 FeatL FeatL_TL20 RegularID

AndMal17 0.023 XGB 0.251 XGB 0.313 FAI 0.453 XGB 0.647 RF

CICIDS17 0.626 XGB 0.993 XGB 0.975 FAI 0.987 RF 0.999 XGB

CICIDS18 0.260 FAI 0.853 XGB 0.890 RF 0.908 RF 0.928 XGB

SDN20 0.180 XGB 0.999 XGB 0.999 RF 0.999 RF 1.000 RF

Average
MCC

0.272 0.774 0.794 0.837 0.893
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Fig. 3. a (left) and b (right). MCC scores for each of the four datasets (one bar series each). Each
bar chart has 11 series of bars, one for each intrusion detector. Scores using XGB are on the left
(Fig. 3a), while scores using RF are on the right (Fig. 3b).

• The FeatL detectors have overall better performance than Map and therefore their
performance improvement with transfer learning is less evident than those of Map.
Nevertheless, applying transfer learning brings FeatL_TL20 to achieve MCC scores
that are very similar to those of RegularID scores. This is an important results because
it shows how it is possible to achieve good detection performance tailoring an existing
model rather than crafting an intrusion detection from scratch, saving key amount of
time and thus money.

5.2 On the Contribution of Feature Learners

FeatL has better scores than Map: this is due to the feature learners, which are trained
using a small portion of the novel system under test to extract features. We explain the
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contribution each feature learner has on the overall detection process with the aid of
Table 3, which presents the importance of feature learners for FeatL and FeatL_TL20
using either RF or XGB on the CICIDS18 dataset. Importance in each row of the table
sum up to 1, while each score ranges between 0 and 1: the higher, the most relevant
features learned froma feature learner are for training the intrusion detector.Additionally,
we report the difference in the importance of features between the FeatL_TL20 and the
FeatL, which does not apply transfer learning. The importance usingXGBorRF follow a
similar path: the FeatL detector learns a model that is almost entirely built over features
learned by KNN, which has 0.920 and 0.911 importance respectively for XGB and
RF. Other feature learners have marginal to negligible contribution, making the FeatL
detectors very dependent on the behavior of KNN features.

Table 3. Importance of feature learners in building the model for FeatL and FeatL_TL20 using
either XGB or RF as ML algorithms for the CICIDS18 dataset.

Unsupervised Feature Learn. Supervised Feature Learn.
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XGB
FeatL .001 .030 .003 .002 .003 .001 .002 .003 .002 .002 .003 .002 .000 .920 .020 .003

FeatL_TL20 .009 .012 .003 .001 .013 .007 .001 .005 .005 .007 .033 .088 .000 .455 .221 .139
Diff .007-.018 .000 -.002 .011 .005-.002 .002 .004 .005 .030 .086 .000 -.465 .201 .136

RF
FeatL .001 .032 .004 .003 .003 .002 .002 .003 .002 .002 .003 .002 .000 .911 .021 .004

FeatL_TL20 .010 .006 .004 .002 .011 .011 .001 .007 .007 .008 .027 .107 .000 .352 .327 .108
Diff .009-.026 .000 -.001 .008 .009-.001 .004 .006 .006 .024 .105 .000 -.559 .306 .105

Differently, the FeatL_TL20models obtained using 20 000 data points of CICIDS18
(the system under test for building this table) for transfer learning do not rely entirely on
KNN to detect intrusions. The importance of KNN features decreases a lot, favoring FAI,
ADABoost and LDA features. Other feature learners, especially those unsupervised, still
have very marginal contribution to the overall detection process.

Overall, it is safe to say that transfer learning makes XGB and RF learn a model that
does not heavily depends on a single feature learner, but instead combines the output of
different feature learners: this results in a more general model.

6 Conclusions and Future Works

In this study we proposed and experimentally evaluated two software architectures for
building intrusion detectors that have good generalization capabilities. Briefly, we aimed
at learning the model once and then apply it to as many datasets the user wants with
minimal effort, still achieving satisfying detection performance.

Our experimental results are not fully encouraging: they tell us that no matter the
intrusion detector, it will not generalize well to other datasets as is. Instead, it will be
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outperformed by system-specific intrusion detectors, confirming the studies [2, 49]. A
non-zero amount of knowledge about the system under test is indeed required to make
intrusion detectors able to detect intrusions in other datasets with satisfactory perfor-
mance. Knowing only a few thousands of data points of the system under test allowed
intrusion detectors reaching satisfying detection scores in our experiments, without out-
performing traditional system-specific intrusion detectors. It follows that tailoring a
baseline model through transfer learning has the potential to obtain satisfactorily (albeit
not optimal) detection performance, requiring less data and minimal expertise from
the user standpoint, which does not have to train multiple ML algorithms nor running
complex performance evaluations.

Particularly, pre-processing datasets through different ML algorithms deployed as
feature learners clearly builds an intrusion detector that potentially has generalization
capabilities. Therefore, as futureworkswewant to elaboratemore on those detectorswith
respect to three dimensions of analysis, namely: i) carefully selecting feature learners to
be used, ii) gathering training data from more datasets, hoping to build a detector which
is more solid and as such has better generalization capabilities, and iii) performing
sensitivity analyses aiming at clearly identifying the minimum amount of data which we
have to gather from the system under test to train feature learners and tailor the detector
to achieve satisfactory detection performance.
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Increased energy efficiency and decarbonization of the energy system are two primary
objectives of the European Energy Union. European buildings remain predominantly
inefficient, accounting for 40% of final energy consumption and 36% of the total EU
CO2 emissions. The EU targets for 2030 include reaching a 32% share of renewable
energy and increasing energy efficiency by at least 32.5%. Due to the scale and
complexity of current building energy systems, traditional modeling, simulation, and
optimization techniques are not feasible and unable to achieve satisfactory results. To
achieve the aforementioned goals, modern buildings require the capabilities of self-
assessing and self-optimizing energy resources, meeting user preferences and
requirements, and contributing to an overall better and sustainable energy system.

The ongoing energy transition brings the possibility of real-time energy resource
management to building owners/managers and energy operators, with potential benefits
for consumers, producers, and the environment. To better tap into this potential,
stakeholders must be able to continuously assess the energy performance of building
energy systems and appliances, identifying areas where optimization services can be
applied. Implementing this assessment and optimization capability requires real-time
monitoring and control of the building equipment and major energy-consuming
appliances. This functionality can be effectively performed by Internet of Things
(IoT) enabled sensors and devices coupled with services that can assess and optimize
the energy resources in buildings.

The capability to analyze and optimize buildings’ energy resources and energy-
consuming equipment in useful time is not possible without employing machine
learning (ML) techniques and big data infrastructures. This gives rise to ML building
energy management (BEM) services that can be effective in an increasingly electrified
and complex environment with energy flows between the grid, photovoltaic produc-
tion, electric vehicles, storage batteries, building thermal capacity, and consideration of
changing consumption patterns, occupants’ comfort, and highly variable user
preferences.

Machine learning is a key enabler of scalable and efficient tools for building energy
assessment and for the development of services capable of dealing with the increased
complexity of energy management in buildings generated by the electrification of the
energy system.

Following its previous edition in 2021, MLBEM 2022 was organized as a Euro-
pean forum for buildings energy and ML researchers and practitioners wishing to
discuss the recent developments of ML for developing BEM systems, by paying
special attention to solutions rooted in techniques such as pattern mining, neural net-
works and deep learning, probabilistic inference, stream learning and mining, and big
data analytics and visualization. The workshop aimed at filling a gap in the EU
workshop panorama, providing researchers with a forum to exchange and discuss
scientific contributions and open challenges, both theoretical and practical, related to
the use of machine-learning approaches in building energy management. Moreover,



MLBEM 2022 aimed to highlight the latest research trends in machine learning under
the context of BEM, including topics like the privacy of data, big data, deep learning,
incremental and stream learning, and adversarial learning.

MLBEM 2022 received 4 submissions which were reviewed in a single-blind
process, with each submission receiving at least 3 reviews. In total, 2 papers were
selected for presentation at the workshop.

We hope that the workshop contributed to identifying new application areas as well
as open and future research problems related to the application of machine learning in
the building energy field.

Pedro M. Ferreira
Guilherme Graça
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Abstract. Non-Intrusive Load Monitoring (NILM) seeks to save energy
by estimating individual appliance power usage from a single aggregate
measurement. Deep neural networks have become increasingly popular
in attempting to solve NILM problems. However most used models are
used for Load Identification rather than online Source Separation. Among
source separation models, most use a single-task learning approach in
which a neural network is trained exclusively for each appliance. This
strategy is computationally expensive and ignores the fact that multi-
ple appliances can be active simultaneously and dependencies between
them. The rest of models are not causal, which is important for real-time
application. Inspired by Convtas-Net, a model for speech separation, we
propose Conv-NILM-net, a fully convolutional framework for end-to-end
NILM. Conv-NILM-net is a causal model for multi appliance source sep-
aration. Our model is tested on two real datasets REDD and UK-DALE
and clearly outperforms the state of the art while keeping a significantly
smaller size than the competing models.

Keywords: NILM · Single channel source separation · Deep learning

1 Introduction

In 2018, 26.1% of the total energy consumption in EU was attributed to house-
holds. This consumption mainly serves a heating purpose (78.4%). Moreover, most
of the residential energy consumption is covered by natural gas (32.1%) and elec-
tricity (24.7%), while renewables account for just 19.5% [6]. However, as solar and
wind generation rely on weather conditions, challenges due to intermittent gen-
eration have to be solved, and solutions for energy management such as demand
response and photovoltaic (PV) battery management can play a key role in this
regard. Machine Learning has proven to be a viable solution for smart home energy
management [32]. These methods autonomously control heating and domestic hot
water systems, which are the most relevant loads in a dwelling, helping consumers
to reduce energy consumption and also improving their comfort.
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An efficient energy management system has to take into account users habits
in order to anticipate their behaviour. However, comfort is hard to quantify as it
remains purely subjective. We argue that in an energy management context, the
users are the only ones that can offer a proper evaluation of their own comfort.
Hence, a satisfactory hypothesis is to consider that their current behaviour and
habits are the ones that optimise their comfort. Therefore, an efficient energy
management system is one that can anticipate users habits, optimise consump-
tion levels (for example by deciding which source to use, temperature settings
etc.) while offering solutions that alter users known habits as little as possible.

Learning users’ habits in a household is a hard problem mainly regarding
data acquisition. The possible behaviours are diverse, if not unique, while mon-
itoring inhabitants is not acceptable as it is a privacy infringement. From an
energy provider perspective, the only available information is the household’s
total power consumption. A solution is therefore to decompose this consump-
tion into the consumptions induced by each appliance in the household. The
resulting disaggregated power time series can then be used as an input for a
machine learning algorithm in order to learn consumption habits.

Energy disaggregation (also called non-intrusive load monitoring or NILM)
is a computational technique for estimating the power demand of individual
appliances from a single meter which measures the combined demand of multi-
ple appliances. The NILM problem can be formulated as follows: Let ȳ(t) the
aggregated energy consumption measured at time t. With no loss of generality,
ȳ(t) can represent the active power (The power which is actually consumed or
utilised in an AC Circuit in kW). Then ȳ(t) can be expressed as in:

ȳ(t) =
C∑

i=1

y(i)(t) + e(t) (1)

where C is the number of appliances, y(i) the consumption induced by appliance
i and e(t) some noise. The aim is to find y(i) given ȳ(t).

There exist two approaches for NILM, namely load identification and source
separation. In the first case, a first step called signature detection corresponds to
the activation of a given appliance then a classification algorithm classifies the
appliance category. The idea behind load identification is to build appropriate
features called load signatures that allow to easily distinguish the referenced
appliance from others within the installation. In the latter case, separation is
directly obtained while retrieving the source signal.

In order to manage a building efficiently, for example using a reinforcement
learning agent, it is necessary to use a model that performs source separation
while being causal. In signal processing, a causal model is a model that performs
the needed task (here source separation) without looking beyond time t rather
than having to look in the future as presented in Fig. 2. The model can then be
used as a backend for prediction, which is necessary for energy management.

We propose Conv-NILM-net, a fully convolutional and causal neural net-
work for end-to-end energy source separation. Conv-NILM-net is inspired from
Conv-TasNet [20], a convolutional model for speech separation. The model does
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not require more quantities than active power and disaggregates the signal for
multiple appliances at once. We evaluate it on REDD and UK-DALE datasets,
compared to recent models and achieves state of the art performance. Figure 1
presents an overview of the model and Table 1 summarises the notations used
throughout this paper.

Fig. 1. Overview of Conv-NILM-net. It is composed of 2 blocs, the encoder/decoder
and the separator. The encoder first projects the signal into a latent space, the separator
disaggregates it into C corresponding to each appliance by learning C masks applied
to input signal, then the decoder projects the C signals to the input space

2 Related Work

Most approaches in the literature are load identification approaches that pre-
dict the state of an appliance (on/off) and predict the average consumption of
the given appliance during a certain period of time. Four appliance models are
usually considered:

– Type I On/off devices: most appliances in households, such as bulbs and
toasters;

– Type II Finite-State-Machines (FSM): the appliances in this category present
states, typically in a periodical fashion. Examples are washer/dryers, refrig-
erators, and so on;
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Table 1. Summary of notation.

ȳ(t) Aggregated energy consumption at time t, ȳ(t) ∈ R
T

C Number of appliances

T Length of a signal

y(i)(t) True energy consumption of appliance i at time t, y(i)(t) ∈ R
T

ŷ(i)(t) Predicted energy consumption of appliance i at time t, y(i)(t) ∈ R
T

Z Latent space representation of the mixture signal, Z ∈ R
N×K

mi Learned mask for appliance i, mi ∈ R
N

si Filtered signal from the encoder for appliance i, si ∈ R
N

N Number of filters in encoder-decoder

L Length of the filters

B Number of channels in bottleneck and the residual paths’ 1 × 1-conv blocks

H Number of channels in convolutional blocks

P Kernel size in convolutional blocks

X Number of convolutional blocks in each repeat

R Number of repeats

– Type III Continuously Varying Devices: the power of these appliances varies
over time, but not in a periodic fashion. Examples are dimmers and tools.

– Type IV Permanent Consumer Devices: these are devices with constant power
but that operate 24 h, such as alarms and external power supplies.

Current NILM methods work well for two-state appliances, but it is still
difficult to identify some multi-state appliances, and even more challenging
with continuous-state appliances. One of the most noticeable approaches called
FHMM models each appliance as a hidden markov model (HMM) [13]. The HMM
of each appliance is modelled independently, each one contributing to the aggre-
gated power. AFAMAP [15] extends FHMM by predicting combinations of appli-
ances working states. In AFAMAP, the posterior is constrained into one state
change per time step. In [26], the authors propose a hierarchical FHMM in order
to stop imposing independence between appliances. The algorithm takes the
active power as input and performs a clustering of the correlated signals then
trains an HMM on the identified clusters called super devices. During the disag-
gregation step, the prediction is done using AFAMAP on the super devices then
the clustering is reversed to find the original appliance.

A critical step is the construction of load signatures or features that help to
uniquely identify all types of home appliances with different operation modes.
Event-based techniques have been employed to identify turn-on and turn-off
events using a variety of features like the active and reactive power [2,8,31],
current and voltage harmonics [27,28], transient behaviour particularly during
the activation and/or deactivation [3,17], current waveform characteristics [30].
Although the existing harmonic-based NILM methods achieved high load identi-
fication accuracy, their applicability is limited. The main drawback of this app-
roach is that it requires harmonic current signatures with respect to all possible
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combinations of devices. Consequently, the complexity of this method increases
exponentially with the number of electrical devices.

Deep Learning approaches have consistently outperformed HMM-based
methods. Indeed, the number of features associated with the complexity induced
by all the possible devices combinations make deep learning a natural candidate
for NILM. In recent years, learning-based approaches were proposed to clas-
sify and directly estimate the power consumption of type-1 and type-2 appli-
ances from an aggregated signal. Although FHMM-based NILM approaches are
extensively used for power disaggregation, their performance is limited to the
accurate approximation of appliance actual power consumption especially for
type-2 (multi-state) and type-4 (always-on) appliances. Moreover, HMM-based
methods have been reported to suffer from scalability and generalisation, which
limits its real-world application. In contrast to classical event-based and state-
based approaches, deep neural networks are capable of dealing with time com-
plexity issues, scalability issues, and can learn very complex appliance signatures
if trained with sufficient data.

Most recent NILM works employing deep neural networks used 1/6-Hz or
1/3-Hz sampled active power measurement as an input feature to train vari-
ous deep neural networks. Such as long short-term memory (LSTM) networks
[21,24], denoised autoencoder [1,11] and Convolutional Neural Networks (CNN)
[29,33]. [11] proposed 3 different neural networks. A convolutional layer followed
by an LSTM to estimate the disaggregated signal from the global one. They
also used a denoising convolutional autoencoder to produce clean signals. The
last neural network estimates the beginning and the end time of each appliance
activation along with the mean consumption of each. [11] performs better than
FHMM however their model was unable to identify multi-state appliances. To
solve the multi-state appliance identification issue, [21] proposed a two-layer bidi-
rectional LSTM based DNN model. Similarly, [29] proposed a two-step approach
to identify multi-state appliances. They used a deep CNN model to identify the
type of appliances and then used a k-means clustering algorithm to calculate the
number of states of appliances.

Deep Learning also allowed source separation rather than load identification.
This approach is more difficult but offers precise estimation of the consumption
of each appliance in real time which includes continuous state appliances. [9,33]
proposed sequence-to-point learning-based CNN architecture with only active
power as an input feature. In [4] gated linear unit convolutional layers [5] are
used to extract information from the sequences of aggregate electricity con-
sumption. In [23], the authors used a deep recurrent neural network using multi-
feature input space and post-processing. First, the mutual information method
was used to select electrical parameters that had the most influence on the power
consumption of each target appliance. Second, selected parameters were used to
train the LSTM for each target appliance. Finally, a post-processing technique
was used at the disaggregation stage to eliminate irrelevant predicted sequences,
enhancing the classification and estimation accuracy of the algorithm.
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In [8], the authors present WaveNILM which is a causal 1-D convolutional
neural network inspired by WaveNet [22] for NILM on low-frequency data. They
used various components of the complex power signal for NILM, current, active
power, reactive power, and apparent power. WaveNILM, requires no significant
alterations whether using one or many input signals. However, most of the exist-
ing DNNs models for NILM use a single-task learning approach in which a neural
network is trained exclusively for each appliance. That is also the case for Wave-
NILM. This strategy is computationally expensive and ignores the fact that mul-
tiple appliances can be active simultaneously and dependencies between them.
In [7] the authors introduce UNet-NILM for multi-task appliances’ state detec-
tion and power estimation, applying a multi-label learning strategy and multi-
target quantile regression. The UNet-NILM is a one-dimensional CNN based on
the U-Net architecture initially proposed for image segmentation [25]. However,
this model is not causal like WaveNILM.

Conv-NILM-net achieves the best of both worlds as it can handle source
separation for any type of appliance, for multiple appliances simultaneously, it
only needs the active power (although it is possible to other types of current in
the same time).

3 Conv-NILM-Net

The model aims at separating C individual power sources y(i) ∈ R
T , where

i ∈ {1, 2, . . . , C} from a mixture of signals representing the total consumption
ȳ(t) =

∑C
i=1 y

(i)(t)+ e(t) and T is the length of the waveform. Therefore it take
as input a single channel time series corresponding to the total consumption
and outputs C time series corresponding to the consumption of each individual
appliance. In this section, we present and detail our proposed architecture. We
will describe the overall structure before focusing on the separation module.

3.1 Overall Structure

Conv-NILM-Net is an adaptation of ConvTas-net [20]. Conv-Tasnet was orig-
inally only designed for speech separation and limited to two speakers. We
propose an adaptation to energy load source separation with theoretically no
limitation to the number of appliances. Our fully convolutional model is train-
able end-to end and uses the aggregated active power as only input making the
training easily deployable (no additional costly features needed).

Conv-NILM-net architecture consists of two parts: an encoder/decoder, and
a separator. The encoder generates a multidimensional representation of the mix-
ture signal; the separator learns masks applied to this representation to decom-
pose the mixture signal, then the decoder translates the obtained signals from the
encoded representation to the classic active power. The masks are found using a
temporal convolutional network (TCN) consisting of stacked 1-D dilated convo-
lutional blocks, which allows the network to model the long-term dependencies
of the signal while maintaining a small model size.



Conv-NILM-Net, a Causal and Multi-appliance Model 213

Using encoder filters of length L, the model first segments the input total
consumption into K overlapping frames ȳk ∈ R

L, k = 1, 2, . . . ,K each of length L
with stride S. ȳk is transformed into a N -dimensional representation, Z ∈ R

N×K :

Z = F(w · Ȳ ) (2)

where Y ∈ R
L×K and w ∈ R

N×K the N learnable basis filters of length L each.
Z represents the latent space representation of the mixture series while F is a
non-linear function. To ensure that the representation is non-negative, Conv-
tasnet [20] uses the rectified linear unit (ReLU). However, this choice leads to a
vanishing gradient behaviour, driving the norm of the gradients towards 0 thus
making the model collapse as it eventually outputs null signals. Therefore, we
replace ReLU with Leaky ReLU and only use ReLU for the last layer of the
separation masks to enforce positive outputs.

The separator predicts a representation for each source by learning a mask in
this latent space. It is performed by estimating C masks mi ∈ R

N . The represen-
tation of each source si ∈ R

N , is then calculated by applying the corresponding
mask mi to the mixture representation, using element-wise multiplication:

si = Z � mi (3)

In Conv-tasnet as well as in [19], the masks were constrained such that∑C
i=1 mi = 1. This was applied based on the assumption that the encoder-

decoder architecture can perfectly reconstruct the input mixture. Indeed, in their
model, e(t) = 0, ∀t. This assumption cannot be made in a NILM context, it is
therefore relaxed.

The input signal of each source is then reconstructed by the decoder:

ŷ(i) = si · V (4)

where V ∈ R
N×L are the decoder filters, each of length L.

3.2 Separation Module

The separator is mainly based on a temporal convolutional network (TCN) [16]
and is detailed in Fig. 3. Temporal convolutions require the use of dilated con-
volutions which aim to increase the receptive field. Indeed, pooling or strided
convolutions are usually implemented for this purpose, however they reduce the
resolution. Dilated convolutions allow exponential expansions of the receptive
field without loss of resolution, while achieving same computation and memory
costs. These are simply implemented by defining a spacing between the values
in a kernel as illustrated in Fig. 2.

In [21], the authors used LSTM [18] for NILM. This architecture can han-
dle long sequences but suffers from the vanishing gradient issue while being
computationally costly. We argue that a more efficient approach is to make use
of 1D-convolutions. As illustrated in Fig. 2, convolutions for time series require
future values (compared to the point of reference). During inference, these values
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Fig. 2. Causal and dilated convolutions. Fig. 3. Detailed representation of the
separator.

are not accessible making the use of this model unpractical for prediction. This
can be solved by giving a causal formulation to convolutions where the present
value only depends of past ones. Moreover, the implementation is easy as it only
requires an asymmetric padding.

However relevant values become sparse. As in [20], Conv-NILM-net uses
dilated layers with exponentially increasing dilation rates. The dilation factors
increase exponentially to ensure a sufficiently large temporal context window to
take advantage of the long-range dependencies in the signal. Therefore the dila-
tion factors increase exponentially to ensure a sufficiently large temporal context
window to take advantage of the long-range dependencies in the signal. There-
fore TCN consists of 1-D convolutional blocks with increasing dilation factors.
Given kernels of length L and l layers, the receptive field of Conv-NILM-net is
of size RF = 2l(L − 1).

The output of the TCN is passed to a 1× 1 conv block for mask estimation.
This block also serves for dimensionality reduction and together with a nonlinear
activation function estimates C mask vectors for the C target sources. The last
layer of the last bloc uses a ReLU activation function to ensure the non-negativity
of the outputs.

Contrary to speech separation, where simultaneous speeches are independent
from one another, it is not the case in NILM context where appliance activations
can be highly dependent. An elegant solution proposed in [4,10], can be to use
gated linear units (GLU) [5] to replace LeakyReLU activation functions. GLU
allow the model to decide itself the relative importance of the kernels by using
two parallel convolutions with the first followed by a sigmoid which result is then
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Fig. 4. Outputs of Conv-NILM-net of top 5 appliances of REDD building 1 when
trained using classic MSE. We observe the presence of the artefacts although the MSE
is minimized.

multiplied with the second convolution. The output of the sigmoid acts like a
mask that activates depending on the input of the second convolution.

MSE, L1, or even SI-SNR [20] losses are often used for NILM or source
separation problems. The MSE takes the average squared error on all time steps
for all disaggregated signals (i.e. appliances). We found that taking the mean on
appliances is detrimental to the learning process as the error is distributed over
all appliances. Therefore, the signals get mixed and artefacts of most consuming
appliances appear on the remaining ones as illustrated in Fig. 4. We therefore
choose to sum the error over all appliance rather than averaging it. The window
mean squared error is calculated as:

WMSE =
1
T

T∑

t=0

C∑

i=1

(
ŷ(i)(t) − ȳ(i)(t)

)2

(5)

4 Experimental Methodology, Results, and Discussion

4.1 Datasets and Parameters

Our experiments are done on two real-world datasets, Reference Energy Disag-
gregation Dataset (REDD) [14] and UK-DALE [12]. REDD records the power for
6 houses with sampling frequency 1Hz for mains meter and 1/3 Hz for appliance-
channel meters. We choose to disaggregate the five top appliances for each build-
ing. UK-DALE data set published in 2015, records the power demand from five
UK houses. In each house we record both the whole-house mains power demand



216 M. Alami C. et al.

every six seconds as well as power demand from individual appliances every six
seconds.

For REDD, we converted the disaggregated data 1Hz using linear extrapola-
tion and kept 1/6 Hz frequency for UK-DALE. Usually the data are normalised
and the series of each appliance are scaled individually. We argue that appliance
scaling is not practical as it is not possible to apply the scaling factors to the
global signal available during inference. Therefore we chose to only use a min-
max scaler for all appliances combined directly on the mixture power signal. In
some contributions like seq2seq and seq2point [9,33], a sliding window of the
aggregate power is used as the input sequence, and the midpoint of the window
corresponding to the target device reading is used as the output. This prepro-
cessing smooths the power loads and makes the target values to retrieve easier.
All results presented in Sect. 4.3 for these implementations were obtained using
smoothing. The results presented for Conv-NILM-NET were obtained without
smoothing, making the difference in performance even more noticeable.

For UK-DALE dataset, we compare our results to UNET-NILM [7] and
seq2point [9]. The constructed artificial aggregate consumption is obtained by
taking the summation of selected appliances plus additional one appliance (Tele-
vision in this setting). For UNET-NILM, the authors used a quantile filter to
smooth the signal. This is not required for Conv-NILM-Net.

In our implementation for Conv-NILM-Net, we used for, each dataset, one
day as input. This means that 1Hz frequency, the input to Conv-NILM-net was
86400 points for REDD and 14400 for UK-DALE (1/6 Hz). The used parameters
for Conv-NILM net are: N = 32; L = 48; B = 2; H = P = X = 3; R = 2.
The meaning of each notation is made available in Table 1 where we kept the
same notation as in [20]. The model was trained for 2000 epochs using 10-fold
cross-validation and a batch size of 5. We used Adam optimiser with an initial
learning rate lr = 0.01, betas = (0.9, 0.999), eps = 0.01.

4.2 Metrics

We evaluate the performance of the framework using the mean absolute error
(MAE). Estimated accuracy is also a common metric for evaluating disaggre-
gated power.

Est.Acc. = 1 −
∑T

t=1

∑C
i=1 |ŷ(i)(t) − ȳ(i)(t)|

2
∑T

t=1

∑C
i=1 ȳ

(i)(t)
(6)

where ŷ(i)(t) is the predicted power level of appliance i at time t, and ȳ(i)(t) is the
ground truth. The above expression yields total estimated accuracy; if needed,
the summation over i can be removed creating an appliance-specific estimation
accuracy. We also report the Signal Aggregate Error (SAE):

SAE =
|r̂ − r|

r
(7)



Conv-NILM-Net, a Causal and Multi-appliance Model 217

Table 2. Conv-NILM-Net scaled results on top five appliances REDD dataset. Best
average results are highlighted in bold.

Building Appliance Model
Conv-NILM-NET Causal Causal + GLU
MAE Est.Acc SAE MAE Est.Acc SAE MAE Est.Acc SAE

Building 1 Fridge 0.049 0.900 0.058 0.006 0.981 0.053 0.004 0.987 0.051
Washer
dryer

0.005 0.937 0.074 0.002 0.993 0.088 0.002 0.990 0.103

Light 0.063 0.970 0.030 0.007 0.980 0.021 0.008 0.984 0.033
Sockets 0.015 0.874 0.092 0.005 0.984 0.131 0.006 0.992 0.191
Dishwasher 0.006 0.916 0.102 0.002 0.993 0.095 0.003 0.997 0.070
Total 0.027 0.919 0.071 0.005 0.986 0.078 0.004 0.989 0.054

Building 2 Fridge 0.038 0.912 0.052 0.032 0.939 0.068 0.041 0.956 0.054
Washer
dryer

0.018 0.914 0.109 0.031 0.940 0.098 0.034 0.967 0.087

Light 0.012 0.986 0.024 0.002 0.981 0.104 0.008 0.987 0.099
Sockets 0.002 0.993 0.059 0.001 0.991 0.032 0.006 0.990 0.058
Dishwasher 0.0006 0.997 0.115 0.001 0.993 0.029 0.003 0.992 0.031
Total 0.014 0.960 0.0718 0.014 0.969 0.066 0.018 0.978 0.066

Building 3 Fridge 0.006 0.820 0.089 0.072 0.822 0.078 0.009 0.856 0.068
Washer
dryer

0.007 0.997 0.061 0.003 0.993 0.065 0.004 0.993 0.087

Light 0.009 0.863 0.123 0.037 0.854 0.098 0.006 0.900 0.098
Sockets 0.009 0.961 0.091 0.040 0.941 0.080 0.007 0.942 0.126
Dishwasher 0.007 0.960 0.085 0.032 0.940 0.096 0.005 0.989 0.078
Total 0.006 0.920 0.90 0.037 0.910 0.083 0.006 0.936 0.091

Building 4 Fridge 0.003 0.961 0.054 0.007 0.982 0.021 0.050 0.930 0.043
Washer
dryer

0.002 0.947 0.105 0.016 0.933 0.087 0.031 0.954 0.056

Light 0.002 0.936 0.076 0.019 0.940 0.055 0.002 0.901 0.080
Sockets 0.001 0.981 0.098 0.008 0.980 0.016 0.006 0.937 0.024
Dishwasher 0.0006 0.994 0.132 0.002 0.995 0.098 0.020 0.892 0.069
Total 0.002 0.964 0.093 0.011 0.966 0.055 0.022 0.923 0.054

Building 5 Fridge 0.003 0.883 0.005 0.005 0.880 0.004 0.005 0.991 0.093
Washer
dryer

0.003 0.992 0.001 0.0009 0.993 0.001 0.003 0.983 0.012

Light 0.0006 0.999 0.0001 0.0001 0.999 0.002 0.002 0.977 0.10
Sockets 0.0006 0.966 0.002 0.002 0.97 0.005 0.007 0.931 0.037
Dishwasher 0.0008 0.913 0.004 0.004 0.91 0.002 0.010 0.990 0.078
Total 0.002 0.950 0.002 0.002 0.95 0.002 0.005 0.974 0.064

where r̂ and r represent the predicted total energy consumption of an appliance
and the ground truth one. SAE measures the total error in the energy within
a period, which is accurate for reporting daily power consumption even if its
consumption is inaccurate in every time point.

4.3 Results on REDD

Table 2 presents the results obtained on REDD dataset for five building. For each
building with disaggregated the top five appliances and reported the MAE, esti-
mated accuracy ans SAE. We tested 3 versions on Conv-NILM-net. We observe
that the causal+GLU tend to perform better on average but its results are very
close to the causal implementation while increasing the number of parameters
dramatically. We therefore tend to prefer the causal version of our model.
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Table 3. MAE results for Building 1 of REDD dataset.

Model Fridge Microwave Dishwasher

seq2point 28.104 28.199 20.048
seq2seq 30.63 33.272 19.449
GLU-Res [4] 21.97 25.202 33.37
CNN-DI [34] 26.801 19.455 17.665
Conv-NILM-NET 14.67 9.67 3.56
Conv-NILM-NET (causal) 14.21 8.51 3.29
Conv-NILM-NET (GLU, causal) 15.02 9.76 3.31

Table 4. Experimental results (MAE) in the UK-DALE dataset.

Appliance Model
1D-CNN UNET-NILM Seq2point Ours Ours (causal) Ours (causal + GLU)

Kettle 20.390 16.003 2.16 1.85 1.9 2.5
Freezer 18.583 15.124 8.136 5.32 5.01 6.1
Dish washer 9.884 6.764 3.49 2.42 2.01 2.55
Washing machine 15.758 11.506 4.063 2.3 2.15 2.39
Microwave 9.690 6.475 1.305 0.902 0.91 1.05
Total 14.86 11.174 3.831 2.56 2.40 2.918

Table 3 compares the performance of Conv-NILM-net with state of the art
models on 3 appliances that appear on REDD dataset. These appliances were
selected as they are the only one presented in [34]. We therefore were limited
to these appliance to compare our framework. We observe that our models out-
perform the state of the art by a margin. It decreases the MAE by 45% for the
fridge, 51% for the microwave and even by 80% for the dishwasher. The best
performing model is the causal model. In the appendix we present some out-
puts of the model for buildings 1 to 4 from REDD. These were obtained when
disaggregating the top 5 appliances detailed in the same order as in Table 2.

4.4 Results on UK-DALE

Table 4 compares the MAE of our model on UK-DALE dataset with UNET-
NILM and seq2point. Our model outperforms the state of the art on the selected
appliances. The causal model performs the best again while the total average is
decreased by 33% compared to seq2pont.

Table 5 compares the size of Conv-NILM-net with state of the art models
in terms of number of parameters. We observe that the fully convolution archi-
tecture of our model along with its particular architecture (encoder/decoder +
separator) allow to obtain state of the art results with a model of approximately
40K parameters. This also possible because, contrary to other models, we use
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(a) building 1 (b) Building 2

(c) Building 3 (d) Building 4

Fig. 5. Selected results on top five appliances of first 4 building of REDD dataset. For
each building the appliances are presented in the same order as in Table 2. The left
panels correspond to the disaggregated target signals and the right panels presents the
predicted output from Conv-NILM-net.

a unique loss for only one task. For instance UNET-NILM uses two separate
loss functions, one to detect activation and an other to regress the average con-
sumption while Seq2point [9] uses bidirectional residual networks which are very
deep. It is also valuable to notice that models like UNET-NILM are specialized
on individual appliances, meaning that in one needs to disaggregate 5 appliances,
it requires 5 models, multiplying the number of parameters.
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Table 5. Number of parameters

Models # parameters

seq2point 29.2M
seq2seq 29.8M
GLU-Res 1.2M
CNN-DI 738K
Conv-NILM-net 41088

Finally, Fig. 5 presents some results on top five appliances of first 4 building
of REDD dataset. For each building the appliances are presented in the same
order as in Table 2. The left panels corresponds to the disaggregated target
signals and the right panels presents the predicted output from Conv-NILM-net.

5 Conclusion

In this work, we presented Conv-NILM-net, an adaptation of Convtas-net to
non intrusive load monitoring. We tested our model on two real world dataset
and showed that Conv-NILM-net outperforms the state of the art by a margin.
We presented 2 alternate models, one being causal and other using Gated Linear
Units (GLU). These models allowed accurate disaggregation of several appliances
at once while being much more smaller than their existing counterparts. Finally,
the causal model allows consumption prediction and is ideal as input to an energy
management system or a reinforcement learning model. In future work, we will
use causal conv-NILM-net as a prediction model and test it in a reinforcement
learning context. We will also test the GLU augmented model to verify if this
implementation effectively takes into account appliances inter-dependencies and
helps achieve better consumption predictions.
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Abstract. The energy sharing used to heat water represents around
15% in European houses. To improve energy efficiency, smart heating
systems could benefit from accurate domestic hot water consumption
forecasting in order to adapt their heating profile. However, forecasting
the hot water consumption for a single accommodation can be difficult
since the data are generally highly non smooth and present large varia-
tions from day to day. We propose to tackle this issue with three deep
learning approaches, Recurrent Neural Networks, 1-Dimensional Convo-
lutional Neural Networks and Multi-Head Attention to perform one day
ahead prediction of hot water consumption for an individual residence.
Moreover, similarly as in the transformer architecture, we experiment
enriching the last two approaches with various forms of position encod-
ing to include the order of the sequence in the data. The experimented
models achieved satisfying performances in term of MSE on an individual
residence dataset, showing that this approach is promising to conceive
building energy management systems based on deep forecasting models.

Keywords: Time series forecasting · Domestic hot water · Deep
learning · Convolutional Neural Networks · Multi-Head Attention

1 Introduction

In 2020, the average energy sharing used in an European house to heat water was
around 15% [1]. Most of the time, water is heated before being used by a water
heating system which priority is to insure user comfort by providing enough hot
water at any time. The system can heat too much water in advance leading to
energy waste [2]. This is even more true if the system is alimented by a heat
pump which performance depends on a large number of external factors such
as the weather. These considerations highlight the need for accurate forecasting
models of hot water consumption, that would allow to heat up just the right
amount of water at the best moment improving the building energy efficiency.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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However, Domestic Hot Water (DHW) forecast for individual residences can
be difficult due to the consumption being very sporadic and highly variable from
days to days [3]. To solve this problem, we explore the use of deep learning mod-
els. Indeed, we propose to compare three deep learning approaches adapted to
sequence processing to forecast individual hot water consumption: Recurrent Neu-
ral Networks (RNN), Convolutional Neural Networks (CNN) and Multi-Head
Attention (MHA). Unlike RNN, CNN and MHA do not explicitly take into account
the temporal dependencies in the data (they both consider a sequence as an
unordered matrix). One way to correct this is to use position encoding as in the
whole transformer architecture [4]. A position encoding will be added to a repre-
sentation in order to drag it in a specific direction in the feature space, the same for
elements at the same position in different sequences. We compare CNN and MHA
equipped with 3 different position encoding: fixed as in [4], learned as in [5] and
produced by a RNN. In a similar way as in [6], we also propose a version where
the days and hours are embedded the same way instead of being one hot encoded.
Another aspect of the proposed models is that they are constituted of a few layers
unlike recent approaches proposed for time series forecasting [7] and this has two
upsides. Firstly, they can be trained on a small number of samples and therefore be
put into production quickly with data coming from a single accommodation. Sec-
ondly, they can also more easily be embedded inside a heating system with small
computation power preserving the privacy of data. We test those architectures on
a dataset recorded on a real system installed in an individual accommodation.

The remaining of the paper is organized as follows. Section 2 overviews the
state of the art of water consumption forecasting with a focus on deep learning
approaches. Section 3 describes the components of the employed deep architec-
tures and specifically the different position encodings experimented. Section 4
presents the individual consumption dataset we used, the experimental setup
and the achieved results. Finally, Sect. 5 concludes this paper and presents some
perspectives of this work.

2 Related Work

In this section, we give an overview of the different approaches used in the lit-
erature to forecast water consumption. First, a large number of papers seek
to forecast water consumption at a large scale, for neighborhood, cities or even
entire regions [8–10]. Candelieri et al. [11] proposed to use several Support Vector
Machine (SVM) models to forecast the water demand in a distribution network
with a 24h delay. Each model takes as input the first six hours of the day and
forecast one different time slot of one hour of consumption. Moreover, the authors
employ time series clustering to determine several consumption profiles and train
different SVM models accordingly. Mu et al. [12] proposed to use a Long-Short
term memory network (LSTM) [13] to forecast the water demand of a city at a
one-hour or 24h delay. They found that their approach got better results than
AutoRegressive Integrated Moving Average modeling (ARIMA), which combines
an autoregressive part consisting of a weighted sum of the previous times steps
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and a moving average part to model the error, SVM and random forests mod-
els. This was particularly true when performing high resolution predictions (e.g.
a prediction every few minutes) on data with abrupt changes. They also high-
lighted the upside of LSTM to allow to output a sequence of predictions. Finally,
in a recent paper, Karamaziotis et al. [14] compared ARIMA models, Optimized
Theta (a form of exponential smoothing model), Ensemble methods and neural
networks to forecast the water consumption of in European capital cities with
a forecast horizon of several months. They concluded, based on various met-
rics, that ARIMA models seem the best approach in several prediction scenarii.
From these papers, we can conclude that various machine learning models can
be considered to forecast the water consumption with ARIMA models seemingly
achieving the best performances.

However, individual residences present an additional difficulty since the con-
sumption is generally non smooth and irregular compared to apartment building.
Moreover, large variations across days could happen more frequently (for exam-
ples, all the inhabitants of the house leave for several days). This assumption
was observed experimentally by Maltais et al. [3] who proposed to use neural
networks to predict the DHW consumption of residential buildings with different
sizes. They observed that the prediction performances were better when increas-
ing size of the systems. They attributed this difference to the smallest ones pre-
senting too much variations in their consumption and they were consequently the
worst predicted. Overall, the problem of small or individual residences has been
less tackled by the literature and the employed approaches generally fall into
two categories. The first one is once again ARMA modeling [15]. This approach
have been used by Lomet et al. [16] to perform DHW load prediction for a single
family accommodation. After studying the data, notably the autocorrelograms,
they decided to take into account the weekly periodicity (the seasonality of the
time series) and the consumption of the two previous days to build their model.
Gelažanskas et al. [17] also analyzed the effect of seasonality to improve regres-
sion performances. They likewise found that a SARIMA (Seasonal ARIMA)
model taking into account daily and weekly consumption patterns performed
better. The second type of approaches is deep learning. Barteczko-Hibbert et
al. [18] experimented using Multi-Layer Perceptron (MLP) to predict the tem-
perature of the drawn hot water to optimize the heating system. They trained
the network on a particular heating profile and tested on another one and found
that the model generalized better if it was trained on two different heating pro-
files instead of one. In another publication, Gelažanskas et al. [19] tackled the
issue of hot water forecasting with an auto regressive neural network taking as
input data from the previous hours, data from seven days before and external
variables, in an autoregressive manner. They showed the importance of external
variables to improve predictions. Regarding the type of approaches, the last two
papers did not employed specific deep learning models for sequences such as
LSTM mentioned above. Gelažanskas et al. took into account the seasonality of
the data but with a MLP architecture.

If ARIMA models have proven their efficiency to model hot water consump-
tion, more results seem needed with neural networks to conclude. However,
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neural networks have also been found to perform better than ARIMA in various
conditions which are realized for individual housing profiles: when the needed
resolution of the prediction is high and when the data present gaps [12] or high
variability [20]. Moreover, ARIMA models are linear unlike neural networks than
can model non-linear relationships which has proven to be useful to forecast hot
water consumption [21]. As a consequence, ARIMA models seem less adapted to
this task. Additionally, pure deep learning models present several upsides com-
pared to classical machine learning or hybrid models: firstly they do not require
feature engineering, secondly they can be trained end to end with a single objec-
tive and allow to simply combine different types of layers and differentiable pro-
cessings, finally they have a very low inference time making them suited for real
time systems. Based on these observations, in this paper, we propose to employ
deep learning architectures to build lightweight forecast models for individual
homes that can be easily embedded inside heat pump control systems. We focus
on architectures specifically adapted for time series processing and we will now
present them.

3 Proposed Architectures

In this section, we describe the different neural network components that will
constitute the tested deep architectures for DHW forecasting.

3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are the primary component to deal with
sequences and time series. A simple RNN’s equation is as follows:

ht = f(Wixt + bi + Whht−1 + bh), (1)

where xt ∈ R
n defines a sequential input, f is a non linear activation function,

most of the time hyperbolic tangent or sigmoid and Wi, Wh, bi and bh are
parameters of the models to be learned. The output ht ∈ R

m defines a sequence
with the same length as the input sequence and is reinjected each time with
along the new input. This way, the RNN is able to learn temporal correlations
inside the sequence.

However, vanilla RNN as the one described above actually do not work when
sequence become too long. Due to a phenomenon called vanishing gradient, they
are in fact not able to learn long-term dependencies in the sequence [22]. To
work around this issue, gated RNN such as LSTM [13] and later Gated Recurrent
Units (GRU) [23] have been developed. These neural networks emulate a memory
thanks to a system of gates that let pass new information and forget old one.

3.2 One-Dimensional Convolutional Neural Networks

One-dimensional Convolutional Neural Networks (1DCNN) are a variant of CNN
that has been employed to perform signal processing tasks and time series fore-
casting [24–26]. They are actually close to the old Time-Delay neural networks
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[27]. One great upside of 1DCNN compared to their 2D counterparts is their
lower time complexity: they are therefore well suited to build compact embed-
ded architectures with few layers [28].

1DCNN uses convolutional filters that move only in the time direction on
all the features at the same time, with a kernel size determining the number of
convoluted timesteps. This way, they can detect local temporal correlations in
the data. The locality can be extended by adding more layers. Similarly as with
2D CNN, after one or several convolution layers, a pooling layer is called. In our
experiments, we used average pooling instead of the classical maximum pooling
as we found it achieved better results.

3.3 Multi-Head Attention

Multi-Head attention (MHA) [4] is the central component of the transformer
neural network architecture that is primarily used for natural language process-
ing tasks. Transformer architectures can also be used for time series forecasting
[7,29], by they are very deep and would require much more data to be properly
trained as well as a lot of computation power. Therefore, in this paper, we will
not make use of a whole transformer model but only some of its components to
build an ad hoc architecture: position encodings (see below) and thus Multi-Head
Attention.

Attention is a differentiable mechanism that allows to make a query on a
discrete set to get a result as a weighted sum of the elements of the set. Formally,
consider three matrices Q, K and V , respectively the query, the keys and the
values, attention is computed the following way:

Attention(Q,K, V ) = softmax
(
QKT

√
m

)
V, (2)

where m is the number of features of K used here to scale the softmax. In
practice, self-attention is used meaning that Q, K and V are the same matrix,
in our case, a sequence. To make Multi-Head Attention, for the desired number
of heads, Q, K and V are each projected in a different (learnable) space before
Eq. 2 is applied. Then, the results are concatenated and projected again.

The output of the MHA being a sequence, we need a mechanism to obtain
a vector to be then projected into a single value. We explored three way to
perform this operation: with a RNN, using a average pooling similarly as with
CNN and simply taking the last value of the sequence. After several tests, we
finally decided to use an average pooling as with 1DCNN.

3.4 Position Encodings

Along MHA, position encoding (or embeddings) in another component of the
transformer architecture [4]. It is used to introduce information about the order
in the data since the transformer will see the sequence as a whole and not
timesteps by timesteps as for a RNN. A similar idea was introduced in [5] for
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CNN with learned embedding. For both architectures, we start by projecting the
input a time t inside a first representation space for dimensionality reduction
before adding the position encodings associated with time t:

rt = Wxt + et, (3)

where rt, et ∈ R
m and W are learnable parameters. We detailed below the two

types of positional encoding previously mentioned along with two others.

Fixed Position Embedding. This approach is used in [4] and relies on fixed
predefined codes to be added to the representations. Those codes are computed
the following way for timestep t and feature index i:

et(2i) = sin
(

t

100002i/m

)
, (4)

et(2i + 1) = cos
(

t

100002i/m

)
. (5)

With this position embedding, each position is uniquely represented by
trigonometric functions with different frequencies.

Learned Position Embedding. This approach was proposed by Gehring et
al. [5] for CNN. Here, each timestep t is embedded in a feature space of the same
dimensionality as:

et = Wtt, (6)

where Wt are learnable parameters.

Generated by a RNN. Recurrent networks take into account the temporal
dependencies of the data by design since the timesteps of the sequence are input
one after the other. We explore the possibility of including the temporal infor-
mation of the data inside the MHA and CNN architectures by directly adding
the output sequence of a RNN to the input embedding:

et = RNN(x)t. (7)

In this paper, the RNN is implemented by a single layer of GRU.

Enriched Learned Position Embedding. In a similar way as [6], one can
add multiple different embeddings corresponding to different categories. Along
with position, we propose to use learned embedding for the day of the week and
the hour of the day instead of one-hot encoded features:

et = Wtt + Wdd + Whh, (8)

rt =
Wxt + et

||Wxt + et||2 , (9)
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where Wd and Wh are learnable parameters and d and h are respectively the day
of week and the hour of the day. The representation rt is normalized after the
sum to preserve its scale. We shall compare experimentally those four approaches
in the next section.

4 Experiments

4.1 Dataset

This dataset was recorded by the Fraunhofer Institute for Solar Energy Systems
ISE on a sensor equipped heating system of an individual residence. The system
contains an heat pump to supply energy and a water tank to heat up water.
In addition to drinking water, the hot water is used in the floor heating of the
house. The dataset contains several months of recorded data sampled at one
minute. Various measurement types for each component of the heating system
are available: supply an return temperatures of the water, water flow, power and
energy. The system is alimented by a heat pump for which we also have the
energy and power measurements. Finally, ambient temperature has also been
recorded.

The raw dataset contains more than 100 features. After removing the columns
that were missing to much values, there are 93 features left. We also add 24
features for the hour of the day one-hot encoded, 7 features for the day of the
week one-hot encoded, 1 feature indicating if it is the weekend and another one
for the holidays for a total of 126 features. A simple interpolation was realized
to complete the remaining few holes in the dataset.

4.2 Experimental Setup

We used sequences of length 72, sampled at one value every twenty minutes
(equivalent to a day of data). We tested different downsampling values and
found that this value was sufficient. The input sequence used to predict the
DHW consumption at time t is constituted of the sequence from time t-48 h to
t-24 h concatenated on the feature dimension with the sequence from time t-7
days to t-6 days. This allows to take into account potential weekly periodicity in
the data, as most approaches from the state of the art. The water flow to predict
is accumulated during a day to smooth the values to output since the hot water
consumption in the dataset is very sporadic, as expected for an individual house.
We give here more details about the training process and the hyperparameters.
The experiments were conducted with 2 months of data from which 3 disjoint
sets were created: 1 month for the training set, 10 days for validation and 20 days
for test. One value every 30 min was predicted. We used a starting learning rate
of 0.001 divided by 10 every 25 epochs without improvement. The training is
stopped once the loss on the validation set has not decreased during 500 epochs.
The batch size is 128. Finally, the features were scaled between 0 and 1 to ease
the training for the neural networks.
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The position encoding approaches are compared with constant architectures.
Those architectures were found after hyperparameter search. The dimensions for
each architecture are reported in Table 1, in addition the kernel size used for the
CNN is 3. The dimension of the position encoding thus corresponds to the dense
layer sizes.

Table 1. Architecture dimension summary

Architecture type Dense layer size Specific layer size/filters Output

GRU/LSTM 80 20 1

1DCNN 100 [8, 16] 1

MHA 64 32 1

The models are trained with the Mean Squared Error loss (MSE) and regu-
larized with weight decay (factor 10−4 and dropout (probability 0.5). We trained
each version of each model 10 times and saved the best trained model regarding
validation to perform a test.

We compare the results of the deep learning models with an ARIMA model.
We generally followed the results of the study by Lomet et al. [16] to select the
coefficients but adapted it to our data since the sampling is notably different by
using the validation set. The autoregressive and moving average orders were set
to 336 (one week of data sampled at 30 min to have the same rate of prediction)
with all coefficients set to zero except for {p46, ..., p50, p332, ..., p336, q47, q48, q49}.
Similarly as for deep learning models and [16], the prediction only depends on
data from 24 h and one week before the prediction. We restrained the coefficients
in order to avoid overfitting, especially for the moving average ones. No differen-
tiation was performed following a study using the augmented Dickey-Fuller test
and the seasonal orders were as well set to zero. The remaining exogenous vari-
ables were embedded through a principal components analysis in order to reduce
their dimension to 6. The results are obtained by sliding along the validation set
and making a one-step ahead prediction each time.

4.3 Results

We present in this section our results on the ISE dataset. The standard regression
scores MSE and Mean Absolute Error (MAE) are reported. It is sometimes
advised in the literature [30] to report Mean Average Percentage Error. However,
this score explodes when the value to predict is zero which is often the case here,
during the night for example. That is why we reported MAE instead.

The validation results for the version without position encodings are pre-
sented on Table 2. The best average MSE and MAE are achieved by GRU with
0.0033 and 0.0329 of MSE and MAE respectively. However, the best models over-
all where produced with the LSTM with 0.0028 and 0.0288 of MSE and MAE
respectively. The 1DCNN and MHA architectures achieved results around ten
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Table 2. Validation results on ISE dataset for models without position encoding,
average of 10 runs and best values

Algorithms Position encoding Average MSE Average MAE Best MSE Best MAE

GRU None 0.0033 ± 0.0002 0.0329 ± 0.0015 0.0030 0.0310

LSTM None 0.0037 ± 0.0006 0.0337 ± 0.0026 0.0028 0.0288

1DCNN None 0.0336 ± 0.0074 0.1413 ± 0.0169 0.0221 0.1145

MHA None 0.0353 ± 0.0085 0.1323 ± 0.0295 0.0245 0.1051

ARIMA None – – 0.1044 0.2741

Table 3. Validation results on ISE dataset for CNN with position encoding, average
of 10 runs and best values

Algorithms Position encoding Average MSE Average MAE Best MSE Best MAE

1DCNN Fixed 0.0084 ± 0.0023 0.0632 ± 0.0120 0.0052 0.0463

1DCNN Learned 0.0185 ± 0.0029 0.1002 ± 0.0114 0.0104 0.0720

1DCNN RNN 0.0272 ± 0.0067 0.1213 ± 0.0183 0.0175 0.0938

1DCNN Enriched 0.0277 ± 0.0087 0.1269 ± 0.0201 0.0175 0.0996

Table 4. Validation results on ISE dataset for MHA with position encoding, average
of 10 runs and best values

Algorithms Position encoding Average MSE Average MAE Best MSE Best MAE

MHA Fixed 0.0067 ± 0.0015 0.0533 ± 0.0072 0.0045 0.0420

MHA Learned 0.0123 ± 0.0009 0.0723 ± 0.0024 0.0111 0.0697

MHA RNN 0.0111 ± 0.0041 0.0692 ± 0.0148 0.0060 0.0490

MHA Enriched 0.0132 ± 0.0074 0.0708 ± 0.0255 0.0047 0.0407

Table 5. Test results on ISE dataset

Algorithms PE MSE MAE

GRU None 0.0032 0.0352

LSTM None 0.0046 0.0409

1DCNN Fixed 0.0074 0.0917

MHA Fixed 0.0030 0.0328

times inferior to the RNN architectures showing that information about the tem-
poral order of the vectors seems necessary for this task on this dataset. ARIMA
also seem to achieve lower results on this dataset. This observation is further con-
firmed in Table 3 and Table 4 which respectively present the validation results for
1DCNN and MHA with position encodings. Indeed, both approaches achieved
better results with all forms of position encodings than without. However, the
performance improvement is clearly better for MHA than for the 1DCNN: the
best MSE scores achieved, 0.0045, is the closest we could achieve from the RNNs
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(a) GRU

(b) MHA

Fig. 1. Comparison between the fits and the true water consumption

performances. In both cases also, fixed position encoding led to the best results
with the enriched version being close second for MHA for the best iterations.
We suppose that the low quantity of data favors the fixed version since nothing
more needs to be learn. Finally, for MHA and 1DCNN, we remark than standard
deviations are higher than for GRU and LSTM. We make the assumption that
for these architectures, on this dataset, the initialization is a crucial factor to
achieve the best performances.

We now present test results on Table 5, obtained each time from the best
trained model from the validation phase. We observe that GRU and MHA with
fixed position encoding achieved the best results with the later being slightly
better with 0.0030 and 0.0328 of MSE and MAE respectively. The model based
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on LSTM seems to generalize a bit less well than GRU, with an MSE of 0.0046
even though it achieved a better validation MSE than GRU. Figure 1 shows the
comparison between the obtained fit for both models and the groundtruth for
the 10 first days of the test set. We see that the consumption of days 1 and 3
is overestimated by both models whereas it is underestimated for day 2, though
less by MHA than GRU. An interesting day is day 5 whose gaps are correctly
predicted by MHA unlike GRU, the inverse is observed for day 7. Those gaps,
that constitute the major difficulties of individual housing datasets, are therefore
possible to predict with neural networks, though not always easily.

The 1DCNN architecture achieves lower results as expected from the val-
idation. We make the assumption that the local temporal correlations in the
sequence bring too less information to the model due notably to the presence
of large plateau observed in the groundtruth curves (see blue curves on Fig. 1).
Extending the range of possible correlations would require to increase the depth
of the network and thus to train it with more data, threatening the use of the
model in an embedded environment.

5 Conclusion and Perspectives

We proposed in this paper to use deep learning to tackle the issue of hot
water consumption for individual housing. Neural networks are especially recom-
mended when the data are variable and present abrupt variations [12,20] which
is the case when dealing with individual house consumption profiles. We com-
pared three deep learning approaches adapted to time series forecasting: RNN,
1DCNN and MHA, the last two being equipped with various form of position
encodings [4] to improve their sequence processing ability. One objective was
to conceive lightweight models able to be embedded in an energy management
system to preserve the privacy of the data and to avoid wasting energy with com-
putationally greedy models. We experimented the three approaches on a dataset
recorded in a real individual housing. We achieved the best results with GRU
and MHA with fixed position encoding architectures and demonstrated the abil-
ity of the models to correctly predict in some cases the gaps in the consumption
on this dataset.

In the future, we plan to test those architectures on more datasets, notably
on datasets containing less features since the inclusion of multiple sensors in a
heating system also costs energy resource. We plan as well to integrate those
models in real energy management system to see if the prediction they produce
can effectively reduce the energy consumption.
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Advances in machine learning and artificial intelligence could empower us to enhance
our understanding of the mechanisms of disease and to create more efficacious thera-
pies for patients. The drug development cycle entails many steps where large amounts
of valuable data are collected in the context of clinical trials. Working on this data
provides us with potential treatment targets, new biomarkers, and other information that
enables us to identify which patients will benefit most from a given treatment. Addi-
tionally, safety and efficacy information is collected. After a drug enters the market,
further data is generated and collected in the form of electronic medical records, disease
registries, health insurance claims, surveys, digital devices, and sensors, among others.
In recent years the availability of healthcare data in large quantities, as well as in
diverse data modalities and data sources, has introduced new opportunities but also
challenges. In addition, the use of the previously mentioned data sources has steadily
increased. Using machine learning-based methodologies could help extract knowledge
and enable learning from these increasingly heterogeneous data sources. The use of
these innovative methods has shown the potential to revolutionize medical practice and
enable us to develop personalized medicines.

This workshop invited experts from both industry and academia to share their
research and experience in using artificial intelligence and machine learning methods in
pharmaceutical research and development. The contents of the workshop were orga-
nized around five main thematic areas:

– Machine learning for survival analysis
– Causal inference and learning
– Domain adaptation
– Multimodal and data fusion
– Applied machine learning

Two keynote speakers, from industry and academia, were invited to present their
work and to discuss current and future trends in their fields of research:

– Mihaela van der Schaar is the John Humphrey Plummer Professor of Machine
Learning, Artificial Intelligence and Medicine at the University of Cambridge and a
Fellow at The Alan Turing Institute in London. In addition to leading the van der
Schaar Lab, Mihaela is founder and director of the Cambridge Centre for AI in
Medicine. Title of the talk: “Machine Learning Meets Pharmacology: Integrating
Expert Models into Deep Learning”.

– Marius Garmhausen is a Principal Data Scientist at Roche in Basel, where he leads
the early concept product family in the Personalized Healthcare cluster of excel-
lence. In his work, Marius focuses on machine learning on multi-modal data across
clinical trials and real-world data (RWD) to create new personalized healthcare
products. Title of the talk: “Using RWD to improve trial inclusion criteria and
systematically investigate mutation-treatment interactions in cancer patients”.



The program also included four spotlight presentations and a poster session, which
together incorporated all accepted manuscripts in the form of research abstracts or long
papers. PharML 2022 received 11 submissions, and double-blind peer-review process
was performed to select the manuscripts. Each submission was reviewed by at least two
members of the Program Committee.

The original call for papers, workshop program, and other additional details can be
found on the “PharML 2022” website (https://sites.google.com/view/pharml2022).
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Abstract. There is an increasing interest in the use of AI in health-
care due to its potential for diagnosis or disease prediction. However,
healthcare data is not static and is likely to change over time leading a
non-adaptive model to poor decision-making. The need of a drift detec-
tor in the overall learning framework is therefore essential to guarantee
reliable products on the market. Most drift detection algorithms con-
sider that ground truth labels are available immediately after prediction
since these methods often work by monitoring the model performance.
However, especially in real-world clinical contexts, this is not always
the case as collecting labels is often more time consuming as requiring
experts’ input. This paper investigates methodologies to address drift
detection depending on which information is available during the mon-
itoring process. We explore the topic within a regulatory standpoint,
showing challenges and approaches to monitoring algorithms in health-
care with subsequent batch updates of data. This paper explores three
different aspects of drift detection: drift based on performance (when
labels are available), drift based on model structure (indicating causes
of drift) and drift based on change in underlying data characteristics
(distribution and correlation) when labels are not available.

Keywords: Concept drift · Healthcare regulation · COVID-19

1 Introduction

Many real-world learning algorithms address tasks where knowledge about a
domain is collected over an extended period. The underlying characteristics of
data are likely to change over time leading to poor predictions and decision
outcomes. This phenomenon is known as concept drift [1,2]. Depending on the
context, this scenario could happen for several reasons. For example, changes
in health data can occur due to the launch on the market of new technologies
which improve measurement accuracy or change in sampling strategies. However,
changes might also be seen in populations and behaviours that may be harder
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to forecast. The COVID-19 pandemic embodies a clear example. The national
lockdowns fundamentally changed the assumptions and parameters of machine
learning or statistical models developed previously using limited data from the
early pandemic period.

Recently, learning in non-stationarity scenarios [3] has been extensively stud-
ied. In such evolving environments, where the properties of the data change over
time, a non-adaptive model is bound to become obsolete in time. For this rea-
son, several research studies highlighted the necessity to integrate a concept drift
detector into the overall learning framework.

This is of vital importance to health regulators who are responsible for
approving AI software. For example, after deploying a product on the market, a
detector could be used to track significant changes in how the system is working.
Depending on which information is available during the monitoring process, dif-
ferent approaches can be considered to detect concept drift. The largest group
of drift detectors constantly checks a model’s performance to evaluate possible
degradations. However, the main challenge is that these methods require rapid
feedback on the predictions based on ground truth labels which are not always
immediately available. Particularly in clinical studies, outcomes in the form of
disease labels might come at a later stage than the required model evaluation
leading to the infeasibility of any drift detection relying on ground truth labels.

In 2021 [4], the UK’s Medicines and Healthcare products Regulatory Agency
(MHRA) highlighted the necessity of a rigorous programme to regulate software
and AI product as it already is for all other medical devices. To be approved for
the market, AI models must satisfy medical device regulators, with appropriate
evidence, that they are safe and fit for the intended purpose. To ensure patient
safety, it is necessary to understand if the algorithm has significantly changed
since it was approved either due to the change in the actual algorithm logic or
because of data drift (which could mean that the model is out-of-date in light of
new data). If it has, both manufacturers and regulators need to know whether it
remains safe and fit for purpose and if instructions on use have to be modified.
This paper investigates methodologies to address concept drift detection in the
context of ‘AI as medical device’ (AIaMD) regulation.

Here, a framework has been designed based on three different forms of drift
detection. Firstly, the scenario where ground truth labels are available at the
time of the analysis has been considered. We present a performance-based app-
roach that keeps track of the learner performance metrics on new incoming data
and detects changes through a non-parametric statistical test. The second layer
of the framework aims to more deeply investigate the reasons and the causes
of why a concept drift may happen. A structure-based detection approach is
designed to monitor changes in the structure within a model as it is trained
on upcoming data. Finally, we investigate the most challenging scenario where
only unlabelled data are available during the monitoring process. A new family
of methods that deal with concept drift detection in unsupervised settings has
been proposed. We designed a framework that uses distance measures to esti-
mate the similarity between data distributions and correlations in two different
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time windows. Concept drift is then detected if the two distributions are signif-
icantly distant. The main advantage of this approach is that it can be applied
to both labelled and unlabelled datasets since this method only considers the
distribution of data points. For this reason, it could address the issue of the lag
between actual concept drift and labelled data becoming available.

2 Related Work

One of the most-referenced concept drift detection algorithms is the Drift Detec-
tion Method (DDM) [5]. DDM analyses the error rate of the streaming data
classifier to detect changes. It was the first algorithm to define the warning level
and drift level for concept drift detection. Other methods have modified DDM
to enhance its performance for solving diverse tasks. For example, Early Drift
Detection Method (EDDM) [6] extends DDM by tracking the distance between
two consecutive misclassifications rather than the error rate.

Another popular family of drift detectors (Window-based detectors) split
the data stream into windows based on data size or time interval in a sliding
manner. These methods monitor the performance of the most recent observations
introduced to the learner and compare it with the performance of a reference
window. ADaptive WINdowing (ADWIN) and its extension (ADWIN2) [7] are
among the most popular methods that use the windowing technique to detect
drifts.

Ackerman et al. [8] proposed a method that utilizes feature space rules, called
data slices, for identifying drifts in model performance based on changes in the
underlying data, without assuming the availability of actual labels on new data.
A data slice is a rule indicating value ranges for numeric features, sets of discrete
values for categorical ones, or combinations of the above. Given a classifier model
that returns predictions on a data set D, [9] present an algorithm to find a set of
slices where the classification error rate of the model is higher than the average
over D; such slices are called weak slices. Drift between data sets D1, D2 is
detected by extracting a set of weak slices on D1, and measuring differences
between this set and the rules when mapped to D2.

The purpose of this work differs from the methods mentioned above since
the aim is to explore concept drift in the context how regulators can realistically
detect drift in approved AI models that are available for public use, based on
different availability of new incoming data. The project involved case studies
on multiple batch releases of primary care data from the UK’s Clinical Practice
Research Datalink (CPRD) [10]. The CPRD is a real-world research service
supporting retrospective and prospective public health and clinical studies. It
collects anonymised patient data from a network of GP practices across the UK
[11] and provides researches access to high-quality anonymised and synthetic
health data that can be used for training purposes or to improve machine learning
workflows.

In contrast to the stream learning context, where a sequence of data elements
with associated timestamps are collected, the experimental methods described



246 Y. Rotalinti et al.

in this paper have been designed to deal with a batch learning scenario. Indeed,
primary care data are often delivered in batches (potentially different in size). For
example, the CPRD releases their data in monthly batches [12]. The framework
is also flexible enough to detect drift based on any performance metric depending
on the precise use of the software.

This work involved a case study using data on COVID-19 risks factors
from the CPRD and an artificial dataset with well-known drifts for validation
purposes.

3 Methods

3.1 Methodology

As highlighted in the introduction section, we assume a batch learning scenario.
Contrary to online learning which deals with streaming of data, primary care
data are often released in blocks of data at regular intervals time. Therefore,
in the first step of our analysis, the data is divided into batches representing
different blocks of time to simulate such a scenario, Fig. 1. The batch size (e.g.
monthly, annual) is domain-dependant. More details about the chosen granular-
ity are given in the following sections.

The next paragraphs describe the three different aspects of drift detection
according to the proposed framework: drift based on performance, drift based on
model structures and drift based on changes in data distribution and correlation.
The code implemented to run the experiments has been made publicly available.
For privacy reasons, only the simulated dataset has been shared1.

Fig. 1. Batch of data representing different CPRD releases of data. The batch size (e.g.
monthly, annual) is domain-dependant.

Performance-Based Detection. We designed a customized performance-based
drift detection approach to simulate post-market surveillance of a new AI prod-
uct on the market to assess its compliance with the legislative requirements over
time. Figure 2 summarizes the key steps of the algorithm. The first batch of
data is selected and s samples are generated through bootstrapping techniques
(in Fig. 2, we set s = 4 for explanatory purposes). Each sample is used to train

1 https://github.com/yleniarotalinti/drift-detection.

https://github.com/yleniarotalinti/drift-detection
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a machine learning model which is then tested on subsequent data batches com-
puting performance metrics (represented by colored circles in Fig. 2(a)). Thus,
for each test set, s values (i.e. a distribution) of any given performance metric
are obtained (using the s models initially generated through bootstrapping tech-
niques). We name the first batch of data on which the models are tested as the
control set. The performances achieved by the models on the control set represent
the essential requirements a medical device must meet to be released on the mar-
ket ensuring its safety and quality. The following batch in time is defined as the
next test set. To assess concept drift, the performance distributions achieved on
both selected batches of data are compared through a non-parametric statistical
test i.e. the Wilcoxon Rank test, Fig. 2(b). If the distributions are significantly
different, a drift is detected as the data on which the model was initially trained
may be no more representative of the domain. The model is updated with the
new batch of data available and a new control set is fixed, Fig. 2(c). On the other
hand, if no concept drift was detected, the model is retained as is and the control
set is kept for comparison with the next test set, Fig. 2(d).

The statistical significance of the test i.e. the alpha value is used to quantify
the severity of the change alert triggered. Acceptable shift bounds have to be
agreed upon on a case-by-case basis at the time of the initial regulatory submis-
sion depending on the nature of the outcome being predicted.

Fig. 2. Performance-based drift detection approach. a) Samples are generated using
bootstrapping techniques from the first batch. They are used to train machine learning
models. b) Each model is tested on subsequent batches computing a performance metric
(represented by coloured circles). The distributions of the metrics obtained on the
control set and the next test set are compared through the Wilcoxon-rank test. c) If
the distributions are significantly different, the model is updated. d) Otherwise, the
model is retained as it is.
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Structure-Based Detection. In the context of AI as medical devices regulation,
products may have additional complexities to consider due to different levels
of transparency and interpretability that can complicate assessing significant
changes. What is more, it can be challenging to determine the impact of change
on the product. This is a crucial aspect to consider as there is a regulatory
requirement to assess whether a positive risk-benefit ratio is maintained in the
event of a significant change occurring. Understanding the nature and the rea-
son for the change in AIaMD would provide manufacturers additional tools for
quantifying, risk assessing and justifying shifts within their quality processes.

Especially in the healthcare domain, to ensure patients’ safety and avoid the
deployment of algorithms that take decisions for the wrong reasons, transparency
and explainability are key requirements for AI models. Therefore, we designed a
methodology to conduct an in-depth investigation of the reasons and the nature
of changes by monitoring structural changes of a model over time. Exploring
how the importance of feature changes as a model is trained on upcoming data
can help to understand reasons for drift and improve domain interpretability.

The framework designed is shown in Fig. 3. Given n batches of data B =
[b1, . . . , bn] involving m variables, a random forest classifier Rb1 is trained on the
first batch of data b1. Then, the feature importance ranking within the model Rb1

is computed by obtaining a weights vector Wb1 = [wb1,1, . . . , wb1,m] where each
element scores how useful a feature is at predicting the target variable. We name
Rb1 and Wb1 as reference model and reference weights vector. Then, we consider
the next batch of data, and we train a model Rb2 from scratch on the previous
training set updated with the new data. By considering Rb2, a different vector of
weights Wb2 is computed. To quantify how the feature importance has changed
due to new data, we measure d1−2 which is the Euclidean distance between
vectors Wb1 and Wb2. The same procedure is repeated for all the available batches
of data resulting in a vector of distances D = [d1−2, . . . , d1−n]. Each element of
the vector represents how much the structure of the reference model has changed
as new data is considered.

To assess if a structural change is statistically significant, we compare a
distance value with a distribution of distances that simulate a stable scenario.
The distribution is obtained by computing distances between a model trained
on the whole dataset and 100 models trained on the 50% of the data randomly
sampled.

Unsupervised-Based Detection. Most drift detection methods, as performance-
based and structure-based approaches, assume that ground truth labels are avail-
able along with covariates since these methods work by monitoring the predic-
tion results of a model. However, this is not always the case in several real-world
scenarios. For instance, in medical studies, the real clinical outcome might be
available at a much later stage than the actual prediction as it requires experts
intervention. In this situation, performance drift detection methods are not appli-
cable.

To cover the lag between the labels made available, an unsupervised drift
detection approach can be considered. The framework designed is similar to
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Fig. 3. Structure-based drift detection approach.

the structure-based detection approach described in the previous paragraph. But
instead of comparing feature rankings, we measure distances from the reference
point (calculated from the batch last used for training the model) in terms of
correlation matrices and feature distributions (Fig. 4).

Fig. 4. Unsupervised-based drift detection approach.

3.2 Datasets

The proposed framework was assessed on two different case studies. An artificial
dataset was simulated from Agrawal’s data generator [17] to capture a well-
known gradual drift. We generated 60 000 instances which were then converted
into batches of 5 000 consecutive data points. The location of the centre of the
drift (in terms of the number of instances) is 30 000 and the width is 10 000.

In addition, a high-fidelity synthetic data based on anonymized real UK
primary care data generated from the CPRD Aurum database was used for the
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second case study. The case study involved the prediction of deaths during the
COVID-19 pandemic in the UK. The dataset focuses on patients presenting to
primary care with symptoms indicative of COVID-19 and includes data on socio-
demographic and risk factors. Data was split into 14 monthly batches based on
the temporal variable representing the date of the latest COVID event recorded.
This situation embodies a case study on a new disease with presumably many
sources of instability including key changes in policy (e.g. the national lockdowns
[18] and the vaccination programme [19]). Expected drifts within batches are
summarized in Table 1.

Table 1. Expected drifts in UK COVID-19 data.

Batch Drift expected Note

2020/03 FALSE

2020/04 TRUE First national lockdown

2020/05 TRUE First national lockdown

2020/06 FALSE

2020/07 FALSE

2020/08 FALSE

2020/09 FALSE

2020/10 FALSE

2020/11 FALSE

2020/12 FALSE

2021/01 TRUE Second national lockdown

2021/02 TRUE Second national lockdown

2021/03 FALSE

2021/04 TRUE 50% of over 65 s got both doses of vaccine

4 Results

Several experiments have been carried out to investigate drift detection meth-
ods in different real-world scenarios where the choice of one approach over
another can be driven by the availability of the data at the time of the analysis.
If the ground truth labels are available, performance-based or structure-based
approaches can be explored. On the other hand, if the true class of the instances
is available just in a later stage of the analysis, an unsupervised-drift detection
approach can be used to cover this lag.

4.1 Simulated Data Results

Firstly, the framework was tested on the artificial dataset from the AGRAWAL
generator where a gradual drift was simulated. Figure 5 shows the results
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obtained when the performance-based detection approach is evaluated on model
accuracy. Vertical dashed lines represent change detected ordered by drift sever-
ity. It appears clear that the algorithm correctly identifies the gradual drift
simulated at the 30 000th instance.

Then, we explore the remaining drift detection approaches. The results are
presented in Fig. 6. The vertical red line represents the centre of the hand-coded
drift and the dashed lines denote its bounds. Figure 6(a) shows the impact of an
outdated model on the area under the precision-recall curve as new batches of
data are introduced over time for testing performance. A random forest model is
trained on the first batch of data and then evaluated over the subsequent batches.
Notice how the existence of an incremental drift causes a slow deterioration of
the assessed performance. In the post-market surveillance phase of a healthcare
AI product, these changes need to be identified. In this scenario, a model must
be re-assessed to check its compliance with the essential requirement that was
approved in the first place.

Fig. 5. Performance-based detection approach on simulated data. Vertical dashed lines
represent changes detected ordered by drift severity. Colour changes represent different
models based on updates when drifts are detected. The algorithm correctly identifies
the gradual simulated drift.

Structure changes within the model have been investigated by implementing
the framework described in the previous section. The plot in Fig. 6(b) shows the
distance in terms of features’ importance from the reference as new batches of
data become available. Note how the measure increases drastically immediately
after the drift indicating that a change in the data has occurred and the model
needs to be re-assessed.
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Fig. 6. Results on simulated data. a) Area under the precision-recall curve over time
of a model trained on the first batch of data. b) Feature importance changes. c) Dis-
tribution of the feature elevel changes. d) Correlation matrix changes.
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Evolving features’ importance has been then explored closely. A summary of
the results obtained (on the most meaningful models) is shown in Fig. 7. It is
worth noticing how the importance of the variable elevel, which represents the
education level, increases in the ranking of the features after the drift occurred,
becoming the most influential one as we train a model on the whole dataset.
This result is confirmed by looking at the perturbation functions used [17] to
induce concept drift. The stream configuration considered to generate the initial
concept includes variables age and salary that are indeed the most influential
features in the first place. The new concept is simulated through a perturbation
function which, instead of the variable salary, considers elevel. This results in
an increasing importance of the variable elevel in the model as new batches are
considered in the training set.

Fig. 7. Evolving features influence on simulated data as a model is trained also on
upcoming data.

As highlighted in the previous sections, these methods assume the availability
of the ground truth labels immediately after their prediction. As this is not
always the case in several healthcare scenarios, we explore an unsupervised drift
detection approach to investigate whether a change can be identified within
unlabelled data. Firstly, for the reasons discussed earlier, the distribution of the
variable elevel has been monitored as new batches of data become available.
Figure 6(c) plots the distance in terms of the variable distribution from the first
batch of data. The metric shows a spike close to the location of the drift and
then stabilises. The trend of the changes within the correlation matrix shown in
Fig. 6(d) seems also to follow a similar pattern, suggesting a change in the data.

In general, we found that the detection of change in an unsupervised scenario
was a more complicated task to address because significant change in underlying
distributions and correlations are more difficult to validate. On the other hand,
frameworks that assume the availability of ground truth labels seem to be more
capable of detecting drifts.
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4.2 COVID Results

The designed performance-based detection approach has been tested with ran-
dom forest models on COVID data from the CPRD. Figure 8 presents the results
of the accuracies obtained. Here models are updated using all historical data
when a drift is detected. Drifts are detected mainly within the first batches and
then in the last ones (though they are found throughout most batches likely due
to the unstable nature of the pandemic data). This result can be interpreted as
the correct identification of the changes due to the national lockdowns forced by
the UK government in April-May 2020 and January-February 2021 [18].

Fig. 8. Performance-based detection approach on Covid data. Vertical dashed lines
represent changes detected ordered by drift severity. Colour changes represent different
models based on updates when drifts are detected. Changes highlighted could represent
national lockdowns forced by UK government in April-May 2020 and January-February
2021.

We then explore how the lack of ground truth labels during the monitoring
process impacts drift detection. For the following results we do not apply any
updates, even when drift is detected. This enables us to see how drift moves
away from the original model. Similar to what was noticed in the simulated
data, Fig. 10(a) shows the deterioration of the model trained on the first batch of
data over time. Features importance changes over time, presented in Fig. 10(b),
reveal an increasing dissimilarity from the reference point as more batches are
considered. In particular, a spike in the proximity of the batch 2020/01 suggests
a correct detection of drift.
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By closely monitoring the predictors importance ranking as new data become
available (Fig. 9), the variable region was noted as its influence over time dropped
significantly. This outcome could be interpreted as a consequence of the spread of
the virus within the UK. This circumstance results in a decrease of the relevance
of the regional information within the prediction model. For this reason, the
distribution of this feature has been explored further. As can be seen in Fig. 10(c),
after a stable initial phase, the metric slowly increases and reaches a plateau in
the final batches. More interesting is the trend of the changes in the correlation
matrix presented in Fig. 10(d). In the plot, we can identify three different regions:
an initial peak (indicating immediate changing correlational structures), a stable
phase and an increment that stabilises in the final batches. The changes in
correlation structure seems to coincide with or predict expected drifts in the
early and late batches.

Fig. 9. Features importance ranking in Covid data as new batches become available.

As was for the artificial data, the detection of drifts resulted in more chal-
lenges in an unsupervised scenario compared to when ground truth labels are
available (because the validation of a model is not possible). Nevertheless, we
found that tracking changes in the distribution of relevant features and in corre-
lations within data could provide clues about drifts until labelled data become
available.
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Fig. 10. Results on Covid-19 data. a) Area under the precision-recall curve over time
of a model trained on the first batch of data. b) Feature importance changes. c) Dis-
tribution of the feature region changes. d) Correlation matrix changes.

5 Conclusions

Artificial intelligence has an increasingly prominent role within health systems.
Applications of AI can range from screening, to diagnosis, and to the manage-
ment of chronic conditions. However, there are also many risks to consider. For
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example, as the underlying characteristics of healthcare data are likely to change
over time, a non-adaptive model is bound to become out-of-date leading to poor
predictions. Therefore, methods for identifying changes in the data are necessary
to ensure satisfactory outcomes.

Most existing drift detectors work by monitoring model performance assum-
ing that ground truth labels are available along with covariates. Nevertheless,
this is not often the case in clinical studies as the real outcome might be avail-
able at a later stage because it requires expert intervention. This paper discusses
the topic in the context of how regulators can realistically detect changes in
approved AI models based on the availability of new incoming data. Our pro-
posed performance-based drift detection method can be used to detect any dete-
rioration in performance of AIaMD products on the market. However, a detection
of drift alone is unlikley to be a sufficient indication for the need for regulatory
intervention as it depends on the nature of the change. Our proposed method
for structure-based detection would allow AIaMD manufacturers and regulators
to determine whether there has been a structural change to the model over time
that may be of concern We proposed a framework to investigate drift detection
by monitoring different aspects such as model performance, model structure and
data underlying characteristics. The results highlight the challenges to address
drift detection in an unsupervised scenario but show how tracking changes of rel-
evant features distribution and correlation within data could provide indications
about drifts until ground truth labels become available.
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Abstract. High throughput RNA sequencing (RNA-Seq) allows for the
profiling of thousands of transcripts in multiple samples. For the anal-
ysis of the generated RNA-Seq datasets, standard and well-established
methods exist, which are however limited by (i) the high dimensionality
of the data with most of the expression profiles being uninformative, and
(ii) by an imbalanced sample-to-feature ratio. This complicates down-
stream analyses of these data, and the implementation of methods such
as Machine Learning (ML) classification. Therefore, the selection of those
features that carry the essential information is important. The standard
method of informative feature selection is gene expression (DGE) analy-
sis, which is often conducted in a univariate fashion, and ignores interac-
tions between expression profiles. ML-based feature selection methods,
on the other hand, are capable of addressing these shortcomings. Here,
we have applied five different ML-based feature selection methods, and
conventional DGE analysis to a high-dimensional bulk RNA-Seq dataset
of PBMCs of healthy children and of children affected with Atopic Der-
matitis (AD), and evaluated the resulting feature lists. The similarities
between the feature lists were assessed with three similarity coefficients.
The selected genetic features were subjected to a Gene Ontology (GO)
functional enrichment analysis, and the significantly enriched GO terms
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were evaluated applying a semantic similarity analysis combined with
binary cut clustering. In addition, comparisons with consensus gene lists
associated with AD were performed, and the previous identification of
the selected features in related studies was assessed. We found that
genetic features selected with ML-based methods, in general, were of
higher biomedical relevance. We argue that ML-based feature selection
followed by a careful evaluation of the selected feature sets extend the
possibilities of precision medicine to discover biomarkers.

Keywords: Atopic dermatitis · Feature selection · RNA sequencing ·
Functional analysis · Semantic similarity

1 Introduction

Atopic Dermatitis (AD) is an allergic skin disorder that is characterized by skin
rash, skin irritation and itchiness, accompanied by skin lesions in severe cases
[14,21]. AD is complex in nature due to the interplay of various factors including
genetic predisposition, immune response dysregulation, epithelial barrier dys-
function, and environmental factors. Ethnicity also seems to play a role as the
prevalence of asthma, allergies and AD, and the severity of disease, is higher
in individuals of African ancestry compared to the population with European
ancestry [5,6,12,13,16]. In addition, clinical markers that are used to describe
the characteristics of AD are quite different depending on ethnicity [18,27,30]. It
is therefore of critical importance for the identification of potential biomarkers
of AD in African-ancestry populations to take into account genetics in addition
to the environmental exposure.

The advancement of high-throughput RNA-Seq technologies now allows to
profile the expression of thousands of gene targets in a number of samples. While
the perspectives of gaining biomedically relevant insights from these data are
promising, several challenges need to be met in analysing the resulting high data
volume [2]. First, such datasets in general have an imbalanced sample to feature
ratio, as the number of quantified transcripts greatly exceeds the number of sam-
ples. Second, only a limited number of transcripts carry the information that is
necessary to discriminate between different experimental conditions, while the
majority of transcripts introduce noise into the data [8]. The standard method of
biomarker identification in RNA-Seq data is through differential gene expression
(DGE) analysis applying classical statistics. However, depending on the experi-
mental setup, the DGE frameworks often do not provide a robust method to select
relevant targets in such a high-dimensional space [3]. Most of these methods are
univariate in nature, do not account for possible interactions between genes and
are prone to a certain number of false positives [8]. This poses a serious limitation,
as feature selection in high-dimensional biological datasets plays a central role in
subsequent downstream analysis and biological interpretation [3]. Machine learn-
ing (ML)-based feature selection provides a useful alternative that can properly
and robustly deal with these issues. This can, for example, be achieved through the
identification of interactions between features or highly correlated features, which
is expected when two or more genes belong to the same pathway. However, it needs
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to be considered that every feature selection method will perform distinctively on
different datasets and that no feature selection method is superior in every situa-
tion. Therefore, it is essential to compare the performance of different methods on
a particular dataset before drawing any conclusions.

To this end, we have performed an extensive feature selection procedure on
bulk RNA-Seq data that were acquired from peripheral blood mononuclear cells
(PBMCs) of South African children living in an urban environment who either
suffered from AD or were healthy. Our aim was to robustly identify transcript
biomarkers that were predictive of AD diagnosis. To identify suitable methods
we performed extensive feature selection using conventional differential expres-
sion analysis and five different ML-based methods. For each ML-based method,
the best performing model was selected based on a 10-fold cross-validation (CV)
accuracy score. The similarities between all ML-selected lists and the DGE out-
put were assessed using three similarity coefficients (Jaccard index, Sørensen–
Dice index and Overlap). The ability of each method to capture relevant genes in
the context of immune processes related to AD was then assessed by analysing
the resulting gene lists with Gene Ontology (GO) functional gene enrichment
analyses, semantic similarity analysis and the Genevestigator search engine [9].
In addition, the selected feature lists were compared with a consensus list of
genes that were associated with a predisposition to AD identified in genome-
wide association studies (GWASs).

2 Methods

2.1 Dataset

Information on patient demographics was reported previously [12]. In summary,
the RNA-Seq data were acquired from PBMCs of 60 Xhosa children living in an
urban area in South Africa. Of these children, 31 suffered from AD (cases) while
29 were healthy (controls).

2.2 Differential Gene Expression Analysis

Differential gene expression (DGE) analysis was performed using the ARMOR
workflow [15] setting cases vs. controls as contrast. Transcripts that fulfilled
the following two conditions were considered as significantly changing: (1) false
discovery rate (FDR) < 0.05 and (2) fold change > 1.5.

2.3 Feature Selection with ML-Based Algorithms

Recursive feature elimination (RFE) has been proposed as a robust algorithm
to select relevant features [11]. Here, it was combined with Logistic Regression
(RFE-LR) and Random Forest (RFE-RF) to determine the importance of features,
i.e. gene transcripts. Although Logistic Regression and Random Forest could
have been used directly to rank features, we found that without RFE, the final
rankings given by these methods were not sufficiently reliable. To account for
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the inherent randomness of RFE, the feature selection procedure was repeated
10 times and the union of the feature lists selected in each iteration was consid-
ered. The additional three ML-based algorithms used for feature selection were:
Univariate feature selection based on the logit function (Univariate), LASSO
Regression (Lasso), and BORUTA (boruta) [10]. Both RFE methods and Lasso
were implemented using the scikit-learn Python library [17]. For Univariate,
we used the scikit-learn GenericUnivariateSelect module with the logit function
import from the statmodels library [22], and for boruta we used the BorutaPy
Python library [10]. To make the results of the different ML-based feature selec-
tion methods comparable and independent from the integral algorithm-specific
methods, permutation importance was applied to determine the innate feature
importance. Parameters of the feature selection methods are listed in Table 1.
Due to the fact that the number of cases and controls in the data were balanced,
the accuracy score was used as a performance metric. Stratified cross-validation
was implemented to maintain the same ratio of cases versus controls in the
training and test splits.

Table 1. Hyperparameters used to run the ML-based feature selection methods

Method Parameters

RFE-RF RandomForestClassifier(n estimators = 100,

n features to select = 10%, step = 1000)

RFE-LR LogisticRegression(max iter 5̄00, n features to select = 10%,

step = 1000)

Lasso Lasso(penalty = l1, solver = ‘liblinear’, alpha = 1)

Univariate GenericUnivariateSelect(score func = logit())

boruta estimator = RandomForestClassifier(n estimators = 100)

2.4 Similarity Coefficients

Jaccard index (J), Sørensen–Dice index (SDI) and Overlap coefficient (OC) were
used to assess the pairwise similarity between gene lists. Calculations were per-
formed using the R package tmod, and the heatmap was plotted with the R
package GeneOverlap [23,24,29].

Jaccard Index. It is calculated as:

J(U, V ) =
|U ∩ V |
|U ∪ V | , (1)

where U and V are two gene sets. The Jaccard index can take a value in the
range [0, 1], where J(U, V ) =1 means that U and V are identical.
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Sørensen–Dice Index. The SDI was calculated as:

SDI(U, V ) = 2
|U ∩ V |

|U | + |V | , (2)

where U and V are two gene sets, and |U | and |V | are the cardinalities of sets
U and V , respectively.

Overlap (Szymkiewicz-Simpson) Coefficient. The OC was calculated as:

OC(U, V ) =
|U ∩ V |

min(|U |, |V |) , (3)

where U and V are two gene sets, and min(|U |, |V |) is the size of the smallest
set.

2.5 Functional Analysis

GO category functional enrichment analyses were performed using the cluster-
Profiler R package [31] setting option “BP” to include the biological process (BP)
enrichment terms. The resulting p-value was adjusted using the FDR method,
and GO categories with FDR < 0.05 were considered significantly enriched. The
Genevestigator software tool [9] was used to identify perturbation studies asso-
ciated with AD, allergy and other allergic disorders. The mRNA-Seq Gene Level
Homo Sapiens (ref. Ensemble 97) dataset was selected for the analyses with p-
value < 0.01 and no fold-change filtering. Due to the allowed input gene list size
restriction of 400 items, RFE-RF, RFE-LR and Univariate selected feature lists
were restricted to the top 400 features with the highest mean feature importance
scores.

2.6 Semantic Similarity of GO Terms

The semantic similarity between lists containing enriched GO categories was
calculated using the method proposed by Wang et al. (2007) [28]. In brief, every
GO term could be represented as a Directed Acyclic Graph (DAG):

DAGA = (A, TA, EA), (4)

where A is a GO Term, TA is a set of all terms in DAGA including all ancestor
terms and the term A itself, and EA are all the edges connecting the nodes in
DAGA. The semantic value (SV) of a term A is then defined by:

SV (A) =
∑

t∈TA

SA(t), (5)

where, SA(t) is an S-score of a child term t in the DAGA. The S-score is then
defined as:

SA(t) =
{

1, if t = A
max{we × SA(t′)|t′ ∈ children of (t)}, if t �= A,

(6)
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where we is the semantic contribution value for the edge e that links t to t′.
Thus, the semantic similarity of two GO terms A and B is defined by [28]:

SGO(A,B) =

∑
t∈TA∩TB

SA(t) + SB(t)
SV (A) + SV (B)

. (7)

The semantic similarity between lists of enriched GO terms and the subsequent
clustering of similar terms using the binary cut method were calculated using
the simplifyEnrichment package [7].

2.7 GWAS

Reported and adjacent genes of the susceptibility loci from GWAS studies per-
formed on multiracial populations (n = 35) and black populations (n = 19) were
retrieved from the studies by Tamari et al. (2014) [26], and Daya et al. (2019) [5].

3 Results

3.1 Differential Gene Expression Analysis

We first performed DGE analysis on the data, as this represents a standard
approach to identify potential biomarker genes in transcriptomics datasets. The
DGE analysis was done using the ARMOR workflow that implements EdgeR
[15]. Of the 20,099 genes in the initial RNA-Seq data, 14,016 entered the sta-
tistical assessment comparing the conditions AD versus healthy control (HC),
followed by multiple testing adjustment using FDR correction. In total, we iden-
tified 82 differentially expressed genes (DEGs) with a fold change of at least 1.5
and an FDR smaller than 0.05. In these 82 transcripts, 54 were over-expressed
in AD patients and 28 over-expressed in HC subjects (Fig. 1).

3.2 Feature Selection with Machine Learning

The procedure to perform feature selection using the five ML-based methods,
recursive feature elimination with random forest as the estimator (RFE-RF),
recursive feature elimination with logistic regression (RFE-LR), BORUTA feature
selection (boruta), LASSO regression (Lasso), and univariate feature selection
(Univariate), was:

– the initial data were split into a training (90%) and a hold-out test (10%) set
– the training set was used to optimize the hyperparameters of the respective

feature selection method in a 10-fold cross-validation (CV) procedure
– the performance of each method was estimated based on the mean 10-fold

CV score
– permutation feature importance was calculated and ranked according to

importance from highest to lowest
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Fig. 1. Volcano plot with the results of DGE analysis comparing Atopic Dermati-
tis (AD) versus healthy controls (HCs) (grey: not statistically significant, green: fold
change > 1.5, blue: FDR < 0.05, red: fold change > 1.5 and FDR < 0.05. (Color figure
online)

– the median feature importance rank over several data splits was calculated
for every feature in every list

The performance of every ML-based feature selection method was assessed
by the mean accuracy score over the 10-fold CV (Fig. 2). The best perform-
ing method was Lasso with 276 genetic features selected, followed by boruta
with a minor difference in performance, but with only 35 selected features.
The Univariate method resulted in 3,727 selected features, while the two
recursive feature elimination selection procedures RFE-LR and RFE-RF were
ranked the lowest and resulted in 9,192 and 9,270 selected features, respectively.



266 D. Zhakparov et al.

Fig. 2. Ten-fold cross-validation performance of the ML feature selection methods:
LASSO regresion (Lasso), BORUTA (boruta), univariate feature selection based on
the logit function (Univariate), recursive feature elimination with logistic regression
estimator (RFE-LR), and recursive feature elimination with random forest estimator
(RFE-RF). The y-axis shows the mean accuracy score with standard error.

However, while the Univariate feature selection method had a higher mean
accuracy score than the two recursive feature elimination procedures, its stan-
dard error was higher. The overlap between the lists of features selected by
the different ML-based methods consisted of only 3 genes (ENSG00000188163
(FAM166A), ENSG00000206177 (HBM), ENSG00000284491 (THSD8)), of
which ENSG00000188163 was also in the list of features identified in the DGE
analysis.

To study the similarity between the gene lists we calculated the pairwise Jac-
card, Sørensen–Dice and Overlap similarity scores (Fig. 3). The overall Jaccard
index in all pairwise comparisons was lower than 0.4, with the highest scores in
the comparisons of RFE-LR vs. Univariate (0.35), and RFE-LR vs. RFE-RF (0.32)
(Fig. 3A). These scores were to be expected given the similarity of the approaches
and the high number of selected features in these lists. The SDI scores showed
similar results to the J values and were generally lower than 0.2, again with the
exception of the pairwise comparisons between the large feature lists (Fig. 3B).
The result was considerably different for the OC, as this similarity score takes
the different size of the datasets into account (Fig. 3C). In general, the OC was
higher than 0.3. While the highest score of 1 was again observed in the compar-
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ison of the two largest lists RFE-LR vs. RFE-RF (1.0), the second-highest value
was achieved in the comparison of Lasso vs. Univariate (0.93).

Fig. 3. Analysis of the overlap between gene lists selected by the different ML-based
feature selection methods and by DGE analysis. The heatmaps represent similarity
scores calculated with the Jaccard index (A), the Sørensen–Dice index (B), and the
Overlap coefficient (C). The similarity scores for each pairwise comparison are indicated
and color-encoded according to the respective color key.

3.3 Functional Analyses

To evaluate the biomedical relevance of the different feature lists selected by
the different approaches in the biomedical context, we performed a GO term
functional enrichment analysis applying an FDR significance threshold smaller
than 0.05 (Table 2). The list of features selected with RFE-LR resulted in the
highest number of enriched GO terms and the highest number of GO child
terms of the parent term ‘immune system process’. However, the feature list
from Lasso showed the highest percent (72.2%) of enriched GO terms assigned
to this category, followed by the RFE-RF feature list. The highest fraction of
GO child terms of the parent term ‘biological process involved in interspecies
interaction between organisms’ was found in the DEGs. The Univariate gene
list resulted in the second-highest number of significantly enriched GO terms.
While most of these were not involved in immune- or defense-related processes,



268 D. Zhakparov et al.

Table 2. Enrichment of GO BP terms. For each list of selected features, the total num-
ber of significantly enriched GO terms is indicated along with the percentage of these
terms that are related to the parent nodes GO:0002376 ‘immune system process’ and
GO:0044419 ’biological process involved in interspecies interaction between organisms’.

Gene list Total enriched GO:0002376 GO:0044419

boruta 0 0 0

Lasso 54 72.2% 1.85%

RFE-RF 8 37.5% 0

RFE-LR 709 10.7% 0.85%

Univariate 202 3.96% 0.5%

DEG 24 4.17% 29.2%

the most significantly over-represented category in this feature list was ‘T cell
receptor complex’ (FDR = 1.54e–14).

To assess the overlap between the different lists of enriched GO terms, the
semantic similarity (SGO) was calculated between lists of significantly enriched
GO terms in the union of all lists using the method from Wang et al., (2007)
[28], followed by a binary cut clustering [7]. All GO terms that passed the signif-
icance threshold formed 7 distinct clusters (Fig. 4). The cluster containing the
highest number of GO terms was cluster 1 with 345 GO terms that were related
to general organism development. Most of the terms were significantly enriched
in the RFE-LR and Univariate selected feature lists. Cluster 2 contained 87 GO
terms related to cell migration, transport and signaling. Cluster 3 mainly com-
prised GO terms related to immune processes such as T and B cell activation
and immune regulation and had 213 enriched GO terms. In this cluster, most
of the terms were significantly enriched in the RFE-LR, Lasso and Univariate
feature lists. Cluster 4 contained 34 enriched GO terms related to extracellular
membrane organization. Clusters 5 and 7 contained 23 and 25 GO terms, respec-
tively, and were related to metabolic processes. Interestingly, cluster 6 contained
17 GO terms that were associated with antigen presentation and processing,
Major Histocompatibility Complex (MHC) assembly and were only significantly
enriched in the Lasso feature selection list.

Assuming that selected features have been previously identified in experi-
ments related to AD, we conducted a gene search in a compendium-wide analysis
across perturbations using the Genevestigator search engine. The threshold for
perturbation terms to be considered significant was set to FDR < 0.01 with no
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Fig. 4. Heatmap of SGO scores of most (794) significant GO BP terms in all of the
lists clustered with the binary cut method. At the left, the methods and the respective
adjusted p-values for the over-representation of a given GO BP term are indicated. The
color encoding shows the SGO scores. On the right side, the word clouds demonstrate
the most common keywords for every cluster. Clusters that are not annotated with a
world cloud did not contain a sufficiently high number of enriched GO terms.

limitations for the fold-change (Table 3). The number of perturbations related
to AD were most highly over-represented in the feature list selected by Lasso
followed by RFE-RF. Furthermore, the perturbation terms psoriasis, allergy and
asthma were over-represented in the Lasso feature list. While the feature lists
selected by boruta, RFE-LR, Univariate, and DGE analysis did not show an
over-representation of AD terms, at the same time terms related to asthma were
over-represented in these lists, and in the case of the boruta and RFE-LR feature
lists, the terms related to allergy were also over-represented.

3.4 GWAS

Consensus lists of genes that are associated with a disease with a genetic compo-
nent are often based on the results of genome-wide association studies (GWASs).
As genetic factors play an important role in the individual predisposition to aller-
gic diseases, [1,4], we established a GWAS list based on two different cohorts
[5,26]. The GWAS gene list contained a total of 53 genes, of which 51 were also
represented in the RNA-Seq dataset. Assessing the overlap between the GWAS
selected features with the different feature selection lists revealed no significant
over-representation (Table 4). Interestingly, the gene that was contained in all
the overlaps was ENSG00000148344 (Prostaglandin E synthase, PTGES).
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Table 3. Genevestigator Perturbation analysis on the selected feature lists. For
each gene list, the total number of retrieved significant perturbation terms, and the
number of terms related to the categories AD, psoriasis, allergy, and asthma are
given together with the p-value of the hypergeometric test assessing the probabil-
ity of retrieving this number of terms in the 6,124 perturbations contained in the
HS mRNASeq HUMAN GL-0 dataset.

Gene list Total studies AD Psoriasis Allergy Asthma

boruta 2121 20, 0.11 17, 0.55 21, 6.17e–04 94, 5.88e–04

Lasso 1531 29, 2.38e–08 26, 2.21e–05 15, 8.28e–03 86, 6.25e–08

RFE-RF 2170 26, 1.76e–03 18, 0.48 19, 7.57e–03 89, 0.11

RFE-LR 2182 24, 0.011 18, 0.49 19, 8.1e–03 105, 3.25e–06

Univariate 1943 12, 0.81 12, 0.9 15, 0.068 88, 4.84e–04

DEG 1256 7, 0.84 7, 0.9 10, 0.12 67, 2.65e–05

Table 4. Overlap of the 51 GWAS selected features with lists of ML-based methods
and DEG. The p-values were computed using the hypergeometic test

Gene list Overlap GWAS p-value

boruta 0\35 1.0

Lasso 1\276 0.51

RFE-RF 23\9265 0.61

RFE-LR 28\9192 0.12

Univariate 7\3727 0.86

DEG 1\82 0.19

4 Discussion

Selection of informative features in bulk RNA-Seq datasets remains a major
challenge requiring an efficient solution as a variety of subsequent steps in data
analysis workflows heavily depend on a biologically meaningful selection of tran-
scripts. To select informative features, we have employed informative feature
searches and compared the results to a standard differential gene expression
approach. To validate and assess the performance of different feature selection
methods we 1) applied a standard statistical approach to identify DEGs, 2)
employed five different ML feature selection methods and compared their predic-
tive performance based on a 10-fold CV accuracy score, 3) performed functional
analyses to see whether biomedically meaningful pathways in the context of AD
were over-represented in the different selected feature lists, 4) determined the
previous identification of the selected features in transcriptomics studies inves-
tigating AD, psoriasis, asthma, or allergy and 5) assessed the overlap of the
feature lists with a consensus GWAS-derived gene list.

In the ML-based feature selection we found that the mean 10-fold CV accu-
racy of the 5 applied feature selection methods was more than 60%. The method
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with the highest mean accuracy score was Lasso, which identified 276 features,
drastically reducing the feature space. Both RFE methods resulted in more than
9,000 selected features, while a standard univariate feature selection method
selected 3,727 features. The high number of selected features might be the rea-
son why these three methods achieved lower mean accuracy scores due to over-
fitting. Interestingly, the boruta method managed to achieve a mean accuracy
score close to the best performer with a set of only 35 selected features. This
might indicate that a small number of genes are enough to distinguish between
AD and HC in this RNA-Seq dataset.

The discrepancy in the number of selected features by the different feature
selection methods poses a considerable challenge in comparing the different fea-
ture lists, as both the Jaccard index and the Sørensen–Dice index are not infor-
mative when lists with differing lengths are compared [20]. Calculating the Jac-
card index, Sørensen–Dice index and Overlap coefficient to compare the different
lists, revealed that the Overlap coefficient was the method performing best, as
it is sensitive to the sizes of the compared lists.

While information on the overlap between lists can be useful in assessing
whether there might be a subset of consensus features that are relevant for the
respective study design, there is no indication on the biological relevance of the
overlap, especially when the list sizes are considerably different. Following the
assumption that GO BP categories assigned to selected features should be over-
represented for terms that are related to the scientific question if the features
are relevant for the respective study design, a GO enrichment analysis was per-
formed. Calculating a semantic similarity measure between the retrieved GO
term lists followed by clustering revealed interesting differences for the feature
lists. Cluster 3 mainly comprised GO terms related to immune processes, which
were enriched in the RFE-LR, Lasso and Univariate feature lists. In addition,
the Lasso feature list was the only feature list that had GO terms of cluster 6
over-represented, which were associated with antigen presentation and process-
ing. Corresponding with this, the Lasso and RFE-RF feature lists contained the
highest fraction of terms related to the parent GO term ‘immune system pro-
cess’. The Lasso method therefore managed to select features that are specific
to immune processes, followed by RFE-RF, while the feature lists selected by the
other methods retrieved more general GO BP terms. Searching the Genevesti-
gator software tool [9] for studies in which the selected features were previously
associated with study designs testing for AD, psoriasis, allergy, and asthma, we
again found that the Lasso feature list showed the highest over-representation
for AD, followed by the RFE-RF feature list. In contrast, the GWAS consensus
list had no over-represented overlap with any of the selected feature lists. This
corresponds with the notion that not only genetic, but also several environmental
factors are determinants of allergic diseases [19,25].

5 Conclusion and Future Perspectives

Feature selection in high-dimensional datasets is a cornerstone of a robust down-
stream analysis. In the present study we have performed an extensive feature
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selection procedure to find informative features in a bulk RNA-Seq dataset using
five different ML-based methods and DGE analysis. In summary, the selection of
features that are specifically associated with AD and are therefore expected to
be biomedically relevant in our study design was largest using the Lasso method
followed by RFE-RF. Comparing the performance of these two ML-based selection
methods, Lasso had the highest mean accuracy score, while RFE-RF had the
lowest. The overlap between the Lasso and RFE-RF lists, as determined by the
OC, gave an intermediate value of 0.62. The finding that RFE-RF was the second-
best performer with regard to selecting features with biomedical relevance was
therefore not evident by the performance parameters or the similarity scores.
This emphasizes the value of our approach in taking available biological infor-
mation into account to evaluate the performance of different feature selection
methods. However, there are some limitations to our approach that might inter-
fere with its general applicability. First, taking into account the peculiarities of
biomedical datasets with the expected considerable person-to-person variance,
the sample size is rather small for ML standards. Second, the results from the
ML-based feature selection is expected to differ dependent on the choice of ML
algorithm. In addition, each transcriptomics dataset is different with regard to
the contribution of the experimental variable to the variance in the data, which
will influence the ability of the different methods to identify informative features.
It is therefore generally recommended to employ a number of different methods,
followed by an evaluation of the feature lists, taking into account publicly avail-
able biological data and gene annotations.
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Abstract. Heart failure and acute heart failure, the sudden onset or
worsening of symptoms related to heart failure, are leading causes of hos-
pital admission in the elderly. Treatment of heart failure is a complex prob-
lem that needs to consider a combination of factors such as clinical man-
ifestation and comorbidities of the patient. Machine learning approaches
exploiting patient data may potentially improve heart failure patients dis-
ease management. However, there is a lack of treatment prediction mod-
els for heart failure patients. Hence, in this study, we propose a workflow
to stratify patients based on clinical features and predict the drug treat-
ment for hospitalized patients with heart failure. Initially, we train the k-
medoids and DBSCAN clustering methods on an extract from the MIMIC
III dataset. Subsequently, we carry out a multi-label treatment prediction
by assigning new patients to the pre-defined clusters. The empirical eval-
uation shows that k-medoids and DBSCAN successfully identify patient
subgroups, with different treatments in each subgroup. DSBCAN outper-
forms k-medoids in patient stratification, yet the performance for treat-
ment prediction is similar for both algorithms. Therefore, our work sup-
ports that clustering algorithms, specifically DBSCAN, have the potential
to successfully perform patient profiling and predict individualized drug
treatment for patients with heart failure.

Keywords: Drug treatment prediction · Heart failure · Acute heart
failure · Machine learning · Clustering

1 Introduction

Heart failure (HF) is a heterogeneous clinical syndrome resulting from a struc-
tural or functional abnormality of the heart, leading to signs and symptoms
such as dyspnea, orthopnea, and pulmonary congestion [17]. The prevalence of
HF varies among different regions and increases with age. Approximately 6.2
million adults in the United States suffered from HF between 2013 and 2016
[33]. Additionally, at present, the prevalence of diagnosed HF appears to be 1 to
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2% in adults in Europe and more than 10% in elderly, aged 70 years and above
[20]. Given the aging population, an increasing number of individuals affected
by HF is expected in the near future.

Acute heart failure (AHF) is generally described as the sudden onset or wors-
ening of symptoms caused by HF, and it is a leading cause of hospital admission
in patients aged 65 and above [20]. AHF is a syndrome with a high disease bur-
den. The in-hospital mortality was about 9.6% in the United Kingdom, based
on the 2016 National Heart Failure Audit data, and, in general, the one-year
mortality ranges from 20 to 36% in developed nations [1,17]. Treatment of AHF
is a complex issue since it is usually based on a combination of factors, including
the severity of congestion, hypoperfusion, and other comorbidities in patients
[9]. In fact, implementation of treatment guidelines is relatively poor in HF and
AHF due to the existence of other conditions, for instance, renal diseases, lead-
ing to sub-optimal therapeutic doses or low utilization of drugs recommended
by the guidelines [25]. Moreover, polypharmacy, the use of multiple medications,
is common in patients with AHF [35] and can therefore complicate the problem
by inducing adverse events and drug interactions [15].

Machine learning (ML) is a promising tool that could enable researchers and
healthcare professionals to address the complexity of HF and AHF treatment.
Given its ability to leverage information from multiple datasets and identify
novel relationships in the data, it achieves higher predictive performance against
current conventional approaches for several clinical prediction tasks, such as
diagnosis, clinical procedures, and medication prescription [11,24].

Recent studies explored electronic health records (EHRs) to assess treatment
outcomes in HF patients with ML models and establish associations between
biomarkers and the outcome [18,36]. EHRs are a rich data source that could be
useful to train ML models for estimating drug treatments. EHRs contain patient
information from hospital visits, surgeries and procedures, radiology and labo-
ratory tests, and prescription records. The data can be in various forms ranging
from text, images, and signals like electrocardiograms [2]. Furthermore, longitu-
dinal profiles of the patients in EHRs can be promising in stratifying patients
and developing tailored management plans based on clinical characteristics [4].

Related Work. ML techniques have been widely adopted for predicting car-
diovascular diseases to aid patient management using data from clinical settings
[6]. Our work draws upon established guidelines in HF and AHF, and a variety
of existing studies that leverage supervised and unsupervised ML models in pre-
dicting diagnosis and prognosis of AHF. However, such advances in prediction
models, leveraging information from EHRs, focused mainly on the prediction
of the onset of the syndrome [5,21] and adverse events [18,26,27,29,31] via a
supervised approach. In a recent study, Li et al. [18] applied multivariate logis-
tic regression analysis in predicting in-hospital mortality of patients admitted
to intensive-care units exploiting the MIMIC III database. The authors man-
ually screened HF-relevant features from the EHRs and XGBoost and LASSO
regression models were used to further filter the features.

Unsupervised ML models have not been adequately explored for treatment
prediction for HF and AHF patients. In a previous study, Panahiazar et al.
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[22] focused on therapy recommendation for HF patients using two different
approaches, both supervised and unsupervised. They developed a multidimen-
sional patient similarity assessment technique that predicted a medication plan
for new patients based on EHR data. However, to the best of our knowledge,
this is the only published study that leverages unsupervised methods for treat-
ment prediction while the majority of previous studies focus mainly on patient
profiling. Harada et al. [10] deployed k-means clustering to group patients with
HF with preserved ejection fraction. Parameters measuring cardiac functions
and signs and symptoms of HF were used to cluster patients into four clusters.
The authors also acknowledged that clustering algorithms have the potential to
guide individualized treatment selection. Shah et al. [28] addressed the problem
of readmission and mortality via phenomapping in AHF. Patient information
was used as phenotypic features and three pheno-groups were identified via clus-
tering. The pheno-groups presented differential risk profiles which gave improved
discrimination compared to clinical features. Nonetheless, the profiling process
in these studies was not associated with AHF treatment.

In other domains like depression, clustering was also used for treatment pre-
diction. Wang et al. [34] applied hierarchical clustering to identify patient sub-
groups in major depressive disorder and perform classification for treatment
prediction. Therefore, they revealed that clustering is indeed a feasible method
in identifying treatment-sensitive patient groups and adjusting medication treat-
ment, and thus the solution to better therapy choices and consequently improve
clinical outcomes for HF and AHF patients.

However, despite the ML-based solutions mentioned above, little emphasis
has been given to treatment prediction for HF and AHF patients via an ML
approach.

Contributions. The main focus of this paper is to propose a workflow that uses
clustering methods to profile AHF patients, based on data from EHRs, to identify
potentially treatment-sensitive patient subgroups, and to predict individual drug
treatment. The main contributions are summarized below:

1. We propose a workflow for drug treatment prediction for HF and AHF
patients using machine learning methods;

2. We identify patient subgroups (clusters) with different profiles from untagged
patient data using clustering algorithms;

3. We predict individual drug treatment for new patients using the previously
defined clusters;

4. We benchmark two common clustering algorithms (k-medoids and DBSCAN)
as parts of our workflow using an extract from the MIMIC-III database.

2 Drug Treatment Prediction for Heart Failure

We propose a workflow for stratifying patients based on clinical features and
predicting the drug treatment for hospitalized patients with HF and AHF. The
workflow comprises five steps: (1) feature extraction, (2) feature selection, (3)
clustering, (4) clusters visualization, and (5) treatment prediction.
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2.1 Problem Formulation

The problem studied in this paper can be formulated as a multi-label prediction
problem for individual drug treatment for hospitalized patients with heart fail-
ure, where the labels indicate the drugs that will be administered to a patient
with HF and AHF.

Given a set of p patients diagnosed with HF and AHF, we define D to be
a collection of electronic health records (EHRs), with |D| = p. We define R to
be a collection of clinical features and T to be a collection of treatment labels.
For each patient w, Dw ∈ D describes her heath record that comprises Rw ∈ R
and Tw ∈ T . Each Rw describes a set of demographic information, vital signs,
lab tests, and comorbidities, of the wth patient over the hospitalization period
and contains n features of mixed nature. We perform feature selection on R,
resulting in R′, with |R′

w| = n. Each Tw describes a set of relevant drugs, of the
wth patient and contains q binary features, with |Tw| = q.

The first objective of this paper is to identify patient subgroups with similar
characteristics in D, using R. More concretely, we want to define a mapping
function f : D → C, where C is a clustering of D, consisting of a set of c clusters.
Subsequently, each cluster i ∈ C will be annotated with the prescription rate
of each drug treatment m ∈ T . The second objective of this paper is, given an
EHR of a new patient w′, to assign her to the adequate patient cluster i based
on Rw′ , and to predict the set of drug treatments T ′

w that corresponds to the
cluster (Tw′ = Ti). Next, we define the five steps of our workflow in more detail.

2.2 Feature Extraction

Initially, based on the primary diagnosis of each patient, we only selected
patients diagnosed with HF and AHF. Patients without a hospitalized record
were excluded from the study.

For each patient w, based on clinical guidelines and previous studies
[9,18,20,37], n clinical features were extracted from four main domains: demo-
graphic information, vital signs, laboratory test results, and comorbidities. All
vital signs were extracted within the first 24 h of the patient admission, and all
laboratory readings were averaged across the readings during the entire hospital
stay following methods proposed by Li et al. [18].

Missing values are common in EHRs. Features containing more than 25% of
missing values were removed. Subsequently, for normally distributed continuous
features, the mean was used to replace missing values, and for those with asym-
metrical distribution, the median was used. Missing values for categorical data
were replaced with the mode. In addition, min-max normalization was performed
on the data so that all features had values between 0 to 1.

As for the treatment labels, generic names of relevant drugs were extracted
and sorted according to their drug classes. Finally, only q drug classes were
selected, the ones that are indicated for HF or have potential benefits for HF
patients (based on the literature [20,35]).
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2.3 Feature Selection

Given the relatively large number of features, a feature selection was performed
to choose a subset of the original features. K-medoids with Manhattan distance
was used as the algorithm for the feature selection since it is compatible with
mixed data types. Sequential backward elimination combined with silhouette
score was utilized for feature selection [19]. The silhouette score was used as a
fit criterion since it provides the goodness of the clustering [12]. The greater
the silhouette score, the better the clustering result. The silhouette score was
calculated after the deletion of each feature, and the feature with the lowest
silhouette score was removed. Then the process was repeated until the number of
features reached 20. The complete sequential backward elimination process was
repeated 12 times for a different number of clusters, k, between 3 and 14, resulting
in 12 potentially different sets of 20 features. Subsequently, the occurrences of
individual features in the 12 sets were calculated to identify a common pool of
features and further reduce the number of selected features. Depending on the
actual occurrence of the features, a cut-off percentage was set to keep only the
features with an occurrence higher than the cut-off point.

The feature selection was performed using k-medoids and the selected fea-
tures were used to train both k-medoids and DBSCAN. The reason for this
choice was that, by design, the feature selection process was repeated for differ-
ent numbers of clusters. Since DBSCAN does not allow the specification of the
numbers of clusters, the repetition was practically impossible with DBSCAN.

2.4 Clustering Algorithms

To investigate patient grouping for different treatments we used the following
clustering algorithms:

– K-medoids. K-medoids clustering is a partitioning algorithm that fits p obser-
vations into k classes. Unlike the k-means clustering which is one of the most
commonly used algorithms, k-medoids chooses actual data points as centers
and associates each point to the closest center, making it appropriate for mixed
data types [3]. We used the Manhattan distance as the distance metric since
it is preferred over the Euclidean distance for high-dimensional data yielding
more robust clustering results. K-medoids clustering with Manhattan distance
requires the specification of the clusters number prior to clustering. To deter-
mine the appropriate number of clusters, k, the silhouette scores against dif-
ferent k values ranging from 3 to 14 were computed. The cluster number with
the highest silhouette score and the best visualization was chosen.

– DBSCAN. Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is a density-based algorithm built based on the idea that a cluster
should occupy a continuous region of high point density exceeding a pre-defined
threshold [7]. Gower distance [8] which applies different metrics for computing
distances in continuous and categorical features was used to ensure DBSCAN
was compatible with mixed data types. If the feature is continuous, Manhattan



280 L. Zhou and I. Miliou

distance is used. Meanwhile, if the feature is categorical, the Dice coefficient is
applied [8]. For DBSCAN, we needed to determine two parameters. The first
parameter, ε, is used to define the maximum distance between two points to
be considered as neighboring points. The other parameter, minPts, states the
minimum number of points in the neighborhood for a point to be considered as
a core point. We selected the combination of ε and minPts values that resulted
in the highest silhouette score and the best visualization result.

2.5 Clustering Visualization

To visualize the clustering results with high-dimensional data we used the T-
distributed stochastic neighbor embedding (t-SNE) dimensionality reduction
method [32]. T-SNE transforms high dimensional Euclidean distances between
data points into conditional probabilities that represent similarities, and then
it uses Student’s t distribution to compute the similarity between two points
in the low-dimensional space. For this study, the dataset was converted into
two-dimensional (2D) space and visualized using scatter plots. The goodness of
visualization was based on manual scrutiny. The parameters for T-SNE were set
to the default values. T-SNE was used only for the visualization of the clustering
results and was not involved in the clustering process.

2.6 Treatment Prediction

Since our study aims to predict drug treatments based on patient subgroups,
the likelihood or probability of a drug being prescribed was associated with
the prescription rate of that drug in different clusters in the training set. The
probability of each drug m being prescribed, Prm, for m = 1, ..., q was computed
based on the prescription data from the training set. In the clusters derived by k-
medoids and DBSCAN, a threshold was set for each drug, and if the prescription
probability of the drug m in cluster i was above the threshold Prm, then the
final probability remained the same, otherwise it was set to 0:

∀i ∈ C : Prmi =

{
Prmi, if Prmi ≥ Prm

0, if Prmi < Prm.
(1)

Finally, the prescription probability of each drug in the test set was also
derived by assigning the patients in the test set to the clusters determined by the
training set. Thus, each patient inherited the drugs (along with their prescription
probability) of the cluster it was assigned to and these were the predicted drug
treatments for this patient.

3 Empirical Evaluation

3.1 Data Description

We used the Medical Information Mart for Intensive Care III (MIMIC III) for this
study, which is an open single-centered EHR database that contains de-identified
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data on 46,520 patients who were admitted to intensive care units of the Beth
Israel Deaconess Medical Center in Boston, US, from 2001 to 2012 [13]. The
EHRs in MIMIC III comprise comprehensive patient information encompassing
demographics, diagnosis using the ICD-9 code, laboratory tests, prescriptions,
procedures, radiology results, notes and summaries by healthcare professionals
and mortality information of the patients.

Patient Selection. In this study, we included all patients admitted from 2001
to 2012 with a primary diagnosis of AHF and HF, identified by ICD-9 codes.
Diagnosis of HF were selected since hospitalization already implied an exacerba-
tion of the disease, ergo AHF. Out of 13591 patients found to have a diagnosis
or history of HF, 1352 patients with a primary diagnosis of HF were included.

Feature Extraction. We extracted 47 relevant clinical features regarding demo-
graphic information, vital signs, laboratory test results, and comorbidities, which
are presented in Table 1. The extraction of the vital signs and comorbidities
requires additional steps, such as unit conversion, and thus it was performed
using an open code repository to support the reproducibility of the study [14,23].
In the MIMIC III database, patients older than 89 are recorded as ‘300’ for data
protection purposes [13]. Hence, admission age above 300 in the extracted data
was replaced with 90. Ethnicity groups were re-classified as ‘White’, ‘Black’,
‘Others’, and ‘Unknown’. For instance, patients with the ethnicity of ‘White -
Russian’ and ‘White - Eastern European’ were grouped into the ‘White’ eth-
nic group. Notably, LVEF was extracted from plain text, both in numeric form
(e.g. LVEF < 30%, LVEF = 30–40%) and ordinal form (e.g. normal, moderate).
Consequently, all LVEF values were transformed based on the American College
of Cardiology (ACC) classification into a numeric scale from 0 to 4 [16], with 0
being hyperdynamic and 4 being severely impaired. In addition, the features that
contained more than 25% of missing values, which were NT-proBNP and lactate,
were removed. In the domain of comorbidities, uncomplicated diabetes and com-
plicated diabetes were merged into one class, diabetes. After the preprocessing
phase we obtained 45 features in total.

Feature Selection. Backward elimination for feature selection was deployed to
keep 12 sets of 20 features with the best silhouette score based on the patients in
the training set via k-medoids clustering with Manhattan distance. To reduce the
final number of the features, we set the cut-off percentage to 75%, and as a result,
features with an occurrence higher than 9 were kept for the clustering. Nine
features were selected, namely body temperature, ethnicity - white, respiratory
rate (RR), red blood cells (RBC), admission age, LVEF, mean blood pressure
(BP), chronic pulmonary, and diabetes, ordered from high to low occurrence.

Treatment Labels Selection. As for the treatment labels, we selected a total
of 18 drug classes, either indicated for HF or with potential benefits for HF
patients, which are shown in Table 1. The treatment classes were not used for the
clustering but for the model evaluation and treatment prediction. In our study
population, the most prescribed medications were antiplatelet and anticoagulant
drugs (n = 1283, 94.9%) and diuretics (n = 1248, 92.31%). On the other hand,



282 L. Zhou and I. Miliou

anti-anginal drugs (n = 8, 0.59%) and vasopressin antagonists (n = 4, 0.29%)
were the least prescribed in AHF patients.

Table 1. Features and drug classes (treatment labels) in the MIMIC III database
relevant to HF and AHF

Domain Feature

Demographic
information

Admission age, sex, ethnicity

Vital signs Body temperature, diastolic blood pressure (DBP), heart rate (HR),
mean blood pressure (BP), respiration rate (RR), systolic blood
pressure (SBP), saturation pulse oxygen (SPO2), and urine output

Laboratory test
results

Anion gap, basophils, bicarbonate, chloride, glucose (blood),
hematocrit, International normalized ratio (INR), lactate, left
ventricular ejection fraction (LVEF), lymphocytes, mean corpuscular
hemoglobin concentration (MCHC), mean corpuscular volume
(MCV), magnesium, neutrophils, N-terminal pro b-type natriuretic
peptide (NT-proBNP), partial pressure of carbon dioxide (pCO2),
pH, prothrombin time (PT), platelet count, potassium, red blood cell
distribution width (RDW), red blood cells (RBC), sodium, urea
nitrogen, and white blood cells

Comorbidities Blood loss anemia, cardiac arrhythmia, chronic pulmonary
conditions, deficiency anemia, depression, diabetes (complicated and
uncomplicated), hypertension, obesity, psychoses, renal failure

Drug Classes
(Treatment
Labels)

ACEi/ARB, alpha-adrenergic agonist, anti-anginal drugs,
anti-diabetic, anti-arrhythmic, antiplatelet and anticoagulant drugs,
beta blocker, calcium channel blocker, carbonic anhydrase inhibitor,
digoxin, diuretic, erythropoietin, inotrope/vasodilator, MRA,
recombinant human B-type natriuretic peptide, statin, vasopressin
antagonist, and vasopressor

3.2 Setup

In our study population (n = 1352), patients were randomly divided into a
training set (n = 946, 70%) and a test set (n = 406, 30%). The experiment has
been repeated three times to guarantee the robustness of the results. There was
no statistically significant variation found in these patient characteristics except
in one of the repeats, sodium level was lower in the test set (p = 0.035). In terms
of the drug treatment, there was no significant difference between the training
and test sets. All our code to support the reproducibility of the study is publicly
available at the GitHub repo1.

3.3 Evaluation

This section presents the evaluation metrics for the performance of the clustering
process and that of the treatment prediction, the latter being the main aim of
this study.
1 https://github.com/linyi234/patient-clustering.git.

https://github.com/linyi234/patient-clustering.git
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Clustering Performance. Initially, to assess the quality of the obtained clus-
ters we used the Silhouette score, a useful metric that quantifies the good-
ness of the clustering [12]. Additionally, we adapted a cross-validation app-
roach proposed by Tarekegn et al. [30] for algorithm evaluation on multi-label
datasets. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
combined with an 10-fold cross-validation procedure were deployed. Unlike sil-
houette scores, RMSE and MAE factored in the strength of the algorithms to
predict treatment labels for the validation data in the cross-validation process.

The training set was randomly partitioned into 10 folds where each fold took
a turn to be used for validation and the remaining folds for training. For each
cross-validation fold j = 1, ..., l, where l = 10, we computed two error scores per
cluster and validation fold, RMSEij (Eq. 2) and MAEij (Eq. 3), as follows:

RMSEij =

√∑q
m=1(ŷmi − ymi)2

q
(2)

MAEij =
1
q

q∑
m=1

|ŷmi − ymi|, (3)

where ymi is the probability that a patient from the training folds, assigned to
cluster i, has the mth treatment label, and ŷmi is the probability that a patient
from the validation fold, assigned to cluster i, has the mth treatment label.

When the loop was completed and every fold was taken as the validation fold,
the average RMSE for the ith cluster could be computed by averaging RMSEij

values from all 10 folds in that cluster. RMSE was obtained as shown in Eq. 4.
MAE was also obtained in a similar fashion as RMSE. The smaller the RMSE
or MAE, the more stable and better the outputs of the clustering algorithm.

RMSE =
1
c

c∑
i=1

RMSEi,

where RMSEi =
1
l

l∑
j=1

RMSEij

(4)

Treatment Prediction. To assess the prediction accuracy for the drug treat-
ment of each patient, after setting the threshold Prm for each drug m, we com-
puted the adjusted RMSE and MAE over all the clusters, summing the adjusted
RMSE and MAE of each cluster. The computation of the adjusted RMSE is
shown below in Eq. 5. The adjusted MAE is computed in a similar manner.

adjusted RMSE =
1
c

c∑
i=1

adjusted RMSEi,

where adjusted RMSEi =

√∑q
m=1(ŷ′

mi − y′
mi)2

q

(5)
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where y′
mi is the probability that a patient from the training set, assigned to

cluster i, has the mth treatment label, after the threshold was applied, and ŷ′
mi

is the probability that a patient from the test set, assigned to cluster i, has the
mth treatment label, after the threshold was applied.

3.4 Results

Clustering. Comparing the two clustering algorithms, we observed that
DBSCAN outperformed k-medoids based on the silhouette score, as reported
in Table 2. For k-medoids, k = 6 was chosen as the optimal number of clus-
ters and yielded a silhouette score of 0.269. Overall, k-medoids did not seem to
provide the optimal clustering results based on silhouette score, but also based
on the visualization results (Fig. 1). On the other hand, DBSCAN returned a
higher silhouette score of 0.433 when ε = 0.12 and minPts = 5. Addition-
ally, the clustering visualization also revealed that DBSCAN resulted in clearly
defined clusters (Fig. 1).

Table 2. Evaluation metrics results of clustering.

Silhouette score RMSE* MAE*

K-medoids 0.269 0.104 0.078

DBSCAN 0.433 0.134 0.099
∗ Average of three experiments

Fig. 1. 2D visualization of the clustering results on the training set.

Additional assessment of the clustering with regards to the treatment labels,
includes the RMSE and MAE scores (reported in Table 2). A low RMSE value
implies a high similarity between the training and the validation sets and a low
MAE value reveals a good prediction of the labels in the clusters. We observed
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that k-medoids had slightly better performance, yielding an RMSE value of 0.104
and a MAE of 0.078 while DBSCAN yielded an RMSE of 0.134 and a MAE of
0.099. Therefore, the results suggested that k-medoids was slightly better in
predicting the treatment occurrence in the dataset. Nonetheless, given a much
higher silhouette score and clearly demarcated clusters, DBSCAN was deemed
as the better model for patient profiling.

K-medoids resulted in 6 clusters and the selected patient characteristics for
each cluster are shown in Table 3. Cluster 1 exhibited younger patients diag-
nosed with chronic pulmonary conditions and diabetes. Cluster 2 patients were
characterized by a high LVEF level and high RBC (red blood cells) counts. In
cluster 3, patients had the lowest LVEF level, highest mean BP, and no other
comorbidities. Cluster 4 patients were characterized by older age, medium level
of LVEF, and a higher proportion of White ethnic group. Cluster 5 was com-
posed of patients with an absence of lung conditions and a presence of diabetes,
which was the direct opposite of cluster 6 where patients had diabetes but no
chronic lung conditions.

Table 3. Patient characteristics in k-medoids clusters. Data are median (interquartile
range), or mean ± SD or percentage of positive cases depending on data types. Eth-W:
white ethnicity; ChPul: chronic pulmonary.

Admission
age

Body temp. LVEF Mean BP RBC RR Eth-W ChPul Diabetes

Cluster 1
(n = 161)

72 (63-80) 36.5± 0.49 3 (1-4) 75.8± 10.5 3.64± 0.71 20.0± 3.5 65.8% 100% 100%

Cluster 2
(n = 109)

72 (63-80) 36.5± 0.58 4 (4-4) 74.0± 10.0 3.97± 0.64 21.0± 4.1 72.5% 0 0

Cluster 3
(n = 112)

78 (66-87) 36.7± 0.51 1 (1-1) 76.6± 11.0 3.56± 0.54 20.5± 4.2 78.6% 0 0

Cluster 4
(n = 68)

84 (77-88) 36.5± 0.47 3 (3-3) 72.9± 10.2 3.68± 0.51 19.8± 3.5 82.4% 0 0

Cluster 5
(n = 263)

74 (65-82) 36.6± 0.54 3 (1-4) 74.2± 10.8 3.57± 0.52 20.1± 3.9 71.1% 0 100%

Cluster 6
(n = 233)

78 (65-85) 36.5± 0.51 2 (1-4) 73.2± 9.9 3.69± 0.62 20.5± 4.0 74.2% 100% 0

Patient characteristics in DBSCAN clusters are shown in Table 4. Cluster 1
was characterized by people with relatively high LVEF and low mean BP and
previous diagnosis of lung conditions and diabetes. Patients in cluster 2 were
non-Caucasians with diabetes and a relatively low number of RBCs. Cluster 3
consisted of younger non-Caucasian patients with the highest mean BP and no
other comorbidities. Clusters 4 and 5 were composed of people with oldest age in
which the latter group had milder LVEF dysfunction and a history of pulmonary
diseases. Cluster 6 patients exhibited lower RBC counts, a history of diabetes
and moderately high LVEF. Lastly, Clusters 7 and 8 were non-Caucasians with
the youngest age, moderately high mean BP and chronic lung conditions, dif-
ferentiated by the presence of diabetes. In addition, body temperature and RR
were relatively similar across all clusters.
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Table 4. Patient characteristics in DBSCAN clusters. Data are median (interquartile
range), or mean ± SD or percentage of positive cases depending on data types. Eth-W:
white ethnicity; ChPul: chronic pulmonary.

Admission
age

Body temp. LVEF Mean BP RBC RR Eth-W ChPul Diabetes

Cluster 1
(n = 106)

76(67-81) 36.5± 0.5 3 (1-4) 73.8± 9.5 3.61± 0.64 20.1± 3.50 100% 100% 100%

Cluster 2
(n = 75)

71(60-77) 36.7± 0.5 3 (1-3) 77.3± 12.5 3.58± 0.48 20.2± 3.95 0 0 100%

Cluster 3
(n = 65)

67(52-77) 36.6± 0.5 3 (2-4) 81.6± 12.2 3.78± 0.72 20.5± 3.76 0 0 0

Cluster 4
(n = 223)

80(69-87) 36.6± 0.5 3 (3-3) 72.6± 8.7 3.72± 0.55 20.6± 4.08 100% 0 0

Cluster 5
(n = 173)

80(71-86) 36.5± 0.5 2 (1-3) 71.5± 8.6 3.65± 0.59 20.8± 4.10 100% 100% 0

Cluster 6
(n = 187)

76(67-84) 36.6± 0.6 3 (3-4) 72.9± 9.7 3.56± 0.52 20.1± 3.79 100% 0 100%

Cluster 7
(n = 60)

65(55-79) 36.5± 0.5 3 (2-4) 77.9± 11.2 3.81± 0.68 19.7± 3.44 0 100% 0

Cluster 8
(n = 54)

67(57-77) 36.5± 0.5 3 (2-4) 79.0± 10.6 3.73± 0.83 19.7± 3.44 0 100% 100%

Treatment Prediction. To assess the clustering quality with regards to new
unseen data, data points from the test set were assigned to the clusters defined by
the training set. Patients from the test set seemed to be well assigned to clusters
both in k-medoids and DBSCAN based on the visualization results (Fig. 2). Out
of 406 patients in the test set, only one patient was categorized as noise by
DBSCAN, which is found close to cluster 2 in Fig. 2. It can be concluded that
the clustering of new points to existing clusters was accurate in both algorithms.

Subsequently, prescription probability of each drug in the test set was derived.
Each patient in the test set inherited the prescription probability of the drugs in
the cluster it was assigned to. Individualized thresholds, which were the average
prescription rates of each drug in the training set were also applied. To assess
the treatment prediction accuracy, after setting the threshold for each drug, we
calculated the adjusted RMSE and MAE scores, that revealed that the difference
in the two algorithms was insignificant (Table 5). The adjusted RMSE scores were
0.041 and 0.046 and the adjusted MAE were 0.023 and 0.026 for k-medoids and
DBSCAN, respectively. It may be concluded that both algorithms had similar
performance for treatment prediction.

Table 5. Evaluation metrics results of treatment prediction.

Adj. RMSE* Adj. MAE*

K-medoids 0.041 0.023

DBSCAN 0.046 0.026
∗ Average of three experiments
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Fig. 2. 2D visualization of the clustering results on the test set.

The final predicted prescription likelihood per cluster is shown in Fig. 3A
for k-medoids and Fig. 3B for DBSCAN. Color codes were also used to indicate
the different levels of the likelihood a drug is being prescribed. For k-medoids,
cluster 1 has the greatest number of drugs prescribed (n = 11), followed by cluster
5 (n = 10), cluster 2 (n = 8), and cluster 3 (n = 7). Clusters 4 and cluster 6 have
the least number of drugs (n = 4). As seen from Fig. 2, there was an overlap of
clusters 2, 3, and 4. Nonetheless, these clusters only had one drug in common,
which was anti-arrhythmic drug, implying that patient subgroups derived by
k-medoids may not be the most appropriate for treatment prediction. On the
other hand, DBSCAN resulted in eight clusters, in which cluster 6 had the most
number of drugs prescribed (n = 12), and after that followed cluster 1 and cluster
8 (n = 10), cluster 2 (n = 9), and cluster 7 (n = 7), cluster 5 (n = 6) lastly, clusters
3 and 4 (n = 5). Notably, there was no cluster that had the same medication
combination in k-medoids and DBSCAN.

Fig. 3. Treatment prescription likelihood for each cluster.
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4 Conclusions

This study presented a workflow to determine subgroups of patients with HF and
AHF and predict individual drug treatment using an extract from the MIMIC III
dataset. Specifically, this study exploited two clustering algorithms, k-medoids
and DBSCAN, to stratify patients based on clinical features from EHRs, and
subsequently, associated clusters with treatment labels to predict the probability
of each drug to be prescribed in each cluster. Our findings suggest that both
k-medoids and DBSCAN resulted in individualized treatment for each patient
cluster, with DBSCAN slightly outperformed k-medoids with a higher silhouette
score and clearly demarcated clusters.

Having established the potential of clustering in treatment prediction, further
research is encouraged. The results and the generalizability of this study will need
to be verified in a larger sample size and different patient cohorts. Furthermore,
temporal relation needs to be established between the clinical features and the
treatment labels. Data that are obtained after a drug is prescribed should not
be included in the clustering process. In addition, imputation methods could be
explored to include relevant features with a large number of missing values, such
as NT-proBNP. Finally, the unstructured data from the EHRs may be utilized
to retrieve important information such as medication history, chief complaint,
and text reports of echocardiogram in relation to AHF.

In conclusion, the work that we presented here shed new light on predicting
personalized treatment for patients with AHF via ML models. It has also been
one of the first attempts to use treatment labels for clustering evaluation in the
field of HF and AHF. Moreover, this study raises the possibility that clustering is
a viable option to identify distinguished and treatment-sensitive patient profiles
to guide clinical decision. The workflow could be easily extended to predict the
treatment for patients with other diseases and health conditions.
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Abstract. Lung transplantation is a critical procedure performed in
end-stage pulmonary patients. The number of lung transplantations per-
formed in the USA in the last decade has been rising, but the survival
rate is still lower than that of other solid organ transplantations. First,
this study aims to employ machine learning models to predict patient
survival after lung transplantation. Additionally, the aim is to generate
counterfactual explanations based on these predictions to help clinicians
and patients understand the changes needed to increase the probability
of survival after the transplantation and better comply with normative
requirements. We use data derived from the UNOS database, particularly
the lung transplantations performed in the USA between 2019 and 2021.
We formulate the problem and define two data representations, with the
first being a representation that describes only the lung recipients and
the second the recipients and donors. We propose an explainable ML
workflow for predicting patient survival after lung transplantation. We
evaluate the workflow based on various performance metrics, using five
classification models and two counterfactual generation methods. Finally,
we demonstrate the potential of explainable ML for resource allocation,
predicting patient mortality, and generating explainable predictions for
lung transplantation.

Keywords: Lung transplantation · Machine learning · Feature
selection · Explainability · Counterfactuals

1 Introduction

Lung transplantation is a surgical procedure performed in end-stage pulmonary
patients [18]. While it is often the only viable way to save a patient’s life, lung
transplantation is a complex high-risk procedure that can result in many compli-
cations, with a higher mortality rate (11.2% in the USA [20]) than that of heart
(7.9% [6]) and liver (7.4% [15]) transplantations. Improving the allocation pro-
cess is vital, as it can result in lower waiting times, improved transplant equity,
and patient care. Nonetheless, the allocation process may vary from country
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to country [11,13]. Moreover, the shortage and non-efficient use of the avail-
able organs and the cost of the operation can pose a considerable burden to
the healthcare system, hence the need for a proper allocation of the available
transplants to facilitate better and less costly care arises.

Given the increased availability of Electronic Health Records (EHRs) that con-
tain longitudinal information on patient history, transplant medicine can benefit
from Machine Learning (ML) applications [7,19] that can be used for informed
clinical decision-making. ML methods have the capability to extract patterns
from large amounts of complex data and build predictive models for various tasks
in transplant medicine or provide patient phenotypes for risk assessment. The
amount of variables that can be considered while training an ML model is higher
than what can be viewed by clinicians, resulting in potentially higher predictive
performance and hence better efficiency with regard to the allocation policies. To
be more concrete, for transplant medicine, ML could determine which patients are
at a higher risk of death based on historical data and demographics and can gen-
erate accurate prognostic information for informed transplant decision-making,
both at the bedside and during the allocation process [1,23].

Although ML models have shown great success, for example, in predicting
patient mortality risk or generating accurate prognostic information on the out-
come of a chosen treatment, the lack of interpretability is a key factor that limits
a wider adoption of ML in healthcare. New regulations, such as the GDPR and
the AI act, require the models that are applied to be explainable [12,21] so that
it is possible for humans to understand why the models suggest certain decisions.
Some models are explainable by design, while some others, i.e., “black-box mod-
els”, are not. The application of explainability techniques allows the users to
understand why an ML model has taken a certain decision, even if the model is
not explainable by nature. One such technique is the formulation of counterfac-
tual explanations on a given example [8]. Simply put, given an ML model trained
for a particular prediction task, a counterfactual refers to the changes (on the
feature configuration) that need to be enacted to a given data example in order
to change the decision taken by the ML model on that example [22]. Counter-
factuals not only highlight the features that contribute most to the decision of
the models but also suggest what feature changes can change the decision of the
classifiers, being more useful to clinicians in the decision-making process.

Related Work. A number of ML-based studies has focused on lung transplanta-
tion formulating the prediction task as the probability of a patient experiencing
transplant rejection [2,3,5,9,11]. Transplant rejection can have a high impact on
life expectancy and quality of life of the recipient [17], however, in this work we
differentiate the task by focusing on survival prediction after lung transplanta-
tion. Moreover, most studies employ data from a single hospital [11] or a small
region including a few [11], making it harder to generalize the results to a wider
population. In our study, we use a national-level database comprising all trans-
plantations performed in the United States. Furthermore, earlier works used a
single ML model for the prediction task, such as Support Vector Machines [2,3],
deep learning architectures [5,9], or archetypal analysis [14], while in our paper
we benchmark the performance of several ML models. Finally, dimensionality
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reduction techniques have also been applied as a feature pre-processing step [17]
for the same problem; alternatively, the most relevant features for the prediction
task are chosen based on medical knowledge [11].

Furthermore, there have been some attempts on ML and counterfactuals in
organ transplantation. Berrevoets et al. [4] utilize not only patient data but also
donor data to devise improved allocation policies for the available organs. In their
work, they use counterfactuals to evaluate the benefit of a transplant recipient
patient when coupled with a specific organ donor. This is achieved by generating
a semi-synthetic database of organs for donation and proposing different donor-
recipient couplings, and subsequently evaluating the survival probability of the
recipient. Similarly, in the work by Xu et al. [24] the goal is to generate better
patient-donor couplings than the ones generated following the policies that are
currently in effect. The authors propose the use of counterfactuals to generate all
possible couplings between donors and recipients and then evaluate the allocation
policies on all couplings. An improvement in the transplantation outcomes is
noted compared to the currently applicable allocation policies, both in terms of
survival after the transplantation and reduced deaths while on the waiting list.

To the best of our knowledge, there is a scarcity of studies regarding survival
prediction of lung transplantation patients in the literature, as well as a lack of
a workflow for employing explainable ML techniques for the same task.

Contributions. The main goal of this paper is to propose a workflow that
allows the formulation of predictions on the survival of patients after lung trans-
plantation, based on data from EHRs, and to formulate explanations for these
predictions using counterfactuals, hence providing clinicians with suggestions on
how to increase the patient’s survival probability after the transplantation. The
main contributions of this paper are summarized as follows:

1. We propose an explainable ML-based workflow for predicting patient survival
after lung transplantation, based on data from EHRs. The workflow consists
of three main steps: (1) a pre-processing pipeline for clinical data variables,
in order to use them in an ML process, (2) the employment of ML models
for survival prediction on the patients that received lung transplants, and (3)
the generation of counterfactuals to explain the model predictions;

2. We provide an extensive experimental evaluation of the performance of five
classification models with respect to different performance metrics, and of
two counterfactual generation methods, based on performance metrics and
on the flexibility of use in a clinical setting;

3. We demonstrate our workflow on an extract of a real-world dataset, the
United Network for Organ Sharing (UNOS) database, which is a national-
level database that collects data on every transplant performed in the United
States1.

1 https://unos.org/data/.

https://unos.org/data/
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2 Explaining Survival of Lung Transplantation Patients
Using Counterfactuals

In this section, we first provide the problem formulation followed by the descrip-
tion of the three steps of our proposed workflow for solving these two problems.
More concretely, our workflow consists of three phases: (a) feature transforma-
tion and selection, (b) survival prediction, and (c) counterfactual generation.
Figure 1 depicts a graphical representation of these three phases.

Fig. 1. A visual representation of the three phases of our proposed workflow.

2.1 Problem Formulation

Let us consider a set of EHRs related to organ transplantation denoted as E =
{p1, . . . , pn} of in total n patients, over a time window T = [ts, te] (measured in,
e.g., days) ending at time point te (e.g., the day of transplantation), spanning a
period of w = te − ts time points (days) before te. Each sample (e.g., patient)
pi in E is described by a feature sequence. A feature sequence is an ordered set
of features, denoted as xi = {e1, . . . , emi

}, for each patient pi. We assume that
each patient pi is described by mi features.

In this paper, we consider two types of feature representations, i.e., {F1,F2},
where F1 includes features describing a patient that will undergo lung trans-
plantation and F2 includes features describing both the patient as well as the
respective lung donor. In other words, F1 ⊂ F2. Both feature sets {F1,F2}
include categorical and numerical descriptors, such as sequential codes indicat-
ing different combinations of types and locations of malignancies.

Let T be the set of survival times of the patients, such that each patient pi

in E is coupled with a target survival time ti ∈ T . A patient’s survival time is
measured in days, starting from the time of transplantation te. Using the above
formulation, our workflow solves the following two problems.
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Problem 1. Survival Prediction. Given a set of EHRs E and the correspond-
ing set of survival days T , we want to learn a function f(·) that predicts the
survival time of a patient having undergone lung transplantation. We simplify
the problem to a classification problem on a class label set Y, by assuming that
if ti ≥ α then yi = 1 (e.g., patient pi survived) and if ti < α then yi = 0 (e.g.,
patient pi has died), with yi ∈ Y and α ∈ N

+ being a predefined threshold.

For our study, we set α = 180, meaning that our goal is to predict whether a
patient will survive for at least 180 days after transplantation.

Problem 2. Counterfactual Generation. Given a classifier f(·) trained for
solving Problem 1 on a set of EHRs E , and a survival prediction y = f(xi) for
patient pi, we want to generate a counterfactual explanation xi’ such that the
decision of f is swapped to another target class y′ (i.e., to the opposite class,
since our classification problem is binary) and the difference between xi and xi’
is minimized according to a given cost function δ(·), as shown in Eq. 1,

xi′ = argminxi∗{δ(xi, xi∗)|f(xi) = y ∧ f(xi∗) = y′} (1)

In other words, given a trained classifier f that is trained on a set of EHRs
E we want to find the smallest change to the feature set xi such that for patient
pi the prediction changes from y = 0 (deceased) to y′ = 1 (survival). The cost
function δ(·) can be defined in various ways, e.g., the L1 or L2 norm of the
pairwise differences of the feature values.

2.2 Step I: Feature Transformation and Selection

We first remove features from F1 and F2 with more than β% of missing values.
In our case, we set β = 50% but any value can be applied. For each remaining cat-
egorical feature, we apply a one-hot encoding transformation, which introduces
a new binary variable per feature, and as a result, increases the dimensionality
of the feature space. Moreover, for each remaining numerical feature, normaliza-
tion is applied, which in our case is min-max, but without loss of generality, any
normalization can be applied.

Next, our goal is to reduce the number of features in a way that leaves the
most important characteristics of the data as intact as possible. We utilize the
Random Forest (RF) feature importance method. Only the features with an
importance score higher than the average importance of all the features in the
training set are selected. This results in a new set of features, denoted as F̂1 and
F̂2, respectively. The selection of the most important features is only performed
on the training set, so as to not introduce a bias towards the validation or test
set. The same sets of features are used for both validation and test sets.

2.3 Step II: Survival Prediction

The second step of our workflow is to train a classifier for survival prediction on
the reduced feature sets, i.e., f(F̂1), f(F̂2). The objective of the classifier is to
learn the binary prediction problem described in Problem 1 given α = 180.
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In this paper, we employ five classifiers, namely, Decision Trees (DT), RF,
K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and a Multilayer
Perceptron (MLP). The choice of the classifiers to be evaluated was made based
on the most common classifiers employed in the related papers [2,3,5,9,11],
but without loss of generality, any classifier can be applied for this step. After
training, the performance of the two best classifiers is compared for both feature
sets using the McNemar test to investigate if the performance difference was due
to chance or to an actual difference in the classifiers.

2.4 Step III: Counterfactual Generation

In the last part of the workflow, the aim is to generate and evaluate counter-
factual explanations based on the learned classification models. First, the two
best-performing classification models from Step II are selected to produce the
predictions for both features sets F̂1 and F̂2. A set of instances predicted to have
a negative outcome by both classifiers are given to the counterfactual generation
methods. The two selected methods are DiCE-ML [16] and the method devel-
oped by Dandl [8]. The method developed by Dandl is based on a loss function
that tries to minimize four objectives: the difference between the prediction for
the proposed counterfactual and the desired prediction, the difference between
the proposed counterfactual and the original instance, the number of changed
features, and the distance between the proposed counterfactual explanation and
the nearest point in the original dataset [8]. To obtain counterfactuals that satisfy
these four objectives, the authors used the Non-dominated Sorting Genetic Algo-
rithm [10]. On the other hand, DiCE-ML is based on a loss function that tries to
minimize three objectives: generating counterfactual examples that are diverse
(that have a non-null distance between them), that have a low distance from the
original sample, and that change as few features as possible from the original
sample. In addition to this, DiCE-ML allows the user to define constraints both
on the range of values that each feature can assume and on the features that can
be changed to generate the proposed counterfactual explanations. DiCE-ML can
accept different algorithms to generate the counterfactuals, both model-agnostic
(Randomized Search, Genetic Search and Tree Search) and gradient-based (for
differentiable models) [16]. Since the method developed by Dandl uses a genetic
algorithm to generate the counterfactuals, the genetic option was selected for
DiCE-ML as well, to obtain a fair comparison between the two different meth-
ods. A set of counterfactuals (in our case, five) are generated for each instance,
suggesting an alternative feature configuration that results in a positive classifi-
cation (patient survived) for the original patient that was predicted as negative
(patient deceased).
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3 Experimental Evaluation

3.1 Dataset

In this work, we derive our datasets from the UNOS database2. The UNOS
database collects data about all transplantations that have been reported to the
Organ Procurement and Transplantation Network (OPTN) since 1987, and it
includes information about the transplantation of various organs, such as heart,
lungs, liver, and kidney. The data is organized in records; each record collects
data about a single transplantation, including both patient and donor-related
information. Each record is composed of features, for example, related to the
patient’s admission to the waiting list, the transplantation time, or information
related to the period between these two events.

In this work, we use a set of features related to lung transplantation that
can be derived from patients and their donors. Table 1 shows a summary of the
categories in which these features can be divided. Both types of representations,
F̂1 and F̂2, include the patients’ demographics, that include features like the
age and the country of residence, features relative to the patient at the moment
of the addition to the waiting list, like the academic level of the patient or
their weight and Body Mass Index (BMI) at that moment, features relative to
what happened between the addition to the waiting list and the transplantation,
like the eventual onset of malignancies, and features related to the moment of
the transplantation, like the level of creatinine in the serum or the use of life
support devices at the moment of the transplant. In addition to these features,
F̂2 also includes features relative to the level of mismatch between the patient
and the donor’s major histocompatibility complex (HLA), features relative to the
terminal hospitalization of a deceased donor, like the number of transfusions that
the donor received, or the use of particular drugs, features relative to pathologies
that the donor could present, like Hepatitis B, HIV, or any malignancies, and
features related to the death of the donor, like the cause and circumstances of
the death. If a patient has been transplanted for an acute problem, there will be
no data regarding the waiting list period, and if a patient died waiting for the
transplantation, or had to be removed from the waiting list due to worsening
conditions, there will be no data related to the donor or to the period after the
transplantation.

Table 1. A summary of the features included in the two feature sets F̂1 and F̂2, used
to train the ML methods.

Feature
set

Type of
features

Demographics Waiting list
addition

Waiting list
period

Transplantation
moment

Donor-recipient
mismatch

Donor terminal
hospitalization

Donor
pathologies

Donor
death

F̂1 Categorical 5 58 3 47 0 0 0 0

Numerical 7 20 12 23 0 0 0 0

F̂2 Categorical 9 58 3 51 5 17 29 13

Numerical 7 20 12 23 0 24 0 0

2 https://unos.org/data/.

https://unos.org/data/
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3.2 Setup

We split the datasets into training, validation, and test sets, with proportions of
70:15:15 respectively. As we are dealing with an imbalanced problem, the split
is performed in a stratified fashion to maintain the proportion of patients that
survive or die. Table 2 shows a summary of the class distribution of the patients
included in the three different sets for both F̂1 and F̂2.

Table 2. A summary of the number of patients classified as surviving at least (y = 1)
or less than (y = 0) 180 days for the training, validation, and test sets, respectively, as
well as for the whole dataset.

Dataset y = 0 y = 1

Training set 1335 3619

Validation set 307 755

Test set 280 782

Total 1992 5156

To decrease the bias towards the specific training-validation-test split, we
employ nested cross-validation while training and setting the hyperparameters
of the chosen classifiers. The optimal combination of hyperparameters for each
classifier is selected through a grid search, using the validation set. After the best
set of hyperparameters is selected for each classifier, the actual classification task
was performed on the test set, both for patient-related data only and for patient
and donor-related data. The performance of the proposed workflow has been
evaluated using the following benchmarked classification algorithms with the
respective fine-tuned hyperparameters:

– DT: with a maximum depth of 3, the minimum number of samples required
to split an internal node equal to 2, impurity measure equal to entropy, for
both F̂1 and F̂2;

– RF: maximum depth of the tree equal to 82 and 52, number of trees in the
forest equal to 60 and 220 for F̂1 and F̂2 respectively, with entropy being
the impurity measure, and no bootstrap samples used when building trees for
both representations.

– SVM: RBF kernel, regularization parameter equal to 0.0001 and 0.001 and
kernel coefficient for RBF set to 100 and 10 for F̂1 and F̂2 respectively;

– KNN: with the algorithm used to compute the nearest neighbours set to
‘ball tree’, distance metric equal to ‘Manhattan’, number of neighbours set
to 31 and 21, and weight function used in the prediction set to distance and
uniform for F̂1 and F̂2 respectively;

– MLP: with activation function for the hidden layer set to identity, L2 regu-
larization equal to 0.0001, hidden layer size equal to 100, solver equal to ‘sgd’
and constant learning rate of 0.001 for F1 and F2 respectively.
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3.3 Evaluation Metrics

Classification. We assess the quality of the obtained predictions in terms of
F1-score and ROC-AUC. We also provide the precision and recall for both the
majority (the patients surviving more than six months) and the minority class.

Counterfactuals. We evaluate the counterfactuals proposed by the two gener-
ation methods using external measures, sparsity and the Local Outlier Factor.
The sparsity of the changes evaluates the number of features that were varied to
generate the proposed counterfactual, while the Local Outlier Factor is a method
to determine how likely a data point is to be an outlier with respect to the k clos-
est instances in the training set. These two metrics are chosen as they reflect two
medically relevant objectives: (1) we would like to impose the minimum number
of changes to a patient in order to counteract a negative outcome (measured by
sparsity) and (2) we want the new patient configuration to be feasible, i.e., as
close to the data manifold of the desired class as possible (measured by LOF).

3.4 Feature Selection

Table 3 summarizes the effect of feature transformation and selection for F1

and F2. More concretely, in the second and third columns, we can see the ini-
tial number of features and the resulting ones after eliminating those with β%
missingness. In addition, the fourth column provides the amount of features after
excluding the post-lung transplantation ones. Finally, the last two columns show
how the dimensionality explodes after one-hot encoding, and provide the final
number of features obtained by RF feature importance (see Sect. 2.2) to train
the classification models.

Table 3. A table summarizing the number of features for both patient-related data
only and for patient and donor-related data after each preprocessing step.

Number of
patients

Initial
features

After eliminating
the features with
more than half of
the values missing

After eliminating
the post
transplantation
features

After one-hot
encoding the
categorical
features

After
performing
feature
selection

F1 7078 546 318 175 8182 789

F2 7078 546 318 271 17508 1558

Figure 2 depicts the 20 most important features as obtained by RF for F1

(left) and F2 (right). The year in which the patient was added to the waiting
list, namely LISTY R, and the year in which the transplantation was performed,
TX Y EAR, are the two first most important features for the F1 (patient-related
data). Similarly, for F2 (patient-donor related data), the most important features
are the transplantation year, TX Y EAR, and the year in which the patient was
added to the waiting list for the transplantation, LISTY R, but the order of
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these two features is inverted when compared with the most important features
for patient-related data only. However, as observed in the right figure, only three
donor-related features are considered, namely WGT KG DON CALC, which
refers to the calculated donor weight, AGE DON , which refers to the age of the
donor, and PCO2 DON , which refers to the quantity of CO2 in the blood of
the donor at the moment of the death. As it can be observed from the resulting
feature importance conducted for F1 and F2 (with the task being to determine
if the patient will survive more than six months after the transplantation), the
features in F̂2 have relatively lower importance when compared to those in F̂1.

Fig. 2. Left: Twenty most important features for F1 (patient-related data) and their
importance scores; Right: Twenty most important features for F2 (patient and donor-
related data) and their importance scores.

3.5 Survival Prediction

The results obtained by the best combination of hyperparameters for each model
are depicted in Table 4 for the F̂1 representation (patient data) and in Table 5
for the F̂2 representation (patient-donor data), using macro-averaging for both
minority and majority class. Additionally, in both cases, we used 5-fold cross-
validation for testing, which ensured that the results of the tests were not due
to the way in which the data was split.

Additionally, we provide the performance metrics of all the classifiers for the
majority and the minority classes can be seen in Table 6 for data relative to F̂1

and in Table 7 for data relative to F̂2.
Regarding the F̂1 representation, we observe in Table 4 and Table 6 the result-

ing evaluation metrics for all the benchmarked algorithms on this dataset. In this
case, the best performing model is the DT with an AUC of 0.82 and an F1 score
equal to 0.83 and following that the RF with an AUC of 0.76 and an F1 score of
0.78. A McNemar’s test was performed on the predictions made by the two best-
performing models on the whole test set, to see if the difference in performance
between them was statistically significant. The resulting McNemar’s statistic
value is 25.0000, which corresponds to a p-value of 0.0020. Since the p-value for
statistically significant differences is usually set at 0.05, and the resulting p-value
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Table 4. A summary of the macro-average scores for each metric on the test set on
the F̂1 feature set.

Model Precision Recall F1 score ROC-AUC

Decision tree 0.8495 0.8205 0.8332 0.8205

Support vector machine 0.8211 0.7170 0.7456 0.7170

Random forest 0.8375 0.7533 0.7808 0.7533

K-nearest neighbors 0.7224 0.5212 0.4721 0.5212

Multilayer perceptron 0.8138 0.7374 0.7623 0.7374

Table 5. A summary of the macro-average scores for each metric on the test set on
the F̂2 feature set.

Model Precision Recall F1 score ROC-AUC

Decision tree 0.8445 0.8185 0.8301 0.8185

Support vector machine 0.8006 0.7160 0.7411 0.7160

Random forest 0.8609 0.6970 0.7300 0.6970

K-nearest neighbors 0.6799 0.5263 0.4858 0.5263

Multilayer perceptron 0.7535 0.6902 0.7095 0.6902

Table 6. Left: The average scores for each metric on F̂1 for the minority class; Right:
The average scores for each metric on F̂1 for the majority class.

Model Precision Recall F1 score

Decision tree 0.8008 0.7036 0.7490

Support vector machine 0.8061 0.4750 0.5978

Random forest 0.8191 0.5500 0.6581

K-nearest neighbors 0.7000 0.0500 0.0933

Multilayer perceptron 0.7789 0.5286 0.6298

Model Precision Recall F1 score

Decision tree 0.8983 0.9373 0.9174

Support vector machine 0.8361 0.9591 0.8934

Random forest 0.8558 0.9565 0.9034

K-nearest neighbors 0.7447 0.9923 0.8509

Multilayer perceptron 0.8486 0.9463 0.8948

Table 7. Left: The average scores for each metric on F̂2 for the minority class; Right:
The average scores for each metric on F̂2 for the majority class.

Model Precision Recall F1 score

Decision tree 0.7912 0.7036 0.7448

Support vector machine 0.7640 0.4857 0.5939

Random forest 0.8984 0.4107 0.5637

K-nearest neighbors 0.6129 0.0679 0.1222

Multilayer perceptron 0.6809 0.4571 0.5470

Model Precision Recall F1 score

Decision tree 0.8979 0.9335 0.9154

Support vector machine 0.8371 0.9463 0.8884

Random forest 0.8233 0.9834 0.8963

K-nearest neighbors 0.7468 0.9847 0.8494

Multilayer perceptron 0.8261 0.9233 0.8720

is lower, the null hypothesis can be rejected, and the difference between the two
classifiers can be considered statistically significant.

In the case of the F̂2 representation the results are depicted in Table 5 and
Table 7, where we observe the best performing models to be a DT and the
SVM with AUC 0.82 and 0.72 and F1 score 0.83 and 0.74, respectively. The
McNemar’s test was again performed on the predictions provided by the two
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best-performing models, yielding statistical significance. More concretely, the
resulting McNemar’s statistic value is 42.0000 and the corresponding p-value is
0.0002. Comparing the two representations F̂1 and F̂2 on the two statistically
best-performing models, we notice that the results from F̂1 representation out-
perform the results from F̂2 indicating that although additional curated features
were included in the process, they did not improve the classification performance.
To produce the counterfactuals we choose to proceed with the RF for F̂1 and
DT for F̂2. In the first case, we chose to use the Random Forest to produce
the counterfactual explanations in order to provide the reader with a complete
view of the possibility of producing explanations based on the predictions of two
different ML models.

Fig. 3. A visual representation of the best performing DT on patient and donor-related
data. We observe that six main features are taken into consideration for the classifica-
tion task.

Additionally, we provide a graphical representation of the DT generated for
the F̂2 representation, visible in Fig. 3. It should be noted that the specific
Decision Tree used in this experiment is actually a very simple model, with a
maximum depth (the maximum number of consecutive splits from the root node
to the leaf nodes) of three, and still, it performed well both on the training and
on the test set. This motivated us to further investigate the results. As it can be
seen from examining the figure, the model in question takes into consideration
six features to classify the patients into the two classes, PTIME 1, representing
survival after the first six months from the transplantation, and PTIME 0,
representing non-survival at six months. The features taken into consideration
by the model are as follows, indicating:

1. TX Y EAR: the year in which the patient received the transplantation.
2. LIST Y R: the year in which the patient was added to the waiting list for the

transplantation.
3. STATUS TRR: the status of the form for the admission of the patient at the

moment in which they received the transplantation. In particular, the value
V , which is taken into consideration by the Decision Tree, indicates that the
form has been validated.
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4. TBILI: the amount of total bilirubin in the serum at the moment of the
transplantation.

5. DAY SWAIT CHRON : the total number of days on the waiting list.
6. LISTING CTR CODE: an encrypted identifier of the centre in which the

patient has been admitted to the waiting list. Since the identifier is encrypted,
it is not possible to find the specific centre that is considered to be relevant
by this Decision Tree.

The improvement in medical care over the years accounts for the high impor-
tance of the first two features in the decision process, but it is interesting that,
even in just a three-year span, these features are by far the most important.

3.6 Counterfactual Generation

In the last step, we aim to generate counterfactual explanations for a set of six
patients that were predicted to have a negative class label, using the classification
models presented in Sect. 3.5. We generate the counterfactuals utilizing both
DiCE-ML and the method as presented by Dandl et al. [8].

For F̂1 representation, we choose to utilize the predictions of the RF model
to generate counterfactuals. The number and percentage of features changed to
generate the candidate counterfactuals for each patient of interest is depicted
in Table 8 (first two columns). It can be noticed in the table that this method
changes nearly 10% of the features in the F̂1 feature set in order to generate
a candidate counterfactual. The number of counterfactuals classified as outliers
according to the LOF score using this method is provided in Table 9 (first two
columns), with 95% and 97% confidence. DiCE-ML, on the other hand, allows
the user to choose which features will be varied to generate the candidate coun-
terfactuals. To this end, we utilize this method and vary only the two most
important features as presented during the feature selection phase (TX Y EAR,
LISTY R), together with the four quantitative variables that were considered
by the Decision Tree (TX Y EAR, LISTY R, TBILI, DAY SWAIT CHRON).
The number of outliers generated using DiCE-ML is provided in Table 10.

Regarding the F̂2 representation, the DT model was chosen to generate the
counterfactuals. In the last two columns of Table 8, we present the number and
percentage of features changed to generate the candidate counterfactuals for each
data sample of interest using the method by Dandl. We observe that in this case,
nearly 8% of the features are changed on average, to generate the candidate coun-
terfactuals. In the last two columns of Table 9, we provide the number of outliers
generated by this method to provide explanations for each data sample of inter-
est, with two different levels of confidence. Additionally, the number of outliers
identified by the LOF score on the candidate counterfactuals generated by DiCE-
ML for the F̂2 representation, can be seen in Table 10. When considering 10, 15
or 20 neighbours to define if a proposed counterfactual is an outlier, shifting the
focus to be less local and more global, all the proposed counterfactuals, generated
with both methods, are indicated as outliers. We observe that the counterfactuals
provided by DICE-ML give fewer outliers in general, both for F̂1 and F̂2. This
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behaviour can be attributed to the fact that the method allows for a selection of
features that can be varied when generating the counterfactual explanations. This
can potentially benefit medical applications, as the medical professional would be
able to restrict the pool of available features to be changed during the process.

Table 8. A summary of the number and percentage of features changed in each pro-
posed counterfactual explanation on F̂1 and on F̂2 using the method by Dandl.

Data
samples of
interest

Average
number of
features
changed on F̂1

Average
percentage of
features
changed on F̂1

Average
number of
features
changed on F̂2

Average
percentage of
features
changed on F̂2

2 80.67 10.22% 139.00 8.92%

3 81.67 10.35% 134.50 8.63%

7 72.83 9.23% 122.33 7.85%

13 73.33 9.29% 121.17 7.78%

18 82.00 10.39% 123.17 7.91%

Table 9. A summary of the number of counterfactuals classified as outliers according
to the LOF score on counterfactuals generated using the method by Dandl on the same
data samples in F̂1 and F̂2, considering the 5 nearest neighbours, with two levels of
confidence.

Data samples
of interest

Confidence
95% on F̂1

Confidence
97% on F̂1

Confidence
95% on F̂2

Confidence
97% on F̂2

2 6 4 6 5

3 6 3 4 4

7 0 0 0 0

13 1 0 0 0

18 1 0 2 1

Table 10. A summary of the number of outliers for each data sample of interest
according to the LOF score on the same data samples for F̂1 and F̂2, on counterfactuals
generated using DiCE-ML, using the 5 nearest data samples from the training set.

Data
sample

Outliers in F̂1

(two features
changed)

Outliers in F̂1

(four features
changed)

Outliers in F̂2

(two features
changed)

Outliers in F̂2

(four features
changed)

2 0 0 0 0

3 4 6 0 0

7 0 0 0 0

13 0 0 0 0

18 0 0 0 0
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4 Conclusion

To conclude, in this paper we proposed a workflow for employing ML models to
predict the survival of patients after a lung transplant, possibly increasing the
efficiency of the allocation policies. We showed that the selection of features used
to train the ML models influences the outcome of the predictions, with the per-
formance of the ML models decreasing when donor-related data are included in
the feature set. We demonstrated how counterfactuals can be used as a method
to provide explainability for opaque ML models, with the added value of being
able to suggest changes that the patients could enact before the operation, in
order to increase their probability of survival. Future research can experiment
with different ML models and different patient populations, and, most impor-
tantly, can work closely with clinicians, to select the features to be changed to
generate the counterfactual explanations and validate the results.
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Abstract. Since the onset of the COVID-19 pandemic, social media users have
shared their personal experiences related to the viral infection. Their posts con-
tain rich information of symptoms that may provide useful hints to advancing the
knowledge body of medical research and supplement the discoveries from clinical
settings. Identification of symptom expressions in social media text is challenging,
partially due to lack of annotated data. In this study, we investigate utilizing few-
shot learning with generative pre-trained transformer language models to identify
COVID-19 symptoms in Twitter posts. The results of our approach show that large
language models are promising in more accurately identifying symptom expres-
sions in Twitter posts with small amount of annotation effort, and our method can
be applied to other medical and health applications where abundant of unlabeled
data is available.

Keywords: Generative pre-trained transformer · Pre-trained language model ·
Few-shot learning · COVID-19 symptoms · Twitter

1 Introduction

The outbreak of COVID-19 pandemic, which has infected hundreds ofmillions of people
and led to million deaths world-wide, was caused by a novel coronavirus. At the onset
of the pandemic, healthcare givers were having difficulties in accurately diagnosing
the infectious and deadly disease, due to its symptoms similar to flu and cold, lack of
understanding and knowledge of this new disease, and insufficient supply of testing kits.
Healthcare workers were learning to understand the new disease while busy treating and
caring for those infected.

Interestingly, this pandemic took place at the digital agewhen people can freely share
their personal experiences about the infection online. As such, symptomatic experiences
of those infected were posted on social media, including Twitter. Although social media
users do not post their experiences in a systematic and consistent manner, the diverse
information of COVID-19 symptoms reported by social media users may provide useful
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hints and potentially supplement what was being discovered clinically. The sheer amount
of social media posts related to COVID-19 caught attention of the research community.
Chen et al. [1] started collecting COVID-19 related tweets from January 28, 2020, and
has accumulated over 2 billion tweet IDs that are shared publicly – Twitter Developer
Policy does not allow redistribution of the Twitter data except the IDs. Utilizing a corpus
of 22.5 million COVID-19 related tweets, Müller et al. [2] pre-trained the COVID-
Twitter-BERT (CT-BERT) language model, based upon Google’s Bidirectional Encoder
Representations from Transformers (BERT) language model. CT-BERT was intended
for downstream natural language processing (NLP) tasks in the COVID-19 domain.

Tweet: My Experience:. . Day 1: Body aches and cold chills. (Tested for 
Covid19/posi�ve). Day 2: Minor Body Aches, no chills. Day 3: No aches, but loss 
of sense of smell and taste. Day 4 thru Day 11: No sense of smell or taste. Day 
12: Regained both smell and taste. 
 
Symptoms: aches, chills, aches, loss of sense of smell and taste, and no sense of 
smell or taste. 

Fig. 1. An example tweet showing symptomatic experience of the user.

COVID-19-related Twitter posts can contain relevant information pertaining to the
infection of the Twitter users. In Fig. 1., the Twitter user mentioned several symptoms
(e.g., aches, chills, no sense of smell or taste), and identical symptoms more than once
but on different days (e.g., ache). The user also expressed the concept of loss of sense
of smell and taste in two different ways – the second way is no sense of smell or taste.
Furthermore, the same user used negation to indicate both having a symptom (e.g., no
sense of smell or taste) and not experiencing a symptom (e.g., no chills).

Processing and analyzing Twitter data are of particular challenge, because Twitter
data are known for their noisiness, and Twitter text does not follow grammatical rules, as
well as containing misspelled terms and having incomplete sentences [3]. Conventional
methods of identifying symptoms in formal writing will hardly perform satisfactorily.
Several efforts have been made to manually identify COVID-19 symptoms in Twitter
text through annotation, a laborious process requiring domain experts. Guo et al. [4]
annotated a corpus of 30732 tweetswith the help of n-grams and discovered 36 symptoms
related to COVID-19. Krittanawong et al. [5] analyzed a collection of 14698 tweets for
common COVID-19 symptoms. Assisted with semiautomatic filtering, Sarker et al. [6]
manually went through 7495 tweets posted by 203 unique users whowere tested positive
and discovered 1002 symptoms using 668 unique expression. Jiang et al. [7] manually
identified COVID-19 symptoms along with the day information from a corpus of about
700 personal experience tweets.

Given the significant cost and effort of annotating a large number of Tweets and lack
of available labeled instances, we propose to utilize few-shot learning with generative
pre-trained language models for identification of symptoms from COVID-19 related
personal experience tweets. Large language models based on generative pre-trained
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transformer (GPT), such as GPT-2 [8], GPT-3 [9], and GPT-NeoX-20B [10] which
are trained on massive unlabeled data, have demonstrated their power of achieving
improved results in natural language understanding (NLU) taskswith fewer or no labeled
examples. Using a small number of annotated instances well suits many applications of
machine learning in biomedical and healthcare fields, where annotated data are scarce
and cost of annotation can be potentially prohibitive to generate large corpora of labeled
data for supervised learning. In the case of COVID-19-related social media posts, there
is abundance of unlabeled instances, which are continually being generated by their
users, and annotating a large corpus of posts can be impractical and requires significant
resources of domain expert.

In addition to the unique characteristics of Twitter data, a COVID-19-related tweet
may mention multiple symptoms, as shown in the example above. Not only Twitter
users describe the symptom concepts with layman’s terms, but also they express the
same single symptom concept with various expressions. To tackle these challenges, we
consider our task of identifying symptoms in tweets to be extractive question answering
(EQA) with possible multiple answers, unlike common question answering tasks in
which a single answer is desired.

2 Method

The pipeline of our data processing and analysis is shown in Fig. 2. We start with
collecting COVID-19-related tweets which in turn are preprocessed. The preprocessed
tweets are fed to a classifier to predict personal experience tweets. The predicted tweets
are screened initially for possible symptoms and any tweets containing no symptoms
are excluded. A collection of 699 tweets is chosen, and they are annotated for testing.
Two publicly available language models trained with massive amount of unlabeled text
data are utilized to perform few-shot learning for our task of identifying COVID-19
symptoms.

2.1 Pre-trained Language Models

Many large language models require a fee to use, and even with small scale tasks, the
cost of using them can be significant. Two freely available large language models were
considered for this research: GPT-2 (small and medium) [11] and GPT-NeoX-20B [10].
The small version of GPT-2 comprises 117 million parameters, and the medium version
is made up of 345 million parameters. The GPT-NeoX-20B has 20 billion parameters,
57 times larger than the GPT-2 medium model and more than 170 times larger than the
GPT-2 small version.

A team at OpenAI designed and trained the GPT-2 language model to demonstrate
that languagemodels are able to performdown-stream tasks in a zero-shot settingwithout
any modification of parameters or architecture for the NLP applications where only
minimal or no supervised data are available for training. The model was constructed
from the original GPT, a transformer-based model with generative pre-training [8]. The
language model has 4 different sizes, and our study focuses on two smaller models: the
small one with 117 million parameters, 12 layers and 768 dimensions, and the medium



310 K. Jiang et al.

one with 345 million parameters, 24 layers and 1024 dimensions. The context size of the
model is 1024 tokens. The model was trained with a subset of Common Crawl dataset
(https://commoncrawl.org)which ismade up ofWeb scrapes, with slightly over 8million
documents with a size of 40 GB of text.

Fig. 2. Pipeline of data processing and analysis.

Developed by EleutherAI, GPT-NeoX-20B is an open-source autoregressive lan-
guage model with 20 billion parameters [10]. The architecture of the model is based
upon Google’s BERT architecture, with 44 layers, a hidden dimension size of 6144,
and 64 heads. The model is a powerful few-shot learner and achieved state-of-the-art
(SoTA) performance in many few-shot learning tasks. The released pre-trained model
was learned with the Pile dataset [12] which consists of 825 gibibyte (GiB. 1 GiB= 230

bytes) of curated raw text data from 22 data sources including PubMed Central and NIH
Exporter, both of which pertain to the domain of this research.

https://commoncrawl.org
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In this study, we utilize the models as pre-trained with no modification of their
parameters and architecture.

2.2 Prompt Design

One of the key components in few-shot learning, which uses a small number of annotated
examples as input for training, involves the design of prompts, as few-shot learning is
performed by reformulating tasks as natural language “prompts” [13]. A few examples
are used to train the language models, and each example fed to the language models
consists of the input text and answer.

Task: List the symptoms of COVID-19 in following tweets 
 
Tweet: My Experience:. . Day 1: Body aches and cold chills. (Tested for 
Covid19/posi�ve). Day 2: Minor Body Aches, no chills. Day 3: No aches, but loss 
of sense of smell and taste. Day 4 thru Day 11: No sense of smell or taste. Day 
12: Regained both smell and taste. 
Symptoms: {'aches', 'chills', 'Aches', 'loss of sense of smell and taste', 'No sense 
of smell or taste'} 
 
[… zero or more examples …] 
 
Tweet: It's Day 22 of my personal ba�le with Covid19. To all intents & purposes I 
am be�er. I'm back at work, I'm able to func�on. But its s�ll here, I s�ll have a 
temperature, a slight cough, a ringing in my ears. Will this thing ever leave? 
#Covid19UK 
Symptoms: 

Fig. 3. An illustration of few-shot learning prompting. Each example consists of the text of a
tweet and an order set of spans (symptoms). In this study, the number of examples can be 1, 5, 10
or 15, depending upon the number of examples needed for few-shot learning.

In our case as well as other NLP applications in the medical and health domain, we
need to take into consideration the uniqueness of the text and task in question. First, the
text of a single tweet may mention multiple symptoms or the same symptom multiple
times on different days. Association of symptoms with the day information can help
understand how the disease progresses over time. This requires the answer to be an
ordered set of symptoms (or token spans). In addition, social media users frequently
express medical and/or health concepts with layman’s terms. Jiang et al. [7] observed in
their study that Twitter users creatively came up with more than 60 different expressions
to describe each common health concept of fever, breathing difficulty, and loss of smell
and/or taste respectively. As such, we do not attempt to normalize the health concepts
from various expressions. Instead, we consider thematch of token spanswhenmeasuring
the model performance.
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Shown in Fig. 3 is our prompting template which includes one or more examples to
train the language model. The trained language model is used to predict the answer(s)
to the last tweet fed to the model.

2.3 Language Model Testing

To test the performance of the language model in identifying COVID-19 symptoms
from tweet text, we choose to use 1 example (shot), 5 examples (shots) and 10 examples
(shots) for all models, but also use 15 shots for GPT-NeoX-20B. This is due to the input
token size limitation of each model: 1024 for GPT-2 and 4096 for GPT-NeoX-20B.

We randomly select the desired number of examples for training with a fixed seed to
ensure that each set of examples is identical for each model. A collection of 100 tweets
is used for testing using 10-fold cross-validation – that is, each time a fold is used for
training and 9 other folds are used for testing. The averages of the testing performance
are computed.

2.4 Data

A collection of 12 million COVID-19 related tweets was gathered from twitter.com
using a homemade crawler which was devised in compliance with the Twitter crawling
policy. The rationale of using a homemade crawler is to overcome the limits of Twitter
APIs, such as the tweets posted within last 7 days and the number of queries within a
time window. The time span of our study tweets is from 11 March 2020 to 23 April
2020, and the tweets were collected in May 2020. We used the following keywords for
querying the Twitter posts: covid19, COVID-19, coronavirus, Wuhan pneumonia, and
nCoV, which were frequently mentioned for the new disease at the time of collection.

The collected tweets were preprocessed to remove duplicates, re-tweets and non-
English tweets. For COVID-19 symptoms, tweetswith personal experience are of special
interest in this study. We applied a transformer language model-based method [14] to
predict personal experience tweets – this step helpsfilter outmany irrelevant noisy tweets.
The method was developed by Zhu et al. [14] to predict personal experience tweets
pertaining to medication effects, by first updating the pre-trained Robustly Optimized
BERTPretrainingApproach (RoBERTa) [15] languagemodelwith a corpus of 10million
unlabeled tweets related to medication effects, and later fine-tuning the model with
annotated tweets. The RoBERTa-based language model, developed by Facebook, is
made up of a structure of 12 layers, 768 hidden neurons, 12 self-attention heads and
110M parameters, and was pre-trained with over 160GB uncompressed texts [15]. The
model was later fine-tuned with 12K annotated tweets. Zhu’s method achieved accuracy
of 0.877, precision of 0.734, recall of 0.775, and F1 score of 0.754 on the medication
effect tweets. Due to lack of publicly available corpora of annotatedCOVID-19 symptom
tweets because the Twitter Developer Policy does not permit redistribution of Tweet
text, we decided to transfer Zhu’s method from predicting medication-effect personal
experience tweets to predicting COVID-19 symptom personal experience tweets without
retraining the model. This transfer learning appears adequate and valid in that both are
in medical domain and the relationship between a medication and its effects resembles
the relationship between a disease (COVID-19) and its symptoms.
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We used MetaMap Lite [16], a software tool developed by the U.S. Library of
Medicine to initially screen the personal COVID-19 experience tweets for symptoms.
This step is not to identify all the symptoms, but to ensure that each tweet contains at
least a symptomwhich is identified theMetaMapLite, helping further filter out irrelevant
tweets. Any concepts mapped to the semantic type of sosy (sign and symptom) by
MetaMap Lite are considered as symptoms. The outcome is a corpus of 11K tweets
which were further processed with regular expressions to only include those mentioned
any symptoms from day 1 to day 14 for the reason that COVID-19 symptoms typically
develop between 1 and 14 days after exposure [17]. The final result is a corpus of 699
tweets which was manually annotated to identify all the token spans that describe the
symptom concepts.MetaMap Lite does normalize themedical concepts butmissesmany
symptom token spans due to the occurrences of layman’s terms in the tweet text. Our
manual process identifies symptoms in a more accurate manner.

3 Results

Shown in Table 1 are the performance measures (precision, recall, and F1 score) of
running the GPT language models on our COVID-19-related tweets. GPT-2 models
investigated allows for an input size of 1024 for all the input text (task description,
examples and prompts) whereas the input size for GPT-NeoX-20B is 4096, significantly
larger than GPT-2. As such, we were only able to test up to 10 shots on GPT-2 models,
but up to 15 shots on the GPT-NeoX-20B model.

Table 1. Results of identifying COVID-19 symptoms from Twitter data using generative pre-
trained transformer (GPT) language models.

Model Shot Precision Recall F1 Score

GPT-2-125M 1-shot 0.020 0.145 0.035

5-shot 0.027 0.150 0.046

10-shot 0.025 0.147 0.042

GPT-2-345M 1-shot 0.047 0.166 0.073

5-shot 0.083 0.148 0.106

10-shot 0.102 0.156 0.123

GPT-NeoX-20B 1-shot 0.430 0.526 0.473

5-shot 0.594 0.615 0.604

10-shot 0.575 0.666 0.617

15-shot 0.605 0.650 0.627

Illustrated in Fig. 4 are the graphical views of performance measures bymodel. They
show a consistent pattern such that larger models perform better than the smaller models
and more training example generate better predictions.
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Fig. 4. Performance results by model.
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4 Discussions

As can be seen in the results, the performance of our task tends to be in proportional
to the number of examples (shots) used for learning. The more examples, the better
performance it achieves. Five or more examples are a good choice for few-shot learning.
In addition, the larger the number of parameters of the language model, the better the
performance – theGPT-NeoX-20Bmodelwe tested is significantly larger than bothGPT-
2 models and outperforms the GPT-2 models. Also, the GPT-2-345M model which is
made up ofmore parameters achieves better results than the small model of GPT-2which
has 117 million parameters. The GPT-NeoX-20B language model shows promising
results in our task, making it possible to accurately identify COVID-19 symptoms from
Twitter posts.

There exist limitations in this study. First, the few-shot learning approach does not
seem to handle negation correctly, partially due to the confusing ways of how symptom
concepts are expressed by the Twitter users. For examples, no smell or taste is not
negation, but is to describe the concept of loss of smell or taste. Another limitation
that impacts our method performance comes from the layman’s terms of expressing
symptom concepts by Twitter users. A commonly found instance is that many users use
temperature or even temp to describe the concept of fever (e.g., I have temp today).
One more limitation is the limited power of our computation resource which prevents us
from testing a larger corpus of annotated tweets which would generate more convincing
performance outcomes.

The study data used in this work were gathered from Twitter posts, which inherently
have limitations. First, Twitter users who were capable of posting are those more likely
to experience non-life-threatening symptoms – for example, they were not those on a
ventilator. Therefore, symptoms reported aremostlymild. Second, due to the disparity of
the age groups of Twitter users, symptoms experienced by those who do not use Twitter
are unlikely to be included in the data.

Our future directions of this research include testing the few-shot learning approach
on larger pre-trained language models with more powerful computational resources.

5 Conclusion

In this study, we investigated utilizing few-shot learning with generative pre-trained
transformer (GPT) language models, GPT-2 and GPT-NeoX-20B, without modifying
model parameters and architecture.We carefully designed prompts for few-shot learning
by considering the uniqueness of our task in the medical/health domain. Our results
demonstrate that 5 or more examples are appropriately needed for tackling our task
using few-shot learning, and larger language models tend to outperform small language
models in our task. It is conceivable that our few-shot learning method can be applied to
other NLP tasks in medical/health domain, where there is scarce of annotated examples
and which are similar to identifying disease symptoms studied in this work.
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Abstract. An automatic classification of abnormal heart rhythms using
electrocardiogram (ECG) signals has been a popular research area in
medicine. In spite of reporting good accuracy, the available deep learning-
based algorithms are resource-hungry and can not be effectively used
for continuous patient monitoring on portable devices. In this paper,
we propose an optimized light-weight algorithm for real-time classifica-
tion of normal sinus rhythm, Atrial Fibrillation (AF), and other abnor-
mal heart rhythms using single-lead ECG on resource-constrained low-
powered tiny edge devices. A deep Residual Network (ResNet) architec-
ture with attention mechanism is proposed as the baseline model which
is duly compressed using a set of collaborative optimization techniques.
Results show that the baseline model outperforms the state-of-the art
algorithms on the open-access PhysioNet Challenge 2017 database. The
optimized model is successfully deployed on a commercial microcontroller
for real-time ECG analysis with a minimum impact on performance.

Keywords: TinyML · Healthcare · Convolutional Neural Networks ·
ECG classification

1 Introduction

Cardiovascular diseases are the key reason behind significant mortality and mor-
bidity, causing 32% of all global deaths every year. They are often asymptomatic
in early stages. Many patients seek medical attention in an advanced stage of
a cardiac disease, which not only requires a prolonged hospital stay or a possi-
ble surgery but also reduces the chance of recovery. AI-driven on-device health
monitoring systems are thus increasingly gaining attentions in recent times as
part of preventive healthcare.

Automated decision-support systems are clinically appreciated in cardiology
for analysis of electrocardiogram (ECG) or echocardiogram. An ECG represents
the electrical activities of the heart in a graphical format by placing a set of
electrodes on human-body near the chest. ECG is clinically used for diagnosis of
abnormal heart rhythms like Atrial Fibrillation (AF) and other types of arrhyth-
mias which are the early signs of a stroke or a cardiac arrest. However, it is not
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 317–331, 2023.
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practically feasible to manually analyze the large volume of continuous ECG
data for detection of intermittent disease episodes. An automatic diagnosis from
ECG using machine learning techniques has become a popular area of research.
Several such algorithms are already available in literature that reported clinical-
grade accuracy in detecting AF and other types of abnormalities. The tradi-
tional approaches extract relevant features from ECG which are used to train
supervised machine learning algorithms like Support Vector Machine (SVM) or
AdaBoost for classification [4]. The recent deep learning approaches have report-
edly outperformed the traditional machine learning approaches. Convolutional
Neural Network (CNN) has drawn a lot of attentions in recent days. Raw ECG
data or the peak to peak intervals time-series extracted from ECG can directly
be applied to a CNN structure for automatic feature extraction and classifica-
tion [12,20]. Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM) networks have also been explored in literature for classification of AF
via temporal modeling of ECG [2,18].

Residual Network (ResNet) is a CNN-based powerful deep learning architec-
ture popularly used in recent days for ECG classification. ResNets are easy to
optimize and very deep networks can be trained without gradient dissipation.
Zhou et al. [13] proposed a ResNet architecture for classification of heartbeats
from 2-lead ECG. Park et al. [15] proposed SE-ResNet, a modified residual net-
work with an additional squeeze-and-excitation block, which outperformed the
baseline ResNet model. Han et al. [8] used a multi-lead ResNet (ML-ResNet)
architecture having three residual blocks along with a feature fusion module to
detect and locate myocardial infarction using 12-lead ECG recordings.

Deep learning algorithms are resource-hungry and the models are large in size.
A deep network is typically trained on a powerful desktop server using accelerated
computing hardware like a graphics processing unit (GPU) or a tensor processing
unit (TPU). However, a highly optimized model can run on smaller IoT and edge
devices to make inferences. In recent times, there have been plenty of interests
in edge-AI and TinyML aiming to optimize large deep learning models for effec-
tively deploying on ultra low-powered tiny edge devices and microcontrollers. Such
devices can remain active for several weeks without replacing the battery. The pro-
cessing is entirely done on a personal device without sending the data to the cloud,
which preserves the user’s privacy. Lack of standardization in hardware, limited
memory space, and lower processing capacity are some of the key challenges of the
microcontrollers. Hence, a standard deep learning model needs significant opti-
mization before porting. TinyML can be particularly important in digital health-
care for low-cost unobtrusive patient monitoring. In this paper, we propose a light-
weight deep neural network that entirely runs on low-powered microcontroller for
detection of AF and other abnormal rhythms using single-lead ECG. The applica-
tion can be used for 24 × 7 cardiac rhythm monitoring and real-time detection of
intermittent abnormal rhythms on stand-alone wearable devices in order to gen-
erate timely alerts. Major contributions of our paper are:

– A baseline deep residual network (ResNet) architecture with attention mecha-
nism is proposed for classification of normal, AF, and other abnormal rhythms
using single-lead ECG.
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– The baseline network is optimized to a much smaller model for commercial
edge devices and microcontrollers with a minimum impact on accuracy.

– A prototype system is designed for real-time ECG classification.

Our proposed baseline ECG classifier is detailed in Sect. 2. Section 3 provides a
broad overview of the model optimization technique. Experimental dataset and
results are discussed in Sect. 4 and 5 followed by a conclusion in Sect. 6.

2 Proposed Network Architecture for ECG Classification

We define a CNN-based deep ResNet architecture with attention mechanism as
our baseline network for detection of normal sinus rhythms, AF, and other abnor-
mal rhythms. Subsequently, the baseline model is optimized for microcontrollers.

Fig. 1. Proposed ResNet architecture of the baseline model for ECG classification
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Till date, most of the microcontrollers can handle only a limited number of deep
network architectures. Hence, we restrict the architecture as well as the number
of trainable parameters in the baseline model so that it can be effectively opti-
mized without compromising the performance. CNNs can automatically extract
features from the input using a set of convolution filters and are popularly used
in image classification and computer vision applications. The convolution filters
are also capable of extracting discriminating non-linear features from 1D signals.
Hence, CNNs have been successfully applied in literature for analysis of biomedi-
cal signals like ECG. A multi-layer CNN can extract more detailed features from
the input compared to a shallow network. However, deep CNNs are difficult to
optimize and they cause vanishing gradient during training which prevents the
weights to update. The ResNet architecture is designed to resolve the problem
by applying identify mapping through skip connections. The skip connections
skip few layers from training and connects directly to the output. This acts as
a regularization term to skip certain layers in a deep architecture that do not
have a positive impact in the performance.

Figure 1(a) shows the network architecture of our baseline model. The archi-
tecture comprises two residual blocks, ResNet_Block_1 and ResNet_Block_2,
as shown in Fig. 1(b). The ResNet_Block_1 takes a tensor x as input and applies
to a set of weight layers, F , comprising a pair of convolution layers having num-
ber of filters = f to produce the tensor y, where y = F(x). There is a Rectified
Linear Unit (ReLU) activation layer and a batch normalization layer in between
the two convolution layers. The input tensor x is added with y and the tensor
F(x) + x is applied to another ReLU layer to yield the output tensor which has
the same dimension of the input tensor x. The structure of ResNet_Block_2 is
similar to ResNet_Block_1. However, it has few more layers for feature dimen-
sionality reduction. There is a maxpool layer after the first convolution layer in
the weight layers F . Instead of identity connection, the input tensor x passes
through a convolution layer having a single filter followed by a maxpool layer to
reduce its dimension before adding with the output of the weight layers.

Single-lead ECG data having a fixed duration of 35 s and sampled 100Hz are
applied to the proposed network as input (i.e. input dimension = 3500 × 1× 1).
As shown in Fig. 1(a), the input data is first applied to a batch normalization
layer, a convolution layer having 16 filters, and a ReLU activation layer. Next
comes 2, 3, 4, 2 numbers of grouped ResNet_Block_1 with number of filters,
f = {16, 32, 64, 128} respectively, as shown in Fig. 1(a). In between two groups of
ResNet_Block_1, where the number of filters is increased, a ResNet_Block_2 is
applied to reduce the dimension of the features. The final feature map is reshaped
and applied to the attention layer to pay more focus on key locations in the input.
This helps in extraction of relevant features from the complex feature map that
have a critical role in classification. The feature attention mechanism proposed in
[14] is used in our architecture to calculate the attention weights as output using
tanh and softmax functions. The output of the attention layer is flattened and
applied to a fully connected layer having 64 nodes and ReLU activation function
followed by a final softmax layer for classifying normal, AF, and other abnormal
rhythms. The convolution operations are done by applying zero-padding to the
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input. The kernel dimension is selected as 5 × 1 throughout the architecture
with a stride length of 1. The pooling window for maxpool operations in the
ResNet_Block_2 is taken as 2× 1.

2.1 Depthwise Separable Convolution

The convolution operations in the ResNet blocks are performed using depthwise
separable convolution algorithm proposed in the MobileNets architecture [9]. In
depthwise separable convolution, we first perform a depthwise spatial convolu-
tion on each input channel separately followed by a pointwise convolution that
mixes the resulting output channels. It is an efficient way of performing the con-
volution task with fewer mathematical operations which also results in a lesser
number of trainable parameters. Let us consider, we have a 1D input data, hav-
ing dimension of lx1 and c input channels, upon which we want to perform the
convolution operation with kernel dimension of kx1 and p output channels. It
takes l ∗k ∗ c∗p number of mathematical operations along with k ∗ c∗p trainable
parameters to perform the standard convolution operation.

In depthwise separable convolution, it takes l ∗ k ∗ c operations and k ∗ c
trainable parameters to perform depthwise convolution for the input channels.
An additional l∗c∗p operations are needed to perform a pointwise convolution for
all output channels which requires c∗p trainable parameters. Hence, in depthwise
separable convolution, the total number of mathematical operations is l∗c∗(k+p)
and the number of trainable parameters is c ∗ (k + p). In comparison to the
standard convolution, the number of operations and trainable parameters are
both reduced by a factor of k ∗ p/(k + p). The resulting model requires less
memory space to store. It also ensures a faster model inference on resource-
constrained edge devices due to lesser mathematical operations.

2.2 Training of the Proposed Network

The baseline network is trained end-to-end to minimize the categorical cross-
entropy loss using an Adam optimizer. The training is done for 200 epochs
setting a learning rate of 0.0005. The mini-batch size is taken as 64. The network
is implemented in Python 3.8.10 using TensorFlow 2.6.0 library. Initial weights of
the convolution and the dense layers are set using Xavier initialization [7] which
ensures that the variance of the activations are the same across every layer. The
bias terms are initialized by zeros. The training is done on a computer having
Intel R© Xeon(R) 16-core processor, 64 GB of RAM, and an NVidia GeForce GTX
1080 Ti graphics processing unit. A detailed description of our experimental
dataset is provided in Sect. 4.

3 Model Optimization for Edge Devices

The baseline neural network has a model size of 1.8 MB, which needs to be signif-
icantly compressed in order to run on low-powered commercial microcontrollers
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having a RAM size of few hundred kilobytes. In this paper, we propose a pipeline
for collaborative optimization by combining multiple compression approaches
that produces a much smaller and faster model. By encompassing various opti-
mization techniques, we can achieve the best balance of target characteristics
such as inference speed, model size, and accuracy. The following set of optimiza-
tions are applied.

– First, the baseline model is compressed by applying weight pruning.
– Weight clustering is done on the pruned model preserving model sparsity.
– Finally, an integer-only model is obtained from the pruned and clustered

model by applying quantization aware training for deployment.

The above-mentioned optimizations are lossy, causing a performance drop in
every stage. Hence, the error in the resulting model after every optimization
is compensated by applying a retraining for fine-tuning the performance. The
retraining is done at a learning rate smaller than the baseline model. In each stage
of optimization, while compression the model we set a criteria of the maximum
allowable performance drop as 1% in the resulting model compared to the input
model. A detailed description of different optimization techniques used in our
method are provided below. Section 5.2 shows a quantitative evaluation of the
optimized model on a public database.

3.1 Magnitude-Based Weight Pruning

Significant amount of weights in a large neural networks are of very small val-
ues. They generally have a minimum impact on overall model performance.
Magnitude-based weight pruning is a popular optimization technique that intro-
duces sparsity to different layers in the network by eliminating few elements. This
is done by gradually zeroing out some of the low-magnitude weights based on their
L2-norm. Sparse models are easy to compress, and occupy less memory space in
the target device. The amount of sparsity is introduced to the baseline model in an
iterative manner, and the corresponding impact on overall performance is noted.
Being critical feature extraction layers, the attention mechanism, the final dense
layer, and the final softmax layer are skipped from pruning. We start by adding
10% of sparsity to the selected layer of the baseline model and gradually increase
the amount using a polynomial decay function, and eventually stop at 40% of spar-
sity. In every step, the sparse model is retrained for 20 epochs using an Adam opti-
mizer at a learning rate of 0.00005 to fine-tune the performance.

3.2 Weight Clustering

The pruned model is further compressed by weight clustering that reduces the
number of unique weight values in the model. The weights in a particular layer
are divided into N different clusters using K-Means algorithm. All weight values
in a cluster are represented by the corresponding cluster centroid. A lesser num-
ber of clusters can create a more compressed model, but with a negative impact
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on model accuracy. In our approach, the weight values in each layer of the pruned
model are divided into 24 clusters to get the optimum performance. The cluster
centroids are initialized by K-Means++ algorithm. The resulting model is fine-
tuned by retraining for 20 epochs at a learning rate of 0.00003 using an Adam
optimizer and the performance is noted. Similar to weight pruning, the critical
layers are again skipped from clustering.

3.3 Quantization Aware Training

Many microcontrollers do not have direct hardware support for floating point
arithmetic. One of the easiest ways to reduce the size of a large neural network is
to lower the precision of the model weights. In quantization aware training, the
weights are reduced from 32-bit floating points to 8-bit integers, which results in
an approximately 4x smaller model. Integer-based models also have an improved
CPU latency on microcontrollers. Lowering the precision from floating points can
have a negative impact on accuracy. Hence, the model is again fine-tuned via
retraining to mitigate the quantization error via backpropagation of the error.
The following scale is defined to map the weight values in the floating point
range to the values in the quantized range in each layer.

scale =
fmax − fmin

qmax − qmin

Here, fmax and fmin represent the maximum and minimum values in floating
point precision, qmax and qmin represent the maximum and minimum values in
the quantized range.

The TensorFlow Lite library is used for model optimization in a compressed
TFLite format, and the deployable microcontroller equivalent C++ libraries are
created using TensorFlow Lite for Microcontrollers [5]. The final model has a
size of 144 KB which is around 12x smaller and 8x faster than the baseline model.
Training of the baseline model, optimization, and converting to the equivalent
TFLite model is done on a desktop. The optimized light-weight model is tested
on two target hardware. The initial proof of concept is done on Raspberry Pi 3
Model B+ and the final deployment is done on Arduino Nano 33 BLE sense [1].
Raspberry Pi is a Linux-based tiny single board computer which is popularly
used in edge computing. It has Cortex-A53 (ARMv8) 64-bit processor at a clock
speed of 1.4GHz and 1 GB of RAM. Arduino Nano 33 is a microcontroller-
based development board highly recommended for TinyML applications. It has
an operating voltage of 3.3V. It comes with an ARM Cortex-M4 processor at a
clock speed of 64MHz. It has 256 KB of RAM and 1 MB of flash memory which
is enough to store and load our optimized model of 144 KB to make inferences.
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4 Dataset Description

(a) Normal sinus rhythm (b) AF (c) Other abnormal rhythm

Fig. 2. Sample ECG waveform from the PhysioNet Challenge 2017 database

The PhysioNet Challenge 2017 training database [3] is used for training and
evaluation of the proposed network. It is a large publicly available annotated
database having 8528 single-lead ECG segments. It has four target labels. In
the highly imbalanced database, 5124 recordings are normal sinus rhythms, 771
recordings are AF, 2557 recordings are other types of abnormal rhythms, and
remaining 46 recordings are too noisy to annotate. The original signals are sam-
pled 300Hz. The noisy recordings are omitted from our study because of the
small amount of available data. Figure 2 shows sample waveform corresponding
to different class labels. Single-lead ECGs are in general noisier than standard
12-lead data and hence the classification is more challenging. 80% of all data
from the database is randomly selected to form our training set and the remain-
ing portion is kept as the test set. Tuning of various network hyper-parameters of
the baseline model is done in a random search manner applying 5-fold cross val-
idation on the training data. Training of the final baseline model and retraining
during optimization are done on the entire training data before final evaluation
on the test set.

4.1 Data Preprocessing

Duration of the original recordings varies from 9 s to 61 s with a mean duration
of 32.5 s. A longer data contains more important disease markers, but the high
computational latency compromises the real-time classification performance in
the target platform. The input data duration is selected as 35 s in our network.
The shorter recordings in the database are appended on time-axis to get the
desired length of input, whereas the longer recordings are truncated into multiple
independent segments. It is strongly enforced that multiple segments obtained
from the original recording are not mixed up in the training and test sets and also
during cross validation analysis. The original signals are down-sampled 100Hz
for reducing the computational load of the network. In order to improve the
diversity of the training set for a generalized performance, we incorporate various
data augmentation techniques like addition of white Gaussian noise, band-pass
filtering, baseline shift etc. to extend the amount of data in the training set.
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5 Experimental Results

Our experimental results can be broadly divided into three subsections, as men-
tioned below.

5.1 Performance of the Baseline ECG Classifier

The classification performance is reported in terms of F1-score of detecting nor-
mal (F1norm), AF (F1af ), and other abnormal rhythms (F1oth). We also report
the overall F1-score (F1chal), the metric provided in the PhysioNet Challenge
2017 [3] to form the leader-board. The metric measures the mean F1-scores for
all three target classes.

F1chal =
F1norm + F1af + F1oth

3

Table 1 summarizes the average classification performance in terms of F1-scores
by applying 5-fold cross validation on the training set and also reports the per-
formance achieved on the test set when the network is trained on the entire
training set. Here, we compare the proposed baseline ResNet architecture with
a plain CNN architecture having similar structure in terms of different layers
including the attention mechanism but without having any skip connection.

Table 1. Classification performance of the baseline ResNet in comparison with a plain
CNN model having a similar architecture on the PhysioNet Challenge 2017 database

Architecture Average F1-scores in a 5-fold cross
validation on the training set

Performance on
the test set

Plain CNN
structure without

F1norm = 0.95 F1norm = 0.95

Skip connections F1af = 0.80 F1af = 0.76
F1oth = 0.92 F1oth = 0.89
F1chal = 0.89 F1chal = 0.87

Proposed baseline
ResNet

F1norm = 0.97 F1norm = 0.96

F1af = 0.87 F1af = 0.84
F1oth = 0.94 F1oth = 0.93
F1chal = 0.93 F1chal = 0.91
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(a) Normal sinus rhythm (b) AF

(c) Other abnormal rhythms

Fig. 3. ROC curves for all three target classes on the test set of the PhysioNet database

Although both networks are quite similar in terms of overall architecture
and number of trainable parameters, the ResNet architecture provides a much
better classification performance due to the skip connections that ensure a better
feature learning in a deep architecture. The improvement achieved by the ResNet
architecture over the plain CNN model can be particularly seen in detection of
AF which is the minority class in the database. Figure 3 shows the receiver
operating characteristic (ROC) curves of the baseline ResNet model and the
corresponding area under the curve (AUC) values for all three target classes
on the test set. Table 2 shows that the proposed baseline ResNet outperforms a
number of popular prior approaches reported their accuracy on the PhysioNet
Challenge 2017 database using deep architectures like ResNet, CNN, Bi-LSTM,
and neural architecture search (NAS). For performance comparison, we have
considered the performance reported by the prior arts on the publicly available
training part of the PhysioNet Challenge 2017 data.
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Table 2. Comparison of the proposed baseline ResNet model with prior approaches
reported on the PhysioNet Challenge 2017 database

Authors Brief description of the methodology Reported
performance in
F1chal

Warrick et
al. [19]

The approach used a combination of CNNs
and a sequence of long short-term Memory
units, with pooling, dropout and normalization
techniques to design the classifier

Overall F1-score =
0.83

Plesinger et
al. [16]

The authors used two machine learning
methods in parallel, a bagged tree ensemble
(BTE) process and a CNN connected to a
shallow neural network. The two classifiers are
combined for final prediction

Overall F1-score =
0.83

Shi et al. [17] The authors proposed discriminant canonical
correlation analysis-based feature fusion,
which integrates traditional features extracted
by expert knowledge and deep learning
features extracted by the residual network and
gated recurrent unit network for classification

Overall F1-score =
0.88

Najmeh
Fayyazifar [6]

A neural architecture search (NAS) algorithm
was designed to discover an accurate classifier
using CNN and RNN operations

Overall F1-score =
0.82

Jiang et al.
[11]

A hybrid attention-based deep learning
network was proposed using residual network
and bidirectional long short-term memory to
obtain fusion features containing local and
global information and improve the
interpretability of the model through the
attention mechanism

Overall F1-score =
0.88 using cross
validation

Proposed
approach

Residual network with attention
mechanism

Overall F1-score
= 0.93 using
cross validation,
= 0.91 on the
test set

5.2 Classification Performance of the Optimized Model

A compressed deep learning model is small enough to run on resource-constrained
target hardware, but the performance is often compromised compared to the
baseline model. A trade-off between model size and classification performance
needs to be maintained during optimization. Figure 4(a) shows the impact of
weight-pruning on the test set by gradually increasing the amount of sparsity in
the baseline model. In the plot, the model performance is shown in terms of the
challenge metric (F1chal). It can be observed that there is a significant drop in
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classification performance only when the amount of sparsity is more than 40%.
Hence, we can safely add 40% of sparsity to the model. In Fig. 4(b), we show
the impact of weight clustering on the pruned model. We start with 64 clusters
in each layer to divide the weights. In spite of producing good classification
performance, it causes no compression at all. Subsequently, we reduce the number
of clusters. The optimum performance with a reduced model size is achieved
when 24 clusters are used. In Table 3, we summarize the impact of proposed
collaborative optimization in various stages in terms of model size and overall
F1-score (F1chal) on the test set. The baseline model has a size of 1.758 MB
which can not be deployed on the target microcontroller having a RAM size of
256 KB and 1 MB of flash memory. Apart from loading the model, the RAM
should have available memory space for storing the input ECG data and various
intermediate variables to make an inference. In stage 1, the compressed model
size gets reduced to 632 KB after magnitude-based weight pruning. In stage 2,
the pruned model is further reduced to 416 KB after weight clustering. The final
model size becomes 144 KB after quantization aware training which is around
12× smaller than the baseline model. The final model reports an overall F1-score
(F1chal) of 0.885 on the test set which still outperforms the prior approaches
discussed in Table 2, but with a much smaller model size.

(a) Impact of sparsity (b) Impact of clustering

Fig. 4. Effect of weight pruning and clustering to create the optimized model

5.3 Deployment on Target Microcontroller

The optimized model is used to design an end-to-end prototype system for on-
device cardiac monitoring using commercially available components. MAX86150,
an integrated ECG-PPG breakout board [10] is used for recording of ECG. The
board has an operating voltage of 3.3V and has three leads with disposable elec-
trodes for attachment to the human body for recording of ECG data as analogue
voltage. It communicates with an Arduino Nano 33 BLE Sense microcontroller
via the I2C interface which hosts the optimized deep learning model trained and
evaluated on the PhysioNet Challenge database. The recorded data is sampled
100Hz and the continuous data-stream is sent to the microcontroller for mak-
ing an inference on every 35 s of accumulated data. A five-point moving average
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Table 3. Stage-wise impact of collaborative optimization on the baseline model

Stage Optimization technique Overall
F1-score
(F1chal) on
the test set

Resultant
model size

0 Baseline model (no optimization) 0.910 1.758 MB
1 After weight-pruning by adding 40% of sparsity

in each layer
0.902 632 KB

2 After weight clustering via 24 clusters in each
layer

0.894 416 KB

3 After quantization aware training (final model) 0.885 144 KB

filter is applied to the input data for noise cleaning. TensorFlow Lite for Micro-
controllers is used to convert the TensorFlow model into the equivalent C++
libraries for Arduino. Since TensorFlow Lite has a limited number of supported
APIs for deep learning models, few layers of our model (e.g. attention mech-
anism, batch normalization) were rewritten and slightly modified to maintain
the desired performance on the target platform. Figure 5(a) shows an image of
our prototype system. A sample waveform recorded by the ECG breakout board
is shown in Fig. 5(b). Real-time performance of the prototype system is evalu-
ated on a small population of 10 consenting subjects including normal subjects,
subjects having chronic AF, and other types of arrhythmias like bradycardia,
tachycardia etc. Our system achieves a classification accuracy of 90% on the
small test population, where it only fails to detect one subject having AF. Aver-
age inference latency for a 35 s long ECG window is measured as 243 milliseconds
on the Arduino Nano board.

(a) Prototype system (b) Sample ECG waveform

Fig. 5. Prototype system for on-device ECG classification using MAX86150 ECG-PPG
breakout and Arduino Nano BLE 33 Sense
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6 Conclusion

Edge-AI and TinyML have become the latest trend in machine learning. In
spite of deployment challenges, such applications can ensure very low latency,
reduced power consumption, increased security, and privacy which is particularly
important in healthcare applications dealing with sensitive patient information.
In this paper, we propose a light-weight deep neural network for classifying
abnormal heart rhythms using single-lead ECG. A novel ResNet architecture is
proposed as the baseline model which is successfully evaluated on a large public
database. Subsequently, the baseline model is optimized to realize a system for
real-time ECG analysis using a commercially available microcontroller. Exper-
imental results show that the baseline model as well as the optimized model
outperform a number of relevant prior approaches. However, the present model
can only detect a limited number of cardiac abnormalities, as all non-AF but
abnormal heart rhythms are classified under one category of other abnormal
rhythms. There are more than 30 types of different arrhythmias in medical dic-
tionary. It remains to be explored how the model performs to individually detect
different arrhythmias on available databases. The real-time performance of the
deployed model is only evaluated on a very small population. We are planning
to extend our study on a larger cohort along with measuring the actual power
consumption by the system during continuous patient monitoring.
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In the last decades, thanks to continuous and radical improvements in bio-technologies,
we have witnessed a significant increase in the volume of data available for investi-
gation regarding life science and health care environments. This is equally evident for
human genomics as well as for viruses and microorganisms; for instance, during two
and a half years of the COVID-19 pandemic, more than 10 million SARS-CoV-2
sequences have been collected and are actively being studied to understand the genetic
mechanisms of viruses and the relationship with the infected host. As data generation
nowadays is much simpler and less expensive than in the past, we could claim that, in
this new century, biologists and clinicians have moved their focus from data generation
to data analysis. This paradigm shift allows providing answers and insights to complex
life science questions. Moreover, life science data require (a) the use of particular
algorithms in some steps of the analysis (e.g., alignment to identify mutations) and
(b) the development of ad hoc machine learning/deep learning methods.

In such a scenario, the data science community plays a fundamental role in ana-
lyzing biological, genomics, and health care data to pave the ground for personalized
medicine. This kind of data needs to be properly managed, integrated, and analyzed by
employing statistical inference tools as well as machine learning, data mining, and deep
learning methods. Many data scientists actively work with bio-data aiming at different
goals, including patient stratification, personalized medicine, drug design, and treat-
ment development. Furthermore, analyzing and mining publicly available databases
have already proven to be paramount for biological and clinical knowledge discovery.

The first international Workshop on Data Analysis in Life Science aimed at
gathering researchers with expertise in data management and analysis, machine
learning, and knowledge discovery applied to bioinformatics and life science problems
to share their experience and foster discussion about improving data-driven personal-
ized medicine, genetic data management, and health care system advancement. It also
aimed to share cutting-edge data science methodologies and their applications to build
a strong research community in the area of data analysis in life science.

DALS 2022 was held online in conjunction with the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD 2022). The workshop papers were selected through a peer-review
process in which each submitted paper was assigned to three members of the Program
Committee. Based on the evaluation, a total of two papers were accepted for presen-
tation. Moreover, Anna Bernasconi from Politecnico di Milano, Italy, accepted our
invitation to give a keynote talk entitled “Data analysis for unveiling the SARS-CoV-2
evolution”.



The organizers would like to thank the authors, keynote speakers, and Program
Committee members for their contributions to the workshop.
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Data Analysis for Unveiling the SARS-CoV-2
Evolution

Anna Bernasconi

Politecnico di Milano, Italy

Abstract. The COVID-19 epidemic has brought enormous attention to the
genetics of viral infection and the corresponding disease. In this seminar, I will
provide a viral genomic primer. Then, I will discuss the potential of big data in
this domain, especially when millions of SARS-CoV-2 sequences are available
on open databases. I will present a collection of current analysis problems,
focusing on viral evolution, monitoring of variants, and the categorization of
their effects. Finally, I will hint at open problems that should attract the interest
of data scientists.
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Bioingegneria at Politecnico di Milano and a visiting
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human genomic datasets, she has then extended her
expertise to the fastly growing field of viral genomics,
particularly relevant since the COVID-19 pandemic
outbreak. She is active in the conceptual modeling and
database communities, with several paper presenta-
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Abstract. Long-read sequencing technologies demonstrate high potential for de
novo discovery of complex transcript isoforms, but high error rates pose a signif-
icant challenge. Existing error correction methods rely on clustering reads based
on isoform-level alignment and cannot be efficiently scaled. We propose a new
method, I-CONVEX, that performs fast, alignment-free isoform clustering with
almost linear computational complexity, and leads to better consensus accuracy
on simulated, synthetic, and real datasets.

Keywords: Isoform recovery · Sequencing · Long reads

1 Introduction

Alternative splicing is the process by which a single gene can create different alterna-
tive spliced forms (isoforms) by using different combinations of exons. The process
of identifying isoforms is called transcriptome sequencing. Transcriptome sequencing
methods fall into two categories: genome-guided and de novo. Genome-guided methods
align reads back to the reference genome to identify the exon boundaries. This alignment
information is often combined with reference annotations to assemble the transcripts.
De novo transcriptome sequencing, on the other hand, uses information from the reads
alone and does not rely on a reference genome. The de novo approach is not biased by
the reference genome/annotation and thus can be used in applications with the mutated
genome, such as cancer, or when a high-quality reference genome is not available.

Most transcripts are 1–10 kb long, and different isoforms can share the same subset of
exons. Thus, accurate characterization of the exon connectivities using short reads (100–
250 bp) is computationally challenging and in some cases, even statistically impossible
[1–4]. In contrast, the transcriptome sequencing problem through long reads is statis-
tically identifiable (Supplementary Note 1). However, such a task is computationally
challenging due to higher error rates of long reads. To deal with the high error rate, var-
ious transcriptome sequencing pipelines [5–7] have been developed [5–8] and used to
discover novel isoforms [9], cancer fusion genes [10], and genotypes of immune genes
[11].
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Figure 1a illustrates the process of full-length transcriptome sequencing. Each long
read covers a transcript completely, with substitution, insertion, and deletion errors dis-
tributed randomly. The number of reads covering each transcript depends on its abun-
dance in the sequencing library. We define the de novo transcriptome recovery as the
problem of using the full-length reads with random errors to estimate the sequence of
the transcripts and their abundances. One solution to this problem is to cluster the reads
based on their similarity, assuming that each cluster contains reads coming from the
same isoform and within-cluster differences solely come from sequencing errors. The
software ICE [5], which is based on this clustering viewpoint, performs pairwise align-
ment among the reads to construct a similarity graph and then uses this graph to cluster
the reads. While optimal clustering algorithms often require solving mathematically
non-convex and computationally intractable problems, heuristic clustering algorithms
such as maximal decomposition can be used in practice [5]. Unfortunately, these heuris-
tics often provide no statistical guarantee for the final clusters. In addition, computing
similarity graphs relies on aligners which are subject to parameterization and sensitiv-
ity/specificity tradeoffs. Another software based on this clustering viewpoint is IsoCon
[8]. IsoCon first creates a nearest neighbor graph based on the pairwise edit distance of
the reads, then it successively removes and denoises nodes with the largest number of
neighbors. This procedure is continued until all the reads are clustered. While IsoCon
demonstrates significantly better recall and precision compared to ICE, it is not scalable
to large-scale datasets with millions of long reads.

In contrast to ICE and IsoCon, our method I-CONVEX does not require read-to-
read alignment. I-CONVEX consists of two subprograms: scalable pre-clustering of
reads (Fig. 1b), and alignment-free isoform recovery via convexification (Fig. 1c). We
first describe the alignment-free isoform recovery step (Fig. 1c), which is the core mod-
ule of I-CONVEX and is based on the following observation:When the list of transcripts
is known, estimating the abundances is a convex problem and can be done efficiently
using convex optimization approaches such as the EM algorithm [12, 13]. However, the
list of transcripts is not known in de novo transcriptome recovery a priori, which makes
the problem non-convex. A convex reformulation of the problem could be obtained
by assuming that all sequences are possibly transcripts (with many of the sequences
having zero abundances). However, this reformulation would grow exponentially with
sequence lengths. To overcome this exponential increase, we first reduce the size of the
problem by partitioning the reads into a small number of equivalence classes that share
the same (short) prefixes, then we estimate their aggregate abundances (Fig. 1c). Many
of the equivalence classes would have near-zero abundances that are then “pruned”.
Keeping only the classes with sufficiently large abundance estimates, we further parti-
tion, or “branch” them by extending the prefixes one base at a time until a maximum
length threshold is reached. At each step of the algorithm, the abundance of each equiv-
alent class can be estimated using the EM algorithm with added sparsity regularization
(Supplementary Note 2). The computational complexity of the algorithm grows linearly
with the number of reads. This alignment-free isoform recovery step can fully utilize
multiple computational cores by processing the reads in parallel (Sect. 3). The paral-
lelization is achieved without losing any statistical accuracy as the parallel version, and
the single-core version returns exactly the same output.
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To scale I-CONVEX tomillions of reads, the first step of I-CONVEX performs a fast
pre-clustering algorithm on the input reads by constructing a “conservative” similarity
graph (Fig. 1b). The nodes in this graph correspond to the reads, and an edge shows a
similarity level higher than a certain threshold. A low threshold is chosen to capture any
potential similarity among the reads. Thus, each connected component (pre-cluster) in
this graph contains all the reads coming from a group of similar transcripts. To obtain
the similarity graph, we use a locality sensitive hashing (LSH) method based on the
Jaccard similarity [14–16] between k-mer signatures. This idea has been used before
in Mash [15] and MHAP [16]. However, to make the computational complexity of the
algorithm linear in the number of reads, we adopt the idea of banding technique [17]
(Supplementary Note 3). In this pipeline, the resulting similarity graph may contain
a large number of false positive edges since k-mer sharing amongst non-homologous
transcripts is frequent. To reduce the number of false positives,we trained a convolutional
neural network to validate and correct the similarity of read pairs. Then, the obtained
pre-clusters are processed in parallel by the clustering via convexification step (Fig. 1c).

2 Results

In this section, we introduce artificial and real datasets used to evaluate I-CONVEX and
other state-of-the-art approaches for de novo transcriptome recovery. Next, we demon-
strate the results on the dataset to compare the quality of recovered isoforms and the
efficiency of methods.

2.1 Introducing Datasets

SimulatedDatasets. Tocreate the simulated datasets in Fig. 2with 200K, 400K, and1M
number of reads, we have selected the 500 transcriptomes from the GENCODE dataset.
Then, the transcript abundances are randomly drawn from a log-normal distribution and
normalized. Supplementary Figure 3 shows the histogram of the transcript abundances
for the datasetwith 200K reads. The reads are sampled based on the independent identical
error model. The three datasets and ground-truth transcripts are publicly available at
https://doi.org/10.5281/zenodo.4019965.

SIRV Datasets. The Lexogen SIRV dataset is a synthetic RNA spike-in control and
consists of four sequencing runs. Four libraries were constructed from the Lexogen SIRV
E0 (two technical replicates), E1, and E2, respectively. Each library was sequenced on
the PacBio RS II platform. In Supplementary Figure 3 and Supplementary Figure 4
the sequence lengths and the ground-truth transcript abundances are demonstrated. The
dataset is publicly available at https://www.lexogen.com/sirvs.

https://doi.org/10.5281/zenodo.4019965
https://www.lexogen.com/sirvs
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FMR1 Dataset. The FMR1 Iso-Seq dataset consists of amplicon FMR1 cDNA from
three premutation and three control brain samples. Each individual was prepped inde-
pendently and sequenced on three SMRT Cells on the PacBio RS II platform. The
methodology of generating FMR1 dataset is described in Tseng et al. (2017) [22]. The
data is publicly available at https://zenodo.org/record/185011#.XU3fKpNKiqQ.

Sequel II Dataset. The Universal Human Reference (UHR) Iso-Seq dataset consisted
of two SMRT Cell 8M runs. The cDNA library is a whole transcriptome Iso-Seq library
generated using the Clontech SMARTer cDNA kit followed by SMRT bell library prepa-
ration. Data is publicly available and can be downloaded from https://downloads.pacbcl
oud.com/public/dataset/UHR_IsoSeq/.

Generated Dataset for Training Convolutional Neural Network. To train the con-
volutional neural network validating the similarity of candidate similar read pairs, we
have generated a balanced dataset of 50000 similar and 50000 dissimilar read pairs from
a set of simulated transcripts. Two reads are labeled as similar if they are generated
from a single transcript by adding insertion, deletion and substitutions. A naïve idea to
simulate transcripts is to create completely random sequences consisting of {A, C, G,
T}; however, in practice, it is highly probable that different transcripts have common
sub-strings (exons). Thus, in our training data, we first generate a pool of 400 exons
(e1, e2, ..., e400). Each exon is a sequence of {A, C, G, T} with length 20. Each sim-
ulated transcript is generated by concatenating 20 exons {ei1, ei2 , ..., ei20} picked from
the pool in order (i1 < i2 < ... < i20). We repeated this procedure to simulate 100
transcripts. To generate a similar pair, we choose a transcript and generate two reads
by adding insertions, deletions, and shifts in the beginning and the end of the selected
transcript. The insertion and deletion errors are i.i.d with 2% probability. The length of
the shift is a random variable, uniformly chosen from 0 to 5. To generate a dissimilar
pair, we do the same, except that the reads are generated by perturbing two different
transcripts. Compared to the scenario where the transcripts are simulated completely
at random, this approach leads to a more powerful convolutional neural network with
higher accuracy on real datasets.

2.2 Evaluation of I-CONVEX

We compare the performance and efficiency of I-CONVEX against IsoCon and ICE
on simulated and real datasets in Fig. 2. Aside from the capability of algorithms to
recover high quality transcripts, we have investigated how scalable they are based on
their required execution time on simulated and real dataset. As can be seen in Fig. 2a,
I-CONVEX can efficiently scale to large size datasets with over a million reads. For such
datasets, we set a limit of 48 h for each method to be executed on the dataset. IsoCon
and ICE cannot complete the task of transcript recovery within 48 h for the liver and 1M
artificial datasets. The resources allocated to all three methods are the same (128 CPU
cores and 180 GB of Memory). Figure 2b and Fig. 2d compare the recall, precision, and
F-score for I-CONVEX, ICE, and IsoCon on SIRV and simulated datasets. For these

https://zenodo.org/record/185011#.XU3fKpNKiqQ
https://downloads.pacbcloud.com/public/dataset/UHR_IsoSeq/
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datasets, the ground-truth transcripts are available. Recall measures the percentage of
ground-truth transcripts recovered with accuracy of more than 98%. On the other hand,
precision measures what proportion of recovered transcripts (output of methods) have
high quality (more than 98% similarity to at least one of the ground truth transcripts).
To evaluate the recall and precision of different methods simultaneously, we use F-score
which is the harmonic mean of recall and precision. In contrast to ICE and IsoCon, the
number of false positives in I-CONVEX output decreases as the read depth increase.
Thus, the F-score of I-CONVEX is enhanced by increasing the number of reads,while the
other two methods suffer from low F-scores when we increase the sequencing coverage.
We further evaluate I-CONVEX on the Sequel II dataset containing approximately 7
million reads. The only existing approaches that can be executed on this large-scale
dataset, is IsoSeq3 (a successor of ICE in the PacBio SMRTAnalysis software suite).
Since the actual transcriptome is not available, we use SQANTI2 [18] to the predicted
transcriptome by two methods. SQANTI2 outputs the number and percentage of full-
splice matches (perfect matches to a reference transcript), incomplete-splice matches
(possible degraded matches to a reference transcript), and novel transcriptome (which
are not high-quality transcripts with high probability) in the predicted transcripts. As
depicted in Fig. 2c, I-CONVEX generates fewer transcripts (high precision) compared
to the IsoSeq3, while the majority of them are either full-splice matches or incomplete-
splice matches.

3 Methods

3.1 Estimating Abundances of Transcripts

In this section, we show how I-CONVEX isoform recovery module estimates the
abundances of isoforms given the set of reads.

Computing Abundances. The likelihood of observing the set of reads R =
{r1, r2, . . . , rn} from a given set of transcripts T = {t1, t2, . . . , tn} with abundances
ρ = {ρ1, ..., ρm} can be computed as [12]

P(R; ρ,T ) =
n∏

i=1

P(ri; ρ,T ) =
n∏

i=1

⎛

⎝
m∑

j=1

αijρj

⎞

⎠,

where αij is the probability of observing the read ri from transcript tj. We compute αij

parameters using banded dynamic programming [20], takingO(w|ti|) operations, where
w is the width of the band and is a constant much smaller than the length of the transcript
and the read. Therefore, the maximum likelihood estimation of ρ is given by

ρ
∧

ML = argmax
ρ

n∑

i=1

log

⎛

⎝
m∑

j=1

αijρj

⎞

⎠ subject to ρ ≥ 0,
m∑

j=1

ρj = 1
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which can be solved through Expectation Maximization (EM) algorithm iteration [12]:

ρj ← 1

n

n∑

i=1

αijρj∑m
k=1 αikρk

∀j = 1, . . . ,m.

Sparsification of the Abundance Vector Estimation. The abundance of the sequences
in the Isoform Recovery via Convexification step in I-CONVEX is a sparse vector.
Hence, Isoform recovery via convexification step (Fig. 1c) estimates the abundance
vector through lq-norm regularization for imposing sparsity by solving

ρ
∧

ML = argmax
ρ

n∑

i=1

log

⎛

⎝
m∑

j=1

αijρj

⎞

⎠ subject to ρ ≥ 0,
m∑

j=1

ρ
q
j = 1,

where q is some positive constant less than 1. In our experiments, we observe that setting
the value of q close to one, e.g. 1

q = 1.03, reduces the number of false positives while
does not decrease the number of true positives. This modified optimization problem can
be solved through the following iterative procedure (Supplementary Note 2):

ρj ←
(
1

n

n∑

i=1

αijρj∑m
k=1 αikρk

) 1
q

∀j = 1, . . . ,m. (1)

Parallelization. Isoform recovery via convexification step (Fig. 1c) partitions the reads
evenly among the cores before running the algorithm. Each core keeps a copy of the
estimated prefixes and abundanceswhile it computes the parametersαij for its own reads.
Let us assume that the set of readsR = {r1, . . . , rn} is partitioned into subsetsR1, . . . ,Rc

with c being the number of computational cores. At each iteration of the algorithm, each
core l computes local alues

ρl
j ← 1

n

∑

i∈Rl

αijρj∑m
k=1 αikρk

∀j = 1, . . . ,m, (2)

and then the consensus abundance value is obtained by

ρj ←
(

c∑

l=1

ρl
j

) 1
q

∀j = 1, . . . ,m. (3)

The above two steps (2, 3) are equivalent to (1) and return the exact same values for
abundances.
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3.2 Pre-clustering

To reduce the time and memory complexity of the isoform recovery via convexification
procedure, we propose a fast pre-clustering algorithm (Fig. 1b) consisting of three main
steps:

1. Fast mapping of reads to buckets based on MinHash and Locality Sensitive Hashing
(LSH) algorithms. The more similar a pair of reads, the higher the probability of
mapping them to the same bucket is.

2. Validating similar candidate pairs with a trained convolutional neural to eliminate
false positive pairs obtained from the previous step.

3. Pre-clustering the similarity graph whose vertices are reads and edges show the
similarity between the reads.

Each of these steps is explained in details below:

Fast Mapping of Reads to Buckets. To measure the proximity of read pairs, a widely
used idea is to compute the Jaccard similarity of their k-mer set [16, 17]. The k-mer
set of a given read is the set of all of its consecutive subsequences with length k. As
an example “GCTACCT” consists of {“GCTA”, “CTAC”, “TACC”, “ACCT”} 4-mers.
For a given dataset containing N reads with the average length of L, it takes O(NL)

operations to obtain the k-mer representation of all the reads. For convenience, each
k-mer is hashed to a 32-bit integer number. Having the k-mer set of all the reads in the
dataset, we form a representation matrixM with its columns representing different reads
and different rows representing different k-mers (that appear in at least one read). Each
entryMij equals to 1 if and only if the i-th k-mer appears in the j-th read, and 0 otherwise.
Since computing the Jaccard similarity of read pairs is computationally expensive, we
compress the reads using MinHash signatures, which are unbiased estimators of Jaccard
similarity (Supplementary Theorem 2 in Supplementary Note 3). Thus, instead of exact
computation of Jaccard similarity of all read pairs, we can estimate them by finding
the Hamming similarity of their MinHash signatures. h << L MinHash functions are
applied to the representation matrix M to obtain a MinHash signature with length h
for each read. Choosing a larger value for h, , corresponds to a smaller variance of
the Jaccard estimator (Supplementary Theorem 3 in Supplementary Note 3). Hence a
signature matrix S with N columns and h rows can be formed such that Sij represents
the i-th element of the MinHash code corresponding to the j-th read in the dataset. To
compute Sij, let Pi = {i1, i2, ..., it} be a permutation of {1, 2, ..., t} corresponding to the
i-th MinHash function, where t is the number of rows in M . Let imin be the smallest
integer such that M [imin][j] = 1. Then, the MinHash value of the j-th read with respect
to the permutation Pi equals imin.
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Computing the similarity of two MinHash signatures rather than the original k-mer
sets is significantly more efficient. However, even after hashing long reads to MinHash

signatures, calculating the similarity of all

(
N
2

)
pairs of MinHash signatures is still a

computationally expensive task. To avoid pairwise comparison of all reads, we adopt
the locality sensitive hashing (LSH) algorithm. The corresponding MinHash signature
of each read is divided into b bands with size d(h = bd). Accordingly, the first d rows
of the signature matrix form the first band. The second d rows of the signature matrix
correspond to the second band, and so on. If two columns (which correspond to two
different reads) are equal in all rows of at least one of these bands, they will be mapped
to the same bucket, and we call them a candidate similar pair (Fig. 1b). Assume s
is the true Jaccard similarity of S1 and S2. Since MinHash is an unbiased estimator of
the Jaccard similarity, the probability that S1 and S2 are equal in each row is s. Thus,
the probability of being equal in all d rows of a band is sd . Hence S1 and S2 will be
mapped to the same bucket with the probability p = 1 − (1 − sd )b. d and b can be
seen as two hyper-parameters that control the false positive and false negative rates.
Increasing d leads to the decrease in the value of p. Thus, the number of pairs mapped
to the same bucket is decreased; and true positive and false positive rates are reduced
simultaneously (Supplementary Figure 2). The same logic implies that by increasing the
number of bands (b), pwill be increased. Therefore, both true positive and false positive
rates will be increased. To avoid low true positive rate, we choose small values for d and
b, and then we eliminate the false similar candidate pairs using a trained convolutional
neural network. In the implementation we tried (b, d) = (1, 10) and b, d = (2, 12) and
the one with the best performance is chosen.

ValidatingCandidate SimilarPairs viaConvolutionalNeuralNetworks. Tovalidate
the candidate pairs obtained by applying LSH on the dataset of reads, we designed a
Convolutional Neural Network (CNN), which takes a pair of sequences and generates
the output one if the sequences are similar and zero otherwise (Fig. 1b). Supplementary
Table 1 depicts the architecture of the designed convolutional neural network in detail.
The training data consists of 100000 pairs of the reads,where half of them are similar, and
the rest are dissimilar (The details of the training dataset is available in Supplementary
Note 4). We optimize the following objective function applying an Adam optimizer with
the step-size α = 10−4 and the momentum β1 = 0.9:

�l
(
y, y

∧) =
n∑

i=1

(
y
∧

i − yi
)2

Pre-clustering the Similarity Graph. The similarity graph among the reads is an undi-
rected graph in which a vertex represents a read in the dataset. We connect two vertices
with an edge if and only if their corresponding reads are detected as a similar pair by
the convolutional neural network introduced in the previous step. Ideally, if the LSH
algorithm combined with the validation phase by the designed CNN can detect all the
similar pairs without producing any false edges, each connected component of the sim-
ilarity graph corresponds to one cluster. However, due to the existence of false positives
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in the graph, each connected component may contain more than one actual cluster. In
practice, there is typically a large connected component containing 10% to 40% of the
nodes. For this specific component, we run a fast greedy community detection algorithm
[21] to find the pre-clusters it contains.

Partitioning the reads into pre-clusters has several advantages over running the “iso-
form recovery via convexification” module on the entire dataset. First, this module can
be executed on different pre-clusters independently and in parallel. Hence, the amount
of memory per task, and the entire time needed for the transcriptome recovery will be
decreased profoundly as a result of parallelization. Second, the time complexity of the
convexification stage is dependent on the product of the number of transcripts and the
number of reads. Since the number of transcripts in each pre-cluster is much smaller than
the total number of transcripts, pre-clustering significantly improves the computational
complexity of “isoform recovery via convexification” step.

Determining Maximum Length Threshold of Transcripts in Isoform Recovery
Module. To apply the isoform recovery module on a given pre-cluster, we add the
base-pair ‘A’ to the end of the pre-cluster reads to reach the longest read within the pre-
cluster. This makes all the reads of the same length. Then, we apply the isoform recovery
module depicted in Fig. 1C to these equal size reads. To remove extra ‘A’ characters from
the end of the obtained transcripts, we consider the original reads (without additional
‘A’ characters) assigned to each one of them. The extra ‘A’ characters are removed from
the end of the transcript by determining the last character based on the majority vote on
the last entries of the original reads assigned to the transcript.

Code Availability. The I-CONVEX package is available online at https://github.com/
sinaBaharlouei/I-CONVEX.We have provided the basic instructions to run I-CONVEX
in Supplementary Note 5.

4 Discussion

From a broader viewpoint, I-CONVEX solves a clustering problem over finite-alphabet
sequences. The ability of I-CONVEX for fast and accurate clustering of the sequences
can be beneficial in various other applications. For example, the read or k-mer denoising
problems can be viewed as a clustering problem where reads/k-mers from identical
sequences belong to the same cluster. As another example, the reconstruction of antibody
repertoire, which is an important step in immunology and drug development, can be
viewed as a clustering problem [19] and the idea behind I-CONVEX could lead to linear
time algorithms for this purpose.

https://github.com/sinaBaharlouei/I-CONVEX
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Fig. 1. I-CONVEX algorithm workflow: (a) Sequencing full-length transcriptome using long
reads. The reads cover the full transcripts and the number of reads from each transcript is propor-
tional to its abundance in the sequencing library. Different error types such as insertion, deletion,
and substitution may occur in the reads. The reads are the input to I-CONVEX. (b) Pre-clustering
stage: First, we use MinHash to obtain the signature matrix. Then, the signature matrix is divided
into several bands (e.g., two bands with size 3). Two reads are in the same bucket if they are equal
in all rows of a band (e.g. R4, R5). Next, a similarity graph is formed by connecting reads that
are in the same bucket. The edges of this graph are then validated with a neural network to reduce
the number of false positive edges (red edges). Each connected component of the similarity graph
leads to one pre-cluster. (c) An example run of Clustering via Convexification. First, the list of
all possible short prefixes is considered (e.g. 45 = 1024 prefixes of length L = 5 ranging from
‘AAAAA’ to ‘TTTTT’). The abundances of these prefixes are then estimated by aligning them to
the reads and solving a maximum likelihood estimation problem through the (sparse) expectation
maximization (EM) algorithm [13, 14] (See Sect. 3). I-Convex only keeps the prefixes with the
abundance higher than a specified threshold. Then each length L prefix ‘XXXXX’ is replaced
by four extended prefixes ‘XXXXXA’, ‘XXXXXC’, ‘XXXXXG’, and ‘XXXXXT’. Using the
previous alignment of the prefixes to the reads, the abundance of these length L + 1 prefixes are
estimated and the list is filtered and extended to obtain a list of prefixes of length L + 2. This
procedure continues until the complete recovery of all transcripts.
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Fig. 2. Performance Comparison of I-CONVEX, ICE, and IsoCon. (a) Running time
of I-CONVEX, ICE, and IsoCon for real and simulated read datasets. The inser-
tion/deletion/substitution error is generated according to the identical independent errormodel. All
the methods have the same amount of memory (180 GB) and computational resources (16 cores
per cluster). ICE and IsoCon could not complete the denoising task within 48 h for the 1M dataset.
In addition, IsoCon cannot complete the denoising task for the Liver dataset within 48 h. (b, d)
Comparison of the recall, precision, and F-score performed on several simulated datasets with
known ground-truth. Recall measures the ratio of the actual transcripts detected with an accuracy
of larger than 98%. Precision measures the number of recovered ground truth transcripts divided
by the total number of estimated transcripts. While the recall of three methods is close to each
other, I-CONVEX demonstrates a better performance in terms of precision. (c) The frequency of
Full Splice Matches (FSM) and Incomplete Splice Matches (ISM) obtained by running Iso-Seq
3 and I-CONVEX on the Sequel II dataset. The “I-CONVEX + Truncation” means pre-clusters
with size 1 are thrown away. We could not get the result of IsoCon and ICE on this dataset after
waiting for more than 48 h.
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Appendix

Supplementary Note 1: Identifiability of de novo Transcriptome Recovery
from Long Reads

A family of distributions P = {Pθ |θ ∈ �} parameterized by a vector θ is called
identifiable if it satisfies the following condition:

Pθ1 = Pθ2 ⇒ θ1 = θ2 ∀θ1, θ2 ∈ �,

This means that with enough observations from one of the distributions inside
the family, one can decide which θ is the ground-truth value. For the de novo tran-
scriptome recovery problem, θ is defined as the set of unknown transcripts/sequences
S = {s1, s2, ..., sm} and their corresponding abundances ρ = {ρ1, ρ2, ..., ρm}. For a
given readr, we define Pθ (r) as the probability of observing r, given θ = (S, ρ). We
assume that a read generated from a sequence by adding insertion, deletion, or substitu-
tion errors through an i.i.d. process which does not depend on the location of the error.
For simplicity, let δs, δi, and δd be the probability of observing a substitution, insertion,
or deletion error at each location of the sequence respectively. In Theorem 1, we prove
that the problem of de novo transcriptome recovery is identifiable.

Supplementary Theorem 1 (Long-Read Sequencing Identifiability): Assume that
the set of sequences S = {s1, s2, ..., sm} with the corresponding abundances ρ =
{ρ1, ρ2, ..., ρm} is unknown. Suppose that for any readr, PS,ρ(r) represents the probabil-
ity of observing read r given that it is generated from a sequence in S with the abundance
vectorρ. Then, given PS,ρ(r) for all readsr, both S and ρ can be exactly recovered when
substitution error parameterδs �= 3

4 .

Proof: Each read r with non-zero P(r) can be obtained by adding insertions, deletions,
and substitutions to one or several sequences in S. Without loss of generality, we can
model the transcriptome recovery problem as denoising the reads obtained by applying
three noise channels to the set of sequences in S sequentially (Supplementary Figure 1).
In this model, P1(r) is the distribution of reads after the substitution channel; and P2(r)
is the distribution of reads after applying the deletion channel (and before the insertion
channel). Lastly, P(r) is the final probability distribution observed after applying the
insertion noise. If we prove that the transcriptome recovery is identifiable under each
one of these three channels (insertion, deletion, and substitution) individually, then the
entire problem is identifiable. This is because of the fact that using the given probability
of observing reads P(r), we can recover P2(r) by denoising the effect of the insertion
channel. Then, with the same argument, we can recover P1(r) by denoising the effect
of the deletion channel. Finally, we can find the vector ρ by denoising the effect of
the substitution channel on the probability vector P1. Thus, it suffices to show that
P2(r),P1(r), and ρ can be recovered sequentially given P(r). In what follows, we show
each one of these three channels is identifiable.
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Supplementary Figure 1. Each channel affects the probability vector of reads from the previous
step. To prove the identifiability of the transcriptome recovery problem, it suffices to denoise the
effect of the channels sequentially from last to first.

Identifiability Under the Substitution Channel: For the substitution channel, we can
observe that a read r with length L can only be generated from a sequence of size L,
since the substitution does not change the sequence length. Thus, for estimating the
abundances of the sequence with size L, we can only focus on the set of reads with
size L. It means that without loss of generality we can assume that the set of reads and
sequences are all of sizeL.Moreover, without loss of generality, assume that S consists of
all 4L possible transcripts with size L with possibly zero abundances. Thus, the problem
is reduced to recovering vector ρ, given the P(r) and S. Let δs = δ be the substitution
error rate. Then the probability of observing the read ri can be written as follows:

P(ri) =
n∑

j=1

ρjP
(
ri|sj

) =
n∑

j=1

ρj

(
δ

3

)d(ri,sj)
(1 − δ)L−d(ri,sj)

Here d(ri, sj) is the number of mismatches between ri and sj. This relationship can
be written in a matrix form. For example, when L = 1, let the abundances of ‘A’, ‘C’,
‘G’, and ‘T’ be ρ1, ρ2, ρ3 and ρ4 respectively. Then, the probability of observing each
{‘A’, ‘C’, ‘G’, ‘T’} can be obtained by the following equation:

⎡

⎢⎢⎣

P(r1)
P(r2)
P(r3)
P(r4)

⎤

⎥⎥⎦ = A

⎡

⎢⎢⎣

ρ1

ρ2

ρ3

ρ4

⎤

⎥⎥⎦

where

A =

⎡

⎢⎢⎣

1 − δ δ/3 δ/3 δ/3
δ/3 1 − δ δ/3 δ/3
δ/3 δ/3 1 − δ δ/3
δ/3 δ/3 δ/3 1 − δ

⎤

⎥⎥⎦
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Thus, the identifiability problem in this case reduces to showing the invertibility of
this matrix. Notice that the determinant of this matrix can be computed as

where the second equality is due to the effect of permuting rows on the determinant of
the matrix. One can easily check that this polynomial is non-zero for all δ ∈ [0, 1] except
δ = 3

4 , which implies the invertibility of the matrix for all δ ∈ [0, 1] except δ = 3
4 .

Now, let us consider the case of general length L > 1. Assume that we order the
set of all possible sequences with size L (all m = 4L possible sequences) according to
the order of sequences in base 4. In this case, the probability transition relation can be
written as

⎡

⎢⎢⎣

P(r1)
P(r2)
. . .

P(rm)

⎤

⎥⎥⎦ = A ⊗ . . . ⊗ A︸ ︷︷ ︸
L times

⎡

⎢⎢⎣

ρ1

ρ2

. . .

ρm

⎤

⎥⎥⎦

where the Kronecker product of two matrices A(m×n) and B(p×q) is a matrix
C((m×p)×(n×q)), defined as:

C = A ⊗ B =

⎡

⎢⎢⎣

a11B a12B ... a1nB
a21B a22B ... a2nB
... ... ... ...

am1B am2B ... amnB

⎤

⎥⎥⎦

The Kronecker product of L matrices is invertible if and only if each one of them is
invertible [23]. We have already shown that A is an invertible matrix when δs �= 3

4 . Thus,
A ⊗ A ⊗ ... ⊗ A is invertible as well, which shows the problem is identifiable when the
substitution channel is applied.
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Insertion Channel: Let R be the support of P (R = {r : P(r) > 0}). We define the
operator≤ on a pair of reads as follows: r1 ≤ r2 if r2 can be obtained by inserting zero or
more bases to r1 in different locations. It is easy to observe that (R,≤) forms a partially
ordered set (poset). Since it satisfies the reflexivity, anti-symmetry, and transitivity. We
have the following observations:

– If r′ ≤ r and r �= r′, then
∣∣r′

∣∣ < |r|.
– R has at least one minimal element.
– Any minimal element of R belongs to S.

To see the correctness of the first observation, assume that r′ ≤ r, which means r is
obtained by adding zero or more characters to r. However, since r′ �= r, the number of
added characters cannot be zero. Thus at least one character is added to r′ to obtain r.
This means that

∣∣r′
∣∣ ≤ |r|.

To prove the second observation, assume that rmin is an element of R with the mini-
mum length (it is not necessarily unique). Indeed, such an element exists, because |r| ≥ 1
for all r ∈ R.We claim that rmin is aminimal element.Weprove by contradiction.Assume
that rmin is not a minimal element. Thus, there exists an element r′ �= rmin in R such that
r′ ≤ rmin. According to the first observation |r| < |rmin|, which contradicts the fact that
rmin is an element with the minimum length in R.

Finally, we prove that a minimal element of R belongs to S. We prove by con-
tradiction. Assume that rmin is a minimal element that does not belong to S. Thus,
there exists an element s ∈ S, such that s ≤ rmin. Clearly r = s belongs to R, since
P(r) ≥ P(r|s) = ρs(1− δi)

|s| > 0. Therefore, s is an element in R which is not equal to
rmin and s ≤ rmin which contradicts with the fact that rmin is a minimal element in R.

Now, we prove the identifiability of the transcriptome recovery problem under the
insertion channel by induction on the size of S.

For |S| = 1, according to the third observation, the minimal member of R belongs
to S, and its abundance is clearly 1.

Based on the induction hypothesis, assume that the problem is identifiable when
|S| = m. We want to prove it is identifiable, when |S| = m + 1. Based on the third
observation, any minimal element rmin of R belongs to S. Set S ′ = S − {rmin} and
update the probability vector of the reads accordingly: P′(r) = P(r) − P(r|rmin)ρrmin .
For updating the probability vector of reads we need to estimate ρrmin exactly. Since
rmin is the minimal element, it can be only obtained from a sequence with the exact
same structure. Hence, P(rmin) = ρrmin(1 − δ)|rmin|, which means ρrmin = P(rmin)

(1−δ)|rmin| .

According to the assumption of induction, since
∣∣S ′∣∣ = m. we can recover S ′ using P′.

Thus, S = S ′ ∪ {rmin}, which means we can recover S exactly.

DeletionChannel: The argument is similar to the insertion channel. The only difference
is that the operator≤ is defined for a pair of reads r1 ≤ r2 if r2 can be obtained by deleting
some elements of r1. Moreover, the minimal element of R is the longest read in this case.
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Supplementary Note 2: Sparse EM Algorithm Inside the Isoform Recovery
via Convexification

As discussed in Sect. 3, themaximum likelihood estimator of the abundance vector given
the set of transcripts and reads can be written as:

ρ
∧

ML = argmax
ρ

n∑

i=1

log

⎛

⎝
m∑

j=1

αijρj

⎞

⎠ subject to ρ ≥ 0,
m∑

j=1

ρj = 1

Or equivalently:

ρ
∧

ML = argmin
ρ

n∑

i=1

−log

⎛

⎝
m∑

j=1

αijρj

⎞

⎠ subject to ρ ≥ 0,
m∑

j=1

ρj = 1

Applying the Expectation Maximization (EM) algorithm, at each iteration, we
minimize a tight local upper bound of the above objective function:

ρt+1 = argmin
ρ

−
n∑

i=1

m∑
j=1

αijρ
t
j∑m

j′=1 αij′ρtj′
log

(
ρj

ρt
j

)

−
n∑

i=1
log

(
m∑
j=1

αijρj

)
subject to ρ ≥ 0,

m∑
j=1

ρj = 1

The Lagrangian function of the above problem can be written as:

L(ρ,λ) = −
n∑

i=1

m∑

j=1

αijρ
t
j∑m

j′=1
αij′ ρ

t
j′
log

(
ρj

ρtj

)
−

n∑

i=1

log

⎛

⎝
m∑

j=1

αijρj

⎞

⎠ + λ

⎛

⎝
m∑

j=1

ρj − 1

⎞

⎠

And the dual problem takes the form of:

max
λ

min
ρ

L(ρ,λ)

Since the Lagrangian function is convex in ρ, and the constraints are linear, the strong
duality holds [24]. Thus, by setting the gradient of L with respect to ρ to 0, we have:

−
n∑

i=1

αikρ
t
k∑m

j′=1
αij′ ρ

t
j′

1

ρk
+ λ∗ = 0, ∀k = 1, . . . ,m.

Which means:

ρt+1
k = 1

λ∗
n∑

i=1

αikρ
t
k∑m

j′=1
αij′ ρ

t
j′

∀k = 1, . . . ,m.

Since
∑m

j=1 ρt+1
j = 1, we have:

1 =
m∑

k=1

ρt+1
k =

m∑

k=1

1

λ∗
n∑

i=1

αikρ
t
k∑m

j′=1
αij′ ρ

t
j′

= 1

λ∗
n∑

i=1

∑m
k=1 αikρ

t
k∑m

j′=1
αij′ ρ

t
j′

= n

λ∗
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Therefore λ∗ = n, and

ρt+1
k = 1

n

n∑

i=1

αikρ
t
k∑m

j′=1
αij′ ρ

t
j′

∀k = 1, . . . ,m.

This update rule is similar to the one used by Express [12] to obtain the abundance
vector.

Sparsification. One naïve approach to impose sparsity to the estimated abundances
in the above problem is to use the �1 regularizer [25]. However, the abundances are
non-negative and their summation is equal to 1. Therefore, the �1 regularizer does not
change the objective function at all. Thus, instead of using �1 regularizer, we apply the
�lq regularizer to the objective function with 0 < q < 1. Using this regularizer, the
above problem can be written as

ρt+1 = argmin
ρ

−
n∑

i=1

m∑
j=1

αijρ
t
j∑m

j′=1 αij′ρt
j′
log

(
ρj

ρt
j

)

−
n∑

i=1
log

(
m∑
j=1

αijρj

)
subject to ρ ≥ 0, ρq ≤ 1

Thus, the Lagrangian function for the sparse EM takes the following form:

L(ρ, λ) = −
n∑

i=1

m∑

j=1

αijρ
t
j∑m

j′=1
αij′ ρ

t
j′
log

(
ρj

ρtj

)
−

n∑

i=1

log

⎛

⎝
m∑

j=1

αijρj

⎞

⎠ + λ

⎛

⎜⎝

⎛

⎝
m∑

j=1

ρ
q
j

⎞

⎠

1
q

− 1

⎞

⎟⎠

Again, by writing the optimality condition for the dual problem, we have

∇Lρ(ρ,λ) = 0 ⇒

−
n∑

i=1

αikρ
t
k∑m

j′=1
α
ij′ ρ

t
j′

1

ρt+1
k

+ λ∗q
(
ρt+1
k

)q−1((
ρt+1
1

)q + · · · +
(
ρt+1
m

)q) 1
q−1 = 0, ∀k = 1, . . . ,m.

Moreover, according to the complementary slackness, we have:

λ∗

⎡

⎢⎣

⎛

⎝
m∑

j=1

(
ρt+1
j

)q
⎞

⎠

1
q

− 1

⎤

⎥⎦ = 0

It is easy to observe that λ∗ �= 0, otherwise the last two equalities have no solution.
Thus, similar to the previous case, we can conclude that λ∗ = n, and we have the
following closed-form update rule:

ρt+1
k =

(
1

n

n∑

i=1

αikρ
t
k∑m

j′=1
αij′ ρ

t
j′

) 1
q

, ∀k = 1, . . . ,m.
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We refer to 1
q as the sparsity power. This hyper-parameter is set to 1.03 in the imple-

mentation of Isoform Recovery via Convexificationmodule. As we increase the sparsity
power, the abundance vector is sparser, and thus the number of recovered isoforms is
smaller at the end. Sparsification of EM can help to remove false positive isoforms fur-
ther. However, we should avoid setting it to very large numbers as it may lead to the
removal of true positives.

Supplementary Note 3: Further Analysis of MinHash and Locality Sensitive
Hashing Algorithms

Definition 1: Suppose that S1 and S2 are k-mer sets of two given sequences. The Jaccard
similarity of S1 and S2 is defined as

J (S1, S2) = |S1 ∩ S2|
|S1 ∪ S2|

Definition 2: Given a set of sequences S1, . . . , Sm and the set of k-mers S ′
1, . . . , S

′
N ′ ,

we say a matrix M ∈ {0, 1}N ′×m is a representation matrix if it satisfies the following
property: The element in row i and column j equals 1 if and only if the i-th k-mer appears
in j-th sequence, and 0 otherwise.

Definition 3: Assume the representation matrix M has N ′ rows and m columns, and
let P = {i1, i2, . . . , iN ′ } be a permutation of set

{
1, 2, . . . ,N ′}, and column c in M

corresponds to a sequence S. Then the MinHash signature of S with respect to P is
defined as MinHashP (c) = ij where j is the smallest number in

{
1, 2, . . . ,N ′} such that

M [ij][c] = 1.

Example: Assume that S1 = ACCAGTC and S2 = ACCGTCA. The set of 3-mers that
appears at least once in S1 or S2 is {ACC,CCA,CAG,AGT,GTC,CCG,CGT,TCA}.
LetP = {7, 5, 2, 3, 1, 4, 6} be a random permutation of 3-mer indices. Since 5 is the first
3-mer index in P such that its corresponding 3-mer appears in S1, thus, the MinHash
signature of S1 with respect to P is 5. With the same logic, we can observe that the
MinHash signature of S2 with respect to P is 7.

Supplementary Theorem 2: Let J (S1, S2) be the Jaccard similarity between two
given sequences S1 and S2, and P1, . . . ,Ph are h distinct randomly generated per-
mutations of set {1, 2, . . . ,N ′ }. For each sequence, a vector of MinHash signa-
tures with length h is computed with respect to permutations P1, . . . ,Ph. Then,
#Matches between signature vectors of S1 and S2

h is an unbiased estimator of the Jaccard similarity
of S1 and S2.

Proof: Let c1 and c2 be the indices of columns in M corresponding to S1 and S2. Let
R1 denote the set of rows in which c1 and c2 both have the value 1, and R2 be the set
of rows in which exactly one of c1 and c2 is 1. Fix a permutation P = {i1, i2, . . . , iN ′ },
and let j be the smallest index such that at least one ofM

[
ij
]
[c1] orM

[
ij
]
[c2] is 1. Thus

ij ∈ R1 ∪ R2. Moreover, MinHashP (c1) = MinHashP (c2) = ij if and only if ij ∈ R1.
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Hence Pr[MinHashP (c1) = MinHashP (c2)] = |R1||R1|+|R2| which is equal to the Jaccard
similarity of S1 and S2. Thus, we have

E

[
#Matches between signature vectors of S1 and S2

h

]

=
∑h

k=1 Pr
[
MinHashPk (c1)=MinHashPk (c2)

]

h
= hJ (S1,S2)

h = J (S1, S2),

which means the estimator is unbiased.

Supplementary Theorem 3: The variance of the estimator proposed in Theorem 2 is

equal to J (S1,S2)−J 2(S1,S2)
h .

Proof: Since the probability of match between two MinHash signatures for each per-
mutation Pk equals to J (S1, S2), thus #Matches between signature vectors of S1 and S2
follows a binomial distributionwith h trials (number of permutations) and p = J (S1, S2).
Thus its variance equals hp(1 − p). Therefore,

Var

[
#Matches between two signatures

h

]
= Var

[
#Matches between two signatures

]

h2

= hJ (S1, S2)(1 − J (S1, S2))

h2

= J (S1, S2)(1 − J (S1, S2))

h

To obtain the MinHash signatures of reads in a given dataset, we needO(NL) opera-
tions to form k-mer set of sequences, and O(hNL) operations to obtain MinHash signa-
tures of reads, where N is the number of reads, L is the average length of the sequences,
and h is the length of MinHash signatures.

Choosing the Hyper-parameters of the Locality Sensitive Hashing Algorithm
Hashing the reads using MinHash reduces the computational complexity of comparison
significantly, since comparing the MinHash signature of two given reads needs O(h),
while computing the edit distance of two reads requiresO

(
L2

)
operations (L can be varied

from 400 to 10k, while h can be selected as a constant number typically less than 100).
Still, comparing the MinHash signatures of all O

(
N 2

)
pairs of sequences is inefficient

for large-scale datasets consisting of millions of sequences. LSH algorithm copes with
this issue by dividing the h entries of the MinHash signature into b bands of size d
(h = bd). If two sequences are equal in all rows of at least one of the bands, they are
considered as a candidate similar pair. For the default hyper-parameters of I-CONVEX
(d = 1, b = 10, k = 15) the probability of considering two sequences as similar for
different values of their Jaccard similarity is depicted in Supplementary Figure 2. We
have selected the default values of hyper-parameters such that the probability of having
a false negative is small. However, this leads to a higher rate of false positives as well.
As we mentioned in Sect. 3, we validate the obtained candidate pairs by a designed
convolutional neural network to remove the false positive edges in our similarity graph.
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Supplementary Figure 2. The Probability of considering a pair of sequences as similar when d
= 1 and b = 10 for different values of Jaccard similarity of the pair.

Supplementary Note 4: Architecture of Convolutional Neural Network

To validate the similarity of candidate pair obtained from Locality Sensitive Hashing
Algorithm we trained a convolutional neural network with the training data described in
Results section. In this supplementary, we explain the architecture of the convolutional
neural network.

Architecture. To train the convolutional neural network that validates the similarity of
candidate pairs, for each pair in the generated training dataset (which can be similar
or dissimilar), both reads are one-hot encoded first (Each letter corresponds to a 4 × 1
array). Since the length of each read in the generated dataset is 400, we obtain two arrays
of size 4 × 400 after one-hot encoding of the reads. Then, we concatenate these two
arrays row-wise to obtain an 8 × 400 array. These 8 × 400 arrays are the input data to
the convolutional neural network with the layers depicted in Table 1.

Table 1. Structure of the convolutional neural network designed to validate the similarity of
candidate pairs.
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The final value after passing each 8 × 400 input from the convolutional neural
network is a scalar representing the predicted value. This scalar ranges between −1 and
1, representing the similarity of a given pair. To compute the loss, let yi and y

∧

i be the
predicted value, and the true label corresponding to the i-th candidate pair. We use �l2
loss defined as follows:

�l
(
y, y

∧) =
n∑

i=1

(
y
∧

i − yi
)2

To optimize the weight parameters in the network, an Adam optimizer is applied to
the �l2 loss.

Validation of Candidate Similar Pairs: To validate a given candidate similar pair by
the trained convolutional neural network, first each read is trimmed to a sequence with
length 400 (if the length of a read is less than400, we add enough base ‘A’ to the end of
the sequence to reach the length of400). Each one of the two trimmed reads is one-hot
encoded to get an array of size 4 × 400. By concatenating them, an array with the size
8 × 400 is obtained. Then, it will be passed through the convolutional neural network,
and it gives a number within the range of [−1,+1]. If the number is greater than0, we
consider them as a similar pair.

Supplementary Note 5: I-CONVEX Pipeline

To run I-CONVEX on a given genome reads dataset, first move the fasta file to the
Clustering folder and rename it to reads.fasta. Then execute the following commands
in order to obtain pre-clusters:

The result is a Cluster folder containing subfolders, each of which represents a pre-
cluster. Now, the following commands run the clustering via convexification module on
pre-clusters:

The last command stores the final collected transcripts on the final_transcripts.fasta
file.
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To run all parts of the algorithm step by step, or change the hyper-parameters such
as k, d , and b, follow the advanced version instructions on https://github.com/sinaBahar
louei/I-CONVEX.

Supplementary Figures: Distribution of Sequence Lengths
in Synthetic and Real Datasets

Supplementary Figure 3. Distribution of the Read Lengths and Transcript Abundances for the
simulated and real datasets.

https://github.com/sinaBaharlouei/I-CONVEX
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Supplementary Figure 4. Histograms of sequence length of four SIRV datasets.
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Supplementary Figure 5. Histograms of transcript abundances of four SIRV datasets.
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Abstract. Social media platforms such as Twitter, Facebook, and You-
Tube had proven to be valuable sources of information. These platforms
are a fruitful source of freely collectible public opinions. Due to the recent
outbreak of the monkeypox disease, and in light of the historical pan-
demic that affected the whole world, we examine the issue of understand-
ing the Italian opinion towards vaccinations of diseases that have appar-
ently disappeared. To address this issue, we study the flow of information
on the measles vaccine by looking at Twitter data. We discovered that
vaccine skeptics have a higher tweeting activity, and the hashtags used
by the three classes of users (pro-vaccine, anti-vaccine, and neutral) fall
into three different communities, corresponding to the groups identified
by opinion polarization towards the vaccine. By analyzing how hashtags
are shared in different communities, we show that communication exists
only in the neutral-opinion community.

Keywords: Measles · Sentiment analysis · Machine learning · Twitter

1 Introduction

Measles is an acute, viral, highly contagious airborne disease. It is spread by
coughing and sneezing, close personal contact, or direct contact with infected
nasal or throat secretions. It is one of the world’s most contagious diseases, and
as it is shown in [1], nine out of ten people who are not immune and share
living space with an infected person get the disease. The virus can indeed be
transmitted by an infected person from 4 day before the onset of the rash to
4 day after the rash erupts [2]. This extremely contagious disease should reach
an absorbing state, i.e. the disease should die out as it happened for smallpox,
but it is continuously provided with new susceptible individuals, i.e. not vacci-
nated children. For this reason, despite the availability of vaccines for more than
50 years, measles remains one of the leading causes of global child mortality [3].
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Between 2020 and 2021 a worldwide vaccination campaign took place to bring
an end to the SARS-CoV-2 (COVID-19) pandemic. The success of the campaign
relied heavily on the actual willingness of individuals to get vaccinated. In this
scenario, social media platforms such as Twitter, Facebook, and YouTube had
proven to be valuable sources of information [4]. Many studies were conducted to
understand the opinion, public awareness of COVID-19, and the characteristics
and the status of the outbreak [4,6]. On top of that, the identification in May
2022 of clusters of monkeypox cases in several non-endemic countries with no
direct travel links to an endemic area had thrown back into a state of alarm
the world. In December 2017, the Italian Ministry of Health reported about
5000 measles cases, and 88% of them were not vaccinated [7]. For this reason,
in December 2017 the (DDL 770) was approved and made 10 vaccines (that
included meases) mandatory for children. These numbers led to our interest in
understanding Italian opinion about vaccines. Having witnessed the impact of
social media during the COVID-19 pandemic and the recent cases of monkeypox
whose outbreak is preventable by also harnessing the power of social media, this
paper analyses the Italian opinion towards measles vaccination during 2017 out-
break that can be considered atypical and similar to what is currently occurring
with monkeypox. To this aim, we exploit the Twitter Streaming API to collect
Italian tweets’ opinions on the measles vaccine and characterize the study from
several prospective: (i) qualitative, analyzing the geo-localized tweets, (ii) quan-
titative, building a bipartite network and the corresponding projection networks,
and (iii) semantically, conducting a sentiment analysis through the use of deep
learning.

The remainder of this paper is organized as follows: in Sect. 2 we describe
works that make use of Twitter data. Section 3 focuses on data retrieval, prepro-
cessing, and sentiment analysis. In Sect. 4 we built a choropleth map expressing
vaccine opinion and the network. Our main results are presented in Sect. 5, while
in Sect. 6 the conclusions are drawn.

2 Related Background

Twitter has been propagating billions of personal or professional posts, sto-
ries, and debates since 2006. The circadian substructure characterizing Twitter
offers a constant affluent volume of data to examine the gregarious human sen-
timents and opinions. Enormous methods are offered to automatically extrap-
olate the public expressed thoughts, bringing Twitter data to be the focus of
many research papers addressing different topics [5,8–10]. We built our study
on four main research works, integrating and extending many of the pursued
techniques to address our analysis of Italian opinion towards vaccination. Marcec
et al. [6] conducted sentiment analysis using English-language tweets mentioning
AstraZeneca/Oxford, Pfizer/BioNTech, and Moderna vaccines from 1 December
2020 to 31 March 2021. The target was to implement a tool to track the senti-
ment regarding SARS-CoV-2 vaccines. The results show the sentiment regarding
the AstraZeneca/Oxford vaccine appears to be turning negative over time, this
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may boost hesitancy rates towards this specific vaccine. In [11], Cossard et al.,
examined the extent to which the vaccination debate on Twitter is conducive to
potential outreach to the vaccination hesitant. The study was centered on the
Italian debate on vaccination as a general topic. Their results show how vacci-
nation skeptics and advocates reside in their distinct echo chambers. Gargiulo
et al. [12] investigate the flow of information on vaccine administration on the
French-speaking realm of Twitter between 2016 and 2017. By analyzing the
retweet networks, the authors highlight how vaccine critics and defenders tend
to focus on different vaccines, leading to asymmetric behavior. As a consequence,
despite the presence of a large number of pro-vaccine accounts, vaccine-critical
accounts display greater craft and energy, using a wider variety of sources, and
a more coordinated set of hashtags, resulting in more effective in spreading their
vaccine-critical opinion.
An epidemiological overview of the Italian situation in 2017 is finally conducted
by Filia et al. [13], who addressed the topic by collecting measles cases since 2013
and emphasizing the impact per region of the 2017 Italian measles epidemic.

3 Methodology

Considering the historical events mentioned in Sect. 1, we aim at extracting
tweets from May to December 2017, with the goal of:

– mapping vaccine hesitancy through geo-located tweets;
– performing sentiment analysis based on a Deep Learning framework;
– performing a quantitative study of the interaction existing in a network com-

posed of users and posted hashtags.

This section consists of a description of the data collection and cleansing proce-
dure in Sects. 3.1, 3.2. Then, in Sect. 3.3 we introduce the carried out sentiment
analysis, the further preprocessing of the data specific for Natural Language
Processing (NLP) and the SentITA tool [14].

3.1 Data Retrieval

The Twitter API (Application Programming Interface) was accessed using the
Python programming language. Despite having numerous restrictions from the
SandBox Twitter Developer account, we have applied successive attempts to
access as many posts as possible. We chose the tweets extraction period based
on the historical events, i.e. the outbreak and the Lorenzin decree. We extracted
tweets from May to December 2017. The tweeting activity about measles vacci-
nation, after the first months of 2018, is indeed much less consistent. We queried
the Twitter Streaming API two times for each month (one for the first half and
the other for the second half of the month) extracting 200 tweets per month. The
query was performed multiple times with 28 pairs of Italian keywords (Table 1) to
extract only Italian tweets. To obtain a final tweet database of 10340 tweets, we
combined words/hashtags related to vaccinations with ones related to measles.
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Table 1. Examples of some combinations of words/hashtags used to query the Twitter
API.

1 2 3 4 5 6 7

#autismo/
#morbillo

autismo/
#morbillo

epidemia/
morbillo

morbillo/
#antivax

morbillo/
#provax

MPR/
vaccino

MPR/
epidemia

3.2 Data Preprocessing

After the initial cleaning, only the relevant information was kept: the tweet id,
the date and time of creation, the username, the location, the coordinates, the
mentions and retweets of other users, the hashtags, and the full text. Further
cleaning was carried out to store only the tweets with a non-empty location or
coordinates field. We converted to lowercase all the letters and removed mentions,
hashtags, retweets, URLs, newlines, and extra spaces obtaining a total of 6279
tweets. We also decided to remove emojis. When dealing with text analysis
indeed, two possible approaches can be used to deal with emojis: they can be
discarded, or they can be converted to text. In our work we observed many
meaningless emojis and for the sake of simplicity we decided to discard them,
but future analysis will include the second approach.
Based on all tweets with a non-empty coordinates field, we selected the ones with
Italian locations and applied a mapping operation to assign the corresponding
region name to each location. We converted all tweets’ location fields to lowercase
letters and removed punctuation, parentheses, and other symbols, such as “/”
and “@”. The mapping operation was performed manually, adding 100 cities to
a dictionary that maps cities’ names in the corresponding regions’ names. In this
coarse mapping, we lost data, but we assumed that the remaining ones (3420
tweets) were sufficient for the following analysis.

3.3 Sentiment Analysis

Sentiment analysis of Twitter data is helpful to analyze the information in the
tweets where opinions are highly unstructured, heterogeneous, and are either
positive or negative, or neutral in some cases. Sentiment analysis is a text mining
technique that automates the scouring of attitudes, opinions, and emotions from
text through Machine Learning (ML) and NLP. It involves classifying opinions
in text into categories like “positive” “negative” or “neutral”. Sentiment anal-
ysis is a complex task, as accurate processing is rather hard on texts such as
tweets, which are short, rich in abbreviations and intra-genre expressions, and
often syntactically ill-formed. Moreover, the State of the Art presents a limited
number of available tools for Italian sentiment analysis, thus making the goal
more challenging. To perform a sentiment analysis of the tweets we exploited the
SentITA tool [14], a ML framework that exploits a pre-trained neural network to
perform sentiment classification. The model was pre-trained on manually labeled
text extrapolated from the datasets available in the Evalita challenge [15]. The
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dataset over which the model was pre-trained is composed of 7500 positive,
7500 negative, and 88000 neutral sentences. The deep learning model is a Bidi-
rectional LSTM-CNN (detailed in Fig. 1) that operates at the word level. The
model receives in input a word embedding representation of the single words and
outputs two signals s1 and s2 ranging between 0 and 1, one for positive senti-
ment detection and one for negative sentiment detection. The two signals can
be triggered both by the same input sentence if this contains both positive and
negative sentiments (e.g. “The food is very good, but the location isn’t nice”).
The model can handle texts of lengths up to 35 words. To classify tweets in one
of the three classes, we considered the highest among the two output signals and
we compared its value with a threshold τ , as described in Eq. 1.

sentiment =

{
neutral, if max(s1, s2) < τ

max(s1, s2), otherwise
(1)

The sentiment expressed in the tweet is classified as neutral if both output
signals s1 ad s2 are below the threshold, negative if s1 is the maximum and
is above the threshold, and positive if s2 is the maximum and is above the
threshold. We empirically chose the threshold τ = 0.25 by observing the values
returned by the SentITA algorithm.

Fig. 1. Bidirectional LSTM-CNN neural network architecture.

4 Vaccine Opinion Elaboration Strategy

4.1 Vaccine Hesitancy Map

With the geolocalized tweets, we built a map of Italy to express how vaccine
hesitancy about measles is distributed qualitatively among Italian regions. For
each region, the overall opinion was computed using the formula in Eq. 2, which
is the difference between the number of positive and negative tweets, normalized
by the total number of tweets (neutral tweets included) in that region. The
geographic coordinates were computed by exploiting the Geopy library [16] with
the Nominatim geocoder [17], which identifies the coordinates of an address
looking at the OpenStreetMap dataset. A data frame was built with the name
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of the regions, the associated coordinates, and the region’s opinion about the
measles vaccine. The results were represented in a choropleth map, Fig. 2, where
the higher the color intensity, the more the opinion is polarized toward pro-
vaccine.

Fig. 2. Italian opinion polarization about the measles vaccine.

4.2 Network Creation

Focusing on users and hashtags, we decided to associate tweets’ opinions with
the user who posted the tweet and the list of hashtags contained in it. Before
the creation of the network, we did some preprocessing, converting the opinion
of the tweet to a number, assigning favorable (pro), contrary (con), and neutral
the values 1, −1 and 0 respectively. Furthermore, we also removed the tweets for
which the list of hashtags was empty. For each hashtag and user, we associated a
polarity measure that follows Eq. 2, which is the mean value between the number
of times a hashtag was in a favorable, contrary, or neutral tweet.

polarity =
(1) ∗ npositive + (−1) ∗ nnegative + (0) ∗ nneutral

nall
. (2)

With all this information we were able to create a bipartite. A bipartite network
has two sets of nodes, e.g. U and V. Nodes in the U-set connect directly only to
nodes in the V-set. Hence there are no direct U-U or V-V links. Usually, rather
than analysing the original bipartite graph, which is complex, performing the
analysis on the projections is a common practice. Projection U is obtained by
connecting two U-nodes if they link to the same V-node in the bipartite repre-
sentation. Projection V is obtained in the same way. We used as sets of nodes
hashtags and users. In this case, the link that connects two nodes is weighted
by the number of times a user uses a particular hashtag in a tweet. From the
bipartite composed of 1528 nodes and 3455 edges, we created the projection of
the two sets obtaining a network for the users and for the hashtags where the
weights are the number of shared neighbors.
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4.3 Network Analysis

Once the two networks were built, we proceeded with the network analysis.
Figure 3 gives a visual representation about the centrality of the hashtags - the
bigger the name the more central the hashtag. We determined the centrality of
a hashtag simply using the “most common” function of a Counter object. The
visual representation is obtained with Wordcloud library.

Fig. 3. Wordcloud representation of the most used hashtags in the Hashtags Projection
Network: the bigger the font, the higher the frequency of appearance.

We extracted some topological aspects of the network, e.g. the number of
nodes and edges, the diameter, and the density of the network. We identified
the number of communities, their interactions with each other and within them-
selves. Community detection was performed on Gephi tool [18], a visualization
and exploration open-source software which implements a community detection
algorithm optimizing a quality function called modularity. Despite its speed, this
method can produce different results. Therefore, we run it multiple times and
took the number of communities that appeared the most.

5 Experimental Results

5.1 Geographical Spread on Vaccine Opinion

The results after the sentiment analysis described in Sect. 3.3 are shown in Fig. 4.
The majority of tweets have a negative opinion (≈ 44%), and only a few

of them were classified as positive (≈ 17%). Although these results depend on
the threshold τ in Eq. 1 chosen for the final classification, they are consistent
with what we expected: anti-vaccine users have a higher tweeting activity with
respect to pro-vaccine users [11,12]. This yields the representation of the opinion
polarization in the Italian map in Fig. 2 to have an overall negative attitude.
Moreover, the results are highly biased due to an unbalance tweet count between
regions (see Table 2): there are some regions like Basilicata and Molise with only
2 and 1 tweet, respectively.

For this reason, we cannot state that the information on the map represents
the overall opinion of the inhabitants but we can deduce the opinion polarization
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Fig. 4. Tweet’s classification based on sentiment analysis.

Table 2. Number of tweets in each region and average opinion.

Lazio Lombardia Toscana Sicilia Piemonte Veneto Emilia
Romagna

Opinion −0.385 −0.371 −0.389 −0.31 −0.353 −0.346 −0.451

Tot. tweets 724 523 514 441 224 214 206

Campania Friuli
Venezia
Giulia

Puglia Liguria Trentino
Alto
Adige

Sardegna Umbria

Opinion −0.333 −0.202 −0.407 −0.442 −0.529 −0.313 −0.581

Tot. tweets 144 89 54 52 51 48 42

Marche Calabria Abruzzo Valle d’Aosta Basilicata Molise

Opinion −0.270 −0.478 −0.391 −0.429 −0.500 0.000

Tot. tweets 37 23 23 7 2 1

of each region. Furthermore, from the choropleth map, we cannot compare the
opinion among different regions because we don’t know the percentage of people
active on Twitter in 2017. Nevertheless, the opinion uncovered from the tweets
seems to be polarized toward negative opinions regarding the measles vaccine,
because in all regions the majority of tweets are classified as contrary or neutral,
proving that anti-vaccine users tweet more frequently.

5.2 Projection Networks

The downloaded tweets were modeled through a bipartite graph, as previously
mentioned in Sect. 4.2. The quantitative analysis of the Italian opinion was con-
ducted in parallel on the two projection networks, i.e. the Users Projection
Network and the Hashtag Projection Network. Both projection networks were
initially very connected, as expected. To obtain meaningful results, we studied
the distribution of the edges’ weights and filtered the networks according to
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Fig. 5. Distribution of the weights characterizing the edges.

the results displayed in Fig. 5. Figures 5a, 5b highlight that the majority of the
edges a weight w = 1. To find an optimal trade-off between discarding mean-
ingless edges and keeping as much information as possible, we chose a threshold
τw = 2 for the Users Projection Network and τw = 1 for the Hashtags Projection
Network.

Users Projection Network. The graph is composed, after the filtering oper-
ation, of 397 nodes with an average degree degu = 53.5. In the network, three
groups of users can be identified (Fig. 6a): (i) pro-vaccine users (yellow nodes),
(ii) anti-vaccine users (purple nodes), and (iii) users with a neutral opinion (pink
nodes). It appears from the graph that the majority of users posting the collected
tweets show a neutral or negative opinion towards the measles vaccine. Only
5.53% of users express a positive opinion in their tweets, confirming the initial
hypothesis reported also by Gargiulo et al. in their work [12]. It emerges indeed
that most of the people with negative sentiments towards vaccines are very active
on Twitter, while pro-vaccine users are less cohesive and post fewer tweets. These
results are confirmed also by the presence of hubs, identified through the PageR-
ank algorithm, expressly present in the anti-vaccine group.

Hashtag Projection Network. This projection network, depicted in Fig. 6b,
is composed of 2016 nodes with an average degree degh = 22.4. We computed a
density of 0.11, and classified the graph as “not fully connected”. The giant com-
ponent indeed has 204 nodes, while the isolated components carry the remain-
ing two nodes. This network allows deriving some interesting considerations
derived from the application of the PageRank algorithm and community detec-
tion. PageRank returned the most important hashtags in the graph, annotated
in Table 3 and clearly visible in Fig. 3. It is worth mentioning that “morbillo”,
“vaccini” and “vaccino”, the three hubs of this network, are mostly used with a
negative sentiment.
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Fig. 6. Gephi vizualization of the projection networks. The nodes are colored according
to the community they belong.

Table 3. Most important nodes identified through PageRank in the Hashtags projec-
tion Network.

1 2 3 4 5

Hashtags Morbillo Vaccini Vaccino Vaccini-
obbligatori

Novax

PageRank 0.098 0.084 0.038 0.031 0.030

6 7 8 9 10

Hashtags Freevax Iovaccino Liberta-
discelta

Mpr Noobbligo-
vaccinale

PageRank 0.028 0.026 0.024 0.023 0.022

The community detection algorithm returned three communities that inter-
estingly correspond to the groups identified by the sentiment toward vaccination.
We quantified this aspect by counting the number of pro-vaccine, anti-vaccine,
and neutral opinions belonging to each community, we observed from Fig. 7 that:
(i) community 0 (pink bars) gathers mostly neutral hashtags, community 1 (pur-
ple bars) is composed of many adverse hashtags, while community 2 (yellow bars)
gathers favorable hashtags.

We finally analyzed the communication between different nodes in the net-
work by (i) observing in Fig. 6b that edges (colored as the source node) are
connecting particular communities, and (ii) quantifying the phenomenon by com-
puting the percentage of edges going from one community to another. Figure 6b
highlights some patterns: the neutral community strongly exchanges edges within
itself (76%), and it is much less connected with the pro-vaccine community (16%)
and the anti-vaccine community (8%); the pro-vaccine community exchanges
edge within itself (45%) and with the neutral community (38%); the anti-vaccine
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Fig. 7. Sentiment distribution of the hashtags gathered per community in the Hashtags
Projection Network. (Color figure online)

community shows similar behavior to the pro-vaccine one, exchanging edges
within itself (44%) and with the neutral community (37%).

6 Conclusions

In this paper, we proposed a deep analysis of the Italian opinion towards the
measles vaccine, (i) to understand the potentiality of the information available
on Twitter, and (ii) to bring an overview of the opinions of Italians towards
vaccination. We performed a qualitative study, by exploiting sentiment analysis
on tweets, and focused on a regional overview of vaccination. More precisely, we
observed that all the regions are negatively polarized underling that there is a
prevalence of anti-vaccination tweets. Through a quantitative study of the pro-
jection networks, we observed that the anti-vax community tweets more than
the pro-vax community, as it’s also stated in [11,12]. Only a few approaches
address the Italian opinion about vaccination by performing sentiment analysis,
as most of the available APIs can be applied to a limited number of languages,
e.g. English, German and French. Therefore, to the best of our knowledge, this
is the first study that addresses Italian opinion on measles vaccination from a
different point of view, extending previous studies with sentiment analysis. We
plan to apply our analysis also to Covid19 and Monkeypox, that became world-
wide everyday hot topics. This will probably overcome some of the limitations we
encountered, e.g. lack of geolocalized tweets, lack of powerful tools for sentiment
analysis applied to Italian.
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The Workshop

Maintenance is a critical issue in the industrial context for preventing high costs or
injuries. Various industries are moving increasingly toward digitalization and collect-
ing “big data” to enable or improve their prediction accuracy. At the same time, the
emerging technologies of Industry 4.0 have empowered data production and exchange,
which has led to new concepts and methodologies exploitation of large datasets for
maintenance. The intensive research effort in data-driven predictive maintenance
(PdM) has produced encouraging outcomes. Therefore, the main objective of this
workshop series is to raise awareness of research trends and promote interdisciplinary
discussion in this field.

Data-driven PdM deals with big streaming data that include concept drift due to
both changing external conditions and normal wear of the equipment. It requires
combining multiple data sources, and the resulting datasets are often highly imbal-
anced. The knowledge about the systems is detailed, but in many scenarios there is a
large diversity in both model configurations and their usage, additionally complicated
by low data quality and high uncertainty in the labels. In particular, many recent
advancements in supervised and unsupervised machine learning, representation
learning, anomaly detection, visual analytics, and similar areas can be showcased in
this domain. Therefore, the research gap between machine learning and PdM has
recently increased.

This year’s workshop followed the success of the two previous editions, co-located
with ECML PKDD 2019 and ECML PKDD 2020. Each year, there was strong interest
in the workshop, as evidenced by the number of submitted papers, active participation
by many researchers and practitioners, and in-depth discussions following the pre-
sentations. The key part of the program in 2022 was eight presentations of accepted
manuscripts; those were selected using a double-blind peer-review process, with each
submission reviewed by at least three members of the Program Committee. The call for
papers, program, and detailed description can be found on the website: https://abifet.
wixsite.com/iotstream2022.

The organizers would like to thank the authors, keynote speaker, and Program
Committee members for their contributions to the workshop. We hope and believe that
the workshop has been a valuable resource for participants and contributed to identi-
fying new ideas, applications, and future research papers in IoT, data streams, and
predictive maintenance. The workshop provided a premier forum for sharing findings,
knowledge, insights, experience, and lessons learned from practical and theoretical
work in predictive maintenance from streams of data. The intrinsic interdisciplinary
nature of the workshop promoted the interaction between different competencies, thus
paving the way for an exciting and stimulating environment involving researchers and
practitioners.

https://abifet.wixsite.com/iotstream2022
https://abifet.wixsite.com/iotstream2022


Mykola Pechenizkiy, a full professor and chair of data mining at the Department of
Mathematics and Computer Science, TU Eindhoven, delivered the keynote talk on
“Foundations of Trustworthy Machine Learning on Data Streams”.

Trustworthy AI is broadly used as an umbrella term encompassing multiple aspects
of machine learning-based solutions, including robustness, reliability, safety, security,
scalability, and interpretability. Some aspects are highly important for adopting mostly
autonomous solutions and others for applications involving humans in the loop in
decision making. In his talk, Mykola used examples of both kinds of applications to
illustrate various research challenges and related trade-offs being addressed. He also
focused on the peculiarities of trustworthy AI in machine learning over evolving data
streams.

The Tutorial

Today, in many industries, various AI systems, often black-box ones, predict failures
based on analysing sensor data. They discover symptoms of imminent issues by
detecting anomalies and deviations from typical behavior, often with impressive
accuracy. However, PdM is part of a broader context. The goal is to identify the most
probable causes and act to solve problems before they escalate. In complex systems,
knowing that something is wrong (to detect an anomaly) is not enough; the key is to
understand its reasons and potential consequences and provide alternatives
(solutions/advice) to mitigate those consequences. However, this often requires com-
plex interactions among several actors in the industrial and decision-making processes.
Doing it fully automatically is unrealistic, despite recent impressive progress in AI. For
example, in wind power plants, a repair requires synchronization of inventory (avail-
ability of pieces to be replaced), logistics (finding a ship to reach the installation),
personnel management (availability schedule), weather predictions (suitability of
conditions to perform maintenance, such as for high towers in offshore farms), and
more. All these cannot be done by AI and require human expertise since the complete
relevant context cannot be formalized in sufficient detail.

Recent developments in the field based on different machine learning and artificial
intelligence methods are promising for fully- and semi-automated data-driven pattern
recognition and knowledge creation enabled by IoT streams. Explanations of the
models are necessary to create trust in prediction results for complex systems and non-
stationary environments.

The tutorial, which took place during the morning session, introduced current
trends and promising research directions within machine learning for PdM. This year,
the focus of the tutorial was on explainable predictive maintenance (XPM). We pre-
sented some of the state-of-the-art methodologies in explainable AI (XAI) relevant to
PdM problems. Further, we provided hands-on examples of applying XAI in
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benchmark datasets. We presented a discussion about future challenges and open issues
on this topic. Two case studies related to PdM challenges, namely a metro operation
and a steel factory, were presented hands-on during the tutorial.
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Abstract. Predictive Maintenance applications are increasingly com-
plex, with interactions between many components. Black-box models are
popular approaches due to their predictive accuracy and are based on
deep-learning techniques. This paper presents an architecture that uses
an online rule learning algorithm to explain when the black-box model
predicts rare events. The system can present global explanations that
model the black-box model and local explanations that describe why
the black-box model predicts a failure. We evaluate the proposed system
using four real-world public transport data sets, presenting illustrative
examples of explanations.

Keywords: Explainable AI · Rare events · Predictive maintenance

1 Introduction

Real-world predictive maintenance applications are increasingly complex, with
extensive interactions of many components. Data-driven predictive maintenance
(PdM) solutions are a trendy technique in this domain, and especially the black-
box models based on deep learning approaches show promising results in predic-
tive accuracy and capability of modeling complex systems. However, the deci-
sions made by these black-box models are often difficult for human experts to
understand and make the correct decisions. The complete repair plan and main-
tenance actions that must be performed based on the detected symptoms of dam-
age and wear often require complex reasoning and planning processes, involving
many actors, and balancing different priorities. It is not realistic to expect this
complete solution to be created automatically - there is too much context that
needs to be considered. Therefore, operators, technicians, and managers require
insights to understand what is happening, why, and how to react. Today’s pri-
marily black-box Machine Learning models do not provide these insights, nor
do they support experts in making maintenance decisions based on detection
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deviations. The effectiveness of the PdM system depends much more on the per-
tinence of the actions operators perform based on the triggered alarms than on
the accuracy of the alarms themselves.

Fault detection is one of the most critical components of predictive mainte-
nance. Nevertheless, predictive maintenance goes much behind predicting a fail-
ure. It is essential to understand the consequences and what will be the collateral
damages of the failure. A critical issue in predictive maintenance applications
is the design of the maintenance plan after a fault is detected or predicted. To
elaborate the recovery plan, it is important to know the causes of the problem
(root cause analysis), which component is affected, and the expected remain
useful life of the equipment.

The contribution of this work is an explanatory layer in a deep-learning-
based anomaly detection system in data-driven predictive maintenance. There
are several works discussing the problem of explainability of deep learning mod-
els, for example, [6,7,10,12]. To our best knowledge, none of the works focuses
on explaining deep-learning models for rare cases: the focus of this work.

In this work, we resort to real-world public transport area scenarios to
present a generic system to explain the anomalies detected by black-box mod-
els. An online deep-learning, specifically Long-Short Term Memory Autoencoder
(LSTM-AE), receives data reflecting the system’s current state in the proposed
architecture. It computes the reconstruction error as a function of the difference
between the input and output. If the reconstruction error exceeds a threshold,
we signal an alarm. In parallel, we learn regression rules that will explain the
outputs of the black-box model.

This paper is organized as follows. The following section briefly introduces the
Predictive Maintenance problem and the importance of obtaining explanations
for detected faults. We also refer to existing works in the field of Explainable
AI. Then, in Sect. 3, we present our case study on the public transport area.
We describe the data that we used in this work. Next, in Sect. 4 we introduce
our approach to obtain explanations from detected faults. In Sect. 5 we discuss
our results in the four data sets that compose our case study. We conclude in
Sect. 6, pointing out the generality of our approach to other similar scenarios
and further research directions.

2 Background and Related Work

Maintenance is the process that deals with the health of equipment and system
components to ensure their normal functioning under any circumstances. Over
the years, and due to technological advances, different maintenance strategies
have been developed. Nowadays, deep-learning techniques are quite popular,
mostly due to their performance [17]. In a well-known PdM story, a train went
into the workshop due to an alarm in the compressed air unit. They replace the
wrong part in the workshop visit, and the train is back in motion. A few hours
later, it was forced to return to the workshop with the same problem. This type
of problem is persistent in maintenance and reinforces the need to explain fault
alarms in an understandable way for everyone.
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Two popular general proposed methods for explainable AI are LIME [13] and
SHAP values [8]. None of these methods can be used in our context because we
work in an online scenario, requiring fast explanations.

In the state-of-the-art of machine learning literature, a small set of existing
interpretable models is recognized [6]: decision trees, regression rules, and linear
models. These models are considered easily understandable and interpretable for
humans. In [6] the authors differentiate between global and local explainability:

“A model may be completely interpretable, i.e., we are able to understand
the whole logic of a model and follow the entire reasoning leading to all
the different possible outcomes. In this case, we are speaking about global
interpretability. Instead, we indicate with local interpretability the situa-
tion in which it is possible to understand only the reasons for a specific
decision: only the single prediction/decision is interpretable.”

In our case, we use online regression rules able to generate global and local
interpretabilities!

3 Case Study on a Public Transport System

One of the approaches in data-driven predictive maintenance (PdM) is to learn
the normal operating condition of a system such that any significant deviation
from that operating condition could be spotted as a potential failure. One of
the methods to attain this is by learning LSTM-AE on the normal examples of
operation. The intuition is that if we give an abnormal example of operation,
the reconstruction error of the LSTM-AE will be very high. Those examples are
relevant from the PdM perspective and are, typically, rare.

The purpose of online anomaly detection and explanation for fault prediction
is to identify and describe the occurrence of defects in the operational units of the
system that result in unwanted or unacceptable behaviour of the whole system.
As reported, a single on-the-road breakdown substantially outweighs the cost of
a single unneeded component replacement. This work implements an anomaly
detection framework based on deep learning as a reliable and robust technique
that issues an alert whenever a sequence of abnormal data is detected. However,
it is no longer enough to have the best experimental accuracy in the anomaly
detection segment, and it is necessary to explain the obtained outputs to users
to increase their confidence. To this end, in parallel with anomaly detection, the
anomalies are explained based on rule learning algorithms.

In this work, a case study on the public transport system is investigated to
evaluate the proposed framework. The case study includes four datasets collected
from a fleet of Volvo city buses operated in traffic around a city on the west coast
of Sweden between 2011 and 2014. For each bus, onboard data were collected
from ten sensors, described in Table 1, where each sensor data with 1 Hz sampling
rate was recorded while the engine was running in the bus, typically more than
eight hours per day. We also have an off-board database containing Vehicle Ser-
vice Record (VSR) information for evaluation of anomaly detection method. The
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Table 1. Onboard sensors from Volvo city buses.

nr Description nr Description

1 Wet Tank Air Pressure 2 Longitud Acc

3 Engine Speed 4 Fuel Rate

5 Engine Load 6 Boost Pressure

7 Engine Air Inlet Pressure 8 Accelerator Pedal Position

9 Vehicle Speed 10 Brake Pedal Position

VSR database includes repair and maintenance services, date of service, mileage,
and unique part identifiers. In our case, the buses spent about 1.5 months per year
in workshops on average. It can be expected that a rapid and accurate diagnosis
of the part that needs repair can reduce the total downtime by 50 %.

The anomaly detection framework carries out data pre-processing, develops
a network to several aggregate features obtained from sensor readings, detects
abnormalities in the data stream that might be indicators of imminent faults, and
uses the identified normal data in the network retraining for updating parameters.
Finally, the anomaly explanation framework applies the features and anomaly
score of the model as input to generate the root cause of each anomaly.

4 From Fault Detection to Anomaly Explanation

Figure 1 presents the global architecture of our system. The figure details the
two layers of the system. The Detection layer is based on the reconstruction
error of the LSTM-AE network. It assumes that rare and high extreme values
of the reconstruction error (re) is a potential indicator of failures. The second
layer receives as independent variables (X) the input features of the LSTM-
AE network, and the dependent variable (y) is the corresponding reconstruction
error. We learn a transparent model that learns a mapping y = f(X). Both
layers run online and in parallel, which means that for each observation, based on
the reconstruction error, our system produces a classification regarding whether
it is faulty and inputs it to AMRules, an online rule learning algorithm. This
architecture allows two levels of explanations: i) Global level: the set of rules
learned that explains the conditions to observe high predicted values; and ii)
Local level: which rules are triggered for a particular input.

An essential characteristic of this problem is that failures are rare events. It
is expected that an LSTM-AE trained with normal operating conditions would
struggle to reconstruct the input when it receives an abnormal operating condi-
tion. Thus, the reconstructed error is expected to be higher for such cases.

Our goal is to obtain explanations focused on cases with high and extreme
reconstruction error because that can indicate a potential failure. This partic-
ularity of having a non-uniform preference across the target variable domain
and the focus being on scarcely represented values configures an Imbalanced
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Fig. 1. Global architecture of the online anomaly explanation system. The bottom
panel details the fault detection system, while the top panel details the explanation
system. Both systems run online and in parallel.

domain learning problem [15]. As reported in many related studies in the area [3],
standard machine learning approaches and evaluation metrics hinder the perfor-
mance in the most relevant cases. They thus are not suitable to address predic-
tive tasks from imbalanced domains. From the learning perspective, two main
approaches for tackling this type of task exist: data-level and algorithm-level.
This work resorted to data-level approaches applied to the rule learning algo-
rithm and used a specific error metric to cope with imbalanced domain learning.

In the following subsections, we first describe the online anomaly detection
and then explain the online rule learning algorithm, the applied sampling tech-
niques, and the used evaluation metric to properly assess the effectiveness of our
approach in an imbalanced data streams regression scenario [1].

4.1 Fault Detection Based on LSTM-AE

In the online fault detection framework, we use the normal data stream in a
predetermined long-time window for initial training of the LSTM-AE network
to capture the time series’ temporal characteristics. The reconstruction error,
the divergence between the input features and the reconstructed one, is applied
to update the model parameters and compute the anomaly score for each slid-
ing window. The root mean square of the reconstruction error RMSEre for the
training dataset is used to estimate a threshold value (thrre) through a boxplot
analysis to label data [16]. The boxplot is a consistent method to display the dis-
tribution of the dataset, which can be used to ignore extreme observations. Next,
the test data is employed to examine the network performance. If the RMSEre
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of a time window i is larger than the threshold (i − 1), then the window i is
considered an anomalous observation. Then, normal data detected is passed to
retrain the LSTM-AE model, and the threshold thrre is updated; the learning
procedure is repeated once a new test data set is available. Adaptive estima-
tion of the threshold can follow the new data distribution in that time window.
Finally, the output of the labeling step is inputted into a post-processing phase
to decrease the false alarm rates. To this end, a low pass filter is implemented to
remove the sudden variations and unwanted components in the network output.

4.2 The Adaptive Model Rules Algorithm

Decision rules are one of the most expressive and interpretable models for
machine learning [6]. The Adaptive Model Rules (AMRules) [4] was the
first stream rule learning algorithm for regression problems. In AMRules the
antecedent of a rule is a conjunction of conditions on the attribute values. The
consequent can be a constant (the mean of the target variable) or a linear com-
bination of the attributes. The set of rules learned by AMRules can be ordered
or unordered. They employ different prediction strategies to achieve ’optimal’
prediction. In the case of ordered rules, only the first rule that covers an exam-
ple is used to predict the target value. In the case of unordered rules, all rules
covering the example are used for prediction, and the final prediction is decided
by aggregating predictions using the mean.

Each rule in AMRules implements three prediction strategies: i) the mean of
the target attribute computed from the examples covered by the rule; ii) a linear
combination of the independent attributes; iii) an adaptive strategy that chooses
between the first two strategies, the one with the lower mean absolute error
(MAE) in the previous examples. In this case, the MAE is computed following a
fading factor strategy. We use the implementation of AMRules available in [11].

The standard AMRules algorithm learns rules to minimize the mean squared
error loss function. In the predictive maintenance context, the relevant cases are
failures, rare events characterized by large values of the reconstruction error. We
aim to apply AMRules to predict the obtained reconstruction error as the target
value from the original set of features. The most important cases that constitute
potential failures have high and extreme target values. We want our model to
focus on those cases, even though they are rare. The following section explains
two sampling strategies to learn from rare events.

4.3 Online Sampling Strategies for Extreme Values Cases

Few approaches to learning from imbalanced data streams discuss the task of
regression.

In this work, we use the approach described in [1], which resorts to Cheby-
shev’s inequality as a heuristic to disclose the type of incoming cases (i.e., fre-
quent or rare). It guarantees that in any probability distribution, ’nearly all’
values are close to the mean. More precisely, no more than 1

t2 of the distribu-
tion’s values can be more than t times standard deviations away from the mean.
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This property substantiates the fact that extreme values are rare. Although con-
servative, the inequality can be applied to completely arbitrary distributions
(unknown except for mean and variance).

Let Y be a random variable with finite expected value y and finite non-zero
variance σ2. Then, Chebyshev’s inequality states that for any real number t > 0,
we have:

Pr(|y − y| ≥ tσ) ≤ 1
t2

(1)

Only the case t > 1 is helpful in the above inequality. In cases t < 1, the right-
hand side is greater than one, and thus the statement will be “always true” as the
probability of any event cannot be greater than one. Another “always true” case
of inequality is when t = 1. In this case, the inequality changes to a statement
saying that the probability of something is less than or equal to one, which is
“always true”.

For t = |y−y|
σ and t > 1, we define frequency score of observation 〈x, y〉 as:

P (| y − y |≥ t) =
1(

|y−y|
σ

)2 (2)

The above definition states that the probability of observing y far from its
mean is small, and it decreases as we get farther away from the mean.

In an imbalanced data streams regression scenario, considering the mean of
target values of the examples in the data stream (y), examples with rare extreme
target values are more likely to occur far from the mean. In contrast, examples
with frequent target values are closer to the mean. So, given the mean and
variance of a random variable, Chebyshev’s inequality can indicate the degree of
the rarity of an observation. Its low and high values imply that the observation
is probably a frequent or a rare case, respectively.

Having equipped with the heuristic to discover if an example is rare or
frequent, the next step is to use such knowledge in training a regression
model. In [1], authors proposed ChebyUS and ChebyOS, two sampling meth-
ods described in detail next.

ChebyUS: Chebyshev-Based Under-Sampling. This is an under-sampling
method that only selects an incoming example for training the model if a ran-
domly generated number in [0, 1] is greater or equal to its Chebyshev’s prob-
ability. As more examples are received, the statistics (i.e., mean and variance)
computed incrementally [5] and, consequently, Chebyshev’s probability is more
stable and accurate. At the end of the model’s training phase, it is expected that
the model has been trained over approximately the same portion of frequent and
rare cases.
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ChebyOS: Chebyshev-Based Over-Sampling. Another proposed method
[1] to make a balanced data stream is to over-sample rare cases of the incoming
imbalanced data stream. Since those rare cases in data streams can be discovered
by their Chebyshev’s probability, they can be easily over-sampled by replication.
Examples that are not as far from the mean as the variance are probably frequent
cases. They contribute only once in the learner’s training process while the others
contribute more times1.

4.4 Evaluation

As stated before, errors over rare and relevant cases in imbalanced domains are
more costly, and this means that, in this setting, it is reasonable to assign a
higher weight to the errors of rare cases. With this aim, we use the relevance
function φ : Y → [0, 1] introduced in [14] as a weight function to each example’s
target in the Root Mean Square Error (RMSE). We use the proposed automatic
method [14,15] based on a boxplot to obtain the relevance function that specifies
values in the tail(s) of the distribution of target variable as regions of interest.

As an evaluation metric, we have used both the standard RMSE and the
RMSEφ - φ() weighted version of this function where the prediction error for
each example is multiplied by the relevance value assigned to that example, as
follows:

RMSEφ =

√√√√ 1
n

n∑
i=1

φ(yi) × (yi − ŷi)2, (3)

where yi, ŷi and φ(yi) refer to the true value, the predicted value and relevance
value for i-th example in the data set, respectively.

Figure 2 depicts the summary of values associated with a numeric vari-
able according to its distribution. In particular, based on the boxplot, we
have: the inverse of Chebyshev’s probability used in the under-sampling app-
roach (ChebyUs); the computed K value used in the over-sampling approach
(ChebyOs); and the relevance function φ() derived automatically from the box-
plot.

5 Experimental Results

We evaluated the architecture proposed in Fig. 1 where AMRules learns a rule
set in parallel with the LSTM-AE.

The components used to create the processing pipelines are available in
River2. In all the cases, we selected the same set of hyperparameters for AMRules
to provide a fair comparison. The interval between split attempts, nmin, was set

1 The implementations of ChebyOS and ChebyUS used are available in River [11].
2 https://riverml.xyz.

https://riverml.xyz
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Fig. 2. A) Box plot for the target variable B) Data-points relevance C) Inverse Cheby-
shev probability used by the under-sampling approach D) K-value used in the over-
sampling approach.

to 100. The split confidence parameter, δ, was set 0.05, and the selected pre-
diction strategy was the target mean. As a feature splitter algorithm, we relied
on the Truncated Extended Binary Search Tree (TE-BST) [9]. ADWIN [2] was
the selected concept-drift detector for the AMRules models. All the remain-
ing hyper-parameters were kept at their default values, as defined in River. All
the used scripts are also publicly available, with instructions to reproduce our
experiments.3 In our experiments, we used four datasets collected from Volvo
Buses. In the proposed incremental learning procedure, the LSTM-AE is ini-
tially trained by a large normal dataset (about one month) and a sliding time
window with a length of three minutes is selected to extract the features. Next,
test data with a length of at least three minutes (which may contain abnormal
data) is inputted into the LSTM-AE model to predict normal/abnormal data.
Previously, we examined many network designs for the LSTM-AE, which were
consistent with the experimental datasets. Finally, we chose the network topol-
ogy that leads to the best performance in the learning and prediction stages. The
tuned parameters of LSTM-AE are summarised in Table 2. Then, the detected
normal data can be used to retrain the model and whenever enough normal data
set is available the training procedure is repeated incrementally.

We start our discussion by reporting the measured RMSE and RMSEφ values
when predicting the reconstruction errors of the LSTM-AE. Next, we discuss the
global and local explanations obtained from our models.

3 https://anonymous.4open.science/r/XPdM-AMRules/README.md.

https://anonymous.4open.science/r/XPdM-AMRules/README.md
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Table 2. Parameters of the LSTM-AE.

Parameter Value

Nodes in input layer 160

Neurons in the 1st hidden layer 120

Neurons in the 2nd hidden layer 60

Neurons in the 3rd hidden layer 30

Neurons in the Bottleneck layer 15

Dropout 20%

Learning rate 1e-3

Batch size 100

Number of epochs 300

5.1 Feature Extraction

Feature extraction aims to discover or generate distinguishable vectors to charac-
terize the raw observation of the sensors. Feature extraction is of extreme impor-
tance in determining the accuracy of the model. The most appropriate features
should be chosen from a wide range of features, so that machine training leads
to precise decision-making. The feature selection transforms raw data into mean-
ingful information which leads to performing the classification task with the least
errors. Proper feature extraction can be challenging in data stream analysis due to
the observations’ dynamic and/or non-stationary nature. In our high-dimensional
datasets, there are some insignificant and unimportant characteristics in time-
series raw data whose contribution toward overfitting is almost great and the
training of network with this type of feature takes more time. Therefore, In this
work, we extracted statistical features, the mean, the standard deviation, the
skewness, the kurtosis, and the deciles, for each sensor in a sliding time window.
Note that the assumed normal distribution is divided into tenths in the computa-
tion of deciles. Thus, 13 statistical features are computed for each sensor through
the feature extraction step, i.e., the dimension of the matrix extracted from this
step is 10 × 13. Table 3 shows the statistical features in a sliding time window for
10 sensors. Finally, statistical features are fed into the LSTM-AE network and the
rule learning algorithm to detect and explain the suspicious activity.

5.2 Error Measurements

We report in Table 4 the RMSE and RMSEφ results measured while training
the different regressors. The threshold tφ = 0.8 was selected to the relevance of
RMSEφ, as previously reported in [1]. In other words, we are interested in the
predictive performance of values whose relevance is higher than 0.8. We used
sliding windows of size 1000 examples to compute the metrics.

As expected, the standard AMRules algorithm yielded the smallest values of
RMSE in comparison with the AMRules with ChebyUS and ChebyOS sampling
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Table 3. Statistical features extracted in a sliding time window with length n and per
sensor, with the following notation: metric.j, where metric is the statistical feature
and j= 1, . . . , 10 refers to each one of the sensors indicated in Table 1.

Feature Description Value

m.j mean x̄ = 1
n

∑n
k=1 xk

std.j Standard deviation σ =

√
∑n

k=1
(xk−x̄)2

n

Skew.j skewness skew =
∑n

k=1(xk−x̄)3

nσ3

Kurt.j kurtosis kurt =
∑n

k=1(xk−x̄)4

nσ4

Decil.j-r decile decil = r
10

(n + 1)th term, r = 1, . . . , 9

Quart.j-r quartil quartil = r
4
(n + 1)th term, r = 1, . . . , 3

Table 4. RMSE and RMSEφ, with tφ = 0.8, for four bus data sets, according to
standard AMRules, and ChebyUS and ChebyOS applied to AMRules. The bold values
are the best results by bus and error metric.

Bus RMSE RMSEφ (tφ = 0.8)

AMRules ChebyUS +
AMRules

ChebyOS +
AMRules

AMRules ChebyUS +
AMRules

ChebyOS +
AMRules

369 0.3048 1.4960 0.4171 0.8215 0.7894 1.2127

370 0.8497 3.2848 0.8015 2.4741 3.1210 2.3349

371 0.6126 2.9007 1.7285 1.5530 1.7574 4.5358

372 0.8796 2.2651 0.8341 2.5420 2.0597 2.3769

strategies. RMSE privileges models that produce outputs close to the mean
value of the target, which is often the desideratum for regression. However, in
imbalanced regression tasks, the extremes of the target variable distribution are
the focus. In our case, the highest values of reconstruction error are indications
of potential failures in the buses. When we look to RMSEφ, the gains of the
re-sampling strategies become clear. Although our main goal was not predictive
performance properly, models with smaller values of RMSEφ ought to produce
more reliable explanations for the failures.

In Table 5 we have the impacts of applying ChebyUS or ChebyOS strategies.
Even though these are reference values, as time and memory measurements may
slightly differ if the experiments are performed multiple times, we observe that we
have reduced the amount of memory consumed by the model for both strategies.
We get a negligible difference for the run time in the case of ChebyOS.
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Table 5. Impacts of re-sampling strategies when measured as relative changes in the
results obtained for the traditional AMRules Values smaller than one mean the re-
sampling strategy was more computationally efficient than AMRules, whereas values
over one imply AMRules was more the most efficient regressor.

Bus Relative Memory Relative Time

AMRules ChebyUS +
AMRules

ChebyOS +
AMRules

AMRules ChebyUS +
AMRules

ChebyOS +
AMRules

369 1.0 0.0210 0.4591 1.0 0.0163 0.8191

370 1.0 0.0186 0.5881 1.0 0.0174 1.0130

371 1.0 0.0679 0.5697 1.0 0.0318 0.9519

372 1.0 0.1018 0.3629 1.0 0.0511 0.9933

5.3 Global Explanations

In all the four datasets collected from Volvo Buses, AMRules without Cheby-
shev sampling generated large rule sets, with just a few rules predicting a large
reconstruction error.

In Table 6 we present the number of rules learned for each bus and the dif-
ferent configurations of AMRules. After processing the available data, the rules
we report in this section are the final rule sets. They reproduce the LSTM-AE
network behaviour and reflect when and why LSTM-AE predict high values.
They are a global explanation of the failures. Note that the threshold thrre is
obtained by applying the boxplot in RMSEre as explained in Sect. 4.1.

Table 6. The number of rules learned for each bus and for the different configurations
of AMRules. We indicate the percent of rules with consequent higher than thrre - the
reconstruction error threshold - around parenthesis.

Bus thrre AMRules ChebyUS +
AMRules

ChebyOS +
AMRules

369 1.1124 38 (21.05%) 2 (100.0%) 21 (33.33%)

370 1.2152 61 (22.95%) 1 (100.0%) 55 (43.54%)

371 1.1246 32 (09.38%) 2 (100.0%) 30 (40.00%)

372 1.1492 40 (17.50%) 4 (75.00%) 27 (55.56%)

Below, we present two sets of unordered rules obtained as global explanations
for two buses (Bus 371 and 372) using Chebyshev-based sampling with AMRules.

Global Explanation 1: Bus 371, ChebyUS+AMRules

Rule 0: IF Decil.6_6 <= 3.8 THEN 2.8473

Rule 1: IF Decil.7_8 > 0.6 THEN 11.0998
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Global Explanation 2: Bus 372, ChebyOS+AMRules

Rule 1: IF m.3 > 640.5 AND Decil.10_7 > 51.4 AND kurt.10 > 78.7 THEN 0.7616

Rule 5: IF Decil.10_1 > 12.9 THEN 40.7956

Rule 6: IF Decil.8_9 > 10.9 THEN 39.9092

Rule 10: IF m.4 > 24.5 AND m.1 > 8.7 AND m.1 <= 10.0 THEN 1.9024

Rule 11: IF Decil.3_1 > 66.4 AND m.4 > 25.9 THEN 0.9386

In both cases, some rules predict large values of the reconstruction error.
These rules predict potential failures and are pretty simple. In the first case,
with ChebyUS+AMRules, all rules are focused on large reconstruction errors.
While in the second case, ChebyOS+AMRules generates rules focused on failures
and normal cases.

5.4 Local Explanations

Local explanations refer to the rules that are triggered by a given an example.
When, for a specific example, the reconstruction error of the LSTM-AE exceeds
a threshold, the system outputs the rule or rules that were triggered by that
example. Below, we present a few examples.

Local Explanation 1: Bus 370, ChebyOS+AMRules, instance 86077, y=4.3597

Rule 5: IF Decil.10_4 <= 12.4 THEN 1.2838

Rule 33: IF kurt.1 > 1.0 THEN 0.7656

Rule 34: IF Decil.9_9 <= 8.2 THEN 1.4498

Rule 35: IF Decil.4_4 <= 9.7 THEN 0.8471

Rule 36: IF Decil.10_7 <= 46.4 THEN 0.9069

Rule 37: IF Decil.10_3 <= 4.2 THEN 17.2866

Final prediction: 3.7566

Local Explanation 2: Bus 372, ChebyUS+AMRules, instance 53813, y=4.3069

Rule 1: IF Decil.6_7 > 0.1 THEN 4.9463

Rule 2: IF Decil.5_3 > 0.2 THEN 2.8791

Final prediction: 3.9127

Local Explanation 3: Bus 372, AMRules, instance 26938, y = 48.0100

Rule 2: IF Skew.4 <= 1.9 and Decil.5_7 <= 693.3 and Quart.7_3 <= 10.9 THEN 1.2508

Rule 5: IF Decil.4_5 > 0.1 THEN 2.6736

Rule 7: IF Decil.9_6 <= 50.0 and m.1 <= 10.3 THEN 1.6335

Rule 11: IF Decil.9_6 <= 52.8 and m.1 <= 8.9 THEN 1.3419

Rule 12: IF Decil.4_7 <= 6.0 and m.1 <= 8.9 THEN 1.1995

Rule 15: IF Skew.10 > -0.2 and Decil.4_4 <= 8.0 THEN 0.8850

Rule 16: IF Decil.10_8 <= 15.3 THEN 0.8623

Final prediction: 1.4067
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Local Explanation 4: Bus 372, ChebyUS+AMRules, instance 26938, y =
48.0100

Rule 1: IF Decil.6_7 > 0.1 THEN 5.2619

Local Explanation 5: Bus 372, ChebyOS+AMRules, instance 26938, y =
48.0100

Rule 5: IF Decil.10_1 > 12.9 THEN 40.7956

Rule 6: IF Decil.8_9 > 10.9 THEN 39.8575

Rule 9: IF Decil.10_2 <= 597.9 THEN 1.9486

Final prediction: 27.5339

It is worth noting that, for Local Explanation 1 and Local Explanation 2, most
of the rules generated for high reconstruction errors have a single condition.

The three Local Explanations 3, 4 and 5 refer to the same instance of
the Bus 372 dataset with the approaches AMRules, ChebyUS+AMRules and
ChebyOS+AMRules, respectively. None of the approaches accurately predicted
the reconstruction error. The rules predict reconstruction errors distant from
the observed value. Rule 5 of Local Explanation 5, is the rule with the highest
output, but the other rules attenuate its influence.

In Local Explanation 4, ChebyUS+AMRules triggered only one out of the
four rules that compose its ruleset (cf. Table 6). Although not close to the actual
reconstruction error, its output is higher than the one predicted by the standard
AMRules and can indicate a failure.

Finally, the rules triggered by ChebyOS+AMRules in Local Explanation 5,
were the most accurate among the three regressors compared for this measure.
The predicted reconstruction error is much higher than the two previous models
yet far from the actual observed value. The two first triggered rules alone would
provide much better estimates. However, as we have chosen an unordered ruleset,
the output of Rule 9 decreased the overall prediction.

The choice of an ordered ruleset could be a solution for this specific case.
Alternatively, AMRules could use other strategies to aggregate predictions of
individual rules. A simple solution would be using the median value rather than
the arithmetic mean. As a more complex solution, one could create regression
models that take the rules’ predictions as inputs and output the final prediction.

The bus 372 dataset contains 89864 instances, from which only 37 have
reconstruction errors above 20. Such high reconstruction errors account for only
0.04117% of the available data. Still, ChebyUS + AMRules and mainly ChebyOS
+ AMRules could predict high reconstruction error values.

5.5 Discussion

The case study clearly illustrates that we can identify and interpret anomalies in
real-time. Overall, the rules that were obtained for the anomalies are compact,
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i.e. based on few conditions and, moreover, based on a restricted set of sensors.
For example, in these sets of rules, sensor 2 (Longitud Acc) never appeared while
others sensors appeared more often, such as sensors 4 (Fuel Rate), 9 (Vehicle
Speed) and 10 (Brake Pedal Position). Also, it is worth to note that the condi-
tions are mostly on statistical features that do not conform the average behav-
ior of the sensor, which could be indicated by the mean or standard deviation
statistics. In effect, most of the rules rely on statistical features that reflect the
deviation from the average, i.e. Kurt, Skew, Decil, which might be in line with
an indication of an evolving failure.

The proposed sampling strategy improves the learning of rules for rare cases.
Comparing the two sampling strategies, ChebyUS+AMRules produces a more
compact rule set without being as effective as ChebyOS+AMRules to predict
normal cases. Also, ChebyOS+AMRules might take longer to train in compari-
son with the standard AMRules. ChebyUS+AMRules is the fastest approach.

It is important to highlight that the two learning systems, the deep learn-
ing and the rule learning system, are complementary. The LSTM-AE works in
unsupervised mode using data from the normal behavior. The role of LSTM-AE
is to detect non-normal data. The rule learner works in supervised mode, where
the target is the reconstruction error of the LSTM-AE computed in real-time.
The role is to learn a function that maps the input features to the output of the
LSTM-AE. We cannot replace the LSTM-AE with the rule system because they
play different roles.

6 Conclusions

With the development of the internet of things, manufacturing technology, and
mass production, the methodology of maintenance scheduling and management
has become an important topic in the industry. In these contexts, there is an
urgent need for understanding and trust models and their results [10].

One of the common approaches taken in data-driven predictive maintenance
(PdM) is to learn the normal operating condition. Any large deviation from that
operating condition could be a potential failure. One of the methods to attain
this is by learning LSTM-AE on the normal examples of operation. The intuition
is that if we give an abnormal example of operation, the reconstruction error of
the LSTM-AE will be very high. Those examples are relevant from the PdM
perspective and are, typically, rare. This configures an imbalanced data stream
regression problem, where only very few studies exist.

In this paper, we propose an online system able to learn in parallel an LSTM-
AE trained to identify anomalies and a regression rules algorithm that models
the large values of the reconstruction error of LSTM-AE. The proposed model
generates global explanations in the form of a rule-set, and local explanations
for any example, as the rule that triggered that example. The main contribution
is that the rule learner algorithm is wrapped in a sampling schema, allowing for
selection the of relevant examples. This is the main reason why the proposed
framework works. We applied this methodology in a PdM scenario with data



398 R. P. Ribeiro et al.

from Volvo city buses. Results showed that we could learn rules for the high
values of the reconstruction error. These are the cases of interest.

The methodology we present is general enough to be applied to other online
imbalanced streaming scenarios that use black-box models to predict peaks or
bursts in events. We are exploring other scenarios outside PdM applications.
Finally, interpretability and explainability are human-computer-interface prob-
lems. While decision rules have a high degree of understandability for computer-
science people, we intend to translate the rules into a natural language to enlarge
the scope of people that understand the messages.
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Abstract. The demand for high-performance solutions for anomaly
detection and forecasting fault events is increasing in the industrial area.
The detection and forecasting faults from time-series data are one crit-
ical mission in the Internet of Things (IoT) data mining. The classical
fault detection approaches based on physical modelling are limited to
some measurable output variables. Accurate physical modelling of vehi-
cle dynamics requires substantial prior information about the system.
On the other hand, data-driven modelling techniques accurately repre-
sent the system’s dynamic from data collection. Experimental results on
large-scale data sets from Metro do Porto subsystems verify that our
method performs high-quality fault detection and forecasting solutions.
Also, health indicator obtained from the principal component analysis of
the forecasting solution is applied to predict the remaining useful life.

Keywords: Anomaly detection · Fault forecasting · System
identification · Predictive maintenance

1 Introduction

Recent developments in smart manufacturing, the Internet of things (IoT), and
big data have significantly increased, and with the growth of types of machinery,
these systems’ technical levels and complexity are enhanced. The system com-
plexity causes new maintenance challenges. Predictive maintenance is a collection
of operations that detect deviations in the physical state of equipment (signs of
failure) and alerts to perform necessary maintenance work, which maximizes
the equipment’s service life while minimizing the risk of failure and increasing
equipment availability and reliability. Failure in equipment results in unpredicted
downtime and causes expensive operational and maintenance costs. Early detec-
tion of anomalies makes it possible to acquire advanced knowledge of the sys-
tem’s health and provides advanced maintenance possibilities through effective
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 400–409, 2023.
https://doi.org/10.1007/978-3-031-23633-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23633-4_26&domain=pdf
http://orcid.org/0000-0003-3636-6146
http://orcid.org/0000-0001-7980-0972
http://orcid.org/0000-0002-6852-8077
http://orcid.org/0000-0003-3357-1195
https://doi.org/10.1007/978-3-031-23633-4_26


Fault Forecasting Using Data-Driven Modeling 401

real-time data. Thus, accurate and robust detection and prediction of anomalies
are essential for detecting potential failures in industrial systems and proactive
management of maintenance schedules. There are three anomaly detection meth-
ods, including model-based methods, knowledge-based methods, and data-driven
methods.

Fault forecast, which tries to predict faults before they cause failure, is con-
sequently crucial to ensuring the safety and reliability of equipment. Production
forecasting for predictive maintenance purposes results from analyzing various
data sets. Time-series data are the most common data type in the amount of
data collected in different areas of Industry 4.0. Time-series data are referred to
as observations sequentially recorded over time.

Time series sensor data from air compressor subsystems are used to detect
real-time variations in the system’s performance that may be symptomatic of a
future failure in a metro train. Thus sensor-based condition monitoring can be
necessary for the reliability of Metro train systems and improve safety. However,
there is a demand for effective and robust techniques to detect and predict such
variations in the time series data stream. In this paper, sensor data from some
sensors installed on the inputs and outputs of an air compressor are used for
anomaly detection and prediction. The focus is on unsupervised data-driven
methods based on system identification, and the idea is to mathematical model
system dynamics by using sensor data in normal operating conditions and assess
whether new observations belong to the model.

The system identification is developed in the automatic control community
[2]. Many accomplishments were achieved with linear system identification, and
data-driven modelling became an enabler in current design methodologies. Sys-
tem identification allows users to create mathematical models of a dynamic
system based on input and output signal measurements. In this case, a linear
dynamic model is fitted to the observed changes in quantities, and new obser-
vations then evaluate the model. The main difference with machine learning
(ML) techniques is that the system identification techniques deliver a paramet-
ric model. However, the ML prediction for a new input is supplied as a function of
the data points used for the model’s “training”. Moreover, while ML approaches
are more adaptable since they do not need the user to specify a structure, they
have additional restrictions (e.g. computational effort) [5]. We review the most
relevant and most recent works. Basseville et al. [1] address the problem of detect-
ing faults in a linear dynamical system. They describe and analyze new fault
detection algorithms based on recent stochastic subspace-based identification
methods and the local statistical approach to the design of detection algorithms.
Wei et al. [7] proposed a method for fault detection and isolation in three-bladed
wind turbines with a horizontal axis. They built a dynamic model based on the
closed-loop identification technique for a wind turbine. The fault detection issue
is investigated based on the residuals generated by dual Kalman filters. Yang
et al. [8] proposed a data-driven fault detection and isolation (FDI) method for
distributed homogeneous systems. They developed the fault detection method
according to the one-step identification of the stable kernel representation and
evaluated the proposed method by numerical examples.
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Fig. 1. System identification loop [4]

The main contribution of this work is the presentation of a state-space model
(SSM) of an air compressor system using a system identification methodol-
ogy based on the subspace identification method. Then SSM is applied to pro-
vide fault detection and forecasting. Also, the features of forecasted output are
inserted into PCA for health indicator computation and RUL prediction.

The remainder of the paper is structured as follows: Sect. 2 reviews the system
identification theory; next, the problem of dynamic modelling of compressor in
the metro do Porto case study is investigated in Sect. 3; Sect. 4 demonstrate
the experimental results for fault detection, forecasting, and RUL prediction.
Finally, Sect. 5 give a conclusion of the work.

2 System Identification Theory

The system identification technique, a parametric model, creates a model using
measured input-output data and is characterized by three main components:
the data, a set of candidate models, and an estimation method. Also, a valida-
tion technique, which establishes confidence in the estimated model, should be
included in these components [4]. It is critical to understand that no model can
be a perfect representation of the actual system under consideration. The system
identification loop is shown in Fig. 1. This model forecasts the system’s future
behaviour with new inputs. This section presents a highly organized, unified
picture of data-driven modelling by quickly presenting these four components.

The Data: This system identification model requires data at the beginning of
the process to build the model and at the end of the process to evaluate the
model.
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Model Structure: The identification of the data-driven model was accomplished
in two steps. A closed-form subspace identification approach was used to estab-
lish state-space models with different orders. The subspace system identification
approach has three main steps: diminish the effects of inputs on state sequence,
reconstruct the state sequence, and estimate the model. The subspace identifi-
cation method based on prediction error methods provides a good alternative
to non-linear optimization [3]. In the second step, the parameters of the state-
space models can be addressed as an optimization problem of a cost function. In
practice, several models are trained, and the identification procedure essentially
becomes the process of evaluating and selecting among the created models. The
quality of the resultant model is greatly influenced by the quality of the signals
to be monitored, the configuration of the input, and the collection of data using
proper sampling techniques.

The subspace method aims to approximate the system’s state sequence and
then uses this approximate state to estimate the system matrices; it uses the
numerical algorithms for subspace state-space system identification (N4SID),
canonical variable analysis methods, and the orthogonal decomposition method.
The SSM has the following structure:

ẋ(t) = f (x(t),u(t),w(t)), (1)
y(t) = g(x(t)) + r(t), (2)

where x, u, and y are system state, the control input, and the measured
output, respectively. f(·) is a nonlinear function that describes the system’s
dynamic behaviour, and g(·) is a nonlinear function of the state. w and r are
the input noise and measurement noise due to uncertainty in the sensors’ control
input and output measurements, respectively.

An estimation from the parameters of the model is archived by minimizing
the following cost function [6]:

J(θ) =
N∑

k=1

(y(t) − ŷ(t, θ))2, (3)

where y(tk) is the measured outputs vector at time tk and ŷ(tk, θ) is the vector
of corresponding simulated values at the same time instant, and θ used as a
vector of candidate parameters.

3 Dynamic Modelling of Compressor in Our Case Study

A comprehensive model of the compressor is needed to identify the compressor’s
dynamic. The model should also be precise and sufficient to forecast the system’s
future behaviour under operational situations. SSM as a first-order differential
equation is used to describe the dynamic behaviour of the compressor system.
In the modelling procedure, a large part of the input-output normal dataset
is applied for the model training and estimation of parameters. The subspace
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system identification technique estimates a linear time-varying SSM based on
a data-driven which is a linearization of Eqs. (1) and (2). The model has the
following structure:

x(k + 1) = Ax(k) + Bu(k) + Ke(k), (4)
y(k) = Cx(k) + Du(k) + e(k), (5)

where A is a state matrix and determines the system’s dynamics, B, C,
D, and K are input, output, feed-forward, and disturbance matrices. The state
variable x can be computed from input/output data, and they are not measured
during an experiment. We should mention that θ in equation (3) is A,B,C,D,K.

In our case study, the compressor is one of the main components in a train
in which several sensors are positioned on input and output to monitor system
behaviour. In this case, we considered two control inputs, “TP2”, “COMP” and
“TP3” as the output of the system. The real control inputs and real output are
inputted to system identification method (see Fig. 2). “TP2” sensor measures
the pressure on the compressor and “COMP” sensor distinguishes the different
working modes of the compressor: active (“1”) means the compressor is without
load or turned off when there is no admission of air on the compressor, and
inactive (“0”) means the compressor is under load. “TP3” sensor measures the
pressure generated at the pneumatic panel. Figure 3 shows control inputs and
measured output over time. To obtain the parameters of the model, a large
normal input and output dataset (similar to what is shown in Fig. 3) is applied
for training the model and also the number of required states to identify the
system (order of the model) is important to obtain a model that shows the right
dynamic of the system. An algebraic method using the input-output data is
performed to obtain the system’s order and then check whether this value is
sufficient to represent the system.

n = rank(YTU⊥) (6)

where n is the order of the system, Y and U⊥ are the output data matrix
and the orthogonal matrix from input data, respectively. In this case study, the
minimum order of the model is obtained “2”. The extracted second-order SSM
with estimated parameters for the compressor system is shown in Eqs. 7 and 8.

x(k + 1) =
[−0.006216 0.04267

0.03569 −0.3455

]
x(k) +

[ −1.77e − 5 4.302e − 5
−1.313e − 5 −0.001

]
u(k)

+
[−0.005799
−0.04791

]
e(k), (7)

y(k) =
[−179.6 −0.186

]
x(k) +

[
0
]
u(k) + e(k) (8)
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Fig. 3. The control inputs, a) TP2, b) COMP, the measured output, c) TP3.

In Fig. 4 the real output and estimated output (“TP3”) by the extracted
SSM is shown. In this comparison the fit percentage between real and estimated
value is about 80%. It is clear that the extracted model based on data driven
has high accuracy.

4 Experimental Results

In this section, we want to use the extracted SSM to detect and forecast faulty
data. In this way, some data with abnormal behaviour is inputted into the model
for the evaluation of SSM, and its response is investigated. Figure 5 shows a time
window with a length of one day that contains both normal and abnormal data.
At the beginning of the window, the estimated output by SSM follows actual
normal output and abnormal parts of data (high-frequency part and constant
part) can not follow by the extracted model (see blue curve).
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Fig. 4. Comparison of real output and estimated output.

Fig. 5. A time window contains normal and abnormal data for actual and estimated
output (“TP3”).

In the prediction phase, output and input measurements are applied to
project a future response. Figure 6 shows the 3600-step predicted response by the
SSM. The number of “step” represents the number of time samples between the
time point of each actual output measurement and the time point of the resulting
predicted response. The predicted output show prediction from an abnormality
in 3600-step (second) before being seen in the system output, and then we can
conclude the model can predict abnormal data at least one hour in advance.
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Fig. 6. 3600-step predicted response by the extracted SSM.

Fig. 7. Four-weeks ahead the forecasted output of compressor.

In the forecast phase, see Fig. 7, a prediction into the future output in a time
range beyond the last instant of measured data is performed. Among the most
widely used approaches for time series forecasting, we use the autoregressive
integrated moving average (ARIMA) model and past measured data and future
inputs are applied to the model. We can observe in the Figure the initial chunk
of data “Historical Data” used to train the model. The blue line is the actual
output, and the black line is the output of the ARIMA. Looking at the predicted
output, the ARIMA model highlights the abnormal behaviour and failure of the
APU with values out of range in normal operation mode.
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Fig. 8. Health Indicator over time, the pink rectangles are failure reports.

On the other hand, the prediction of the remaining useful life (RUL) of the
monitored compressor in the time domain through the extracted SSM model is
crucial. The statistical features (i.e., mean, standard deviation, skewness, kur-
tosis, and decile) obtained from the forecasted output are used to construct the
health indicator (HI) to indicate the degradation of the system components. HI is
used to predict the RUL of the compressor. In order to reduce the computational
time and determine the principal components of features, principal component
analysis (PCA) is performed. PCA applies the orthogonal linear transformation
on the features so that the data with the most considerable variance becomes
the first coordinate variance (principal component 1), the following most signif-
icant variance lies as the second coordinate (principal component 2), and so on.
As the first principal component (PC1) consists of 90% of the variability of the
forecasted output has been chosen as the HI. Figure 8 represents the preliminary
result of the obtained HI for about one month. The rectangles highlighted with
pink show failures reported by the maintenance workshop. It can be observed
from the zoomed window that HI exhibits a regular expected trend. If we con-
sider a threshold value over 5, It can be observed that the predicted HI trend
reaches the threshold value on the 11th of March at 18:30.

5 Conclusion

In this study, the dynamic of a compressor is modelled based on data-driven
system identification. Data-driven modelling approaches generate an accurate
description of the dynamics of the system from a set of data. Experimental out-
comes on large-scale data sets from Metro do Porto subsystems confirm that
the extracted model performs high-quality fault detection and forecasting. Also,
a health indicator was constructed in order to predict the RUL of the com-
pressor. Different statistical features were computed from the forecasted output
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obtained from the compressor system’s model. Principal component analysis
was performed, and the first principal components from the input feature were
considered a health indicator.
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Abstract. An online data-driven predictive maintenance approach for
railway switches using data logs obtained from the interlocking system of
the railway infrastructure is proposed in this paper. The proposed app-
roach is detailed described and consists of a two-phase process: anomaly
detection and remaining useful life prediction. The approach is applied
to and validated in a real case study, the Metro do Porto, from which
seven months of data is available. The approach has been revealed to
be satisfactory in detecting anomalies. The results open the possibilities
for further studies and validation with a more extensive dataset on the
remaining useful life prediction.

Keywords: Predictive maintenance · Remaining useful life · Online
learning · Log Data · Railway switches

1 Introduction

The infrastructure systems such as the railways’ infrastructures are vital ele-
ments in modern societies, driving social and economic development. Due to the
growing service demands, rapid deterioration provoked by extensive usage, and
little maintenance due to budget restrictions, the need for infrastructure mainte-
nance is continuously growing [2]. Moreover, the way decisions are taken in the
industry has been changing due to the increasing availability of data [18]. Due
to these reasons, there is a considerable need for modern tools to assist asset
managers in taking maintenance decisions effectively and efficiently.

In this context, predictive maintenance, which uses Machine Learning and
Artificial Intelligence tools for modelling system behaviour, discovering trends,
and predicting failures [6], emerges as a promising technology to increase the
safety and reliability of infrastructure systems. ML models can be used not only
for fault detection but also for fault prediction, such as the estimation of the
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Remaining Useful Life (RUL). RUL can be defined as the time left before the
machinery loses its operation ability [14]. Usually, techniques for estimating the
RUL are classified into physics-based, data-driven and hybrid approaches [14].
The physics-based approach requires the development of a behavioural model of
the failure mechanism, for example, through finite element analysis. However,
these models can be very expensive since they could require a great amount of
engineering time [17]. Data-driven models are usually based on historical data
and do not require an analytical model. Therefore, in this work, we follow a
data-driven approach.

Given the significant impacts of the malfunction of railway switches on rail-
way operation [2,11,15], this topic has been receiving increasing attention over
the last years. However, the PdM approaches for railway infrastructures found in
the literature usually require the installation of complementary sensory systems,
which turns the proposed strategies expensive and not saleable to the whole
network [2]. Moreover, it is not always obvious what and how should be instru-
mented. In many cases, expensive and time-consuming physics-based models are
necessary to decide what and how to instrument and interpret the obtained
results.

In this work, we propose a two-stage PdM approach that uses only data logs
available from the normal operation of the railway infrastructure, particularly
for railway switches. The first phase consists of an anomaly detector and the
second phase correspond to the Remaining Useful Life (RUL) prediction. We
apply the developed approach to a real case study, the Metro do Porto, from
which seven months of data is available.

The paper is organised as follows. An overview of the related work is provided
in Sect. 2. The third section describes the case study of Metro do Porto as well
as the proposed approach for anomaly detection and prediction of the RUL of
railway switches using log data. Section 4 presents the obtained experimental
results, and Sect. 5 the achieved conclusions and future works.

2 Related Work

Railway switches are considered critical track elements on the railway network
[2,12] since their failure significantly affects train operation and safety [1,3]. A
railway switch, also known as a point machine, allows different train routes by
driving the switchblade from one position to the opposite position [3].

Several data-driven approaches for anomaly detection in railway switches
have been proposed over the last few years. Many studies use traditional ML
for anomaly detection, such as Support Vector Machines and tree-based algo-
rithms. Asada et al. [3] proposed an approach for fault detection and diagnosis
of railway point machines using electrical active power collected from electrical
current and electrical voltage sensors. Wavelet transforms are used for feature
extraction and a support vector machine for classification. Vileiniskis et al. [19]
presented a methodology based on a one-class support vector machine with the
similarity measure of edit distance with real penalties, using measurements of
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current drawn by the motor of the railway point machine. Lee et al. [13] pro-
posed a sound analysis to detect and diagnose faults in railway point machines.
The Mel-frequency cepstral coefficients from audio signals are used as features,
and then a support vector machine is used for classification.

Deep learning has also been applied for anomaly detection in railway switches.
Bian et al. [4] proposed a degradation detection method based on self-organising
feature maps and support vector machines. The methodology was demonstrated
using a field-monitoring dataset of 52 days of power data. Alessi et al. [1]
studied the correlation between environment, field layout and the point sys-
tem behaviour. Moreover, a comparison between fleet-based and asset-based
approaches using Self-Organising Maps is presented. The used dataset entails
six months of data from 20-point systems and consists of the direct current
and voltage of the electric motor during a manoeuvre as well as contextual
information such as the direction of movement and the final position. Guo et al.
[10] proposed an unsupervised fault-detection method for railway turnouts using
current signals. The proposed fault-detection algorithm is based on deep autoen-
coders, addressing issues such as unlabelled field data, unknown multiple nodes,
and small nodes’ modelling.

Interpretable ML tools have also been explored in the context of failure detec-
tion of railway switches. Allah Bukhsh et al. [2] proposed a practical solution
approach for the efficient maintenance planning of railway switches using histor-
ical data of visual inspections, condition state and maintenance records. Tree-
based algorithms (decision trees, random forests, and gradient boosted trees) are
used for data classification and feature importance analysis, as well as a Local
Interpretable Model-Agnostic Explanations (LIME), are also presented.

With regards to RUL prediction, assuming an exponential model for the
degradation of point machines, Guclu et al. [9] used an Auto Regressive Moving
Average (ARMA) model to predict the future states of railway switches. The
ARMA model is trained on data obtained from force sensors installed on the
railway turnout system and the RUL is defined as the number of predictions
made from the current health state to the final state. Eker et al. [8] proposed
a Simple State Based Prognostic (SSBP) method to detect and forecast the
health condition of the electromechanical system of a railway switch. The method
consists of three phases: clustering, clustering evaluation and RUL prediction
using the transition probabilities between health states. Later, Eker et al. [7]
improved their work by proposing a new state-based prognostic method using
state duration information. Letot et al. [15] estimated the RUL of a railway
switch using Monte Carlo simulations on stochastic processes. Several random
degradation paths are simulated until they reach a given threshold value and
the reliability function is obtained from the collection of hitting times of the
threshold. The RUL is then computed from the reliability function. Bohm [5]
proposed an approach that uses Artificial Neural Networks and Support Vector
Machines to predict the RUL in the form of classes. The developed approach
uses measurement data of the electrical power consumption of switch engines.
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3 Case Study: Railway Network of Metro Do Porto

3.1 Problem Definition

This paper aims to develop a data-driven predictive maintenance system that
issues an alert whenever a railway switch system of a train network is predicted
to suffer a failure. These systems are critical components of the railway network.
In the case of failure, they can provoke a derailing of a train or deny the pos-
sibility of changing the train between lines to keep the regular train operation.
The railway switches can be described by an automaton containing three states:
“Point Moving”, “Points Left”, and “Points Right”. This study focuses on the
behaviour of several signal devices installed on the railway switches that indicate
a specific device’s current state. The experimental data set used in this paper was
collected from July to December 2021 are logged 1 Hz frequency by an embed-
ded device. We want to explore the observation and frequency of anomalous
sequences of states to identify imminent failures. Furthermore, we explore these
failure sequences to predict the remaining useful life of the equipment installed
on the railway tracks.

3.2 Proposed Approach

The proposed approach in this paper can be divided into five stages and its
flowchart is schematically represented in Fig. 1. The proposed approach should
generally apply to any railway switch from which data logs obtained from the
interlocking railway system are available. The first stage is the pre-processing
phase, where the dataset is pre-processed to encode all the possible states that
the railway switch machine can have. Since the behaviour of a railway switch
machine can be described as an automaton, the second stage of the approach is
verifying whether the sequence of states is admissible. If an unexpected sequence
takes place, that abnormal sequence is stored. In a third stage, using a sliding
window approach, the number of anomalous sequences inside the window is com-
puted. If the number of abnormal sequences inside the sliding window is more
significant than a pre-defined threshold, an alarm should be triggered (fourth
stage of the approach). Finally, in stage five of the approach, if an alarm was
triggered in stage four, the equipment’s Remaining Useful Life (RUL) is esti-
mated using a machine learning (ML) model. Note that all these stages can be
done online simultaneously with the data stream.

Anomaly Detection. One of the goals of this work is to propose an approach
for anomaly detection in railway switches using log data obtained from the inter-
locking railway system. As stated before, the railway switches can be described
as an automaton containing three states: “Point Moving”, “Points Left”, and
“Points Right” (see Fig. 2). These are the acceptable states, represented in white
in Fig. 2. The “Undefined Position” state is an abnormal state that occurs when
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Fig. 1. Flowchart of our approach.

the moving time is greater than 17 s, represented in grey in Fig. 2. Therefore,
the first stage of our approach is to encode the possible states as:

– 1 - “Point Moving”
– 2 - “Points Left”
– 3 - “Points Right”
– 4 - “Undefined Position”

Fig. 2. Set of movements of the point machine and possible reached states: normal
(white) and abnormal (grey). (Color figure online)
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The second stage of the approach consists in evaluating the sequence of states.
Normal sequences are sequences as “1213” or “1312”; that is, when there is a
“Points Moving” state followed by a “Points Left” or “Points Right” state, they
should be followed by a “Points Moving” state and then by “Points Right”
or “Points Left”, respectively. Examples of anomalous sequences are “1212”,
“1313”, “11” or “14”. Moreover, since a switch of the railroad usually takes up
to six seconds, when a movement takes more than that amount of time, it is
also considered an anomalous sequence/event. Then the number of abnormal
sequences in a sliding window is computed. An alarm is triggered if the number
of anomalous sequences in the window exceeds a predetermined threshold. This
procedure is schematically illustrated in Phase 1 of Fig. 3.

Fig. 3. Schematic diagram of the two phases that compose our approach.

Remaining Useful Life (RUL). After an anomaly is detected, the Remaining
Useful Life (RUL) is predicted using a machine learning (ML) model, as depicted
in phase 2 of the flowchart of Fig. 3. For that purpose, a pipeline with three com-
ponents is trained on a historical dataset of anomalies. The components of the
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pipeline are a min-max scaler, a feature selector and an ML model. As a feature
selector, we used SelectFromModel available on Scikit-Learn [16] with a random
forest being the features selected based on the feature importances. Regarding
the ML model, the performance of four algorithms is evaluated with regard to
the regression task. The hyperparameters are set using a grid search procedure
with a time-based cross-validation approach using the history of each anomaly
as a fold (see Fig. 4) optimised for the Exponential Transformed Accuracy. The
algorithms and their respective search space are:

– Feature Selector:
• feature importance threshold: [0.025, 0.05, 0.075, 0.1]

– ML algorithms:
• Linear Regression:

* No search performed.
• Decision Tree Regressor:

* max depth: [3, 5, 7, 10]
* min samples split: [10, 5, 2]
* min samples leaf: [3, 4, 11, 20]

• Random Forest Regressor:
* number of estimators: [50, 100, 150, 200, 250, 500, 1000]
* max depth: [3, 5, 7, 10]
* min samples split: [10, 5, 2]
* min samples leaf: [3, 4, 11, 20]

• XGB regressor:
* number of estimators: [50, 100, 150, 200, 250, 500, 1000]

The remaining hyperparameters are the ones defined by default in the Scikit-
learn python package [16].

The ML pipeline is trained in the dataset with the following 20 features:

– 6 bins used for anomaly detection;
– sum of the 6 bins;
– time since last anomaly;
– number of movements since last anomaly;
– number of movements in the last hour, 2 h, 3 h, 6 h, 12 h, 24 h, 2 days, 4 days,

7 days, 14 days and 30 days.

An incremental approach is followed for the estimation of the RUL. More
specifically, we use the previous anomalies to train an ML pipeline and when a
new anomaly is triggered by the anomaly detector, the RUL is estimated using
the previously trained ML pipeline. After the anomaly, the process is restarted.
That is, the ML pipeline is retrained using data from all past anomalies and
when a new alarm is triggered, the RUL is predicted using the ML pipeline.
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Fig. 4. Time-based cross-validation. In blue, anomalies are used for training; in yellow,
the anomalies are used for validation. (Color figure online)

4 Experimental Evaluation

4.1 Data Description

The experimental dataset used in this work was collected from June to December
2021, and it consists of a log dataset with the following attributes:

– Time - timestamp of the log entry.
– Site - Geographical localization of the railway switch.
– Object - The code name of the railway switch.
– EventText - Description of the occurrence that took place.

The dataset comprises logs from 154 railway switches distributed across six
Metro do Porto’s railway network lines. The railway switch with the lower num-
ber of logs has 56 logs, and the railway switch with the higher number of logs
has 93424 entries. The median number of logs is 3046.5, and the first and third
quartiles are 401 and 24433 logs.

4.2 Evaluation of the Anomaly Detection Approach

Figure 5 represents examples of alarms which are considered True Positive (TP),
False Positive (FP) and False Positive * (FP*). An Alarm is considered a TP if
it occurs up to 60 min before the anomaly (ground truth). If the alarm occurs
within 10 min after the anomaly (ground truth), it is considered an FP*. The
FP* is not used to compute metrics such as precision or recall. In other words,
these alarms do not count as FP. However, if an anomaly (ground truth) does
not have an alarm in the TP zone, it is still considered as a False Negative (FN)
even if there is an alarm in the FP* zone. If the alarm occurs outside these two
time windows before and after the anomaly (ground truth), it is considered an
FP. If there is not an alarm in the TP zone, it is considered a FN. It should also
be noted that the anomalies (ground truth) are not presented in the dataset,
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Fig. 5. Schematic representation of what is considered a True Positive, a False Positive
and a False Positive*.

but it was provided by the asset manager and refers to interventions that had
to take place on the railway switch machines.

In Table 1 are presented the anomalies that took place in the machine
AGC463 during the period analyzed. In the same Table, one can also notice
that all the anomalies were detected and the delay in time that those anoma-
lies were detected. For example, a delay of –29.45 min was obtained for the
first anomaly, meaning that the anomaly was flagged by the proposed approach
29.45 min before it happened. In the same way, the second anomaly listed in
Table 1 was detected with a delay of 2.75 min, meaning that that anomaly was
not detected in time. Therefore, for this anomaly there is one FP* and one FN.

Table 1. Anomalies in machine AGC463 and delays in the detection of them by the
proposed approach.

Timestamp (ground truth) Detected Timestamp Detected Delay (minutes)

06-07-2021 22:50:00 True 06-07-2021 22:20:33 –29.45

07-07-2021 23:47:00 False 07-07-2021 23:49:45 2.75

12-07-2021 07:53:00 True 12-07-2021 07:18:06 –34.9

13-07-2021 06:14:00 True 13-07-2021 06:13:34 –0.43

06-10-2021 15:04:00 False 06-10-2021 15:04:47 0.78

06-10-2021 17:25:00 True 06-10-2021 17:03:17 –21.72

In order to evaluate the proposed anomaly detection approach, the metrics
Precision, Recall, and F1-score are used:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 × Precision × Recall

Precision + Recall
(3)



An Online Data-Driven Predictive Maintenance 419

In Table 2 are summarised the obtained metrics for all the railway switches
machines that had anomalies over the analysed period.One can notice that the per-
formance of the approach can vary a lot with the machine. In general, there are few
FN. However, regarding the FP, the performance is not uniform for all machines.
Machines such as AGC458 and AGC459 have a high number of FP. If all machines
are considered, a precision of 0.25 and a recall of 0.792 were obtained. Without
consideration of machines AGC458 and AGC459, there is a slight improvement in
precision and F1-score. Even though, further sensitivity analysis to the hyperpa-
rameters is envisaged in order to improve the obtained results.

Table 2. Obtained metrics for the considered machines with anomalies.

Machine TP FP FN FP* Precison Recall F1

AGC463 4 2 2 2 0.667 0.667 0.667

AGE405 2 1 0 0 0.667 1.000 0.800

AGS414 0 6 2 2 0.000 0.000 NaN

AGS417 3 4 0 0 0.429 1.000 0.600

AGS418 3 4 0 0 0.429 1.000 0.600

AGP401 0 1 1 1 0.000 0.000 NaN

AGS402 2 1 0 0 0.667 1.000 0.800

AGS401 2 1 0 0 0.667 1.000 0.800

AGC458 1 15 0 0 0.062 1.000 0.118

AGC459 1 15 0 0 0.062 1.000 0.118

AGC462 1 7 0 0 0.125 1.000 0.222

All 19 57 5 5 0.250 0.792 0.380

All \ {AGC458,AGC459} 17 27 5 5 0.386 0.773 0.515

4.3 Evaluation of Remaining Useful Life (RUL) Prediction
Approach

In this section, the RUL prediction results for the machine AGC463 are pre-
sented. The first 3 anomalies were used for training the first ML pipeline.
Therefore, the hyperparameters were defined by means of a grid search using
time-based cross-validation. For instance, in the first pipeline, two splits were
used: split one with anomaly 1 for training and anomaly 2 for validation; split
two, with anomalies 1 and 2 for training and anomaly 3 for validation (see
Fig. 4). As objective loss, the Exponential Transformed Accuracy 1 (ETA1) was
used (Eq. 4). Compared to other loss functions such as root mean square error
(RMSE), ETA1 has the advantage of having different hazard severity for under
and over-estimation of RUL. In other words, an over-estimation of RUL will be
more penalised than an under-estimation of RUL.

ETA1 =

{
exp(−ER

13 ) − 1, if ER < 0
exp(ER

10 ) − 1, if ER ≥ 0
,ER = ŷ − y (4)
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Table 3 and Fig. 6 present the true RUL and the predicted RUL for all the
anomalies triggered by the anomaly detector of phase 1 of the approach proposed
in this work, including the false positives such as the one with the alarm with
the timestamp 2021-09-22 18:34:27 (see Table 3). With exception of the alarm
number 5, the obtained RUL predictions for all the alarms are poor. This may be
due to several reasons. Since the used dataset is small, the available anomalies
could have different sources and causes. Therefore, the obtained poor results
might be to a lack of representation of all possible types of anomalies in the
training dataset. The fact that the last anomaly has the best results in terms of
the quality of the predictions seems to agree with this. However, further studies
with more data for this machine and/or using data from anomalies of other
machines should be considered to re-evaluate the developed approach.

Table 3. RUL and predicted RUL (in minutes) for each of the alarms triggered by the
anomaly detector.

Alarm no Timestamp Type RUL (min) RUL prediction (min)

1 2021-07-13 06:13:34 TP 0.43 2.08

2 2021-09-06 16:59:11 FP 30.00 (inf) 3.18

3 2021-09-22 18:34:27 FP 30.00 (inf) 3.07

4 2021-10-06 15:04:47 FP* 0.00 3.05

5 2021-10-06 17:03:17 TP 21.72 17.52

Fig. 6. Obtained results for Remaining Useful Life (RUL) prediction.
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5 Conclusions

This work presented an approach for predictive maintenance of railway switches.
The proposed approach was applied to a real case study, the Metro do Porto,
from which seven months of log data obtained from the interlocking system is
available. The proposed approach consists of a two-phased methodology, where
the first stage consists of an anomaly detector and the second stage consists of
the prediction of RUL after an anomaly is triggered. The proposed approach
works in an online manner.

The results obtained for the anomaly detector (phase 1) were generally satis-
factory. However, the algorithm’s performance is not uniform for all the machines
considered. There are machines with a good performance and others where a high
rate of False Positive was obtained. This may be because different machines have
different usage histories, are subject to different environmental conditions, and
therefore have other root causes for the anomaly. Regarding the results obtained
for the prediction of the RUL (phase 2), only preliminary results were obtained.
However, it should be pointed out that a small data set is available and where
it is not guaranteed that all anomalies have the same type of root cause.

As further developments, we intend to do a sensitivity analysis of the different
hyperparameters of the proposed approach as well as to apply the proposed
approach to more data when available.
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Abstract. Recently and due to the advances in sensor technology and
Internet-of-Things, the operation of machinery can be monitored, using
a higher number of sources and modalities. In this study, we demonstrate
that Multi-Modal Translation is capable of transferring knowledge from
a modality with higher level of applicability (more usefulness to solve an
specific task) but lower level of accessibility (how easy and affordable it
is to collect information from this modality) to another one with higher
level of accessibility but lower level of applicability. Unlike the fusion of
multiple modalities which requires all of the modalities to be available
during the deployment stage, our proposed method depends only on the
more accessible one; which results in the reduction of the costs regarding
instrumentation equipment. The presented case study demonstrates that
by the employment of the proposed method we are capable of replacing
five acceleration sensors with three current sensors, while the classifica-
tion accuracy is also increased by more than 1%.

Keywords: Induction motor · Broken rotor bar · Fault diagnosis ·
Predictive maintenance · Contrastive pre-training · Multi-modal latent
translation

1 Introduction

Induction motors, mainly due to their affordable operational and maintenance
costs alongside their reliability, are the most frequently used type of motors for
industrial use cases [21]. The significance of their use in comparison to other
equipment can be better understood by their share in energy consumption; they
are estimated to consume up to 68% of the total energy in industrial sector,
worldwide [2]. Therefore, optimizing the uptime of induction motors is of vital
importance. Various faults can be expected to occur over the lifetime of this
type of machinery. In particular, Broken Rotor Bar (BRB) problem – which
is a partial crack, or a complete breakage, of the rotor bar – is categorized as
one of the major faults of rotors [9]. Such an occurrence brings up different
consequences, from increased power consumption [14] to unbalanced current in
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remaining rotor bars [9]. BRB can be detected by monitoring and analyzing a
wide range of physical properties, with motor current and machinery vibrations
considered to be among the most effective ones [7].

In recent years, enabled by the developments in the field of Internet-of-Things
(IoT), we have witnessed an exponential growth in the amount of information
that is being collected [18]. It has transformed the predictive maintenance (PdM)
field, since the IoT is now the tool to collect, process and distribute large amounts
of streaming data. The growth in the available information is not limited to the
volume of data, but it also includes the variety of information being collected,
in terms of different sources and sensor types [13,18].

On the one hand, employing more modalities to solve any given problem is
likely to improve the performance due to the inherent increase in the amount
of available information. However, it is not always cost efficient, as the multi-
source data is likely to include notable level of redundancy, potentially making
the investment into additional equipment questionable. It has been shown that
fusion of the data from different sources is not always helpful and extraction
of high level features from key sources is often more important [18]. Moreover,
multiple modalities are likely to vary from both accessibility (how easy it is
to collect an arbitrary modality) and applicability (how useful this modality
is to implement the in-hand task) point of view; therefore it can be logical to
transfer knowledge from more applicable modality to more accessible modality
to optimize the accessibility-applicability trade-off.

The contribution of this paper is an extension of our previous study [23],
where we have compared vibrations against phase currents for BRB detection, and
demonstrated that the former offer higher level of classification accuracy. Unfortu-
nately, due to higher price and stricter requirements of proper sensors installation,
vibrations is a less accessible modality in production environments. Building on
these results, in this paper we demonstrate the possibility of employing modal-
ity embedding translation techniques to transfer knowledge from source (vibra-
tions) to target (currents) modality in fault diagnosis case studies. We establish
the effectiveness of this approach by showing that transferring the knowledge from
vibrations to currents leads to increase in BRB detection accuracy.

Remaining of this paper is organized as follow: in Sect. 2, a number of previous
studies preserving similarities to the present study are discussed. Afterwards,
in Sect. 3, we introduce the proposed methods used in this study in details.
Consecutively, in Sect. 4, experimental setups to evaluate the effectiveness of the
proposed method is reported. Finally, yet importantly in Sect. 5 results from
Sect. 4 is discussed and conclusions of this study is provided.

2 Related Works

2.1 Intelligent BRB Detection

Application of intelligent methods for detection and severity assessment of BRB
problem have been studied in depth. For example, in [3], Empirical Mode Decom-
position combined with an Adaptive Linear Network, alongside Feed Forward
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Neural Network are employed to diagnose various types of defects in motor
(including the BRB problem) based on motor current signal. Similarly, in [20],
Wavelet Packet Decomposition is used to extract highly abstract set of features
from stator current signals. The extracted feature set is next provided to a Multi-
Layered Perceptron to classify the number of broken rotor bars in the induction
motor. Besides stator current, machinery vibrations is also a great source of
information for intelligent BRB detection. In [17], Sparse Representation is uti-
lized to extract features from vibrations signals and these features are then used
to evaluate the machinery health state, from BRB problem point of view. Like-
wise, in [19] the feature set extracted by Wavelet Discrete Transform is employed
alongside K-Nearest Neighbors to not only detect complete BRB problem, but
also to classify the severity of partial BRB. The methodology presented in that
study is applicable to different levels of loading condition. Moreover, they had
also considered the noise robustness of the proposed method.

Similar to the referenced studies, in this study we employ frequency domain
signals of both vibrations three-phase currents to diagnose a squirrel cage induc-
tion motor, according to BRB problem.

2.2 Contrastive Representation Learning

When it comes to supervised learning of deep classification networks, cross-
entropy loss is the most frequently used loss function [10]; alternatively, we may
consider extraction of a feature set with optimum separability of classes as the
objective of a learning process. A set of strategies known as Contrastive Repre-
sentation Learning (CRL) are concerned with the construction of feature space,
where different classes are sufficiently separable. CRL can be defined as learn-
ing by comparing the data [12]. Taking advantage of CRL strategies, one can
be able to unlock higher level of classification accuracy, when compared with
conventional baselines. For example, in [23], one step CRL-based pre-training
turned out to be noticeably more effective for BRB classification. Moreover,
the application of CRL-based pre-training is not limited to only classification
tasks; in [15] contrastive pre-training is employed to learn de-noised sequence
representations in both language and language-vision domains, based on self-
supervised approaches. Similarly in [26], contrastive pre-training is utilized for
event extraction in an unsupervised manner.

In our previous work [23], we showed that the application of CRL-based pre-
training is an effective approach to overcome loading variation problem; there-
fore, in the presented work we also use this technique.

2.3 Multi-source Fault Diagnosis

With the advances in IoT and sensors technology, information from more diverse
sources is available. This has resulted in the application of Multi-Modal, or
Multi-Source, techniques to PdM use cases. For instance, in [25], the traditional
fusion of Multi-Source information is replaced by considering multiple sensors
as different channels of the input fed to a Convolutional Neural Network. This
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network is used to diagnose bearing faults, given time-domain vibration signals
collected from three different locations. Moreover, in [1] a novel Hybrid Deep
Neural Network is used to firstly extract two sets of features, temporal and spa-
tial, respectively using Long Short Term Memory (LSTM) and Convolutional
Neural Network (CNN) branches; subsequently, a fully-connected network is
employed to fusion these two sets of features. The proposed architecture is used
for remaining useful life estimation problem. Although fusion is beneficial in
most cases, however, it is not always the best approach to take; mainly because
of redundancy in multi-source datasets, or the added noise that comes from addi-
tional sensors. Therefore, a set of techniques is concerned with the maximization
of the similarity over the representations derived from different modalities, or
sources. As an example, in [16] a Deep Coupling Autoencoder is used to derive
a joint representation from vibration and acoustic emission signals to capture
the correlation between these two different modalities. The referenced method-
ology is shown to provide superior performance in comparison with traditional
approaches, in bearing and gearbox fault diagnosis case studies.

Multi-Modal Translation, defined as the task to transfer or translate knowl-
edge from a source modality to a target one [22], enables one to learn a mapping
from a source modality to a target one. Multi-Modal Translation includes vari-
ety of applications, such as Image Captioning [8] (generation of a textual rep-
resentation from an image) and Multi-Modal Speech synthesis [22] (generating
audio given its textual representation). It is worth mentioning that Multi-Modal
translation where the target modality is high-dimensional can get extremely chal-
lenging; one way to respond to this challenge is translating to a low-dimensional
representation of the target modality containing higher level of semantic informa-
tion in comparison with the input belonging to the source modality [27]. Taking
this approach also saves the need to re-learn the latent space representation from
its reconstructed version; making the implementation of consequent tasks, such
as classification, easier.

3 Method

We propose a method that is based on Hybrid Classification, i.e., utilizing con-
trastive pre-training to derive the low-dimensional representation of the target
modality. That embedding is then reconstructed, using a Pseudo-Autoencoder
for Modality Embedding Translation, directly from the source modality. The
whole process of extraction of low-dimensional representation and implementa-
tion of the modality embedding translation is demonstrated in Fig. 1. Finally, in
Sect. 3.3, we present the Centered Kernel Alignment which we use to highlight
the similarity of representations learned by different networks.

3.1 Hybrid Classification

Siamese neural networks are one way to implement a contrastive pre-training. As
the name suggests, a Siamese network is made of two exactly identical networks;
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not only using the same architecture, but also sharing parameters. During its
training process, the network is fed with positive pairs (both instances belong
to same class) and negative pairs (instances belong to different classes). It is
trained to aggregate all the observations sharing a class in the same region
of the latent feature space it reconstructs (embedding); and simultaneously, to
project observations from different classes to separate regions. Different options
are available to train a Siamese network, including Contrastive Loss, defined as:

ContrastiveLoss = (1 − Y )D2
w + (Y )

1
2
(max{0,m − Dw})2, (1)

where Y is the label of a given pair, either 0 (for negative pairs) or 1 (for positive
pairs), Dw is the similarity of the embedding of the observations in a pair and
the m is the margin used to set a base value for the desired distance between
negative pairs.

As mentioned earlier, access to a low-dimensional representation of the target
modality is essential for the modality embedding translation task. In our pre-
vious work, we demonstrated that the application of contrastive pre-training is
capable of improving the classification accuracy [23]. We use the same approach
here, by first training a hybrid classifier and then re-using the low-dimensional
representation created this way to train a Pseudo-AE network. Training the
hybrid classifier involves two steps; first, we train a feature extractor network
using contrastive learning approaches; second, a softmax layer is added to the
feature extractor and the whole network is trained as a classifier. It is notewor-
thy that we divide the training dataset into two distinct portions, Contrastive
and Regular. They are used during pre-training and actual training, respectively.
The process of training the hybrid classifier and extracting the representation
(embedding) is demonstrated in the Fig. 1a.

3.2 Pseudo-AE for Modality Embedding Translation

Modality embedding translation is implementable using different methods,
including an Autoencoder-like network, pseudo-AE for short. Such a network
can be used to learn a mapping from source modality to a lower dimensional
representation of the target modality. Autoencoders are networks capable of
reconstructing a given input at its output, with the constraint of learning a lower
dimensional representation of the input in its bottle-neck. Similarly, a pseudo-AE
can be defined as a network capable of reconstructing an arbitrary but some-
how related representation from a given input. Taking such an approach, we are
able to reconstruct a representation, originally extracted from target modality,
using only the source modality. A pseudo-AE can be trained using a similarity
maximizing loss function, such as a Mean Squared Error.

In our previous work [23], we showed that vibrations offer a significantly
higher classification performance, compared to current. On the other hand, the
collection of multi-point vibrations from an induction motor is far more chal-
lenging compared with three-phase currents; in most cases, it requires invasive
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Fig. 1. Visual demonstration of the proposed method

measurements which do not suit practical online monitoring use cases. More-
over, current sensors are likely to be more affordable in comparison with their
vibration counterparts. Last but not least, in the case study presented here, by
taking advantage of the modality embedding translation technique, we would
be able to decrease the number of required sensors from 5 (number of vibrome-
ters) to 3 (number of current sensors), resulting in a more affordable technical
infrastructures for data collection and storage.

To perform the modality embedding translation, we assume that we have
access to synchronously measured signals from both modalities. Moreover, we
also assume that we have access to the corresponding superior (task-specific)



curr2vib: Modality Embedding Translation for Broken-Rotor Bar Detection 429

embeddings of the target modality (vibrations), for every observation of the
source modality. In Sect. 3.1, we have explained the procedure used to extract
such superior embedding.

Using the Pseudo-AE network, we are able to learn a mapping from three
phase currents FFT spectra towards the latent space of vibrations embedding.
Having access to such a mapping, we will be able to reconstruct the correspond-
ing vibration embedding, given an arbitrary observation in the three-phase cur-
rent spectra. Once the mapping is learned, we are adding a softmax layer on top
of the Pseudo-AE network and post-training it – utilizing Categorical Cross-
Entropy loss function. This way, the network can be used for induction motor
health state diagnosis, from BRB point of view, based only on the currents input
data. Having the currents to vibrations embedding mapping learned sufficiently
well, we are able to improve the performance of current-only dependent BRB
detection classifier beyond what is possible by learning directly from raw data.

3.3 CKA for Representation Similarity Comparison

The effectiveness of a network in the fulfillment of a modality translation task,
can be done by comparing the representations learned by the network at each
layer. In the modality embedding translation task, an ideal translator should
have representations similar to the ones from the source modality network in the
early layers, while the final layers should be more similar to those of a network
trained on the target modality. This way, we can make sure that a mapping from
the source modality to the desired subspace of the target modality is learned well.

A number of techniques from a field known as Representational Similar-
ity can be used to capture and quantify the similarity between two arbitrary
embeddings. Among various proposed metrics, all possess different advantages
and disadvantages; however, Centered Kernel Alignment (CKA) is considered
as the current state of the art [4]. CKA not only enables measuring similarity
between representations derived by different layers of the same network, but is
also capable of quantifying the similarity between representations at different
layers of different networks [11].

CKA mainly relies on the idea that the similarity of two sets of representa-
tions can be measured by calculating the similarity between every pair of exam-
ples in each set separably and comparing the similarity structures. Consider X
and Y as two matrices including representations derived from n examples. Dot
product can be used to evaluate the level of similarity between the representa-
tions, as demonstrated in the Eq. 2:

〈vec(XXT ), vec(Y Y T )〉 = tr(XXTY Y T ) = ‖Y TX‖2F (2)

Assuming that X and Y are centered, it implies Eq. 3:

1
(n − 1)2

tr(XXTY Y T ) = ‖cov(XT , Y T )‖2F (3)

By employment of the Hilbert-Schmidt Independence Criterion [6], Eqs. 2
and 3 can be generalized to inner products from kernel Hilbert spaces; moreover,
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squared Forbenius norm of the cross-covariance matrix turns into the squared
Hilbert-Schmidt norm of the cross-covariance operator [11]. Considering Kij =
k(xi, yj) and Lij = l(xi, yj) where k and l are two kernels, empirical estimator
of HSIC can be defined as:

HSIC(K,L) =
1

(n − 1)2
tr(KHLH), (4)

where H is the centering matrix Hn = In − 1
n11T . A normalization step can

make it invariant to isotropic scaling S(X,Y ) �= S(αX, βY ) for all α, β ∈ R
+.

Normalized HSIC is known as Centered Kernel Alignment:

CKA(K,L) =
HSIC(K,L)

√
HSIC(K,K)HSIC(L,L)

) (5)

In this work, we employ CKA to compare the representations derived by the
vibration embedding modality translator network, given corresponding current
observation (curr2vib for short). This way, we would be able to investigate the
goodness of the mapping learned by modality latent space translator in trans-
forming input from the source modality (currents frequency spectra) to the latent
space originally derived from the target modality (vibrations frequency spectra).

4 Experiments

Three different experiments are carried out in this study. This section starts with
introducing the dataset and the pre-processing procedure. Next, in Sect. 4.2, we
present results of training hybrid classifiers directly on the raw data of different
modalities. This is followed, in Sect. 4.3, with the demonstration of improvements
provided by training the Pseudo-AE model. Last but not least, in Sect. 4.4, we
employ CKA to compare the similarity of representations derived from different
networks and modalities.

4.1 Dataset and Pre-processing Procedure

Data is the essential ingredient of every data-driven study and ours is not an
exception. We took advantage of the experimental dataset for detecting and
diagnosing rotor broken bar in a three-phase induction motor [24] to carry out
our case study. This dataset provides us with both electrical (phase voltages and
currents) and mechanical (multi point vibrations) signals. Five different states
from BRB problem point of view (from zero to four broken rotor bars), over
eight different levels of mechanical torque as loading conditions are available in
this dataset. In this study, we consider four distinct levels of mechanical torque
to consider the various loading condition, corresponding to 12.5%, 50%, 62.5%
and 100% of nominal load. The classification problem we take into account in
this study is to predict the number of broken rotor bars (from zero to four ones),
over a balanced training and testing dataset, from both loading conditions and
number of broken rotor bars.
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The original time-domain signals are split into shorter ones, using 1024 and
6667 points-long windows for vibrations and currents signals, respectively. More-
over, Fast Fourier Transform (FFT) is employed to map time domain signals to
frequency domain signals, resulting in 512 and 3333 points long vibrations and
currents signals, in frequency domains. The 5 point vibration signals collected
from different location and three phase currents are then concatenated hori-
zontally to form 2560 and 9999 points long signals for vibrations and currents
modalities.

The whole dataset is randomly split into training (75%) and testing (25%)
sets. In addition to that, min-max scaling is used to normalize the feature space.
The fact that by the application of min-max scaling every frequency components
in frequency spectrum is regarded as an individual feature, makes this scaling
strategy an optimal choice for the problem in hand.

4.2 Hybrid Classification by Contrastive Pre-training

As mentioned in Sect. 3.1, we employ contrastive pre-training to train a
hybrid vibrations classifier. This classification network is used to extract a 64-
dimensional representation of the original vibrations input (2560 long space); we
believe it is a reasonable size to compress the original 2560-dimensional space.
The referenced low dimensional representations are derived from the last layer
of the classification network, excluding the softmax layer (since this layer is
expected to contain the feature set with the highest level of abstraction). This
latent subspace would be later used to learn a mapping from currents to the
vibrations embedding latent subspace. This process is discussed in more detail
in Sect. 4.3.

To train the hybrid vibration classification network, we start with splitting
the training vibrations dataset into regular and contrastive portions, with a ratio
of 25% contrastive to regular. Afterwards, 10 pairs are created per observation in
the contrastive portion of the training dataset, consisting of five positive and five
negative ones. These pairs are used to conduct a contrastive pre-training pro-
cess for the feature extractor of the hybrid vibration classification network. The
feature extractor utilizes a multi-layered perceptron architecture with 2560-1280-
640-580-512-256-128-64 neurons per layer. All the layers use hyperbolic tangent
as the activation function. During the contrastive pre-training Contrastive Loss
is used as the loss function, number of epochs is 100 and learning rate is 0.00001.
It is worth mentioning that, the choice of learning rate and epoch, not only for
this specific experiment but also for all the experiments carried out in this paper,
is done to 1) keep training process properly smooth by using relatively low learn-
ing rate and 2) achieving the best possible model parameters by the employment
of surpass number of epochs. Having the pre-training process finished, a softmax
layer is added to the feature extractor to form a classification network and the
remaining 75% portion of the training data is used to post-train the classifica-
tion network. During the post-training process Categorical Cross-entropy – as
the most frequent choice of loss function in multi-class classification problems– is
used as the loss function, number of epochs is 400 and learning rate is 0.000001.
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Having the whole network post-trained, the latent space required to conduct the
modality embedding translation process is now extractable. This can be done
by extracting the representations available in the last layer of the classification
network before softmax layer, corresponding to all the vibrations observations
available in the training dataset.

Similarly, a hybrid classifier utilizing currents as the input is implemented,
also using hyperbolic tangent as the activation function and following 9999-
7500-6000-4500-3000-1500-750-500-250-50 architecture. For the contrastive pre-
training of this network, four pairs are created per each observation in the con-
trastive portion. Moreover, the choices of hyperparameters such as loss function,
number of epochs and learning rate for both contrastive pre-training and cate-
gorical cross-entropy post-training are kept the same as the ones used for hybrid
vibrations classifier. To account for the randomness, experiments are conducted
5 times and mean of the classification accuracy is used as the metric to evaluate
the performance, as it is the most frequent metric to evalueate the performance
of a classifier in balanced classification problems. Results regarding the classi-
fication performance of hybrid classifiers on the testing dataset are shown in
the first two rows of Table 1. As it is clearly observable, both modalities are
offering +90% accuracy in classification of the BRB detection problem. Addi-
tionally, vibrations are offering significantly higher performance in comparison
with current.

Table 1. Average (AVG) and Standard Deviation (STD) of classification accuracy of
each network.

Network AVG STD

Currents 0.9096 0.0070

Vibrations 0.9769 0.0033

curr2vib 0.9204 0.0041

4.3 Modality Embedding Translation Using Pseudo-AE

Different approaches are available for Modality Embedding Translation; in this
study, we employ a Pseudo-AE network, utilizing a Multi-Layered Perceptron
with the architecture of 9999-6000-3000-750-250-150-50-64. In the proposed
architecture, the last layer before the output is kept to a lower-dimensional
compared with the output to preserve the constraint of learning the lowest
dimensional representation in the middle layers of network. Moreover, in all
the neurons of this network, hyperbolic tangent is used as the activation func-
tion. Besides, Logarithmic Mean Squared Error, 100 and 0.0000001 are used as
the loss function, number of epochs and learning rate during the Seq2Seq recon-
struction training of the Pseudo-AE network. Once the mapping from current
to vibrations embedding is learned, we need a post-training process to make a
classification network out of the Pseudo-AE network. This is done by addition
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of a softmax layer to the Pseudo-AE network and employment of Categorical
Cross-entropy as the loss function of the whole classification network. Categorical
Cross-Entropy is chosen, as it is the most frequent option to use for multi-class
classification tasks. Moreover, 0.0000001 and 2000 are employed as the learning
rate and number of epochs for the implementation of the post-training process.
It is worth mentioning that the whole training dataset is employed to learn the
mapping from current to vibrations embedding, however, similar to the Sect. 3.1
only 75% of the training dataset is used during the post-training process.

In the final row of Table 1, the performance of the proposed method
(curr2vib) is presented. When compared with the performance of current-based
hybrid classifier, we managed to increase the classification performance by more
than 1% due to taking advantage of the modality embedding translation tech-
nique and the vibrations embedding. Moreover, lower STD of the curr2vib clas-
sifier in comparison with hybrid current classifier demonstrates the higher level
of stability of this approach.

4.4 Using CKA to Evaluate the Effectiveness of Pseudo-AE
to Translate Modality Embedding

Comparison of the representations learned by neural networks at different lay-
ers can be used to quantify the similarities between the set of features learned
at each layer. In particular, in this study we employ CKA – current state of
the art tool to investigate the similarities between representations learned by
different networks at different layers – to evaluate the effectiveness of our pro-
posed method in the extraction of features similar to the target modality, given
the source modality as the input. Representations extracted for these compar-
isons are derived from observations included in the testing dataset. Moreover,
we employed the implementations1 provided by authors of [11].

Using the heatmaps present in Fig. 2, we are able to compare the similarity
of the representations learned by different models, pairwise. The color which has
filled the cells of these heatmaps is an indicator of the similarity scores, mea-
sured using CKA technique. In the Fig. 2a, the similarity between representa-
tions extracted from Vibrations Classifier and Currents Classifier is demonstrated.
As it is expected, representations at the initial layers are not similar, since the
two networks are fed with information belonging to different modalities as input.
Moreover, significant increase in the similarities of the representations is observed
among those extracted from fourth and further layers; clearly, in these layers both
networks are able to extract related, highly-abstract feature sets. Besides that, in
Fig. 2b, representations extracted from Currents Classifier, and curr2vib Classifier
are compared. Unlike the previous figure, in this figure, a noticeable level of simi-
larity is found between first three layers of the networks; this makes intuitive sense,
as they are fed with identical inputs. Moreover, we experience significant reduc-
tion in the similarity from the fourth layer, showing that the features learned by

1 https://cka-similarity.github.io/.

https://cka-similarity.github.io/
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two networks in these layers differ, which is the reason for the gap between these
two networks in the classification of BRB problem.

Fig. 2. Plots of CKA values of pairwise comparisons of the three networks.

Last but not least, in Fig. 2c, representations from Hybrid Vibrations Classi-
fier and curr2vib Classifier are compared. Again, as in Fig. 2a, the initial layers
are not similar as the inputs belong to different modalities. Moreover, significant
increase in the similarities is noticeable from the fourth layers to the end of the
networks; this increase happens in the similar region where the Fig. 2b experi-
enced the drop in the similarity, demonstrating that the transformation of the
representations available in the fourth layer to the rest of the network extracted
by the curr2vib Classifier is making them more similar to the ones extracted
by the Hybrid Vibrations Classifier. Being more similar to the representations
extracted from Hybrid Vibrations Classifier, rather than the ones extracted from
Hybrid Currents Classifier, can be considered as the reason behind the improve-
ment in the classification performance.

5 Discussion and Conclusion

Comparison of the similarity of the representations learned by source-only based
classifier (currents classifier), target-only based classifier (vibrations classifier)
and Multi-Modal Embedding Translation classifier (curr2vib classifier), showed
that the proposed method is capable of learning, using only the weaker source
modality, representations similar to those coming from the stronger target modal-
ity. Therefore, this approach exploits some of the principles underlying Knowledge
Distillation; a set of techniques and approaches to transfer what a superior model
(teacher), or ensemble of them, has learned, to an inferior one (student) [5]. Knowl-
edge Distillation is mainly concerned with improving the performance of a model
with the help of another model. According to the above definition, vibration clas-
sifier is the teacher model and the curr2vib is the student model; Moreover, as the
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teacher model in this study is kept non-trainable during the knowledge transfer
process, curr2vib utilizes an offline distillation scheme.

This study applies Modality Embedding Translation – as a Multi-Modal app-
roach – to transfer knowledge from source modality (with high classification per-
formance but expensive to collect) to the target one (cheaper, but with lower per-
formance). As shown in the case study investigated, employment of such strategy
is capable of improving the performance, when compared against conventional
approaches learning on raw data in target modality separately. Although both
modalities are required during the training process, in the deployment stage
only the target modality is needed; therefore this approach is considerably more
affordable in comparison with sensor fusion. Using the proposed strategy, we
are able to replace expensive instrumentation pieces of equipment with more
affordable ones while the performance is kept within acceptable range. One limi-
tation is that the implementation of the proposed method requires having access
to synchronously measured signals from both modalities, which can be hard to
provide. Although measuring signals from both modalities simultaneously tends
to reduce the data collection time, however, it is not always cost efficient to
record both modalities at the same time, as it would require data acquisition
equipment with higher capacities. The future works on this topic can be directed
towards development of strategies to eliminate this constraint.
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Abstract. In this work-in-progress paper two types of physics-based
models, for accessing elastic and non-elastic air leakage processes, were
evaluated and compared with conventional statistical methods to detect
air leaks in city buses, via a data-driven approach. We have access to
data streamed from a pressure sensor located in the air tanks of a few
city buses, during their daily operations. The air tank in these buses
supplies compressed air to drive various components, e.g. air brake, sus-
pension, doors, gearbox, etc. We fitted three physics-based models only
to the leakage segments extracted from the air pressure signal and used
fitted model parameters as expert features for detecting air leaks. Fur-
thermore, statistical moments of these fitted parameters, over predeter-
mined time intervals, were compared to conventional statistical features
on raw pressure values, under a classification setting in discriminating
samples before and after the repair of air leak problems. The result of this
exploratory study, on six air leak cases, shows that the fitted parameters
of the physics-based models are useful for discriminating samples with
air leak faults from the fault-free samples, which were observed right
after the repair was performed to deal with the air leak problem. The
comparison based on ANOVA F-score shows that the proposed features
based on fitted parameters of physics-based models outrank the conven-
tional features. It is observed that features of a non-elastic leakage model
perform the best.

Keywords: Fault detection · Air leaks · Elastic air leakage model ·
Non-elastic air leakage model · Physics-informed machine learning ·
Explainable predictive maintenance

1 Introduction

Predictive maintenance enables a cost-effective approach for maintaining indus-
trial equipment and helps ensure high operational performance as well as adher-
ence to safety requirements. Different aspects of monitoring and analysis, such
as fault detection, identification or estimation of remaining useful life, can be
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done using data-driven techniques that leverage historical data of the equipment.
Approaches based on Machine Learning (ML) algorithms have shown promising
performance and were adopted by many industrial applications. Lately, deep
neural networks have became very popular among researchers, however, indus-
trial adoption is somewhat slower; one disadvantage of this approach is that it
needs a great amount of training data (i.e., it is not very data-efficient), with
a representative population including both normal operation data as well as
fault and failure cases. Furthermore, inferences and predictions made with deep
learning methods often lack interpretability and explanations of the decisions
made.

Recently, a new trend has been developing to make ML methods more effec-
tive and data-efficient: to take advantage of models inspired by physics knowledge
[9–11]. Physics-based models aim to calculate physical parameters from sensor
data or outputs of ML models. These calculated parameters are employed to
reduce workload on the ML model while increasing its explainability. This trend
builds on decades-long desire to infuse data-driven reasoning with existing (often
partial) domain knowledge, as opposed to requiring computers to learn com-
pletely from scratch. As a consequence of higher explainability, it is also easier
to use physics-based ML models for enforcing, for example, policies or regulatory
laws [7]. The calculated physics-based parameters can reduce the complexity of
the problem for the ML-based method and hence improve the efficiency of the
whole prognosis system. Another advantage is capability to do prognosis over
an extended period of time, which might not be possible with purely ML-based
methods when training samples come from a limited length of observation [8].

In the literature, several different approaches to combining ML and physics-
based models have been proposed. One example is reducing the dimensions of the
output space through orthogonal decomposition [9]. Another common approach
is generating extra inputs for the learning method (i.e., virtual sensors) based
on the values of other inputs [2,3,5]. A common theme among many works is
the usage of recurrent neural networks (RNNs), including LSTM, which makes
it possible to directly use the differential equations prevalent in physics-based
modeling [10].

The case study presented in this paper focuses on detecting leak-related
faults in a vehicle air system. The vehicle air supply, and the corresponding
distribution system, were designed to provide compressed air to drive various
components, e.g., air brakes, suspension, doors, gearbox, etc. The air pressure
is regulated within a predefined range which is of crucial importance for the
driver since without compressed air the vehicle will not operate. Air leaks in the
system, depending on the severity, may render a lower operation efficiency, and,
in the worst case, compromise the braking system, and thus jeopardize overall
safety. The specific case presented in this study is based on a commercial fleet
of buses, of the same model, driving in city and intercity traffic. Previous work
on predicting air compressor failures in the same fleet by incorporating expert
knowledge, using the charging rate of the air pressure as an expert feature, for
predicting air compressor failures, is available in [4]. The air leak events (the time
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of the occurrences, the types of the leakage, and any additional relevant details)
were inferred from the vehicle service record. The six air leak cases included
in this study have occurred in four buses, during their daily operation. Repairs
were performed in a workshop to deal with the air leak problems. It is crucial
to point out that the information is quite limited, and details such root cause
or fault mode are approximate at best – there is no guarantee that all six cases
exhibit similar symptoms. We have acquired sensor data of three months for
each of these cases, around the repair date, for analysis. Naturally, we label the
samples prior to the repair as faulty, and samples following the repair as healthy,
or fault-free.

In this study, we have investigated the use of two types of physics-based
model, namely elastic and non-elastic air leakage models. They are used to gen-
erate expert features suitable for detecting air leaks. The general idea is to fit
these physical models to the pressure data, during the leakage periods, and esti-
mate the model parameters that correspond to current physical properties. One
particular challenge is that we do not have access to the exact system schematic
design, nor did a dedicated simulator for the underlying physical process of the
air system is available. In earlier work those were typically considered prereq-
uisites for using physics-based techniques. The nature of the six air leaks were
also not available, such as the exact location or type of the air leak. Therefore,
it is not known a priori which physics-based model (e.g., elastic or non-elastic
leakage) they correspond to. Finally, the number of the air leak cases available
is not sufficient to train an effective machine learning model for fault detection
or prognosis.

The contribution of this exploratory study is to evaluate and compare the
usefulness of two relevant physics-based leakage models in detecting real air
leak cases for city buses. The fitted parameters of the physics-based models are
used as expert features, and the performance of these features is evaluated for
discriminating faulty samples from fault-free ones. The results show that, in three
out of the six cases, the fitted parameters are useful for the fault detection task.
Furthermore, it is shown that the statistical features computed using the fitted
parameters of the physics-based models outperform the conventional statistical
features computed directly from the raw sensor data.

2 Background

The air system on-board buses in this fleet consist of the supply system, the
control system, the distribution network, and the end-use components that con-
sume the air for different purposes. A conceptual diagram of the air system in
the city buses investigated in this study was illustrated in Fig. 1. Compressed
air flow was generated from the air compressor, and afterward regulated, dry
filtered, and supplied to the air tank, which serves as a reservoir to store and
facilitates the air supply when needed. The air pressure was maintained within a
certain range, normally from 10 to 12 bars, to ensure the air demand of the end-
use components was always met. Whenever the air pressure dropped below the
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Fig. 1. A conceptual diagram of the air system in this study

bottom threshold, the compressor started charging the air into the system until
the upper bound of the pressure level is reached. Through the control system
(e.g., foot brake, valves, buttons, etc.), the operator determines the usage of the
air, to activate different end-use components, e.g., air brake, doors, suspension
bellows, gearbox, etc.

The only observation directly available for monitoring the air system behavior
is the Wet Tank Air Pressure (WTAP), collected via a pressure sensor placed in
the air tank. This data stream was accessed through the vehicle CAN network.
The brake pedal position and selected gear were available as the control signals.
The availability of the control signals varies over different time periods and
buses in the fleet. Unfortunately, the signal indicating the door operation was
not available for these buses. On the other hand, it can be derived, at least with
some level of approximation, from the GPS signal and the vehicle speed. Figure 2
shows the pressure signal in the air tank, and the associated activation of the
end-use components, derived from the control signals.

Air leaks may occur at various locations within the air system; the leakage
mechanism and the cause of it may vary. In this work, we focus on the six
air leak cases: i) bus A had leaks in the pipe and in the air bellow; ii) bus B
had its air regulator replaced due to malfunctioning once it was unable to meet
the operation requirements; iii) after 14 weeks, bus B had reports of leaks in
the air bellows; iv) the fleet operator reported that there was a compressed air
leak in Bus C, and the bus would not start; v) After ten months, bus C was
reported to exhibit leaks in the air bellows; vi) oil and water were found to have
leaked into the air tank through other components in bus D. In this study, we
focus on the two-month period before and after the repair event, and on the air
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Fig. 2. Wet Tank Air Pressure (WTAP) and the corresponding activities of different
vehicle components (represented as horizontal bars of various colors). (Color figure
online)

leakage faults. Samples prior to the repair event were labeled as faulty, and the
subsequent samples after the repair event were labeled as fault-free, i.e., healthy.

3 Method

In this study, since the exact model of the faults is unknown, we analyze three
physics-based models: one non-elastic leakage model, and two variants of elastic
leakage models.

The first step in the proposed approach is to identify the portions of the
data where the system behaves in as simple as possible way. Particularly in
the case of vehicle air system, different components use the air in very different
fashion, and the specific often depend, in quite complex manner, on external
circumstances. Those internal control processes are too complex to model here,
and they often use inputs that are not available in the data collected from CAN
network. Therefore, we have decided to identify segments where none of the end-
usage components are active. In a perfect world, this means WTAP signal should
remain constant during those periods – any change in value can be attributed to
a leak. Moreover, the parameters of any such potential leak are going to be the
most clearly visible, and easiest to estimate. Therefore, the model parameters
were estimated during such “leakage segments” extracted from the air pressure
signal, and statistical features of the fitted parameters were adopted as expert
features for air leak detection.

3.1 Physics-Based Air Leakage Models

We take advantage of a formula inspired by the physics of leakage. The formula
of the leak rate [6] of a vessel is defined by:

R = −V
dPv

dt
, (1)
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where R is the leak rate, V is the volume of the vessel, Pv is the pressure inside
the vessel, and t represents time. Also, assuming the leak is big enough to have
a non-molecular flow the leak rate can be approximated [1] as:

R = L(Pv − Po), (2)

where L is called “leak size” and is proportional to the area of the leak, and Po

is the pressure outside of the leakage. Equating the two formulas leads to:

− V
dPv

dt
= L(Pv − Po). (3)

Solving the differential equation and assuming L, Po and V are constant, we
obtain:

Pv = k

[
exp

(
−L

V
t

)]
+

LPo

V
. (4)

Since there might be also elastic leaks (e.g., in the seals of the vessel), we sim-
ulate them by assuming that Po can be higher than its actual value. Therefore,
we can re-parameterize the formula to account for a general leak:

Pv = k [exp (−at)] + b (5)

This way one can fit the data to our physics-inspired model simply by estimating
the three parameters: a, b, and k.

An alternative way of modeling elastic leaks is to make the leak size pressure-
dependent. For this purpose, we define:

L = α(Pv − Po)2 (6)

This leads to the following solution to Eq. 3:

Pv =
1

α
V t + C

+ Po, (7)

where C is a constant. After re-parametrization we get:

Pv =
1

mt + n
+ Po. (8)

To summarize, in this study we investigate the use of a non-elastic leakage
model (Eq. 4) and two elastic leakage models (Eqs. 5 and 8) for detecting air leak
events.

3.2 Fitting Model Parameters

Conceptually, the Wet Tank Air Pressure signal is affected by all components
within the air system: i) during the charging period the compressor charges the
air into the air tank and raises the pressure; ii) during the air releasing period
the end-use components use the air; iii) and as one would expect, during the
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period when none of the components are activated, the pressure changes only
due to air leakage. The air pressure segments without any components in use
were extracted for analysis.

The pressure values are denoted as xi
v,t, where i indicates the i-th segment

Si,τ
v,t it associates to, v and t corresponds to the vehicle and time the value being

collected, and τ denotes a set of the time indices (e.g. τ = {t1, t2, ..., tn}) of the
corresponding leakage segment. All pressure values of the leak segments Si,τ

V,T of
vehicle V over the period T are denoted as XV,T . In this study, T is selected to
be one day period. The parameters θi of the physics-based model fθi are fitted
over each segment Si,τ

v,t , minimizing squared errors between real pressure values
and model prediction:

argmin
θi

∥∥∥∥∥
(∑

t∈τ

fθi(t) − xi
v,t

)∥∥∥∥∥
2

(9)

Fitted model parameters of all segments Si,τ
V,T over time interval T of bus V were

denoted as ΘV,T . For the non-elastic leakage model (Eq. 4), {k, L
V } are the model

parameters; for the elastic leakage model, {k, a, b} are the parameters for model
Eq. 5, and {m,n} for model Eq. 8.

3.3 Computing Statistical Features

A conventional data-driven approach for fault detection would take statistical
features of the raw sensor readings as the input to train a model. In this study,
we investigate the usefulness of the fitted parameter of the three physics-based
models, denoted as Γ (Θv,t), and we compare them against the statistical features
computed on raw sensor readings Γ (Xv,t).

For fitted parameters ΘV,T of the physics-models and the raw pressure val-
ues XV,T collected from one bus V over one day period T , a set of statistical
features Γ (·) were computed, including the arithmetic mean μ, the standard
deviation σ, the 3rd and 4th standardized moments (Skewness μ3

σ3
and Kurtosis

μ4
σ4

), percentiles (the 10-th, 25-th, 50-th, 75-th, 90-th were selected), the entropy,
and the root mean squared (RMS) values 1

|T |
∑

t∈T (xt)2 (where | · | denotes the
cardinality).

ANOVA F-test was conducted, and the F-score was used for ranking different
types of features. In addition, machine learning models were trained with the
two types of the features, i.e., Γ (Θv,t) and Γ (Xv,t), and the area under the
ROC curve were used for comparing the performance in discriminating the faulty
samples (prior to air leak repair event) from the healthy sample (after repair was
performed and the fault was dealt with).
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4 Results

The results section is organized as follows: i) illustration of fitted physics-based
models on the WTAP air leak segments; ii) visual inspection of fitted parameters
of the physics-based models using box plot, focusing on two air leak cases; iii)
comparing histograms of fitted parameters between the healthy and the faulty
populations; iv) the ranking of the features with ANOVA F-score, and compar-
ison of the area under the ROC curve.

Figure 3 shows three example air leak segments and the corresponding fit of
the three selected model equations. Since the sensor has a relatively low reso-
lution, the pressure values are quantized into the levels shown. The two elastic
models (Eq. 5 and Eq. 8) skew in different directions, while the non-elastic model
behaves, in all three example segments, similarly to a linear model. For the elastic
leakage model (Eq. 5), the parameter k and a corresponds to the leakage speed
of the air pressure, while b corresponds to the offset of the segments; for the
elastic leakage model (Eq. 8), m and n corresponds to the change in curvature
of the fitted model; the fitting of parameters k and L

V of the non-elastic leakage
model (Eq. 4), which has a stronger constrain in the offset term compared to the
model Eq. 5, leads to the term LP0

V dominating over the exponential decreasing
term; therefore the fitted model behaves similarly to a linear model.

Table 1 shows a set of box plots summarizing the fitted parameters Θv,t

(of the three selected model equations, in rows) for the two air leak cases (in
columns). The vertical solid lines mark the time of the repair action performed
to fix the air leak fault. It can be observed that there is a clear distinction in
the parameters b of model Eq. 5, as well as m and n of model Eq. 4, between
the faulty and healthy time periods in “Air Leak Case 2” (left column). It is
also visible, in the right column, that there are obvious distinctions in the fitted

Fig. 3. Visual demonstration of the fitted parameters of three different physics-based
models on three example air leak segments.
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parameter L
V of model Eq. 8 and both parameters (m and n) of model Eq. 4

between the “before” and “after” the repair. Moreover, there are differences
(albeit not obvious) in the model parameters (k and b of model Eq. 5) between
healthy and faulty samples.

Table 2 illustrates the difference in the distribution of selected statistical
features Γ (Θv,t) between healthy and faulty population. As is shown, there are
obvious distinctions between the distribution of the mean, the RMS, and the
three percentiles values of model parameter k of model Eq. 5, and L

V of model
Eq. 4.

Figure 4 shows the ranking result of the ANOVA F-test (based on healthy
and faulty samples of all six cases), comparing conventional statistical features
Γ (Xv,t) on the raw data and the statistical features Γ (Θv,t) of physics-inspired
parameters, for all three model equations. The experiment was conducted with
6-fold cross-validation, in a leave-one-out setting, i.e. one failure case (and its cor-
responding three months of data) out of the six cases was left out of the training
set non-repeatedly in each of the 6-fold cross-validation experiments; the error
bars are generated correspondingly with the leave-one-out experiments. It is clear
that overall, across all six air leak cases, most of the fitted parameters of the
elastic model (Eq. 5) outrank the conventional features. Four fitted parameters
of model Eq. 4 were placed in the top five features, while the fitted parameters
of model Eq. 8 scored five features in the top 10 features. These results convinc-
ingly demonstrate the advantage of physics-inspired features over the raw sensor
readings.

Fig. 4. Comparison of ANOVA F-score between features
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Table 1. Illustration of evolution over time of the physics-based model parameters for
two example air leak cases; the vertical solid lines mark the time of the air leak repair.
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Table 2. PDF comparison of fitted parameters between “before” (red) and “after”
(blue) air leak faults being treated in workshop (from case 5)

Table 3. Performance (AUC) comparison between using different features for dis-
criminating faulty samples from fault-free samples, on all failures cases with 6-fold
cross-validation.

Γ (Θ) Γ (X)

Model Eq. 5 Model Eq. 4 Model Eq. 8 WTAP

KNN 65.80± 10.37 63.00± 3.78 58.05± 5.71 46.94± 10.91

MLP 58.77± 10.95 68.78± 8.89 60.05± 7.23 40.07± 15.10

The preliminary result, presented in Table 3, of training and testing con-
ventional machine learning models (k-Nearest-Neighbour (kNN) and multi-layer
perception (MLP) classifier), with 6-fold cross-validation, shows that using the
conventional features Γ (Xv,t) is not better than random guesses. The experi-
ment was conducted in the same way as the result presented in Fig. 4. On the
other hand, using the statistical features Γ (Θv,t) on fitted parameters of the
three physical models scored 65.80±10.37 (model Eq. 5 with kNN), 68.78±8.89
(model Eq. 4 with MLP), and 60.05 ± 7.23 (model Eq. 8 with MLP).

5 Conclusion and Future Work

In this study, we are exploring the use of physics-based air leakage models in
generating useful features for detecting air leaks in city buses. We have compared
the proposed physics-model-based features against the conventional ones and
showed a clear advantage of the proposed features. With the visual inspection
of all box plots, we conclude that, in three out of the six air leak cases, there is
a visible difference in the distribution of fitted parameters Θv,t between samples
before and after the repair treated to the air leak faults. Although the box plot
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and histogram showed that there is a visual difference in the distribution of
the features between the two classes (in half of the cases), the AUC indicated
further efforts can be made to improve the performance, e.g. finding a proper
learning setting for detecting the air leaks; further development on improving
the fitting of physics-based air leak models by imposing relevant constraints for
model fitting; exploring the vehicle service records for more air leak cases.

In this paper, only the detection of air leak faults was addressed and pressure
values only during the idle state were used to estimate physical parameters. How-
ever, the air system is rather complicated, and the air pressure in the wet tank
is affected by the usage of the end-use components. Therefore, a wider scope of
this work is to consider the impact of all end-use components in the air system:
design a comprehensive model that takes into account all possible operational
states, i.e., activation associated with all end-use components, with respect to
their physical process; utilizing fitted parameters of the physical models not only
for detecting faults but also for fault isolation and identification, based on explor-
ing the interpretability of the models; incorporating the fitted parameters into
a data-driven fault detection and prognostic framework, utilizing deep learning
methods for higher prediction performance.
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Abstract. In most industries, the working conditions of equipment vary
significantly from one site to another, from one time of a year to another,
and so on. This variation poses a severe challenge for data-driven fault
identification methods: it introduces a change in the data distribution.
This contradicts the underlying assumption of most machine learning
methods, namely that training and test samples follow the same distri-
bution. Domain Adaptation (DA) methods aim to address this problem
by minimizing the distribution distance between training (source) and
test (target) samples.

However, in the area of predictive maintenance, this idea is compli-
cated by the fact that different classes – fault categories – also vary across
domains. Most of the state-of-the-art DA methods assume that the data
in the target domain is complete, i.e., that we have access to examples
from all the possible classes or faulty categories during adaptation. In
reality, this is often very difficult to guarantee.

Therefore, there is a need for a domain adaptation method that is able
to align the source and target domains even in cases of having access to
an incomplete set of test data. This paper presents our work in progress
as we propose an approach for such a setting based on maintaining the
geometry information of source samples during the adaptation. This way,
the model can capture the relationships between different fault categories
and preserve them in the constructed domain-invariant feature space,
even in situations where some classes are entirely missing. This paper
examines this idea using artificial data sets to demonstrate the effective-
ness of geometry-preserving transformation. We have also started inves-
tigations on real-world predictive maintenance datasets, such as CWRU.

Keywords: Predictive maintenance · Fault identification · Domain
adaptation · Geometry

1 Introduction

In recent years, data-driven fault identification methods have attracted increas-
ing research attention for different applications, including rotating machinery,
gearbox, wind turbines, and more [9]. These methods are generally based on
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machine learning and learn predictive models from provided training samples.
Those models are used to classify new, previously unseen data. However, the
generalization ability of the models to predict the label of the test samples is
inherently connected to the assumption that training and test samples are gener-
ated by independent and identically distributed random variables. In a predictive
maintenance setting, this corresponds to equipment operating under the same
conditions and consequently generating data of the same distribution.

However, in a real industrial setting, the variation in working conditions
is inevitable. The most common setup is that fault identification methods are
created by the equipment manufacturer in their lab setting and then deployed
at customer installation, often in a different part of the world. This means that
the data from these two situations will inherently differ. We call each of these
settings and the corresponding data distributions, “domains.”

In this paper, we assume that the training samples belong to one domain,
called source, and test samples belong to another domain, called target. The
goal is to identify a method where the model trained based on data collected by
the manufacturer can be applied to the data collected by the customer. In the
following text, we will, for simplicity, use “source samples” (resp. target samples)
to refer to samples generated in the source (resp. target) domain.

To tackle the problem of working with the training data and test data gener-
ated from different domains (different working conditions), several cross-domain
fault identification methods are reported in the literature [8]. In this work, we
will focus on Domain Adaptation (DA), where the goal of is to minimize the
distribution distance between the source and target domains. It is one of the
methods used to solve cross-domain fault identification tasks.

Two DA settings are applied to fault identification: Full Domain Adaptation
(FDA) and Limited Domain Adaptation (LDA). FDA assumes that unlabeled
samples exist for all fault categories (classes) in both the source and the tar-
get domains. In practice, this means that in order to identify faults in the tar-
get domain, FDA techniques must wait until the occurrence of all of the faults in
the customer installation; only then can they collect enough samples to perform
domain adaptation. In contrast, LDA techniques can adapt corresponding source
and target samples even if there are no (unlabeled) samples for some fault cate-
gories. As an extreme example, the ultimate goal is to be able to perform DA based
on healthy target samples only; before any faults are recorded at the customer
installation and when the faulty samples come only from the lab experiments.

The main idea of this work is to adapt source and target domains while pre-
serving the geometry of the data; Keeping the data’s geometry helps transfer
knowledge about missing classes to the target domain. This promises to capture
the transformation between source and target domains without requiring the
complete correspondence between all the classes or fault categories. To this end,
a new loss function is proposed to adapt the source and target domains while
preserving the distance between different samples and consequently preserving
the distance between fault categories. The results of the proposed idea on arti-
ficial data sets show the effectiveness of preserving the initial geometry and the
adaptation of corresponding faults in the source and target domains.
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2 Related Works

DA techniques have been applied successfully in several applications, including
predictive maintenance and specifically for fault identification [8]. The core idea
of DA is to minimize the distance between the data distribution in source and
target domains. They do the minimization either explicitly using distribution
distance measurements such as MMD [3], or implicitly using adversarial training
methods [5]. Most papers presented in the literature solve the FDA problem.
Regarding the LDA setting, Liu ZH, et al. in [4] proposed a method for the
LDA setting. They assume that in the target domain, only healthy samples are
available. Their method learns functions that map the healthy category to each
faulty category in the source domain. Those functions are then applied to healthy
samples in the target domain to generate fake faulty samples. Finally, a cross-
domain classifier is trained using real source samples and fake target samples.
The proposed method in [7] solves the problem in the LDA setting with any
number of missing fault categories in the target domain. They adapt the target
sample toward source samples while preserving the relationship between source
samples to prevent them from distortion. However, the model is not trained
for missing categories; thus, they will be placed randomly in the constructed
domain-invariant feature space.

3 Problem Formulation

The proposed method is designed with the following assumptions in mind:

– Training and test samples are generated from two domains corresponding to
different working conditions. In particular, there is only one source domain
and one target domain.

– The (potential) fault categories are the same for source and target domains.
– Samples from the source domain are labeled and correspond to all the possible

fault categories.
– Samples from the target domain are unlabeled.

More formally, the above assumptions can be stated as follows. Considering
source domain as Ds = {(xs, ys)} and target domain as Dt = {(xt, yt)}, the
label space of source and target domain are equal to each other, i.e. Ct = Cs.

The label space of the available target samples during adaptation is C ′
t ⊆ Ct.

If C ′
t = Ct = Cs, the problem is a full domain adaptation(FDA); and if C ′

t ⊂ Ct,
the problem is limited domain adaptation(LDA).

The need for maintaining the relationships within fault categories in the
source domain is particularly important for the LDA setting. If we were to simply
map Cs into our available C ′

t categories, the “surplus” source samples from
Cs \ C ′

t cannot be matched to any available samples from the target domain.
Since they lose their relationship with other samples, they are very likely to
cause a negative impact on adaptation [1]. Therefore, to utilize them and extract
information in the target domain, a geometry preserver keeps the relationship
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between samples in the new representation and original representation space
consistent. Consequently, the source samples from C ′

t categories will be adapted
to target samples from C ′

t as much as possible, while source samples from Cs \C ′
t

categories will be mapped into areas of space that are not occupied by any D′
t

samples – based on maintaining their relationships to other Cs classes.
More specifically, the overall goal is to utilize geometry information during

DA, to solve the problem of LDA. However, we first show the effectiveness of
preserving geometry in the FDA setting. Notably, for the FDA setting, we con-
struct a shared feature representation for both source and target domains in
which they are aligned.

4 Proposed Method

In this section, we describe how to employ a new method to maintain the geometric
information of the samples while adapting the source and target samples in the
FDA settings. To this end, source and target samples are mapped to a new domain-
invariant feature representation. In the new feature representation, the source and
target samples are indistinguishable, and all pairwise distances are maintained.
This idea is implemented using a neural network, illustrated in Fig. 1.

Fig. 1. Proposed method

At first, we generate all pairwise samples in each of the source and tar-
get domains, e.g., (xi, xj) along with two labels; The first label is the distance
between xi and xj . The second label is the domain to which xi belongs. Simi-
larly, the network has two inputs and two outputs; So, it takes pairwise samples
(xi, xj) as input and predicts the distance of the inputs in the new feature space
and the domain to which xi belongs.

There is a component as feature extractor, Gf ; The output of the feature
extractor is the new feature space. There are two copies of Gf in the network
with completely the same parameters. Each of the inputs feeds into one of them.
So, they will be generated in the new feature space. We call them Xi and Xj .
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Xi and Xj feed into a Distance Layer(DL) that calculates the distance between
Xi and Xj .

We want to train the feature extractor so that the distance between xi and
xj is equal to the distance between Xi and Xj . So, the output of the Distance
Layer for the pairwise inputs (xi, xj), which we call D, must be equal to the
first provided label of (xi, xj). We call this part of the network as Geometry
Preserver, Gg. The geometry preserver is shown in gray color in Fig. 1.

On the other hand, the output of the first feature extractor is fed into a
component called Domain Regressor, Gd. The domain regressor predicts the
domain of the first input, xi, which is shown by d. The responsibility of Gd is to
align the source and target domains. So, it is trained in such a way that it can’t
distinguish source and target samples. In continue, we will discuss the details of
the proposed method.

Feature extractor and domain regressor follow the same notation as [2]. Fea-
ture extractor Gf (., θf ) learns a function (parameterized by θf ) that maps input
samples to the new feature spaces. Geometry preserver Gg(., ., θf ) controls the
output of Gf by adding a loss function. The purpose of the geometry preserver is
to preserve the relationship between pair samples after mapping them to the new
feature space. To this end, we adopt a Siamese-like neural network configuration
to implement Gg [6]. A Siamese-like network contains two identical subnetworks
with shared parameters. So, we have configured the Gg using two copies of the
feature extractor followed by a Distance Layer (DL). DL calculates the distance
between the outputs of two Gf .

To give an example, let us assume that x1 and x2 are two samples belonging to
the same domain, either source or target. Then Gf (x1) = X1 and Gf (x2) = X2

are the same samples, but transformed into the new feature space. Moreover,
Gg(x1, x2; θf ) = disnew(x1, x2) is the distance of Gf (x1) and Gf (x2), and the
parameters θf are optimized to make sure that this distance is as close as possi-
ble to disoriginal(x1, x2) = ‖x1, x2‖ (the distance between these samples in the
original space).

Accordingly, given ns source samples and nt target samples, training Gg for
both source and target samples lead to the following optimization problem:

min
θf

[
1

n2
s + n2

t

(
ns∑

i=1

ns∑

j=1

l(i,j)g (θf ) +
nt∑

i=1

nt∑

j=1

l(i,j)g (θf )) + λR(θf )], (1)

where lg is the loss function of the geometry preserver and R(θf ) is a regularizer
weighted with the λ. In order to adapt source and target domains, we use a
domain regularizer that is proposed by [2], as R(θf ). Similar to [2], we call
domain regularizer as Gd with parameters θd that is a domain regressor layer.
Gd(., θd) learns a logistic regressor that model the probability that xi is from
the source or target domain. However, we only adapt the samples from shared
classes; therefore, we define an array I so that Ii = 1 if xi is a target sample or
it is a source sample belonging to the shared classes, otherwise Ii = 0.

Considering the loss function of Gd as ld, the regularizer will be calculated
as follow [2]:



456 Z. Taghiyarrenani et al.

R(θf ) = max
θf ,θd

[
−1

ns + nt
(
ns+nt∑

i=1

Iil
i
d(θf , θd))]. (2)

So, using Eqs. 1 and 2, the complete optimization objective will be:

E(θd, θf ) = [
1

n2
s + n2

t

(

ns∑

i=1

ns∑

j=1

l
(i,j)
g (θf ) +

nt∑

i=1

nt∑

j=1

l
(i,j)
g (θf ))− λ(

1

ns + nt
(

ns+nt∑

i=1

lid(θf , θd)))].

(3)
A gradient reversal layer(GRL) [2] is used between the feature extractor and

the domain regressor. GRL act as an identity function in forward propagation.
But during back-propagation, it changed the sign of the gradient. So, the fol-
lowing gradient updates, to find the saddle point θf and θd can be done using
stochastic gradient descent (SGD).

θf ← θf − μ(
∂l

(i,j)
g

∂θf
− ∂l

(i)
d

∂θf
), θd ← θd − μ(

∂l
(i)
d

∂θd
) (4)

where μ is the learning rate. As a result, the trained feature extractor maps both
source and target samples into a new feature representation in which different
domains are not distinguishable while the geometry of data within each domain
is preserved. In the constructed feature space, the labeled source samples can
be used as training samples to learn a predictive model to predict the label of
unlabeled target samples.

5 Experiments

As this paper is a work-in-progress, we only demonstrate the efficiency of our
proposed method using synthetic data. We first conduct a set of experiments
in FDA setting and then in the LDA setting. For all experiments, the following
configurations are fixed; We describe each layer in the neural network as (size of
neurons, activation function); the feature extractor consists of 3 dense layers as
(15, relu),(15, relu), (2, linear); the new feature space is constructed in the last
layer of the feature extractor. We have deliberately chosen the size of the last
layer of the feature extractor equal to two in order to compare the original and
constructed feature spaces visually and intuitively. Domain regressor is shaped
with two dense layers as (15, relu), (1, sigmoid). In both subnetworks, Batch
Normalization is used. The loss functions of geometry preserver and domain
regressor are mean square error(MSE) and binary-cross-entropy, respectively.
Euclidean distance is used to calculate disnew and disoriginal (the pairwise dis-
tances of the samples in the original and new feature spaces, respectively).

5.1 FDA Setting

In this section, we study the behavior of the proposed idea in an FDA setting.
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Fig. 2. Two toy data sets are presented in the first column. The markers ◦ and ×
denote the samples from source and target, respectively. Different colors show different
categories. The results of domain adaptation are shown in the second column. (Color
figure online)

Figure 2 shows the results comparing the source and target samples in their
original (on the left) and new or constructed (on the right) feature spaces. The
two rows of Fig. 2 correspond to two different artificial data sets. For the first
problem, on the top, the transformation to generate target samples is a shift
(translation) of all the source samples by 0.2 to the left. In the second one, all
source samples are rotated 30 ◦ with respect to point (0.5, 0.5).

It can be seen that in both cases, the source and target samples in the
new feature space are not only adapted to each other but also their geometry is
preserved. As a consequence, the method keeps the relationship between different
categories. This is a clear advantage of our proposed method over existing state-
of-the-art approaches. Methods that only aim for adaptation generally distort
the within-domain relationships. Accordingly, this approach provides a promising
result; in the next subsection, we extend this functionality for an adaptation in
an LDA setting.

In Fig. 3, we present the training loss per epoch for the first problem example.
GP-loss, DR-loss and loss are the loss of geometry preserver, domain regressor
and total loss of the network, respectively. It can be seen that the loss amount
gets steady around 0.6; that means the saddle points to optimize the objective
function are obtained.
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Fig. 3. Training loss of geometry (GP-
loss), domain regressor (DR-loss) and the
whole network (loss).

Fig. 4. Accuracy of the target label set
prediction using 1-NN classifier.

In the next experiment, we evaluate how well the DA approach supports fault
identification tasks. To this end, we use source and target samples in the new space
as training and test samples. We use a K-nearest-neighbor classifier with k = 1 to
predict the label of target samples. Thus, in each iteration of training the model,
we construct a 1-NN classifier and predict the target labels. The obtained accu-
racy per iteration is shown in Fig. 4 as Our method. In order to show the training
procedure, in each iteration, 10% of all samples are used (since when using all of
the data in an epoch, the training converges already in the first iteration). In addi-
tion, in order to show the effect of the geometry preserver, we compare the result
of our method against a neural network that only adapts source and target with
an adversarial method; i.e., we omit the effect of the geometry preserver from the
network; the corresponding results are shown in Fig. 4 as Only adaptation. It can
also be seen that by using the geometry preserver, the network will converge faster
than the alternative. Besides, we use the source and target samples in their origi-
nal space as training and test samples and predict the label set of target samples
using a 1-NN classifier; The results are also shown in Fig. 4 as Without change (It
is the results in the original space, i.e., without adaptation.). By comparing the
results, the effectiveness of the proposed method to adapt domains is self-evident.

Table 1. Classification results on 4 adaptation problem.

Rotation degree Our method Only adaptation Without change

15 1.0 + 0.0 0.865 + 0.0541 1.0 + 0.0

30 0.997 + 0.0064 0.804 + 0.0709 0.91 + 0.0

45 0.875 + 0.1891 0.692 + 0.0957 0.55 + 0.0

60 0.875 + 0.0532 0.563 + 0.1391 0.39 + 0.0

Finally, we perform a similar analysis as above in a more complex dataset,
by creating four versions of the 2D moon data set by rotating it by 15, 30, 45,



Towards Geometry-Preserving Domain Adaptation for Fault Identification 459

and 60 ◦C. A case of the source and target samples with a rotation degree equal
to 30 can be seen in the left bottom of Fig. 2. For each of these problems, a 1-NN
classifier in the constructed new feature space is used to predict the label set of
the target samples. We repeat this experiment for our method, only adaptation
(omitting the effect of geometry preserver) and without adaptation (applying
1-NN classifier in the original space). The results, in terms of the mean and
standard deviation, calculated after the 10 times run, are shown in Table 1.

5.2 LDA Setting

We examine two cases of LDA: one-missing and two-missing target classes during
the training. The first row of the Fig. 5 demonstrates a one-missing class scenario.
Figure 5a indicates that we do not have access to the training samples for class
3 (red samples). Nevertheless, in the constructed space shown in Fig. 5b, we can
observe that the test samples of class 3 are aligned with their counterparts from
the source domain. In other words, our method compensates for the absence of
samples of class 3 in the target domain by preserving the geometry information
while adapting domains.

Likewise, Fig. 5c shows the 2-missing scenario where we do not have access
to any samples of classes 2 and 3. The results shown in Fig. 5d shows that the
proposed method is capable of achieving the right adaptation, not only for the
available classes, but also for the missing ones.

(a) Training samples in the original space for
1-missing scenario

(b) Test samples in the constructed space for
1-missing scenario

(c) Training samples in the original space for
2-missing scenario

(d) Test samples in the constructed space for
2-missing scenario

Fig. 5. Two LDA scenarios, with 1-class-missing scenario in top row and 2-class-missing
in the second row. (Color figure online)
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6 Conclusion

In this paper, we propose a new method for limited domain adaptation, lever-
aging geometry information of both the source and target domains. We present,
as a work-in-progress one, results in the FDA setting confirming that the rela-
tionships between samples are preserved in the new feature space. After that, we
provide the results for LDA settings on toy datasets. According to the results,
maintaining geometry information within domains allows for the use of source
samples to compensate for the missing classes in the target domain. As the
next step, we plan to use this method to solve real-world problems, in partic-
ular identifying faults in an industrial system. In other words, by utilizing this
method, there is no need to wait for all types of faults to occur in a system
before developing a predictive model, but rather use data from other systems.
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Abstract. The increasing use of AI methods in various applications has
raised concerns about their explainability and transparency. Many solu-
tions have been developed within the last few years to either explain the
model itself or the decisions provided by the model. However, the number
of contributions in the field of eXplainable AI (XAI) is increasing at such a
high pace that it is almost impossible for a newcomer to identify key ideas,
track the field’s evolution, or find promising new research directions.

Typically, survey papers serve as a starting point, providing a feasible
entry point into a research area. However, this is not trivial for some fields
with exponential growth in the literature, such as XAI. For instance, we
analyzed 23 surveys in the XAI domain published within the last three
years and surprisingly found no common conceptualization among them.
This makes XAI one of the most challenging research areas to enter. To
address this problem, we propose a systematic approach that enables
newcomers to identify the principal ideas and track their evolution. The
proposed method includes automating the retrieval of relevant papers,
extracting their semantic relationship, and creating a temporal graph of
ideas by post-analysis of citation graphs.

The main outcome of our method is Field’s Evolution Graph (FEG),
which can be used to find the core idea of each approach in this field,
see how a given concept has developed and evolved over time, observe
how different notions interact with each other, and perceive how a new
paradigm emerges through combining multiple ideas. As for demonstra-
tion, we show that FEG successfully identifies the field’s key articles, such
as LIME or Grad-CAM, and maps out their evolution and relationships.

Keywords: Field’s evolution · XAI · Explainable AI

1 Introduction

In recent years, the usage of Machine Learning (ML) and Artificial Intelligence
(AI) techniques has increased greatly, especially as these methods are becoming
more and more popular across all aspects of life. From the efficiency and per-
formance standpoint, new algorithms and architectures are being continuously
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proposed, providing essentially day-by-day improvements. In particular, the last
decade brought the Deep Learning (DL) revolution; powered by hardware devel-
opments and enormous labeled datasets, these new models outperform, in many
tasks, not only classical ML approaches but also human experts.

However, much of the new power of ML methods come at the cost of creat-
ing models of very high complexity. While traditional methods, such as (shallow)
decision trees or linear regression, give the users a good understanding of how
they make their decisions, the more complex methods are opaque. Often known
as black boxes, they are not explainable by themselves. Although many such
black box models achieve high performance, the lack of transparency that comes
with it makes it so that they are not suitable in every setting. Given the desire
to take advantage of new developments enabled by AI in many domains, this
drawback is sometimes a deal-breaker, especially in safety-critical settings. In
a domain like healthcare, it is not easy to trust a model and accept its deci-
sion without knowing the reasons for the decisions made [28]; ultimately, it is
the human clinician who is responsible for the treatment, and they can only use
AI-based decision support systems that provide relevant medical evidence. Prog-
nostics and Health Management (PHM) is another interesting topic because of
its high operating, maintenance, and downtime cost. So predictive remaining use-
ful life and predictive maintenance are critical industry issues. Using AI and ML
algorithms is increasing in this area, like in other areas, but lack of transparency,
interpretability, understanding, and interpretation is one of the main challenges.
Companies and factories cannot rely on decisions that they do not know the
reasons for and can not understand why. Not only is this lack of trust related
to bias and lack of representation of the training datasets, but it also includes
adversarial attacks [14,19,34]. As an example, authors in [27] show that it is
easy to produce meaningless images, unrecognizable to humans, but such that
the DNNs classify them with 99.99% confidence. On the other hand, the right
explanation methods can help to significantly improve the model performance
or design a better architecture, as demonstrated in [52]. Generally, there are two
main motivations to develop methods that make black box models explainable:
1) understanding the reasons behind a decision to make the model trustable; 2)
having a better view of a model and its weakness, with the aim of debugging.

It is for those reasons that XAI is today one of the most popular and heavily
researched topics in AI. It is clear that the challenges are real, but significant
progress has been made in the last couple of years, in part due to cross- and
inter-disciplinary collaborations. This is readily visible in the rapid growth of the
number of publications within the field. For instance, more than 5500 research
articles (400 for survey papers) are returned by a Google Scholar search just by
using the phrase “explainable artificial intelligence” – within the year 2021 alone
(Fig. 1).

This explosion in popularity, however, creates unique challenges in terms
of understanding the current landscape, identifying common trends, comparing
solutions, and finding overlaps and gaps in state-of-the-art. This is an espe-
cially frustrating obstacle for newcomers into the field – which poses a danger
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Fig. 1. The statistics appeared in Google Scholar for the number of articles and review
articles published per year from 2017 to 2021, based on the search for blue lines: the
phrase “explainable artificial intelligence” and orange lines: the phrase “explainable
artificial intelligence” OR“explainable machine learning” OR “understanding artificial
intelligence” OR “understanding machine learning”, by year (Color figure online)

of creating narrow, hermetic, splintered societies; spelling disaster for the field,
which, by its very natures, requires broad and interdisciplinary collaborations
and perspectives. Among the survey articles in the area, some focus on the XAI
for rather specific topics, including medical [28,47] or natural language process-
ing [12]. Although domain-specific review articles have advantages, their biggest
problem is missing out on the ideas that have been successful on other data or
in other domains and could be applied to that specific domain. Also, among the
survey articles, there are many conflicts on how to categorize the methods in the
XAI field. In addition, there is no agreement on the most important articles in
the field; since there are so many articles, the vast majority are only cited by a
very small number of review articles.

To tackle the challenges explained above, we propose a systematic and univer-
sal approach that enables newcomers to identify the fields’ main ideas and track
their evolution. The remainder of the paper is organized as follows. Section 2 gives
an overview of related work. Section 3 presents the proposed method. Section 4
is dedicated to experimenting with details. Section 5 demonstrates the results.
Finally, Sect. 6 concludes the paper.

2 Related Work

In many domains, the number of published scientific papers rapidly increases
every year, and some researchers have suggested automating survey generation
via AI solutions. This is typically framed as a multi-document summarization, a
subset of natural language processing. Abstractive [25] and extractive [48] sum-
marizations are among the most common approaches. The idea of using cita-
tion graphs or citation links for analyzing the relations between papers has also
been explored before [1,9,50]. One common approach is leveraging citation sen-
tences to pinpoint important aspects of the papers. For instance, [33,45] exploit
a template-based framework and composes a template-tree. The latter crawls
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citation index databases such as PubMed and Semantic Scholar and analyses
the citation graph. However, more advanced methods to process the citation
graphs are still to be developed. For instance, it is not clear if all the citations
in a paper are relevant and reliable or if they share the same level of importance
in the context.

Although text summarization-based approaches have been relatively good
at producing a summary of related works, they are not able to make semantic
relationships between the papers or identify the evolution of the key ideas.

3 Proposed Method: Field’s Evolution Graph (FEG)

Our fundamental goal in this paper is to understand the “evolution” of XAI as
a field of research. We are particularly interested in identifying the key concepts
and ideas that shaped further development. We aim to express these by finding
a graph of relations between papers in XAI, allowing us to identify influences
and concepts that have been developed and improved over time, discover groups
and communities related to key ideas, etc.

The sheer volume of papers in the field makes this task infeasible if attempted
manually. Therefore, we are proposing an approach that allows us to (partially)
automate the task.

The key focus of our approach is analyzing the citations among papers since
in the scientific world bibliographic references are the most reliable source of
information about inspirations, extensions, development, and improvement of
ideas. Therefore, we first extract a graph network of paper relations, second, we
identify the important edges, and third, we analyze the resulting structure to
uncover the thread of the evolution of key concepts in the XAI field. The key
challenge, and the main focus of this section, is the discovery of different types
of edges and identifying how they indicate the evolution of ideas within the field.

Algorithm 1. Field’s Evolution Graph
1: Select a list of survey papers in the XAI field.
2: Extract their references using Semantic Scholar API.
3: Calculate the repetition of extracted references among those surveys (repetition

rate).
4: Pick those papers of step 3 that are cited by at least 25% of the survey list (Influ-

ential papers).
5: Rank them based on publication year, citation number, and repetition rate.
6: Draw a graph of citations between papers of the previous step.
7: Remove unnecessary links from the graph.
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3.1 Identification of Influential Papers

At first, we need a number of important and influential papers in this field. The
most obvious approach would be to start with highly-cited papers. However,
citations alone do not provide accurate and reliable results for several reasons.
First, the number of citations depends on the year of the publication, as well
as the venue, and does not necessarily accurately reflect the true importance
of the contribution. More importantly, many articles belong to more than one
domain, i.e., not only XAI, and their citation may be due to importance for
other domains. Finally, some of the important papers just focus on a specific
issue or data and, despite their importance in this area, will be referenced by
a smaller number of articles. Therefore, there is a need to use other features to
identify these articles.

Instead, we propose a different approach to obtaining such papers, namely,
by exploring the existing surveys. This is feasible in an exploding area like XAI
due to the available number of review articles published every year. We select
a number of recent survey articles, based on popularity; then, we extract their
references (by using Semantic Scholar API), and calculate the repetition of each
paper among those survey articles. Papers with a high repetition count, i.e., those
included in many surveys, are likely to be the most influential and important
ones in the field. Thus, three features, including citation rate, repetition count
in surveys, and publication year, have been used in identifying key articles.

3.2 Citation Importance

The next step is to find the relations between the papers we have identified as
key papers, revealing a structure within the XAI field. In particular, we aim to
discover how different methods have evolved in this area over time. We would
like to track the evolution and incremental improvements of an idea, starting
from the original paper. We also want to show how the combinations of existing
methods are effective in shaping new methods and identify when it happens.
Finally, we want to group the methods by revealing the different approaches in
XAI in an automatic way.

The starting point is to analyze citations since they are the most direct
measure of influence across papers. By considering key articles as nodes and
references’ status as edges, a graph of the relationships between these articles is
formed. A directed graph can show these relations perfectly.

Articles refer to each other in different ways, and those references can have
different meanings. For example, depending on the section (such as background,
method, experiments, results, etc.) where a citation occurs, the importance and
influence across papers vary greatly. Looking back at our goal, we do not consider
all these types of citations. In particular, citations referring to the methodological
relationships are the most important for our purpose – since it is the methodol-
ogy where new ideas and solutions are formed. There are many ways of assessing
citations. One of them is to do it by hand, which is time-consuming and costly,
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especially in a large number of articles. The automatic alternative is Seman-
tic Scholar, which provides high-quality citation data via API [16]. It indexes
published peer-reviewed scientific literature across various disciplines, currently
covering more than 187 million research papers. Semantic Scholar integrates a set
of query and analytics features, several of which have been identified as useful for
our study. It offers an API to pull data regarding individual records, references
list, and citation data for each indexed paper. It also classifies paper references
into different reference types: background, results, methods, or without a label.
However, since the whole procedure is processed automatically, the accuracy of
citation data does not seem perfect, and some errors are expected, thus, some
manual post-processing is required.

3.3 Visualization of FEG

Visualization is a useful and efficient way in many fields, especially in analysis. It
gives a higher chance of discovering insights when interacting with data. Graphs,
on the other hand, are a good tool for showing the connections between the
components of a set. Following the directed edges from one node to another
provides useful information about the type and manner of connection between
two nodes. We use FEG plots to show the relevance of articles. Although there
are various methods for examining and analyzing graphs, we have used graph
visualization and analysis manually at this stage of the work.

4 Experiment

We conduct a relatively small-scale experiment where we evaluate the feasibility
of the proposed approach before scaling it up.

The first step toward obtaining the list of key articles in the XAI field is to
analyze recent surveys. Therefore, we started from a list of 23 review articles
published between 2018 and 2021. We then analyzed all the references present
in those review articles, obtaining an initial list of more than 1800 potentially
interesting papers. Next, we ranked the articles in this list using the three impor-
tant features: publication year, citation number, and repetition rate (i.e., how
many selected review articles referred to that article). There are two significant
findings regarding this list:

– There is a very long tail of papers that were only cited by one of the selected
survey papers – more than 1400 papers were only cited once among the 23
surveys. Almost 900 of them are published before 2018, which means that
all of those papers were published before all the surveys, but they have been
only noticed by one of them.

– Only 9 papers were cited by half (or more) of the surveys and 8 of them were
published before 2018. This means that the consensus among the surveys
about important papers is virtually non-existent. An extremely small ratio
(half a percent) of articles has been agreed upon by the majority of review
articles.
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The above observations show that using these surveys for finding influential and
important articles in the field is problematic, to say the least. It is very likely
that, by relying on input from a handful of such papers, a new reader would get
a very biased and incomplete picture of the field.

Instead, we believe that some of these issues can be diminished, even if not
completely removed, by aggregating data from multiple surveys.

5 Results

Figure 2 shows the FEG plot for all the connections of selected articles: a subset
of key articles: those which are referenced by at least 25% of the reviews [2–
8,10,11,13,15,17,18,20–24,26,27,29–32,35–44,46,49,51–55].

Fig. 2. FEG plot: links between extracted key articles (only those referenced by at
least 25% of selected review articles). The directed edge from node A to node B means
article A cites article B. The radius of each circle indicates the number of review articles
referencing this paper. The vertical axis refers to the time (the upper, the older)

As discussed above, not all the links between articles are actually meaningful.
For the purpose of tracking the evolution of the XAI field, we want to focus on
methods that significantly influenced each other. To this end, we used semantic
Scholar to label the links. A total of 158 links were found among the articles,
out of which 92 included methodologies, 12 included results, and 91 included
backgrounds (note that some links include multiple tags). Finally, 32 of the
links are unlabeled. For our work, links with the methodology label are the most
important; a bit less than 60% of the links have this label. Accordingly, in Fig. 3,
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Fig. 3. FEG plot: links and labeled methods based on Semantic Scholar result, between
extracted key articles referenced by at least 25% of selected review articles.

we keep the edges labeled “methodology” for further consideration and remove
the rest.

One can immediately notice in Fig. 3 that there are two (small) disconnected
sub-graphs, and a large part remains connected. Those two sub-graphs can be
representative of two different types of methods in this field. By analyzing the
articles of these two groups, it can be seen that one of those represents methods
related to providing prototypical examples as an explanation, while the other
is related to the use of image captioning as an explanation. Those findings are
discussed in more detail in the following subsections.

5.1 Example-Based Methods

One of the key ideas we found from FEG plots is example-based methods. The
best example of this category is the work of [7] who propose to select a few
instances from the dataset; those that are a good representative of data can be
a way to make a better understanding dataset. These kinds of methods, known
as prototype methods, are usually used as a preprocessing part. This method
suggests that the desired prototype or representative of class C should cover as
many training data of class C as possible while covering as few training data as
possible of classes other than C. In addition, it should be sparse. An interpretable
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representative of a dataset must not only contain examples of each class, but it
is also necessary to provide some criticism samples. The criticism can explain
what is not captured by prototypes. For instance, [20] develop the maximum
mean discrepancy criticism (MMD-critic) method for prototype Selection and
criticism motivated by the Bayesian model criticism framework.

5.2 NLP-Based Approaches

The second class of ideas we can infer from FEG plot are natural language
processing (NLP) based techniques. These methods provide a solution to explain
the model decisions. The main application is creating a text to describe an image,
known as image captioning. The four papers forming the rightmost sub-graph
in Fig. 3 are examples of this class. Being able to describe the image from the
extracted features can also be approached to make the feature production model
understandable.

Inspired by attention-based models, [51] introduced a method to describe an
image. Unlike other models in image captioning, which use object detectors or
represent images as a single feature vector from the top layer of a pre-trained
convolutional network, their model learns hidden alignments from scratch. This
model extracts features used by the encoder from the lower convolutional layer
instead of the fully connected layer. This way, the decoder can be more focused
on the parts of the image that are important. The learned attention in the
decoder can be used as a solution to visualize the model generation process and
make this model interpretable. In other words, by using those attention, one can
show which parts of the image are the most important contributors to producing
each word; this provides an understanding of how the model works.

On the other hand, [17] discusses that a textual description of an image should
not only describe that image correctly but should also be class discrimination.
Explanations produced by this model are not only conditioned on the images but
also conditioned on the respective classes. The authors used a discriminative loss
function to encourage captioning sentences to correspond primarily to features
that are class-specific. Although this model produces sentences that are discrim-
inative as well as descriptive, it is not able to show which part of the image is
related to the features mentioned in the sentences. Moreover, it is possible that
some features do not appear in an image and just come to the sentences based
on being class discriminative.

5.3 Feature Importance Techniques

The largest group of ideas belongs to feature importance techniques, specified in
the FEG plot as a sub-graph formed in Fig. 3 contains a number of articles that
are all linked together. Disentangling those relations is going to be more challeng-
ing and requires a more in-depth analysis than Sects. 5.1 and 5.2. First, however,
it is important to notice that almost all articles in this group use feature impor-
tance to explain either the model as a whole or individual decision. They have
taken different approaches to do so; however, it is clear that they are all related.
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Fig. 4. FEG plot of the articles in features importance approach. The blue nodes
belong to the model-specific approach, and the red nodes belong to the model-agnostic
approach. The gray node represents a paper that does not fit either category; notably,
it is linked to both aforementioned approaches. (Color figure online)

By subjective visual analysis, one can notice that papers [52] and [42], together
with [4], form important “hubs”. So there are two main approaches in between,
which we will discuss in the following, and how the formation, expansion, and
evolution of methods in these two.

By focusing on these, and the papers that cite them and ignoring the rest,
one can obtain the FEG plot presented in Fig. 4. We thus now focus on analyzing
this group of papers.

Model-Specific. One way to explain a model and its decisions are to show
which features play the most critical role in output generation. Some methods
are proposed on specific models to show the influential features of making a
decision, which we will discuss. In 2013, [52] proposed a method to visualize the
convolutional layers. They used a multi-layer DeconvNet to map the activities
of each layer to the input of that layer. By doing so and displaying it in the
original pixel space, one can identify the parts of the input that have the most
impact on that layer. Doing this for the last layer can provide a strong visualiza-
tion of the input that shows the important pixels for each decision. One of the
problems with this method is that the max-pooling operator is non-invertible.
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The authors, therefore, approximated the inverse of this operation by producing
Max Locations Switches to record the location of maximum value within each
pooling area to solve this problem.

As the name implies, this method is applied to convolution layers. Following
this, another method was presented by [42] to obtain the class saliency map from
the gradient of the score of class c(Yc), with respect to the input image I. It can
be shown that except for the RELU layer, DeconvNet effectively corresponds
to the gradient backpropagation through a ConvNet. Gradient backpropagation
applies to visualize the class score neurons in the final fully-connected layer. It
means this method can be applied not only to a convolutional layer but also to
any other type of layer. In this sense, it is seen as a generalization of [52]. In
more details, this method obtains the class saliency map from the gradient of the
score of class c(Yc, with respect to the input image I, by taking the magnitude
of it and a maximum along all its channels. If the values of the derivation of
Yc w.r.t the I is close to zero, it means that small changes in that part of the
image have no effect on determining that output class. The values which are high
in magnitude mean that small changes in that pixels can have a major impact
on the result of score class c. Note that for obtaining that gradient, instead of
back-propagating on the loss, it should be backpropagation on the score Yc.

Later, [44] offered another improvement in [52] by eliminating the need for
switches and replacing max-pooling layers with convolution’ and proposed a
combination of methods in [52] and [42]. The difference between’ deconvolution’
[52] and backpropagation [42] is handling backpropagation through the rectified
linear (ReLU) non-linearity. While deconvolution computes gradient based on
the top gradient signal, backpropagation computes this based on negative entries
of the bottom data. In the case of the ReLU non-linearity, this amounts to setting
to zero certain entries based on the top gradient in deconvolution and bottom
data in backpropagation. [44] combined them and zerosout the negative gradients
during backpropagation. This method, called guided Backprop or guided-grad,
often produces more visually appealing and less noisy results and can be used
even without’ switches’ (Max Location).

Class Activation Maps (CAM) is also trying to understand which pixels of
an image have more contribution to the final output of the model [54]. This
method replaced fully connected layers at the very end of the model with the
Global Average Pooling (GAP) layer. This layer averages the activations of each
feature map and concatenates them as a vector and a weighted sum of this vector
is fed to the final soft-max loss layer. According to [42,52], each unit is expected
to be activated by some visual patterns. Thus, the most relevant part of an input
image (to a particular class) is identified by up-sampling CAM to the size of the
image.

Although the output of the CAM is class discriminative, the network must
be fine-tuned in this method. Also, fully-connected layers are replaced, so it is
not applicable to all networks. Grad-CAM [40] as a combination of the saliency
map [42] and CAM [54] was introduced to deal with these limitations. Grad-CAM
calculates gradients of any class score with respect to the activations maps of the
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final convolutional layer. Then, similar to CAM, score importance is obtained by
averaging the gradients across each feature map. Grad-CAM can only produce
coarse-grained visualizations, therefore the authors have also combined guided-
grad [44] with Grad-CAM(via element-wise multiplication) and propose Guided
Grad-CAM which is able to highlight fine-gradient details.

Model-Agnostic. Although the methods described in the previous approach
apply to a wide range of neural networks, they are all model-specific. However,
several feature importance-based methods are model-agnostic and therefore can
be applied to different models (the left part of Fig. 4).

In particular, [4] proposed a procedure to understand the decisions for every
single instance by obtaining local explanation vectors based on Gaussian Process
Classification (GDP). Local gradients, as explanation vectors, determine how a
data sample should be changed to change its predictive label and find the most
influential features in the decision of the model for a particular instance. This
technique can be applied to any classification method.

LIME [35] is also a well-known method to generate a local explanation of
any black-box model. This method uses local surrogate interpretable models to
approximate the prediction of the model. Its main idea is that train an accurate
black-box model and then explain the model based on the simple and easy-to-
understand model such as linear or logistic regression locally. LIME generates
some neighborhoods of the instance that has to be explained, labels them by
the black-box model, and weights them based on their vicinity to the original
instance. Finally, an interpretable model applies to these weighted instances and
their predicted labels to create the explanations.

6 Conclusion

We propose a systematic solution for newcomers who are interested to enter a
new research area but face information overload due to the intractable number
of publications. Our solution is able to efficiently identify the key group of ideas
and track their evolution. This is essential in fields such as XAI that are evolving
at an extremely high pace. We show how FEG can be used to uncover different
key concepts in XAI, their temporal evolution, and how these ideas relate to each
other. For example, the FEG created using our approach identifies three different
branches within XAI: the example-based approaches, the natural language-based
approaches, and the feature importance-based approaches. FEG can also show
how these ideas are formed and how mature they are. For instance, we can see
how the guided-grad idea [44] evolved from the DeconvNet idea [52] or how the
grad-CAM idea [40] is formed by combining CAM [54] and Guided-grad [44].

This paper is a work-in-progress. We ran the experiments on a limited number
of articles in the field, removed irrelevant citations based on Semantic Scholar
labeling, and analyzed the remaining graph manually. Nevertheless, we believe
already these results are going to be of interest. However, at larger scales, the
complete process can be automated by natural language and graph processing
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techniques. Another direction is the identification of the key papers in a more
automatic way by using metrics and statistics in (social) network analysis. These
methods can provide some important information on the relation between nodes
and can also identify the important and influential nodes automatically.
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Abstract. In this work, we propose a method for computing general-
ized frequent subgraph patterns which is based on the graph edit dis-
tance. Graph data is often equipped with semantic information in form
of an ontology, for example when dealing with linked data or knowledge
graphs. Previous work suggests to exploit this semantic information in
order to compute frequent generalized patterns, i.e. patterns for which
the total frequency of all more specific patterns exceeds the frequency
threshold. However, the problem of computing the frequency of a gener-
alized pattern has not yet been fully addressed.

1 Introduction

Nowadays, an ever-increasing amount of graph data is collected, often in form of
linked data or knowledge graphs. Linked data, and especially knowledge graphs,
often come with an ontology, which provides background knowledge about the
entities and entity relations that appear in the dataset. Naturally, the question
arises if it is possible to exploit the semantic information given by an ontology,
in order to improve the performance of data mining methods on graph data.

A common graph data mining task is to generate the set of frequent subgraphs
of a graph database. The frequent subgraph mining problem (FSM) has many
applications, ranging from database compression [9] to machine learning [6].
To improve the results of FSM, the semantic information provided by a label
hierarchy or taxonomy can be used as background knowledge.

As an example, suppose the graphs in a database contain vertex labels such as
“donkey”, “rabbit”, “carrot” or “cabbage”, and suppose these four vertex labels
do not appear frequently in the database. If there is a label hierarchy which
tells us that “donkey” and “rabbit” are herbivores, while “carrot” and “cab-
bage” are vegetables, then we can exploit this semantic information in order to
find frequently occurring patterns in the database, such as “herbivore eats veg-
etable”. These patterns are called generalized patterns. The problem of frequent
generalized subgraph mining has a long history [4,10] and recently gained more
traction, again [7,12,14].

Definition 1 (Frequent Generalized Subgraph Mining (FGSM)). We
say that there is a generalized subgraph isomorphism (GSGI) between two graphs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1753, pp. 477–483, 2023.
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H and G if G contains a subgraph H ′ (up to isomorphism) s.t. H ′ can be con-
structed from H by replacing any label of H by a more specific label w.r.t. the
label hierarchy. Here, the root in the label hierarchy is the most general label. A
graph H is a frequent generalized subgraph w.r.t. a graph database D if there are
at least t graphs G1, . . . , Gt in D s.t. there is a GSGI between H and Gi for
any i = 1, . . . t. The FGSM problem is then to compute the set of all frequent
generalized subgraphs of D.

In order to determine the frequency of a generalized pattern, we need an
algorithm for solving the generalized subgraph isomorphism problem (GSGI).
Unfortunately, to our knowledge, no previous work gives an algorithm for the
GSGI problem. A naive solution to GSGI solves a subgraph isomorphism (SGI)
problem with input H ′ and G for every specialization H ′ of H. Since the number
of specializations of H is exponential in the size of H, this solution is not a feasible
method for solving GSGI.

In this work we reduce GSGI to the graph edit distance problem (GED),
thereby solving GSGI by a single computation of a specific GED between two
graphs. Subsequently, we use a heuristic solver for GED within a frequent sub-
graph mining framework to enumerate frequent generalized subgraphs of arbi-
trary labeled graph databases.

2 Reduction of Generalized Subgraph Isomorphism
(GSGI) to Graph Edit Distance (GED)

The graph edit distance (GED) is a measure for the dissimilarity between two
labeled graphs [15]. Two graphs H and G are interpreted to be dissimilar w.r.t.
GED if, for any sequence of edit operations that transforms H into G, the cost
incurred by the sequence of edit operations is high. We remark that, like SGI and
GSGI, GED is NP-hard. In fact, this follows immediately from Eq. (1) below.
However, there exist efficient heuristics to compute GED in practice [1–3].

Definition 2 (Graph Edit Distance). Let H and G be labeled graphs, let Σ
be a finite label alphabet, and let ε be a symbol which is not an element of Σ.
Denoting Σ ∪ {ε} by Σε, we call a function

c : Σε × Σε → [0,∞)

an edit cost function if
∀α ∈ Σε : c(α, α) = 0.

An edit cost function assigns an edit cost to each edit operation. Table 1 contains
a comprehensive list of all considered edit operations and their associated edit
costs. An edit path π between H and G is a finite sequence of edit operations
(oi)k

i=1 that transforms H into a graph π(H) that is isomorphic to G. The cost
incurred by π is defined as

c(π) :=
k∑

i=1

c(oi),
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Table 1. Edit operations and their associated edit costs. Deleting an edge {u, v} does
not delete u or v, and inserting an edge {u, v} is only possible if u and v have been
previously inserted or are vertices of H.

Edit operation Edit cost

Insert an isolated vertex with label α ∈ Σ c(ε, α)

Delete an isolated vertex u c(λ(u), ε)

Substitute the label of a vertex u by α ∈ Σ c(λ(u), α)

Insert an edge with label α ∈ Σ c(ε, α)

Delete an edge e c(λ(e), ε)

Substitute the label of an edge e by α ∈ Σ c(λ(e), α)

where c(oi) denotes the edit cost of the edit operation oi. We denote the set of edit
paths between H and G by Π(H,G), and define the graph edit distance between
H and G as follows:

GED(H,G) := min
π∈Π(H,G)

c(π).

The GED can be used to solve the subgraph isomorphism problem (SGI) by
imposing the following three constraints on the edit cost function:

∀β ∈ Σε : c(ε, β) = 0 (free insertions)
∀α ∈ Σ : c(α, ε) > 0 (paid deletions)

∀α, β ∈ Σ : c(α, β) > 0 ⇐⇒ α 	= β (paid substitutions)

We call the graph edit distance between two graphs the subgraph edit dis-
tance (SGED), if the edit cost function obeys these three constraints. For any
two graphs H and G, we get

H 
 G ⇐⇒ SGED(H,G) = 0, (1)

where H 
 G is a shorthand for H being subgraph isomorphic to G. Thus, the
SGI problem can be solved using the SGED problem.

Assuming the edit cost function obeys the triangle inequality in addition to
the three constraints above, we get

H ′ 
 H =⇒ SGED(H ′, G) ≤ SGED(H ′,H) + SGED(H,G) = SGED(H,G).

In other words, SGED is monotone in its first argument. Many algorithms for
frequent subgraph mining rely on the monotonicity of SGI in its first argument,
and SGED also being monotone in its first argument ensures that SGED can be
used as a drop-in replacement for SGI in many pattern mining algorithms.
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To solve the generalized subgraph isomorphism problem (GSGI), we impose
the following four constraints on the edit cost function:

∀β ∈ Σε : c(ε, β) = 0 ( free insertions)
∀α ∈ Σ : c(α, ε) > 0 (paid deletions)

∀α, β ∈ Σ : c(α, β) > 0 ⇐⇒ α 	= β and α is not more general than β
(paid substitutions)

∀α, β ∈ Σ : c(α, β) = 0 ⇐⇒ α = β or α is more general than β
(free specializations)

With these constraints, we get

GSGI(H,G) = true ⇐⇒ GED(H,G) = 0.

Thus, the GSGI problem can be solved using the GED problem with an edit
cost function that satisfies the four constraints given above. We can then use
this solution to the GSGI problem in order to solve the frequent generalized
subgraph mining problem (FGSM). Alternatively, we can impose the following
four constraints on the edit cost function c for some M > 0 large enough:

∀β ∈ Σε : c(ε, β) � M (cheap insertions)
∀α ∈ Σ : c(α, ε) = M (forbidden deletions)

∀α, β ∈ Σ : c(α, β) = M ⇐⇒ α 	= β and α is not more general than β
(forbidden substitutions)

∀α, β ∈ Σ : c(α, β) � M ⇐⇒ α = β or α is more general than β
(cheap generalizations)

Then we get
GSGI(H,G) = true ⇐⇒ GED(H,G) < M.

3 Application to Generalized Subgraph Mining

The four constraints for the generalized subgraph edit distance leave us the free-
dom to choose insertion costs and specialization costs as we wish. We can use
this freedom in order to infuse additional background knowledge into the GED
computation. As an example, suppose a label hierarchy has been computed by
a hierarchical clustering of all vertex labels. Then each leaf node in the cluster
hierarchy corresponds to a label, and each non-leaf node corresponds to a gener-
alized label which does not appear in the database. Since the cluster hierarchy is
a dendrogram, for any generalized label α, we know the distance d(α, β) between
α and any label β which is more specific than α.

We can infuse these distances into the GED computation as follows: We set
the cost c(α, β) of substituting a generalized label α by a more specific label
β to d(α, β), while the remaining edit costs are chosen s.t. the four constraints
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Fig. 1. A section of the dendrogram created by clustering chemical elements. The
chosen section of the dendrogram shows a cluster which only contains halogens.

above are satisfied. Using these edit costs, the collection of graph edit distances
between a generalized pattern H and all graphs G in the database yields an
interestingness measure for H. Large values for GED(H,G) indicate that H
is a rather specific pattern, while smaller values indicate that H is a rather
general pattern. Since generalized patterns are arguably interesting if they are
both frequent and specific, infusing label distances into the GED computation
yields a method for ranking the frequent generalized subgraphs. We note that the
mere frequency of generalized patterns can not be used for ranking them, since
maximally general patterns have the highest frequency but are not interesting.

In most cases, label hierarchies do not specify label distances. However, for
any generalized label α, we can always set the distance d(α, β) between α and
any more specific label β to the length of the unique path between α and β in
the hierarchy tree.

We implemented a frequent generalized subgraph miner by making use of
the C++ library GEDLIB [3] to compute graph edit distances. We tested our
method on the MUTAG [5] and PTC-MR datasets [8], which contain graphs
representations of chemical compounds, in the format of Morris et al. [13].

To compute a label hierarchy on chemical elements, we use the inter-cluster
distance between clusters of chemical elements given by Leal et al. [11]. This
inter-cluster distance has the property that many of the resulting clusters cor-
respond to common groups of elements. Figure 1 shows a small part of the den-
drogram which is the result of hierarchical clustering when using this distance.
Our preliminary experiments confirm that FGSM can uncover frequent patterns
that are not found by frequent subgraph mining. An example of our findings is
illustrated in Fig. 2.
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Cl

NO2
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NO2
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NO2

Fig. 2. The two molecules on the left appear as subgraphs in the MUTAG database,
while the graph on the right is a generalized pattern. Both molecules are infrequent for
a relative frequency threshold of 5%, while the generalized pattern is frequent w.r.t.
the same frequency threshold.

4 Conclusion

Frequent generalized subgraph mining is a variant of graph mining which exploits
the semantic information provided by a label hierarchy. In this work, we propose
a method for solving FGSM by using graph edit distance computations. Our
method imposes constraints on the edit cost function in order to encode the
background knowledge given by the label hierarchy. Since these constraints do
not fully determine the edit cost function, we are free to choose the values for
a subset of the edit costs. We have seen that this freedom of choice can be
exploited to achieve additional goals. For example, we were able to assign an
interestingness measure to each frequent generalized subgraph by choosing the
values for selected substitution costs.

As an outlook, we note that edit cost functions are not restricted to model
label hierarchies, and thus graph edit distances are a powerful tool for including
domain knowledge beyond label hierarchies into graph mining procedures. While
we don’t include extensive experiments in this article, the source code of our
mining algorithm is available at https://github.com/RichardPalme/fasm.
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