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Abstract. Emergency Departments (EDs) are a fundamental element
of the Portuguese National Health Service, serving as an entry point for
users with diverse and very serious medical problems. Due to the inher-
ent characteristics of the ED, forecasting the number of patients using
the services is particularly challenging. And a mismatch between the
affluence and the number of medical professionals can lead to a decrease
in the quality of the services provided and create problems that have
repercussions for the entire hospital, with the requisition of health care
workers from other departments and the postponement of surgeries. ED
overcrowding is driven, in part, by non-urgent patients, that resort to
emergency services despite not having a medical emergency and which
represent almost half of the total number of daily patients. This paper
describes a novel deep learning architecture, the Temporal Fusion Trans-
former, that uses calendar and time-series covariates to forecast predic-
tion intervals and point predictions for a 4 week period. We have con-
cluded that patient volume can be forecasted with a Mean Absolute Per-
centage Error (MAPE) of 5.91% for Portugal’s Health Regional Areas
(HRA) and a Root Mean Squared Error (RMSE) of 84.4102 people/day.
The paper shows empirical evidence supporting the use of a multivariate
approach with static and time-series covariates while surpassing other
models commonly found in the literature.

Keywords: Time series · Emergency department · Machine learning ·
Temporal fusion transformer · Forecasting · Manchester triage system ·
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1 Introduction

The forecast of the number of patients who use emergency services daily is
essential to determine in advance the human resources needed at hospital Emer-
gency Departments (ED). Multi-step ahead predictions allow hospital managers

This work was partially supported by the strategic project NOVA LINCS
(UIDB/04516/2020), the FCT project DSAIPA/AI/0087/2018 and the Carnegie Mel-
lon University - Portugal FCT project CMU/TIC/0016/2021.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 71–88, 2023.
https://doi.org/10.1007/978-3-031-23618-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23618-1_5&domain=pdf
http://orcid.org/0000-0001-5090-0216
http://orcid.org/0000-0003-3071-6627
https://doi.org/10.1007/978-3-031-23618-1_5


72 F. M. Caldas and C. Soares

to organise rotation schedules and diminish waiting times in urgent care facili-
ties [21,39]. When not accounted for, overcrowding can lead to a decrease in the
quality of patient care and worse clinical outcomes [5,20]. From a macro point
of view, the influx in the emergency department combines an expected num-
ber of people who are taken to the emergency room with a very serious illness,
for example, heart attack, with people that use the emergency hospital to deal
with non urgent problems, such as common cold, strained muscles, or to deal
with problems associated with chronic illness [20,42]. The most serious cases are
reasonably constant over time, and, predominantly, people in life threatening
conditions have no choice but to go to emergency care, thus the indicators of a
rise in patients with serious illnesses might not be the same for non urgent users.
A large number of patients that resort to urgent care are not, however, urgent,
according to the Manchester Triage system, used in the Portuguese National
Healthcare System. Roughly 40% of the patients are classified during triage at
the green/blue level, which means not urgent. Unlike more urgent patients, the
influx of green/blue patients has several factors that follow well-defined cycles.
For example, it is easy to identify that the day with the most influx of non-urgent
patients is Monday, with a smaller number of patients pursuing emergency care
during the weekend [4,19,32]. To combine the predictive power of Deep Neural
Networks with the explainability usually reserved for simpler algorithms, we will
use a recently developed machine learning model to predict the influx of non-
urgent patients: the Temporal Fusion Transformer (TFT)[26]; and study which
variables, time-series or not, had the most impact on the model, and thus which
are most relevant to predict daily patient volume.

In the following section, we will perform a brief literature review of the work
done to tackle this problem, followed by a section in which we display the data
and offer some exploratory analysis to obtain a better understanding of the
dataset. In Sect. 4, the methodology of the experiment will be displayed, pre-
senting the goals, the forecast horizon, and the forecast model. In the results
section, we perform a comparison of the TFT model with other known models
in the literature, followed by an analysis of covariate importance and attention
weights. Finally, the conclusions of this study are drawn, acknowledging the
strengths and limitations of the TFT model, and proposing future work.

2 Literature Review

Previous studies have examined the multi-step forecasting of daily patient vol-
umes [10,21]. Most focus is on the use of classical statistical tools for temporal
linear regression such as moving averages [28], and their many extensions, namely
ARIMA, SARIMA or VARIMA [3,7,34,40]. In recent years, with the advent of
machine learning, newer studies have been conducted that use neural networks
[21,43], or otherwise other machine learning techniques to tackle the same prob-
lem [29,33,37]. From the use of Feed-forward Neural Networks [21,29], to Recur-
rent Neural Networks [15,22], 1-D Convolution Neural Networks [35], and later
to Long Short-Term Unit (LSTM) [15,36], there has been a constant advance
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in the field, from linear models to deep neural network models. In most studies
using ARIMA and its variants, it was found that calendar variables (day, day of
the week, holidays) have a significant contribution to model results [6,17,21,39].
Weather data, such as temperature and rain, have shown predictive power for
ED arrivals with respiratory problems [29], but in others studies that analysed
the whole spectrum of ED visitors, it is either not a significant variable, or it
could be replaced by calendar variables, e.g. month of the year [17,39]. This
level of covariate interpretability is one of the frequent drawbacks of Neural Net-
works, alongside the failure to recognize long-term dependencies in time-series.
One specific device that addresses both problems is the Attention Mechanism
[38]: simply put, it evaluates long-term dependencies and also represents how
each time-step impacts the model’s prediction. Attention has been used as part
of a specific Neural Network family of architectures called Transformers, that
has shown impressive results in the Natural Language Processing field [9,41]. In
the literature, we found only one example that used a Temporal Fusion Trans-
former model to predict Emergency Department (ED) volume in one hospital
for one day ahead [31]. While not being the only work that performed only daily
predictions [33,37], we find that a longer forecasting window produces increased
value for hospital management and poses a different challenge from a machine
learning perspective, as seasonal fluctuation needs to be fully represented, and
common forecasting models tend to decrease in predictive quality as the forecast
period becomes wider.

3 Data Analysis

In this section, we will present the database used in this work. The data was
obtained from the public database “Transparência SNS”1 and refers to daily
data of care in primary health centres together with daily data of consultations
and waiting times in hospitals’ emergency departments (ED) across Portugal,
divided by Regional Health Area (RHA). The time analyzed covers the time
period from November 1st, 2016 to February 20th, 2022; with 6353 individual
observations and 16 variables per observation that define, among other things,
the Regional Health Area (RHA), Área Regional de Saúde (ARS) in Portuguese,
of the observation. In total, the dataset contains information regarding the daily
volume of patients in emergency care, the number of scheduled and unscheduled
consultations in primary health facilities, the daily number of patients arriving
at the Emergency Department (ED) with respiratory issues, the waiting times
between triage and the first medical evaluation and categorical variables pertain-
ing to calendar information, such as weekend, day of week or national holidays.

In Fig. 1 we can observe the weekly variation in the number of non-urgent
patients, as well as the volume shift according to RHA. It is visible that despite
having different levels of affluence, the different RHA follow the same trend,
with peaks of affluence occurring on Monday, and reduced volume on weekends
1 https://transparencia.sns.gov.pt/explore/dataset/atividade-sindrome-gripal-csh

https://transparencia.sns.gov.pt/explore/dataset/atendimentos-nos-csp-gripe.

https://transparencia.sns.gov.pt/explore/dataset/atividade-sindrome-gripal-csh
https://transparencia.sns.gov.pt/explore/dataset/atendimentos-nos-csp-gripe
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Fig. 1. Time series from January, 2019 to February 20, 2020. We can observe the weekly
cycle, as well as annual trends and volume variation according to Regional Heath Area.
The weekends are marked with grey lines, corresponding with diminishing number of
non urgent patients searching for emergency care.

and during the Summer months, usually associated with vacations. This aspect
of the data served as motivation for the application of a non-linear model over
multiple time series, unlike well-established models such as ARIMA.

Another interesting feature of the data is the observation of the period in
which Portugal was affected by the COVID-19 disease and took containment
measures that reduced travel and in person work: in this period (10/03/2020–
1/08/2021) the percentage of non urgent visits in the RHA of Lisboa e Vale do
Tejo dropped from the normal value of 48% of the total to 40%, with more dra-
matic drops for example in the Algarve RHA from 45% to 30% at the beginning
of the pandemic. This dramatic period influenced the way people used emer-
gency services, and it can demonstrate how external factors influence people
going to the emergency room. This shift, associated with the general decline in
the number of people in urgent care, urgent or not, represents a distribution
change in the time series, therefore making it exceedingly difficult to predict
the COVID period using only pre-COVID information. In the same way, we can
conclude that this COVID period does not have useful information about the
post-COVID future, and, in fact, we have experimentally verified that the qual-
ity of the models decreased with the introduction of the COVID period, thus
leading to the decision to exclude this temporal section from the training set.

It is, in a certain way, clear that the prediction of the influx in emergency
rooms can be useful for a more efficient management of hospital services, but
there is visible value added at user level, in the sense that they will get better
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and faster care [30]. To sustain this claim, we can observe the impact that the
number of non-urgent patients has on the waiting time before being treated
in the Emergency Department. In Fig. 2, for the RHAs with the highest daily
affluence, we observe a positive, moderate to strong correlation between the
number of non-urgent patients and the waiting time. This is an indicator, not
entirely unexpected, that ED overcrowding of non urgent patients can lead to a
substantial increase in the average waiting time for all patients, urgent or non
urgent.

Fig. 2. Correlation between waiting times and non urgent patient volume. A strong
to moderate correlation exist between these two variables, therefore implying that
overcrowding increases waiting times.

4 Methods

4.1 Study Setting and Metrics

Now that we have presented the data used in this paper, let us define, and
expose, the reasoning behind the rules by which we will create and evaluate the
model.

– Multivariate forecasting: we want a model that leverages data and fore-
casts across different Regional Health Areas. In most research in the area,
models are usually restricted to certain geographic areas, and a more general
model, capable of working across different regions, might be able to uncover
new interactions in data and increase robustness.
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– Long-time forecast: In order to add value at the hospital management level,
the forecast of the number of patients should not be limited to the following
day or week. In this paper, we have chosen a 4-week (28-day) forecast, consid-
ering that it allows breathing room for management and personnel decisions.
To the best of our knowledge, few works have worked on such an extended
forecast horizon [6,7], with only partial success.

– Probability prediction: besides obtaining an estimate of the most likely
value in the future, a model that presents a probability density function on
the prediction conveys much more information. Of special value is, for exam-
ple, the definition of confidence intervals, which can transmit to those who
use the model an idea of the confidence, or precision, of the model in its
estimation. Almost all classical linear methods, such as ARIMA or Exponen-
tial Smoothing, are able to deliver confidence intervals over the predictions.
However, the same is not true for common Neural Networks architectures.

– Explanatory variables: Importantly, we want to evaluate the predictive
capacity of different variables, determining up to which passed time-step the
model finds predictive value or which covariates, categorical or numerical,
have a significant impact on the prediction.

The covariates that we intend to evaluate as explanatory variables are: day of
the year, month and weekend, holidays, total number of patients in emergency
rooms, number of unscheduled consultations in health centres, waiting time,
patients with respiratory problems and total number of consultations in health
centres. We do not expect that all these variables are relevant or necessary to
solve the problem we present, however, they were used precisely to assess how
the models would deal with redundant variables.

In this paper, we use four metrics to evaluate the models. The Mean Absolute
Error (MAE):
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Since we are evaluating the predictions over several groups (RHAs), the total
error will be the average across RHAs. The most common metric across the
literature for ED forecasting is the Mean Absolute Percentage Error (MAPE) [7,
11], however, when the true value is close to zero, this metric becomes unreliable.
It also places a heavier penalty on negative errors (when the predicted value is
higher than the true value) [27]. To overcome that, outliers values very close
to zero are removed for this particular metric. To correctly evaluate the out-of-
sample predictive capacity of the model, the dataset is divided into three subsets:
train, validation, and test. The training set represents roughly 3.5 years, while
the validation set and the test set have 10 weeks of data, each. The validation set
is used to optimise hyper parameters and to identify overfitting during training,
while the test set is unseen until the end and is only used to produce the final
results. It contains the last 10 weeks available, from December 2021 to February
2022.

4.2 Models

The first and simpler method used for forecasting is the replication of the last
k time-steps. This technique, which is used as Baseline in this paper, is also
referred to as the näıve algorithm. By evaluating this model on the validation,
the optimal value for k was estimated to be 7, thus representing the weekly
periodicity in the data.

For comparison, other models commonly used in this area were also applied,
namely AutoRegressive Integrated Moving Average (ARIMA) with a seasonal
component [1,12,21,23,34], and its multivariate variant Vector AutoRegressive
Integrated Moving Average (VARIMA) [23].

Also used was the exponential Smoothing algorithm, a simple method that
has also shown good results in the literature [8]. Finally, to gauge the perfor-
mance of common machine learning models, the XGBoost model was used. Out
of these models, the XGBoost [24] (a Decision Tree Boosting algorithm), is the
only model capable of using past and future covariates, with the disadvantage
of not being specifically tailored for time-series data.

The model used in this paper, however, is the Temporal Fusion Transformer
(TFT). We chose this model because it achieves all the goals mentioned previ-
ously. To define the model input, we first need to separate variables into static,
target and time dependent. Static covariates, such as time-series variance or
mean, are specific to each group, i.e. RHA, and are defined as si with i = 0, ..., 4.
yi,t is the target for group i at time-step t and xi,t = [pTi,t, f

T
i,t]

T the time depen-
dent covariates, with p representing past covariates, meaning covariates that are
only known until the present, as f future covariates, that can be assumed to be
known in the past and the future, in our case, holidays and weekends.
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Table 1. Hyperparameters for TFT model after tuning.

Hyperparameter Value

Encoder length 42

Batch size 40

Prediction length 28

Gradient clipping 0.022730

Learning rate 0.0011149

Hidden size 33

Number of attention heads 8

Dropout 0.19230

Hidden continuous size 19

The prediction function is defined as [26]:

ŷi(q, t, τ) = fq(τ, yi,t−k:t, xi,t−k:t, si) (5)

where ŷi(q, t, τ) is the predicted qth quantile for the τ ∈ {1, ..., τmax} value in
group i, at time t. For the specific case of this work, τmax = 28, as we want
to forecast simultaneously 28 days ahead. By predicting quantiles, we obtain a
quasi-distribution of the expected value, and gain the capacity to define confi-
dence intervals.

Initially introduced by [26], this model instantiated a novel architecture, com-
bining a few mechanisms previously only used separately, in a single model. The
key features of the TFT are:

– Variable Selection Network: three independent Selection Networks, one for
each variable set, to select only relevant variables at each time-step. This
module removes noisy variables that do not add predictive value, while giv-
ing some level of insight into the variables that are more significant to the
prediction;

– A Gating Mechanism to skip any other element of the architecture. For spe-
cific cases where exogenous variables are not useful or there is no need for
non-linear processing (e.g. in very simple forecasts) the Gating Mechanism,
also referred to as Gated Residual Network [16], allows the model to only use
non-linear processing when needed;

– Static Variables encoding to combine static information with time-series data;
– Temporal Dependency Processing to capture short-term dependency, with

an LSTM encoder-decoder [13,18], and long-term dependency using a Multi-
Head Attention mechanism [38]. By an additive aggregation of the different
heads, this mechanism gains explainability, as the weights in the aggregated
Multi-head represent time-step importance;

– Confidence Intervals: the output of the models are quantiles, that define pre-
diction intervals, at each forecast time-step.
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To obtain the quantile predictions, a specific loss, the Quantile Loss, is defined
as [25]:

QL(y, ŷ, q) = max{q(y − ŷ), (q − 1)(y − ŷ)} (6)

for each quantile q. The final Loss is the average QL across quantiles and for
the entire prediction horizon [0,τmax]. In this work, the quantiles used were
[0.02,0.1,0.25,0.5, 0.75,0.9,0.98]. When q = 0.5 the Loss is equal to MAE divided
by 2, and q = 0.5 (the median) is the value used for the point-wise prediction of
the model.

The overall architecture of the TFT can be seen in Fig. 3 and the hyperpa-
rameters are defined in Table 1.

Fig. 3. TFT architecture. The inputs are static metadata, time-varying past inputs
(including past target values) and known future information. The Variable selection
unit selects the most relevant features, while the Gated Residual Network allows to
skip over unused sections of the architecture. The interpretable multi-head attention
is used to evaluate the most relevant time-steps. Image adapted from [26].
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Table 2. Prediction accuracy for various models in the period 24/01/2022–20/02/2022.
To evaluate the models, four metrics are used: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Squared
Error (MSE). Bold indicates the best result; TFT is consistently more accurate than
the baselines.

Models MAE RMSE MAPE MSE

Baseline 95.1643 116.5850 7.3483 20245.0643

Exp. Smoothing 112.5885 135.6158 7.3135 29888.6468

ARIMA 104.9886 129.6084 7.8484 22949.7471

VARIMA 94.6441 120.6674 7.9250 18407.9554

XGBoost 92.0307 112.3295 7.7027 16178.5531

TFT 66.7551 84.4102 5.9084 8379.7340

5 Results

In this section, we present the results of the TFT and the other models for
a 4 week forecast window. Table 2 illustrates how the TFT outperforms other
common models in the literature for long time prediction, with a Root Mean
Squared Error (RMSE) of 84.4102, or approximately 84 people per day. This
metric, however, might be deceptive, as it is scale dependent, meaning that RHAs
with a larger daily volume will necessarily yield a higher RMSE, and skew the
results. The Mean Absolute Percentage Error (MAPE) on the other hand, is scale
invariant, and it better depicts the overall predictive power of the models, with
the TFT obtaining a 5.91% percentage error. Taking a more detailed look at the
predictions, in Fig. 6, we can see how the model can make predictions at different
scales, correctly representing two characteristics that we know are part of the
data, the weekly cycle, and the peak of users on Monday. To better compare the
models, we utilised an empirical CDF for each model, as seen in Fig. 4a. In this
Figure, depicting Absolute Error, the TFT shows overall better performance. We
also acknowledge that the Exponential Smoothing algorithm obtains favourable
results for roughly half of the predictions. As suggested in Fig. 4b, the TFT
outperforms the other models in the last 2 weeks of the forecast window. This
illustrates the superior capability of deep learning models to perform long term
prediction, as the complexity of the model helps identify long term patterns.

But the strength of the Temporal Fusion Transformer used goes beyond the
precision of the model. First, we can observe the attention given to each time-
step. As explained in Sect. 4.2, attention is used to identify which input elements,
containing up to 6 weeks of data, are most useful during forecast. In Fig. 5, it can
be distinguished how the model values the most recent time-steps with a higher
weight, which is intuitively expected and shows that old information has less
value to the model. This validates a common assumption in linear models, that
ascribe more weight to more recent observations, as is the case of the Exponential
Smoothing model. In Fig. 6 we can also verify this effect, with the grey line over
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Fig. 4. Comparative analysis of model prediction.

the input period representing attention. In the forecasting figures, we can observe
that different RHAs have different attention weights depending on the input
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vector of the model. In addition, we observe another more intriguing feature,
which are spikes in attention during the weekend, this may happen because
particular attention is given to one or two previous weekends to define patient
volume in future weekends.

After having determined that the model attributes higher attention to more
recent time-steps, we will now observe the importance attributed by the model
to the covariates. We can categorise covariates into three categories: static, past,
and future. In Fig. 7, it is possible to observe the importance attributed to each
past or future covariate. In the left side figure, we see that the variable with the
most weight is the percentage of patients in the emergency room with respiratory
problems. For this period, excess affluence in hospital emergency rooms could
be attributed to peaks in influenza/COVID-19 transmission, it therefore makes
sense that this variable can be a predictive indicator of future positive trends in
the number of non-urgent cases. The second most important variable is patient
waiting time, which is in line with the positive relationship presented at the
beginning of this article between the increase in waiting time and the increase
in non-urgent patients. However, we should not focus our attention solely on
the variables relevant to the model. There is interest in observing the variables
that did not add value to the model; here we can observe that the information
regarding health care centres (n cons total,prog) did not add value to the model,
meaning that there is no clear interaction between patient volume in health
care centres, mostly used for primary health care and minor health issues, and
non-urgent patients in Emergency Departments.

As we see on the right side of Fig. 7, the number of known covariates in
the future is a smaller part of the total number of covariates. The most impor-
tant feature is the categorical variable indicating public holidays in Portugal.
The model has attributed such an importance to holidays because they have a

Fig. 5. Average attention attributed over the input vector. More recent time-steps are
given more value than older time-steps.
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Fig. 6. Predictions over the test set. Over the input vector, we can see the grey line
representing attention. In orange is the median predictive value (q = 0.5), with different
quantiles shown as shaded area (Color figure online).
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Fig. 7. Variable Importance. The most relevant past feature to the model is the per-
centage of patients in ED with indication of respiratory problems. For future covariates,
variables that are known in the future, the most relevant is a feature that indicates
public holidays in Portugal.

severe impact on patient volume, not only on the day, but also on the next day,
when close to the weekend. Furthermore, the other future covariates have a non-
negligible importance both as past and future covariates, thus supporting the
claim found in the literature that calendar variables have a significant impact
on the prediction.

6 Conclusion

This paper presented a novel application of the Temporal Fusion Transformer
(TFT) model to predict non-urgent patient volume in Portuguese public hospi-
tals by Health Regional Areas (HRA). The results were encouraging, surpassing
other models commonly found in the literature [21,23]. The forecasting of an
entire month is seldom done in the literature [2,7], and the model presented did
not show signs of deterioration over the forecast window; despite that, it would
be interesting to drive the forecasting period even further, either by autore-
gression or by increasing the forecast window, so as to analyse the maximum
prediction length of the model, or a potential trade-off between forecast window
and predictive quality.

The introduction of a multivariate model with good results across groups is a
positive prospect, since one limitation of univariate time-series is the natural low-
data regimen, while multivariate models can merge information from multiple
sources, thus increasing the total amount of data fed to the models. In the future,
this model can increase in granularity, forecasting at the hospital level instead of
aggregated values by HRAs. Although a greater challenge, due to the increased
noise and randomness that comes from the decrease in the study population, we
expect that the combination of a large number of time-series could improve the
robustness and global quality of the model, specifically if we add more relevant
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static variables. For this paper, only HRA and time-series statistics were used
as static covariates, but as noted in [14], across different regions there is distinct
demand for emergency care, thus impacting the scale and variance of the time-
series. In future work, we plan to introduce other factors that might contribute
to encode region-specific information as static covariates, such as demographics,
modes of transport available, socio-economic characterisation of the patient pop-
ulation and number and capacity of private health care providers in the region.
All these elements might help to represent each class, and ultimately be used for
a generalisation of the model to unseen hospitals, where these variables might
help to represent how similar a new unseen hospital/RHA is to hospitals/RHAs
in the training data.
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