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Abstract. Deep Neural Networks (DNNs) are currently making their
way into a broad range of applications. While until recently they were
mainly executed on high-performance computers, they are now also
increasingly found in hardware platforms of edge applications. In order to
meet the constantly changing demands, deployment of embedded Field
Programmable Gate Arrays (FPGAs) is particularly suitable. Despite
the tremendous advantage of high flexibility, embedded FPGAs are
usually resource-constrained as they require more area than compara-
ble Application-Specific Integrated Circuits (ASICs). Consequently, co-
execution of a DNN on multiple platforms with dedicated partitioning
is beneficial. Typical systems consist of FPGAs and Graphics Process-
ing Units (GPUs). Combining the advantages of these platforms while
keeping the communication overhead low is a promising way to meet the
increasing requirements.

In this paper, we present an automated approach to efficiently par-
tition DNN inference between an embedded FPGA and a GPU-based
central compute platform. Our toolchain focuses on the limited hard-
ware resources available on the embedded FPGA and the link bandwidth
required to send intermediate results to the GPU. Thereby, it automat-
ically searches for an optimal partitioning point which maximizes the
hardware utilization while ensuring low bus load.

For a low-complexity DNN, we are able to identify optimal partition-
ing points for three different prototyping platforms. On a Xilinx ZCU104,
we achieve a 50% reduction of the required link bandwidth between the
FPGA and GPU compared to maximizing the number of layers executed
on the embedded FPGA, while hardware utilization on the FPGA is only
reduced by 7.88% and 6.38%, respectively, depending on the use of DSPs
and BRAMs on the FPGA.
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1 Introduction

In the recent decade, Deep Neural Networks (DNNs) became the preferred algo-
rithm for evaluating complex data, like images or radar information. These
algorithms show great performance and accuracy, while they usually can be
deployed readily. However, DNN inference for complex data can cause high com-
putational complexity, resulting in extensive power consumption. This especially
becomes an issue when DNN are used in energy-constrained or safety-critical
environments like embedded low-power systems. Hence, the execution of DNN
moved from traditional computing devices such as Central Processing Units
(CPUs) and Graphics Processing Units (GPUs), further into hardware accel-
erators designed for fast or energy-efficient DNN execution. These are either
implemented in an Application-Specific Integrated Circuit (ASIC) or an embed-
ded Field-Programmable Gate Array (FPGA). The latter provides flexibility
regarding runtime reconfiguration or future architecture updates and provides
significantly reduced development time. Dedicated accelerators for a given DNN
offer a great trade-off between power consumption and performance, but they
often lack flexibility to model different kinds of DNNs.

Accelerators for DNNs in autonomous driving or assistive robotics are espe-
cially demanding as resource and real-time requirements in those multisensory
systems are high. These platforms, such as the humanoid assistive robot ARMAR-
6 [2], are usually based on a system architecture as shown in Fig. 1. For visual per-
ception, ARMAR-6 is equipped with a stereo camera and an RGB-D camera. As
the bus is highly occupied, images are directly streamed to the compute platform
consisting of three PCs, a GPU and an FPGA. The actual data processing not
only consists of image processing, e.g., person recognition, human pose estima-
tion, object detection and localization, but speech recognition, force control, task
planning, etc. as well. These tasks are distributed among the different devices of
the compute platform, realizing DNN-based tasks on the GPU and FPGA, respec-
tively. Time-sensitive applications, e.g., face and gesture recognition, are acceler-
ated on the FPGA [17]. However, acceleration of the whole DNN within the FPGA
as dataflow is not feasible for each model. Therefore, we propose the co-execution
of DNNs in the distributed system of GPU and FPGA.

The example above shows that there is a need for highly efficient and per-
formant DNN accelerators, which also offer a great flexibility for many different
DNN workloads. Over the past years, different optimization strategies for DNN
have evolved to make the underlying operations more efficient, such as quanti-
zation [8] or pruning [5]. A more recent optimization scheme considers DNNs
that are executed on complex System-on-Chips (SoCs) with multiple different
domains like CPUs, GPUs or FPGAs. Those systems allow combining the advan-
tages of the various system components to achieve a high overall performance.
However, efficient partitioning between the different domains is an emerging chal-
lenge. Therefore, we present in this paper our approach to automatically parti-
tion a DNN workload between FPGAs and GPUs, which are common domains
in novel SoC-architectures. Our toolflow takes a model description from PyTorch
and interacts with the FPGA design tools to generate different bitstreams and
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Fig. 1. Conceptual overview. Camera images are captured from the environment and
forwarded to the computing platform, which executes a DNN. The scene perception
obtained is then used to interact with the environment. Thereby, the DNN inference
takes place either on the FPGA, the GPU, or both. For distributed processing, our
toolflow determines the optimal partitioning point.

their resource utilization. These are then evaluated considering the given user
and FPGA design constraints. Our approach also takes the communication link
between the FPGA and the GPU into account, which can be an on-chip solution
but also a link between two physically separated platforms. Finally, our tool
returns a partitioning point for the DNN that maximizes energy efficiency and
performance based on the evaluation results collected before. In summary, our
paper makes the following contributions:

• We present our toolflow for determining an optimal partitioning point regard-
ing hardware resource usage and required link bandwidth.

• We apply the toolflow to estimate bandwidth and hardware utilization of
quantized DNNs.

• We exemplary show beneficial partitioning points of quantized MobileNet V1
for different FPGA architectures.

2 Related Work

Distributing DNN inference over multiple compute platforms has been a widely
studied topic in recent years. Several publications showed that DNN partitioning
is a beneficial approach for edge platforms in terms of latency, memory consump-
tion and link bandwidth utilization [7,10,11,14]. Some of these studies use an
adaptive approach to further improve efficiency of the distributed systems by
dynamically allocating computational resources depending on the overall sys-
tem utilization.
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Teerapittayanon et al. proposed DDNNs (Distributed Deep Neural Networks)
which consider distributed compute hierarchies from cloud to end devices during
training [16]. Thereby, they define local exit points within the DNN architecture
for each compute platform in the system. According to the presented results,
this approach leads to improved accuracy and reduced communication costs in
contrast to combining a small DNN on the end device and a large DNN on the
central platform or in the cloud.

However, research on distributing inference mostly focuses on DNN parti-
tioning for commercially available off-the-shelf (COTS) platforms such as Ten-
sor Processing Units (TPUs) and GPUs, neglecting evaluation of more energy
efficient ASICs or FPGA-based hardware architectures. Since Internet-of-Things
(IoT) platforms are often power constrained, a comprehensive hardware/software
co-design across multiple platforms is required to allow for larger and more com-
plex DNNs in end devices. In addition, the design space exploration must include
an evaluation of link utilization, as distributed systems are severely limited in
terms of available bandwidth between computing platforms.

Efficient DNN inference on multi-FPGA architectures has been studied by
some works recently [4,9,12,13]. As an example, Zhang et al. propose a mapping
approach for large-scale DNNs on asymmetric multi-FPGA platforms consider-
ing the required link bandwidth in the system as well as resource allocation to
achieve increased performance [18]. The presented mapping problem is solved by
dynamic programming for DNN partitioning. Alonso et al. presented Elastic-DF,
a framework for resource partitioning in multi-FPGA systems including dynamic
mapping of applications to an available accelerator in the FPGA cluster [1].
Thereby, the tool can automatically optimize the performance of a pipelined
dataflow DNN inference based on the available hardware resources of each
individual FPGA. Although both approaches apply resource- and bandwidth-
aware DNN partitioning to increase performance, these target datacenter infer-
ence and do not provide any investigation on low-power platforms used in IoT
applications.

3 Partitioning Toolflow

Distributed sensor platforms, as found in many applications such as autonomous
driving or assistive robotics, often face the problem of limited available band-
width and limited compute resources in the central computing platform. Espe-
cially in safety-critical use cases, minimum latency must be guaranteed. In addi-
tion, since DNN topologies are still a major research topic, the hardware architec-
tures also have to provide certain flexibility to cope with varying requirements.
Hence, we propose a bandwidth- and resource-aware toolflow for pipelined DNN
inference partitioning as shown in Fig. 2. In contrast to state of the art, this
approach takes limited resources on the embedded FPGA as well as the limited
bandwidth to the central compute platform in low-power embedded systems into
account. Thereby, to achieve low latency and high throughput, the hardware
implementation on the FPGA is designed in a pipelined manner, i.e. each layer
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Fig. 2. Overview of our toolflow. As input, we take any given DNN workload, an
FPGA specification and user constraints, e.g. available link bandwidth, to determine
an optimal partitioning point. The toolflow outputs the partitioned DNN model and
generates a bitstream fulfilling the system requirements.

is mapped to a dedicated accelerator. These are not shared between multiple lay-
ers of the DNN. Consequently, full hardware implementation on an embedded
FPGA would consume a lot of space on the SoC.

3.1 Overview

Our approach offers a toolflow that evaluates any given DNN workload. The
DNN is partitioned between an embedded FPGA and a GPU to maximize the
performance, while also considering the communication link. Along with the
network model, our toolflow also requires an embedded FPGA specification and
user constraints as input to distinguish an optimal partitioning point of the
DNN regarding resource utilization and required link bandwidth. Especially, the
used link bandwidth is an important metric in multi-sensor systems as they
can be found in assistive robotics or autonomous driving. In such use cases, the
available bandwidth is severely limited by the large amount of data being sent
from different nodes on the bus. Hence, the user can set maximum available link
utilization to account for other traffic on the bus. Embedded FPGAs on the other
hand are often limited in area and thus in available hardware resources. These
constraints also have to be taken into account to find an optimal partitioning
point of a DNN.

As a whole, our toolflow first optimizes the given DNN by quantizing weights
and layer outputs during training to reduce computational complexity and
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memory footprint. Based on the resulting quantized DNN, a static analysis is
performed taking FPGA specifications like available Block RAM (BRAM) and
Digital Signal Processor (DSP) resources into account. In addition, finding an
optimal partitioning point of the DNN requires calculation of the required band-
width. Finally, with the estimated hardware resource utilization, the calculated
link bandwidth of each layer, and the given user constraints, our tooflow can
determine an optimal partitioning point and generate an appropriate bitstream.

3.2 Training and Static Analysis

Achieving low latency and high throughput on the embedded FPGA is a crucial
part which enables usage of such platforms in embedded systems. Hence, we
need to automatically optimize a DNN architecture and analyze the resulting
model to efficiently map the layers to dedicated hardware accelerators.

Various works in recent years have shown that quantization and pruning lead
to a drastic reduction in hardware resource consumption, with only a minimal
loss of accuracy [17]. Therefore, in use cases such as assistive robotics which
require low power consumption, optimizing DNN is inevitable. Our toolflow
makes use of Brevitas [15] to achieve this goal during training. It is based on
PyTorch and supports quantization-aware training of DNNs through evaluat-
ing reduced precision hardware building blocks at different levels. The resulting
optimized DNN is then exported to ONNX file containing custom node types.

Since our approach targets Xilinx FPGAs as test platform, we implement
FINN framework as one of the central components our toolflow interacts with
for static analysis [3]. The FINN framework provides an end-to-end workflow
covering design space exploration based on resource cost estimations and perfor-
mance predictions, as well as automated code generation for High-level Synthesis
(HLS). It takes the ONNX file generated by Brevitas of the DNN as input and
provides estimates of hardware resource consumption and performance, among
others. In addition, FINN can generate a bitstream for the given FPGA based
on Vivado HLS.

3.3 DNN Partitioning

Even though the FINN framework tries to find an optimal implementation of
the DNN taking multiple constraints into account, the size of the FPGA is not
considered during design space exploration. Hence, if the network model requires
more hardware resources than available on the given FPGA, the implementa-
tion will fail. Our approach addresses this problem by searching for an optimal
partitioning point regarding FPGA usage and required link bandwidth.

To estimate the resources per layer, we use the predictions of the FINN
framework, which are automatically generated during HLS. FINN offers differ-
ent ways to estimate the required hardware resources per layer, before and after
IP block generation and also after out-of-context synthesis including hardware
optimizations. The latter thereby allows for precise resource estimates at the
expense of runtime. Since we aim to find an optimal partitioning point for a
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Algorithm 1: Search algorithm to determine an optimal partitioning
point, considering hardware resource usage and required link bandwidth.
1 function GetOptimalSplitNode;

Input : hardware resources per layer, layer output size
Output: Partitioning Point

2 max layer ← last DNN layer fitting on hardware;
3 part pnt ← max layer;
4 for each layer in [max layer, first layer] do
5 bw ratio ← bandwidth[part pnt] / bandwidth[layer];
6 hw ratio ← hw resources[part pnt] / hw resources[layer];
7 if bw ratio > 1 and bw ratio/hw ratio > threshold ratio then
8 part pnt ← layer;
9 end

10 if stop condition fulfilled then
11 break;
12 end

13 end
14 return part pnt;

given DNN and thus runtime is not critical, our toolchain takes resource esti-
mates of FINN generated after IP block generation. The link bandwidth can be
calculated according to the output feature size of the intermediate layers and
the corresponding data bit width. Consequently, this analysis can be neglected
with respect to the runtime of the toolflow.

Besides estimating FPGA hardware resources and calculating required link
bandwidth, distinguishing an optimal partitioning point of the DNN involves
the input of constraints by the designer. This includes the embedded FPGA
specifications regarding number of available basic building blocks, the targeted
hardware utilization, and the available link bandwidth. Based on these inputs,
our approach searches for a suitable partitioning of the DNN, which does not
violate any of the given constraints such as area or required link bandwidth.
Algorithm 1 presents our approach for finding an optimal partitioning point.
First, the algorithm determines a partitioning point in the DNN where the hard-
ware utilization is maximized for a given embedded FPGA platform. Afterwards,
the algorithm aims at minimizing the communication overhead while still keep-
ing the hardware utilization as high as possible. To achieve this goal, we set
two parameters in advance: The first parameter defines the minimum allowed
hardware utilization, which is used as a stop condition and should not be under-
cut. The second parameter defines a threshold for the maximum acceptable ratio
between optimization of communication overhead and deterioration of hardware
utilization. Based on this, the algorithm iterates through the layers starting from
the partitioning point determined in the first step of the algorithm and evaluates
link bandwidth utilization and hardware resource utilization. Subsequently, these
are compared with the current best partitioning point. Only if the bandwidth
can be reduced and the threshold value is exceeded, the layer is set as the new
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Table 1. Available hardware resources on the evaluated SoC.

Platform LUTs FFs BRAM blocks DSP slices

ZedBoard 53,200 106,400 280 220

Ultra96-V2 70,560 141,120 432 360

ZCU104 230,400 460,800 624 1,728

partitioning point. Finally, when the stop condition is reached, the algorithm
returns the partitioning point with the best ratio.

In summary, our toolflow optimizes the system towards high resource utiliza-
tion of the embedded FPGA and low link bandwidth. After the partitioning point
of the DNN is set, our toolflow splits the DNN model into two sub-models accord-
ingly. Thereby, both are exported to ONNX format based file, which ensures
machine learning interoperability. For the embedded FPGA, our toolflow finally
generates the bitstream using Xilinx Vivado HLS and Vivado.

4 Evaluation

In this section, we evaluate our toolchain for a DNN on embedded FPGAs. Since
we use FINN framework as one of the central components, we exemplary show
the results of inference partitioning for three different Xilinx FPGAs. In order
to address the various possible sizes of embedded FPGAs, we evaluate DNN
partitioning using the following platforms: ZedBoard, Avnet Ultra96-V2 and
Xilinx Zynq UltraScale+ MPSoC ZCU104. The available hardware resources on
each SoC are listed in Table 1.

The system we use for the evaluation of our toolflow consists of an Intel
Core i7-8565U, a quad-core SoC, running Ubuntu 18.04. To ensure the correct
functioning of the FINN framework, we use a Docker container generated from
the Dockerfile provided by Xilinx for this purpose. Finally, Vivado 2020.1 is used
for HLS to determine the required hardware resources.

4.1 Workload

Low-complexity DNNs are required in embedded systems that need to provide
low latency and power consumption. Several DNNs architectures have been pro-
posed in recent years fulfilling these properties, such as MobileNet V1 [6]. There-
fore, we select it as an exemplary workload and identify optimal partitioning
points for a distributed system combining GPUs and embedded FPGAs. To
achieve lower hardware resource utilization, we use a pretrained and quantized
model with 4-bit weights and activations for the evaluation. The MobileNet
V1 was originally proposed in 2017 and achieves an accuracy of 70.6% on the
ImageNet dataset while only using 569 million multiply-accumulate operations
and 4.2 million trainable parameters. This is achieved by introducing depthwise-
separable convolution blocks, where each block consists of a depthwise convolu-
tion followed by a convolution with 1× 1 kernels. In total, MobileNet V1 uses
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13 depthwise-separable convolution blocks, preceded by a standard 3× 3 convo-
lution and followed by a fully-connected layer and softmax for classification.

4.2 Results

Executing DNN inference on an FPGA requires to map layers to one or more
basic building blocks depending on the layer type. For MobileNet V1, FINN con-
verts the DNN into 86 layers that can be directly translated to the components
available in its hardware library. Without considering the runtime for training
the DNN, it takes about 81.6 min on our system in dual-core mode from loading
the ONNX file in FINN to finishing HLS. As expected, the IP block generation
of each building block takes the most time, about 79 min, which is almost 97% of
the whole runtime. However, since this step only needs to be performed once for
a quantized DNN model and our evaluation was performed on a low-performance
SoC, the runtime is still within an acceptable range.

The results of the IP block generation and the output size of each layer are
shown in Fig. 3. It can be seen, that the output size tends to decrease towards
the last layer. However, the DNN requires large hardware accelerators, especially
towards the last layers, which significantly increases the demands on the available
resources of the embedded FPGA. Consequently, the identification of an optimal
partitioning point depends in particular on the deployed hardware platform and
the defined user constraints.
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Fig. 3. Resource utilization of each translated MobileNet V1 layer taking LUTs as an
example and the corresponding output size in bytes. In this configuration, only LUTs
and FFs are used to implement the building blocks in the FPGA.

In the following, we apply our toolflow to find an optimal partitioning point
of MobileNet V1 on the three aforementioned exemplary FPGA platforms. Since
we want to analyze the impact of DNN inference partitioning independently of
the IP cores present on the platforms, we will also evaluate the hardware resource
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Table 2. Toolflow evaluation results. Depending on the size of the SoC and whether
all resources or only LUTs and FFs are used, the maximum number of layers (max.
Layer) that can be implemented on the platform varies. It can be seen that reducing
the number of layers executed on the FPGA can significantly reduce the required link
bandwidth (BW Red.) since the optimal partitioning point (Part. Point) does not
always match the max. layer. Thereby, the hardware utilization reduction (HW Red.)
is small.

Only LUTs/FFs All resources

Platform max Part BW Red. HW Red. max Part BW Red. HW Red.

Layer Point [%] [%] Layer Point [%] [%]

ZedBoard 22 21 6.78 1.19 19 19 0 0

Ultra96-V2 31 25 50 18.73 25 25 0 0

ZCU104 79 73 50 7.88 79 73 50 6.38

consumption of architectures containing only Look-Up Tables (LUTs) and Flip-
Flops (FFs). We set the stop condition to 70% minimum hardware resource
utilization to allow for low DNN inference latency and the threshold ratio to 1.
The results of our exploration are shown in Table 2.

For the ZedBoard, the algorithm finds layer 21 as the optimal partitioning
point when only using LUTs and FFs. Even though many hardware resources
could be saved when choosing layer 20 instead, this would lead to an increased
link bandwidth requirement as can be seen in Fig. 3. Hence, the selected parti-
tioning layer offers a good trade-off between high throughput and low commu-
nication overhead. Similarly for Ultra96-V2, layer 25 is identified as an optimal
partitioning point since bandwidth can be reduced by 50% in comparison to layer
31 without offloading too many layers to the GPU. In this case, the required
hardware resources on the FPGA are significantly reduced by 18.73%, however,
the stop condition is still exceeded.

Compared to the consideration of the optimizations for an implementation
solely based on LUTs and FFs, only the evaluation results for the ZCU104 show
different partitioning than maximum layer. This is due to the fact that FPGA
platforms are usually severely limited in terms of BRAM and DSP resources.
Since the maximum number of layers that can be implemented on ZedBoard
and Ultra96-V2 is small considering all hardware resources, there is no potential
to reduce link bandwidth on these platforms. In contrast, link bandwidth can be
reduced by 50% on ZCU104, at the cost of a reasonable reduction in hardware
utilization.

5 Conclusion and Future Work

DNN inference partitioning can be very advantageous depending on the neu-
ral architecture and the deployed hardware. Our results show that it is also
beneficial for embedded FPGAs to outsource workload partly from a central
compute node to a platform closer to the sensor since this approach reduces the
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required bandwidth while maximizing the hardware utilization of the embedded
FPGA. The latter can thereby result in lower DNN inference latency depending
on the hardware deployed on the central compute node. Especially in appli-
cations using multiple sensors, our approach can propose a bandwidth-aware
partitioning to enable parallel execution of several DNN-based applications in a
distributed system. Using our toolflow, we were able to identify several advan-
tageous partitioning points depending on the platform deployed and the type of
hardware resources used on the embedded FPGA. In the best case, our approach
can reduce the required link bandwidth by 50% compared to implementing the
maximum possible number of layers in the FPGA.

In the future, we plan to further investigate DNN inference partitioning by
evaluating not only the sensor node and the link but also the central com-
pute platform of the embedded system. Depending on the workload, analyzing
latency on both partitions increases the design space but allows to investigate
DNN partitioning for even more applications where minimum latency or energy
consumption is the main optimization goal.
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