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Preface

The European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD) is the premier European conference on
machine learning and data mining. In 2022, ECML PKDD took place in Grenoble,
France during September 19–23.

The program included workshops on specialized topics held during the first and last
day of the conference. This two-volume set includes the proceedings of the following
workshops:

1. 7th Workshop on Data Science for Social Good (SoGood 2022)
2. 10th Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2022)
3. 4thWorkshop on eXplainableKnowledgeDiscovery inDataMining (XKDD2022)
4. 1st Workshop on Uplift Modeling (UMOD 2022)
5. 3rd Workshop on IoT, Edge and Mobile for Embedded Machine Learning (ITEM

2022)
6. 7th Workshop on Mining Data for Financial Application (MIDAS 2022)
7. 4th Workshop on Machine Learning for Cybersecurity (MLCS 2022)
8. 2ndWorkshop onMachine Learning for Buildings Energy Management (MLBEM

2022)
9. 3rd Workshop on Machine Learning for Pharma and Healthcare Applications

(PharML 2022)
10. 1st Workshop on Data Analysis in Life Science (DALS 2022)
11. 3rd Workshop on IoT Streams for Predictive Maintenance (IoT-PdM 2022)

Each workshop section contains the papers from the workshop and a preface from
the organizers.

Wewould like to thank all participants and invited speakers, the ProgramCommittees
and reviewers, and the ECML PKDD conference and workshop chairs – thank you for
making the workshops successful events. We are also grateful to Springer for their help
in publishing the proceedings.

October 2022 Irena Koprinska
on behalf of the volume editors
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Workshop on IoT, Edge and Mobile for Embedded Machine Learning
(ITEM 2022)

Hierarchical Design Space Exploration for Distributed CNN Inference
at the Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov

Automated Search for Deep Neural Network Inference Partitioning
on Embedded FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Fabian Kreß, Julian Hoefer, Tim Hotfilter, Iris Walter,
El Mahdi El Annabi, Tanja Harbaum, and Jürgen Becker

Framework to Evaluate Deep Learning Algorithms for Edge Inference
and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Tiberius-George Sorescu, Chandrakanth R. Kancharla,
Jeroen Boydens, Hans Hallez, and Mathias Verbeke

Hardware Execution Time Prediction for Neural Network Layers . . . . . . . . . . . . . 582
Adrian Osterwind, Julian Droste-Rehling, Manoj-Rohit Vemparala,
and Domenik Helms

Enhancing Energy-Efficiency by Solving the Throughput Bottleneck
of LSTM Cells for Embedded FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Chao Qian, Tianheng Ling, and Gregor Schiele

Accelerating RNN-Based Speech Enhancement on a Multi-core MCU
with Mixed FP16-INT8 Post-training Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 606

Manuele Rusci, Marco Fariselli, Martin Croome, Francesco Paci,
and Eric Flamand



Contents – Part I xv

LDRNet: Enabling Real-Time Document Localization on Mobile Devices . . . . . 618
Han Wu, Holland Qian, Huaming Wu, and Aad van Moorsel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631



Contents – Part II

Workshop on Mining Data for Financial Application (MIDAS 2022)

Multi-task Learning for Features Extraction in Financial Annual Reports . . . . . . 7
Syrielle Montariol, Matej Martinc, Andraž Pelicon, Senja Pollak,
Boshko Koloski, Igor Lončarski, Aljoša Valentinčič,
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Workshop on Data Science for Social Good
(SoGood 2022)

The Seventh Workshop on Data Science for Social Good (SoGood 2022) was held in
conjunction with the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2022) on September 23,
2022, in Grenoble, France. The previous six editions of the workshop were also held
jointly with ECML PKDD in 2016–2021.

The possibilities of using data science for contributing to social, common, or public
good are often not sufficiently perceived by the public at large. Data science applica-
tions are already helping people at the bottom of the economic pyramid or people with
special needs, improving healthcare systems, reinforcing international cooperation, and
dealing with environmental problems, disasters, and climate change. In regular con-
ferences and journals, papers on these topics are often scattered among sessions with
names that hide their common nature (such as “Social Networks”, “Predictive Models”,
or the catch-all term “Applications”). Additionally, such forums tend to have a strong
bias for papers that are novel in the strictly technical sense (new algorithms, new kinds
of data analysis, new technologies) rather than novel in terms of the social impact of the
application.

This workshop aims to attract papers presenting applications of data science for
social good (which may or may not require new methods), or applications that consider
social aspects of data science methods and techniques. It also aims to bring together
researchers, students, and practitioners to share their experience and foster discussion
about possible applications, challenges, and open research problems, and to continue
building a research community in the area of data science for social good.

There are numerous application domains; the call for papers included the following
non-exclusive list of topics:

• Government transparency and IT against corruption
• Public safety and disaster relief
• Access to food, water, sanitation, and utilities
• Efficiency and sustainability
• Climate change
• Data journalism
• Social and personal development
• Economic growth and improved infrastructure
• Transportation
• Energy
• Smart city services
• Education
• Social services, unemployment, and homelessness
• Healthcare and well-being
• Support for people living with disabilities
• Responsible consumption and production



• Gender and racial equality
• Ethical issues, fairness, and accountability
• Trustability and interpretability
• Topics aligned with the UN development goals

The workshop papers were selected through a XX blind peer-review process in
which each submitted paper was assigned to three members of the Program Committee.
The main selection criteria were the novelty of the application and its social impact.
Out of the XX submission received for SoGood 2022, 13 papers were accepted – eight
for oral presentation and five for poster presentation.

The SoGood 2022 Best Paper Award was awarded to Tito Griné and Carla Teixeira
Lopes for their paper “A Social Media Tool for Domain-Specific Information Retrieval
- A Case Study in Human Trafficking”. The award selection committee included Anne
Laurent (University of Montpellier, France), Rafael Morales-Bueno (University of
Malaga, Spain), and André de Carvalho (University of São Paulo, Brazil).

The program included a keynote talk by Virginia Dignum (Umeå University,
Sweden) on “Responsible AI: From Principles to Action”. More information about the
workshop can be found on the workshop website: https://sites.google.com/view/
ecmlpkddsogood2022/.

Many people contributed to making this workshop a successful event. We would
like to thank Virginia Dignum for her excellent talk, the Program Committee members
for their detailed and constructive reviews, the authors for their well-prepared pre-
sentations, and all workshop attendees for their engagement and participation.

October 2022 João Gama
Irena Koprinska
Rita P. Ribeiro
Ricard Gavaldà
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Responsible AI: From Principles to Action

Virginia Dignum

Department of Computer Science, Umeå University, Sweden

Abstract. Every day we see news about advances and the societal impact of AI.
AI is changing the way we work, live and solve challenges but concerns about
fairness, transparency or privacy are also growing. Ensuring AI ethics is more
than designing systems whose result can be trusted. It is about the way we
design them, why we design them, and who is involved in designing them. In
order to develop and use AI responsibly, we need to work towards technical,
societal, institutional and legal methods and tools which provide concrete sup-
port to AI practitioners, as well as awareness and training to enable participation
of all, to ensure the alignment of AI systems with our societies’ principles and
values.
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Virginia Dignum is Professor of Responsible Artificial
Intelligence at Umeå University, Sweden and associated
with the TU Delft in the Netherlands. She is the director
of WASP-HS, the Wallenberg Program on Humanities
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Her book “Responsible Artificial Intelligence: devel-
oping and using AI in a responsible way” was published by
Springer Nature in 2019. She studied at the University of
Lisbon and the Free University of Amsterdam and obtained
a PhD in Artificial Intelligence from Utrecht University in
2004.
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Gender Stereotyping Impact in Facial
Expression Recognition

Iris Dominguez-Catena(B) , Daniel Paternain , and Mikel Galar

Institute of Smart Cities (ISC), Department of Statistics,
Computer Science and Mathematics, Public University of Navarre (UPNA),

Arrosadia Campus, 31006 Pamplona, Spain
{iris.dominguez,mikel.galar,daniel.paternain}@unavarra.es

Abstract. Facial Expression Recognition (FER) uses images of faces
to identify the emotional state of users, allowing for a closer interaction
between humans and autonomous systems. Unfortunately, as the images
naturally integrate some demographic information, such as apparent age,
gender, and race of the subject, these systems are prone to demographic
bias issues. In recent years, machine learning-based models have become
the most popular approach to FER. These models require training on
large datasets of facial expression images, and their generalization capa-
bilities are strongly related to the characteristics of the dataset. In pub-
licly available FER datasets, apparent gender representation is usually
mostly balanced, but their representation in the individual label is not,
embedding social stereotypes into the datasets and generating a poten-
tial for harm. Although this type of bias has been overlooked so far,
it is important to understand the impact it may have in the context
of FER. To do so, we use a popular FER dataset, FER+, to generate
derivative datasets with different amounts of stereotypical bias by alter-
ing the gender proportions of certain labels. We then proceed to measure
the discrepancy between the performance of the models trained on these
datasets for the apparent gender groups. We observe a discrepancy in
the recognition of certain emotions between genders of up to 29% under
the worst bias conditions. Our results also suggest a safety range for
stereotypical bias in a dataset that does not appear to produce stereo-
typical bias in the resulting model. Our findings support the need for a
thorough bias analysis of public datasets in problems like FER, where a
global balance of demographic representation can still hide other types
of bias that harm certain demographic groups.

1 Introduction

The development of technology in the last decades, especially in Machine Learn-
ing (ML) and Artificial Intelligence (AI), has exposed an ever-growing portion of
the population to autonomous systems. These systems, from the mundane auto-
corrector in mobile devices to the critical autopilot in self-driving cars, impact
the lives of people around the world. Despite their continuous improvement in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 9–22, 2023.
https://doi.org/10.1007/978-3-031-23618-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23618-1_1&domain=pdf
http://orcid.org/0000-0002-6099-8701
http://orcid.org/0000-0002-5845-887X
http://orcid.org/0000-0003-2865-6549
https://doi.org/10.1007/978-3-031-23618-1_1
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all respects, this impact is not always positive. A point of particular concern
is when the mistakes our AI systems make systematically harm certain demo-
graphic groups. We call this behavior an unwanted bias. Unwanted biases can
be based on several demographic characteristics, the most common being age,
sex, and race [10,19,25].

These biases have been studied and classified into many types according
to the stage of the ML life cycle from which they originate [29]. Although all
sources of bias must be taken into account to develop fair systems, dataset bias
has gained special relevance in the last decade. For many ML applications, Deep
Learning algorithms that use large amounts of data have become the standard
approach [6]. This has led to the creation of large public datasets and to the
decoupling of the dataset creation and model training phases. These datasets,
despite their usefulness, many times exhibit heavy biases [25] that are easy to
overlook for the teams using them. These dataset biases can be found in the
demographic proportions of the datasets [18], in the relationships between data
of multimodal datasets [8,33], in the sample labeling and the label themselves
[25], and even in the images of the dataset [31]. A specific type of bias, the topic
of this work, is stereotypical bias [1], where demographic groups can be equally
represented but over or underrepresented in certain categories.

The impact of these biases on the predictions of the final model is highly
variable, depending on both the severity and nature of the biases and the context
of the application itself. For applications that involve human users, especially
when the implementation of the system regulates access to resources or involves
the representation of people, unfair predictions can directly lead to harm to
population groups [5,19] (allocative and representational harms).

A current area of interest in AI is Facial Expression Recognition (FER) [22].
FER refers to a modality of automatic emotion recognition in which, from a
picture of a face, the system predicts the emotional state of the subject. The
readiness for implementation, possible with minimal hardware, combined with
the nature of the data involved, makes FER an application where biases are easily
developed and could potentially lead to representational harms. Furthermore,
the face images have some demographic information naturally integrated into
them, such as apparent age, gender, or race. With most datasets lacking explicit
external demographic labels, bias mitigation techniques are hard to apply, and
even bias detection poses a challenge. Regarding gender in particular, although
public FER datasets are usually globally balanced, with similar proportions of
male and female presenting people, they often hide stereotypical biases. That
is, they are unbalanced for certain categories, despite the global balance, which
can systematically skew the final model predictions depending on the subject’s
apparent gender.

In this work, we analyze stereotypical gender bias in the context of FER.
In particular, we focus on the FER+ dataset [6], a refined version of the pop-
ular FER2013 dataset [16]. With this dataset as the base, in our experiments
we generate derivative datasets with different amounts of stereotypical bias by
altering the gender proportions of certain labels and measuring the variations in
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the final model predictions. These induced biases allow us to quantify the limits
of the variations under extreme stereotypical bias conditions in FER problems.
Although previous work [2,12–14,32] has also studied and revealed biases in gen-
eral and gender biases in particular in FER, no other work has focused on the
problem of stereotypical biases in this context. We hope that our contribution
will help establish the importance of this type of bias and understand the extent
of its impact in this context.

From our results, we observe a discrepancy in the recognition of certain emo-
tions between genders of up to 29% under the worst bias conditions. Our results
also suggest a safety range for stereotypical bias in the dataset that does not
appear to produce bias in the final model. These findings can help future imple-
mentations avoid some potential harms in FER due to misrepresentation of
groups.

The remainder of this work is organized as follows. Section 2 describes the
related work and some background information for our proposal. Next, Sect. 3
describes the proposed experiments and the relevant implementation details.
In Sect. 4 presents and analyzes the results of the experiments. Finally, Sect. 5
concludes this work and proposes future work.

2 Related Work

2.1 Facial Expression Recognition

FER is one of the simplest and most widespread modalities of the more general
automatic emotion recognition. In automatic emotion recognition, the system
tries to identify the emotional state of a person from their expressions and phys-
iology. Several modalities are possible, depending on both the input data required
by the system and the output codification of the emotional state [3]. FER, in
particular, uses as input data a static image or a video of a human face, making
it relatively easy to deploy with minimal hardware.

Regarding the emotion codification, the classical approaches are continuous
[23] and discrete models of emotion [15]. The continuous model separates emotion
into several independent dimensions, such as valence and arousal. Instead, the
discrete model assimilates emotions into several prototypes, with the most com-
mon categorization being the six basic emotions of Ekman [15]: angry, disgust,
fear, happiness, sadness, and surprise. Although the continuous codification is
more expressive, the labeling of samples is more subjective and complex. Thus,
most FER datasets are based on the discrete approach. In this work, we will
focus on the same discrete approach.

2.2 Bias

Most definitions of fairness are based on the idea of absence of unwanted bias
[30]. This unwanted bias, understood as a systematic variation in the treatment
of a demographic group that can potentially lead to harm.
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Although most definitions of bias as a proxy for fairness are designed around
the predictions of a model, the general concept of bias can be linked to different
sources of bias at different points of the ML life cycle [29]. In particular, for
applications in ML where public datasets are common, bias present in the source
data is particularly relevant [24]. Large datasets, in particular, have been subject
to extensive analysis, finding different types of bias [11,25].

While data bias is predominantly studied in the form of representational
bias, where certain demographic groups are overly prevalent in a dataset, another
common bias in some types of datasets is stereotypical bias [1,9]. In classification
tasks, this kind of bias is modeled as a correlation between the demographic
attributes of a subject and the problem classes, and can easily leak into the
datasets as different demographic profiles for certain classes.

Some works have already analyzed FER systems, finding demographic bias
in general [17,20], including several instances of gender biases [2,12–14]. In par-
ticular, Ahmad et al. [2] analyzes the prediction of commercial systems, without
working with the bias in the original datasets. Domnich and Anbarjafari [14]
study the gender bias exhibited by six different neural networks trained for FER.
Deuschel et al. [12] employ intentionally biased datasets, composed only of male
or female subjects, to study the impact of these biases on the detection of action
units, a problem closely related to FER. Finally, Dominguez et al. [13] also uses
intentionally biased and balanced datasets to validate a set of metrics for bias
detection, using FER as a case study and showing inherent representational and
stereotypical biases in some FER datasets.

Unlike the previous work, we will focus on the stereotypical bias in FER.
We will employ progressively biased datasets to measure the impact of this type
of bias on the trained model. Bias is often measured with specific bias metrics,
which helps quantify its impact. Despite this, it is important to notice that
any application of a specific metric still requires a proper qualitative discussion
of its context, or it can easily lose its usefulness [26]. For this reason, in this
work, we will employ a qualitative and intuitive approach without employing
a specific metric. Nonetheless, we will look for deviations in recalls (accuracy
constrained to the examples of a certain class) between demographic groups,
with an underlying notion of fairness consistent with the conditional use accuracy
equality [7]. To the best of our knowledge, no other work on FER has focused
on this type of bias, and most have only focused on representational bias.

3 Methodology

3.1 Datasets

In this work, we employ the FER+ dataset [16], based on FER2013 [16].
FER2013 [16] is one of the most popular publicly available in the wild FER
datasets, with more than 32, 000 labeled images obtained from Internet searches.
The images in the original dataset were automatically annotated, leading to sys-
tematic inaccuracies, which were later corrected by FER+ [6], a relabeling of the
same image set. The images in FER+ are grayscale and have a small resolution
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of 48 × 48 pixels. This small image size supports fast and resource-light model
training, one of the main reasons for its popularity.

3.2 Demographic Relabeling

As FER2013 is not gender labelled, we use an external model, FairFace [18] to
obtain an apparent gender prediction for each image. The FairFace model was
trained on the homonymous dataset, composed of 108, 501 images labeled for
apparent gender, apparent race, and apparent age. In the original experiments,
the model achieved an accuracy greater than 92% for gender recognition in
FairFace and three other demographic datasets. The model is publicly available1.

It is important to note that FairFace comes with some serious limitations.
Although this is particularly evident in the race categories, limited to six stereo-
typical groups, namely White, Black, East Asian, Southeast Asian, Latino,
Indian, and Middle Eastern, it is also present in the gender category. For the
creation of FairFace, as is still common for most gender-labeled datasets, exter-
nal annotators manually labeled gender into a binary classification of Male and
Female. This classification correlates with how many societies identify gender,
but can easily misrepresent people, as is the case for binary and non-binary
transgender people and other gender non-conforming individuals [19]. Neverthe-
less, as almost no datasets have the required demographic information, proxy
labels such as the ones provided by FairFace give us a reasonable overview of the
population of the datasets, even if they could be unreliable for the individual
subjects. Additionally, as the real demographic information is also unknown to
the trained FER models, if bias is present in them it must be based only on the
physical appearance. Thus, we perform our analysis on these labels, as they can
help uncover biases based on these apparent demographic characteristics, even if
they do not always correlate with the true self-reported characteristics. Any bias
based on the apparent characteristics predicted by the auxiliary model must be
considered under these limitations, and further work must be done to test if the
bias is still present when we consider the real demographic characteristics.

3.3 Generation of Derivative Datasets

To study the impact of stereotypical bias, we generate three types of datasets,
namely, stratified, balanced, and biased. All of these are created as subsets from
the original FER+ dataset.

Stratified Subsets. To enable the comparison between different datasets, we
implement a method to generate stratified subsets from a source dataset with a
given target size, expressed as a ratio r ∈ [0, 1] of the number of examples in the
original dataset. To generate a stratified version, we consider both the set of tar-
get classification labels L = {angry,disgust, fear,happy, sad, surprise,neutral},

1 https://github.com/joojs/fairface.

https://github.com/joojs/fairface
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and the demographic groups of interest, in our case S = {male, female} and
their combinations defined by the Cartesian product L × S. For each of these
combinations independently, we perform a random subsample with target ratio
r. This process guarantees that the relative proportions between each label in L,
the demographic group in S, or the combination of both in L×S are kept, while
the overall size is reduced by the desired ratio r (plus or minus some rounding
error). Thus, the stratified datasets maintain the same stereotypical deviations
and general demographic proportions as the source data set.

Balanced Subsets. As the original FER+ dataset already contains some
stereotypical bias [13], we generate a balanced version of it to serve as a general
baseline. This dataset has the same proportions of each label in L as the origi-
nal FER+, but for each of them, the proportions of the demographic groups in
S are equalized. To generate this balanced dataset, we first calculate the most
underrepresented group (l, s) ∈ L×S by calculating the imbalance ratio of each
one in their respective label l:

imb(l, s) =
|{x|x ∈ Dl andx ∈ Ds}|

|{x|x ∈ Dl}| , (1)

where Dl denotes the subset of the dataset samples labeled with l and Ds the
subset identified as part of the demographic group s.

After this, we subsample each of the groups independently according to:

ratio(l, s) =
minl′∈L,s′∈S imb(l′, s′)

imb(l, s)
. (2)

The resulting dataset keeps the distribution of the target labels while making
the demographic groups in each label and in the whole dataset equally repre-
sented.

Biased Subsets. Finally, we also generate intentionally stereotypically biased
datasets. These datasets are built from the balanced datasets, but inducing a cer-
tain amount of bias into one of the labels l with respect to a target demographic
group s. The amount of induced bias b ∈ [−1, 1] is applied as:

– If b < 0, a negative bias is introduced, that is, the target demographic group
{x|x ∈ Dl andx ∈ Ds} is reduced by the ratio 1 + b. The examples labeled as
l belonging to the other demographic groups are kept intact.

– If b > 0, a positive bias is introduced, that is, the target demographic group
is left intact, reducing the representation of the rest of the samples {x|x ∈
Dl andx /∈ Ds} by the ratio 1 − b.

– If b = 0, the balanced dataset is not modified, and no bias is introduced.

After biasing the target label l, the resulting number of examples of that label
is 1 − |b|

2 of the original label support. To compensate for this effect, the other
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labels are also subsampled by the ratio 1 − |b|
2 . This reduces the final dataset

size, but keeps the label distribution equal to the original dataset.
The resulting dataset has, for b = −1 a total absence of the target demo-

graphic group in the label (underrepresentation), for b = 1 only samples of the
target demographic group in the label (overrepresentation), and for b = 0 is
balanced. The intermediate values allow for fine control of the amount of bias.
In all cases, the label distribution is kept identical to the original dataset.

3.4 Experiments

In our experiments, we aim to generate biased datasets in the extremes of the
stereotypical bias possibilities and then measure the final model accuracy imbal-
ances for the relevant demographic groups and labels. For this, we first obtain
the demographic profile of FER+ in the gender category. With this informa-
tion, we chose some of the more heavily biased labels and generate datasets that
exaggerate those same biases. The biased datasets are generated with different
degrees of bias, from a negative bias of −1 to a positive one of 1 in steps of 0.2,
all of them with respect to the “female” class as recognized by FairFace. The
balanced datasets will serve as a baseline, showing the behavior expected in the
absence of stereotypical bias for a certain dataset size.

To analyze the influence of the datasets on the performance of the model,
we train a model for each generated dataset and obtain the predictions over the
whole FER+ test partition. We then obtain the recall for each combination of
dataset, label, and gender group, that is, the accuracy of the classifier for the
examples belonging to the specific gender group and with a certain true label.
In particular, we expect to obtain the maximum difference in recall between the
demographic categories male and female in the extreme biased datasets for the
biased labels, as a measure of the maximum impact of stereotypical bias on the
recognition of the affected labels.

3.5 Experimental Setup

We employ a simple VGG11 [27] network with no pretraining as the base test
model. This is a classical convolutional architecture often used as a baseline for
machine learning applications. The experiments are developed on PyTorch 1.10.0
and Fastai 2.6.3. The hardware used is a machine equipped with a GeForce RTX
2060 Super GPU, 20 GB of RAM, an Intel R© Xeon R© i5-8500 CPU, and running
Ubuntu Linux 20.04.

All the models are trained under the same conditions and hyperparameters,
namely, a maximum learning rate of 1e−2 with a 1cycle policy (as described in
[28] and implemented in Fastai) for 20 iterations. This parameter was decided
using the lr finder tool in Fastai. The batch size is set to 256, the maximum
allowed by the hardware setup. For each dataset, we train the model 10 times
and average the results over them. We have also applied the basic data aug-
mentation provided by Fastai through the aug transforms method, including
left-right flipping, warping, rotation, zoom, brightness, and contrast alterations.
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For each dataset configuration to be tested, we perform ten individual train-
ing processes, for each one regenerating a new resampled dataset to ensure that
the sampling process does not affect the final results.

4 Results and Discussion

4.1 Dataset Initial Bias

We perform the demographic relabeling of FER+ with the FairFace public
model, as described in Sect. 3.2. The proportions of the gender category in the
whole dataset and for each label are shown in Fig. 1, together with the label
supports. The global gender proportions are almost uniform, at 50.1% for the
Female group and 49.9% for the Male group, showing very little direct represen-
tational bias. For stereotypical bias, the individual labels show a much greater
disparity. The two extremes are the label angry, with an underrepresentation of
the Female group (36.27% of the label support) and the label happy, with an
underrepresentation of the Male group (38.7% of the label support). The rest of
the labels in the dataset lie in between, with slightly lower imbalances.

Interestingly, the biases found in the labels happy and angry are consistent
with the classical angry-men-happy-women bias, a psychological bias pattern
well researched in the expression and recognition of human emotions [4,21].

Fig. 1. FER+ gender distribution and support by label.

4.2 Induced Bias Impact

The recall results obtained by the models are shown in Table 1. For brevity, only
the results for the four most extremely biased datasets and the size-equivalent
stratified balanced dataset are reported in the Table, with the complete results
being graphically presented in Fig. 2. The difference between gender recalls is
highest for the biased datasets in all cases, with the largest absolute difference
found in the labels angry, disgust, and happy. In particular, for the angry label,
biasing against the Female group maximizes the recall difference at 29.36% in
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favor of the Male group, while for the happy label it is the positive bias in favor
of the Female group that maximizes the difference at 15.03%. Biasing the angry
label generates a total range of disparity of 49.53% between its extremes, while
biasing the happy label of 26.17%.

The label disgust seems to be a particular case, with the largest recall differ-
ences between the gender groups overall. Difference values range from a 8.33%
difference to a 23.92% difference, always in favor of the Male group. Recall that
none of the biased datasets are designed to bias in this label, that is kept balanced
in all the derivative datasets, and even in the original dataset exhibits only a
mild stereotypical bias against the Male group, which constitutes a 43.25% of the
original support. However, this label also has the lowest support in the original
FER+ dataset, with the lowest general recalls of all labels for all configurations.
The label disgust also shows the highest standard deviation, between ±10.22
and ±16.83, making the results for this label unreliable.

The rest of the labels show some variations in general, but generally seem
unaffected by the bias induced in angry and happy. An exception seems to be
in the application of the positive bias in the happy label, overrepresenting the
female group for that label, which seems to decrease the recall for the angry
label of the same group.

Table 1. Recall by label and gender for the key datasets analyzed. For the difference
between gender recalls, the highest absolute value is in bold.

Happy Angry

Female −1.00 Female 0.00 Female +1.00 Female −1.00 Female 0.00 Female +1.00

Size 9475 9476 9475 9477 9476 9477

angry Male 74.40 ± 1.47 76.30 ± 3.40 74.24 ± 4.73 81.25 ± 2.6181.25 ± 2.6181.25 ± 2.61 76.30 ± 3.40 55.87 ± 2.24

Female 74.53 ± 3.45 73.21 ± 3.33 67.74 ± 3.34 51.89 ± 3.77 73.21 ± 3.33 76.04 ± 1.9976.04 ± 1.9976.04 ± 1.99

Diff 0.13 ± 3.75 −3.10 ± 4.76 −6.50 ± 5.79 −29.36 ± 4.59−29.36 ± 4.59−29.36 ± 4.59 −3.10 ± 4.76 20.17 ± 2.99

neutral Male 66.45 ± 3.10 71.52 ± 2.71 67.24 ± 4.66 70.72 ± 1.84 71.52 ± 2.71 74.91 ± 1.6674.91 ± 1.6674.91 ± 1.66

Female 66.33 ± 2.77 67.29 ± 3.00 64.86 ± 3.79 67.99 ± 2.48 67.29 ± 3.00 68.85 ± 1.2668.85 ± 1.2668.85 ± 1.26

Diff −0.12 ± 4.15 −4.22 ± 4.04 −2.38 ± 6.01 −2.73 ± 3.09 −4.22 ± 4.04 −6.06 ± 2.09−6.06 ± 2.09−6.06 ± 2.09

surprise Male 80.50 ± 3.91 83.71 ± 2.58 81.93 ± 3.16 82.77 ± 2.32 83.71 ± 2.58 84.16 ± 1.7184.16 ± 1.7184.16 ± 1.71

Female 83.46 ± 3.06 84.88 ± 2.67 84.83 ± 2.51 87.22 ± 2.7587.22 ± 2.7587.22 ± 2.75 84.88 ± 2.67 86.29 ± 1.87

Diff 2.97 ± 4.97 1.17 ± 3.71 2.90 ± 4.03 4.45 ± 3.604.45 ± 3.604.45 ± 3.60 1.17 ± 3.71 2.13 ± 2.54

sad Male 62.22 ± 3.71 66.82 ± 1.53 66.88 ± 3.90 69.66 ± 2.5369.66 ± 2.5369.66 ± 2.53 66.82 ± 1.53 69.55 ± 2.69

Female 67.88 ± 2.71 70.33 ± 2.30 68.91 ± 3.26 74.29 ± 2.2574.29 ± 2.2574.29 ± 2.25 70.33 ± 2.30 68.59 ± 2.72

Diff 5.66 ± 4.605.66 ± 4.605.66 ± 4.60 3.51 ± 2.76 2.04 ± 5.09 4.63 ± 3.39 3.51 ± 2.76 −0.96 ± 3.82

disgust Male 51.25 ± 16.01 45.00 ± 9.19 61.25 ± 11.4661.25 ± 11.4661.25 ± 11.46 56.88 ± 9.86 45.00 ± 9.19 56.25 ± 12.18

Female 35.33 ± 5.21 36.67 ± 4.47 37.33 ± 6.11 44.67 ± 7.3344.67 ± 7.3344.67 ± 7.33 36.67 ± 4.47 40.00 ± 7.30

Diff −15.92 ± 16.83 −8.33 ± 10.22 −23.92 ± 12.98−23.92 ± 12.98−23.92 ± 12.98 −12.21 ± 12.29 −8.33 ± 10.22 −16.25 ± 14.20

fear Male 66.25 ± 5.73 65.83 ± 4.86 68.75 ± 4.6668.75 ± 4.6668.75 ± 4.66 56.67 ± 7.73 65.83 ± 4.86 59.58 ± 7.23

Female 59.76 ± 3.76 58.33 ± 4.16 57.14 ± 5.11 60.95 ± 5.0260.95 ± 5.0260.95 ± 5.02 58.33 ± 4.16 55.48 ± 6.21

Diff −6.49 ± 6.85 −7.50 ± 6.40 −11.61 ± 6.91−11.61 ± 6.91−11.61 ± 6.91 4.29 ± 9.21 −7.50 ± 6.40 −4.11 ± 9.53

happy Male 89.10 ± 2.46 87.66 ± 2.23 72.91 ± 3.47 87.90 ± 2.11 87.66 ± 2.23 89.79 ± 1.7189.79 ± 1.7189.79 ± 1.71

Female 77.96 ± 1.86 87.75 ± 2.14 87.94 ± 1.87 88.42 ± 1.8988.42 ± 1.8988.42 ± 1.89 87.75 ± 2.14 88.02 ± 1.48

Diff −11.14 ± 3.09 0.09 ± 3.09 15.03 ± 3.9415.03 ± 3.9415.03 ± 3.94 0.52 ± 2.83 0.09 ± 3.09 −1.77 ± 2.26
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The difference between the recalls of the male and female groups for each
degree of induced bias is shown in Fig. 2. In the Figure, the vertical axis corre-
sponds to the difference in recall from the female group to the male group, and
the horizontal axis corresponds to the amount of induced bias. The difference of
recall obtained in the balanced datasets is included as the comparison baseline.

For all labels, if no bias is introduced on that particular label, the recall
differences are close to the baseline levels. When observing the differences in the
recall of the affected label for the biased datasets, the effect of the dataset bias
becomes apparent. For both the angry and happy labels, the negative biases,
which correspond to an under-representation of the female group on the label,
show a difference in recall in favor of the male group, and the opposite is observed
for positive amounts of bias. For the datasets biased in the angry label with a

Fig. 2. Recall difference Male-Female in the different emotion labels. Positive numbers
mean a higher recall for the Female group than for the Male one. The baseline balanced
datasets are plotted according to size, aligned with the corresponding biased datasets.
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negative or positive bias for the female group, the difference in recalls of the
angry label quickly deviates from baseline levels when exposed to a bias of ±0.2
or greater, exceeding ±20% of difference under extreme bias conditions. For the
label happy, the effect is not as pronounced and only when trained on datasets
with bias of ±0.4 or higher does the difference in recalls deviate from the baseline
behavior.

For both the labels angry and happy, a safe zone can be observed where bias
in the dataset does not significantly affect the difference in recalls. The behavior
of the biased model when trained under this limited amount of bias seems to
be similar to the baseline dataset. In the case of the label happy, this safe zone
includes the datasets with a stereotypical bias of ±0.4 and lower, while on angry
it is more restricted, including only those with a stereotypical bias of ±0.2 and
lower.

5 Conclusion

In this work, we have studied the impact of stereotypical bias in FER datasets
and their resulting models through the induction of controlled bias in the dataset.
In particular, for the FER problem, we have observed up to a 29% disparity in
the recognition of certain emotions, namely angry, when the dataset lacks rep-
resentation of a gender category for the label. We have shown that this kind of
bias is already present in publicly available datasets, in particular in FER+, but
our experiments suggest that a small amount of stereotypical bias in the gender
category seems acceptable, not impacting the final performance for the under-
represented group. Nevertheless, it is important to notice that the acceptable
amount of stereotypical bias seems to be context-dependent, varying at least
between labels. Our findings support the importance of a thorough bias analysis
of public datasets in problems like FER, where a global balance of demographic
representation in the dataset can still hide other types of bias that harm certain
demographic groups.

In light of our findings, we highly recommend that future datasets, especially
those created from Internet searches and intended for public release, are tested
for stereotypical bias and corrected accordingly by down-sampling the overrep-
resented demographic groups. Although other mitigation techniques could be
performed later in the training phases, this type of bias is easy to overlook
and can leak into bias in the trained models if left untreated. Furthermore, we
strongly advise dataset creators to include the relevant demographic informa-
tion of the subjects when possible, to allow the future study of new forms of
demographic bias in their datasets.

A problem that requires further analysis is the large differences in the gender
recall of certain labels, such as disgust. This difference is present even for the
balanced versions of the dataset, suggesting a measurement bias or an inher-
ent representation problem in this label. The label disgust, in particular, has
low support, which could imply that stereotypical bias problems have a greater
impact in smaller datasets. Further work is also required to replicate these results
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for other datasets, models and different applications. The development of prop-
erly labeled datasets that include demographic information of the represented
subjects would also solidify this analysis, currently limited by the demographic
relabeling model employed.
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Abstract. In a world increasingly present online, people are leaving a
digital footprint, with valuable information scattered on the Web, in an
unstructured manner, beholden to the websites that keep it. While there
are potential harms in being able to access this information readily, such
as enabling corporate surveillance, there are also significant benefits when
used, for example, in journalism or investigations into Human Traffick-
ing. This paper presents an approach for retrieving domain-specific infor-
mation present on the Web using Social Media platforms as a gateway
to other content existing on any website. It begins by identifying rele-
vant profiles, then collecting links shared in posts to webpages related to
them, and lastly, extracting and indexing the information gathered. The
tool developed based on this approach was tested for a case study in the
domain of Human Trafficking, more specifically in sexual exploitation,
showing promising results and potential to be applied in a real-world
scenario.

Keywords: Social media · Open-source intelligence · Information
retrieval · Human trafficking

1 Introduction

The Web has been growing steadily in the last few years, meaning there is an
ever-increasing number of users and information present on it [9]. With more
people using the Internet, seemingly in more diverse ways, the more information
they create and share, primarily through Social Media platforms. This results in
every person having a meaningful and more descriptive digital footprint every
day [6].

Accessing this information and subsequently using it in productive ways can
help answer important questions about our world. Although there is a risk of
using this information in harmful ways, it is also possible to leverage it for social
good. However, given that this data is generated on multiple platforms, structure
and consistency are regularly absent. Additionally, for most of the data created,
accessing it is contingent on the website.
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For example, websites that have search functionalities tailored to a specific
use case and, as such, do not cover all potentially helpful scenarios. To exemplify
this, we can consider a website like GitHub with an excellent search engine for
finding code and repositories. This covers the most prominent use case of the
platform, storing and sharing code. Nevertheless, we can imagine a company
interested in looking up profiles from users interested or experts in a particular
field. If using the native search functionalities, there is no clear and effective way
of doing this.

A more extreme case is when websites and platforms do not offer any search
options over the data they keep, or these are of significantly low quality. This
could be not having a publicly available API to access its data or not supporting
manual searching. Such could be the case for applications that do not have the
resources or technical scale to offer good search capabilities or do not want bots
to be able to query their system. A modern example of this is the social network
platform OnlyFans. OnlyFans is a platform to share and directly monetize user-
created content that has risen to popularity in the past few years as a means
to offer sexually explicit content. Due to its minimal regulation and bear to
entry, it has been increasingly tied to cases of sexual exploitation of minors
and instances of human trafficking [10]. Perhaps intentionally, OnlyFans has
poor search functionalities since they do not expose a public API, and manually
searching returns only a handful of low-quality results.

One of the areas where this information is most valuable is in Human Traf-
ficking investigations. Authorities and non-governmental organizations (NGOs)
can leverage the information scattered on the Web to gain additional insights or
discover new cases. Albeit helpful, readily accessing this information is a complex
problem for the reasons mentioned above. In the above example of OnlyFans, to
conduct investigations on this platform to prevent its use for human trafficking
and sexually exploitative purposes requires searching for profiles, which is made
extremely difficult by the available search options.

In this paper, we present an open-source intelligence (OSINT) tool utilizing
a novel approach to circumvent these issues that authorities can use to aid in
accessing and efficiently using data scattered on the Web. The approach relies
on two key assumptions: (1) that people who actively use the Web will tend
to reveal their presence online through Social Media platforms; (2) the more
a person is involved or experienced in a given domain, the more likely they
are to share content and information related to that domain. Under these two
presuppositions, the tool retrieves information regarding a specific domain by
identifying Social Media profiles related to the desired domain. Once a set of
profiles is identified, its posts are analyzed in search of links to other web pages.
The corresponding websites are crawled and, if classified as related to the profile
in question, are kept for additional data extraction. With the profiles and their
corresponding related web pages gathered, data is collected and structured so it
can be visualized and queried to provide the user with insights into the results.
The tool was tested in a mock scenario related to Human Trafficking, specifically,
sexual exploitation.
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2 Forensic Technology for Human Trafficking

The most relevant research field this work touches upon is Forensic Technology in
the Human Trafficking domain. In general, this area focuses on ways to improve
and even automate the access and analysis of information on the Web to aid the
identification and collection of evidence of Human Trafficking. The approaches
found in the literature can, with some overlap, be divided into three types:
(1) extensive data extraction and linking; (2) tagging data with human trafficking
indicators; (3) classification of data as suspicious human trafficking activity.

The first type and the most prevalent approach, with a greater real-world
adoption in criminal investigations, concerns the collection of large quantities of
data available on the Internet and creating strategies to efficiently and effectively
analyze this information. Many of the tools developed under this approach were
within the DARPA MEMEX [1], a program developing search technologies for
better discovery, organization, and presentation of domain-specific content. One
of the most meaningful works, built upon earlier systems from DARPA, was a
system architecture called DIG (Domain-specific Insight Graphs) proposed by
Szekely et al. [11] capable of building domain-specific Knowledge Graphs. In the
study, the authors were able to create a Knowledge Graph with around 1.4 billion
nodes from a starting collection of 50 million crawled web pages. This system
was then integrated into an investigative search engine by Kejriwal et al. [8],
specific to the Human Trafficking domain, helping investigators answer entity-
centric questions regarding the data present on millions of crawled web pages
from websites known to be associated with Human Trafficking activity. Their
engine not only had to be concerned with extracting and structuring only the
most relevant information but, to be used by authorities in a practical setting,
also had to be scalable.

The second type attempts to tag data with previously defined indicators of
Human Trafficking. These indicators can be set by authorities or NGOs like
the United Nations Office on Drugs and Crime (UNODC) that are meant to
reflect common patterns found in Human Trafficking activity and, if appropri-
ately assigned to data segments, can automate part of the investigators’ work.
One of the projects following this technique is presented by Kejriwal et al. [7]
as FlagIt (Flexible and adaptive generation of Indicators for text), an end-to-
end indicator mining system with the principle goal of reducing the burden and
potential bias stemming from manual supervision of suspicious text, like sex
ads, that can contain signs of Human Trafficking activity. As part of the Euro-
pean ePOOLICE (early Pursuit against Organized crime using environmental
scanning, the Law and Intelligence systems) project, Andrews et al. [2] took the
framework described by Brewster et al. [3] and developed an Organized Crime
taxonomy, combining it with entity extraction tools to filter social data that had
more than a pre-defined number of signals of organized crime. It could later be
manually reviewed by authorities, facilitating the access and use of social media
as a new data source for investigations. The effectiveness of these systems relies
heavily on the indicators defined, which can be highly subjective.
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The third and final type includes works that attempt to classify meaningful
blocks of data as containing or not suspicious signs of Human Trafficking activ-
ity. It is arguably a more difficult task since defining a threshold for what is
considered enough evidence to classify as suspicious is challenging even among
investigators. To simplify this problem, Hernández-Àlvarez [4] turned to Twitter
and focused on Spanish data to identify signs of Human Trafficking of underage
victims. Focusing on just underage victims made it easier to define an indica-
tor of possible Human Trafficking since any minor attempting to provide sexual
services is already a strong warning sign.

3 Architectural Overview

Considering the three approach types mentioned in the previous section, the
tool we propose fits best in the first approach type. The key distinction from
other works found in the literature is that, instead of relying on prior knowledge
of platforms and websites known to house criminal activity, the proposed app-
roach relies only on widely used Social Media platforms. Additionally, all the
information that is gathered from other tools necessarily comes from the pages
crawled of websites previously chosen. On the other hand, our proposal allows
the extraction of relevant information from websites unrelated to criminal activ-
ity while still collecting information on other websites that can indicate such
activity. Lastly, the websites selected in other works often have search engines
that allow for quickly collecting a large number of links to existing profiles or
forums, which can then be used to begin crawling. When a website does not pro-
vide this, like in the case of the aforementioned social platform OnlyFans, these
proposed tools are harder to incorporate in investigations since it is difficult to
get an initial batch of links to profiles and, moreover, the profile pages do not
link to other ones. By relying on the searching capabilities of well-established
Social Media platforms, the technology described in this paper can bypass these
limitations, even if partially, and still provide valuable insights to authorities.

The tool’s overall architecture is illustrated in Fig. 1. Currently, the tool relies
only on the Twitter social media platform. Thus, the modules are targeted for
this particular platform. Nevertheless, the proposed approach’s underlying ideas
and stages can be easily adapted to other social media.

The user first uses the interface to provide the search’s configuration param-
eters, which include the search and domain keywords, and then triggers a search.
Since the terms are provided by the user and no assumptions are made about
the domain they reflect, the tool is domain-agnostic. The tool begins by using
the Twitter API 1 to look for tweets containing the search terms, keeping the
respective profiles until the desired number has been collected.

After having a set of profiles, the program initializes the Apache Spark
engine 2 to parallelize the operations from the following modules by profile. It
begins with the Profile Selection module, responsible for taking in the profiles
1 Twitter API - https://developer.twitter.com/en/products/twitter-api.
2 Apache Spark - https://spark.apache.org.

https://developer.twitter.com/en/products/twitter-api
https://spark.apache.org
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Fig. 1. Diagram of the application’s overall architecture.

collected from the previous search, gather profile data, tweets and retweets and
then use it to identify which ones are related to the desired domain, a process
explained in Sect. 4.

The URL Extraction & Crawling module follows by taking the URLs
extracted from the tweets of each selected profile and crawling the corresponding
websites while collecting data from them. Part of this data is then used to filter
the websites which are related to the profile and the ones that are not. How this
is achieved is explained in Sect. 5.

In tandem with the processing that each module performs, for each profile,
a JSON is kept saving all the information that is gathered from both Twitter
and the related websites. When the previous module ends, all documents from
profiles that have been selected are sent to an Elasticsearch engine 3. It will
index the data following a provided schema and allow the full-text search over
the gathered information.

Lastly, once the search is finished, the user can analyze the results using the
provided interface, filter the results, and query for specific terms, emails, phone
numbers, or links.

4 Profile Selection Module

The Profile Selection module is responsible for discerning social media profiles
related to a given topic, using only the publicly available information on the
profile, such as posts or replies, and a user-given set of keywords. It can be
seen as a binary classifier since, for a set of keywords, it will classify profiles
as either related or not related to the underlying topic. This section begins
3 Elasticsearch - https://www.elastic.co.

https://www.elastic.co
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with the description of how the module functions in Subsect. 4.1 followed by
the evaluation performed to validate and assess its performance, detailed in
Subsect. 4.2.

4.1 Process Flow

This module requires a set of terms provided by the user, the domain keywords,
that closely relate to and distinguish the domain of interest. A simplified activity
diagram of the Profile Selection module can be viewed in Fig. 2 to accompany
its process flow’s description.

Fig. 2. Activity diagram of the profile selection module.

The module can be divided into four stages: (1) Extraction; (2) Processing;
(3) Topic Discovery; (4) Classification. The Extraction and Processing stages
happen together. The first involves going through each of the profile’s tweets
(up to a maximum defined by the user) and extracting necessary information
such as the text, URLs contained in the tweets, and entities identified by Twit-
ter. The second processes the text from the tweets to turn it more suitable for
topic modeling. This includes operations like removing tags, punctuation, and
stopwords and converting the text to lowercase.

In the Topic Discovery stage, the text extracted previously, which is divided
into two corpora, one for the profile’s tweets and another for its retweets, is
tokenized and lemmatized using the WordNet lemmatizer 4. The tweets are then
aggregated in groups of five, by the order they were collected, to form documents
instead of having each tweet be a document. The reason is that tweets have a
character limit and tend to be short, making it harder for topic models to use
them effectively. In topic modeling of Twitter profiles, a profile is understood to

4 WordNet lemmatizer - https://www.nltk.org/ modules/nltk/stem/wordnet.html.

https://www.nltk.org/_modules/nltk/stem/wordnet.html
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be drawing primarily from a limited pool of topics, where each tweet is of a topic
following that same pool. Thus aggregating tweets is a common and inexpensive
approach found to improve topic modeling results with tweets without incurring
the risk of obfuscating topics [5].

For topic extraction, each corpus is converted to its Bag of Words repre-
sentation and then fed into Gensim’s Ensemble LDA model 5. Since LDA is
non-deterministic, the topics identified may vary with each run. In an attempt
to single out only the most stable topics, the Ensemble LDA approach effectively
trains multiple LDA models and considers only those that emerge multiple times.
This makes it less likely that a topic distribution results from the model’s nat-
ural variance. If stable topics are found, these are returned as an array of terms
and their corresponding probabilities. The ten most probable terms of appearing
from each of the top-5 identified topics are saved.

Finally, the Classification stage begins by converting both the user-submitted
domain keywords and the topic terms previously identified to a vector repre-
sentation that preserves semantic meaning. This is done through a word2vec
word embedding model trained on text taken from Google News. Using a model
that conveys semantic meaning, operations on the resulting vectors preserve this
property. Two operations are essential for this classifier. The first is addition,
which allows the user to submit composite domain keywords that can be inter-
preted as one term by adding them. For example, if the keyword is “information
integration”, using the terms separately dilutes the desired domain since both
“information” and “integration” are words widely used in other situations. By
adding both terms, the resulting vector should point to a coordinate in the
embedding space related to “information integration” and not just one or the
other.

The second operation is the distance between vectors, or its inverse, the
cosine similarity between two vectors. Once again, since the vectors preserve
semantic meaning, the closer two vectors are in the embedding space, the more
similar the corresponding terms are. Consequently, by calculating the cosine
similarity between each domain keyword and the profile’s identified topic words,
we measure how similar the profile’s identified topics are to the desired domain.
This score is improved by applying some heuristics, namely, only keeping the
best similarity score for each keyword and then removing the 30% worse keyword
scores. This process happens for the profile’s description, understood as the terms
of a single topic, the tweets’ and retweets’ topics, ending with three different
scores. The average of these scores is taken and used as the profile’s overall
score. If it is above a threshold, that is defined by the experiments described in
the following subsection, the profile is kept and understood to be related to the
desired topic.

5 Ensemble LDA - https://radimrehurek.com/gensim/models/ensemblelda.html.

https://radimrehurek.com/gensim/models/ensemblelda.html
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4.2 Evaluation and Comparison of Different Configurations

To evaluate different alternatives in the development of this module, a custom-
built dataset of Twitter profiles and one closely associated topic. In order to cre-
ate the dataset, topics were chosen beforehand, like “ambient music” and “infor-
mation retrieval”, and lists of people known within these fields were searched
for on the Web, most coming from Wikipedia. Each person’s name was then
searched for on Twitter, and the first returned profile was manually analyzed to
assess the profile’s actual relatedness to the topic. The resulting dataset, publicly
available at rdm.inesctec.pt/dataset/cs-2022-007, contains 271 profiles belonging
to one of six topics.

The dataset was used to evaluate the classifier’s performance with different
configurations. The evaluation was based on plotting and subsequently ana-
lyzing the resulting Receiver Operating Characteristic (ROC) curves and the
corresponding Area Under the Curve (AUC) values. The ROC curve is a stan-
dard graphical plot to gauge the diagnostic ability of a binary classifier as its
discrimination threshold varies.

Word Embedding Model. The first test was done to select a word embedding
model for the classification phase. Four pre-trained models were tested, a Fast-
Text model trained with text from Wikipedia, two GloVe models, one trained
with text taken from Twitter and another from Wikipedia, and lastly a word2vec
model trained with a corpus obtained from Google News. The ROC curves were
plotted, see Fig. 3, as well as the resulting AUC values, which can be seen in
Table 1. The word2vec model was ultimately chosen and used for the subsequent
tests based on the results obtained.

Table 1. Area Under the Curve (AUC) values for the tested word embedding models.

Model fasttext-wiki-news-subwords glove-twitter glove-wiki-gigaword word2vec-google-news

Area Under the Curve (AUC) 0.901 0.743 0.863 0.983

Topic Sources and Heuristics. Another test was conducted to understand
which topic sources were best to use. This required plotting the ROC curves for
the classifier using just the score obtained from the description, the topics from
the tweets, and the topics from the retweets. Additionally, the average of the
three was also plotted. It was found that the highest diagnostic ability from a
single source was with the classifier using the retweets’ topics, having an AUC
value of 0.967, and the lowest with the description, with an AUC value of 0.873.
Moreover, the best performing classifier came from the average of the scores from
all three sources, resulting in an AUC of 0.983. Consequently, the average of the
three scores was chosen for the final classifier.

https://rdm.inesctec.pt/dataset/cs-2022-007
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Fig. 3. ROC curves obtained with various word embedding models.

The classifier’s heuristics described in the previous section were also validated
to confirm that the performance did, in fact, improve when they were applied.
These included keeping just the top-4 most related topic terms for each keyword
and discarding the 30% worse scoring keywords. Although the improvement is
not substantial, going from an AUC of 0.977 without any heuristics to 0.983
with both, it was still found valuable and worth keeping in the final classifier.

Threshold Definition. Most importantly, the dataset was used to define the
classifier’s threshold empirically. To do this, the dataset was divided into test
and validation sets, with an 80/20 split, respectively. This split was performed
to keep the proportion of topics roughly the same on each set. The ROC curves
were plotted for both sets, which can be viewed in Fig. 4. Since both follow
roughly the same shape, a threshold based on the test dataset will give similar
results in the validation dataset.

Since the profile’s score is correlated with the frequency with which that
profile engages with the desired topic, a higher score means that the profile is
more likely to be useful. With this in mind, the threshold was set to 0.275, which
should result in about an 80% TPR. Although it may seem that not being able
to identify 20% of cases is high, it is likely that the 20% of related profiles that
are not identified do not engage with the topic enough on Twitter, so the quality
and quantity of the data that would be able to be retrieved is expected to be
low.
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Fig. 4. ROC curves for threshold setting using the profile selection classifier.

5 URL Extraction and Crawling Module

The URL Extraction & Crawling module works with the profiles that have been
selected from the previous module. It is responsible for taking the links collected
for each profile, crawling the corresponding websites, identifying which ones are
related to the profile in question, and, if it is the case, collecting and structuring
information available on the websites.

5.1 Process Flow

Since hundreds of links can be collected from a profile’s tweets, and web crawl-
ing is an expensive process, even with parallelized operations, it is impractical
to crawl every URL from every profile selected. As such, the module only crawls
up to a maximum number of websites defined by the user in the configuration,
excluding the webpages crawled in depth. To guide the description of this mod-
ule’s process flow, a simplified activity diagram can be seen in Fig. 5.

This module can also be divided into three stages: (1) Crawling; (2) Classi-
fication; (3) Entity Extraction.

The Crawling stage is a specialized web crawler tailored to the application’s
specific needs. It crawls each link up to a specified depth, currently set to five,
while remaining within the same hostname (internal crawling), and gathers data
from each one. Besides keeping the entire webpage content stripped of < script>
and < style > tags, it attempts to extract data like emails and phone numbers
found in < a > tags, links to external websites, images, and metadata from
each page. It also attempts to identify “link-tree” websites, like linktr.ee and
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Fig. 5. Activity diagram of the URL Extraction and Crawling module.

linkgenie.co. These are websites dedicated to aggregating links to a person’s
presence online. Usually used by influencers, artists, and public figures in general,
it is a practical way to easily share all relevant links to social media platforms,
personal websites, and other relevant pages using a single link. These types of
websites are useful for this tool since if it is determined that a particular “link-
tree” website is related to the profile, then it can be presumed that all external
links found on it also belong to that profile.

Upon some testing, it was found that the most significant bottleneck from this
module was the requests made to retrieve a webpage’s content. However, since
the bottleneck is principally I/O bound, the module spawns a series of threads,
each performing the stages for each URL. The use of threads is adequate in
this case since while one is waiting for a request to return, another can advance
with some other computation. Additionally, creating threads does not have the
significant processing overhead as it does when in the case of multi-processing.

The Classification stage is where a relationship between the Twitter profile
and the website is searched for to determine whether the extracted data should
be kept or discarded. Since the crawled web pages can be from any arbitrary
website on the Web, the classifier cannot make many assumptions regarding the
structure or contents of the data found.

As such, the algorithm for classifying websites relies on searching the con-
tents retrieved using regular expressions with fuzzy matching created from the
Twitter profile’s name and username. In order to achieve this, the name and
username are first processed to convert characters that serve as word delimiters
to whitespace. Then, a regular expression is formed by taking each word in the
string and allowing a match with up to a given number of errors, defined as
the Levenshtein distance, which depends on the length of the word. Addition-
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ally, the regular expression allows for up to two words and any word delimiter
character to be between each name’s word. For example, if the username was
“*John Doe*”, it starts by being converted to ‘‘john doe’’. Afterward, the
fuzzy matching encoding for Python regular expressions is added to each word,
resulting in ‘‘(?b)(john){e<=1} (?b)(doe){e<=1}’’. Lastly, the encoding for
additional words in between each name generates the final regular expression,
‘‘(?b)(john){e<=1}(\w){0,2}((\W|_)|(\W|_)(\w)*(\W|_)){0,2}
(\w){0,2}(?b)(doe){e<=1}’’.

Besides the regular expressions searching for the entirety of the name and
username, additional ones are created from the individual words found in them.
This increases the scope of the search but also allows for a greater chance of false
positives. For this reason, each regular expression is weighted. The ones created
from the full name have a weight of 1, and ones created from individual words
have a weight which is inversely proportional to their Zipf frequency, calculated
using wordfreq 6, up to a maximum of 0.25. This means that words that often
appear in text will have a marginal impact on the website’s score. These regular
expressions are then searched among the corpus and metadata gathered from the
website. If no match is found, the score for a particular search is 0. Otherwise,
that search’s score is given by the following formula:

score =
Loriginal

Loriginal + |Loriginal − Lmatch| + 2 × nerrors
(1)

where Loriginal is the length of the original string, Lmatch is the length of the
match string, and nerrors is the number of errors, i.e., the Levenshtein distance.

The scores from all searches are multiplied by their weight, then averaged and
normalized to a value between 0 and 1. If the score is above a given threshold,
the website is considered related to the profile, and its data is kept.

Furthermore, if related, the Extraction stage follows, which takes the web-
site’s contents and uses Spacy’s 7 pre-trained named-entity recognizer to extract
named entities from the categories selected by the user in the configuration.
These categories are the ones made available by Spacy (e.g., people, dates, quan-
tities) and can be selected by the user through a checkbox list when inputting a
search’s configuration in the tool’s interface.

5.2 Evaluation and Comparison of Different Configurations

Like the Profile Selection module, this module was also tuned by testing multiple
configurations with a custom dataset. It was created using the profiles gathered
from the previous dataset, collecting the URLs that were in each profile’s descrip-
tion and then manually analyzing them to determine if they were related or not
to the entity behind the profile. The resulting dataset, also publicly available at
rdm.inesctec.pt/dataset/cs-2022-007, contains 325 distinct pairs of Twitter pro-
files and related URLs, with some profiles having more than one link associated.

6 wordfreq - https://github.com/rspeer/wordfreq.
7 Spacy - https://spacy.io.

https://rdm.inesctec.pt/dataset/cs-2022-007
https://github.com/rspeer/wordfreq
https://spacy.io
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Search Expression. The dataset then served to validate the use of both the
Twitter name and username for creating regular expressions. It was found that
using just the Twitter name resulted in a slight performance improvement when
compared to using both. However, the Twitter name, unlike the username, is
not permanent, meaning users can change it when they please. As such, we
believe using it as the single source for regular expressions would result in a more
inconsistent classifier, highly dependent on the current profile’s name, which
commonly changes with, for example, culture shifts such as the inclusion of a
person’s pronouns at the end of the name. Hence, given that the difference was
not substantial, the final classifier uses both the Twitter name and username.

Tokenization. Another choice that was analyzed was using the tokenization of
the Twitter name and username to obtain additional search expressions from each
individual token. The results show a minimal improvement with a classifier using
individual tokens, which can best be perceived by the corresponding AUC values,
which are 0.9849 and 0.9812 for the classifier with and without tokens, respec-
tively. Albeit minimal, the choice to use individual tokens was kept. We believe
that, in more complex cases, for example, when individual names from the Twit-
ter name appear on a website multiple times but in inverse order, although the
regular expression with the full name will not be able to match these instances,
the individual tokens will, increasing the chance of it being detected.

Threshold Definition. As in the previous module, the dataset was split into a
test and validation to determine an adequate threshold for the classifier. Analyz-
ing the ROC curves, see Fig. 6, together with graphs of the classifier’s F1-score
and Accuracy for the various thresholds, it was found that a slight maximum was
hit for threshold values between 0.025 and 0.075. We believe that the dataset
does not accurately represent the variety of cases of website relatedness the
classifier would commonly find since all websites were taken from the profiles’
descriptions. This probably results in a selection of websites disproportionately
highly related to their corresponding profiles. Hence, the final threshold was set
to 0.06, a low value that serves mostly to rule out single matches, probably with
a few errors, coming from words similar to a name token but unrelated. With it,
the validation dataset predicts a TPR of around 87% with a 6% FPR.

6 Case Study

The tool was tested in a mock scenario of a possible use by law enforcement to
detect suspicious cases of sex work. The goal was to assess the tool’s ability to
find Twitter profiles of sex workers and the type of information it can gather
from them. Additionally, there was a focus on evaluating the tool’s detection
of OnlyFans accounts from sex workers, which could be useful for detecting
suspicious accounts on this platform.

Due to limitations in the virtual machine where the application ran, the
search had to be split into multiple instances. Although the application uses the
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Fig. 6. ROC curves for threshold setting using the URL Extraction and Crawling
classifier.

Apache Spark engine, it does so in local mode with only two cores available,
thus not achieving any actual parallelization.

Ten searches were performed, each requesting an initial batch of 100 profiles
for a total of 1,000 starting profiles that were active between the 6th and 12th
of June 2022. The profiles were gathered from tweets that contained terms like
“escort” and “onlyfans”, while discarding those with terms such as “traffic”. The
combined time for all ten searches was 8 h and 13 min, without parallelization.

Of the 1,000 profiles analyzed, the tool identified 31 unique ones that it
believed were related to the sex work domain. Since the searches were sepa-
rate, the number of unique profiles analyzed was likely slightly less, between 700
and 800. Given the relatively low number of identified profiles, it was possible to
examine each manually. In the end, it was found that, from the 31 identified pro-
files, 20 appeared to be from people actively performing some type of sex work.
From the remaining 11, 6 were from accounts that frequently shared explicit
adult content, albeit not involved in its production, and 1 from a person actively
engaging with news from caught sex offenders. Only 4 accounts did not appear
to have a significant relation to the domain and can therefore be considered false
positives, resulting in a precision of about 87%.

Regarding the information gathered from the profiles, a total of 137 links
were classified as related to their respective profile. However, not all profiles
had related links, with 13 out of the 31 having no associated link. From the
analysis of the links, more specifically their websites, only three did not appear to
have any relation to the profile, considered therefore to be wrongfully classified.
Furthermore, of the 20 profiles of sex workers, 7 had an OnlyFans account link
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correctly associated. Lastly, the tool collected 4950 images from the crawled
web pages, nine emails, and three phone numbers. These can constitute valuable
information in investigations to get leads or identify known potential victims.
The breakdown of all the data collected from the searches can be found in Table 2.

Table 2. Distribution of profiles and extracted data from the searches performed.

Type Profile Count Related Links Misidentified Links Emails Phone Numbers Images

Sex Workers 20 132 1 9 3 4824

Non-Sex Workers but related to domain 7 1 0 0 0 3

Not related to domain 4 4 2 0 0 123

Total: 31 137 3 9 3 4950

An important outcome to mention is that, while working on this case study, a
particular tweet drew attention to a profile that, upon closer inspection, appeared
to be an underage person offering sexual services, and the account was subse-
quently reported to Twitter. Albeit an unfortunate occurrence, it is perhaps a
testament to the potential of this tool.

7 Conclusions and Future Work

This paper presents a tool developed based on a novel approach to gathering
domain-specific information from the Web. The approach relies on people’s pro-
clivity to share content they create and their overall presence online through
Social Media platforms. The approach also introduces new strategies for prob-
lems not yet extensively tackled in the literature. This includes identifying pro-
files and, in general, text corpora that relate to a particular domain while remain-
ing agnostic of the domain. An additional problem is detecting relationships
between Social Media profiles, or the entities behind them, and arbitrary web-
sites.

Nevertheless, it is imperative to thoroughly test the tool with a proper setup
that allows for actual parallelization with Apache Spark and perhaps in coordi-
nation with authorities in a real-world scenario. Other enhancements have been
conceived to improve and extend the tool’s capabilities. An approach to the clas-
sifier for profile-website relatedness would be to use a named-entity recognition
and entity linking model to find aliases of the Twitter name or username and
then use them to create new regular expressions. Another improvement would
be to link the gathered information with Linked Data from the Semantic Web.

From the evaluation of the individual modules and the case study performed,
we consider that the application shows potential to be incorporated into the
arsenal of OSINT tools available for authorities and investigators to aid in the
fight against Human Trafficking and sexual exploitation. Moreover, by keeping
the tool agnostic of the domain, we believe its use can be extended to other fields
like investigative journalism.
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Abstract. State-of-the-art machine learning (ML) systems show excep-
tional qualitative performance, but can also have a negative impact on
society. With regard to global climate change, the question of resource
consumption and sustainability becomes more and more urgent. The
enormous energy footprint of single ML applications and experiments
was recently investigated. However, environment-aware users require a
unified framework to assess, compare, and report the efficiency and per-
formance trade-off of different methods and models. In this work we pro-
pose novel efficiency aggregation, indexing, and rating procedures for ML
applications. To this end, we devise a set of metrics that allow for a holis-
tic view, taking both task type, abstract model, software, and hardware
into account. As a result, ML systems become comparable even across
different execution environments. Inspired by the EU’s energy label sys-
tem, we also introduce a concept for visually communicating efficiency
information to the public in a comprehensible way. We apply our meth-
ods to over 20 SOTA models on a range of hardware architectures, giving
an overview of the modern ML efficiency landscape.

Keywords: Energy efficiency · Sustainability · Resource-aware ML ·
Green AI · Trustworthy AI

1 Introduction

Machine learning (ML) solutions are successfully deployed in diverse application
areas and thus affect more and more people, including but not limited to experts
from science, less informed developers from industry, or end-users that only face
model decisions. However, the energy required for deploying highly complex mod-
els has become a concern as the world strives towards reducing carbon emissions
in all sectors of society [26]. When discussing novel methods in literature, authors
tend to focus on predictive performance metrics, but often fail to discuss resource
consumption in similar depth [32]. This is due to a lack of concise specification of
ML model energy efficiency [29]. With the diversity of ML target groups, and in
order to be truly beneficial for social good, such efficiency information also needs
to be communicable at different levels of comprehension.
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Fig. 1. Framework for assessing the energy efficiency of ML experiments.

In this work, we propose a general framework for assessing the efficiency of
learning tasks. Besides power draw, we also take other important metrics like
model size, computational runtime, and predictive performance into account. In
order to make model performance comparable across diverse environments, we
introduce novel routines that project those metrics onto rateable index scales.
Wanting to benefit the whole society, we additionally show how results can be
reported to varyingly informed audiences, like scientists from our field, devel-
opers in industry, or non-experts facing established ML systems. Here we draw
inspiration from the way the European Union communicates energy efficiency of
household appliances via energy labels [13]. With our proposed framework, the
omnipresent trade-offs between predictive quality and resource consumption of
ML systems becomes assessable for the public.

1.1 Contribution

The main contributions of this paper can be summarized as follows:

– We conceptualize an energy efficiency framework (schematically displayed in
Fig. 1) for ML tasks and their respective metrics

– Our procedures for indexing and rating makes those metrics and models in
general comparable, even across highly different execution environments

– Inspired by EU energy labels, we propose a method to communicate informa-
tion on efficiency to a variety of target groups

– An extensive experimental evaluation on the most popular and widely-used
models for image classification demonstrates our method’s practicability, and
provides a wide overview over the current energy efficiency landscape

– To make our framework as accessible as possible, we publish a software suite1

that executes experiments, calculates metrics, and provides insight via an
interactive energy label exploration (ELEx) tool

1 www.github.com/raphischer/imagenet-energy-efficiency.

www.github.com/raphischer/imagenet-energy-efficiency
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1.2 Related Work

We understand sustainability to be a core component of ongoing research on
trustworthy AI [6,10]. The field discusses societal demands in a general scope
[9,12], which also includes environmental aspects [29,32]. Computational cost
and resource usage considerations have been discussed in the past [5], and
directly correlate with energy consumption. Indeed, this correlation and resulting
carbon emissions have been explicitly investigated for computer vision [14,29],
data stream mining [14], and language models [4,26,31]. As expected, explicitly
trading costly training for obtaining lightweight models with low energy demand
has become a frequent phenomenon [18,33].

While these works identify the necessity for discussion on ML sustainability,
they themselves only present exemplary results and do not provide a concise
framework for assessing ML efficiency. This mission is especially hard, because
a specific experiment’s resource consumption depends strongly on the execu-
tion environment at hand (e.g., consumer PCs, micro-controllers [8,24,35], data
centers [26], or quantum annealers [11]). Some works [1,16,28] introduce ways
to directly measure and report the power draw of code execution on certain
architectures. They utilize Python bindings of NVIDIA’s Management Library
(NVML)2, Intel’s RAPL3 and Power Gadget4, or just compute a rough estimate
of power draw from the hardware’s thermal design power (TDP) specification.
However, these works neglect other metrics like predictive quality or number
of model parameters, which are also important for assessing resource efficiency
[29]. Recently, some important best practices for reducing the carbon emissions
of ML experiments were presented [25].

The field also lacks methodology for combining all metrics into a concise
report on ML efficiency, which ideally informs the affected target groups at their
own level of understanding. Established frameworks for documenting ML experi-
ments all have certain shortcomings for this task. OpenML [34] took an important
step towards making ML research and results accessible to the greater public.
However, they clearly did not consider sustainability to be important, as one
can hardly find published results with measures on resource consumption. Fact
Sheets [2] and Model Cards [22] document important practical properties of ML
pipelines, but they do not provide a publicly available framework or database.
Moreover, reporting on computational costs is also only optional. The afore-
mentioned works have another significant drawback: They are too complicated
and inaccessible for non-experts. For communicating the efficiency of electronic
devices, the EU has successfully established the energy label system. It informs
users about sustainability and resource demand in an easy-to-understand way
[13]. Allowing more comprehensible communication about ML properties via
“consumer” or “care” labels has recently been put forward [9,23,30]. However,
the idea has not yet been thoroughly conceptualized for resource efficiency, or
deployed practically for state-of-the-art (SOTA) models.
2 www.pypi.org/project/pynvml/.
3 www.pypi.org/project/pyRAPL/.
4 www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html.

www.pypi.org/project/pynvml/
www.pypi.org/project/pyRAPL/
www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
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2 Assessing Energy Efficiency of Machine Learning

Better documentation and reporting of ML efficiency requires to first establish
a coherent framework, which is this paper’s main contribution (cf. Fig. 1). We
start our methodology in Sect. 2.1 by defining the inputs to our framework,
namely the execution environment and ML task configuration. To later assess
efficiency, we closely monitor compute utilization and performance during task
execution, as discussed in Sect. 2.2. As the resulting log files are verbose and
hard to grasp, we propose a three-staged evaluation that is explained in detail in
Sect. 2.3: First the task-specific metrics are aggregated from their bulky logs. To
make them comparable, we project all metrics onto their index scale. We then
rate the index scores per metric, and derive a compound model rating. As final
step, Sect. 2.4 introduces energy labels that allow for communication of efficiency
information at different levels of technical understanding.

2.1 Task Configurations and Their Environment

We argue that in order to reproduce SOTA experiments or estimate their envi-
ronmental impact [29], we first have to thoroughly conceptualize and document
both the configuration and environment of any ML system.

Definition 1. A configuration C is a 3-tuple (T,D,M), which consists of the
following components: (i) A task type T , i.e. a single action performed by means
of an ML system, (ii) a data set D, and (iii) a model M including hyperparam-
eter settings. The set of all possible configurations is denoted by C = T ×D×M.

A configuration, as defined above, can be seen as the abstract ML task a
user wants to perform given a data set and an abstract model. Possible task
types include but are not limited to: inference on data with a pre-trained model,
training a model from scratch, fine-tuning a trained model on custom data, or
testing a model for certain properties (e.g., explainability [7], robustness [27],
verification [19]). It is important to differentiate between these tasks, because
the performance of ML systems varies widely depending on the way they are
used. This makes a fair comparison of models independently from the solved
task nearly impossible. To give an example, a Nearest-Neighbor classifier can
be trained instantly by just saving data to disk. Performing inference, on the
other hand, is costly because it requires to calculate distances to all training
data points. Conversely, training a high quality computer vision model requires
a tremendous amount of energy, but performing inference is relatively cheap.
Indeed, trading costly training for fast inference has been the explicit target of
some works [18,33]. In this work we limit our methodology and discussion to the
most prominent tasks, inference and training.

Executing a chosen task requires to also select among different data sets and
models. This includes respective hyperparameters (e.g., model architecture, data
augmentation, . . . ), while identifying optimal hyperparameters can be under-
stood as a separate task type. Note that the definition of models in Definition 1
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refers to abstract objects (a specific neural network, SVM, etc.), whose soft-
ware or hardware implementations are mere instances. Due to computational
imprecision or human error, these instances may fail to possess all theoretical
properties of the underlying abstract model. By viewing models separately from
their realization in software and hardware, we take into account all effects that
may deteriorate (or, possibly, enhance) an ML system’s efficacy for solving tasks.

For executing a given task and configuration, one is faced with a variety
of options. Implementations can become arbitrarily complex, as libraries may
be assembled from a multitude of more low-level libraries (e.g., ONNX, Tensor-
Flow, scikit-learn). Furthermore, software can be run on different computing
architectures, including embedded [35] or distributed systems. This leads to our
definition of environment, which together with a configuration forms an experi-
ment.

Definition 2. An environment E is a tuple (A,S), consisting of (i) a comput-
ing architecture A, which is defined by the combination of hardware components,
and (ii) software S which provides implementations of abstract ML models and
tasks. We denote the set of all possible environments as E = A × S.

Definition 3. Given (T,D,M) ∈ C and (S,A) ∈ E, an experiment X is the 5-
tuple (T,D,M,S,A). We denote the set of all possible experiments as X � C×E.

Naturally, E and C depend on each other: S ∈ E may not include imple-
mentations of some model M ∈ C, or conversely, M might require special
hardware, which A does not provide (e.g., quantum annealing [20] requires
quantum processors). Not only C and E influence each other, but also some
C ∈ T × D × M or E ∈ A × S may be inadmissible in itself: The computing
architecture limits the runable software (e.g., certain library versions may not
be compatible with certain processors); conversely, certain software may require
special hardware (e.g., specialized hardware-accelerated binaries [8] or integer-
only networks [3]). The model choice might also restrict the options of usable
data sets. Lastly, the task T may restrict which models are suitable, e.g., not
all ML models allow for generating data, or probabilistic inference. Therefore
we define the set of feasible combinations of configurations and environments as
Xf := {X : X ∈ X , X is feasible} ⊆ X .

To exemplify our introduced terminology, we analyze how “training a
TensorFlow implementation of ResNet101 on ImageNet” can be understood:
The task T is “training” the abstract model M ResNet101 on the ImageNet
data set D, along with certain hyperparameters (e.g., stop criteria, data pre-
processing). S represents the TensorFlow software installation, which provides
a compatible version of ResNet101 for the computing architecture A at hand.

2.2 Monitoring for Assessing Efficiency

An experiment X ∈ Xf is executable, and during execution should be closely
monitored to later assess its efficiency. As already outlined in Sect. 1.2, moni-
toring is highly dependent on the environment E [14]. Certain tools (e.g., RAPL,
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NVML) allow to inspect the hardware components’ current power utilization. If no
such tool is available, the power draw can be estimated from the hardware’s TDP
specification [28]. We propose an enhancement by also monitoring the compute
utilization via tools like psutil, instead of just assuming constant utilization.
For specialized hardware like field programmable gate arrays (FPGAs) or micro-
controllers, on-board monitoring is challenging to implement [21]. In this case,
one can fall back to measuring energy draw via external power meters. Note
that the popularity of cloud-computing and virtualization (e.g., via Docker,
AWS, Azure ML) can introduce more levels of complexity and thus complicate
the monitoring. Assessing efficiency might also require specific code calls and
libraries in addition to the task execution itself, for example to quantify the
model’s number of parameters or FLOPS.

2.3 Evaluation of Efficiency

We identified a range of important efficiency metrics (partly proposed in [29]):

– Runtime mT in seconds, either aggregated per sample (mTs) (for inference),
or per epoch (mTe) and total (mTt) (for training)

– Power Draw mP in watt-seconds, either aggregated per sample (mPs) (for
inference), or per epoch (mPe) and total (mPt) (for training)

– Predictive Quality mQ1 and mQ5 as top-1 and top-5 accuracy on unseen
validation data

– Model Size mS in number of parameters
– Model File Size mF in bytes
– Model Complexity mC in number of GFLOPS

Only a subset MX ⊆ {mTs,mTe,mTt,mPs,mPemPt,mQ1,mQ5,mS ,mF ,
mC} of above metrics is used for a specific experiment. Whether a metric is
applicable can be derived from the experiment’s task type as provided in the
configuration. Note that the list we give here is not exhaustive, as further met-
rics might be relevant for other tasks than training and inference. We later
present how the impact of correlated metrics (e.g., different measures for predic-
tive quality) can be lowered for a final efficiency rating. We purposefully leave
out carbon emissions as the product of power draw and (static) local energy mix,
as the latter is hard to determine from code [28].

Metric Aggregation. When an experiment is executed, it produces some out-
put O(X) ∈ O, containing task results (predictions, class labels, probabilities,
etc.) as well as log files and collected statistics. The metrics need to be aggregated
from this complex output. Running ML tasks is, in general, not deterministic
under real-world conditions [36], due to environment factors such as different
operating system loads, warm or cold caches, or non-deterministic algorithms.
We therefore define the metric values V (X) as a random variable, from which
samples are drawn:

V (X) := (m(O(X)))m∈MX
(1)
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To this end, we interpret all metrics as functions m(·) : O → R
+ that extract

measurement values from the experiment’s output. The measurements vary from
being completely deterministic (e.g., number of parameters) to being quite ran-
dom (e.g., power draw). The aggregation is straightforward for metrics such as
accuracy, for which values can be directly extracted from log files. For runtime
it makes sense to normalize the elapsed time during execution with the con-
figured number of samples or epochs, making models more readily comparable
for different configurations. Power draw is more difficult to aggregate, because
monitoring tools take snapshots of power utilization in watt P (ti) at discrete
time points ti. A number of snapshots thus provides a time series, with the sum
over watt-seconds approximating the overall power draw [16,28]. As different
hardware components a ∈ A′ ⊆ A like CPU and GPU need to be monitored
separately, the total power draw is provided by

mP (O) =
∑

a∈A′

∑

i

Pa(ti) · (ti − ti−1), (2)

where A′, t and Pa are extracted from O, which itself is a sample of O(X).
Obviously, instead of computing the estimated total power draw, one could also
adapt Eq. (2) to compute the maximum or average power draw.

Enabling Metric Comparability via Index Scales. After aggregating the
experiment output, we obtain a sample V (X) of V (X) containing measure-
ments μi := mi(O) ∈ V (X) for all mi ∈ MX . However, these measurements
are incomparable among each other due to their different units. Even for a sin-
gle metric like power draw, the unit magnitude might scale dramatically across
different configurations and environments. Investigating trade-offs between dif-
ferent aspects of energy efficiency requires a unified scale. For this reason, we
draw inspiration from the EU energy label system that makes use of an efficiency
index [13], which replaces absolute with relative values. Using a relative error
scale instead of absolute values is also common practice when testing neural
networks for robustness [17].

Assume that task type T ◦, data set D◦, and environment E◦ are fixed. We
want to investigate the effect of choosing among models M w.r.t. to various
metrics. To this end, we project all metric values μi ∈ V (X) onto relative index
values ιi ∈ I(X), which put all values in relation to reference values μ∗

i . These
reference values are measurements V ∗ of V (X∗) such that T ∗ = T ◦, D∗ = D◦

and E∗ = E◦. Ideally, V ∗ is stored in a database of reference measurements for
different task/data set/environment combinations. These references are accessed
when other experiments X̃◦ ∈ {T ◦} × {D◦} × M × {E◦} with X̃◦ ∈ Xf are
executed. For all i, we set ιi(X∗) = 1 and assign

ιi(X̃◦) =

(
μi(X̃◦)
μi(X∗)

)σi

, (3)

Chiefly, we “plug in” different models M , keeping the task type, data set and
environment fixed, take a measurement, and divide it by the reference measure-



46 R. Fischer et al.

ment. The value σi is constant for each metric m ∈ M and indicates whether the
metric should be maximized (σi = +1) or minimized (σi = −1) to improve effi-
ciency. If the metric should indeed be minimized (e.g., power consumption), the
fraction is inverted. Thus ιi indicates how much better or worse a respective com-
bination of configuration and environment is with respect to the reference. As an
example, assume we want to compare the metric mS (model size). If the reference
setup X∗ measures μS(X∗) = 1000 model parameters, and another setup X̃◦

measures μS(X̃◦) = 500, then X̃◦ achieves an index score of (500/1000)−1 = 2
(as model size should be minimized). This value tells us that X̃◦ is “twice as
good” as the reference w.r.t. model size.

Naturally, any combination of components T,D,M,S,A can be kept fixed,
leading to analogous definitions of ι, but taking into account a wider scope
of choices (e.g., how energy efficiency changes when changing the underlying
hardware architecture, or when using different software packages). We find it
sensible to keep at least the task type T fixed for any comparison.

Rating Model Efficiency. In order to make model efficiency even easier to
assess and compare, we propose to determine discrete ratings. Based on the set
of index values Ii := {ιi(X�)}�∈{1,...,L} for L different experiments X�, we can
assign ratings by partitioning Ii into a fixed number B of bins for each metric.
To this end, we need to determine B − 1 boundary values b1, . . . , bB−1, with the
rating ri(X�) equaling the smallest j such that ιi(X�) ∈ [bj , bj+1]. We define
b0 = −∞ and bB = +∞ and assume ∀j ∈ {0, . . . , B − 1} : bj < bj+1.

For our framework, we chose to use five bins which correspond to five ratings
from 0 / A (best) to 4 / E (worst). Multiple strategies exist to determine
boundaries: For their Energy Labels, the European Commission uses values that
were hand-picked by experts [13]. A more mathematical approach would be to
calculate specific q-quantiles of Ii (e.g., q ∈ {0.2, 0.4, 0.6, 0.8}).

Finally, we wish to assign a compound efficiency rating R(X�) that unifies
all single-metric ratings. We propose to take a weighted median (WM) over all
metrics,

R(X�) := WM{wi · ri(X�) : i ∈ {1, . . . , |MX� |}}, (4)
such that

∑
i wi = 1. By lowering weights, we can prevent highly correlated

metrics like different accuracies from dominating the final rating. In addition
to the choice of reference model and rating boundaries, the weights also allow
for additional customization, if so desired. It enables users to precisely control
which aspects of efficiency as represented by metrics are most important to them,
allowing for adaption to their specific use cases. The introduced indexing and
rating procedures also allow to easily follow the SOTA, as choosing newer and
better reference models lowers all index values, and thus, ratings.

2.4 Communicating Machine Learning Efficiency

The aforementioned procedures allow us to specify an ML experiment, compute
different metrics, and compare and combine them to investigate the given con-
figuration’s efficiency for the underlying environment. However, we argue that
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in order to benefit society as a whole, results from this assessment need to be
conveyable at different stages of technical understanding. As shown in Fig. 1, we
propose three levels of communication for results from a single experiment:

1. End-users without any understanding of ML should be provided a highly
condensed energy label as visual summary, containing only the metric values
V (X) and respective ratings ri(X) and R(X) represented via color codes

2. Developers and users of ML should be provided a log summary in form of a
report, containing the metric values V (X), their index scores I(X), as well
as the metric and compound ratings ri(X) and R(X)

3. Full output and log files O(X) should be provided to ML experts, who might
want to fully comprehend, reproduce, or build upon presented results

Besides efficiency metrics, general information on the configuration and envi-
ronment at hand should also be provided to different extent (e.g. only the most
important libraries for level 1, all ML-specific libraries and versions at level 2,
or full list of installed software at level 3). The highest level of communication
puts the idea of ML care labels [23] into effect, which in analogy to the EU’s
energy labels [13] enable less informed users to learn about efficiency aspects.
The meaning of different metrics can be expressed in a more comprehensible way
by depicting them as pictograms. Referring back to in-depth scientific results or
implementations is possible via QR codes or similar links. Besides various other
results we also show our own drafts of ML energy labels in the following section.

3 Experiments

To demonstrate practicability of our concept, we put it into effect and provide an
in-depth experimental analysis. It investigates the efficiency of popular ImageNet
models for two of the most prominent ML tasks, namely inference and training.
Before discussing findings for both tasks, we provide some general information
on the practical setup.

3.1 Experimental Setup

We chose two tasks T to investigate in terms of efficiency: (1) inference with
pre-trained models on ImageNet (validation) data (D) and (2) fully training
models from scratch (on train data). To underline the significance of index scal-
ing, those tasks were performed in different execution environments E, as sum-
marized in Table 1. We combined two hardware architectures A (full NVIDIA DGX
A100 node and consumer-level PC with a Quadro RTX 5000 GPU) with differ-
ent software installations S (TensorFlow, PyTorch, ONNX), optionally running
code in CPU-only mode. The ONNX implementation first loads models from the
other two libraries and then exports it for usage with onnxruntime. Training
was only performed with GPUs due to time constraints, and is not supported
by ONNX. We tested all ImageNet models M available with the standard instal-
lations of torchvision and keras, as well as QuickNet, a SOTA binarized
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Table 1. Execution environments used for experimental evaluation

Environment Name CPU Model GPU Model Libraries Versions # Experiments

Inference Training

A100 x8 TensorFlow AMD EPYC 7742 8 × NVIDIA A100-SXM4 tensorflow 2.8.0 26 21

larq 0.12.2

A100 x8 PyTorch AMD EPYC 7742 8 × NVIDIA A100-SXM4 torch 1.10.2+cu113 22 13

torchvision 0.11.3+cu113

RTX 5000 TensorFlow Intel Xeon W-2155 Quadro RTX 5000 tensorflow 2.4.1 26 10

larq 0.12.2

RTX 5000 PyTorch Intel Xeon W-2155 Quadro RTX 5000 torch 1.10.2+cu113 22 12

torchvision 0.11.3+cu113

Xeon W-2155 TensorFlow Intel Xeon W-2155 n.a. tensorflow 2.4.1 26 0

larq 0.12.2

Xeon W-2155 PyTorch Intel Xeon W-2155 n.a. torch 1.10.2+cu113 22 0

torchvision 0.11.3+cu113

Xeon W-2155 ONNX TF Intel Xeon W-2155 n.a. onnxruntime 1.10.0 17 0

onnx 1.11.0

tensorflow 2.4.1

larq 0.12.2

Xeon W-2155 ONNX PT Intel Xeon W-2155 n.a. onnxruntime 1.10.0 15 0

onnx 1.11.0

torch 1.10.2+cu113

torchvision 0.11.3+cu113

network provided by Larq [3]. The exact number of experiments vary because
the environment limits the repertory of runable models. We chose ResNet101 as
reference model V ∗, due to its popularity and widespread availability [15]. All
experiments were conducted with a batch size of 32. We implemented monitoring
with the help of RAPL, NVML, and psutil, while ptflops and onnx-opcounter
enable us to estimate the number of GFLOPS. Our software also uses PyMuPDF
and reportlab to automatically generate hybrid energy labels.

Deploying our indexing and rating routines requires to determine rating
boundaries b1, . . . , bB−1 and metrics weights wi, as explained in Sect. 2.3. The
former were calculated as equidistant quantiles over all index values per metrics.
Metric weights for the compound rating were chosen by the authors with justi-
fication as listed in Table 2, during rating calculation normalized to

∑
i wi = 1.

The full implementation of our methods as well as all results are publicly avail-
able at www.github.com/raphischer/imagenet-energy-efficiency. In this paper
we only discuss selected results, but we invite readers to also take a deeper dive
with our interactive ELEx tool.

3.2 Efficiency Results for Image Classification

We start our exploration of ImageNet classification efficiency by putting different
metrics in relation to each other. The comparison of four important metrics
(mPs, mQ1, mS , mTs) for the A100 x8 - TensorFlow 2.8.0 environment is
provided in Fig. 2. While measurement values occur with different units and
magnitudes, our indexing procedure makes all metrics comparable. We always
find ResNet101 at (1, 1), while other models are positioned in relative distance

www.github.com/raphischer/imagenet-energy-efficiency
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Table 2. Determined metric weights and their justification

Metric(s) Weight Justification

mPs,mPt mTs,mTt 0.7 0.3 Highly correlated and important, power draw slightly more important,
together shouldn’t dominate too much

mTe,mPe 0.2 Slight impact, as number of epochs might change with stop criteria

mS ,mF 0.4 Highly correlated and rather important, should have the same impact
without dominating too much

mQ1 mQ5 0.8 0.2 Highly correlated and important, top-1 slightly more important, together
shouldn’t dominate too much

mC 0.2 Smaller impact, because there is no unified implementation available for
counting or estimating the number of FLOPS

to the reference model. One can clearly see how considering multiple metrics
provides us with a Pareto frontier of optimal model choices. In the plots, rating
boundaries of each metric are indicated by colored grid cells. Note that the
scatter point color represents the compound model rating over all metrics, which
thus remains equal for both comparisons. As only two of the seven metrics are
shown in each plot, the point color can diverge from the cell color (e.g., for the
VGG19 model).

Furthermore, computing index scores makes models comparable across differ-
ent environments, as depicted in Table 3. It lists real numbers and correspond-
ing index values of the four metrics for ResNet101 and EfficientNetB0. As
expected, values for accuracy (mQ1) and number of parameters (mS) remain
similar across environments, but power draw (mPs) and inference time (mTs)
change drastically. The relative (index) performance however remains similar,
resulting in mostly equal ratings as indicated by cell colors. Interestingly, only a
single environment results in EfficientNetB0 running slower but more energy
efficient and accurate than ResNet101. This demonstrates the unpredictable
implications when deploying the very same model in different environments.

The comparability across environments can also be seen when looking at the
frequencies of compound ratings, as depicted in Fig. 3. The sum of frequencies
corresponds to the number of models tested on a specific environment, or in
other words, the number of inference experiments in Table 1. Because models
might perform differently when changing the hardware or software setup, the
distributions differ but remain comparable. Each environment brings forth their
own respective landscape to explore for efficiency, bringing us back to Fig. 2.
Interestingly, the powerful A100 node provides slightly more narrow distribu-
tions of ratings for both software installations. As the rating boundaries and
metric weights are fixed for all experiments, this indicates that models behave
more similarly, having less relative distance to the reference model. We also
see that our weighted median approach (cf. Sect. 2.3) provides few A and E
compound ratings, even though the boundaries were chosen to evenly distribute
the individual metric ratings. An exemplary energy label as generated by our
software is also depicted in Fig. 3, allowing non-experts to understand efficiency
aspects of deploying MobileNetV2 on A100 x8 - TensorFlow at a glance.
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Fig. 2. Choosing among different models trades off different efficiency metrics, with
accuracy, power draw, number of model parameters and runtime being shown here.
Our introduced index scales make them compare- and rateable, as indicated by the
background color grid. Point colors denote the compound model rating across all seven
metrics, from which two are being shown per plot.

Table 3. Aggregated metrics and their index scores for different models and environ-
ments. While numeric measurements are hard to compare, their relative index scores
allow for useful comparison and rating (displayed by color).

Environment Model Name
Power mPs Time mTs Size mS Quality mQ1

Value [Ws] Index Value [ms] Index Value Index Value [%] Index

A100 x8 TensorFlow
ResNet101 0.859 1.00 1.579 1.00 44.7e6 1.00 0.718 1.00

EfficientNetB0 0.673 1.28 1.369 1.15 5.3e6 8.39 0.681 0.95

A100 x8 PyTorch
ResNet101 0.897 1.00 1.664 1.00 44.5e6 1.00 0.770 1.00

EfficientNetB0 0.877 1.02 1.870 0.89 5.3e6 8.42 0.777 1.01

RTX 5000 TensorFlow
ResNet101 0.680 1.00 2.653 1.00 44.7e6 1.00 0.718 1.00

EfficientNetB0 0.260 2.62 1.180 2.25 5.3e6 8.39 0.681 0.95

RTX 5000 PyTorch
ResNet101 0.740 1.00 2.643 1.00 44.5e6 1.00 0.770 1.00

EfficientNetB0 0.288 2.57 1.143 2.31 5.3e6 8.42 0.777 1.01

Xeon W-2155 TensorFlow
ResNet101 3.115 1.00 25.305 1.00 44.7e6 1.00 0.718 1.00

EfficientNetB0 1.706 1.83 13.911 1.82 5.3e6 8.39 0.681 0.95

Xeon W-2155 PyTorch
ResNet101 4.121 1.00 33.532 1.00 44.5e6 1.00 0.770 1.00

EfficientNetB0 1.330 3.10 11.909 2.82 5.3e6 8.42 0.777 1.01

Xeon W-2155 ONNX TF
ResNet101 2.188 1.00 15.947 1.00 44.7e6 1.00 0.720 1.00

EfficientNetB0 1.059 2.07 9.309 1.71 5.3e6 8.39 0.683 0.95

Xeon W-2155 ONNX PT
ResNet101 2.110 1.00 15.101 1.00 44.5e6 1.00 0.770 1.00

EfficientNetB0 0.745 2.83 6.388 2.36 5.3e6 8.42 0.777 1.01
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Fig. 3. With our indexing and rating procedures, each environment has its own mean-
ingful distribution of compound ratings for different models. On the right, the energy
label for MobileNetV2 is displayed, one of the two A -rated models on the A100 x8 -

TensorFlow environment.

3.3 Efficiency Results for Training Classification Models

Let us now discuss insights for training ImageNet models from scratch. Unfor-
tunately, we found SOTA performances impossible to reproduce, because unam-
biguous information on hyperparameters is hard to find (e.g., learning rates, data
augmentation, stop criteria). We therefore fell back to training for 10 epochs,
aggregating metrics per epoch, and estimating the full expense based on train-
ing duration as found in literature. We also report the accuracy obtained with
pre-trained weights, as we were unable to achieve comparable quality.

The comparison of total power draw mPt versus model accuracy mQ1 on
the A100 x8 - TensorFlow setup is displayed in Fig. 4. Note that some models
obtained index scores 0 for power draw, because information on total number
of training epochs could not be retrieved [33]. Thus, we assigned E ratings
and display n.a. in the corresponding energy label (shown for EfficientNetB2).
Overall the efficiency landscape indicates that DenseNets and ResNets provide
a reasonable trade-off between power demand and predictive performance. More
recent models appear to sacrifice affordable energy costs for better accuracy.
MobileNetV3Small [18] receives the best compound rating, and was also per-
forming exceptionally well during inference experiments. Compared to Fig. 2,
the x axis distribution of models is completely different, showing that models’
relative power draw can be very different between inference and training.
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Fig. 4. Power draw versus accuracy trade-off for fully training models on the A100 x8 -

TensorFlow setup. DenseNets and ResNets appear to make a reasonable trade for these
metrics. If the number of training epochs is unknown, models (e.g. EfficientNetB2)
receive an exceptionally bad rating.

4 Conclusion and Future Work

While others have identified the importance of assessing ML efficiency, we pre-
sented a concise framework for this endeavour. Firstly, we thoroughly formalized
ML experiments and identified different efficiency metrics. With the introduced
indexing approach, those metrics become comparable both among each other,
and across various kinds of environments. The assessment step rates each index
score and derives the compound experiment rating. Finally, we presented how
information on efficiency can be communicated to different audiences at their
respective level of understanding, thus truly contributing to social good.

We also successfully implemented our methodology, and were able to pro-
vide an extensive overview over the efficiency of SOTA ImageNet models. As
expected, the ones with highest predictive quality tend to have alarming resource
consumption during training and inference. Even though being a bit outdated,
MobileNet models [18] still appear to make the most reasonable trade-off across
all metrics. The shown energy labels are first drafts for a novel communication
form, which allows even non-experts to learn about ML sustainability. Our con-
cepts as well as implementations are also highly customizable and expandable.

For the future, we will extend our proposed methods for assessing other
aspects of trustworthiness, such as model robustness. Additionally, we would like
to also inform stakeholders about theoretical guarantees of investigated methods,
and possibly test whether or not they hold for given environments. Serving as
motivation for our presented energy labels, we argue that in order to improve
the societal trust in ML, any communication of practical measurements and
theoretical properties must take place at more diverse levels of comprehension.
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Abstract. Water is a fundamental human resource and its scarcity is
reflected in social, economic and environmental problems. Water used in
human activities must be treated before reusing or returning to nature.
This treatment takes place in wastewater treatment plants (WWTPs),
which need to perform their functions with high quality, low cost, and
reduced environmental impact. This paper aims to identify failures in
real-time, using streaming data to provide the necessary preventive
actions to minimize damage to WWTPs, heavy fines and, ultimately,
environmental hazards. Convolutional and Long short-term memory
(LSTM) autoencoders (AEs) were used to identify failures in the func-
tioning of the dissolved oxygen sensor used in WWTPs. Five faults were
considered (drift, bias, precision degradation, spike and stuck) in three
different scenarios with variations in the appearance order, intensity and
duration of the faults. The best performance, considering different model
configurations, was achieved by Convolutional-AE.

Keywords: Wastewater treatment plant · Fault detection ·
Autoencoder · BSM2

1 Introduction

Water is a strategic and fundamental resource for human beings. Activities car-
ried out in the industry, agriculture, and services depend directly on access to
water resources. And access to water is limited. Most of the water on the planet
is in the seas and oceans (97%) [1]. There is only 3% of fresh water, but more
than two-thirds is frozen in glaciers and polar ice [2]. The small fraction of fresh
water remaining needs to serve more and more people. It is estimated that two-
thirds of the world’s population, 4 billion people, face water scarcity conditions
at least one month a year, and approximately 500 million people live with water
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shortages throughout the year [3]. Water is a strategic resource and must be
managed consciously. The used water must be treated so that we can reused
it. Wastewater may contain pollutants that pose risks to the environment and
consequently to humans and need to be treated in appropriate places. Wastew-
ater treatment plants (WWTPs) are structures that accelerate the treatment
process in nature. The water used in human activities is sent to the WWTPs,
which carry out the treatment in several stages, using chemical and physical pro-
cesses. These structures are present in various parts of the world. In the United
States of America, there are more than 16000 public administration WWTPs.
Europe has more than 24000 treatment units. Brazil, Mexico, and China have
2820, 2540, and 1486 WWTPs, respectively [4].

WWTPs are important in dealing with water scarcity, but they must carry
out their functions sustainably, with high quality and low cost. A monitoring
system is needed to provide information from all stages of the treatment process
so the necessary actions can be taken at the right time. With technological
advances, new techniques were used to improve the functioning of WWTPs.
The massive use of sensors in the monitoring of treatment plants generated a
large amount of information and enabled the use of new control and optimization
techniques. But the use of sensors also poses new problems. The actions taken by
the control and optimization methods depend on the quality of the information
provided by the sensors, and the quality of this information must be ensured.
It is common for sensors to be exposed to extreme conditions at the monitoring
site, as for example, temperature, vibrations, dust, chemical reagents, etc. It is of
great importance that failures in these sensors are indicated as soon as possible,
where undetected failures can represent damage to the structure of WWTPs,
heavy fines, and environmental damage.

One of the main wastewater treatment phases occurs in the biological reac-
tor. This reactor is composed of anoxic and oxygenated tanks, and it is the site
of action of microorganisms that have the function of removing dangerous pol-
lutants from wastewater. Oxygenated tanks need to maintain minimum oxygen
levels. Lack of oxygen can result in the death of microorganisms, and excess oxy-
gen represents a waste of energy spent on pumping. Considering that aeration
is the most energy-intensive operation in wastewater treatment, amounting to
45–75% of plant energy costs [5], that of all the energy consumed in the world,
approximately 3% is consumed in WWTPs [6], and that the energy spent on
pumping depends on the information of the dissolved oxygen (DO) levels pro-
vided by the sensor, an efficient fault detection system is essential for the DO
sensor. The main objective of this paper is to use autoencoder (AE) models to
detect DO sensor failures in WWTPs. Early failure detection is important as it
allows the necessary actions to be taken, benefiting higher safety, economy and
quality of wastewater treatment. This work aims to assess the potential of AE
in detecting failures in DO sensors, in WWTPs, in real-time, with streaming
data. The simulator Benchmark Simulation Model n№2 (BSM2), which repro-
duces all phases of the treatment performed in a WWTP, was used to test the
fault detection methodologies on the DO sensor in the biological reactor. This
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work analyzes the strengths and weaknesses of the Convolution-AE and LSTM-
AE models, used to detect failures on DO sensors presented in WWTPs. The
models are evaluated for the detection of five types of failures: bias, drift, pre-
cision degradation, spike and stuck. These faults were injected into the dataset,
obtained with the help of BSM2, in three scenarios, with changes in the order
of appearance, duration and intensity of the faults.

The rest of the paper is organized as follows: Sect. 2 brings a review of lit-
erature related to fault detection in WWTPs. Section 3 describes the simulator
used and the case studies. Section 4 presents the structure of AE-based method-
ologies used to identify faults on DO sensors. Section 5 presents the experimental
results, and compares the performance of Convolution-AE and LSTM-AE mod-
els in identifying the failures. Finally, in Sect. 6, the conclusion of the work is
elaborated.

2 Related Work

Many works have already been proposed with the objective of detecting failures
in sensors in WWTPs. The works can be divided into two large groups: failure
detection using statistical methods, and failure detection using machine learning
techniques. In [7], the use of artificial neural networks (ANNs) is proposed to
identify six types of faults, one of which is the DO concentration sensor. The
results proved a good ability of the ANN to recognize the faults, identifying 97%
of case study failures. In [8], the authors use a Long short-term memory (LSTM)
networks to identify collective failures in the sensors. The results obtained by
the LSTM were compared to the results of the autoregressive integrated mov-
ing average (ARIMA), principal component analysis (PCA) and support-vector
machines (SVM) models, and achieved the best performance, with a fault detec-
tion rate of over 92%. In [9], a radial basis function (RBF) neural network is
used to identify faults in DO sensors by calculating the error limits. The pro-
posed method obtained 0% false alarm, and a delay of 0.22 days in detection. In
fault detection, unsupervised ANN can be trained to model a process by esti-
mating the values of inputs and comparing the estimation to the actual values,
also known as autoencoder. In [10], the authors used an AE, and the proposed
model was used for detection of abrupt changes and drift in the sensor signal.
The results showed that AE is capable of detecting sensor faults with good
accuracy under different scenarios. In [11], a variational AE is used for fault
detection. The proposed model takes into account the temporal evolution of the
treatment process. The slow feature variational AE (SFAVAE) model is used
to monitor processes and tries to identify faults such as sludge expansion fault
and small magnitude variable step. Among the statistical methods the most
used is the PCA. The PCA has many applications in WWTP, from direct fault
detection [12] to data reconstruction [13]. In [14], the Incremental Principal Com-
ponent Analysis (IPCA) method was used to identify several types of failures in
WWTPs, one of them being failures in the DO sensor. The failures were injected
into the dataset, and IPCA proved to be able to detect the failures and isolate
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the variable that originated the failure, with false alarm rate and missed detec-
tion rate of 0.07% and 18.53% respectively. A probabilistic PCA approach in
process monitoring and fault diagnosis with application in WWTP is proposed
in [15]. The probabilistic PCA is compared to PCA, PPCA (probabilistic inter-
pretation of the PCA), GPLVM (version of the PPCA for nonlinear situations)
and Bayesian GPLVM (uses the Bayesian theory for training). The GPLVM and
GPLVM models showed better performance in detecting failures in relation to
the other models analyzed in the paper, in relation to the considered metrics.
The major drawback of PCA for WWTP, is the assumption that process vari-
ables are linearly related to each other [16]. In the present work, models based
on AE will be used. The case studies in which the models will be evaluated will
be explained in the following section.

3 Case Studies

The water resulting from human activities, which carry pollutants, cannot be
returned to the environment without undergoing treatment. This treatment
occurs in WWTPs and is done in several stages: primary treatment (removes
floatable and settleable solids), secondary treatment (secondary decantation and
activated sludge), tertiary treatment (reuse of treated water), and sludge treat-
ment (mechanical and biological treatments) [17]. Before implementing and eval-
uating new techniques in real treatment plants, simulators are commonly used.
A widely used simulator of WWTPs is BSM2 [14,18]. Section 3.1 provides a
brief description of the BSM2, and Sect. 3.2 presents the case studies with the
description of the injected failures.

3.1 Benchmark Simulation Model No 2 - BSM2

The BSM2 is a simulation environment in which the plant layout, the simula-
tion model, influence loads, test procedures and evaluation criteria are defined.
For each of these items, compromises were pursued to combine plainness with
realism and accepted standards [19]. BSM2 allows the implementation of sev-
eral techniques and the manipulation of many parameters related to WWTPs
[20,21]. The influent dynamics are defined for 609 days, which takes into account
rainfall effect, and temperature [19], with the data sampled every 15 min. The
structure of BSM2 can be seen in the Fig. 1. The BSM2 was used to test the
failure detection methods used in this work.

3.2 Faults in Dissolved Oxygen Sensor

BSM2 simulates the various stages of WWTPs. The biological reactor or acti-
vated sludge reactor can be seen in Fig. 1. Figure 2 shows the biological reactor
in more detail. It consists of five tanks, the first two being anoxic and the next
three oxygenated. In oxygenated tanks, the DO level must be kept at 2 [mg/L],
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Fig. 1. Layout of Benchmark simulation model no 2 - BSM2.

by a proportional-integral (PI) controller, which receives the DO values mea-
sured in Tank 4, compares it with the reference value, and drives the pumps
responsible for maintaining the DO at the correct levels.

The aeration system depends on the value measured by the DO sensor. A
failure in this signal leads the system to malfunction. Through BSM2, we injected
several faults. The objective is to identify the faults as early as possible. Also,
in Fig. 2, it can be seen that the DO sensor performs its measurement in Tank 4
and it is used by the PI controller, and that the AE, represented in yellow, was
positioned between the DO sensor and the PI controller, and has the function of
detecting anomalous behavior in the measurement signal coming from the DO
sensor.

Fig. 2. Biological reactor details and case studies framework.

To evaluate the performance of the fault detection system, some faults were
injected into the signal from the sensor. Deviations from expected behavior in
the sensor output are considered faults, and they are classified according to the
deviation from normal behavior. Let s(t) = h(t)+ η be the expected output of a
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sensor without the presence of faults, where h(t) is the output of the sensor at
time t, and η ∼ N(0, δ2n) is noise, and δ2n is the noise variance [22]. The failures
considered in the present work are presented below [23,24]. They are common
failures in sensors caused by corrosion, calibration errors, presence of noise and
physical damage presented on the WWTPs.

Drift Fault. When the sensor output increases at a constant rate, this type of
fault is called as drift fault. A drift fault can be defined as

s(t) = h(t) + η + b(t), (1)
b(t) = b(t − 1) + υ,

where b(t) is the bias added to the signal at time t, and υ is a constant. The s(t)
value increases linearly from the normal value over time.

Bias Fault. In a bias fault, a constant value υ is added to the sensor output
and, as a consequence, a shift from the normal value is observed:

s(t) = h(t) + η + υ. (2)

Precision Degradation (PD) Fault. This type of fault adds noise with a
zero mean and high variance (δ2υ) to the output of a sensor:

s(t) = h(t) + η + υ, υ ∼ N(0, δ2υ), δ2υ � δ2n. (3)

Spike Fault. In spike faults, large amplitude peaks are observed at constant
time intervals at the sensor output:

s(t) = h(t) + η + υ(t), (4)
∀t = υ × τ, h(t) + η,

otherwise, υ = {1, 2, ...}, τ ≥ 2,

where τ is the interval in which the spikes occur in the sensor output.

Stuck Fault. It is a complete failure, with the sensor output being locked at a
fixed value υ:

s(t) = υ. (5)

4 Fault Detection Using Autoencoders

WWTPs exhibit marked nonlinear characteristics due to biochemical reactions
and nitrification processes [25]. Thus, traditional statistical methods present dif-
ficulties in correctly identifying changes in the variables involved in the wastew-
ater treatment process. In order to have a good performance in identifying the
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changes that may occur in WWTPs, the method used must be able to deal with
non-linearities. The AE present, among other characteristics, the ability to deal
with non-linear processes.

AE is an unsupervised machine learning algorithm that aims to reconstruct
its input signal. The generic AE model consists of three parts: encoder (respon-
sible for reducing the dimensionality of the data), code (reduced representation
of the encoder input data), and decoder (responsible for expanding the dimen-
sionality represented in the code, and reconstructing the input signal). A repre-
sentation of the AE can be seen in the Fig. 3.

Fig. 3. Illustration of a generic AE model.

AE can have a simple structure, with only the code as the hidden layer, or can
have several hidden layers. The representation of the input data, made by the
code layer, can be classified as undercomplete or overcomplete. In undercomplete
representation, the dimension of the representation of the input data by the
code is smaller than the dimension of the input data, which forces the model
to learn the most important characteristics of the input data. If the dimension
of the code’s input data representation is equal to the input dimension, the
overcomplete representation, the model will just copy the input signal to the
output without learning the most important characteristics of the input signal.
The AE can be implemented as fully connected, convolution based or recurrent
based units [26]. In this work, two models of AE will be used: LSTM-AE and
Convolutional-AE. These models will be described in the next subsections.

4.1 LSTM Autoencoder

LSTM is a recurrent neural network that takes into account the historical context
of events to make its predictions, with the help of memory cells. In an LSTM
cell there are input, forget, memory and output gates.

In [27], the LSTM-AE is described as an extension to RNN based AE for
learning the representation of time series sequential data. In this model, encoder
and decoder are built using LSTM. The encoder LSTM receives a sequence of
vectors that represents the signal from the DO sensor, and the decoder has the
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function of recreating the target sequence of input vectors in the reverse order.
This is the model used in the present work. The generic structure of a LSTM-AE
can be seen in Fig. 4

Fig. 4. Generic structure of the LSTM-AE.

4.2 Convolutional Autoencoder

Fully connected AEs ignore the spatial structure of the input signal, and this spa-
tial structure can represent important information for the final reconstruction.
To solve this problem, in [28] is proposed a model known as Convolutional-
AE. Instead of using fully connected layers, Convolutional-AE use convolutional
operators.

The Convolutional-AE is trained to reproduce the input signal from the DO
sensor to the output layer. The signal passes through the encoder, composed of
a convolution layer, which reduces the dimension of the representation of the
input signal. In the decoder, composed of deconvolution layers, the compressed
signal is reconstructed to obtain the original input signal, the DO sensor signal.
The generic structure of a Convolutional-AE can be seen in Fig. 5.

The LSTM-AE and Convolutional-AE will be used to identify failures in
these case studies. The experimental results will be described in Sect. 5.

5 Experimental Results

This section presents the results obtained by Convolutional-AE and LSTM-AE
presented in Sect. 4, in detecting the faults described in Sect. 3.2. This section
also describes the characteristics of injected faults and the evaluation metrics.

The dataset from the DO sensor, was separated into two equal parts, each
part being equivalent to 100 days (9600 samples), keeping the temporal order.
The first part was used to inject the faults described in Table 1 and represented in
the graphs of Fig. 6. From the second part, without failures, 70% of the data was
used for training the Convolutional-AE and LSTM-AE, and the remaining 30%
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Fig. 5. Generic structure a Convolutional-AE.

was used for evaluating the models, according to the input signal reconstruction
error. In order to obtain the best model for each algorithm, a grid search were
performed, with the evaluation of the combination of hyperparameters. All the
work was developed in Python programming language, version 3.7, with the help
of the Keras neural network package, version 2.8.0. The following combinations
of hyperparameters were analyzed:

– Convolutional-AE: Epochs = [10, 20, 30, 40, 50]; Batch size = [32, 64, 128];
AE layout : [16, 32, 64, 128].

– LSTM-AE: Epochs = [10, 20, 30, 40, 50]; Batch size = [32, 64, 128];
LSTM cells (AE layout) = [16, 32, 64, 128].

The best model was the one with the lowest mean absolute error (MAE):

MAE =
1
n

n∑

i=1

|st − ŝt|, (6)

where st and ŝt are the real and estimated DO values at the instant of time t,
and n is the number of samples used to validation.

The best models found, according to the MAE, were:

– Convolutional-AE: Epochs = 20; Batch size = 128;
AE layout = [32, 16, 16, 32]

– LSTM-AE: Epochs = 20; Batch size = 64; cells (AE layout) = [128, 64, 32,
32, 64, 128]

Table 1 presents the types of faults injected into the dataset, as well as their
duration. To better evaluate the performance of the AE three scenarios were
considered with variations in the order of appearance, duration and intensity of
failures. Figure 6 depicts the signal from the DO sensor, after the faults described
in Table 1. The objective of Convolutional-AE and LSTM-AE is to identify the
faults that can be seen in Fig. 6. The process of training AEs and choosing the
best models will be described below.
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Table 1. Three scenarios of faults injected in the signal obtained by the DO sensor:
drift (Eq. 1), bias (Eq. 2), PD (Eq. 3), spike (Eq. 4) and stuck (Eq. 5). The faults in the
scenarios have different order of appearance, duration and intensity.

Fault Start [day] Duration [hours]

Drift 10 120

Bias 30 120

PD 50 120

Spike 70, 72, 74, 76, 78 0.25

Stuck 90 120

(a) Scenario I

Fault Start [day] Duration [hours]

Drift 40 72

Bias 92 48

PD 18 96

Spike 60, 62, 64, 66, 68 0.25

Stuck 30 72

(b) Scenario II

Fault Start [day] Duration [hours]

Drift 58 96

Bias 45 72

PD 90 72

Spike 26, 30, 31, 33, 38 0.25

Stuck 15 48

(c) Scenario III

The purpose of the AE is to reconstruct the input signal. During its training,
with the DO sensor data, the maximum value for the reconstruction error is
adopted as a threshold. In tests, a failure is identified if the difference between
the real and estimated DO values is greater than the determined threshold.

The fault identification methods were evaluated as follows:

– if a sample is identified as faulty, within the fault duration period, it is clas-
sified as true positive (TP);

– if a sample is identified as a failure, outside the fault duration period, is
classified as a false positive (FP);

– if a sample, within the failure duration time, is classified as normal, we have
a false negative (FN);

– if a sample outside the fault duration period is identified as normal, it is
classified as true negative (TN).
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Fig. 6. Faults implemented in the signal obtained from the DO sensor. Variations in
the order of appearance, duration and intensity of faults.

The evaluation metrics used was for this study are TP rate (TPr), FP rate (FPr)
and FN rate (FNr) - cf. Eq. 7 and 9. The use of these metrics makes it possible
to assess the reliability of the implemented error detection system.

TPr = TP/(TP + FN) (7)
FPr = FP/(FP + TN) (8)
FNr = FN/(FN + TP ) (9)

The results obtained by the models are graphically represented in Figs. 7 and
8. Table 2 presents the performance of LSTM-AE and Convolutional-AE in iden-
tifying the present faults, where the values represent the arithmetic average of
the algorithms’ performance, for each fault implemented, in the three scenarios.

It is noticed that the two models are efficient in identifying the failures accord-
ing to the evaluation metrics. The bias, drift and PD faults were correctly iden-
tified by Convolutional-AE, with TPr of 95.6%, 95.15% and 97.8%, respectively.
The LSTM-AE model presented a little lower performance with TPr of 95%,
94% and 94.1% for the same failures, respectively. Both algorithms presented
greater difficulties with the spike failure. The Convolutional-AE and LSTM-AE
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Fig. 7. Faults identified in the three scenarios by the Convolutional-AE.

showed correct identification of faults in 88.23% and 84.61%, and considerable
FNr, with values of 11.76% and 15.38%, respectively. Both models performed
well on the Stuck fault. The Convolutional-AE presented 88%, and the LSTM-
AE 86.39% for TPr. But these two models showed considerable value for FNr,
with 12% for the Convolutional-AE, and 13.61% for the LSTM-AE model. There
was an identification problem near the spike faults, in the third scenario con-
sidered. Outside the evaluation area, between the second and third spikes, the
models identified 99 normal samples as faults.
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Fig. 8. Faults identified in the three scenarios by the LSTM-AE.

The treatment process carried out by WWTPs presents a characteristic of slow
changes. In the BSM2 simulator, the water retention time in the activated sludge
tank (where the DO sensor takes its measurements) is 14 h. Taking water reten-
tion time into account, both models had satisfactory results. The delay for fault
detection, for each fault was calculated, as in the previous cases, by the arithmetic
average of the delay detection times in the three proposed scenarios. The time that
each algorithm took to identify the failures can be seen in Table 2. Related to the
delay, it is observed that the Convolutional-AE obtained better results than the
LSTM-AE, with the lowest average delay for fault detection. Only when detect-
ing the bias fault, LSTM-AE obtain a better result, with 13.6% less delay in fault
identification, in relation to Convolutional-AE. Both models readily identify the
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Table 2. Performance of LSTM-AE and Convolutional-AE. The values are the arith-
metic average of the models’ performance in the three scenarios. In bold the best
results.

Autoencoder Fault Assessment metrics

TPr[%] FPr[%] FNr[%] Delay [h]

Convolutional-AE Bias 95.6 0 4.4 2.5

Drift 95.15 0 4.85 4.41

PD 97.8 0 2.2 1.08

Spike 88.23 12.5 11.76 0

Stuck 88 0 12 5.25

LSTM-AE Bias 95 0 5 2.16

Drift 94 0 6 5.33

PD 94.1 0 4 1.83

Spike 84.61 12.5 15.38 0

Stuck 86.39 0 13.61 6.03

first peak of the skipe fault. For the other faults, the Convolutional-AE performed
better. It took 20.86%, 69.4% and 14.8% less time to identify drift, PD and stuck
faults, respectively, when compared with LSTM-AE.

6 Conclusions

WWTPs play a key role in dealing with the problem of water scarcity and thus
alleviating the resulting economic and social problems. The work proposed in
this paper helps to make WWTPs more secure and reliable. This paper proposed
the application of AE for fault detection in DO sensors in biological reactors of
WWTPs. Convolutional-AE and LSTM-AE were used to detect five types of
faults: bias, drift, PD, spike and stuck. The models had their hyperparameters
chosen with the help of the grid search process, using the MAE metric to evalu-
ate the input signal reconstruction error. Three scenarios were considered, with
variations in the order of appearance, duration and intensity of faults injected
into the dataset. The best performance was obtained by the Convolutional-AE,
with better detection values, according to the considered metrics, and less delay
time when identifying faults. The analysis of other combinations for hyperpa-
rameters or the use in conjunction with other methods that allow less delay in
fault detection would make the Convolutional-AE a good option to detect faults
such as bias and drift in real WWTPs, representing an important contribution
to its safety and sustainability.
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Abstract. Emergency Departments (EDs) are a fundamental element
of the Portuguese National Health Service, serving as an entry point for
users with diverse and very serious medical problems. Due to the inher-
ent characteristics of the ED, forecasting the number of patients using
the services is particularly challenging. And a mismatch between the
affluence and the number of medical professionals can lead to a decrease
in the quality of the services provided and create problems that have
repercussions for the entire hospital, with the requisition of health care
workers from other departments and the postponement of surgeries. ED
overcrowding is driven, in part, by non-urgent patients, that resort to
emergency services despite not having a medical emergency and which
represent almost half of the total number of daily patients. This paper
describes a novel deep learning architecture, the Temporal Fusion Trans-
former, that uses calendar and time-series covariates to forecast predic-
tion intervals and point predictions for a 4 week period. We have con-
cluded that patient volume can be forecasted with a Mean Absolute Per-
centage Error (MAPE) of 5.91% for Portugal’s Health Regional Areas
(HRA) and a Root Mean Squared Error (RMSE) of 84.4102 people/day.
The paper shows empirical evidence supporting the use of a multivariate
approach with static and time-series covariates while surpassing other
models commonly found in the literature.

Keywords: Time series · Emergency department · Machine learning ·
Temporal fusion transformer · Forecasting · Manchester triage system ·
Neural network · Explainable ML · National Health Service

1 Introduction

The forecast of the number of patients who use emergency services daily is
essential to determine in advance the human resources needed at hospital Emer-
gency Departments (ED). Multi-step ahead predictions allow hospital managers
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to organise rotation schedules and diminish waiting times in urgent care facili-
ties [21,39]. When not accounted for, overcrowding can lead to a decrease in the
quality of patient care and worse clinical outcomes [5,20]. From a macro point
of view, the influx in the emergency department combines an expected num-
ber of people who are taken to the emergency room with a very serious illness,
for example, heart attack, with people that use the emergency hospital to deal
with non urgent problems, such as common cold, strained muscles, or to deal
with problems associated with chronic illness [20,42]. The most serious cases are
reasonably constant over time, and, predominantly, people in life threatening
conditions have no choice but to go to emergency care, thus the indicators of a
rise in patients with serious illnesses might not be the same for non urgent users.
A large number of patients that resort to urgent care are not, however, urgent,
according to the Manchester Triage system, used in the Portuguese National
Healthcare System. Roughly 40% of the patients are classified during triage at
the green/blue level, which means not urgent. Unlike more urgent patients, the
influx of green/blue patients has several factors that follow well-defined cycles.
For example, it is easy to identify that the day with the most influx of non-urgent
patients is Monday, with a smaller number of patients pursuing emergency care
during the weekend [4,19,32]. To combine the predictive power of Deep Neural
Networks with the explainability usually reserved for simpler algorithms, we will
use a recently developed machine learning model to predict the influx of non-
urgent patients: the Temporal Fusion Transformer (TFT)[26]; and study which
variables, time-series or not, had the most impact on the model, and thus which
are most relevant to predict daily patient volume.

In the following section, we will perform a brief literature review of the work
done to tackle this problem, followed by a section in which we display the data
and offer some exploratory analysis to obtain a better understanding of the
dataset. In Sect. 4, the methodology of the experiment will be displayed, pre-
senting the goals, the forecast horizon, and the forecast model. In the results
section, we perform a comparison of the TFT model with other known models
in the literature, followed by an analysis of covariate importance and attention
weights. Finally, the conclusions of this study are drawn, acknowledging the
strengths and limitations of the TFT model, and proposing future work.

2 Literature Review

Previous studies have examined the multi-step forecasting of daily patient vol-
umes [10,21]. Most focus is on the use of classical statistical tools for temporal
linear regression such as moving averages [28], and their many extensions, namely
ARIMA, SARIMA or VARIMA [3,7,34,40]. In recent years, with the advent of
machine learning, newer studies have been conducted that use neural networks
[21,43], or otherwise other machine learning techniques to tackle the same prob-
lem [29,33,37]. From the use of Feed-forward Neural Networks [21,29], to Recur-
rent Neural Networks [15,22], 1-D Convolution Neural Networks [35], and later
to Long Short-Term Unit (LSTM) [15,36], there has been a constant advance
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in the field, from linear models to deep neural network models. In most studies
using ARIMA and its variants, it was found that calendar variables (day, day of
the week, holidays) have a significant contribution to model results [6,17,21,39].
Weather data, such as temperature and rain, have shown predictive power for
ED arrivals with respiratory problems [29], but in others studies that analysed
the whole spectrum of ED visitors, it is either not a significant variable, or it
could be replaced by calendar variables, e.g. month of the year [17,39]. This
level of covariate interpretability is one of the frequent drawbacks of Neural Net-
works, alongside the failure to recognize long-term dependencies in time-series.
One specific device that addresses both problems is the Attention Mechanism
[38]: simply put, it evaluates long-term dependencies and also represents how
each time-step impacts the model’s prediction. Attention has been used as part
of a specific Neural Network family of architectures called Transformers, that
has shown impressive results in the Natural Language Processing field [9,41]. In
the literature, we found only one example that used a Temporal Fusion Trans-
former model to predict Emergency Department (ED) volume in one hospital
for one day ahead [31]. While not being the only work that performed only daily
predictions [33,37], we find that a longer forecasting window produces increased
value for hospital management and poses a different challenge from a machine
learning perspective, as seasonal fluctuation needs to be fully represented, and
common forecasting models tend to decrease in predictive quality as the forecast
period becomes wider.

3 Data Analysis

In this section, we will present the database used in this work. The data was
obtained from the public database “Transparência SNS”1 and refers to daily
data of care in primary health centres together with daily data of consultations
and waiting times in hospitals’ emergency departments (ED) across Portugal,
divided by Regional Health Area (RHA). The time analyzed covers the time
period from November 1st, 2016 to February 20th, 2022; with 6353 individual
observations and 16 variables per observation that define, among other things,
the Regional Health Area (RHA), Área Regional de Saúde (ARS) in Portuguese,
of the observation. In total, the dataset contains information regarding the daily
volume of patients in emergency care, the number of scheduled and unscheduled
consultations in primary health facilities, the daily number of patients arriving
at the Emergency Department (ED) with respiratory issues, the waiting times
between triage and the first medical evaluation and categorical variables pertain-
ing to calendar information, such as weekend, day of week or national holidays.

In Fig. 1 we can observe the weekly variation in the number of non-urgent
patients, as well as the volume shift according to RHA. It is visible that despite
having different levels of affluence, the different RHA follow the same trend,
with peaks of affluence occurring on Monday, and reduced volume on weekends
1 https://transparencia.sns.gov.pt/explore/dataset/atividade-sindrome-gripal-csh

https://transparencia.sns.gov.pt/explore/dataset/atendimentos-nos-csp-gripe.

https://transparencia.sns.gov.pt/explore/dataset/atividade-sindrome-gripal-csh
https://transparencia.sns.gov.pt/explore/dataset/atendimentos-nos-csp-gripe
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Fig. 1. Time series from January, 2019 to February 20, 2020. We can observe the weekly
cycle, as well as annual trends and volume variation according to Regional Heath Area.
The weekends are marked with grey lines, corresponding with diminishing number of
non urgent patients searching for emergency care.

and during the Summer months, usually associated with vacations. This aspect
of the data served as motivation for the application of a non-linear model over
multiple time series, unlike well-established models such as ARIMA.

Another interesting feature of the data is the observation of the period in
which Portugal was affected by the COVID-19 disease and took containment
measures that reduced travel and in person work: in this period (10/03/2020–
1/08/2021) the percentage of non urgent visits in the RHA of Lisboa e Vale do
Tejo dropped from the normal value of 48% of the total to 40%, with more dra-
matic drops for example in the Algarve RHA from 45% to 30% at the beginning
of the pandemic. This dramatic period influenced the way people used emer-
gency services, and it can demonstrate how external factors influence people
going to the emergency room. This shift, associated with the general decline in
the number of people in urgent care, urgent or not, represents a distribution
change in the time series, therefore making it exceedingly difficult to predict
the COVID period using only pre-COVID information. In the same way, we can
conclude that this COVID period does not have useful information about the
post-COVID future, and, in fact, we have experimentally verified that the qual-
ity of the models decreased with the introduction of the COVID period, thus
leading to the decision to exclude this temporal section from the training set.

It is, in a certain way, clear that the prediction of the influx in emergency
rooms can be useful for a more efficient management of hospital services, but
there is visible value added at user level, in the sense that they will get better
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and faster care [30]. To sustain this claim, we can observe the impact that the
number of non-urgent patients has on the waiting time before being treated
in the Emergency Department. In Fig. 2, for the RHAs with the highest daily
affluence, we observe a positive, moderate to strong correlation between the
number of non-urgent patients and the waiting time. This is an indicator, not
entirely unexpected, that ED overcrowding of non urgent patients can lead to a
substantial increase in the average waiting time for all patients, urgent or non
urgent.

Fig. 2. Correlation between waiting times and non urgent patient volume. A strong
to moderate correlation exist between these two variables, therefore implying that
overcrowding increases waiting times.

4 Methods

4.1 Study Setting and Metrics

Now that we have presented the data used in this paper, let us define, and
expose, the reasoning behind the rules by which we will create and evaluate the
model.

– Multivariate forecasting: we want a model that leverages data and fore-
casts across different Regional Health Areas. In most research in the area,
models are usually restricted to certain geographic areas, and a more general
model, capable of working across different regions, might be able to uncover
new interactions in data and increase robustness.
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– Long-time forecast: In order to add value at the hospital management level,
the forecast of the number of patients should not be limited to the following
day or week. In this paper, we have chosen a 4-week (28-day) forecast, consid-
ering that it allows breathing room for management and personnel decisions.
To the best of our knowledge, few works have worked on such an extended
forecast horizon [6,7], with only partial success.

– Probability prediction: besides obtaining an estimate of the most likely
value in the future, a model that presents a probability density function on
the prediction conveys much more information. Of special value is, for exam-
ple, the definition of confidence intervals, which can transmit to those who
use the model an idea of the confidence, or precision, of the model in its
estimation. Almost all classical linear methods, such as ARIMA or Exponen-
tial Smoothing, are able to deliver confidence intervals over the predictions.
However, the same is not true for common Neural Networks architectures.

– Explanatory variables: Importantly, we want to evaluate the predictive
capacity of different variables, determining up to which passed time-step the
model finds predictive value or which covariates, categorical or numerical,
have a significant impact on the prediction.

The covariates that we intend to evaluate as explanatory variables are: day of
the year, month and weekend, holidays, total number of patients in emergency
rooms, number of unscheduled consultations in health centres, waiting time,
patients with respiratory problems and total number of consultations in health
centres. We do not expect that all these variables are relevant or necessary to
solve the problem we present, however, they were used precisely to assess how
the models would deal with redundant variables.

In this paper, we use four metrics to evaluate the models. The Mean Absolute
Error (MAE):
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i )2. (4)



TFT for Long-term Explainable Prediction of ED Overcrowding 77

Since we are evaluating the predictions over several groups (RHAs), the total
error will be the average across RHAs. The most common metric across the
literature for ED forecasting is the Mean Absolute Percentage Error (MAPE) [7,
11], however, when the true value is close to zero, this metric becomes unreliable.
It also places a heavier penalty on negative errors (when the predicted value is
higher than the true value) [27]. To overcome that, outliers values very close
to zero are removed for this particular metric. To correctly evaluate the out-of-
sample predictive capacity of the model, the dataset is divided into three subsets:
train, validation, and test. The training set represents roughly 3.5 years, while
the validation set and the test set have 10 weeks of data, each. The validation set
is used to optimise hyper parameters and to identify overfitting during training,
while the test set is unseen until the end and is only used to produce the final
results. It contains the last 10 weeks available, from December 2021 to February
2022.

4.2 Models

The first and simpler method used for forecasting is the replication of the last
k time-steps. This technique, which is used as Baseline in this paper, is also
referred to as the näıve algorithm. By evaluating this model on the validation,
the optimal value for k was estimated to be 7, thus representing the weekly
periodicity in the data.

For comparison, other models commonly used in this area were also applied,
namely AutoRegressive Integrated Moving Average (ARIMA) with a seasonal
component [1,12,21,23,34], and its multivariate variant Vector AutoRegressive
Integrated Moving Average (VARIMA) [23].

Also used was the exponential Smoothing algorithm, a simple method that
has also shown good results in the literature [8]. Finally, to gauge the perfor-
mance of common machine learning models, the XGBoost model was used. Out
of these models, the XGBoost [24] (a Decision Tree Boosting algorithm), is the
only model capable of using past and future covariates, with the disadvantage
of not being specifically tailored for time-series data.

The model used in this paper, however, is the Temporal Fusion Transformer
(TFT). We chose this model because it achieves all the goals mentioned previ-
ously. To define the model input, we first need to separate variables into static,
target and time dependent. Static covariates, such as time-series variance or
mean, are specific to each group, i.e. RHA, and are defined as si with i = 0, ..., 4.
yi,t is the target for group i at time-step t and xi,t = [pTi,t, f

T
i,t]

T the time depen-
dent covariates, with p representing past covariates, meaning covariates that are
only known until the present, as f future covariates, that can be assumed to be
known in the past and the future, in our case, holidays and weekends.
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Table 1. Hyperparameters for TFT model after tuning.

Hyperparameter Value

Encoder length 42

Batch size 40

Prediction length 28

Gradient clipping 0.022730

Learning rate 0.0011149

Hidden size 33

Number of attention heads 8

Dropout 0.19230

Hidden continuous size 19

The prediction function is defined as [26]:

ŷi(q, t, τ) = fq(τ, yi,t−k:t, xi,t−k:t, si) (5)

where ŷi(q, t, τ) is the predicted qth quantile for the τ ∈ {1, ..., τmax} value in
group i, at time t. For the specific case of this work, τmax = 28, as we want
to forecast simultaneously 28 days ahead. By predicting quantiles, we obtain a
quasi-distribution of the expected value, and gain the capacity to define confi-
dence intervals.

Initially introduced by [26], this model instantiated a novel architecture, com-
bining a few mechanisms previously only used separately, in a single model. The
key features of the TFT are:

– Variable Selection Network: three independent Selection Networks, one for
each variable set, to select only relevant variables at each time-step. This
module removes noisy variables that do not add predictive value, while giv-
ing some level of insight into the variables that are more significant to the
prediction;

– A Gating Mechanism to skip any other element of the architecture. For spe-
cific cases where exogenous variables are not useful or there is no need for
non-linear processing (e.g. in very simple forecasts) the Gating Mechanism,
also referred to as Gated Residual Network [16], allows the model to only use
non-linear processing when needed;

– Static Variables encoding to combine static information with time-series data;
– Temporal Dependency Processing to capture short-term dependency, with

an LSTM encoder-decoder [13,18], and long-term dependency using a Multi-
Head Attention mechanism [38]. By an additive aggregation of the different
heads, this mechanism gains explainability, as the weights in the aggregated
Multi-head represent time-step importance;

– Confidence Intervals: the output of the models are quantiles, that define pre-
diction intervals, at each forecast time-step.
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To obtain the quantile predictions, a specific loss, the Quantile Loss, is defined
as [25]:

QL(y, ŷ, q) = max{q(y − ŷ), (q − 1)(y − ŷ)} (6)

for each quantile q. The final Loss is the average QL across quantiles and for
the entire prediction horizon [0,τmax]. In this work, the quantiles used were
[0.02,0.1,0.25,0.5, 0.75,0.9,0.98]. When q = 0.5 the Loss is equal to MAE divided
by 2, and q = 0.5 (the median) is the value used for the point-wise prediction of
the model.

The overall architecture of the TFT can be seen in Fig. 3 and the hyperpa-
rameters are defined in Table 1.

Fig. 3. TFT architecture. The inputs are static metadata, time-varying past inputs
(including past target values) and known future information. The Variable selection
unit selects the most relevant features, while the Gated Residual Network allows to
skip over unused sections of the architecture. The interpretable multi-head attention
is used to evaluate the most relevant time-steps. Image adapted from [26].
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Table 2. Prediction accuracy for various models in the period 24/01/2022–20/02/2022.
To evaluate the models, four metrics are used: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Squared
Error (MSE). Bold indicates the best result; TFT is consistently more accurate than
the baselines.

Models MAE RMSE MAPE MSE

Baseline 95.1643 116.5850 7.3483 20245.0643

Exp. Smoothing 112.5885 135.6158 7.3135 29888.6468

ARIMA 104.9886 129.6084 7.8484 22949.7471

VARIMA 94.6441 120.6674 7.9250 18407.9554

XGBoost 92.0307 112.3295 7.7027 16178.5531

TFT 66.7551 84.4102 5.9084 8379.7340

5 Results

In this section, we present the results of the TFT and the other models for
a 4 week forecast window. Table 2 illustrates how the TFT outperforms other
common models in the literature for long time prediction, with a Root Mean
Squared Error (RMSE) of 84.4102, or approximately 84 people per day. This
metric, however, might be deceptive, as it is scale dependent, meaning that RHAs
with a larger daily volume will necessarily yield a higher RMSE, and skew the
results. The Mean Absolute Percentage Error (MAPE) on the other hand, is scale
invariant, and it better depicts the overall predictive power of the models, with
the TFT obtaining a 5.91% percentage error. Taking a more detailed look at the
predictions, in Fig. 6, we can see how the model can make predictions at different
scales, correctly representing two characteristics that we know are part of the
data, the weekly cycle, and the peak of users on Monday. To better compare the
models, we utilised an empirical CDF for each model, as seen in Fig. 4a. In this
Figure, depicting Absolute Error, the TFT shows overall better performance. We
also acknowledge that the Exponential Smoothing algorithm obtains favourable
results for roughly half of the predictions. As suggested in Fig. 4b, the TFT
outperforms the other models in the last 2 weeks of the forecast window. This
illustrates the superior capability of deep learning models to perform long term
prediction, as the complexity of the model helps identify long term patterns.

But the strength of the Temporal Fusion Transformer used goes beyond the
precision of the model. First, we can observe the attention given to each time-
step. As explained in Sect. 4.2, attention is used to identify which input elements,
containing up to 6 weeks of data, are most useful during forecast. In Fig. 5, it can
be distinguished how the model values the most recent time-steps with a higher
weight, which is intuitively expected and shows that old information has less
value to the model. This validates a common assumption in linear models, that
ascribe more weight to more recent observations, as is the case of the Exponential
Smoothing model. In Fig. 6 we can also verify this effect, with the grey line over
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Fig. 4. Comparative analysis of model prediction.

the input period representing attention. In the forecasting figures, we can observe
that different RHAs have different attention weights depending on the input
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vector of the model. In addition, we observe another more intriguing feature,
which are spikes in attention during the weekend, this may happen because
particular attention is given to one or two previous weekends to define patient
volume in future weekends.

After having determined that the model attributes higher attention to more
recent time-steps, we will now observe the importance attributed by the model
to the covariates. We can categorise covariates into three categories: static, past,
and future. In Fig. 7, it is possible to observe the importance attributed to each
past or future covariate. In the left side figure, we see that the variable with the
most weight is the percentage of patients in the emergency room with respiratory
problems. For this period, excess affluence in hospital emergency rooms could
be attributed to peaks in influenza/COVID-19 transmission, it therefore makes
sense that this variable can be a predictive indicator of future positive trends in
the number of non-urgent cases. The second most important variable is patient
waiting time, which is in line with the positive relationship presented at the
beginning of this article between the increase in waiting time and the increase
in non-urgent patients. However, we should not focus our attention solely on
the variables relevant to the model. There is interest in observing the variables
that did not add value to the model; here we can observe that the information
regarding health care centres (n cons total,prog) did not add value to the model,
meaning that there is no clear interaction between patient volume in health
care centres, mostly used for primary health care and minor health issues, and
non-urgent patients in Emergency Departments.

As we see on the right side of Fig. 7, the number of known covariates in
the future is a smaller part of the total number of covariates. The most impor-
tant feature is the categorical variable indicating public holidays in Portugal.
The model has attributed such an importance to holidays because they have a

Fig. 5. Average attention attributed over the input vector. More recent time-steps are
given more value than older time-steps.
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Fig. 6. Predictions over the test set. Over the input vector, we can see the grey line
representing attention. In orange is the median predictive value (q = 0.5), with different
quantiles shown as shaded area (Color figure online).
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Fig. 7. Variable Importance. The most relevant past feature to the model is the per-
centage of patients in ED with indication of respiratory problems. For future covariates,
variables that are known in the future, the most relevant is a feature that indicates
public holidays in Portugal.

severe impact on patient volume, not only on the day, but also on the next day,
when close to the weekend. Furthermore, the other future covariates have a non-
negligible importance both as past and future covariates, thus supporting the
claim found in the literature that calendar variables have a significant impact
on the prediction.

6 Conclusion

This paper presented a novel application of the Temporal Fusion Transformer
(TFT) model to predict non-urgent patient volume in Portuguese public hospi-
tals by Health Regional Areas (HRA). The results were encouraging, surpassing
other models commonly found in the literature [21,23]. The forecasting of an
entire month is seldom done in the literature [2,7], and the model presented did
not show signs of deterioration over the forecast window; despite that, it would
be interesting to drive the forecasting period even further, either by autore-
gression or by increasing the forecast window, so as to analyse the maximum
prediction length of the model, or a potential trade-off between forecast window
and predictive quality.

The introduction of a multivariate model with good results across groups is a
positive prospect, since one limitation of univariate time-series is the natural low-
data regimen, while multivariate models can merge information from multiple
sources, thus increasing the total amount of data fed to the models. In the future,
this model can increase in granularity, forecasting at the hospital level instead of
aggregated values by HRAs. Although a greater challenge, due to the increased
noise and randomness that comes from the decrease in the study population, we
expect that the combination of a large number of time-series could improve the
robustness and global quality of the model, specifically if we add more relevant
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static variables. For this paper, only HRA and time-series statistics were used
as static covariates, but as noted in [14], across different regions there is distinct
demand for emergency care, thus impacting the scale and variance of the time-
series. In future work, we plan to introduce other factors that might contribute
to encode region-specific information as static covariates, such as demographics,
modes of transport available, socio-economic characterisation of the patient pop-
ulation and number and capacity of private health care providers in the region.
All these elements might help to represent each class, and ultimately be used for
a generalisation of the model to unseen hospitals, where these variables might
help to represent how similar a new unseen hospital/RHA is to hospitals/RHAs
in the training data.

References

1. Abdel-Aal, R., Mangoud, A.: Modeling and forecasting monthly patient volume
at a primary health care clinic using univariate time-series analysis. Comput.
Meth. Programs Biomed. 56(3), 235–247 (1998). https://doi.org/10.1016/s0169-
2607(98)00032-7

2. Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F.M., Preen, D.B., Stewart, L.M., Fatovich,
D.M.: A comparison of multivariate and univariate time series approaches to mod-
elling and forecasting emergency department demand in Western Australia. J.
Biomed. Inform. 57, 62–73 (2015). https://doi.org/10.1016/j.jbi.2015.06.022

3. Afilal, M., Yalaoui, F., Dugardin, F., Amodeo, L., Laplanche, D., Blua, P.: Fore-
casting the emergency department patients flow. J. Med. Syst. 40(7), 1–18 (2016).
https://doi.org/10.1007/s10916-016-0527-0

4. Batal, H., Tench, J., McMillan, S., Adams, J., Mehler, P.S.: Predicting patient
visits to an urgent care clinic using calendar variables. Acad. Emerg. Med. 8(1),
48–53 (2001). https://doi.org/10.1111/j.1553-2712.2001.tb00550.x

5. Bernstein, S.L., et al.: The effect of emergency department crowding on clinically
oriented outcomes. Acad. Emerg. Med. 16(1), 1–10 (2009). https://doi.org/10.
1111/j.1553-2712.2008.00295.x

6. Boyle, J., et al.: Predicting emergency department admissions. Emerg. Med. J.
29(5), 358–365 (2012). https://doi.org/10.1136/emj.2010.103531

7. Carvalho-Silva, M., Monteiro, M.T.T., de Sá-Soares, F., Dória-Nóbrega, S.: Assess-
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Abstract. The analysis of big data on public procurement can improve the pro-
cess of carrying out public tenders. The goal is to increase the quality and the
correctness of the process, the efficiency of administrations, and reduce the time
spent by economic operators and the costs of the public administrations. As a
consequence, being able to recognize as early as possible if a public tender might
contain some flaws, can enable a better relationship between the public organiza-
tions and the privates, and improve the economic conditions through the correct
use of public funds. With the proliferation of e-procurement systems in the public
sector, valuable and open information sources are available and can be accessed
jointly. In particular, we consider the sentences published on the Italian Admin-
istrative Justice website and the Italian Anti-Corruption Authority database on
public procurement. In this paper, we describe how to find connections between
the procurement data and the appeals and how to exploit the resulting data for the
measurement of litigation and clustering into communities the nodes representing
entities having similar interests.

Keywords: Public procurement · Open data · Information retrieval ·
Government transparency

1 Introduction

In the Internet age, the extraction of information from texts is of concern [15], as well
as the use of search-based applications for the information sources integration [14,25].
This work investigates the automatic knowledge extraction from a set of public law
archives. In particular, we focus on two legal datasets: first, the complete archive of
the (Italian) National Anti-Corruption Authority (ANAC), which includes public pro-
curement; and second, the vast online dataset of the appeals submitted to the Italian
Administrative Justice (IAJ). Our work aims to find connections between the data on
procurement in ANAC and the judges’ sentences on appeals in IAJ that refer to the
public contracts stipulated for procurement. The goal is to integrate the two information
sources and gather the cases of procurement tenders whose execution leads to appeal
to the administrative justice or controversies between a public authority and a private
company on the procurement contracts execution. Being able to extract this information
automatically makes it possible to suggest possible ameliorative solutions to decision-
makers and anticipate or prevent problematic cases for the governance. Our research
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question is: (RQ) How can we automatically extract information from legal archives to
identify the entities involved in a public procurement? To address the issue, we propose
a methodological framework that employs both information retrieval and graph analy-
sis. Graph analysis allows us to connect the related business entities in a graph and then
identify the communities or “clusters” as the graph components that share something.
The remainder of the paper is organised as follows: Sect. 2 introduces the background
with related works. In Sect. 3 we describe the case study, in Sect. 4 we describe the
proposed methodology while Sect. 5 provides insights about the results of the research.
Finally, Sect. 6 concludes the paper.

2 Related Work

Web-based archives are growing steadily, following the Internet expansion in recent
times, as evidenced by the importance of the non-profit online libraries [1]. Online
archives facilitate the dissemination of information for professionals, citizens, and
researchers [5]. Digital documents, as in the case of legal texts, allow ample oppor-
tunity to apply automatic information extraction techniques [23]. The Information
Retrieval (IR) community has developed many systems to support research [22]. Some
recent examples include the cases of knowledge extraction from a collection of legal
documents [9], the summarization algorithms applied to legal case judgments [6],
the co-occurrence network on European Directives [24], the shift towards Open Sci-
ence [17]. Recently, researchers benefited from new tools, such as the IR software
Apache Lucene [3]. Lucene is nowadays a well-known platform for building and
deploying search-based applications [26]. In [8], starting from the Portuguese Public
Procurement portal, a graph-oriented user interface is proposed to support decision-
making, using Cypher queries [10]. Besides this, supervised machine learning methods
are used to find suspicious procurement. The authors of [20] propose the SALER soft-
ware prototype. Inside SALER, several internal and external data sources are analyzed
and assessed to explore possible irregularities in budget and cash management, public
service accounts, salaries, disbursement, grants, subsidies, etc. SALER employs graph
databases, too. Unlike the previous works, our research is based on the merge of two
separate legal datasets. Their joint use enables some key elements useful to solve some
tasks. One is the determination of possible exemplars of inefficiency or irregularity in
tenders. Our ultimate aim is to train machine learning models on the tenders data in
ANAC with the labels provided by the presence of judges’ sentences in IAJ on those
tenders. This paper shows the work to find a possible connection between a tender in
ANAC and a sentence in IAJ necessary to gather the labels for training. The second task
is the recognition of sets of agents, like the public entities or the economic operators
that show strong connections that make them a community that forms a “cluster”.

3 Case Study

The National Anti-Corruption Authority, abbreviated to ANAC, is an independent Ital-
ian administrative authority whose task is to prevent corruption in the Italian public
administration, implement transparency and supervise public contracts. ANAC collects
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data on calls for procurement from the public contract authorities and provides a catalog
of Open Data describing public procurement, contract authority, and contractors (inter-
changeably named economic operators). Currently, the ANAC website provides data on
approximately 7.2 million of public tenders for procurement collected from the first of
January 2007 to the end of March 2022 within a dataset collecting procurement whose
cost is above 40 thousand euros. The Open Data is available on the ANAC website1.
On the other side, the Italian Administrative Justice (IAJ) collects the judges’ sentences
related to the public procurement appeals. Currently, about 80,360 sentences on tenders
are available on the website2.

3.1 Data Overview

The ANAC dataset contains a table Procurement of 7,189,462 rows, a table Con-
tractors of 42,393 rows that stores the public authorities, a table Economic op-
erators of 265,039 rows about the successful bidders (also named economic opera-
tors), and finally a table Awards of 1.635.609 rows that reports the winner of the tenders.
Unfortunately there are data quality problems in this table because it does not contain
the winners for all the procurement. Each procurement is identified by an alphanumeri-
cal value called CIG (the key value). A procurement can be of three types: “supplies of
goods”, “public works”, “services”. Figure 1 shows that about 51% of contract types are
for goods/supplies, followed by services (35.9%) and lastly for public works (13.1%)
(Table 1).

4 Methodology

4.1 Problem Definition

Our methodological framework is grounded both in IR and in structured databases.
They are complementary because the first one allows the efficient search in large cor-
pora and the second to store large amounts of data and perform analytic. We applied IR
to combine the two sources: procurement dataset (ANAC) and court rulings (IAJ). Fol-
lowing [27], the process of the full-text search is: build a texts database, create indexing,
search and filter the results. Figure 2 resumes the applied workflow.

4.2 Data Gathering

Regarding the ANAC dataset, we imported the Open Data on the procurement (in CSV
format) into an InnoDB table of a MySQL database (whose size is 5.5GB). We chose a
relational database to maintain the relationship between a procurement, the contractor,
and the successful bidders via the shared key of the CIG (the ID of each procurement).
We obtained the IAJ judgments via web scraping. Since these are text files in HTML,
Doc/Docx, and PDF format, they were indexed using Lucene. In addition, we imported

1 https://www.anticorruzione.it.
2 https://www.giustizia-amministrativa.it.

https://www.anticorruzione.it
https://www.giustizia-amministrativa.it
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Table 1. Quantitative description of ANAC (tables Procurement, Contractors, Economic
operators and Awards) and IAJ datasets

Topic Value

Total number of procurement 7,189,462

Temporal range of procurement January 2007 - March 2022

Identifier (key) value for every procurement CIG (alphanumerical value)

Total number of contractors (public authority) 42,393

Total number of successful bidders (economic operators) 265,039

Total number of awarded procurement 1.635.577

Total number of bids for all the procurement 8.199.059

Average number of bids received per procurement 4.113

Procurement contract type goods/supplies: 51%
services: 35.9%
public works: 13.1%

Number of procurement by area ordinary: 86.202%
special: 13.798%

Total number of appeals in IAJ 80,360

Identifier (key) value for every appeal ECLI

Text file types in IAJ html: 60,284
doc/docx: 20050/26
pdf: 12

Fig. 1. Distribution of contract type from 2007 to 2022: from 2011 the main contract type con-
cerns goods/supplies (blue bars), followed by services (grey) and public works (orange) (Color
figure online)
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Fig. 2. Workflow of the research approach from data gathering to results analysis

the ANAC Open Data on the procurement between a public entity and a private com-
pany into the Neo4j3 graph NoSQL database [2]. It permits the efficient navigation of
the graphs formed by connection between two related business entities (a public author-
ity and an economic operator) where a connection represents a stipulated contract. It
permits also the application of sophisticated analysis algorithms of the graphs.

4.3 Technologies

We employed web scraping of the online archives from ANAC and the IAJ websites:
we used the Python libraries with MechanicalSoup4 and BeautifulSoup5. We opted for a
relational database (MySQL) for the storage of the ANAC database, as the downloaded
Open Data is organized in tabular form and referenced by key values. For IAJ, since the
downloaded files are textual, we developed a Java application for textual search with
Lucene (a native library in Java). We analyzed the results with the Pandas libraries in
Python and plotted them with Matplotlib. We performed the computations on a 2.8 GHz
Intel Core i5 quad-core with 8 GB of RAM with SSD drive, without GPU support. The
source code in Java of this work is publicly available on GitHub6.

5 Results

5.1 Data Indexing

Table 2 describes the results for each type of file of the 80,360 documents from the
IAJ archive. Interestingly, Lucene indexed all the terms (614,696) in about 5min. We
excluded from indexing PDF files as well as image scans of old judgments (a negligible
subset of only 12 files out of 80,360).

3 https://neo4j.com.
4 https://mechanicalsoup.readthedocs.io/en/stable.
5 https://beautiful-soup-4.readthedocs.io/en/latest.
6 https://github.com/roberto-nai-unito/ANACLucene.

https://neo4j.com
https://mechanicalsoup.readthedocs.io/en/stable
https://beautiful-soup-4.readthedocs.io/en/latest
https://github.com/roberto-nai-unito/ANACLucene
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Table 2. Indexing performance of Lucene

File type Number of indexed files Index size Index time

HTML 60284 407MB 2.577min

DOC/DOCX 20050/26 135MB 1.551min

5.2 Search by Procurement

The connection between the two information sources occurred by searching for the
procurement ID (CIG) in the IAJ sentences archive; it yielded the results shown in
Table 3. It is worth mentioning that the search for 7,189,462 terms in about 80,000 files
took 24 h. The total number of CIG found is 8,062: this means that the probability that a
sentence in our archive refers to a CIG is 10% only. We continued the integration of the
two datasets by performing a search via Lucene that is described in detail in Sect. 5.3.
Thus we obtained further information on the procurement with sentences. As a result
we computed the bar chart shown in Fig. 3 and show which courts deliberated most on
procurement. In preparation for this bar chart, we exploited the ECLI code (the key of
an appeal). Moreover, following the procurement types of Sect. 3.1, the highest number
of judgments is related to the “services” procurement type (about 61%). Instead, the
“supplies of goods” and “public works” have a lower ratio. The “ordinary” area has the
highest percent of procurement (about 89%). Finally, the procurement in the “special”
area rarely has an appeal. This result leads to a transparency gain in the search for courts
with a high number of appeals and the identification of the most problematic kind of
procurement.

Table 3. Quantitative description of ANAC procurement by application of Lucene on the pro-
curement ID (CIG) inside sentences

Topic Value

Procurement type services: 61.634%
public works: 22.163%
goods/supplies:
16.248%

Procurement area ordinary: 88.714%
special: 11.331%

5.3 Search by Contract Authority and Economic Operators’ Denomination

The search by contract authority and economic operators’ denominations yielded the
results shown in the first row of Table 4. The search for 42,393 contracting authorities’
names in about 80,000 files took 23min. The search for 265,039 economic operators’
names in about 80,000 files took about 2 h and 15min. This second result may be useful
in bringing transparency to the contracting authority most affected by appeals from the
economic operators: a higher presence may indicate greater “aggressiveness” toward
an administration resulting in inefficiency in the implementation of the intended public
tenders (Sect. 6).
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Fig. 3. Bar chart on the distribution by court of procurement with an ID (CIG): at the top there are
the courts with the lowest number of judgements; in the bottom, the courts with a higher number

Table 4. Search result of the contracting authorities and economic operators in sentences by
Lucene

Type Names found (total) Names found (percent) Time

Contracting authorities 37,890 6.164% 23min

Economic operators 152,934 24.880% 2 h:15min

5.4 Definition of the Litigation Measure with Estimation of Participation
in Public Tenders

In both ANAC and IAJ datasets, it is not easy to infer the identity of the companies that
participated in tenders in case they did not win. Table Awards contains only the total
number of participants for each tender and includes only the winner’s identity. How-
ever, the knowledge about an economic operators’ participation is useful to estimate
the relative amount of administrative litigation to the participation amount: this is of
particular interest because much litigation occurs when participants do not win.

One of the goals of our work is to define a way to measure the tendency to litigation
of the economic operators. With reference to the generic economic operator i the first
measure is:

Number appeals generated by i
Number o f bids won by i

(1)

where the numerator is obtained by collecting the sentences in which the economic
operator i is the generator of the appeal and the denominator is obtained by table
Awards. We computed the numerator by means of the identification of the economic
operators who started the appeal. This is not an immediate task. To this aim we first
applied BeautifulSoup in the identification of the initial section of the judge’s sentence
that contains the denomination of the economic operator who started the appeal. In the
second step, we applied Lucene to unify the multiple possible denominations for each
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economic operator into a single one stored in an internal dictionary. Unfortunately this
equation is not suitable to estimate the litigation for those companies that did not win
any tender or won just a few because the little number at the denomination inflates the
evaluation.

The second measure is:

Number appeals generated by i
Number o f bids attempted by i

(2)

that differs from Eq. 1 on the denominator that is the number of tenders in which the
economic operator participated by not necessarily won. We would prefer to use Eq. 2
because appeals are often generated by participants who only attempted but did not win
the tender. We show how we estimate the denominator, i.e., the number of economic
operators’ attempts to award a contract.

We assumed the number of attempts done by economic operators to win a public
contract is similarly distributed as the number of awarded tenders per company, i.e., as
a power-law distribution function, but differing from it by a constant factor that corre-
sponds to the probability that a company, participating a tender awards the contract. We
now try to estimate this probability that we call p awd (probability of award).

We start from the table Awards of the awarded procurement. We calculated the prob-
ability a company awards a tender as the proportion of the number of success cases
over the total number of cases. The number of success cases is the number of tenders
for which we know there is a winner economic operator. The total number of cases
is the total number of received bids in those tenders. In some cases (corresponding to
628,703 tenders, approximately 8.3% of the cases) this number was not specified, and
we assumed it was one (presuming the public authority deemed it useless to communi-
cate in case there was a single participant). Even if p awd might differ from company to
company (the most successful ones will have a higher probability of winning a contract
than others) we assumed this probability is approximately constant over the population
of the economic operators. As said, p awd was computed as:

p awd =
Total number o f tenders awarded

Total number o f bids
= 0.199 (3)

that corresponds to estimating that an economic operator wins a contract for every five
participation to tenders. Equation 3 is useful to determine the litigation measure of Eq. 2
and in particular the denominator by application of the scaling factor obtained by Eq. 3.
Thus, we obtain the litigation measure of Eq. 2 from the litigation measure of Eq. 1 mul-
tiplied by the scaling factor of 0.199. This result is important in the analysis of tenders
participants to determine the ones with a high probability of litigation - an essential
issue for the reduction of the overload on the justice.

As it is possible to see in Fig. 4, the plot of the cumulative distribution of the lit-
igation measure in the logarithmic scale computed by Eq. 1 assumes an approximate
linear form that corresponds to the power-law distribution. We fitted it by application
of the Maximum Likelihood Estimation [12] and obtained the parameter of the expo-
nential distribution equal to 3, corresponding to a strongly skewed distribution. On this
distribution, we can rank the companies according to the litigation measure and find a
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threshold x crit. x crit is a critical value above which the probability to find a company
with a litigation measure higher than this value is bounded by the confidence level α .
α can be set to an arbitrarily low value (customarily set to 5% or 1%). In the case of
Fig. 4 the threshold of the litigation measure is 19 for an α = 5% (and of 85 for an
α = 1%). This corresponds to saying that for every contract awarded to the compa-
nies with an extremely high tendency to litigation, the administrative justice expects to
receive as many (and more) than 85 appeals. If we consider Eq. 2, the threshold is 16.9
for an α = 5%. It corresponds to saying that for every company with an extremely high
tendency to litigation that participates in a tender, the administrative justice expects to
receive almost 17 appeals. This occurs with a probability of α = 5%.

Fig. 4. Cumulative distribution function of the litigation measure obtained using Eq. 1

5.5 Analysis on the Graph

Following the Sect. 4.2, the graph database in Neo4j was constructed using a contract
authority and an economic operator as nodes, while an edge represents a CIG that identi-
fies the procurement won by the economic operator with the specific contract authority.
An exemplary part of the obtained graph database is shown in Fig. 5.

Following [4], we decided to use Neo4j due its powerful visualization tools. We
also exploited the fact that Neo4j contains the software library ”Graph Data Science”
(GDS) [13]. GDS was used because the algorithms of interest for this research are built
into the tool, thus avoiding the need to use other external applications. We applied two
main graph algorithms to analyze the graph: community detection and betweenness
centrality detection. This latter one is a measure of importance of each node in the
graph that is discussed in Sect. 5.5. Although we have extracted the communities at the
structural level, we have extracted the community data noting that the community is
homogeneous in supplies and contracts.

Community Detection. The Neo4j GDS library contains the Louvain method: it is an
algorithm for the detection of communities in large networks [19]. It maximizes the
modularity score for each community, where the modularity quantifies the quality of a
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Fig. 5. Part of the graph obtained in Neo4j containing the relationship AWARD (edges) between
the contracting authorities (yellow nodes) and the economic operators (pink nodes) (Color figure
online)

node assignment to communities. This means evaluating how much more densely con-
nected are the nodes within a community, compared to how connected they would be in
a random network [16]. The Louvain algorithm is a hierarchical clustering algorithm,
that recursively merges communities into a single node and executes the modularity
clustering on the condensed graphs [11]. Figure 6 shows the first five communities
detected by the algorithm. It is possible to see that the first community is composed
by two sub-communities and contains 38 nodes (4 contracting authorities and 34 eco-

Fig. 6. First five communities detected by the Louvain algorithm: green nodes are contracting
authorities; orange nodes are economic operators. The communities are in descending order
according to their “Size” (number of nodes) (Color figure online)
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Fig. 7. Graphical representation of the community detection: light blue nodes are the contracting
authorities; economic operators are the blue nodes (Color figure online)

nomic operators) while the second community is composed by 12 nodes (1 contracting
authority and 11 economic operators). These clusters or communities can be used for
various transparency analysis. For example, anomaly detection can be carried out by
asking how likely a particular entity (contracting authority or economic operator) in a
given cluster is likely to make a transaction (winning a procurement) with an arbitrar-
ily selected cluster; the less likely that transaction takes place, the higher the assigned
anomaly score (Fig. 7).

Betweenness Centrality. Betweenness centrality is often used to find the nodes that
serve as a bridge from one part of a graph to another. The algorithm calculates
unweighted shortest paths between all pairs of nodes in a graph. Each node receives
a score, based on the number of shortest paths that pass through the node. Nodes that
more frequently lie on shortest paths between other nodes will have higher betweenness
centrality scores [19]. The Neo4j GDS library implementation is based on Brandes’
approximate algorithm for unweighted graphs [7]. Figure 8 shows the first ten nodes
with higher centrality score; these measures can help shed light on the accounts (eco-

Fig. 8. First ten nodes with higher centrality score: yellow nodes are contracting authorities;
orange nodes are economic operators. The “Score” on the right side indicates how central the
node is; nodes are sorted in descending order according to this value (Color figure online)
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Fig. 9. Graphical representation of the betweenness centrality: light blue are contracting authori-
ties; blue nodes are economic operators (Color figure online)

nomic operators) which are the most central to the entire transactions network and help
to identify suspiciously well-connected accounts (Fig. 9).

6 Conclusions and Future Work

In this paper, we explored the possibility of the integration by IR of two information
sources (ANAC and IAJ) about procurement using common data in both datasets. By
fitting models on observed data applying the principle of MLE, we estimated the prob-
ability that a company awards a tender and the number of participation. These are the
ingredients for the identification of the companies that cause the highest number of lit-
igation whose elimination could drastically improve the justice overload. We applied
also graph analytic to identify the communities formed by the public contractors and
economic operators with recurrent procurement. As future work, we plan to study the
use of Legal BERT [21] to search within the judgments for named entities [18] such as
the names of the economic operators that were excluded from the tender selection (thus
not tracked in the ANAC dataset) in order to create a graph database of the economic
operators that may appear in the appeals despite an unsuccessful bid.
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2 INESC-TEC LIAAD - Laboratório de Inteligência Artificial e Apoio à Decisão,
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Abstract. Transthyretin-associated Familial Amyloid Polyneuropathy
(TTR-FAP) is a chronic fatal disease with a high incidence in Portugal.
It is therefore relevant to provide professionals and citizens with a tool
that enables a detailed geographical and territorial study. For this rea-
son, we have developed an web based application that brings together
techniques applied to spatial data that allow the study of the historical
progression and growth of cases in patients’ residential areas and areas of
origin as well as an epidemic forecast. The tool enables the exploration
of geographical longitudinal data at national, district and county levels.
High density regions and periods can be visually identified according to
parameters selected by the user. The visual evaluation of the data and
its comparison across different time spans of the disease era can have an
impact on more informed decision making by those working with patients
to improve their quality of life, treatment or follow-up. The tool is avail-
able online for data exploration and its code is available on GitHub for
adaptation to other geospatial scenarios.

Keywords: Geovisualisation · Spatial data · Imputation

1 Introduction

The application of data science and data mining concepts can be beneficial in
various domains and can lead to an advancement in the quality of life of people
who are directly and indirectly affected by these applications. When it comes to
the implementation of these concepts related to health care and well-being of the
population, the construction of tools that focus on the study of the emergence,
spread and prediction of diseases as endemic foci become indispensable to the
community. The geographical trends of diseases can lead to assumptions and
impact the quality of life of those who interact with them.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 103–118, 2023.
https://doi.org/10.1007/978-3-031-23618-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23618-1_7&domain=pdf
http://orcid.org/0000-0002-5475-1382
http://orcid.org/0000-0002-0786-9257
https://doi.org/10.1007/978-3-031-23618-1_7


104 R. X. Lôpo et al.

Transthyretin-associated Familial Amyloid Polyneuropathy (TTR-FAP) is an
example of one of the many chronic diseases that affect communities in several
countries as showed by Schmidt et al. in [1]. It is a rare, hereditary and neu-
rodegenerative disease, with serious consequences that greatly affect the routine
of those concerned, as well as being a disease that can lead to a fatal outcome.
Carriers have abnormal deposits of a protein called amyloid that disable, with
great emphasis, the body’s extremities and sensory capacity and, due to the
progression of the disease, eventually vital organs are also at risk as shown in [2]
and by Coelho in [3]. This disease has been studied for the last century and has
an evident research background that try to mitigate, as far as possible, some of
the consequences of being a carrier.

Portugal is one of the countries with one of the most considerable incidences
of the disease showed by Schmidt et al. [1] and whose first case was discovered
more than 80 years ago as Corino states in [4]. There is a wide medical research of
the disease but there is little detail in the geographical and territorial exploration
of this information across Europe stated by Parman et al. in [5] that can help
doctors and health professionals draw conclusions about their patients. It also
shows that the average age of onset of the disease is 33.5 years and that 87% of
patients develop symptoms before the age of 40. Portugal is one of the countries
with a faster diagnosis (with a shorter delay) where each patient only needs to
consult 2 specialists. Thus, by analysing values about past patients, it may be
possible to improve the decisions made about the current patients and to those
in years to come, regarding the delivery of medical care in correct areas.

In Sect. 1 we talk about the aim of the project and the paper as well as our
contributions. In Sect. 2 we mention related work that is connected to spatial
data, disease data and TTR-FAP. In Sect. 3 we talk about the data preparation,
the techniques applied and the imputation done in more detail. In the Sect. 4 we
show some of the results of simple Geovisualisation tools applied to the data.
In Sect. 5 we show how AmiVis works as a tool for healthcare professionals. In
Sect. 6 we talk about ongoing work with forecasting and incidence studies. We
end with Sect. 7 with conclusions and future work.

1.1 Contributions

This paper describes a web based platform that is able to explore the geograph-
ical distribution and resulting combination of residencies and origins of cases
in a national context of cases in mainland Portugal (excluding the Azores and
Madeira archipelagos). As previously mentioned, Portugal is a cluster of TTR-
FAP disease cases and a considerable part of this data is registered in the health
unit of Santo António Hospital in the city of Porto. Through the application of
data science and data mining concepts, and using an anonymized dataset that
records, in part, the origin and residence by county of patients in the Portuguese
geographic area by year, it is expected that knowledge and conclusions about
the numbers, progression and concentration of the disease can be drawn.
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Our contribution is to make this type of Geovisualisation exploration easily
accessible to those who directly work with these patients. For this reason, the
main goal is the creation of an interactive application which is usable by health
professionals and other interested types of users. The application can also be
adapted to other similarly geo temporal structured datasets.

Finally, this project’s main objective is to put together medical and data
science so that one half can give the necessary working data and information so
the other half can return it with more complete tools that allow new possible
theories. Thereby, those who will benefit are people who have this medical condi-
tion and healthcare professionals that work with these individuals and who need
this sort of tools to justify how the disease behaves in the country, empowering
them to make data-driven decisions.

2 Related Work

A literature review was conducted on three main components: analysis of the
disease and its word wide geographical distribution, how Geovisualisation theory
is currently and how other diseases with similar epidemiological behaviour are
represented geographically.

Regarding disease representations, Mazzeo et al. studied the endemic area of
Sicily in Italy from 1995 to 2015 in [6] just as Choi et al. regarding the South
Korean territory in almost the same time period in [7]. Similarly, Motozaki et al.
demonstrated the annual evolution, from 2003 to 2005, in Japan in [8], and Sousa
et al. showed a clear territorial visualisation of Portugal regarding the origin and
residence of patients in [9] with a clear focus in the north of the mainland. Still,
the focus on the territorial progression of the disease is scarce and left somewhat
open to interpretation.

Concepts of Geovisualisation theory such as the use of Map Visualisation
and the use of small multiples for ease in visualisation of spatial data are exten-
sively discussed. On the one hand, the sovereignty of visualisation of multiple
dimensions, such as 2D and 3D, as a tool that achieves knowledge of spatial
variables is reiterated since it allows drawing conclusions about economic, social
and political problems, as stated by Nollenburg through the proportional spa-
tial subdivision of the data in [10]. Some of the most commonly used types of
visualisation include Choropleth and Cartogram maps or space-time cube. On
the other hand, this data visualisation may be multiple, allowing the distinct
visualisation of small portions of information that guarantee a temporal dimen-
sionality, a concept present with great notoriety in the work of MacEachren et
al. in [11].

Other authors directly touched on the geographical exploration of other dis-
eases with epidemiological properties of geographical distribution and share some
of the concepts already mentioned. Among the various publications reviewed,
works done by Gaudart et al. and Jing et al. that present Geovisualisation con-
clusions in small multiples from France on cases of COVID-19 in relation to
various possibly correlated themes such as climate in [12] and other statistics
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such as small multiples from Chongqing in China on Acute Hemorrhagic Con-
juctivitis stand out in [13]. Overlapping time curves, case diagrams and various
mutations of Choropleth maps are also common tools to the vast majority of
similar works. Work on diseases that do not share hereditary characteristics like
TTR-FAP is still valuable since the tools and types of visualisations are based on
the same type of spatial data structure based on the location of people. There-
fore, conclusions have to be drawn from the visualisations taking into account
the type of disease.

3 Data Preparation and Subgroup Methodology

First of all, we must be aware that the data we are working with is relative to
a medical unit, so the introduction of the values is endowed with noise because,
sometimes, it is introduced in the day-to-day routine without guarantees that
it is completely correct by human action. These records were registered from
different healthcare professionals for decades with different medical backgrounds
which may also explain its inconsistencies.

The data we have includes, for each individual record, the family to which
they belong, which identifies the family group of cases, the dates of birth and
death by year, the sex of the registered patient, the genetic symbol of the patient
which identifies their last known state (such as affected, clear or heterozygous),
as well as the asymptomatic or non-symptomatic situation of the patient and
the year of onset of symptoms, the record of the county and district of residence
and of origin. Besides these, there are other data that were not relevant for this
work but have a medical and clinical relevance.

Fig. 1. Simplified version of the pipeline used during the geo-visualisation work of the
TTR-FAP data.

The work performed followed a work pipeline that is simplified in Fig. 1, since
this process is not merely iterative and involves moving forward and backwards
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through the phases according to the findings in the data and the work to be
performed over time. Regarding the Data Understanding phase and answering
these three important questions, the medical and clinical data represented suffer
from a considerable lack of values in each record and this is notoriously something
common in this type of area. Even so, each record, with the values of each variable
described above, can be studied in detail since it is possible to create subgroups
of quite heterogeneous values and this leads to a panoply of directions to follow.
The presence of textually, numerically and spatially represented values lead to
the possibility of finding hypothesis about sets of patients.

It should be noted that one of the biggest problems with this data is the lack
of depth because, for example, the dates provided have a granulation reserved
only for years when it could be advantageous to obtain statistics and conclu-
sions about periods throughout the year such as months or weeks and this data
is not available. Furthermore, since one of the main goals of this work is the
geographical and territorial exploration of the data, when a new patient from a
family already registered with the disease is introduced, usually the location of
the new patient is not entered in the dataset and he/she inherits the location of
his/her family members in terms of internal medical processes. Unsurprisingly,
this significantly limits what could be the actual veracity of the data and was
one of the problems to overcome.

Regarding data preparation, and without clarifying too much what the data
cleaning work of the raw dataset was, tools were applied to remove noise from the
attribute values and feature engineering was applied in which some attributes
were created from other existing attributes, as is the case of the creation of
counties and districts. In addition, a discretisation was applied to the data in
order to transform numerical values into intervals or conceptual labels so as to
simplify the data and reach new conclusions.

One of the issues involved in data preparation that received special atten-
tion and that has already been mentioned involves the lack of spatial values
in the patient records. Although not all present records identify patients, every
record has a connection to an affected patient that can result in some data to
be retrieved (a family can have connections between grandparents, parents and
sons despite not all of them being a carrier). For this reason, imputation meth-
ods were applied to this attribute. This process involves solving the problem of
missing values by substituting them for estimates of the same missing value.

There are a total of 117 locations of origin of patients and a total of 159
locations of residence which culminate in a total of 174 unique district-county
pairs in this dataset out of a total of 278 pairs at the national level. Since we
have information about the patient’s family subgroup, it makes sense to use all
records that have residential location and origin values when we are imputing a
value for a patient.

To perform the imputation, 2 different techniques were applied: family mode
and future generation parenting. While the mode is auto explicit since patients
inherit the family mode, the parenting of future generations considers the origin
and residence locations of the parents and grandparents (previous generations)
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to assign the location to the patient in question. This type of imputation imposed
the use of patients’ age of birth so that when newer generations were evaluated,
they would have their relatives available with the location value already previ-
ously recorded by the raw dataset or recorded by the algorithm. This procedure
used the id values of the fathers and mothers that were provided. Table 1 shows
the results taken from a performance study done in order to understand what
would be the most accurate method to use on the data, the family mode or the
future generation parenting.

Table 1. Evaluation values for mode and parenting of future generations plus mode for
origin and residence, using a K-Fold = 10 and using up to 2 generations in the parenting
values. The first half are values taken from applying Parenting and the second half are
those in comparison with and against Mode.

K−F = 10, P= 2 Origin Residence

Available 6472 6098

Train 0.7 4590 4343

Test 0.3 1882 1755

Avg Irresolvable records 1092,8 1046,9

Avg Correctly Predicted records 780,6 473,4

Avg Wrong Predicted records 8,6 234,7

Precision (Parenting) for Correctly Predicted records 0,989 0,669

Avg Parenting + Mode Irresolvable records 58,1 70,3

Avg Different values Parenting vs mode (for predicted by Parenting) 3,8 140,5

Avg Wrong predicted Parenting (for predicted by Parenting) 8,6 234,7

Avg Wrong predicted mode (for predicted by Parenting) 6,4 167,3

Precision (Mode) for predicted values by Parenting 0,992 0,764

Although there were 34654 records registered in the dataset, only those with
existing data regarding the location of origin and residence were considered,
creating two distinct datasets, the first with 6472 for existing records with ori-
gin and the second with 6098 records with available residence information. It
is important to note that the primary dataset available that contains all data,
includes records of affected, clean, unaffected, carrier, heterozygous (carrier who
received the gene from both parents) and possibly affected individuals. Since
records are organised by families and this information is key to this study but
their medical condition is not relevant for the imputation of values, the perfor-
mance study considers individuals that did not develop any form of the disease
yet but have valuable geographical data that we can use because they are related
to patients that in fact have TTR-FAP.

The values result from an application of imputation to a training and test
by random splitting the data in 70/30. There are irresolvable records that result
from the data split itself, since entire families can be entirely both in the training
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and the test meaning that they are impossible to predict. It is also important
to mention that since only records that have location values are considered, the
families will be smaller than they were actually recorded in the original dataset.
Even so, as it is possible to verify in Table 2, the number of families that it is not
possible to predict at least 1 record is about 1/20 of the existing total. Here it
is possible to verify that the numbers of families evaluated are quite similar for
both locations and that a considerable number are used in Train and Test splits
(more than 90% of families in Train 773 out of 821 for origin and 770 out of 824
for residence a and almost 70% of families in Test 580 out of 821 for origin and
564 out of 824 for residence).

Table 2. Unique families in the origin and residence study.

K−F = 10, P= 2 Origin Residence

All unique families 821 824

Avg train unique families 773,3 770,1

Avg test unique families 579,7 564,3

Avg unique families test parenting w/at least 1 NA record 444,8 438,4

Avg unique families test parenting+mode w/at least 1 NA record 47,7 53,9

In terms of conclusions to be drawn from Table 1, it can be seen that Par-
enting successfully predicts most of the values it tried to predict (Avg Correctly
Predicted vs Avg Wrong Predicted) when it comes to the origin of the patients
but, when it comes to residence, these values are one third lower (0.99 vs 0.67).
These values show that patients of more recent generations tend to have the
same origin as their relatives but live in different locations. When comparing the
Parenting values with the mode, regarding the values that Parenting was able to
predict, both correctly and incorrectly, in both cases the mode is the procedure
with better results, and although it is not very different in origin, in residence
these values are 10% more accurate.

With these results, it was possible to apply the mode of the household loca-
tions to the data, which resulted in two distinct datasets that will be used in the
remaining visualisation work. Considering only affected, carrier, heterozygous
and possibly affected patients, the final datasets encompassing all data entries
containing origin and residence locations each have 5782 and 5762 records.

4 Applying Geovisualisation Techniques

In this section, we show results of applying Geovisualisation techniques in most
of the work to ensure that a territorial representation of the disease in Portugal
was obtained and correctly displayed. These Geovisualisations include patients
registered with known date of birth since 1871 and date of symptoms detected
since 1907 and have spatial information.
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Fig. 2. Unique locations of TTR-FAP cases by origin (left) and by residence (right) in
Portugal.

Despite the first case being discovered by Corino in 1939 in [4], there are peo-
ple called hearsays that are given the TTR-Condition because a family member
that is followed in the Medical Unit believes that this other member has the
same condition and healthcare professionals have enough data to recognize it to
some degree. This is why there are cases before this year in the data and even
after despite not being patients at the Unit.

In order to obtain the longitude and latitude of the plain text locations that
exist in the dataset automatically, the ggmap package was used, which accessed
a key on the Google Cloud Platform and allowed access to the stored Google
Maps coordinates for all the cities in the dataset using the ggmap package [14].

This type of information alone makes it possible to represent the totality of
the cases with respect to the uniqueness of the locations, which can be demon-
strated in Fig. 2 and Fig. 3. Only with these visualisations, it is possible to verify
that there are no cases registered in the medical unit in the district of Beja and
Portalegre regarding the residential zone of the patients. It is also possible to see
that there are many more cases in the Centre/South region and in the Lisbon
area in terms of the patients’ residence than in terms of their origin. We can also
see that there are differences in the Alentejo area (bottom of the country) and
in the North area in Bragança and Guarda.

Although single locations alone are relevant information, this does not express
the number of cases per location which by themselves form clusters of patients
with the same origin and residence. For this reason, when assessing the national
panorama in terms of locations with the highest incidence (new cases of disease
in a population over a specified period of time) of cases, we obtain figures like 4
and 5, with data for all cases. With this information it is possible to see that with
regard to origin, there are more cases in the counties with the highest incidence
than when considering residence (percentile 90 with values of 87 vs 67 cases per
county).
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Fig. 3. Unique locations of TTR-FAP cases by origin (left) and by residence (right) in
Portugal, by district.

There are several counties in common which are considered to be the areas
of highest incidence of cases by origin and residence: Braga, Vila do Conde,
Matosinhos, Porto and a few others. The county of Pampilhosa da Serra appears
as the only locality, of the most affected, that does not have an equal residential
concern. On the other hand, in addition to more counties of Porto and Braga,
the municipality of Lisbon emerges as a residential area of much greater concern
than originally.

It is also important to note that the quantity of counties with a represented
incidence relative to residence is greater in number than the origin in what
concerns the proximity to the coastline of the country which has been considered,
for some years now, the preferred area of quality of life for the availability of
national services.

Since the total number of cases since 2000 has already exceeded more than
half of the cases recorded from 1950 to 1999, would make sense to study the inci-
dence and progression of cases temporally or even considering other factors such
as a subset of spatial data in particular localities in order to draw conclusions.
While this is possible with these types of tools, they will certainly not be cus-
tomised to the extent of allowing health professionals to choose the parameters
themselves.

5 AmiVis as a Geovisualisation Tool

As this project aims to provide health professionals with a visualisation tool, an
application has been developed that allows doctors and health entities to choose
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Fig. 4. Incidence of affected and possibly affected individuals, carriers and heterozygous
for TTR-FAP, by county and origin, in Portugal.

Fig. 5. Incidence of affected and possibly affected individuals, carriers and heterozygous
for TTR-FAP, by county and residence, in Portugal.
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the parameters and to decide themselves what to visualise. Parameters include
the choice of district and county to consider, the range of years of symptoms, the
choice of visualisation of origin and residence, and whether or not to consider
records with no date of symptom origin but which have spatial data. The direct
comparison of all cases to the cases filtered by the parameters is something that
exists in this tool in order to allow the differences between the two views to be
evaluated, as seen in Fig. 6.

Fig. 6. Overview of AmiVis app Geo Map comparison between all cases and filtered
cases regarding TTR-FAP patients in Porto, by origin, between 1942 and 1982 not
considering Dateless records (with no onset of symptoms). Parameters are at the top
left, unique locations at the bottom left, the menu of different Geovisualisations at the
top right and the comparison of maps at the bottom right.

Initially, users are given the opportunity to upload their own dataset, which
can be pre-processed as long as it meets the standards of the application.

Using the package leaflet [15], it is possible to represent the incidence of the
total and filtered cases side by side. This type of Geovisualisation allows it to be
possible, for example, to compare the incidence in a specific period of years as in
Fig. 7. In this example, by selecting the parameters Origin, Range of symptoms
between 2006 and 2016, considering all districts and counties and discarding
records with no temporal data regarding the date of symptoms, we obtain two
distinct images especially regarding Northern Portugal.

A different path to follow would be the representation of cases by the terri-
torial level. GADM, the Global Administrative Areas Database, provides level
information on the national divisions of each country in various formats and,
using the R packages GADMTools [16], which allows this type of data to be
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Fig. 7. Incidence of affected and possibly affected individuals, carriers and heterozygous
for TTR-FAP, by county and origin, in Portugal for all records (left) and for records
with onset symptoms between 2006 and 2016, excluding records with spatial data but
no onset of symptoms (right).

managed, it has been possible to construct differentiating visualisations that
enable greater recognition of the geographical area.

It is important to note that, at least in Portugal, there are more detailed levels
of municipalities but the dataset does not contain information about parishes,
so it is only possible to use level 2 of this type of data. Figure 8 shows one of the
filtering applications in AmiVis that allows filtered results to be split at district
and municipality level, in order to be compared to the general picture of the
disease. In this case, in the first 50 years of disease registration, the central coast
of Portugal did not have such a high incidence of cases, which increased over the
years.

6 Ongoing Work

Currently the work involves creating models that have a prediction of the inci-
dence of the disease over time and that can be adapted to the location chosen
in the application. To do this, firstly, a symptom year prediction model needs
to be adapted so that more patients with recent years of symptom onset can be
correctly used. In this way, it will be possible to apply the model to the recent
globality of the data and predict future years.

Still, there is already work being done on these strands with past data that
have some consistency. It is important to note that the more recent data suffer
from a paucity of recorded cases perhaps due to, maybe, the delay in diagnosis
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Fig. 8. Incidence of affected and possibly affected individuals, carriers and heterozygous
for TTR-FAP, by district, county and origin, in Portugal for all records (first and
second) and for records with onset symptoms between 1907 and 1957, excluding records
with spatial data but no onset of symptoms (third and fourth).

or Medically Assisted Procreation. It is also relevant to note most of the new
cases are from new recently found families and these will start to shrink overtime
as there are a limited number of families in the country. Examples like the Fig. 9
using the package forecast [17] for forecasting with ARIMA modelling for the
years after 2010, considering the worsening of cases while the Fig. 10 shows what

Fig. 9. Example of forecasting for the number of affected and possibly affected indi-
viduals, carriers and heterozygous for TTR-FAP in Portugal for each year with onset
symptoms for 2011–2015



116 R. X. Lôpo et al.

Fig. 10. Incidence of affected and possibly affected individuals, carriers and heterozy-
gous for TTR-FAP, by district, county and origin, in Portugal for each year with onset
symptoms between 1936 and 2006 with curve by early fitting.

would be an incidence growth curve with the incidence package [18]. Although
these methods work relatively well for value estimation and even prediction for
a 95% confidence interval, more detailed individual forecasting is still needed to
ensure higher data quality over the last decade.

7 Conclusions and Future Work

As far as conclusions to be drawn from this work are concerned, these fall into
two important strands. On the one hand, the creation of visualisation tools
shows, noticeably, the current state of the country and how the concentration of
the disease is different in distinct regions. This endemic disease is clearly more
incident in the north of the country but has moved to the centre and south the
concentration of cases in more recent periods. This movement is more notable
with regard to residence than to the origin of the patients, showing that there
is a clear differentiation between cases originating in the centre-south and cases
of residents coming from other locations.

On the other hand, the creation of a web based application allows its appli-
cability in the national ecosystem of patients through health professionals who
may have at their disposal a platform that controls the visualisations based on
the time and space they want.

Finally, it will also be an objective to frame the resulting data and conclu-
sions with other external data in order to verify correlations. Examples such
as the number of specialists per geographical area, the annual migration rate



Geovisualisation Tools for Reporting and Monitoring TTR-FAP Disease 117

per residential area or even the difference in quality of life may be determining
factors in the movement and progression of the disease in certain regions.

In summary, we have demonstrated some of the techniques for applying Geo-
visualisation to TTR-FAP data which, together with an application, will give the
opportunity for health professionals themselves to control what they want to see.
This way, it will be possible to support patients because the understanding of the
disease will be increased and differentiating measures can be taken such as the
decision to allocate professionals, treatment equipment or even previous indica-
tions in the health centres where patients are expected, without ever forgetting
to raise awareness in highlighted areas. The GitHub repository is available in
[19] and it is also available online at shinyapps in [20].
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Abstract. Predicting students’ academic performance is one of the key
tasks of educational data mining (EDM). Traditionally, the high forecast-
ing quality of such models was deemed critical. More recently, the issues
of fairness and discrimination w.r.t. protected attributes, such as gender
or race, have gained attention. Although there are several fairness-aware
learning approaches in EDM, a comparative evaluation of these mea-
sures is still missing. In this paper, we evaluate different group fairness
measures for student performance prediction problems on various educa-
tional datasets and fairness-aware learning models. Our study shows that
the choice of the fairness measure is important, likewise for the choice of
the grade threshold.

Keywords: Fairness · Fairness measures · Student performance
prediction · Machine learning · Educational data mining

1 Introduction

Educational data mining (EDM) applies data mining, artificial intelligence (AI),
and machine learning (ML) to improve academic experiences. In recent years,
AI-infused technologies have been widely studied and deployed by many educa-
tional institutions [3,19]. One of the most important tasks in EDM that attracts
great attention is student performance prediction. The early estimation of stu-
dent learning outcomes can help detect and notify students at risk of academic
failure. Besides, it supports institutional administrators in identifying key fac-
tors affecting students’ grades and providing suitable interventions for outcome
improvement. The performance prediction process relies on historical academic
records and trains ML algorithms on labeled data to predict students’ perfor-
mance. Various datasets [11,26,37] and approaches [16,24,41] have been pro-
posed for the purpose. With the widespread use and benefits of AI systems,
fairness has become a crucial criterion in designing such systems.
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Non-discriminative ML models have been a topic of increasing importance
and growing momentum in education. Despite advances and superior accuracy
of recent ML models, some studies have shown that ML-based decisions can be
biased to protected attributes such as gender or race due to historical discrimi-
nation embedded in the data [28,32]. Endeavoring to reduce biases is important
and decisive in the applicability of an ML model in education. As an example, a
recent study has proposed approaches that aim at predicting calculated grades
of students in England as a replacement for actual grades due to the cancellation
of exams during COVID-19 [5]. However, the proposal could not be applied as
a consequence of some exposed historical biases.

A large variety of fairness measures have been introduced in ML area. How-
ever, choosing proper measures can be cumbersome due to the dependence of
fairness on context. There are more than 20 different fairness measures intro-
duced in the computer science research area [28,36]. In fact, no metric is universal
and fits all circumstances [15,28,36]. Model developers should explore various
fairness measures to decide the most appropriate notions for the context. Fair-
ness is a fundamental concept of education, whereby all students must have an
equal opportunity in study or be treated fairly regardless of their household
income, assets, gender, or race [29]. Fairness definitions in education, hiring, and
ML in the 50-year history have been discussed in the research of [20]. However,
no previous work exists on the efficiency of different fairness metrics and how to
choose them in educational settings.

In this paper, we provide a comprehensive study to evaluate the sufficiency of
various fairness metrics in student performance prediction. We consider a group
of the most prevalent fairness notions in ML. Various experiments are conducted
on diverse educational datasets and evaluated using different fairness metrics.
Our experiments provide users a broad view of unfairness from diverse aspects
in an educational context. Besides, the results also guide the selection of suitable
fairness measures to evaluate students’ grade predictive models. We believe our
contributions are crucial to alleviate the burden of choosing fairness measures for
consideration and motivate further studies to improve the accuracy and fairness
of student performance prediction models.

The rest of the paper is organized as follows. In Sect. 2, we present some
closely related work on fairness-aware ML and student performance prediction.
Section 3 describes the most popular group fairness measures in ML. Next, we
conduct quantitative evaluations of predictive models on educational datasets
and discuss the choice of suitable fairness metrics in Sect. 4. Finally, we conclude
the paper in Sect. 5.

2 Related Work

Extensive research efforts have been conducted to provide useful insights into
students’ performance analysis and prediction [38]. Various ML models were
tested on different problem settings. Cortez et al. [11] presented an early study
to predict the grades of secondary students in Portuguese and Mathematics
classes. Their results showed that good predictive accuracy could be achieved
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when previous school period grades are available. Similarly, Berhanu et al. [7]
employed Decision Tree to predict students’ performance using the agriculture
college dataset. Some studies [25,41] proposed diverse approaches to forecast
students’ grades in higher education. Besides, many other studies were reviewed
in multiple surveys [1,31,33,34]. They pointed out the most common techniques
such as Decision Tree, Naive Bayes, Support Vector Machines, and neural net-
works and dominant factors impacting predictive outcomes (i.e., Cumulative
Grade Point Average, previous grades, classroom attendance, etc.).

There are more than 20 fairness notions introduced for classification [28,
36]. One of the most well-known fairness measure is demographic parity, so-
called statistical parity. It requires an equal probability of positive predictions
in protected and non-protected groups. However, Dwork et al. [13] argued that
the metric fails to ensure individual fairness. To avoid this, Hardt et al. [18]
proposed equalized odds metric. It measures whether a classifier predicts labels
equally well for all values of attributes. Besides, many other popular metrics were
introduced and used in fairness ML studies such as predictive parity, predictive
equality [9], treatment equality [8], etc. Despite a substantial number of fairness
measures, there is no metric that fits all circumstances [28,36].

Following the evolution of fairness measures, recent studies have attempted
to evaluate fairness in an educational context [17,22,39]. Anderson et al. [6] con-
ducted two post-hoc fairness assessments for existing student graduation predic-
tion models. Renzhe et al. [39] studied different combinations of student data
sources for building highly predictive and fair models for predictions of college
success. Jiang et al. [23] proposed several strategies to mitigate bias in the LSTM
grade prediction model. They report experimental results on the true positive
rate (TPR), true negative rate (TNR), and accuracy.

3 Fairness Measures

Table 1. An overview of group fairness measures

Measures Proposed by Published year #Citations

Statistical parity [13] 2012 2,367

Equal opportunity [18] 2016 2,575

Equalized odds [18] 2016 2,575

Predictive parity [9] 2017 1,430

Predictive equality [10] 2017 878

Treatment equality [8] 2018 626

Absolute Between-ROC Area [17] 2019 84

This section presents the most prevalent group fairness notions used in ML. The
list of notions1 is summarized in Table 1. To simplify, we consider the student
1 The number of citations is reported by Google Scholar on 1st August 2022.
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performance prediction problem as a binary classification task, which is formal-
ized as below:

Let D be a binary classification dataset with class attribute Y = {+,−},
e.g., Y = {pass, fail}. S is a binary protected attribute, S ∈ {s, s}, e.g., S
= “gender”, S ∈ {female,male}. In which, s is the discriminated group (pro-
tected group), e.g., “female”, and s is the non-discriminated group (non-protected
group), e.g., “male”. The predicted outcome is denoted as Ŷ = {+,−}. The
notions s+ (s−), s+ (s−) are used to denote the protected and non-protected
groups for the positive (negative, respectively) class.

We use a confusion matrix (Fig. 1) to demonstrate the group fairness mea-
sures with an example of a dataset with 100 instances, class Y = {pass, fail}.
The protected attribute is “gender”, and the protected group is “female”; the
distribution of “female”:“male” is 46:54. Examples of fairness measures in the
following sub-sections are computed based on this confusion matrix.

Fig. 1. The confusion matrix with an example

3.1 Statistical Parity

Statistical parity (denoted as SP) is a well-known group fairness measure [13],
whereby the output of any classifier satisfies statistical parity if the difference
(bias) in the predicted outcome (Ŷ ) between any two groups under study (i.e.,
s and s) is up to a predefined tolerance threshold ε:

P (Ŷ |S = s) − P (Ŷ |S = s) ≤ ε. (1)

We use the violation of statistical parity [27,35,40] to measure the bias of a
classifier:

SP = P (Ŷ = +|S = s) − P (Ŷ = +|S = s). (2)

The value range: SP ∈ [−1, 1], with SP = 0 indicating no discrimination, SP ∈
(0, 1] designating that the protected group is discriminated, and SP ∈ [−1, 0)
standing for reverse discrimination (the non-protected group is discriminated).
In our example (Fig. 1), this measure shows the proportion of “pass” students

between the two demographic subgroups. SP =
38 + 6

54
− 32 + 4

46
≈ 0.0322.
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3.2 Equal Opportunity

Equal opportunity (denoted as EO) is proposed by Hardt et al. [18], whereby
a binary predicted outcome Ŷ satisfies equal opportunity w.r.t. the protected
attribute S and the class attribute Y if:

P (Ŷ = +|S = s, Y = +) = P (Ŷ = +|S = s, Y = +). (3)

In other words, the protected and non-protected groups should have equal true

positive rates (TPR) [28,36], TPR =
TP

TP + FN
(i.e., the classifier should give

similar results for students of both genders with actual “pass” class). A classifier

with equal false negative rates (FNR), FNR =
FN

TP + FN
, will also have equal

TPR [36]. The equal opportunity can be measured by:

EO = |P (Ŷ = −|Y = +, S = s) − P (Ŷ = −|Y = +, S = s)|. (4)

The value range: EO ∈ [0, 1]; with 0 standing no discrimination and 1 indicating

maximum discrimination. In our example, EO =| 38
38 + 6

− 32
32 + 4

|≈ 0.0253.

3.3 Equalized Odds

A predictor Ŷ is satisfied equalized odds (denoted as EOd) w.r.t. the protected
attribute S and class label Y , if “Ŷ and S are independent conditional on Y ”
[18]. Specifically, predicted true positive and false positive probabilities should
be the same between male and female student groups.

P (Ŷ = +|S = s, Y = y) = P (Ŷ = +|S = s, Y = y), y ∈ {+,−}. (5)

Therefrom, we can measure the equalized odds as the following [21,27]:

EOd =
∑

y∈{+,−}
|P (Ŷ = +|S = s, Y = y) − P (Ŷ = +|S = s, Y = y)|. (6)

The value range: EOd ∈ [0, 2]; with 0 standing for no discrimination and

2 indicating the maximum discrimination. In our example, EOd = | 32
32 + 4

−
38

38 + 6
| + | 4

4 + 6
− 5

5 + 5
| ≈ 0.1253.

3.4 Predictive Parity

Predictive parity [9] (denoted as PP) is satisfied if both protected and non-
protected groups have an equal positive predictive value (PPV) or Precision,
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PPV =
TP

TP + FP
, i.e., the probability of a student predicted to “pass” actually

having “pass” class should be the same, for both male and female students.

P (Y = +|Ŷ = +, S = s) = P (Y = +|Ŷ = +, S = s). (7)

Therefore, we report the predictive parity measure as:

PP = |P (Y = +|Ŷ = +, S = s) − P (Y = +|Ŷ = +, S = s)|. (8)

where PP ∈ [0, 1], with 0 standing for no discrimination and 1 indicating the

maximum discrimination. PP =
32

32 + 4
− 38

38 + 5
≈ 0.0052, in our example.

3.5 Predictive Equality

Predictive equality [10] (denoted as PE ), also referred as false positive error

(FPR) rate balance [9] (FPR =
FP

TN + FP
), aims to the equality of decision’s

accuracy across the protected and non-protected groups. In detail, the proba-
bility of students with an actual “fail” class being incorrectly assigned to the
“pass” class should be the same for both male and female students.

P (Ŷ = +|Y = −, S = s) = P (Ŷ = +|Y = −, S = s). (9)

In practice, researchers report predictive equality measure by the difference of
FPRs [21]:

PE = |P (Ŷ = +|Y = −, S = s) − P (Ŷ = +|Y = −, S = s)|. (10)

The value range: PE ∈ [0, 1], 0 and 1 indicate no discrimination and maximum

discrimination, respectively. PE = | 4
6 + 4

− 5
5 + 5

| = 0.1, in our example.

3.6 Treatment Equality

Treatment equality [8] (denoted as TE ) is satisfied if the ratios of false negatives
and false positives are the same for both protected and non-protected groups.

FNprot.

FPprot.
=

FNnon−prot.

FPnon−prot.
. (11)

In our paper, we report the treatment equality by the difference between two
ratios described in Eq. 11.

The metric becomes unbounded if FPprot. or FPnon−prot. is zero2. In our
example, TE = −0.2, because the ratios of FN and FP are 1 and 1.2 for female
and male groups, respectively.
2 https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-

metric-te.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-te.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-te.html
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3.7 Absolute Between-ROC Area

Absolute Between-ROC Area (ABROCA) [17] is based on the Receiver Operating
Characteristics (ROC) curve. It measures the divergence between the protected
(ROCs) and non-protected group (ROCs) curves across all possible thresholds
t ∈ [0, 1] of FPR and TPR. The absolute difference between the two curves is
measured to capture the case that the curves may cross each other.

∫ 1

0

| ROCs(t) − ROCs(t) | dt. (12)

The value range: ABROCA ∈ [0, 1]. The lower value indicates a lower differ-
ence in the predictions between the two groups and, therefore, a fairer model.

4 Evaluation

In this section, we evaluate the performances of predictive models w.r.t. accuracy
and fairness measures on five datasets and investigate the effect of choosing grade
threshold on fairness measures.

4.1 Datasets

We evaluate the fairness measures on popular educational datasets [27,30,38],
which are summarized in Table 2. All datasets are imbalanced, as shown in the
imbalance ratio (IR) column.

Table 2. An overview of educational datasets

Datasets #Instances #Instances

(cleaned)

#Attributes Protected

attribute

Class label IR (+:-)

Law school 20,798 20,798 12 Race Pass the bar exam 8.07:1

PISA 5,233 3,404 24 Gender Reading score 1.35:1

Student academics 131 131 22 Gender ESP 3.70:1

Student performance 649 649 33 Gender Final grade 5.49:1

xAPI-Edu-Data 480 480 17 Gender Grade level 2.78:1

Law School. The Law school dataset3 contains the law school admission records
from 163 law schools in the US in 1991. The target is to predict whether a
candidate would pass the bar exam or not. The protected attribute is “race” =
{white, non − white}, where “non-white” is the protected group.

PISA Dataset. The PISA dataset4 contains information on the performance
of American students [14] taking the exam in 2009 from the Program for
International Student Assessment (PISA). The grade threshold (“readingScore”
attribute) is chosen at 500 to compute the class label = {low, high} since the
mean reading score is 497.6. The experiments are performed on the cleaned
version of this dataset with 3,404 instances after removing missing values.
3 https://github.com/tailequy/fairness dataset/tree/main/Law school.
4 https://www.kaggle.com/econdata/pisa-test-scores.

https://github.com/tailequy/fairness_dataset/tree/main/Law_school
https://www.kaggle.com/econdata/pisa-test-scores
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Student Academics Performance Dataset. The student academics per-
formance dataset5 [19] consists of socio-economic, demographic, and academic
information of students from three different colleges in India with 22 attributes.
The class label is ESP (end semester percentage). In this paper, we encode
class label as a binary attribute with values {“pass”,“good-and-higher”}, where
“good-and-higher” is a positive class.

Student Performance Dataset. The student performance dataset6 [11] was
collected in two Portuguese schools in 2005 - 2006. It contains 33 features
describing demographics, grades, social and school-related information of stu-
dents. “gender” is considered the protected attribute. The target is to predict
the final outcome. The class label = {pass, fail} is computed based on the final
grade (attribute “G3”) as {<10, ≥10} [11,27].

Students’ Academic Performance Dataset (xAPI-Edu-Data). xAPI-
Edu-Data7 [4] contains 480 student records described by 17 attributes collected
from Kalboard 360 learning management system. We encode the class label as
a binary attribute as {Low,Medium − High} corresponding to {L, M or H} in
the original dataset. The positive class is “Medium-High”.

4.2 Predictive Models

We select four prevalent classifiers used for student performance prediction prob-
lems based on the survey of Xiao et al. [38], and two well-known fairness-aware
classifiers, namely Agarwal’s [2] and AdaFair [21]. In which, Agarwal’s method
reduces the fair classification to a sequence of cost-sensitive classification prob-
lems with the lowest (empirical) error subject to the desired constraints, and
AdaFair is based on AdaBoost that further updates the weights of the instances
in each boosting round. In brief, the predictive models are: 1) Decision Tree
(DT); 2) Naive Bayes (NB); 3) Multi-layer Perceptron (MLP); 4) Support Vec-
tor Machines (SVM); 5) Agarwal’s; 6) AdaFair. In our experiments, we use
70% of data for training and 30% for testing (single split). Predicted models
are implemented and executed with default parameters provided by Scikit-learn
and Iosifidis et al. [21]. Agarwal’s method is implemented in the AI Fairness 360
toolkit8.

4.3 Experimental Results

Law School Dataset. The results are presented in Table 3. AdaFair is the
best predictive model w.r.t. fairness measures, although its balanced accuracy
is significantly lower than that of other models. Besides, the fairness measures
5 https://archive.ics.uci.edu/ml/datasets/Student+Academics+Performance.
6 https://archive.ics.uci.edu/ml/datasets/student+performance.
7 https://www.kaggle.com/datasets/aljarah/xAPI-Edu-Data.
8 https://github.com/Trusted-AI/AIF360.

https://archive.ics.uci.edu/ml/datasets/Student+Academics+Performance
https://archive.ics.uci.edu/ml/datasets/student+performance
https://www.kaggle.com/datasets/aljarah/xAPI-Edu-Data
https://github.com/Trusted-AI/AIF360
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show a quite large variation across the classification methods, as demonstrated
in Fig. 7-a. Furthermore, the shape and position of the ROC curves, as visualized
in Fig. 2, have been changed across the predictive models, which indicates the
change in the performance of models w.r.t. each value in the protected attribute.
Because the datasets are imbalanced, we report the performance of predictive
models on both accuracy and balanced accuracy measures.

PISA Dataset. The interesting point is SVM and DT show their superiority in
terms of fairness measures, although AdaFair still has very good results on fair-
ness metrics and accuracy (Fig. 3 and Table 4). Furthermore, fairness measures
have the least variability in this dataset, as shown in Fig. 7-b.

Student Academics Performance Dataset. The AdaFair outperforms other
models w.r.t. fairness measures, however, the balanced accuracy is decreased
considerably (Table 5). Besides, all fairness measures have significant variation
across predictive models (Fig. 4 and Fig. 7-c).

Student Performance Dataset. In general, all models show good accu-
racy (balanced accuracy) on predicting students’ performance (Table 6). MLP
and AdaFair models fairly guarantee the fairness of results on most measures.
Besides, the values of fairness measures also do not vary significantly across
predictive models (Fig. 7-d), although the ABROCA slices are quite different in
shape (Fig. 5).

Table 3. Law school: performance of predictive models

Measures DT NB MLP SVM Agarwal’s AdaFair

Accuracy 0.8458 0.8191 0.9042 0.8926 0.7952 0.8921

Balanced accuracy 0.6301 0.7784 0.6596 0.5029 0.5848 0.5

Statistical parity 0.1999 0.5250 0.2367 0.0052 0.0326 0.0

Equal opportunity 0.1557 0.4665 0.1237 0.0014 0.0202 0.0

Equalized odds 0.3253 0.8105 0.5501 0.0169 0.0953 0.0

Predictive parity 0.1424 0.0130 0.0754 0.1857 0.1802 0.1885

Predictive equality 0.1696 0.3440 0.4265 0.0154 0.0751 0.0

Treatment equality –0.0667 22.440 0.7770 0.0039 –1.9676 0.0

ABROCA 0.0336 0.0316 0.0336 0.0833 0.0365 0.0822
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Fig. 2. Law school: ABROCA slice plots

Table 4. PISA: performance of predictive models

Measures DT NB MLP SVM Agarwal’s AdaFair

Accuracy 0.6360 0.6624 0.6526 0.6096 0.6614 0.6810

Balanced accuracy 0.6224 0.6379 0.5732 0.5026 0.6340 0.6130

Statistical parity –0.0200 –0.0316 –0.0771 –0.0022 –0.0096 –0.0573

Equal opportunity 0.0019 0.0262 0.0330 0.0043 0.0414 0.0164

Equalized odds 0.0165 0.0709 0.1398 0.0068 0.0548 0.0752

Predictive parity 0.1012 0.0683 0.0826 0.1108 0.0785 0.0868

Predictive equality 0.0146 0.0446 0.1067 0.0024 0.0134 0.0588

Treatment equality 0.5642 0.3855 –0.0251 –0.0033 0.4609 0.0260

ABROCA 0.0070 0.0330 0.0223 0.0844 0.0326 0.0216
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Fig. 3. PISA: ABROCA slice plots

xAPI-Edu-Data Dataset. This is a surprising dataset because the traditional
classification methods show a better performance not only in terms of accu-
racy/balanced accuracy measures but also w.r.t. fairness measures (Table 7). In
addition, variation in the values of fairness measures across the predictive models
is not significant, as shown in Fig. 7-e, except for the ABROCA measure with a
noticeable change in the shape (Fig. 6).

Regarding the treatment equality measure, this measure is entirely different
from all other measures with an extensive range of values, which is visualized in
Fig. 7-f9. On the PISA datasets, this TE measure shows the best values across
predicted models, followed by Law school and Student Academics datasets.

Summary of Results: In general, ABOCA is the measure with the lowest
variability across predictive methods and datasets. It also clearly presents the
ML model’s accuracy variation over each value of the protected attribute. Equal
opportunity and predictive parity also have a slight variation across methods
and datasets. Equalized odds, to some extent, can represent two measures equal
opportunity and predictive equality as it is the sum of the other two metrics.
Furthermore, treatment equality has a very wide range of values (sometimes the
value may not be bounded), making it difficult to compare and evaluate.

9 We use the abbreviations of the fairness measures and datasets in Fig. 7.
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Table 5. Student academics: performance of predictive models

Measures DT NB MLP SVM Agarwal’s AdaFair

Accuracy 0.7750 0.8750 0.8750 0.9250 0.8750 0.9

Balanced accuracy 0.6528 0.8194 0.8194 0.6250 0.8194 0.5

Statistical parity –0.1278 –0.1328 –0.1328 0.0526 0.0677 0.0

Equal opportunity 0.1455 0.0991 0.2105 0.0 0.0123 0.0

Equalized odds 0.1455 0.5991 0.7105 0.5 0.5124 0.0

Predictive parity 0.0042 0.0588 0.0552 0.0397 0.0556 0.01

Predictive equality 0.0 0.5 0.5 0.5 0.5 0.0

Treatment equality –3.0 N/A N/A 0.0 N/A 0.0

ABROCA 0.0728 0.2059 0.1316 0.1285 0.0317 0.0372

Fig. 4. Student academics: ABROCA slice plots
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Table 6. Student performance: performance of predictive models

Measures DT NB MLP SVM Agarwal’s AdaFair

Accuracy 0.9333 0.8974 0.9077 0.9231 0.8923 0.9487

Balanced accuracy 0.8639 0.8595 0.7840 0.7441 0.8565 0.8240

Statistical parity –0.0382 –0.0509 –0.0630 0.0151 –0.0209 –0.0255

Equal opportunity 0.0125 0.0174 0.03 0.0183 0.0176 0.0092

Equalized odds 0.1316 0.2198 0.1252 0.3279 0.2200 0.1877

Predictive parity 0.0456 0.0591 0.0601 0.0944 0.0577 0.0639

Predictive equality 0.1190 0.2024 0.0952 0.3095 0.2024 0.1786

Treatment equality 2.0 7.5 0.3333 0.5 9.75 0.3333

ABROCA 0.0575 0.0686 0.0683 0.0231 0.0762 0.0887

Table 7. xAPI-Edu-Data: performance of predictive models

Measures DT NB MLP SVM Agarwal’s AdaFair

Accuracy 0.8333 0.8750 0.8750 0.8611 0.8681 0.8056

Balanced accuracy 0.8 0.8970 0.8545 0.8505 0.8859 0.8162

Statistical parity –0.1274 –0.2608 –0.2112 –0.2209 –0.2505 –0.2292

Equal opportunity 0.0282 0.0974 0.0654 0.0308 0.0974 0.0538

Equalized odds 0.1329 0.1954 0.1262 0.2706 0.1684 0.3207

Predictive parity 0.0752 0.0074 0.0654 0.0088 0.0122 0.0057

Predictive equality 0.1047 0.0980 0.0608 0.2399 0.0709 0.2669

Treatment equality 1.0667 –8.0 0.0 –0.2667 –2.0 –1.1667

ABROCA 0.0665 0.0216 0.0263 0.0796 0.0293 0.1065

Fig. 5. Student performance: ABROCA slice plots
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Fig. 6. xAPI-Edu-Data: ABROCA slice plots.

Fig. 7. Variation of fairness measures

4.4 Effect of Varying Grade Threshold on Fairness

Grade thresholds are often chosen as a basis for determining whether a candidate
passes or fails an exam. In the student performance dataset, 10 (out of 20) is
selected as the grade threshold [11,27]. However, the selection of a threshold can
affect the fairness of the predictive models, as shown in the IPUMS Adult dataset
[12]. Hence, we investigate the effect of grade threshold on fairness by varying
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the threshold in a range of [4, 16], corresponding to 25% to 75% of the maximum
grade (20). The results in Fig. 8 show that all fairness measures are affected by
the grade threshold. When the grade threshold is gradually increased, the predic-
tive models tend to be fairer (shown on the measures: equalized odds, predictive
equality, and ABROCA). The opposite trend is observed in the remaining mea-
sures (except the treatment equality measure). Regarding the balanced accuracy,
two models (DT and AdaFair) tend to predict more accurately. The NB model
has a decreasing accuracy after the threshold is increased.

Fig. 8. Accuracy and fairness interventions with varying grade threshold on Student
performance dataset (Decision Tree method).

5 Conclusion and Outlooks

In this work, we evaluate seven popular group fairness measures for student
performance prediction problems. We conduct experiments using four traditional
ML models and two fairness-aware ML methods on five educational datasets.
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Our experiments reflect variations and correlations of fairness measures across
datasets and predictive models. The results provide an overview picture for the
selection of fairness measure in a specific case. Besides, we investigate the effect
of varying grade thresholds on the accuracy and fairness of ML models. The
preliminary results suggest that choosing the threshold is an important factor
contributing to ensuring fairness in the output of the ML models. In the future,
we plan to extend our evaluation of fairness w.r.t. more than one protected
attribute, such as gender and race, and further explore the correlation between
groups of fairness notions.
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Abstract. The scarcity of information about benthic marine litter especially in
developing countries hampers the implementation of targeted actions to minimize
the extent of its impacts. This study developed a system using image process-
ing and deep learning methods for detecting/tracking marine macro litter that can
efficiently identify and quantify its amount in benthic environments in shallow
coastal areas. Shallow underwater litter detection poses several challenges. First
is the low quality of images. Second is the difficulty in recognizing litter brought
by their varying visual characteristics. Third is the lack of available data for train-
ing. Underwater images of litter were collected from marine litter hotspots in
coastal areas in southern Philippines. This study experimented with various object
detection algorithms. The best object detection model is then paired with various
image enhancement techniques to determine the optimal combination. Among
the combinations that were tested, YOLOv5n combined with CLAHE gave the
best performance for simple binary task (litter or not litter) with a mAP@0.5 of
0.704. Furthermore, the results showed that applying underwater image enhance-
ment techniques provides noticeable improvement for object detection models on
detecting marine litter.

Keywords: Yolov5 · Image enhancement ·Marine litter · Object detection

1 Introduction

Marine litter, especially plastics, is a threat to global marine biodiversity, food security
and food safety [7, 16].Most anthropogenicmarine litter come fromdeveloping countries
in South and Southeast Asia, however, large knowledge gaps regarding marine litter in
these regions exist that impede in solving the problem [19]. With vast coastlines and
numerous islands, countries like the Philippines, Malaysia and Indonesia would need
to develop, or adopt, methods to study marine litter that can overcome the logistical,
funding, and other challenges associated with archipelagic countries.

Developments in image processing,machine learning and artificial intelligence could
overcome some of the challenges in marine litter research [18]. In fact, The use of
machine learning on drone captured images, for example, is suggested to limit human
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error in quantifying and identifying marine litter [4]. Image-based analysis of marine
litter was shown to have a < 5% error in estimating marine litter volume on a beach
[14].

Although, there are existing studies which have used AI and image processing to
tackle the litter problem most of them are limited to land-based (including beached) and
floating litter. Research on benthicmarine litter on the other hand is relatively uncommon
with only one published literature quantifying benthic litter in Southeast Asia [20]. This
is concerning as studies show that benthic areas are potential “sinks” of marine litter
[20]. One possible explanation of the scarcity of studies on benthic marine litter is the
difficulty of collecting training data. Another plausible reason is the task of identifying
benthic litter in images or videos is extra challenging due to visibility issues.

The objectives, therefore, of this study are two-fold: 1) to collect image data that
could be used to train object detectionmodels for benthic litter detection and 2) to test and
compare different existing object detection algorithms for this task. Here the detection is
limited to only detecting litter without classifying the type of litter. Although simplistic,
this study serves as a good starting point in quantifying the amount of litter in a rapid,
replicable, and accurate manner. We then experimented on different image enhancement
techniques and paired it with the best performing object detection algorithm to build the
detection system. This research on benthic litter would contribute to addressing several
of the UN SDGs, namely, good health and well-being, clean water and sanitation,
responsible consumption and production, and life below water.

2 Related Work

In shallow water marine environments, marine litter assessments through visual census
with SCUBA diving or snorkeling are themost common approaches [26]. However, both
methods are prone to observer bias and are time constrained (e.g., depending on the air
holding capacity of SCUBA tanks). Other researchers use ROVs (Remotely Operated
Vehicles) to capture videos of underwater environments [3]. A more cost-effective alter-
native to ROVs is the use of towed camera systems that have been used to collect marine
data [22, 27]. Captured videos and photos are post-processed to detect or identify litter
contained therein. Some approaches include manual detection and classification of litter
and/or the use of advanced object detection models.

Artificial intelligence (AI) and machine learning (ML) are powerful tools for litter
research [31].Whenpairedwith remote sensing,AI andMLsignificantly increasemarine
litter study area coverage [17] and possibly increase rate and accuracy of marine litter
detection [15]. F-scores from ML models ranges from 44% to 78% [5, 8, 9, 18]. Mean-
while, a comparative study showed the reliability of automated detection in providing
litter density map vis-a-vis manual image screening [9].

Object detection models which have been used for underwater litter detection are
Mask RCNN [23], CNN [28], YOLOv2, Tiny YOLO, Faster R-CNN and SSD [6]. It was
reported that YOLOv2 strikes a good balance between accuracy and inference time.The
Yolov5 framework is a family of models ported from Darknet Yolov4 into the PyTorch
ecosystem. Latest iterations of the model utilize CSP-Darknet53 [1] for its backbone,
and a Yolov3 head [25]. Authors in [23] used Mask R-CNN for automated underwater
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litter detection where they reported a mAP@0.50 of .62. They noted several difficulties
in detecting seafloor litter. First, some litter objects belonging to the same class have no
defined geometric shapes in several categories or some litter shapes in different classes
are the same. Second is some litters have been buried or degraded. And third is the
presence of background objects or structures which may mislead the algorithm.

As the lack of standardized approach to marine litter is a main obstacle for tackling
the marine litter threat, developments in AI and ML models for marine litter detection
also provide standardizedmethodology that would allow data comparison at large spatial
scales for a better understanding of the global marine litter problem [8, 18].

3 Materials and Methods

3.1 Underwater Imagery Acquisition

Data were collected from shallow waters at various coastal sites: Bato, Sta. Cruz, Davao
del Sur; Matina Aplaya, Davao City; Samal District, Island Garden City of Samal;
Madaum, Davao del Norte; and Pujada Bay, City of Mati. Socio-economic activities and
water characteristics were considered in selecting the sites as these would indicate the
amount and types of litter found in them and the quality of the resulting images. Most of
the time the water is clear but there are also instances where the water is highly turbid.
All images were taken in the natural environment.

Data were captured using waterproof point-and-shoot action cameras (Sjcam
SJ40000) and adigital camera (FinePixXP120).Both cameramodels can takeup to16mp
resolution photos. The images were taken by pointing the cameras perpendicular to the
scene from varying distance depending on the depth (1–3m). Seven data collection dives
were performed and a total of 2,362 images were collected. These were subsequently
labelled following the Oslo Paris Conventions marine litter classification guideline [30].
Although there are 121 marine litter classes in the OSPAR guideline, a binary marine
litter guideline was explored for the collected dataset due to poor variability in most
classes.

3.2 Image Processing and Labeling

Images collected from different cameras have varying properties: action cameras have
intrinsic distortion (fisheye effect), and image resolutions can be different between cam-
eras. Hence, each image was adjusted to remove distortions. To preserve image fidelity,
images are set to their original quality during labeling. These images are subsequently
resized to a fixed 640 by 640 pixels during training. For the labelling, five individuals
were employed to label the images to increase reliability. Disagreements in the labels
are resolved using the majority method. To allow for remote and collaborative labelling
workflow, Supervise.ly1, a web-based platform for computer vision project manage-
ment, was used. Supervise.ly is free, easy to use, and integrates well with various object
detection frameworks.

1 https://supervise.ly/.

https://supervise.ly/.
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The current 2,362 manually labelled images were then randomly split into training,
validation, and test sets: 1181 (~50%) training images, 707 (~30%) validation images,
and 474 (~20%) test images. Augmenting the training set increases its amount threefold
bringing the total dataset counts to 3543 (~75%) training images, 707 (15%) validation
images, and 474 (10%) testing images; details on augmentation techniqueswill be further
discussed. During image enhancement, the splits weremaintained to reduce variability in
the small dataset. A stratified split of the dataset was used for more accurate evaluations.
All reported performance results are computed from the test set.

3.3 Object Detection Approach

Multiple object detection models as listed on Table 1 were considered for experiments
to set a baseline performance of the dataset on different architectures. For non-Yolov5
models, model and training configurations were based on the MMDetection Library [2].
Motivations for modifying training configurations include modifying batch sizes to fit
a Nvidia RTX 2070 Max-Q card, modifying epochs to ensure model convergence, and
modifying heads to accommodate for the binary classes used in the dataset; all other
configurations are set to default. The Yolov5 [24] family is a particular point of interest
since it is accessible, easy to use, and has potential extensibility for the deployment of
a real-time solution for marine litter monitoring due to its highly optimized lightweight
structure for embedded devices.

Data augmentation techniques that can be used during training include mosaic data
loading, copy pasting, random affine transformation, mixup, random HSV, and image
flipping. Training and inference strategies such as auto-learned anchor boxes, mixed pre-
cision, learning rate scheduling, and hyperparameter evolution are supported to improve
speed and performance of the model.

Table 1. Different object detection models for baseline performance testing

Model Object detection type Backbone

Yolov5n Single stage CSPNet

Yolov5m Single stage CSPNet

YoloX Single stage YOLOX-s

SSDNet Single stage VGG16

RetinaNet Single stage X-101-64x4d-FPN

Faster RCNN Two stage X-101-64x4d-FPN

Deformable DETR Two stage ResNet-50

3.4 Image Enhancement

Various underwater image enhancement methods were tested to deal with the problem
of poor image quality. In contrast to restoration methods, image enhancement methods
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do not rely on any physical model and are mainly based on pixel intensity re-distribution
whichmake them simpler to implement and faster to run. Five methods were tested. First
is the Contrast limited adaptive histogram equalization (CLAHE) which is an adaptive
contrast enhancement method based on adaptive histogram equalization (AHE) [33].
Table 2 shows the parameters of CLAHE [33]. Second is RGHS proposed by [10].
Table 2 also shows the parameters of RGHS [10]. Third is ICM which was proposed by
[13]. The parameters used in this method only rely on the stretching of RGB and HSI
channels to a maximum and minimum values and the minimum and maximum pixel
currently present in the image. Fourth is Unsupervised color correction (UCM) method
which is based on color balancing, contrast correction of the RGB model and contrast
correction of the HSI model [12]. The parameters are quite similar with ICM with few
modifications which set the minimum value of Red instead of zero for the contrast
correction to the upper side and sets upper limit to the maximum of Blue instead of 255
for the contrast correction to the lower side. Fifth is the Histogram equalization (HE)
which adjusts the contrast of an image by spreading out the most frequent pixel intensity
values [11]. This method is automatically implemented using the equalizeHist function
in OpenCV.

In evaluating the quality of an image quantitatively, methods are often divided into
full reference and non-reference. Full reference imagemetrics require a high-quality ref-
erence image. Unfortunately, dehazed and natural reference image cannot be obtained
in the case of the complexity of underwater environment unless there are generated syn-
thetic images of underwater scenes. Thus, non-reference metrics developed specifically
for underwater images were chosen, the underwater image quality measure (UIQM) and
underwater color image quality evaluation (UCIQE) metrics. UIQM was proposed by
[21] which is a linear combination of three attribute measures: underwater image color-
fulnessmeasure (UICM), underwater image sharpnessmeasure (UISM), and underwater
image contrast measure (UIConM). Each attribute measure is inspired by the properties
of human visual system and can be expressed as:

UIQM = c1 × UICM + c2 × UISM + c3 × UIConM (1)

where c1, c2, c3 represent the weights of colorfulness, sharpness, and contrast parame-
ters, respectively.UCIQE, on the other hand, is a linear combination of contrast, chroma,
and saturation in CIE-lab color space. UCIQE quantifies the non-uniform color cast,
blurring, and low contrast of an image [32], expressed as:

UCIQE = c1 × σc + c2 × conl + c3 × μs (2)

whereσc, conl, andμs represent the standard deviation of image chromaticity, contrast of
image brightness and average of image saturation, respectively, while c1, c2, c3 represent
the weights of these parameters.
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Table 2. Parameters of CLAHE and RGHS

CLAHE RGHS

Variable Value Variable Value

Clip limit 2 R 0.83

Grid size 16 G 0.95

B 0.97

Estimation distance 3

L component [0, 100]

a and b components [−128, 127]

Stretching range 0.5%

Experimental value ϕ 1.3

3.5 Combining Image Enhancement and Deep Learning

The best object detection model will then be paired with each image enhancement
technique to determine the best combination. The mean average precision at IoU = 0.5
was used to assess performance. Figure 1 depicts the entire workflow of the study.

Fig. 1. Overview of the workflow implemented on underwater litter imagery.

4 Results and Discussion

4.1 Underwater Image Enhancement

Our collected dataset was used to evaluate the performance of each image enhancement
methodwhich includes 2,362 labelled underwater images in shallowwater environments.
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The dataset includes four types of underwater images commonly observed in shallow
areas, which are also used in the literature [29]. One is relatively clear scene and three
challengingunderwater images under the greenish, yellowish, and turbid or low-visibility
scene [29] (Fig. 2(a)). We show parts of the experimental results with representatives
for each underwater type.

The best parameters for each method were determined before feeding the algorithm
to the images as shown in Tables 3 and 4. The settings for CLAHE that produced better
image quality was region size 32 with clip level 2. For RGHS, experimental value ϕ

of 1.5 produced better results. No parameters were modified for ICM, UCM, and HE
(Tables 5, 6 and 7).

Fig. 2. Comparison of underwater image enhancementmethods on collected dataset. (Color figure
online)

Figure 2 shows the results of five classic underwater image enhancement methods
applied to the collected dataset. Performances were assessed using qualitative and quan-
titative analysis on the enhanced underwater images. Images enhanced by UCMmethod
present an immense amount of red tone and increased the noises of the original image
as shown in Fig. 2(e). HE method (Fig. 2(f)) also produced over-saturated images and
introduced unwanted noises. It can be observed that RGHS, CLAHE, and ICM did not
present over enhanced results as shown in Fig. 2(b–d). However, CLAHE was not very
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effective in removing the greenish or bluish and yellowish effect of underwater images
as shown in Fig. 2(b). Both RGHS and ICM were successful in removing effects of
different underwater types, but RGHS method show a better dehazing effect compared
to ICM (Fig. 2(c)).

Table 3. Parameter setting for CLAHE.

Region size Clip level Image quality assessment metrics

UIQM UCIQE

8 2 2.5548 0.4382

16 2 3.0421 0.6086

32 2 3.0644 0.6131

8 4 2.7589 0.4876

16 4 3.0078 0.5720

32 4 3.0247 0.5231

Table 4. Parameter setting for RGHS.

Experimental value (ϕ) Image quality assessment metrics

UIQM UCIQE

1.1 4.0152 0.6522

1.3 4.1171 0.6712

1.5 4.1395 0.6828

1.7 4.0629 0.5316

1.8 4.1056 0.5877

1.10 4.0223 0.6219

4.2 Comparison of Objection Detection Models on Binary Class

To establish a baseline performance of different object detection models on the binary
dataset we trained and evaluated seven models. The models were trained using their
default configurations as provided in their library. After training, the models were evalu-
ated using the testing set. The results show thatYOLOX-s achieved the highestmAP@0.5
while Yolov5m had the highestmAP@0.5:0.95. The results show that the dataset is train-
able and that newermodels tend to achieve higher scores. Furthermore, it can be observed
that one stage detectors (Yolov5m,YOLOX-s, SSDNet, andRetinaNet) performed better
compared to two stage detectors (Faster R-CNN, and Deformable DETR).
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Table 5. Quantitative analysis of enhanced results based on different methods.

Method Image quality assessment metrics

UIQM UCIQE

Original (no enhancement) 0.9851 0.1865

CLAHE 3.0644 0.6131

RGHS 4.1395 0.6828

ICM 3.3228 0.6567

UCM 2.1782 0.5291

HE 2.0333 0.4892

Table 6. Performance metrics of different models on the test set

Model mAP@0.5 mAP@0.5:0.95

Yolov5n 0.667 0.322

Yolov5m 0.701 0.359

YOLOX-s 0.715 0.323

SSDNet 0.688 0.284

RetinaNet 0.706 0.311

Faster RCNN 0.673 0.286

Deformable DETR 0.658 0.335

4.3 Combining Image Enhancement and Object Detection

We further trained theYOLOv5n by combining it with image enhancement techniques to
determine if performance can be improved.We selectedYOLOv5n since it is lightweight
(and hence fast), and the performance is also at par with other algorithms. This is also
driven by the fact that we plan to integrate the model in a device that can be deployed
for real-time litter monitoring. Figure 3 shows each model’s true labels and predicted
labels for each image enhancement technique.

There is difficulty in objectively differentiating the performance benefits of the can-
didate image enhancement technique. While there are improvements observed by sepa-
rately applying each technique (see Sect. 4.1), these do not necessarily translate to better
detection accuracy when used in conjunction with Yolov5n. The highest performance is
achieved when CLAHE is applied to the dataset.

Additionally, noting the smoothed training curves of each method as seen in Fig. 4
demonstrating an increase in performance during training in selectmethods,most notice-
ably CLAHE.While there are only minor improvements in the results derived from each
image enhancement technique, model training is improved; the minor improvement in
the test result may simply be attributed to the extreme variability of the data due to the
nature of the problem, made worse by the lack of ample data.
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Base
True La-

Base
Predic-

GC
Predic-

HE
Predic-

RGHS
Predic-

CLAHE
Predic-

Fig. 3. Image enhanced sample images and their predictions. (From left to right) Base imageswith
True Labels, Base Images with Predicted Labels, GC with Predicted Labels, HE with Predicted
Labels, RGHS with Predicted Labels, CLAHE with Predicted Labels.

Table 7. Performance metrics of Yolov5n with different classes and image enhancement
techniques on the test set.

Image enhancement method used mAP
@0.5

mAP @0.5:0.95

None 0.667 0.322

HE 0.677 0.353

CLAHE 0.704 0.379

GC 0.689 0.347

RGHS 0.658 0.361
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Fig. 4. Validation metrics/mAP curve of Yolo5n on different image enhanced binary datasets.

5 Conclusion and Future Work

In this study we confronted the challenge of automatically detecting benthic litter found
in shallow water environments from images using deep learning techniques. Whereas
many studies demonstrated the feasibility of this approach, this is still an exceptionally
difficult problem as highlighted in [23].

Apart from the visual aspects, it is also hard to find underwater images of litter which
can be used for training.Wehave addressed this by collecting underwater benthic images.
This has resulted to improve performance. The visual aspect was dealt with using image
enhancement techniques, although it did not significantly improved detection accuracy,
it contributed to stability during training.

For the practical implications, to the best of our knowledge, this is the only study in
the Philippines that used deep learning techniques for this application. The Philippines
has consistently been ranked at the top of main contributors of marine litter. Hence, rapid
and cheap ways to quantify, assess the distribution, and determine marine litter types
would definitely help address the marine litter problem in the country. Moreover, marine
litter in the country is markedly different from the marine litter found in other countries
hence, naively using models developed from other countries would not be as effective.

The models developed here will be integrated to a device that can be easily deployed
in towed camera systems or UAV that would allow on-board object detection which will
make the quantification and assessment of marine litter faster. This plan also influenced
our choice of the object detection algorithms as we want to make a trade-off between
precision and speed.

Finally, we plan to further enhance the object detection performance by collect-
ing more data and experimenting on different image processing techniques and object
detection models as well as expanding the classes of litter we will detect.
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Abstract. The growing use of data-driven decision systems based on
Artificial Intelligence (AI) by governments, companies and social organiza-
tions has given more attention to the challenges they pose to society. Over
the last few years, news about discrimination appeared on social media,
and privacy, among others, highlighted their vulnerabilities. Despite all the
research around these issues, the definition of concepts inherent to the risks
and/or vulnerabilities of data-driven decision systems is not consensual.
Categorizing the dangers and vulnerabilities of data-driven decision sys-
tems will facilitate ethics by design, ethics in design and ethics for designers
to contribute to responsible AI. The main goal of this work is to understand
which types of AI risks/ vulnerabilities are Ethical and/or Technological
and the differences between human vs machine classification. We analyze
two types of problems: (i) the risks/ vulnerabilities classification task by
humans; and (ii) the risks/vulnerabilities classification task by machines.
To carry out the analysis, we applied a survey to perform human classifica-
tion and the BERT algorithm in machine classification. The results show
that even with different levels of detail, the classification of vulnerabilities
is in agreement in most cases.

Keywords: Ethics · Technology · Human classification · Machine
classification

1 Introduction

Over the last few years, news on social media about discrimination, privacy
issues, and especially accidents with autonomous cars highlighted the vulnera-
bilities of data-driven decision systems. One step for defining strategies in data-
driven decision systems based on Artificial Intelligence (AI) is identifying and
characterizing the risks associated with these systems. Publications related to AI
systems’ risks, vulnerability and challenges appear in Ethics, Law or Computer
Science journals. However, when we investigate these concerns/vulnerabilities,
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there is not just one definition for each concept. Sometimes different areas men-
tion different concepts as the same, for example, in Bias and Fairness concepts.
On the other hand, Privacy issues arise in AI publications and publications on
ethical issues. Which in itself makes it challenging to characterize each of these
vulnerabilities.

One branch of research that has grown in recent years is the field that studies
the Ethics of AI, with several works addressing the challenges of AI for a Respon-
sible Artificial Intelligence. Ethics in Design, Ethics by Design and Ethics for
Design constitute the three pillars of the care to be taken in the Design of Eth-
ical AI systems. Ethics in Design focuses on AI systems’ regulation, and ethical
implications as their adoption in society increase [2]. Integrating ethical rea-
soning capabilities into the algorithms is considered in Ethics by Design [2]. In
[2] Ethics for Design is characterized by integrity, and transversal to the entire
ecosystem, from research integrity to how manufacturers design, construct, use
and manage those AI systems. Awareness of the three design levels is necessary
to ensure trust in the users and society, in general, in the technology [3].

For data-driven decision systems to have some level of trust on the part
of citizens, they must involve technical and non-technical considerations [11].
In this sense, and considering the published journals which mention AI risks,
vulnerabilities and challenges, we assume Technological risks as those that occur
through the AI process and Ethical risks as those that arise in the outcome.
The first focus on the technical issue and the second on the non-technical issue.
For example, the risks that occur in the outcome are relevant for public policy
decision-makers to analyse the effects on society [12]. Classifying the type of
risks/vulnerabilities/challenges, essentially ethical or technological, helps clarify
their nature. In addition, it facilitates their allocation and research regarding
the kind of design for data-driven systems based on AI.

We can find other works related to human vs machine text classification in
the literature (Sect. 2). However, as far as we know, this is the first work that uses
a survey for human classification in human vs machine comparative approaches
and focuses on the classification of theoretical concepts.

This paper aims to contribute to classifying risks/vulnerabilities in their
nature. In addition, we intend to understand whether the classification of risks
or vulnerabilities by humans and machines is similar. In order to do that, we
used a survey and applied a text mining approach (BERT algorithm) to answer:

– RQ1: What are the ethical risks?
– RQ2: What are the technological risks?
– RQ3: What are the differences between risk classification by humans and

machines?

We conclude that with different levels of detail, the classification of vul-
nerabilities is in agreement in most cases. This agreement means that humans
classified a large part of the risks/vulnerabilities presented with the exact nature
of concern that the machine classified the research papers (where the concepts
were).
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Overall this document is structured as follows: in Sect. 2 we present the
related work regarding human vs machine classification; in Sect. 3 we present the
proposed methodology; in Sect. 4 we present the results and discussion. Finally,
in Sect. 5, we draw the conclusions and future work.

2 Human Vs Machine Classification

In this section, we present existing approaches in the literature for text classi-
fication in human vs machine comparison. One of these studies focuses on the
application of the legal text. In [8], the task of classifying legal text based on
machine learning is opposed to the same task performed by legal experts from
different legal domains knowledge. The machine uses SVM to solve the multi-
labelling task classification problem. The results showed that the precision of the
machine corresponds to the accuracy of legal experts with extensive experience.
However, the machine need knowledge and attention to the domain.

Another example in the literature is the work carried out by [4], the authors
describe an SVM-based topic classification task applied to scientific abstracts.
Results compared advantageously with those obtained by similarly tasked human
volunteers, based on accuracy, recall and F1 scores.

On the other hand, [6] studied the immediate effect on the model by intro-
ducing perturbations in the text, i.e., with the input of words in the text. The
authors studied how humans generated adversarial examples compared to attack
algorithms such as TextFooler, Genetic, BAE, and SememePSO. For this case,
although the performance of humans does not outperform the machine, the
authors concluded that they achieve similar performance more efficiently.

Nonetheless, this comparative approach between human vs machine is also
used for word deletion evaluation measures and prediction confidence of classi-
fiers. For example, [7] contributes to this aspect by comparing these approaches
in local explanations for text classification. First, logistic regression and neural
networks were the models used to classify the text. Then, based on the explana-
tions, humans were asked to predict the output of the classifiers.

In [10] the authors studied the attention mechanisms for human vs machine
text classification. The authors use deep learning in machine classification and
human attention maps. They obtained relationships at the level of overlap in
word selection, lexical categories and context-dependency of sentiment polarity.

3 Case Study

For this work, we have two key objectives: (i) classify risks extracted from lit-
erature as Ethical, Technological or Both; and (ii) to understand whether the
classification of risks by humans and machines is similar.

In this work we use Literature Review, Survey and Text Mining in order
to analyse classification of risks in different perspectives, humans vs machine
(Fig. 1). The following subsections present the methods involved and how we
proceed.
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Fig. 1. Flowchart of research

3.1 Risks Extraction from Literature Review

The research was carried out on the Web of Science, a multidisciplinary data
source, covering the period between January 1st, 1999 and May 19th, 2020.
The papers belongs to five research areas, of Web of Science classification until
2019 [14]. In the sense of researching on Ethical risks and Technological risks
of algorithmic systems based on Artificial Intelligence, namely in Data-Driven
Decision Models, we used the following words for the search: ((“ethics” OR
“ethical” OR “technologic” OR “technological”) AND (“risk” OR “risks”) AND
(“artificial intelligence” OR “AI” OR “machine learning” OR “data-driven”)).
The search gave rise to 412 published papers.

Fig. 2. Flowchart of literature review

Three experts reviewed all 412 papers. The three experts are from different
fields and backgrounds, although from fields related to the topic. The experts
classify the 412 papers as “Must be considered”, “Can be considered”, and “Do
not consider”. The three experts agree on excluding 305 papers according to
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the title, the abstract, the field, and the goal. From this selection, from which
305 papers have been excluded once they are not relevant for our research,
107 papers remained under analysis. From the 107 papers, three were excluded
due to idiom and accessibility. After this process, 104 papers remained to be
used to extract risks/ vulnerabilities from data-driven systems based on AI.
The described process led to considering 104 papers as presented in Fig. 2. This
means that in the 104 papers, at least one of the experts classified the paper
as “Must be considered”. Only 21 of the 104 papers were classified as “Must
be considered” by the three experts and are available. From these papers, we
extract the 24 risks/vulnerabilities present in Annex I, Table 2.

3.2 Humans Approach

This subsection presents the approach adopted for the human classification of
risks (Fig. 3). In order to do that, we present our survey construction, data
collection, and the methods of analysis involved.

Survey Construction. The survey consists of two groups of questions. The
first group characterizes the respondent positioning in the Artificial Intelligence
(AI) area and includes five questions. The second group of questions seeks to
assess opinion regarding the current state of concerns about data-driven systems
based on AI and includes eight questions. The questionnaire contains 13 ques-
tions, 1 of which is an open answer, 1 of multiple-choice, 5 of single-choice, 1 of
Yes/No, four with five Likert scales, and one open optional question. We compre-
hensively explain the concern/risk/vulnerability for both questions (Annex II,
Table 3), including the participant’s perception. We mean in the classification of
concerns question and their severity. The survey’s last question is optional and
allows the respondents to comment thoughts about the topic under analysis.
In one of the survey questions, the participants addressed the classification of
risks/ vulnerabilities identified in the literature. The question is a single-choice
question, and the answer option is Ethical, Technological, Both, or None. The
survey also mentioned what we assumed as ethical risks and technological risks.
The survey was written in English. In order to ensure the feasibility of the sur-
vey and that it would have a proper understanding, it was pre-tested with two
researchers with experience in AI, both Portuguese native speakers.

Fig. 3. Flowchart of survey research
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Data Collection. The data was collected from the 23rd of March to the 29th
of June. We used LimeSurvey to develop the survey, collect answers and later
download the results in Microsoft Office Excel format. The sample was of 20
answers.

3.3 Machine Approach

This subsection presents the approach adopted for the machine classification of
risks. We present the data set and the machine’s method in the classification
task.

Data Set. The data set consists of papers considered relevant by the three
experts. We extracted risks/vulnerabilities of data-driven systems based on AI
from those papers. Twenty-one papers compose the list of documents selected
for the machine classification. Among the 21 papers, two are from 2017, five
from 2018, eleven from 2019 and three from 2020. The publication locations
for these papers are varied and are primarily related to Engineering, Medicine,
Philosophy, Social Sciences, Ethics, Information Technologies, Law, and Policy.

Experimental Setup. With the growing explosion of online information, the
difficulty of processing text manually became evident. Therefore, text classifica-
tion is one of the most relevant tasks. Thus, several methods have emerged in
recent decades that facilitate text classification. According [5], there are generic
models used in text classification such as KNN, SVM and Random Forest ; more
recent algorithms with good performance, such as XGBoost and LightGBM, and
deep learning as TextCNN. Finally, the BERT algorithm is also used for text
classification, and it is considered a state-of-the-art and strong baseline, although
it is not specifically for this purpose [5].

Given the good results of BERT in text classification problems, we decided
to use this algorithm to classify research papers (which contain the concepts
extracted for the survey). We use PyTorch to perform machine classification. In
this case, the SoftMax function to predict a Multinomial probability distribution
which acts as the activation function [9], is used. Furthermore, Luce’s axiom of
choice allows discovering the probability distribution of the output classes [9].
The loss function used to optimize the BERT model is the cross entropy loss. The
pipeline used to classify the documents comprises two steps: i) pre-processing,
i.e., extracting the text from the PDFs, removing the punctuation, removing
stopwords and applying lemmatization; and ii) tuning a BERT-based case clas-
sifier with 32 documents split into equal parts for ethical and technological, the
training phase consists in 50 epochs with a learning rate of 1e−6. The evaluation
phase uses 20 documents to be classified.

3.4 Methods Used in Human and Machine Analysis

In Data Analysis, we used: i) Multiple Factor Analysis, ii) Descriptive Anal-
ysis and iii) Clustering. We use Descriptive Data Analysis in the variables to
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characterize the participants and characterize the class classification of risks/
vulnerabilities by humans and machines. We use Multiple Factor Analysis, an
appropriate method when we intend to analyze different groups. Multiple Factor
Analysis (MFA) is a multivariate method that allows the simultaneous analysis
of data from several sources. The purpose of the MFA is to assess the individuals
described by the groups, their contributions and variability [1]. In our case, we
intend to evaluate the risks/vulnerabilities through human and machine classi-
fication. After using MFA, we also used Clustering to understand the proximity
of risks/ vulnerabilities in each classification group. We use the R software for
these analyses, namely the package Factoshiny [13]. In our case, Clustering is
performed in the sequence of results from MFA. Factoshiny [13] allows us to
select between Euclidean or Manhattan distance. Moreover, we have low dimen-
sionality data, and all data is between 0 and 1, so the results will be identical
for comparing risks/vulnerabilities with these distances. We choose Euclidean
distance.

4 Results and Discussion

In this section, we discuss the obtained results for the classification problem,
i.e., comparing the human and machine classification perspectives.

4.1 Classification Task by Humans

Among the survey participants, 12 are men, and 8 are women. None of the par-
ticipants works in the government. The academy is the predominant category,
with 16 participants and 4 from the industry. In the educational level variable,
the Master predominates, with 8 participants, followed by the PhD with 7 partic-
ipants and the Bachelor with 5 participants. The predominant background area
is Informatics Engineering with 6 participants, as well as the category “Others”
with an equal number of participants, four from Computer Science, three from
Electronic Engineering and one from Mathematics.

Question 10 of our survey asks participants to assign a class to the risks/
vulnerabilities according to the type of concern they associate. The survey
presents twenty-four risks/vulnerabilities of the systems identified in the litera-
ture (Annex 2). The possible classes are Ethical, Technological, Both, or None.
However, the question is a single-choice question, i.e., the participants can select
one of the possible classes for each risk/vulnerability. No participant classified
the risks/vulnerabilities presented as None. So this means that participants con-
sider all risks for classification in the survey as Ethical and/or Technological.

Figure 4 presents the probability of survey answers; this is human classifica-
tion, considering the risks/vulnerabilities concepts under analysis. As we can see
from Fig. 4, the concepts with a higher probability of responses for the classifica-
tion only in Ethical were: Moral, Power, Diluting Rights, and Extinction. Next
came the Transparency, Systemic, Liability and Responsibility risks. Finally,
regarding the classification as just Technological risks, those with the highest
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Fig. 4. Risk concepts classification by Humans.

probability were: Accuracy, Data Quality, Reliability, Completeness and Explain-
ability. However, participants consider that there are Ethical and Technological
risks. DataProtection/Privacy, Bias, Opacity and Accountability are the cases
with the highest probability.

4.2 Classification Task by Machine

The concepts of risks/vulnerabilities presented to the participants in the survey
were extracted from papers (explained in the Sect. 3). The machine now classifies
these same papers as Ethical or Technological. Some papers under review address
more than one AI risk/vulnerability. We used the BERT algorithm (Sect. 3.3)
for this. The evaluation phase uses 20 documents to be classified. However, two
papers were not considered in the table, as they included the risk/vulnerabilities
present in other papers. Table 1 presents the probability that each document
belongs to a specific class.

The Table 1 also includes the risks/vulnerabilities extracted from those
papers. As seen from Table 1, there are papers with a high probability of being
classified in a specific class. An example is papers 72, 75, 87 and 28, which have
a probability greater than 0.8 of being classified as Ethical class. The same hap-
pens with some papers for the Technological class, for example, papers 53, 54,
70 and 81. In some cases, the probability of being classified between Ethical and
Technological is very close, for example, in paper 12.

4.3 Human Vs Machine

We used the Factoshiny, a package from R, to perform Multiple Factor Analysis
and Clustering (Sect. 3.4).
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Table 1. Probability of BERT classification for papers as Ethical or Technological.

PaperID Ethical Technological Risk/Vulnerability

12 0.4998 0.5002 Protection

14 0.3886 0.6114 Accuracy

26 0.6182 0.3818 Data protection

28 0.9154 0.0846 Moral power

40 0.4891 0.5109 Systemic

43 0.6106 0.3894 Privacy

53 0.0631 0.9369 Safety extintion

54 0.1500 0.8500 Bias

55 0.2972 0.7028 Completeness interpretability

64 0.5457 0.4543 Data quality

70 0.0737 0.9263 Manipulation security

72 0.8452 0.1548 Fairness

75 0.8584 0.1416 Diluting rights

76 0.2348 0.7652 Explainability capacity

81 0.0596 0.9404 Transparency

87 0.9430 0.0570 Reliability

97 0.6803 0.3197 Accountability

98 0.6272 0.3728 Responsability liability

As seen from Fig. 5, the distribution of machine and human classification
seems to be more different in classifying technological concepts and technological
papers. However, in the case of classifying ethical concepts and papers as ethical,
the median of both cases is very close.

Let us assume the highest probability as the classification in a specific class,
with all the conditions already mentioned throughout the work. In that case,
the classifications of humans and machines do not agree on ten types of risks/
vulnerabilities (Annex IV). This occurs for the risks: Security (humans (H) =
Ethical; machine (M) = Technological), Liability (H = Ethical; M = Technolog-
ical), Data Quality (H = Technological; M = Ethical), Systemic (H = Ethical;
M = Technological); Safety (H = Ethical; M =Technological), Reliability (H
= Technological; M = Ethical), Fairness (H = Ethical; M = Technological),
Manipulation (H = Ethical; M = Technological), Transparency (H = Ethical;
M = Technological) and Extinction (H = Ethical; M = Technological). In the
case of humans, the classification of vulnerability concepts is carried out at a
more abstract level (they only have the definition of the vulnerability to perform
the classification). In contrast, in the case of the machine, it is carried out at a
more contextual level (they have the entire document, including the definition
of the concept, to carry out the classification). Despite this, even with different
levels of detail, the perception of vulnerabilities is in agreement in most cases.
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Fig. 5. Distribution of the Machine(M) and Humans(H) classifications.

Therefore, when humans classify with high values for the class Both, in general,
is when there is no consensus (Table 6).

The group constituted by the human classification has the most significant
contribution on axis 3, while the machine classification has the most signifi-
cant contribution on axis 1 (Fig. 6 and Annex III, Table 5). In this case, it is
necessary to retain three axes so that the explained inertia reaches 80 % (Pear-
son’s criteria). In Annex III, Table 4, the risk contribution and humans/machine
contributions (relative and absolute) can be observed. The risks that contribute
most to the first axis are 1 (Bias), 3 (Completeness), 5 (Accuracy) and 19 (Opac-
ity), as opposed to risks 9 (Responsibility), 11 (Data Protection/ Privacy) and 20
(Diluting Rights). In the second axis, the most significant contributions are from
risks 18 (Fairness), 21 (Manipulation), 22 (Transparency) and 23 (Extinction),
as opposed to risks 3 (Completeness), 5 (Accuracy), 12 (Data Quality) and 17
(Reliability). However, risks 8 (Semantic) and 10 (Liability) are not well repre-
sented on any axis. On axis 3, only risks 2 (Explainability), 11 (Data Protection/
Privacy), and 24 (Accountability) are well represented, with Explainability as
opposed to the other two risks. However, the best represented on the first axis
are Moral, Diluting Rights and Power. On the second axis, Reliability, Extinc-
tion, Transparency and Fairness are better represented. Finally, on the third
axis, the best represented are DataProtection/ Privacy.

After using MFA, we also used Clustering to understand the proximity of
risks/ vulnerabilities in each classification group. The inertia explained by the
partition suggests three clusters. The same was also suggested by the dendro-
gram. Thus, we choose three clusters.

In Fig. 7 we can see the three clusters of risks/ vulnerabilities created:

– Cluster 1: Bias, Interpretability, Protection, Explainability, Semantic, Opac-
ity, Completeness, Accuracy, Data Quality and Reliability ;

– Cluster 2: Extinction, Transparency, Fairness, Manipulation, Safety and
Security ;
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Fig. 6. Correlation circle

Fig. 7. Cluster groups in Factor Map

– Cluster 3: Moral, Power, Diluting Rights, Responsibility, Systemic, Liability,
Accountability and Data Protection.

Cluster one comprises six of the ten risks/ vulnerabilities in which human
and machines did not have a consensus. Humans classified the six vulnerabilities
as ethical and the machine as technological. Cluster two consists of eight risk
concepts in which humans and machines agree in their classification, a classifica-
tion of a technological nature. The exceptions in this cluster are the DataQuality
and Reliability vulnerabilities, which humans consider technological and ethical



Ethical and Technological AI Risks Classification 161

the machine. Although DataQuality and Reliability do not have consensus in
the classifications, there is proximity to the technological group. In turn, cluster
three includes risk concepts essentially classified as ethical. This is the case for
six risks, which humans and machines rated as ethical. However, in Systemic and
Liability, humans classify as ethical and the machine as technological. Systemic
and Liability are considered the ethical group.

5 Conclusion

In this work, we aim to contribute to classifying risks/vulnerabilities in their
nature. In addition, we intend to understand how different the classification
of risks/vulnerabilities by humans and machines is. For that, we use a Survey
to collect the classification of humans in terms of risk/vulnerabilities concepts.
These risks and/or vulnerabilities were extracted through a literature review.
For machine classification, we use the BERT algorithm to classify the papers
from which the risks/vulnerabilities were extracted.

For the analysis of the human vs machine results, we used i) Multiple Fac-
tor Analysis, ii) Descriptive Analysis and iii) Clustering. In the first case, the
analysis groups include the classifications performed in both cases as variables,
and the individuals correspond to the risks/vulnerabilities. In humans’ case,
the group includes Ethical, Technological and Both. In the machine case, the
group is constituted by Ethical and Technological. Finally, we apply Clustering
to understand which types of risks are closest to each other, according to the
classifications of humans and machines.

It is possible to conclude that some risk concepts have a higher contribu-
tion to the map and are better represented than others in their classification.
Responsibility, Moral, Diluting Rights and Power are best represented on the
first axis. On the second axis, Reliability, Extinction, Transparency and Fair-
ness are better represented. Finally, on the third axis, the best represented are
DataProtection/ Privacy. It is also possible to conclude that even with differ-
ent levels of detail for the classification, the classification of vulnerabilities is in
agreement in most cases. Therefore, when humans are classified with high values
for the class Both, in general, is when there is no consensus. Risk concepts con-
sidered technological by humans and machines through the papers correspond
to risks: Bias, Interpretability, Protection, Explainability, Semantic, Opacity,
Completeness and Accuracy. Although DataQuality and Reliability do not have
consensus in the classifications, there is proximity to the technological group.
Similarly, regarding the classification as ethical, we have Moral, Power, Diluting
Rights, Responsibility, Accountability and Data Protection. Systemic and Liabil-
ity are close to the ethical group.

In future work, we intend to use an algorithm for text classification to classify
a paper as not belonging to the classes identified in training. This way, a possi-
ble new class by the machine could bring value to the comparison with human
classification. So, it would be possible to compare both approaches in an equal
number of classes (Ethical, Technological and Both). In addition, we intend to
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extend the search to other databases and perform a machine model sensitivity
to each concept’s description. From this analysis, it would be possible to per-
ceive the relevance of the difference in size and syntax between the descriptions
accessed by humans and machines for classification.
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Annex

Annex I

Table 2. Main concerns/risks identified.

Accountability Data Protection/Privacy Extintion Manipulation Protection Security

Accuracy Data Quality Fairness Moral Reliability Semantic

Bias Diluting Rights Interpretability Opacity Responsability Systemic

Completeness Explainability Liability Power Safety Transparency

Annex II
See Tables 3, 4, 5 and 6

Table 3. Description of risk/vulnerability concepts

Concept Description

Bias A systematic error, a tendency to learn consistently wrongly

Explainability Any action or procedure performed by a model to clarify or detail its
internal functions

Completeness Describe the operation of a system accurately

Interpretability Describe the internals of a system in a way that is understandable to
humans

Accuracy The assessment of how often a system performs the correct prediction

Security Implications of the weaponization of AI for defence (the embeddedness
of AI-based capabilities across the land, air, naval and space domains
may affect combined arms operations)

Protection “Gaps” that arise across the development process where normal
conditions for a complete specification of intended functionality and
moral responsibility are not present

(continued)
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Table 3. (continued)

Concept Description

Semantic Difference between the implicit intentions on the system’s
functionality and the explicit, concrete specification used to
build the system

Responsability The difference between a human actor being involved in the
causation of an outcome and having the sort of robust control
that establishes moral accountability for the outcome

Liability When it causes harm to others, the losses caused by the harm
will be sustained by the injured victims themselves and not by
the manufacturers, operators or users of the system, as
appropriate

Data Protection/Privacy Vulnerable channel by which personal information may be
accessed. The user may want their data to be kept private

Data Quality Data quality measures how well-suited a data set is to serve its
specific purpose

Moral Less moral responsibility humans will feel regarding their
life-or-death decisions with the increase of machines’ autonomy

Power The political influence and competitive advantage obtained by
having technology

Systemic Ethical aspects of people’s attitudes to AI and other problems
associated with AI

Safety Set of actions and resources used to protect something or
someone

Reliability Reliability is the probability that the system performs
satisfactorily for a given period under stated conditions

Fairness Impartial and just treatment without favouritism or
discrimination

Opacity Stems from the mismatch between mathematical optimization
in a high-dimensionality characteristic of machine learning and
the demands of human-scale reasoning and styles of semantic
interpretation

Diluting rights A possible consequence of self-interest in AI generation of
ethical guidelines

Manipulation The predictability of behaviour protocol in AI, particularly in
some applications, can act as an incentive to manipulate these
systems

Transparency The quality or state of being transparent

Extintion Risk to the existence of humanity

Accountability The ability to determine whether a decision was made by
procedural and substantive standards and to hold someone
responsible if those standards are not mine.
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Annex III

Table 4. Risks/Vulnerabilities contributions using MFA

Individuals Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2

1 1.244 5.776 0.650 0.352 0.551 0.052 0.842 5.025 0.298

2 0.651 1.581 0.282 −0.499 1.106 0.166 −0.906 5.825 0.547

3 1.120 4.681 0.521 −1.067 5.048 0.473 −0.120 0.102 0.006

4 0.485 0.878 0.944 −0.110 0.054 0.049 −0.041 0.012 0.007

5 1.686 10.614 0.521 −1.038 4.780 0.198 −1.237 10.857 0.281

6 0.890 2.961 0.435 0.980 4.262 0.527 0.261 0.484 0.037

7 0.215 0.172 0.058 −0.738 2.414 0.684 0.453 1.456 0.258

8 0.670 1.677 0.405 −0.576 1.471 0.299 0.574 2.334 0.297

9 −1.046 4.087 0.816 0.217 0.210 0.035 0.447 1.415 0.149

10 −0.578 1.247 0.409 0.581 1.495 0.412 −0.382 1.036 0.179

11 −1.036 4.010 0.156 −0.440 0.860 0.028 2.372 39.887 0.816

12 0.239 0.213 0.016 −1.773 13.937 0.877 −0.618 2.711 0.107

13 −1.813 12.268 0.779 0.467 0.969 0.052 −0.846 5.077 0.170

14 −1.839 12.627 0.713 0.326 0.472 0.022 −1.121 8.902 0.265

15 −0.877 2.872 0.691 0.248 0.273 0.055 −0.532 2.005 0.254

16 0.893 2.977 0.519 0.859 3.274 0.481 −0.026 0.005 0.000

17 −0.840 2.635 0.099 −2.529 28.377 0.899 −0.125 0.111 0.002

18 0.403 0.606 0.122 1.076 5.137 0.869 0.113 0.091 0.010

19 1.241 5.751 0.747 −0.333 0.492 0.054 0.641 2.917 0.199

20 −2.134 17.004 0.998 −0.073 0.024 0.001 −0.042 0.013 0.000

21 0.584 1.273 0.217 1.080 5.176 0.742 −0.256 0.464 0.042

22 0.522 1.016 0.116 1.440 9.193 0.884 0.017 0.002 0.000

23 0.205 0.158 0.016 1.533 10.424 0.891 −0.496 1.747 0.093

24 −0.884 2.917 0.424 0.016 0.001 0.000 1.030 7.521 0.576

Table 5. Risks/Vulnerabilities contributions using MFA

Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2

HEthical −0.680 22.731 0.463 0.695 28.192 0.483 −0.231 4.955 0.053

HTechn 0.441 9.526 0.194 −0.841 41.197 0.706 −0.315 9.244 0.099

HBoth 0.427 8.945 0.182 0.170 1.691 0.029 0.888 73.519 0.789

MEthical −0.810 29.399 0.656 −0.521 14.460 0.272 0.269 6.141 0.072

MTechn 0.810 29.399 0.656 0.521 14.460 0.272 −0.269 6.141 0.072
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Annex IV

Table 6. Human vs Machine classifications

Concept MEthical MTechn HBoth HEthical HTechn

Bias 0.15 0.85 0.65 0.15 0.2

Explainability 0.2348 0.7652 0.3 0.2 0.45

Completeness 0.2972 0.7028 0.45 0 0.55

Interpretability 0.2972 0.7028 0.45 0.25 0.3

Accuracy 0.0596 0.9404 0.3 0 0.7

Security 0.0737 0.9263 0.55 0.35 0.1

Protection 0.4998 0.5002 0.5 0.15 0.35

Semantic 0.3886 0.6114 0.55 0.1 0.35

Responsability 0.6272 0.3728 0.45 0.5 0.05

Liability 0.3886 0.6114 0.35 0.55 0.1

DataProtectionPrivacy 0.9154 0.0846 0.75 0.25 0

DataQuality 0.5457 0.4543 0.3 0.05 0.65

Moral 0.6272 0.3728 0.2 0.75 0.05

Power 0.6272 0.3728 0.15 0.75 0.1

Systemic 0.4891 0.5109 0.3 0.55 0.15

Safety 0.0631 0.9369 0.5 0.35 0.15

Reliability 0.943 0.057 0.3 0.05 0.65

Fairness 0.15 0.85 0.5 0.45 0.05

Opacity 0.2348 0.7652 0.6 0.05 0.35

DilutingRights 0.8584 0.1416 0.3 0.65 0.05

Manipulation 0.0737 0.9263 0.45 0.45 0.1

Transparency 0.0596 0.9404 0.5 0.5 0

Extintion 0.0631 0.9369 0.4 0.6 0

Accountability 0.6803 0.3197 0.55 0.4 0.05
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Abstract. The primary goal of a strong democracy should be to most
accurately represent its electorate, and the way they are divided into
electoral districts can drastically affect this. As a result, many methods
have been proposed to algorithmically generate fairer boundaries, the
majority of which focus on eliminating bias through qualitative mea-
sures, however, these often fail to produce truly fair results. This paper,
therefore, aims to demonstrate how fairness can and should become a
higher priority within our electoral systems through the development,
implementation and application of a new reinforcement learning-based
method for algorithmic redistricting that directly optimises for fairness.
Specifically, the model has been applied to the parliamentary system
of the UK, filling a significant gap within the literature, meaning the
paper also outlines a new metric for measuring fairness in parliamentary
systems that directly rewards proportionality, the seats-votes difference.
The algorithm has then been evaluated on the current parliamentary
constituency boundaries in the UK and was ultimately found to fulfil all
initial goals as the algorithm was able to improve the map’s fairness in
all experiments performed. The paper subsequently concludes with some
of the limitations of the model and the seats-votes difference and ways
the redistricting algorithm could be further expanded in the future.

Keywords: Algorithmic redistricting · Reinforcement learning ·
Electoral fairness

1 Introduction

The way that a country decides to separate itself into electoral districts or con-
stituencies can create meaningful impacts on the way its people are represented in
government [1]. As a result, the process of drawing or updating these boundaries,
called electoral redistricting, is often a long, laborious and sometimes controver-
sial one involving many iterative stages of planning and public consultations [2].
Mostly, this is due to the many factors that have to be considered, as not only
do boundaries have to follow the rules and constraints defined by law, but they
also must be an accurate reflection of the country’s electorate and cannot be
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manipulated to show bias towards any political party or demographic. Despite
this, there are still many examples of “gerrymandered,” or biased, boundaries in
recent years, especially in the US where many governing parties draw electoral
boundaries [3]. Even in the UK, where independent commissions decide bound-
aries, one review of Westminster parliamentary constituencies was abandoned
after attempts in 2013 and 2018 [4] due to criticisms including a bias towards
the Conservative party and reduction of Scotland and Wales’ influence [5].

Therefore, many methods have been proposed to detect or quantify the effect
of biased boundaries, with one of the most well-known being the efficiency gap
[6]. Meanwhile, additional research aims to create algorithmic redistricting meth-
ods to remove a bias said to be inherent to human-drawn maps through solely
quantitative factors, such as population distribution or district geometries [7–9].
On the other hand, some reject this idea and propose the only fair boundaries
are those created considering their impact on elections [10,11].

Following this concept and by defining a fair and unbiased electoral map
as one that can most accurately represent its electorate in elections, we should
be able to generate fair boundaries by rewarding a proportional representation
between party vote share and seat shares. This should essentially aim towards
the ability of proportional vote systems to fairly represent the electorate whilst
maintaining the advantages of local representation found in first-past-the-post
systems [12]. This paper, therefore, proposes a new reinforcement learning algo-
rithm for electoral redistricting that directly optimises boundaries for fairness
and this ability to represent the electorate and applies the algorithm to the UK.
As a result, this paper also outlines a new metric for fairness evaluation as, to the
authors’ knowledge, no research has been done on applying similar redistricting
or fairness evaluation methods to parliamentary systems.

This paper is organised as follows; Sect. 2 first describes the necessary
datasets and the creation of a small-scale election results dataset used for fair-
ness evaluations. Section 3 then outlines the proposed algorithm’s methodol-
ogy and Sect. 4 describes the fitness calculations, including the newly developed
“seats-votes difference.” Lastly, Sect. 5 evaluates the algorithm’s performance
and demonstrates some of its proposals before Sect. 6 concludes the paper.

2 Boundary & Election Datasets

There are two datasets fundamental to the proposed algorithm; firstly, the model
needs a dataset of base geographic units and their geometries to construct con-
stituencies, and secondly, it needs the distribution of each party’s voters amongst
these areas to be used to evaluate fairness. Here, the 9,498 2011 electoral wards
in the UK are used as the base geographic unit because the four commissions
that decide the constituency boundaries for each country in the UK also use this
approach. This is despite the fact they can diverge due to geographical factors or
where they would otherwise not be able to produce boundaries that follow legal
constraints. Ultimately, this is done as these wards are generally well-defined,
well-understood and broadly indicative of areas with a community of shared
interest [13], and they have the advantage that ward data is readily available.
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On the other hand, the election results dataset for fairness evaluations
had to be created for use in the model, which was done by first collecting
constituency-level election results from the 2017 general election and ward-level
socio-economic data. Demographic data is often used to predict election results
data at different scales [14,15], with the data here consisting of 32 statistics from
the 2011 UK census surrounding age, education, economic activity, household
and ethnicity. Therefore, to create the election dataset, the ward demographic
data was combined into their constituencies and was used as the input to an ordi-
nary least squares linear regression model trained to fit demographic data to the
constituency election results. This model was then used to predict the party sup-
port in each ward, with the outputs used as weights to calculate how each party’s
vote was distributed throughout their constituency. The final election dataset1

was validated by combining the ward-level results back into their constituencies
and comparing the output with the real election results. This approach was not
able to estimate the constituency-level results with complete accuracy, although
vote shares remain sufficiently close to demonstrate the proposed redistricting
algorithm whilst somewhat accurately reflecting the real world. Subsequently,
developing a full prediction model for ward-level election data is deemed outside
the scope of this paper, and differences between the generated dataset and the
real 2017 results can be seen in appendix 1.

3 Redistricter Methodology

The redistricting algorithm proposed by this paper is based on a reinforcement
learning-based local search algorithm for generalised grouping problems origi-
nally applied to graph colouring, proposed by Zhou et al. in 2016 [17]. Their algo-
rithm works iteratively with three main components; a group selection method,
a descent-based local search (DBLS), and probability updating and smoothing
stages, with the structure of the redistricting algorithm remaining fairly similar
to this. A diagram of the main schema is displayed in Fig. 1, and each component
is detailed below.

Fig. 1. A schematic diagram of the proposed redistricter algorithm.
1 All data used for this paper is made available online [16].
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We can define the problem of redistricting as, given a set W of n wards, find
an optimal set C of k partitions, representing constituencies. As is done in the
original algorithm, we define a probability matrix P of size (n × k), where each
element in the matrix pij (0 < i ≤ n and 0 < j ≤ k), represents the probability
that ward wi should belong to the constituency cj . To generate an initial solution
that always consists of the real current boundaries, we can initialise all values
in P to 0, except for when pij represents the probability a ward will be assigned
to its real-world constituency, where we can set the value to 1.0.

It is also important to generate a set of ward assignments that conforms to the
legal constraints of the ‘Parliamentary Constituencies Act (1986)’ [18] that the
real boundary commissions must follow. This means constituencies cannot have
an area above 13,000km2 and their electorate must be within 5% of the electoral
quota, calculated as the average electorate of mainland UK constituencies. There
are Exceptions for protected or island constituencies whose boundaries cannot be
changed, such as ‘Ynys Môn’, and those with areas above 12,000km2 are allowed
smaller electorates, however, the algorithm’s proposals should follow these rules
to generate relevant results. Proposed constituencies also cannot span multiple
countries and are made to be geographically contiguous, with allowances for
geographical factors, to remain logical and avoid enclaves or exclaves.

3.1 Selection Method

The first step of each iteration t of the algorithm is to generate our initial
solution of proposed boundaries St by assigning wards to constituencies using
probabilities from the probability matrix P . The original paper uses a hybrid
greedy/random selection method as the algorithm could better avoid local min-
ima, where the method randomly chooses to either make the assignment with
the highest probability or assign items to groups randomly. However, the redis-
tricting algorithm uses an adapted “acceptance selection” method developed to
more easily follow contiguity constraints whilst fully exploiting the knowledge
stored in the probability matrix.

This approach first assigns a starting ward to each constituency using a
greedy/roulette wheel selection. This means that according to a random prob-
ability, the algorithm will either choose a ward with the highest probability of
belonging to the constituency or randomly select the ward, with choices weighted
by the probability of the assignment from the probability matrix P . Assigning a
starting ward ensures each constituency is guaranteed to have at least one ward
and the use of a roulette wheel makes the algorithm more stable and contiguity
constraints easier to follow as wards are more likely to be assigned to closer
constituencies they may have even been a part of previously. The acceptance
selection method then looks at the neighbours of each ward, checking whether
they are assigned to a constituency. If a neighbour has been assigned, the proba-
bility that the ward will be assigned to that same constituency is stored in a list,
and once all neighbours are checked, the resulting list is sorted from the highest
to lowest probability assignment. Lastly, we iterate through this list, choosing
whether to “accept” the assignment based on its probability. This is iteratively
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repeated for all wards until the majority of wards are assigned, leaving only
those that cannot be due to contiguity constraints, mostly including those on
islands without a constituency’s starting ward. Therefore, when there are no
new assignments made during an iteration, we assign any remaining wards to
the constituency of the closest assigned ward.

3.2 Descent-based Local Search

The next stage during each iteration is the DBLS algorithm where each solution
St is improved by randomly swapping wards between constituencies. Each swap
can then be evaluated by analysing how the fitness of the solution changes before
it is chosen to be accepted or rejected, where fitness calculations are outlined in
Sect. 4. This is also where the legal constraints are implemented.

First, a ward is chosen randomly, excluding those in protected constituencies,
and its neighbours are examined. If the ward borders any constituencies differ-
ent to its own, one of these is chosen as a potential new constituency and the
swap is checked to ensure it only produces valid constituencies. This means the
new areas and populations are calculated to ensure they stay within the neces-
sary thresholds and a ward adjacency matrix is generated from all the wards in
the original constituency. This is used to ensure the constituency would remain
contiguous without the swapped ward, ignoring any island wards without any
neighbours. Once the ward has been swapped, it is only accepted if there is an
improvement in the fitness of the solution, which is the same as the hill climbing
method used in the original algorithm. This was chosen over simulated anneal-
ing, where worse solutions are sometimes accepted according to a probability
given by the Boltzmann distribution [19,20], to help the algorithm converge,
particularly when making fewer swaps in the DBLS. The algorithm also ensures
each swap improves the fitness of the country where the swap took place, which
aims to ensure better national representation for the countries within the UK.

One significant change to the local search component of the original algorithm
is the use of multi-stage optimisation. Specifically, the redistricter algorithm
uses fairness prioritised and compactness prioritised optimisation stages. This
means that the redistricter will optimise solutions solely for fairness for the
majority of the algorithm’s runtime, but will then change to optimise solely
for compactness for a small number of iterations. The fitness calculations are
detailed in Sect. 4, however, this is simply done by changing the parameters λ
and μ in the fitness function. A point to note is that although the main goal of the
algorithm is to optimise for fairness, implementing a compactness stage allows
for the algorithm to produce more reasonable and logical results that are still
fair. This ultimately follows the idea that despite many US state constitutions
stating legislative boundaries should be “compact,” there is usually no formal
definition and they instead rely on the idea people recognise gerrymandering
when they see it [21]. Multi-stage optimisation is therefore a good compromise
that creates fairer constituency boundaries that are still reasonable and logical.
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3.3 Probability Updating & Smoothing

Once the solution has been improved, the new DBLS improved solution is com-
pared to the initial solution, making note of any changes and rewarding or penal-
ising constituencies accordingly. This section of the algorithm remains identical
to the probability updating and smoothing stages seen in the original method by
Zhou et al. Therefore, at each iteration t, the constituency assignment for a given
ward in V , wi, is compared in the original solution St and the DBLS improved
solution Ŝt. If it has stayed in its original constituency, cu, we reward cu and
update the probability vector pi according to the reward factor α (0 ≤ α ≤ 1),
using Eq. (1).

pij(t + 1) =

{
α + (1 − α)pij(t) if j = u
(1 − α)pij(t) otherwise. (1)

If no swaps were made during the DBLS, it is assumed we have found the most
optimal solution and the algorithm is terminated. Otherwise, when ward wi has
moved from its original constituency cu to a new constituency cv, where v �= u,
we penalise the original constituency cu and compensate the new constituency
cv according to the penalisation and compensation factors β (0 ≤ β ≤ 1) and
γ (0 ≤ γ ≤ 1) respectively. This is done according to Eq. (2).

pij(t + 1) =

{ (1 − γ)(1 − β)pij(t) if j = u

γ + (1 − γ) β
k−1 + (1 − γ)(1 − β)pij(t) if j = v

(1 − γ) β
k−1 + (1 − γ)(1 − β)pij(t) otherwise.

(2)

Lastly, values in the probability matrix are reduced by multiplying them by
a coefficient ρ if they are above a defined threshold p0. This is done so that older
and potentially misleading decisions can be forgotten.

4 Fitness Metric

The proposed redistricter algorithm is designed to optimise constituency bound-
aries for fairness and their ability to best represent the electorate, and this is
done primarily through the fitness metrics used during the algorithm’s DBLS
stage. Specifically, these calculations look at two aspects; compactness and fair-
ness. Although measuring the compactness of a constituency is fairly trivial and
is only used to ensure the algorithm produces reasonable and logical results, the
fairness evaluations remain the primary factor in the fitness calculation. There-
fore, a qualitative measure for fairness had to be developed that can be applied to
parliamentary systems, as no other methods have been proposed to the authors’
knowledge. As a result, the seats-votes (SV) difference was formulated for use in
this algorithm and is outlined in Sect. 4.2.

Overall, this results in the fitness metric f(S) for a solution S as seen in
Eq. (3), where the average party SV difference is denoted by v and the average
constituency compactness is denoted by c. The algorithm’s priority regarding
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each of these factors can also be tuned using the parameters λ and μ respec-
tively. An alternative approach to this could have been to use multi-objective
optimisation techniques, however, the multi-stage optimisation used in the DBLS
makes this unnecessary as each factor is optimised in isolation.

f(S) =
λ(1 − v) + μ · c

λ + μ
(3)

4.1 Compactness Evaluation

The choice in which compactness measure to use is generally fairly subjective
and should not have a large impact on the results of redistricting algorithms
[22], however, here, we use a modified version of the Reock score [23]. This
measures compactness as the ratio of the constituency’s area to the area of the
smallest circle that completely encloses it, but had to be slightly changed due
to the complexity and computational cost of repeatedly finding the bounding
circle of a polygon, known as the “smallest-circle problem” [24]. Therefore, the
compactness is calculated as the ratio of the constituency’s area to that of a
circle with a diameter as the length or width of the constituency, whichever
is larger. If this is above 1, which cannot be the case with the original Reock
score, the compactness is taken as the reciprocal of this value. The average
compactness for constituencies in the dataset used here is 0.49996, with the
most compact constituency being “Bristol South” (0.8969) and the least compact
being “Orkney and Shetland” (0.0588).

4.2 Fairness Evaluation

As mentioned previously, a majority of the literature surrounding redistrict-
ing and gerrymandering uses the US as a case study even though many other
countries, including the UK, use first-past-the-post electoral systems where the
candidate with the most vote wins even if they receive less than 50% of the
vote. As a result, many proposed methods for measuring electoral fairness can-
not be applied to parliamentary systems which can have many more than the
two parties considered in the US. For example, the efficiency gap is simply the
ratio between two parties’ wasted votes, defined as votes cast either towards the
losing candidate or those towards the winning candidate above the threshold
needed to win, and this cannot scale to any number of parties. It has also been
criticised for the way it can penalise proportionality as an election with a 60:40
split in the proportional vote and seat share would be described as 8% biased
towards the losing party [25]. In parliamentary systems, it can also be common
to have a mix of larger and smaller parties and the UK adds another layer of
complexity with national parties for Scotland, Wales and Northern Ireland, such
as the SNP or Plaid Cymru, who all must be fairly represented.

Therefore, as we have held the aim that a fair map is one that most accurately
represents the electorate, the “seats-votes difference” was developed for use in
this algorithm to optimise for proportionality between party seat shares and vote
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shares. This simply calculates the average absolute difference between a party’s
overall vote share and their seat share in government, as a percent of their vote
share. This has the advantage that it scales well for any number of parties, is
easy to calculate, directly rewards proportionality and equally penalises under
and over-representation. A formalised definition of the measure can be seen in
Eq. 4, where n is the number of parties, p is the set of proportional votes and s
is the set of seat shares for each party, both of length n.

v =
1
n

(
n∑

i=0

|(pi − si)|
pi

)
(4)

The UK has an average SV difference of 65.0% for the 13 parties used in the
generated 2017 election results dataset; the Conservatives, Labour, the Liberal
Democrats, the Green Party, UKIP, Plaid Cymru, SNP, DUP, Sinn Fein, SDLP,
UUP, Alliance and independents (including the Speaker). Northern Ireland is
the least fair country in the UK, with an average SV difference of 82.7%, whilst
England, Scotland and Wales have 62.2%, 63.2% and 69.7% respectively.

5 Evaluation & Results

Overall, the algorithm’s results were evaluated over 106 runs, covering 24 exper-
iments, and the results showed that the redistricter was able to improve the cur-
rent constituency boundaries’ fairness in all runs. Also, whilst all runs showed
an improvement in fairness, only some increased average constituency compact-
ness except for where it was explicitly prioritised by only using compactness
prioritised stages. For example, as seen in Table 1, the 5 control experiment runs
saw an average improvement of 1.5% after 45 fairness and 5 compactness stages
using reward and compensation factors α and γ of 0.8 and a penalisation factor
β of 0.6. These values were used as the base parameters during all other exper-
iments because they were used throughout the algorithm’s development where
they showed decent results and helped the algorithm to converge.

The fairest set of boundaries produced by the algorithm can be seen to the
far right of Fig. 2 which shows their predicted election results in comparison
with the current boundaries. This run produced a fairness score of 0.4201, an
improvement of 7%, and was achieved using reinforcement learning parameters
of α = 0.9, β = 0.1 and γ = 0.9. Notable seat differences predicted with the pro-
posed map include; the Ulster Unionist Party (UUP) gaining a seat in Northern

Table 1. Final solution fairness and compactness for the control experiments, with 45
stage 1 iterations and 5 stage 2 iterations. Here, α = 0.8, β = 0.6, γ = 0.8 and 100
steps were taken during the DBLS.

Metric Run 1 Run 2 Run 3 Run 4 Run 5 Average Initial solution

SV Difference 0.36373 0.36810 0.36021 0.36979 0.36426 0.36522 0.3501 (+0.015)

Compactness 0.49814 0.49351 0.49475 0.49595 0.49583 0.49563 0.49996 (−0.004)
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Fig. 2. A comparison of predicted election results using current constituency bound-
aries and 3 maps generated during the control experiments. The furthest left was the
fairest generated in all experiments, with α = 0.9, β = 0.1, γ = 0.9.

Ireland, Plaid Cymru gaining a set and Labour gaining 2, whilst the Democratic
Unionist Party (DUP) and the Scottish National Party (SNP) each lost 1 and
2 respectively. More specifically, Labour’s SV difference decreased from 0.6% to
0.3% with 264 seats, whilst the SNP’s SV difference decreased from 77.2% to
68.7% with 31 seats. There is also a high concentration of UUP supporters in
the southwest of Northern Ireland, yet they do not have any seats in Parliament
and so giving them a seat reduced their SV difference from 100% to 46%. This
meant the algorithm was able to do this fairly often, signifying some level of
partisan bias in the current boundaries, which is further supported by the SV
difference metric denoting Northern Ireland as the least fair country in the UK.

Significant parameter tuning was also performed on the reinforcement learn-
ing parameters and although some of the larger fairness improvements were
produced with higher reward and compensation factors and lower penalisation
factors, the trend was still fairly marginal. Similarly, increasing the number of
iterations or steps made during the DBLS also did not produce a clear pattern
in the fairness of maps generated by the model. These are likely due to two main
reasons; a limitation of the SV difference in its application to redistricting and
the impacts of the current boundaries as the algorithm’s initial solution. Firstly,
unlike metrics such as the efficiency gap, the SV difference is not able to recog-
nise a favourable swap unless there is a change in seats which of course is not
guaranteed to happen. Therefore, although the SV difference would still work in
analysing or comparing elections, the DBLS may struggle to optimise solutions
as there is not always a strong pressure to converge on a solution. Secondly, the
initial solution used by the algorithm will affect the possible improvements as it
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is still only using a local search improvement algorithm and so there is likely a
limit to what can be done by swapping individual wards.

Appendix 2 outlines further evaluation of the algorithm that aims to eval-
uate the initial proposals from the currently undergoing review of constituency
boundaries, due to be completed in 2023.

6 Conclusions

It should be clear from the variety of redistricting algorithms and fairness mea-
sures and the number of factors to be considered that the problem of redistrict-
ing is a very complex one with no objective solution. Whilst purely quantitative
methods can accurately distribute a population amongst a series of compact
districts, these methods often fail to produce results that can best represent the
electorate as they do not consider some of the other factors that influence the
fairness of a map. On the other hand, those that directly consider election results
and fairness, such as the algorithm proposed here, should be able to ensure that
accurate representation remains a primary goal of a strong democracy.

Ultimately, ensuring this was possible was one of the main intentions behind
the development of the redistricting algorithm, and we are very confident that
these results show these ambitions have been filled. This is because, despite some-
what marginal improvements seen during evaluation, it is worth reiterating that
the algorithm was still able to improve the fairness of the current constituency
map in every experiment performed. Even a few seats changing hands to parties
that would otherwise be significantly under-represented in government should
demonstrate a positive shift in how the electorate is being represented. It could
also be said that smaller changes in the constituency map are desirable as cur-
rent boundaries likely reflect long-standing cultural or historical ties which could
evidently be upset by drastically changing the boundary of every constituency.

We also believe that the SV difference performs well in its ability to reward
proportionality between seat share and vote share, especially due to its scalabil-
ity and ease of use in parliamentary systems. Of course, further evaluation of the
metric should be undertaken to analyse its performance with other applications
or elections as well as its potential limitations in evaluating small changes in elec-
toral maps. There are also potential expansions for the redistricting algorithm
itself, such as the implementation of population-based optimisation to enhance
the improvement algorithm or multi-objective optimisation techniques to be able
to consider more factors in redistricting. The algorithm could also evidently be
run using newer data, such as results from more recent general elections or census
data from the 2021 UK census which has not yet been released.

Overall, whilst the political landscape in the UK is constantly changing, we
believe that aiming for proportionality and ensuring the electorate is fairly and
accurately represented by their government could only be beneficial. Therefore,
through the implementation and application of this model, as well as the fairness
metric, this project should hopefully demonstrate that fairness can and should
be considered a higher priority within our electoral systems.
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Appendix 1

See Table 2.

Table 2. The number of parliamentary seats won by each party and their vote share in
the 2017 general election, according to the real results and the linear regression model
results.

Party 2017 seats Model seats 2017 vote (%) Model vote (%)

Conservatives 317 321 (+4) 42.4 41.91 (−0.49)

Labour 262 260 (−2) 40.0 40.45 (+0.45)

SNP 35 33 (−2) 3.0 3.03 (+0.03)

Liberal Democrats 12 13 (+1) 7.4 7.32 (−0.08)

DUP 10 10 (−) 0.9 0.92 (+0.02)

Sinn Fein 7 7 (−) 0.7 0.79 (+0.09)

Plaid Cymru 4 3 (−1) 0.5 0.50 (−)

Green 1 1 (−) 1.6 1.60 (−)

UKIP 0 0 (−) 1.8 1.77 (−0.03)

SDLP 0 0 (−) 0.3 0.31 (+0.01)

UUP 0 0 (−) 0.3 0.28 (−0.02)

Alliance 0 0 (−) 0.2 0.23 (+0.03)

Other Parties 2 2 (−) 0.9 0.89 (−0.01)

Appendix 2

Alongside the experiments using the current boundaries, the model was also
tested using those from the initial proposals for the 2023 boundary review,
released in June 2021. The proposed map was found to be 6% less fair than the
current boundaries, with a fairness score of only 0.2986 as opposed to 0.3501,
and compactness also decreased, but only from 0.49996 to 0.4916. The model
predicted the Conservatives would gain 6 seats from the changes whilst Labour,
the Liberal Democrats, DUP and Plaid Cymru, notably with Plaid Cymru losing
2 of their 3 seats. It is also worth noting the Conservatives would win 327 seats in
total, meaning they would have above the 325 needed to hold a majority, some-
thing they were not able to achieve in the real 2017 election. This is ultimately
supported by many criticisms of the proposals, including how the map would
benefit the Conservatives and neglect Scotland and Wales, although the predic-
tions here were not as pessimistic as others. For example, Electoral Calculus’
model predicted the Conservatives would gain 13 seats and Labour would lose 8
[26], however, this would be using more recent election data to make predictions.
A detailed outline of the model’s predicted seat changes is in Table 3.
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The boundaries themselves can be seen in Fig. 3, alongside the optimised maps
generated by the redistricting algorithm, which were able to give a slight improve-
ment to 0.3274. This is still below the fairness of the current boundaries but does
have the Conservatives with one less seat and Labour 4 more seats. However, this
potentially again highlights how the initial boundaries affect the model’s proposals
as the model was not able to have Plaid Cymru regain its seats.

Fig. 3. A comparison of predicted election results using the proposed 2023 boundaries
and four fairness optimised versions, along with their respective fairness and compact-
ness scores. These were generated using the control experiment parameters.

Table 3. A comparison of seats gained using the current boundaries and the 2023
proposals with the generated 2017 dataset.

Party 2017 seat share 2023 seat share Difference

Conservatives 321 327 +6

Labour 260 258 −2

SNP 33 33 0

Liberal Democrats 13 11 −2

DUP 10 9 −1

Sinn Fein 7 8 +1

Plaid Cymru 3 1 −2

Green 1 1 0

UKIP 0 0 0

SDLP 0 0 0

UUP 0 0 0

Alliance 0 0 0

Other Parties 2 2 0
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Abstract. Road transportation emissions have increased in the last few
decades and have been the primary source of pollutants in urban areas
with ever-growing populations. In this context, it is important to have
effective measures to monitor road emissions in regions. Creating an emis-
sion inventory over a region that can map the road emission based on
the vehicle trips can be helpful for this. In this work, we show that it is
possible to use raw GPS data to measure levels of pollution in a region.
By transforming the data using feature engineering and calculating the
vehicle-specific power (VSP), we show the areas with higher emissions
levels made by a fleet of taxis in Porto, Portugal. The Uber H3 grid sys-
tem is used to decompose the city into hexagonal grids to sample nearby
data points into a region. We validate our experiments on real-world
sensor datasets deployed in several city regions, showing the correlation
with VSP and true values for several pollutants attesting to the method’s
usefulness.

Keywords: Road emission · Vehicle specific power · City
decomposition · Particle matter · Air pollution · Uber H3

1 Introduction

A quarter of the EU’s greenhouse emissions can be traced back to transport,
with road transportation representing the greatest share, measuring up to 72%
in 2019 [5]. Unlike many sectors that have shown significant reductions in green-
house gas emissions by implementing climate and energy policies over the last
decades, transport greenhouse gas emissions have increased by more than 33%
between 1990 and 2019 and road transport emissions by almost 28%. On
average, traffic is the biggest source of air pollution, responsible for one-quarter
of particulate matter in the air [18]. According to all existing policy measures,
transport carbon dioxide (CO2)emissions are projected to be 3.5% higher in 2030
than in 1990 and to fall by only 22% by 2050 compared to 1990 levels [4]. The
case for other emission pollutants is also similar to projected growth, considering
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the increase in road emission, which is one of the major sources of air pollution
in urban areas.

Urban areas are large population clusters that contribute to continuous
growth in private transport, with negative consequences for air quality and
human health [1,2,8]. Results obtained for the continental region of Portugal [2]
revealed all the districts will be negatively affected with higher effects on human
health in major urban areas. Recently, Portugal has reported having exceedingly
higher values, continually and persistently, in its annual nitrogen dioxide (NO2)
limits in their three air quality zones (’Lisboa Norte’, ’Porto Litoral’, and ’Entre
Douro e Minho’). The air pollutant NO2 results mostly from human activities,
such as road traffic, in particular diesel vehicles, and industry. This type of pol-
lution is the cause of serious illnesses such as asthma and reduced lung function.
Hence, detecting high emission spatial and temporal patterns in the urban areas
and developing ways to keep the exceedance period as short as possible is of
extreme importance for Portugal [12].

Even though point sources like industries, factories, and electric power plants
can also cause emissions, traffic congestion, and additional traffic can signifi-
cantly increase exposures and risks. Also, risks and exposures are not simply
proportional to traffic volumes alone. Incremental risks depend on site-specific
factors including road type [29], geographical topography, [17] or wind speed [19].
Along with spatial characteristics, traffic emissions have high temporal charac-
teristics, stemming from the behavioral patterns of the road users [26].

To take effective steps to mitigate and control vehicle emissions in a city,
understanding the temporal and spatial distribution of vehicle emissions at the
landscape scale is essential. This can support management decisions at the
regional level for keeping the air quality acceptable for decision-makers and
non-governmental organizations [12], especially in countries like Portugal with a
growing urban population.

An emissions inventory (EI) of a region indicates the number of air pollutants
in the atmosphere during a year or other period in that given region. EIs are
an essential input to mathematical models that estimate air pollution [22]. An
emission framework that maps the vehicle emission over the road transport of
a region can be used to study the influence of site-specific factors on the emis-
sion. Policymakers can use these EIs to help determine significant air pollutants
sources and target regulatory actions.

This work explores the importance of an EI framework for a city like Porto,
Portugal, as a tool to monitor the relationship between vehicle emissions and
air pollutants in the city. Mapping the vehicle emission on the city topology can
also contribute to finding the spotting sectors that require further action like the
addition of sensors [23]. A geospatial framework that can map a city’s vehicle
trajectory and users’ driving behaviour can also help find locations that need to
be monitored for driving behaviours that can contribute to higher emissions.

The paper is organized as follows. After introducing the case of road emission
and the need for an emission inventory for an urban city like Porto, Sect. 2
briefly reviews the related works in this area and the city decomposition method
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we used to map the emission over the region. Section 3 explains the data set
and the methods used in detail. Section 4, describes the experimental setup and
discusses the factors that may have constrained the study. In Sect. 5, we conclude
the paper with pointers for future work.

2 Related Work

2.1 Emission Inventory Over Regions to Study Road Emission

A previous study of the effects of air pollution from traffic emission in Porto,
Portugal, was done by [26], emphasising the damaging effects of traffic pollutants
on the historical heritages. The levels of pollutants were measured for 40 days
during autumn-winter 2008, and the black cluster samples, which indicate the
damage to the buildings, were collected in December 2008. Values of potential
health risks associated with exposure were also assessed, considering that people
spend about 20% of their time outdoors. It was shown that traffic emissions
were the main source of polycyclic aromatic hydrocarbons (PAHs) in the air of
the metropolitan area studied. The health risk analysis of PAHs in air showed
that the estimated values of lifetime lung cancer risks considerably exceeded the
health-based guideline level. The study confirmed that historical monuments
in urban areas act as passive repositories for air pollutants in the surrounding
atmosphere, making these spots interesting stationary points for further study
of urban air pollution effects.

Gonzalez et al.’s [17] work on the emission inventory of Manizales - a medium-
sized Andean city - used the Vehicle Specific Power (VSP) model [15] to get
realistic emission estimates to create a baseline in atmospheric modelling and
urban air quality indexes. More specifically, the VSP method was shown to be
effective in detecting the high emissions in the city of Manizales, Colombia. This
happens due to the unique characteristics dominated by a complex topography
with hills that put more stress on the vehicle engines, which results in higher
fuel emissions.

Another notable work by [19] explored the visually observable patterns and
basic relationships among multiple variables related to emissions to effectively
represent the spatio-temporal information contained in air pollution data for
Beijing using two sets of data ranging over 2009 to 2014. The work’s conclu-
sions helped guide residents’ daily lives and support government decisions. These
included detecting a strong correlation between pollutants and wind speed, find-
ing temporal characteristics indicating long-term moderate pollution, and spa-
tial distribution indicating the longer span of vegetation diffusing and absorbing
atmospheric pollutants. The work standouts exemplify what a detailed visual
analysis alone can contribute to understanding an area’s pollution/emission
inventory.

2.2 Geo-Spatial Frameworks for Region Decomposition

When processing large-scale GPS trace data for research, user privacy and the
cost of frequently accessing the data can be a challenge. Ge and Fukuda [16]
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used meshes or cells to aggregate peoples’ location data over several areas of
500× 500m2, which enabled to access the relevant information from the data as
needed at a lower cost with better privacy.

Variations of these grid-based (cell-based) techniques are frequently used
to decompose a geographical area into k disjoint sub-regions to perform data
analysis of interest [11]. These city decompositions enable any finite amount
of locations to be mapped to a region. These can be evaluated using a threshold-
based (0–1) function over user-defined continuous criteria such as density or
aggregate measure of a secondary variable associated with the initial location.
This Region of Interest (ROI) identification is a problem of high relevance,
especially in the EI space. It needs to be able to stress the regions that need to be
monitored for the high emission/pollution contribution, i.e. emission hot-spots.
However, a naive city decomposition based on politically predefined boundaries
or equally spaced boundaries will always stay independent from the actual spatial
distribution of the data resulting in regions containing an excess/deficit of data
samples. And this is important in finding regions of emission/pollution in a city
that could be affected by other sources like industrial or commercial locations.
Moreira-Matias et al. [21] successfully address this problem by using Half-Space
trees to divide the city area into dense sub-regions of equal mass. This mass-based
city decomposition outperforms the naive grid-based one, discovers equal-mass
ROIs, and maintains equally-sized cells on the data space.

In grid-based geospatial frameworks, when a point data sample is used to
characterize the larger unit as a whole, a smaller perimeter to diameter ratio
is essential so that each unit closely resembles a circle and has less bias from
edge effects. Due to this, hexagonal grids are more efficient than square grids
[7]. Square units have eight neighbours; the four neighbours sharing a side are
at one distance, whereas the other four diagonal neighbours sharing a vertex are
at a greater distance. In contrast, with hexagon structure, the centroids (centre
points) of all six neighbouring hexagons are equidistant, making it a better choice
for connectivity and path analysis.

Hexagonal grids are currently widely used for geospatial frameworks [27],
with various methods for sampling the points to set the centroids for the grids
[25]. Hexagons are also generated to fill the area based on the desired number
of data samples, chosen hexagon area, or a consistent distance between hexagon
centroid. A Discrete Global Grid System (DGGS) has been put forth as an
alternative for an arbitrary starting point for the hexagonal grids. A DGGS is
a hierarchical data structure covering the surface of the earth with a consistent
grid of regular shaped, equal-area units. In this case, the earth is treated as an
icosahedron divided into hexagons. Units spatially reference locations, bypassing
transformation issues related to planar representations of coordinates [9]. EI
works in urban areas can benefit from a DGGS geospatial framework with grid
systems to convert, aggregate, scale and interpolate the vehicle emissions to see
their effect on overall air pollution in the area.

In this work, we use the H3, a grid system developed by Uber, to efficiently
divide the region to analyze large spatial data sets by bucketing the data points
into hexagonal areas.
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3 Data and Methods

3.1 Porto Taxi Data

The dataset comprises 442 taxis running in the city of Porto, in Portugal, for
an entire year (from 2013-07-01 to 2014-06-30) [3]. These taxis operate through
a taxi dispatch central, using mobile data terminals installed in the vehicles. It
contains a total of 9 (nine) features in total and following are the ones used in
this work:

– TRIP ID: (String) It contains an unique identifier for each trip;
– TAXI ID: (integer): It contains a unique identifier for the taxi driver that

performed each trip;
– TIMESTAMP: (integer) Unix Timestamp (in seconds). It identifies the trip’s

start;
– MISSING DATA: (Boolean) It is FALSE when the GPS data stream is com-

plete and TRUE whenever one (or more) locations are missing
– POLYLINE: (String): It contains a list of GPS coordinates (i.e. WGS84 for-

mat) mapped as a string. The string’s beginning and end are identified with
brackets (i.e. [ and ], respectively). The same brackets also identify each pair
of coordinates as [LONGITUDE, LATITUDE]. This list contains one pair of
coordinates for every 15 s of the trip. The last list item corresponds to the
trip’s destination while the first one represents its start;

The dataset has 1, 710, 670 instances in total and 1, 704, 759 rows without
missing values.

3.2 Sensor Data

The sensor data was collected from July/2014 to August/2017 for the
UrbanSense project [20], a city-wide platform for continuous environmental mon-
itoring. The project deployed data collection units (DCUs) containing sensors
for weather, environmental, and noise parameters capable of monitoring multiple
interest points of a city, allowing for the creation of local and global representa-
tions of the current status and history of relevant environmental parameters. The
sensors were deployed over several zones with different characteristics: industrial,
park, traffic, touristic, and waterside.

Each dataset contains data from 23 stations. The true location of the sensors
are nearby the center of the hexagonal grids shown in the Figs. 2, 3, 4, 5 and
6. Most of the data is concentrated in the summertime, with August being the
month with more records. The data is logged in one reading per minute. For this
study we are using data from CO, NO2, O3, PM10 and PM2.5 particles sensors.
Particle matter (PM) sensors have their values in counts while the rest of the
sensors have the values in volts (V) [20].

In this work, we used the part of the datasets corresponding to the days when
there was more taxi activity. The range of the taxi dataset spans from July/2013
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to June/2014. The period chosen was August/2013 as it represents the holiday
season that repeats itself every year. During this time the city is full and busy
with tourists and locals enjoying the peak of summertime which contributes to
in increase in traffic. For validation, we use the sensor data from August 2015.

3.3 Feature Extraction

For the taxi data, we used the latitude, longitude, and timestamp to generate
new features that are further used to calculate the VSP.

Calculating Speed. The average speed of an object in an interval of time is
the distance travelled by the object divided by the duration of the interval [14];
If d is the length of the path (also known as the distance) travelled until time t,
the speed equals the distance d divided by the time t :

s =
d

t
. (1)

Calculating Acceleration. Acceleration is the rate of change of velocity with
time. At any point on a trajectory, the magnitude of the acceleration is given
by the rate of change of velocity in both magnitude and direction at that point
[14].

ā =
Δv

Δt
. (2)

Calculating the Road Inclination. Road inclination or road grade or slope at
each point is the sin of the central angle θ between that point and the previous
point along the Earth’s great circle. This indicates how much the highway is
inclined from the horizontal. For example, if a section of road is flat and level,
then its grade along that section is zero.

To get sin(θ) between two points on the Earth, we need d, the shortest dis-
tance between the points over the Earth’s surface, an ‘as-the-crow-flies’ distance,
and e, the altitude or elevation at those points. So the slope or sin(θ) will be the
ratio between the elevation difference and distance between the points along the
Earth’s surface.

sin(θ) =
ei − ei+1

d(i,i+1)
. (3)

The distance d was calculated using the Haversine formula [6] (cf. Eq. 3),
which calculates the shortest distance between two points on a sphere (Earth)
using the latitudes and longitudes measured along the surface. The elevation e
for the data point was obtained using Open-Elevation API1.

1 https://open-elevation.com/.

https://open-elevation.com/
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3.4 Vehicle Specific Power (VSP)

Vehicle Specific Power (VSP) is conventionally defined as instantaneous vehicle
engine power. It has been widely utilized to reveal the impact of vehicle operating
conditions on emission and energy consumption estimates dependent upon speed,
roadway grade and acceleration or deceleration based on the second-by-second
vehicle operation, as shown in the formula below [15].

VSP = v[1.1a + 9.81 sin(arctan(grade)) + 0.132] + 0.000302v3 (4)

where VSP is vehicle specific power [KW/ton]; v is vehicle speed [m/s] each
second; a is acceleration (+) or deceleration (−) [m/s2] each second; and grade
is terrain gradient [±%].

The calculation of VSP, on a second-to-second basis, allows obtaining the
vehicle’s power distribution throughout a trip. To ease the visualization and the
analysis, it is then possible to group VSP points into 14 classes of required power,
as shown in Table 1. This power range division allows vehicle fuel consumption
and emissions mapping according to the VSP category.

Table 1. VSP modes from VSP values.

VSP Mode VSP [KW/ton]

1 VSP < −2

2 −2 ≤ VSP < 0

3 0 ≤ VSP < 1

4 1 ≤ VSP < 4

5 4 ≤ VSP < 7

6 7 ≤ VSP < 10

7 10 ≤ VSP < 13

8 13 ≤ VSP < 16

9 16 ≤ VSP < 19

10 19 ≤ VSP < 23

11 23 ≤ VSP < 28

12 28 ≤ VSP < 33

13 33 ≤ VSP < 39

14 39 ≤ VSP

3.5 VSP as an Indication of Vehicle Emission

According to Rodŕıguez et al. [24], VSP can be used as an appropriate metric
to obtain correlations between driving patterns and air pollutant emissions. The
work showed real-time results for the test conducted on vehicles, demonstrating
the advantage of using VSP as a proxy for emissions instead of methodologies
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exclusively based on speed or acceleration. The (positive) correlation between
emissions (CO2, CO, HC and NOx) and VSP was significantly higher than that
for just speed and acceleration [24]. This shows that VSP is a valuable concept for
estimating mobile source emissions. Since VSP is a function of slope (road grade),
speed and acceleration, VSP is also effective in studying instantaneous emission
and their relationship with driving patterns over different road, environmental
and temporal conditions that affect the user’s driving behaviour. Road conditions
can range from roads with regular traffic congestion to roads with fixed speed
limits, while the environmental condition can be temperature or atmospheric
pressure.

This work uses VSP modes as an indicator of vehicle emission, with a higher
VSP mode corresponding to higher emission potential. We are not considering
the vehicles’ fuel type, engine type, or displacement for the current work.

3.6 H3: Uber’s Hexagonal Hierarchical Spatial Index

Grid systems are critical to analyzing large spatial data sets and partitioning
areas of the Earth into identifiable grid cells. Some techniques involve using
squares or Voronoi diagrams to partition a plane into regions close to each of a
given set of objects. With this in mind, Uber developed H32, a grid system for
efficiently optimizing ride pricing and dispatch for visualizing and exploring spa-
tial data. The method uses a grid system to bucket the data points into hexagonal
areas, in other words, cells. The H3 grid is constructed by laying out 122 base
cells over the Earth, with ten cells per face. Some cells are contained by more
than one face. Since it is impossible to tile the icosahedron with only hexagons,
the system uses twelve pentagons, one at each of the icosahedron vertices. H3
supports 16 resolutions [10]. Each fine-grained resolution has cells with a one-
seventh area of the coarser resolution. Hexagons cannot be perfectly subdivided
into seven hexagons, so the finer cells are only approximately contained within
a parent cell. The identifiers for these child cells can be easily truncated to find
their ancestor cell at a coarser resolution, enabling efficient indexing. Because
the children’s cells are only approximately contained, the truncation process pro-
duces a fixed amount of shape distortion. This distortion is only present when
performing truncation of a cell identifier; when indexing locations at a specific
resolution, the cell boundaries are exact.

For this work, we will use the eight and nine resolutions as they better fit the
sensors’ reach radius, roughly 2 km. In this sense, we can get the sensor location
with a finer resolution and extrapolate to its neighbours by getting the hexagon’s
parent or simply growing one value in the resolution.

3.7 Index Levels Based on the Emission and Pollution

To have a standardized value, after data pre-processing, we performed a trans-
formation over both the sensor values and the VSP modes separately to divide

2 https://eng.uber.com/h3/.

https://eng.uber.com/h3/
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the pollution for VSP emission and sensor pollutant readings. We used a classi-
fication similar to that used by openweathermap.org3.

For the sensor values, from the true location of the sensor, we identified the H3
equivalent index for the resolution 8, which is ≈ 730 meters. Then we summed all
the values inside that hexagon for the desired hour and standardized the values.
We then convert these values into levels from 1 to 5 to have a common reference
for all the types of sensor readings. Similarly to what was done to the sensors
data, to have a standardized value, we perform a data transformation step over
the VSP mode values for each data point in the taxi trajectories. From the GPS
point coordinates, we identified the H3 equivalent index for the resolution 8,
which is ≈ 730 meters. Then we summed all the VSP values inside that hexagon
for the desired hour and standardized the values. We then convert these values
into levels from 1 to 5 to have a common reference that will match the sensor’s
readings enabling us to find the correlations for the emissions. Figure 1 shows
the vehicle emission over the city of Porto over a period of a day (2013-08-01)
with the scale color indicating the emission levels from Good (1) to Very Poor
(5) as listed in the Table 2.

Table 2. Air Quality Index levels

Name Index VSP PM10 PM2.5 NO2 CO O3

Good 1 1–36 1–863 1–16094 1–122 1–67 1–72

Fair 2 37–116 864–1148 16095–19415 123–125 68–72.06 73–101

Moderate 3 117–350 1149–1392 19416–25690 126–128 72.07–72.21 102–105

Poor 4 351–1531 1393–2750 25691–36941 129–135 72.22–73 106–110

Very Poor 5 1532–56178 2751–233767 36942–762797 136–239 74–258 111–210

4 Obtained Results

4.1 Experiment Setup

We processed one hour of data from one day in 2015-08-01 from 12:00:01 to
12:59:59. This corresponds to 956 observations on average for each of the sensors.

In Fig. 2 with PM10 values, one can notice a clear pattern cross-sectioned
through all the sensors over the riverside in a region called ’Ribeira’ in the lower
part of the city center. Note the four lower hexagons and the pair of yellow ones
with high levels of emissions. This region has various landmarks, sightseeing
places, restaurants, and cafes. Mainly during summer, the area also receives
street artists and other performances. There is also a pier from where the famous
touristic Portuguese boats depart all day. It is then possible to assume that the
region is a strong hub for emissions as many public and private transport vehicles
have this area as the origin or destination for their trips. For the PM2.5 sensors,
the pattern is similar and can be verified in Fig. 3.
3 https://openweathermap.org/api/air-pollution.

https://openweathermap.org/api/air-pollution
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Fig. 1. VSP emissions for grids over Porto city for the whole day of 2013-08-03

Fig. 2. PM10 emissions around sensors over Porto city on 2015-08-01

The values for CO, NO2, and O3 are shown in Figs. 4, 5, and 6 with the
difference that the yellow pair of hexagons (representing the highest emission
values) shifted from the right to the middle of the lower four items.
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Fig. 3. PM2.5 emissions around sensors over Porto city on 2015-08-01

Fig. 4. CO emissions around sensors over Porto city on 2015-08-01 (Color figure online)

Regarding the VSP emissions, the sample of data used in the experiment has
196, 487 instances. The inner city has a clear pattern with higher emission values
encompassing all but one hexagon in the middle of Fig. 1. It is also possible to
notice that the peripheral parts have the lowest values with the exception for
the two hexagons that fall over the highway that connects Porto city with Porto
airport (5 consecutive yellow hexagons lined towards north-west direction).

By looking on a broader area for the day 2013-08-03 over the great Porto
(Porto, Maia, Matosinhos, Gaia) - cf. Fig. 1, one can see the VSP emissions with
high levels for Porto and the city ring that connects to the other regions. There is
also a clear line of yellow hexagons representing high emissions over the highway
that connects Porto to Matosinhos and Maia as shown in Fig. 7.
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Fig. 5. NO2 emissions around sensors over Porto city on 2015-08-01(Color figure online)

Fig. 6. O3 emissions around sensors over Porto city on 2015-08-01 (Color figure online)

4.2 Discussion

This work focused on developing a framework that can be used as the first step
toward a road-emission inventory of the city of Porto in Portugal. Using the
VSP mode methods to determine the severity of the vehicle’s emission through
it’s trip trajectory helps give an idea of the vehicle emissions around locations
in the city with different traffic levels. A grid-based system is used to bucket the
data points into hexagonal cells, which help map aggregate values to the city
locations. This work also validates the VSP emission in city locations by using
several air pollutant sensors around the city.

We used only light-duty vehicle (taxi) trips from Porto. A much more diverse
data set that considers trips from other types of vehicles (e.g., public bus trans-
port) also is needed to get a better picture of the road-emission contribution in
the city. However, the method discussed to transform the VSP modes in each
grid into air pollution indicators allows the use of Table 2 over any vehicle type
or mode of transportation. In future, we intend to use different data sets that
have trajectories of different types of vehicles with more information about fuel
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Fig. 7. VSP emissions for sensors over Porto city on 2013-08-03

and engine type. This study is also constrained because the taxi and sensor data
are from other years. So we had to subset the data to periods that would indicate
seasonal variations, in this case, the first Saturday of the corresponding years’
August, around the usual vacation time. Until we have trip and sensor data
from the same time, we will have to restrict our sampling to periods with simi-
lar behaviours over the year, e.g., public holidays, festival periods, etc. Another
limitation of this study is not having sensors located at points in the city that
would relate to road traffic. This affected the quality of the comparison we could
make on the pollution indicators. Locations in the town like highways, side roads,
tourist spots, landscapes etc., would give us better data related to road emis-
sions. If we can have sufficient data, we will validate the proposed idea in the
future. Another limitation of this study is not considering meteorological factors
like wind and rain, which have been shown to affect the dispersion of pollution
around a geographical region [17], [28], [13]. However, the grid-based method
we used allows us to explore this in our future works, as discussed in the next
session.

5 Conclusion and Future Work

In this work, we show that raw GPS data can be used to measure pollution levels
in a region. By transforming the data using feature engineering and calculating
the instantaneous vehicle-specific power (VSP), we show the areas with higher
emissions levels made by a fleet of taxis in Porto, Portugal. We validate our
experiments on real-world sensor datasets deployed in several regions of the
city, showing the correlation with VSP and true values for several pollutants,
demonstrating the method’s usefulness.

For future work, we intend to perform more extensive experiments on differ-
ent real-world datasets on various vehicles and provide detailed analysis on the
effects of different vehicle characteristics such as fuel type, engine displacement,
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revolutions per minute etc. This will give a deeper understanding of the influ-
ence of vehicle specifications on-road emissions. We also intend on using other
sensor data such as wind speed and precipitation to verify the influence of these
variables on the level of pollution in a greater area as several studies suggest the
wind speed and the closeness to vegetation can affect the index of pollution [17].
The grid system we used will be beneficial in this case to study the effects of wind
on the dispersion of pollution over time in the city. Wind strength and direction
are crucial in the propagation of pollutants around the city [28]. Works on how
to interpolate vehicle emission all around a city considering these properties of
wind already exits [13] and have shown that there is a positive performance when
there is a significant number of known points to use in the interpolation. The
grid-based system allows us to have a varying range of points in the city based
on the traffic, which could help us better interpolate.
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Abstract. This paper discusses a detailed study on existing natural language pro-
cessing open source and commonly used sentiment analysis toolboxes and looks
at how various combinations of those toolboxes’ results can be used to accurately
classify a sinister intent in a statement. For example, can the toolboxes’ results for
different features, such as Attacks, Toxicity and Aggression be combined together
predict an Attacks class with more accuracy than just the Attacks classification
alone?Can that combination be used to predict any other intimidating intent within
text, and can it also help identify a trajectory of an online threatening trend quicker?
The main findings so far conclude that the open sourced and massively used sen-
timent analysis toolboxes for the English language provided by Python and Java
work better for Attacking and Aggressive language, compared to general Toxic
language. Also, within this experiment, Support Vector machines, although have
the largest overheads and take the longest time, give a more reliable accuracy
prediction. Finally, Multi-class aggregates of the toolboxes provide on average a
much-improved performance result than just using a single class from a single
toolbox.

Keywords: Text mining · Data wrangling · Sentiment analysis · Natural
language processing ·Machine learning

1 Introduction

Online harm and related sentiment analysis findings have so far brought to light the fact
that the main challenges to effectively and accurately monitor online abuse at present
are; that the data, tools, processes and systems needed are not fully available. The field
is beset with terminological, methodological, legal and theoretical challenges in both
horizontal and vertical frameworks around which it occurs [40]. Online harm, abuse, or
‘hate-speech’ (including both interpersonal attacks, such as harassment and bullying, and
verbal attacks against individuals or groups) is finally receiving more attention in the UK
and EU policy making departments [3, 43]. Toxifying public discourse motivate other
forms of extremist and hateful behaviour through a cycle of ‘cumulative extremism’
[10]. A report from the Commission for Countering Extremism found that 56% of the
public believe ‘a lot more’ should be done to counter extremism online [7].
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The Analysis of Oxford Internet Survey [7, 15] showed that experiences of online
abuse vary considerably across demographics. Xenophobia (including anti-migrant
hatred) was the most commonly reported grounds of hate speech (17%) followed by
sexual orientation, transphobic (16%) and Islamophobic hatred (13%).

This problem of finding online harm is difficult to deal with since it has many “faces”
and exhibits complex interactions among social media users. Such multifaceted, abusive
behaviour involves instances of hate speech, such as offensive, sexist and racist language,
aggression, cyberbullying, harassment, and trolling [43].

Social media platforms generally provide a sense of community, connection and
commonality at one level, but have also proven to be ‘fatal’ at another level as discussed
above, as it triggered not only everyday irritating, offensive harm; but it has, unfortunately
even instigated the finality of death for some people in the form of aggressive attacks,
suicide and genocide. The findings on the rate of removal of hate speech came in an
update on the EU Code of Conduct, “Code of conduct on countering illegal hate speech
online”, depict that IT companies removed 62.5% of the content notified to them, while
37.5% remained online [34].

This paper presents a review on the classification and analysis of negative sentiments
of aggression, attack and toxicity in text using the easily accessible and quite popularly
used open-source toolboxes within everyday application packages. The use of a combi-
nation of their rapid analysis can facilitate more reliable conclusions. Those sentiment
combinations can then be used to expedite catching the trajectory of incitement, hope-
fully, in the next paper to be written, utilizing the results from this paper’s experiment, in
the near future as the subsequent step. This research also focuses on text in the English
language as a base to ascertain online harm.

In its present state, the experiments answer the following:

RQ1: Does any single trait signify or indicate another class trait more than its
original?

RQ2: Does any combination trait signify or indicate another class trait?

RQ3: Does the Multiclass (Even 1 of 10 AND Average) or Multi-Class classify
better for any one trait or any combination of traits?

RQ4: Which classifier worked most accurately for which trait?

RQ5: Which is the least accurate classifier model?

Shah [38] showed that the prevalence of Internet users was positively correlated with
general population suicide in men (P = 0.001) and approached statistical significance
for women (P = 0.074).

Thus, thankfully, such observations have also led to the use of social media platforms
and the data gathered for social good for suicide prevention and surveillance and that
has been a focus of many mental health focus groups and NLP forums lately. The Online
Harms White Paper [27] stated that the suicide-related internet use (i.e. searching the
internet for information on suicidemethods)were reported for about 23%of 595 children
and young people attempting suicide in the UK between 2014 and 2016.
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The application of algorithms in L.Tong et al.’s ‘Cost-sensitive Boosting Pruning
Trees for depression detection on Twitter”, in other platforms may help reduce this
dreadful harm [39].

Another ongoing issue was demonstrated using a Bartik-type empirical strategy by
Schwarz and Müller (2017) [25] which showed that right-wing anti-refugee sentiment
on Facebook predicted violent crimes against refugees and that it is more likely to occur
in areas with higher exposure to anti-refugee hate speech online.

What is offensive, really? The lack of clarity in Government laws, the lack of precise
definitions of hate in the privately-owned channels, the lack of proper basic classification
of, or even a generic outline of what entails offence and hate within the numerous global
cultures and sub-cultures; really makes online offence hard to capture. Neither has it
been clearly defined by the public, as perhaps, what this researcher finds offensive may
not be offensive for the various other readers of this paper, there is no real single static
model defined and developed for what is known as ‘online weaponisation’.

This experiment so far concludes that on combining similar toxic text features’
scores, it is generally possible to obtain better results for classifying the presence of other
similar forms of rudeness. Overall this document is structured as follows: in Sect. 2 we
present the related work regarding capture of online weaponisation; in Sect. 3 we present
the proposed methodology; at Sect. 4 we present the whole experiment, and Sect. 5 the
Experimental Results, Evaluation and Discussion. Finally, in Sects. 6, 7 and 8 we draw
the conclusions, discuss the challenges and future work, and end at plan for the next
stage of the research.

2 Related Work (Online-Weaponisation)

Allahyari, M. et al. (2017) [2] explained that text data is a good example of unstructured
information, which is one of the simplest and basic forms of data that can be generated
in most scenarios. Unstructured text is easily processed and perceived by humans but is
significantly harder for machines to understand.

Knowledge Discovery from Data/Text (KDD/T) − as introduced by Feldman et al.
[12]; refers to the process of extracting high quality of information from text, some
semi-structured and unstructured resources such asword documents, videos, and images.
These approaches can be Information Extraction from text (IE), Text Summarization,
Unsupervised Learning Methods, Supervised Learning Methods, Probabilistic Methods
for TextMining, Text Streams and Social MediaMining, OpinionMining and Sentiment
Analysis, Biomedical Text Mining.

Natural Language Processing (NLP) techniques are a subfield of computer science,
artificial intelligence and linguistics aiming to understanding of the extracted natural
language text using computers. Many text mining algorithms make use of NLP tech-
niques broadly, as part of speech tagging (POG), syntactic parsing and other types of
linguistic analysis, such as sentiment analysis. Opinion Mining and Sentiment Analysis
expertise flourished with the advent of e-commerce, e-services, online shopping and
social media, as a huge amount of text is created and continues to grow about different
product reviews or user’s opinions and comments and statements. This research aims
to predict what factors could lead to an inciteful transgression by a potential harmer
through their weapon of toxic language.
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Various feature selection approaches are used to eliminate irrelevant and superfluous
characteristic [1, 42] from the feature list and thus increases the sentiment classification
accuracy. That idea was put into practice in this research, and will be developed to be
made even more reliable and faster to predict negativity in the next paper after this one
by using the outcomes from this present paper.

Transfer learning methodology techniques have grown because they can produce
great accuracy and results while requiring significantly less training time than training a
new model from scratch [5]. By using the combined features multi-classes which were
concluded to be more reliable in this experiment (See Sect. 6), as a weight to fine tune a
pre-existing hate detecting model like HateBERT [4], may perhaps, lead to more reliable
results.

This research uses three similar, but defined and annotated separately, datasets on
Aggression, Attacks and Toxicity [33], from 15 years’ worth of the Wikipedia Talk
Corpus. The negatively scored sentiments of this corpus (using open-sourced toolboxes)
are stored as features in a file. The results are then augmented as a combination feature
to increase the negative classification accuracy results applying a KDD approach of
the model. The annotated conclusions are used for classification. This improves the
reliability of finding that negative sentiment. The motivation behind using a number of
widely used toolboxes is to assess if the aggregate results deal with the uncertainty, bias
and ambiguity that may be present in just one single toolbox.

3 Methodology

This research has a non-standard approach, and is not strongly related to most literature
reviews which focus on a combination of machine learning and NLP tools yet, instead
it is focusing on the combination of results from data that has already been analysed by
open-sourced tools, commonly used in other well distributed applications of business,
entertainment, industry and academia. Thus, in order to make it more systematic, this
approach aligns to a (Knowledge Discovery from Data) KDD process, which depends
heavily on data pre-processing [47], as in this research. To obtain useful knowledge from
data, the following steps are performed iteratively. Refer to Key and the Fig. 1 below.

4 Data Collection and Annotation Description

As discussed in Sect. 2, the Wikipedia Talk Corpus [44] has been the chosen dataset
for this research paper for its large size and easy and free accessibility, and its previous
reliable results and uses in other research experiments by academics and companies like
Meta (https://meta.wikimedia.org/wiki) and Jigsaw© (https://jigsaw.google.com/); and
thus easy to compare the results with. ‘Detox’ [44], originally used by Ellery Wulczyn
et al.’s [45] paper ‘Ex-Machina’ on online personal attacks at scale. In order to get reliable
estimates of whether a comment is a personal attack, each comment was labelled by at
least 10 different Crowdflower annotators and their aggregate judgments from the 10
separate people was used when constructing a single label for each comment, making it
extremely reliable. All data collected or generated for this project is available under free
licenses on Figshare (https://figshare.com/), per their open access policy. This human

https://meta.wikimedia.org/wiki
https://jigsaw.google.com/
https://figshare.com/


Intelligently Detecting Information Online-Weaponisation Trends 201

DATA: ‘Detox’ (Wulczyn et al, 
2016)

TOOL 1:  
VADER (Hu o 
and Gilbert, 2014) 

TOOL 5: 
 StanfordCoreNLP (Manning 
2014), (Peng et al, 2018) 

TOOL 4: 
Pa ern (De 
Smedt, T., 2012)

TOOL 3: 
PolyGlot (Chen 
et al, 2014) 

TOOL 2: 
TextBlob 
(Loria,S., 2018) 

Clean and Limit Comment 
Length to 1000 words and 
Apply Toolboxes 

Features based on Aggression, 
A acks and Toxicity (Solo, 
Permuta ons and Altogether)- 
Total features = 24 

Machine Learning Models Applica on: K Nearest Neighbour, 
Random Forest, Mul layer-Percep on, Naive Bayes, Logis c 
Regression, Support Vector Machines. 10-Fold Cross 
Valida on x 10. Total rows = 392 

A: Predic on metrics: Accuracies, ROCs, Precision, Recall, F1 and Time taken to measure model 
efficiency per feature. Applica on: Can one threatening feature of the English language imply another 
disturbing intent? 
B: Markov Chains and Transformers then adapted to results from A, for a faster, fine-tuned detec on 
of sinister intent on live data in the future and moderated using congruent communica on over apt 
counter-speech.

Human 
Annotated Class 

Human 
Annotated Class 
(Average > 0.5) 

Mul  Class 
(Even if 1 in 10)

Mul  Class 
(Average > 0.5) 

Step 1: Data pre-
processing. Basic 
opera ons include 
data selec on, 
data cleaning and 
data integra on 
[47]. PRESENT 
WORK – DONE. 

Step 2: Data 
transforma on. 
Feature selec on 
and feature 
transforma on are 
basic opera ons 
[47].  PRESENT 
WORK – DONE.

Step 3: Data mining. 
This is an essen al 
process where 
intelligent methods 
are employed to 
extract data 
pa erns [47]. 
PRESENT WORK – 
DONE. 

Step 4: Pa ern 
evalua on and 
presenta on [47].  
A: PRESENT WORK – 
DONE.  
B:  FUTURE WORK – 
TO BE DONE. 

Key Abbreviation (Meaning) 
A (Aggression) 
AAC (Aggression Attacks Class) 
AACA (Aggression Attacks Class Average) 
Ac (Accuracy) 
AC (Aggression Class) 
ACA (Aggression Class Average)  
At (Attacks) 
ATC (Aggression Toxicity Class) 
AtCA (Attacks Class Average) 
AtTC (Attacks Toxicity Class) 
AtTCA (Attacks Toxicity Class Average) 

C (Class) 
D (Data) 
F1 (F1)  
M (Model) 
MC (Multi-Class) 
MCA (Multi-Class Average) 
P (Precision) 
R (Recall)  
ROC (Receiver Operating Characteristic) 
T (Toxicity) 
TC (Toxicity Class) 
TCA (Toxicity Class Average) 

Fig. 1. Research methodology
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annotated dataset of 1M crowd-sourced annotations cover 100K user and article talk
pages made between 2001–2015 [33]. This corpus also stores the data using a timestamp
in UTC, or Universal Time Coordinated, and is the most precise and commonly referred
to time standard. The time-based aspect for posts will help with the subsequent study
using Markov Chain models. This experiment has certain limitations and thus restricted
to pre-determined and commonly used machine learning techniques and the thoroughly
annotated pre-selected toxicity, attacking and aggression datasets. It is designed to test
the hypothesis within the data dimensionality of these domain-specific datasets and their
criteria.

4.1 Dataset Choice (KDD Step 1)

Wulczyn et al. (2017) [45] had used the very same data and had its performances listed
in Table 1. by Karan et al.’s (2018) [19] and Fortuna, P. et al. (2021) [13] where ‘Id’:
identifier we use as reference; ‘Category’: annotation categories; ‘Size’: number of
instances, ‘Performance’: best score on the dataset and reference (F1 for all datasets) by
[13, 19].

Table 1. F1 readings for Karan et al.’s (2018) [19] experiment

Id Category Size Instances Performance

Wul1 Aggressive 69,526 0.70

Wul2 Attack 69,526 0.71

Wul3 Toxic 95,692 0.75

Fortuna, P. et al. (2021) [13] concluded that cross-dataset model generalization in
the context of abusive online language should be considered when creating models that
generalize when the nature of the categories within the datasets are relevant. Thus, this
research model experiments only inter and cross combination of the datasets (Step 2)
generalization evaluation of Attacking, Aggression and Toxicity only and compare the
Accuracy, Precision, Recall, F1, ROC values to predict one of those respected features
of Attack, Aggression or Toxicity.

4.2 Data Cleaning and Feature Allocation. (KDD Step 1 and Step 2)

The comments had to go through several data cleaning steps and then limited to fixed size
of 1000 words before being sent through the open sourced sentiment analysis toolboxes.
Nulls (NaN), blanks and unrecognized characters were removed. The comment id was
maintained for random record verification to follow the trail of annotation. (Step 2) On
applying the chosen open-source java and python language model sentiment analysis
(See Sect. 4.3), and using only the common comment review ids, the leftover total rows
were: 70,336, Aggression + Toxic: 70,343 and Attacks + Toxic: 70,336. This resulted
in 24 features separately, 8 class outputs per each trait set. The model considered all the
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inputs of an individual trait (eg: Aggression) and a combination feature (eg: Aggression
plus Toxicity) as well as the all-inclusive feature set. Hence, 7 separately run machine
learning models, 4 class combinations, each of the 3 traits and the binary string based
Multiclass, giving us a total of 8 different ways to form the class sets.

4.3 Sentiment Analysis Open Sourced Toolboxes (KDD Step 2)

‘A basic task in sentiment analysis is classifying the polarity of a given text at the docu-
ment, sentence, or feature/aspect level—whether the expressed opinion in a document, a
sentence or an entity feature/aspect is positive, negative, or neutral. Advanced, “beyond
polarity” sentiment classification looks, for instance, at emotional states such as enjoy-
ment, anger, disgust, sadness, fear, and surprise.’ [16]. The performance of the aggregate
outputs on using the toolboxes would be used for comparison against the annotated class
scores, after all the complete runs through the models. Chosen toolboxes are TextBlob
[23], VADER [18], PolyGlot [6], Pattern [8], Stanford CoreNLP [24, 32] processing all
the three data sources in Java and Python [31] (Table 2).

Table 2. Toolboxes and their sentiment range.

Toolbox TextBlob VADER PolyGlot Pattern Stanford CoreNLP

Sentiment range − 1, 0, 1 − 1 to 1 − 1 to 1 − 1 to 1 0 to 4

Algorithm 1. Experimental Setup.

1.INPUT ‘Comments.txt’

2.RUN ‘Sentiment_Analysis_Tool’ ON ‘Comments.txt’

3. OUTPUT ‘Sentiment_Scores.txt’

4.START time 

5 FOR Every Row in Sentiment_Score.txt DO 

6.  FOR Every Annotated Class DO 

7.   FOR Every Chosen Machine Learning Model DO 

8.    FOR 1 to 10 DO 

9.     STRATIFY CROSS-VALIDATION FOLDS Train and Test 10 times 

10.   END FOR 

11.  END FOR 

12. END FOR 

13.END FOR 

14.END time 

15.STORE accuracy, roc, precision, recall, f1 

16.time_taken = end time - start time 

17.OUTPUT data, class, model, mean accuracy, mean roc, mean precision, 
mean recall, mean f1, total time_taken INTO ‘Final_Values.txt’
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4.4 Experimental Design (Step 2)

The dataset for each of the experiments was created by concatenating the corresponding
24 fields columns of each set of sentiment analysis toolbox output. The observed clas-
sification or compound class is added as the final feature. Machine learning classifiers
were stratified over 10-fold 10 times to preserve the class ratios (1/10) in each training
and validation fold for the 70K + samples from the unbalanced dataset. A mean of the
metrics is then concatenated at the end for a comparison result. Finally, the Time taken
(in minutes) to run the entire Model × Data Feature × Class 10-fold cycle from start to
finish per record is recorded. This process is detailed in the Algorithm 1. The code is
available at: https://github.com/FuzzyLogic9/ECMLPKDD_IDIOT.git.

4.5 Machine Learning Model Selection (KDD Step 3 and Step 4)

Scores were observed on models commonly recommended for semantic and linguistic
sentiment analysis use cases namely; Logistic Regression (LR), Naive Bayes (NB), and
linear Support Vector Machines (SVM) by Kumar et al.’s Systemic Literature Review
[21]. Default parameters for the large data were applied on various machine learning
models so that all experiments were at an equal advantage. This was to reduce and poten-
tial bias from applying parameter optimization. Scikit-learn machine learning Python
libraries were used for the experiments [30].

5 Experimental Results, Evaluation and Discussion (Step 4)

The metrics used for comparison were: Accuracy, Precision, Recall, F1, ROC score, and
Time (Table 3). There was a final total of 392 different sets of results. On completion of
the entire set of results, at first instance it was obvious that multi-classes were producing
the better overall results, suggesting that creating a more intuitive class variable is a
better negative sentiment holistic detector (See Tables 4 and 5). Classes based on an
average of annotated scores per comment performed better than the class based on a
single “vote” (at least 1 of 10 annotators voting for a negative score). However, if there
are any incorrect annotations, these may have a significant bias on the class variables,
thus the motivation behind the creation of a compound (multi-class) variable.

Figures in shaded ‘ ’ cells within Tables 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 reflect
the best results per table.

Table 3. Header example of 392 records derived from the 10-fold cross validated runs of each of
the 8 classes for the 7 selected features and for each of the 7 machine learning models.

No Dataset Class Model Accuracy ROC Precision Recall F1 Time taken

1 A AC KN5 0.65 0.67 0.71 0.72 0.71 121.95

2 A AC NB 0.64 0.72 . . . .

https://github.com/FuzzyLogic9/ECMLPKDD_IDIOT.git
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The various metric readings are as follows and Tables 4 and 5 show howMulti-Class
Accuracies have fared better than all the others followed by average and combination
classes then single classes, apart from Multi-class averages.

Table 4. Aggregates of Multi-class accuracies vs the total of all the others indicates a better
average overall.

Multiclass 
Averages

No Yes

Accuracy 0.73 0.76
ROC 0.74 0.76
Precision 0.67 0.65
Recall 0.57 0.47
F1 0.60 0.51

Table 5. All metric averages for all classes.

Class Accuracy ROC Precision Recall F1
MC 0.84 0.79 0.71 0.35 0.47
ACA 0.79 0.77 0.63 0.46 0.51
TCA 0.79 0.77 0.61 0.49 0.52
AtCA 0.76 0.76 0.60 0.48 0.51
AC 0.69 0.73 0.73 0.68 0.70
TC 0.68 0.72 0.72 0.64 0.67
AtC 0.68 0.71 0.73 0.65 0.68
MCA 0.67 0.72 0.58 0.59 0.56

RQ1: Table 6 shows Toxicity, Aggression and Attacks single class trait average best
respectively, a close follow up is Attacks predicting Aggression average. Best F1metrics
was Aggression in Table 5.

RQ2: All four major combinations predict accuracy Aggression class average
equally and the best in Table 7 and it is a massive improvement of 10% combination of
traits:

Aggression and Attacks, Attacks and Toxicity and ALL considered;
and a humble improvement of 2% on the single trait of Attacks.
RQ3: The performance of Multi-class is 5% to 8% better than the Average classes

and 16% better than that of a single class. Multi-class average performs worst at 17%
on a total average but much more stable overall and performs at maximum on some
individual cases (See Tables 5, 8 and 9).

RQ4: Support Vector Machine classifiers worked (in terms of performance metrics)
most accurately as an average for all the traits in Table 8. Support Vector Machines as
seen in Table 9.

RQ5: Naive Bayes and K-Nearest Neighbour were less accurate over an average
over all the traits. SVCLINEAR performed best over per class as well. (Multiclass /
MultiClassAvg) and Gaussian NB was the poorest performer overall in Table 10.
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Table 6. Single classedmetric averages indicating each unique class best predicting its own class,
the best being at 0.83 (Toxicity predicting Toxicity Class Average).

D C Ac ROC P R F1
A AC 0.68 0.72 0.73 0.72 0.72
At AC 0.69 0.73 0.73 0.70 0.71
T AC 0.69 0.73 0.73 0.70 0.71
A ACA 0.82 0.77 0.69 0.46 0.54
At ACA 0.70 0.75 0.54 0.49 0.49
T ACA 0.68 0.73 0.54 0.48 0.48
A AtC 0.68 0.72 0.74 0.68 0.70
At AtC 0.65 0.71 0.72 0.68 0.69
T AtC 0.68 0.71 0.73 0.70 0.71
A AtCA 0.66 0.73 0.53 0.57 0.53
At AtCA 0.70 0.75 0.53 0.52 0.50
T AtCA 0.66 0.72 0.54 0.48 0.49
A TC 0.68 0.73 0.72 0.68 0.70
At TC 0.68 0.73 0.72 0.68 0.70
T TC 0.68 0.73 0.72 0.68 0.70
A TCA 0.67 0.74 0.53 0.58 0.54
At TCA 0.69 0.74 0.51 0.52 0.49
T TCA 0.83 0.78 0.62 0.48 0.53

Themost obvious conclusions from the readingswe have is that the open sourced and
massively used sentiment analysis toolboxes provided by Python and Java do not work
as well for Toxicity, as they do for Attacks and Aggression. Support Vector Machine’s
accuracy predictions are considerably good as seen in Table 11 albeit having the largest
overheads and taking the longest time. Finally, the accuracy readings over the different 7
class sets in Table 12 show generally improved accuracies on combining classes proving
that Multi-class aggregates do on an average perform better than single classes. Lastly,
the F1 readings over the different class sets show a slight improvement of over that of
those in Table 1 F1 performances from Karan et al.’s (2018) [19] experiment.
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Table 7. Combined classed metric averages indicating each unique class best predicting its own
class, the best being at 0.84 (AggAtt, AggTox, AttTox and ALL predicting Aggression Class
Average).

D C Ac ROC P R F1
AAt ACA 0.84 0.78 0.64 0.45 0.51
AT ACA 0.84 0.79 0.66 0.44 0.51
AtT ACA 0.84 0.79 0.66 0.44 0.51
AtT AtCA 0.84 0.78 0.67 0.44 0.52
ALL ACA 0.84 0.79 0.65 0.45 0.51
AT TCA 0.84 0.79 0.67 0.45 0.53
ALL TCA 0.83 0.79 0.66 0.46 0.52
AtT TCA 0.83 0.79 0.66 0.46 0.52
AAt AtCA 0.83 0.78 0.63 0.49 0.53
AT AtCA 0.83 0.78 0.67 0.43 0.51
AAt TCA 0.83 0.78 0.62 0.49 0.53
ALL AtCA 0.82 0.78 0.66 0.44 0.51
AT AC 0.69 0.72 0.73 0.64 0.67
AtT AC 0.69 0.72 0.73 0.64 0.67
ALL AC 0.69 0.72 0.73 0.64 0.67
AAt AC 0.69 0.73 0.73 0.70 0.71
AtT TC 0.69 0.72 0.72 0.61 0.65
AAt TC 0.69 0.71 0.72 0.61 0.65
AT TC 0.69 0.71 0.72 0.61 0.65
ALL TC 0.69 0.71 0.72 0.61 0.65
AAt AtC 0.68 0.71 0.73 0.63 0.66
AtT AtC 0.68 0.71 0.73 0.63 0.66
AT AtC 0.68 0.71 0.73 0.63 0.66
ALL AtC 0.68 0.71 0.73 0.63 0.66

Table 8. Best model performances over classes.

M C MaxAcc
SVCL MC/MCA 0.86
SVCG TC 0.86
LRl MC/AtCA 0.86
RF MC/MCA/ACA 0.86

RF6 MC/AtCA 0.86
ML3 MC/AtCA/ACA 0.86
KN5 MC/ACA 0.86
BNB MC 0.86
GNB ACA 0.84
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Table 9. Worst model performances over classes.

M C MinAcc
SVCL MCA 0.86
SVCG AtCA 0.79
LRl AtC/TC 0.66 / 0.68
RFC AC/TC/AtC 0.67 / 0.69
RF6 AC/TC/AtC 0.69
ML3 AC/TC/AtC 0.69
KN5 A/AtC 0.65
BNB MCA 0.81
GNB A/At 0.64 / 0.66

Table 10. Total Average model performances over all classes.

M Ac ROC P R F1
BNB 0.73 0.75 0.62 0.47 0.50
GNB 0.68 0.74 0.63 0.53 0.56
KN5 0.70 0.72 0.62 0.54 0.56
LRl 0.75 0.76 0.70 0.53 0.58

ML3 0.76 0.76 0.67 0.54 0.58
RF 0.71 0.75 0.64 0.52 0.56

RF6 0.75 0.76 0.67 0.54 0.58
SVCG 0.80 0.75 0.72 0.66 0.66
SVCL 0.80 0.72 0.74 0.44 0.52

Table 11. Total averagemetrics over all class performances, SVC being themost accurate overall.

M A AAt AT ALL At AtT T
BNB 0.65 0.67 0.82 0.78 0.68 0.83 0.68
GNB 0.63 0.73 0.73 0.72 0.58 0.73 0.61
KN5 0.65 0.76 0.76 0.76 0.60 0.76 0.63
LRl 0.66 0.78 0.77 0.78 0.74 0.78 0.74
ML3 0.72 0.77 0.78 0.78 0.74 0.78 0.73
RF 0.71 0.73 0.74 0.74 0.66 0.73 0.68
RF6 0.74 0.73 0.78 0.78 0.73 0.78 0.73

SVCG 0.78 0.82 0.81 0.81 0.77 0.82 0.79
SVCL 0.85 0.85 0.85 0.68 0.85 0.69 0.85
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Table 12. Average model accuracy performances of all the different classes.

M A AAt AT ALL At AtT T
BNB 0.65 0.67 0.82 0.78 0.68 0.83 0.68
GNB 0.63 0.73 0.73 0.72 0.58 0.73 0.61
KN5 0.65 0.76 0.76 0.76 0.60 0.76 0.63
LRl 0.66 0.78 0.77 0.78 0.74 0.78 0.74
ML3 0.72 0.77 0.78 0.78 0.74 0.78 0.73
RF 0.71 0.73 0.74 0.74 0.66 0.73 0.68
RF6 0.74 0.73 0.78 0.78 0.73 0.78 0.73

SVCG 0.78 0.82 0.81 0.81 0.77 0.82 0.79
SVCL 0.85 0.85 0.85 0.68 0.85 0.69 0.85

Table 13. Average model F1 performance of all classes.

M A AAt AT ALL At AtT T
BNB 0.44 0.45 0.60 0.58 0.43 0.59 0.43
GNB 0.54 0.58 0.58 0.58 0.53 0.58 0.55
KN5 0.54 0.59 0.58 0.58 0.53 0.59 0.53
LRl 0.65 0.59 0.58 0.58 0.54 0.59 0.55

ML3 0.54 0.60 0.60 0.60 0.57 0.60 0.57
RF 0.55 0.56 0.56 0.56 0.55 0.56 0.55

RF6 0.57 0.57 0.59 0.59 0.56 0.60 0.57
SVCG 0.74 0.64 0.59 0.59 0.73 0.59 0.74
SVCL 0.44 0.44 0.44 0.74 0.44 0.73 0.42

6 Conclusions

It is worth noting that the Karan et al.’s (2018) [19] experiment’s F1 measures of 0.70,
0.71, 0.75 reported from the literaturewithinTable 1 are comparable to the corresponding
F1 measures of 0.74, 0.73, 0.74 from this paper as shown in Table 13. The slightly
improved differences (apart fromToxicity) can be accounted for by considering the slight
variation in the number of records andmodel implementation limitations and differences
(packages used, parameters, etc.). The main findings showed that the open sourced
and massively used sentiment analysis toolboxes for the English language provided
by Python and Java work better for Attacking and Aggressive language, compared to
general Toxic language. Using a single class from a single toolbox does not perform
as reliably as Multi-class aggregates of the toolboxes which provide on average much-
improved performance results. Finally, Support Vector Machines take the longest time
and consume the largest overheads but give a much more reliable accuracy prediction.

7 Challenges

Identifiable challenges as discussed by Kumar, A. and Jaiswal, [21] in ‘ Systemic lit-
erature review of sentiment analysis on Twitter using soft computing techniques’, are
mostly to do with context behind the language such as; multiple racial or homophobic
slurs, racism, sarcasm and irony detection, slang, different mixed up languages within
a word or a sentence, the same word having two difference meanings depending on the
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text origin or user’s native slang perchance, multi-modal inferences, misclassification
of words and their meanings. Other challenges include mining, analyzing and classi-
fying sentiments directly from web data is challenging as effective feature selection is
computationally hard. The tools and software are useable and affordable only by orga-
nizations (both private and government) but currently unavailable to generic users for
assisting intelligent and personalized data analysis. Most of the work in the field of SA
majorly ponders on polarity detection and classification. Analyzing negated expressions
and man-made words and expressions for such informal and mashed-up web content
has become altogether a very challenging task in the area of sentiment analysis.

As such, hate detection models can be used to flag comments for human moderation,
following the human-in-the-loop paradigm [17] as even the best model struggles in
“boundary cases”where also a humanwould struggle to determine if a comment is hateful
or not (e.g., when more contextual information is needed to judge) as the performance of
hate detection models deteriorates over time. Automatic hate speech detection systems
need to keep up the changing of attitudes towards topics over time and historical context
as well. A situation similar to the statues standing for hundreds of years now deemed
offensive since the #BlackLivesMatter movement and thus recently taken down. Another
remaining challenge is that automatic hate speech detection needs a closed-loop system;
individuals are aware that it is happening, and actively try to evade detection and find
loopholes, thus a regular feedback in the system is mandatory.

The haters will, of course, keep trying till the end of time itself. Given all the chal-
lenges that remain, there is a need formore research on this problemwithin both technical
and practical matters constantly and ubiquitously.

8 Future Work

Research still needs more unique solutions to counteract the actual spread of online harm
and understand its taxonomy in depth [41]. Today there are many projects, hunting down
and mitigating hate (Hatebase since 2013) [14], or provide a positive mental well-being
(Kooth, 2021) [20], via empathic technology; which is a beautiful use ofmachines aiding
humans and towards which the aim of this particular research is: to contribute towards
detecting and insightfully arbitrating hate speech. This is still an extremely challenging
task as the literature reviews and journal publishing show. Hate-speech really should
be flagged like spam, and can be used not only by social media platforms, but also
law enforcement agencies, consulates, or the Home Office and businesses and academic
administration offices.

Aspect [37] and context-based sentiment analysis research [22] avenues lead to a
clearer and better understanding of the intent in any comment, for marketing (opinion
mining) and crime-solving [11] and as suggested in the introduction, more focus to
prevent unnecessary social media instigated death in the form of suicide and genocide.

Sequential Pattern Mining techniques for predicting hate-speech path trends within
forum based social media discussions will also be used to harness a possibility of a viral
hateful trajectory incitement prediction by following the pattern along the timeline like
Olteanu, A. et al. [26] and Paul, D. et al’s election study [29]. The next step with this
research intended here is to use Markov Chains models to assess the when combined
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features aggregate scores begin to peak, implying a conversation to be getting more
inciteful. The direction of this research will be to focus on using Sequential Pattern
Mining techniques for predicting hate-speech path trends within forum based social
media discussions will also be used to harness a possibility of a viral harmful trajectory
prediction by following patterns of time scale using temporal abstraction. A similar
approach was also used to study the communication flow to understand how evaluated
politeness, sentiment and emotions of comments posted by the developer interacted in
the presence of impolite and negative comments (and vice versa) [26, 28]. The time data
(UTC) within the present chosen datasets will be used to harness a possibility of a viral
harmful trajectory prediction by following patterns of time scale.

Röttger, P et al. (2021) [35] have also introduced HateCheck, https://hatecheck.ai/; a
suite providing extremely reliable functional tests for hate speech detection models pro-
viding 29 model functionalities, covering 11 languages; motivated by a complete review
of previous hate speech research considering both practical and academic applications
of hate speech detection models and a series of interviews with civil society stakehold-
ers [35, 41]. Using the above model samples and research direction, the aim will be
to improve the scoring received on the Wikipedia Assertive, Aggression and Toxicity
datasets using open sources toolboxes, the results of which have been demonstrated
above.

Using a hybrid accurate classifier, with a more holistic approach of a quick surface
pre-sifted multi-class selection, (initial trial review pilot test run using the sentiment
toolboxes presented here) we may be able interpret Toxicity more accurately. Thus, the
next step in this experiment of combining the findings of the results in Table 12 of
using multi-classes and combination feature traits, in conjunction with a transformer
model, such as BERT-based (Bidirectional Encoder Representations from Transformers
developed at Google in 2018) [9, 46], to finetune a pre-trained transformer similar to
HateBERT and DistilBERT models [4, 36] on a dynamically generated hate dataset and
evaluating on comparison against the best scoring HateCheck benchmark.

The final hybrid research hypothesis is then to test the speed of trajectory detection
and mitigation of a particular aggressive, attacking and toxic stance. The underlying
weaponised nuance of that online harmful speech would be finally tested on a live
comment text data block online, and moderated using congruent communication over
apt counter-speech. Thus, web scraping technology and live data testing to detect and
police a sinister trajectory is also part of the future plans.
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Workshop on New Frontiers in Mining
Complex Patterns (NFMCP 2022)



New Frontiers in Mining Complex Patterns
(NFMCP 2022)

The analysis of complex data represents the new frontier in data mining and knowledge
discovery. There are several emerging technologies and applications where complex
patterns can be extracted: examples are blogs, event or log data, medical data, spatio-
temporal data, social networks, mobility data, sensor data, and streams. The abundance,
variety, and velocity of data pose new challenges which can’t be easily resolved with
traditional data mining techniques. This asks for new contributions which allow for
efficiently identifying patterns and enable effective decision making.

The Tenth International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2022) was held in Grenoble in conjunction with the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2022) on September 19, 2022. It was aimed at bringing together
researchers and practitioners of data mining and knowledge discovery interested in the
advances and latest developments in mining complex data. The workshop is estab-
lishing itself as a premier event with this goal.

The workshop received 15 submitted papers, of which seven papers were accepted
for presentation at the workshop. These papers went through a rigorous review process
in which each paper was reviewed by at least three reviewers in a single-blind manner.
The individual contributions illustrate advanced data mining techniques which preserve
the informative richness of complex data and allow for efficient and effective identi-
fication of complex information units present in such data.

We would like to thank all the authors who submitted papers for publication and all
the workshop participants and speakers. We are also grateful to the members of the
Program Committee for their excellent work in reviewing submitted and revised
contributions with expertise and patience. A special thanks is due to both the ECML-
PKDD workshop chairs and the ECML-PKDD organizers who made the event pos-
sible. We would like to acknowledge the support of the Apulia Region through the
REFIN project “Metodi per l’ottimizzazione delle reti di distribuzione di energia e per
la pianificazione di interventi manutentivi ed evolutivi” (CUP H94I20000410008,
Grant no. 7EDD092A).
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Multi-modal Terminology Management

Corpora, Data Models, and Implementations in TermStar

Enrico Giai(B), Nicola Poeta, and David Turnbull

STAR7, S.p.A., Alessandria, Italy
enrico.giai@star-7.com

Abstract. Terminology is a key part of the translation process. Nonetheless, the
benefits of implementing a terminology management workflow using specialist
tools and processes is sometimes disregarded, as the benefits in terms of ROI
are not always easy to evaluate. As a result, the use of spreadsheets and other
inappropriate tools leads to fragmented and inefficient terminology management
processes.

In this paperwe set out to describe an efficient terminologymanagementwork-
flow which has been developed for real terminology projects. We will also assess
the benefits of implementing a proper terminology management workflow where
all stakeholders (terminologists, linguists, authors, and end users) are involved.
Wewill highlight the benefits of using a TerminologyManagement System (TMS)
such as TermStar, which can make use of parallel corpora and collaboration func-
tions to streamline the entire process, from terminological extraction to glossary
approval and maintenance.

Keywords: Terminology management · TMS

1 Introduction

Computer-Assisted Translation (CAT) has been at the core of the localisation industry
for over three decades. Using CAT tools, linguists can translate more efficiently thanks
to Translation Memory (TM) suggestions: CAT tools can leverage TMs to pre-translate
content that has been translated in the past or offer ‘fuzzy match’ suggestions for similar
source texts. Consequently, texts translated using a CAT tool are usually more consistent
and can be delivered in less time.

While the importance of TMs in terms of quality assurance and economic profit is
self-explanatory and can easily be calculated, the added value of setting up a TermBase
(TB) is not always evident.

A TB can be defined a “a database comprising information about special language
concepts and terms designated to represent these concepts, along with associated con-
ceptual, term-related, and administrative information.” [3]. This definition is based on
the strict definition of ‘term’ as being “an expression that designates a particular concept
within a given subject field” [9]. As such, it comes as no surprise that assessing the
benefits of investing in terminological work is a hard task: not all organisations make
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use of highly specialised terminology in their texts, especially in the case of marketing
and e-commerce, where the need for technical terminology is scarce.

In this context, the concept of ‘termhood’ (i.e., the degree to which a term is justified
being included in a TB [10]) can be broadened to include a range of words that are vital
to corporate communication, despite not being part of a specialised language. Thesemay
include product names, organisation and entity names, slogans, frequently used words,
or words that appear in sensitive contexts, to name just a few.

Another pain point is the format in which the TB is presented. Commonly, termino-
logical entries are not stored in specialised Terminology Management Systems (TMSs);
rather, they are collected in text document lists or in spreadsheets, at best. This is a great
obstacle when it comes to organising and sharing terminological assets.

At STAR7 we are aware of the value of a well-structured, centralised TB. Ideally,
this can be accessed by all stakeholders in different modes. STAR Group’s TermStar has
been acknowledged as a TMS that can meet the needs of everyone in the information
lifecycle: terminologists, who can take advantage of the highly customisable data model;
linguists, who can use TermStar in STAR’s CAT tool Transit to have morphology-
based term suggestions and use the right terms for each context; authors, who can use
TermStar in their authoring tool; and clients, who can access the terminology online via
WebTerm – STAR7’s solution for online terminology management.

In this paper, we will present STAR7’s terminology management workflows and
tools aimed at extracting terminology from bilingual corpora, adapting our data models
to best fit each term entry, and facilitating the validation and distribution processes for
all stakeholders.

2 Related Work

The importance of Terminology Management has been clear since the early days of
modern terminology studies as pioneered byWüster [14]. The onomasiological approach
is still a founding pillar of terminology work, and data models in terminography have
been shaped to accommodate this concept [10, 11].

While these assumptions are still valid, in recent years the focus has shifted towards
a more pragmatic approach. The role of the Corporate Terminologist [11] has surged,
and a question has been raised with it: what is a term in a corporate context?

Warburton [10] broadens Pavel’s definition [6] of term to “any lexical unit that might
help a potential consumer of the termbase”. The Terminology for Large Organizations
Consortium (TerminOrgs) builds on that by stating:

“To support the communicative aims of large organisations, the notion of a ‘term’
extends beyond the conventional view to include any expression that, if it is managed
according to the methods outlined in this document, brings some benefit to the organi-
zation such as improved communication and reduced translation costs. This includes,
sometimes, words from general language, marketing slogans, short sentence fragments,
and so forth.” [9].

Lexicology and its lexicographic applications have developed significantly over
recent decades [4], thanks to corpus research [8] and increasingly powerful technology.
However, terminologymanagement in CAT tools often plays second fiddle to translation
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memory management. Terminology can be confined to easy to use but poorly organised
TBs. Specialised terminology is often considered monosemic, but even the most specific
term needs contextual details. Technology can offer suitable solutions, such as structured
entries, examples, definitions and images.

Despite the high number of TMSs available, not all of them are flexible enough to
allow the end user to harness the benefits of the system, especially when used with a
CAT tool [5]. TermStar has been praised for its highly customisable data model, which
can be adapted to the glossary’s needs and even used for lexicography work [7].

3 Methodology

While previous literature on the topic has been the basis for our enquiry, the findings
shown in this paper are the result of processes developed empirically over the years
while working on actual terminology projects. These involved several different domains,
including automotive and agriculture, luxury and fashion, finance and banking, sport
and fitness, and pharma. Overall, STAR7 manages over 400 termbases in TermStar and
150 termbases in other TMSs, counting more than 200,000 data records ranging from
bilingual to 36-language entries.

Text types also vary accordingly: owner’s manuals, service manuals, marketing
leaflets, product catalogues, websites, financial reports, and many other text types were
used as source texts in the terminology extraction process.

Despite the different nature of these contents, the workflows described in this paper
can still be considered valid. The process has been validated internally and well received
by all stakeholders. Improvements have been made based on clients’ and linguists’
feedback.

We have identified five steps which contribute to successfully completing a
terminology project. These are described in further detail in the next chapter.

4 Results

4.1 Preliminary Analysis

The first step consists of analysing the scope of the project. This can be done by
considering the elements listed below with their reasoning:

– Domain: Each domain has its own lexicon and specialised terminology. Determining
the domain helps in limiting the scope of the project.

– Text type: Identifying the text type helps in setting the termhood level for the project.
The termhood bar for technical documentationmight be higher than that formarketing
material.

– Languages: Helps in identifying the number of language resources to be involved in
the project.

– Budget & Timeframe: Budget is key in determining the resources that can be spent
on glossary creation in terms of number of records and data granularity.
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– Reference material: Parallel corpora facilitate the terminology extraction process,
enabling linguists to extract terms that are actually in use. When not available, open-
source corpora can be used. Existing glossaries can also be used as a basis for the
terminology work.

– Final audience: Considering the end users is key to understanding how the glossary is
to be published. If the glossary is for linguists, it can be implemented in a CAT tool;
if the end user is the client, it can be published online.

4.2 Data Model Setup

Once the project scope is clear, the next step is to understand which data model to
adopt. TermStar offers a high level of customisation – the result of lexicography and
terminography studies.

A TermStar terminological card follows the traditional onomasiological approach,
in that each card represents a single concept. However, TermStar’s data record structure
allows for a deeper level of content organisation: each term can have sub-entries defined
as abbreviations, synonyms, irregular forms, alternatives and disallowed terms (Fig. 1).

Fig. 1. TermStar data model

This approach is deeply embedded into Transit, whose morphological search capa-
bilities makes it possible for terms to be recognised in texts even if they appear declined
or conjugated, while being classified in their base form in the glossary.

In addition, each language entry can be classified using a number of different
attributes, including status, data source, definition, definition source, gender, remark,
subject, part of speech, and many others. This level of detail is particularly useful to
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clarify the use of homographs or to distinguish term use based on context (e.g., one term
should be used in technical documents and another in marketing texts). Pictures can also
be inserted to better clarify complex terms (Fig. 2).

Fig. 2. TermStar data record sample

4.3 Terminology Extraction

The terminology extraction step is the most time-consuming part of the process. It can
be divided into three steps: (1) source term and (2) target term extraction; and (3) term
tagging and consolidation.

Based on budget and time constraints, the terminologist can agree with the customer
the number of terms to be extracted and the level of additional information that can be
collected.

Despite the number of (semi-)automatic terminology extraction tools on the market,
their effectiveness is still far from satisfactory. Most tools are based on frequency and
stop-words rules, and even if contexts are offered for each candidate term, the risk of
not grasping the correct context or not considering a term in its entirety is high.

For these reasons, source term extraction is usually performed manually, by reading
the source texts in their entirety and extracting terms in the process. For us, this is the
most effective approach, since terms are not extracted in isolation, but directly from the
texts. This also makes it easier to collect context and usage notes.
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The whole process takes place in the CAT tool: the terminologist can import source
files and create an empty termbase, which will be used for the entire workflow. Terms
will be added to the TB, which can be configured to ease the work of the terminologist
(e.g., by setting input verification rules to maintain consistency in the attributes used for
each label).

While reading the texts and extracting source terms, the terminologist is able to fine-
tune the termhood level and get the most out of the source material. The following table
lists possible terms that can be included in a selection of domains (Table 1).

Table 1. Possible terms in a glossary based on selected domains

Domain/text type Candidate terms

Luxury & Fashion Product names, colour names, taglines

Law/Finance & Banking Law names, entity and body names

Corporate communication Division names, corporate role names

IT & Software Button names, menu items

Technical documentation Acronyms, abbreviated forms, technology names

Once the source terms have been extracted, the CAT tool can be used to leverage
existing parallel corpora (TMs) to facilitate the work of translators. Linguists will be
able to run ‘concordance searches’ to look up source terms in the TM and get a list of
already translated sentences. From there, translators can extract any matching term in
the target language and insert it in the data record in just a few clicks.

4.4 Terminology Validation

Once the glossary is completed, the validation step can take place. This is an essential
part of the workflow: without subject-matter expert validation, the glossary cannot be
considered as complete.

Usually, validation is performed by clients, or by different client branches around the
world. Performing such a task in a spreadsheet would not be efficient. For this reason,
STAR7 offers clients a terminology validation process in WebTerm – TermStar’s web
interface. With it, clients are able to see the glossary without the need for a TMS and
can easily add comments and suggestions that can be read by the terminologist and
implemented in real time.

WebTerm can also be offered in ‘read and write mode’, meaning that clients can
make changes directly in each data record and changes are immediately available for all
stakeholders (Fig. 3).
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Fig. 3. WebTerm7 comment function

At the end of the validation step, any ‘status’ metadata associated with approved
terms should be updated consequently.

4.5 Termbase Deployment and Update

Finally, the termbase can be deployed to all stakeholders. When using STAR7’s
technologies, the TermStar TB can be accessed during the entire information lifecycle:

• Technical authors using selected authoring tools can connect to the TermStar database,
or look up terms in WebTerm;

• Linguists using Transit as their CAT tool have direct access to TermStar;
• Clients and reviewers using WebTerm can look up terms, insert comments, make
terminology requests, or even edit data records.

Terminology is never static, but it constantly evolves. Technological changes in
technical texts, new products launched in marketing material, and changes in term use
and preferences should be all recorded as updates in the termbase. For this reason, it
is vital to plan a TB update schedule that, based on the available budget and expected
workloads, can either be triggered for each new project, for any project which may be
particularly important or belonging to a new domain, or on a monthly/half-yearly basis.

5 Conclusion

In this paper we have described in detail a standardised process for implementing a ter-
minology workflow for all use cases. A glossary shared among all stakeholders (clients,
authors, linguists, reviewers, etc.) is beneficial in terms of:

• consistency, as a centralised termbase helps to reduce the use of variants;
• prescription, as non-allowed words can be noted;
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• time, as linguists can look up terms in a single source instead of multiple, often
unreliable sources;

• overall quality, as the corporate terminology will be used instead of general words.

That said, quantifying the benefits in terms of time and money is difficult, as not
all texts may contain the terms mapped in the glossary. General productivity can also
depend on external factors such as TM quality and linguists’ experience and know-how
in the subject.

Nonetheless, implementing a terminologymanagement process is still widely recog-
nised as important. We would point out that the fundamental research performed during
the TermStar project has laid the basis for further projects within the group. An example
of this is the StarPrinting project that took advantage of the new terminology manage-
ment techniques for performing further research on user profiling, with the crucial goal
of providing a new and better printing and delivery experience to users.

References

1. Cruse, D.A.: Lexical Semantics. Cambridge University Press, Cambridge (1986)
2. ISO 12616–1:2021: Terminology work in support of multilingual communication—Part 1:

Fundamentals of translation-oriented terminography
3. ISO 30042:2019: Management of terminology resources—TermBase eXchange (TBX)
4. Landau, S.: Dictionaries: The Art and Craft of Lexicography, 2nd edn. Cambridge University

Press, Cambridge (2001)
5. Magris,M.,Musacchio,M.T., Rega, L., Scarpa, F.:ManualeDi Terminologia: Aspetti Teorici,

Metodologici E Applicative. Ulrico Hoepli Editore, Milano (2017)
6. Pavel, S., Nolet, D.: Handbook of Terminology. Minister of Public Works and Government

Services Canada, Ottawa (2001)
7. Poeta, N.: Terminologia, corpora e contesto negli strumenti di traduzione assistita. In: Collesi,

P., Serpente, A., Zanola, M. T.: Terminologie e ontologie. Definizioni e comunicazione fra
norma e uso, pp. 87–94. EDUCatt, Milano (2013)

8. Sinclair, J. (ed.): Corpus, Concordance, Collocation. Oxford University Press, Oxford (1991)
9. TerminOrgs.: Terminology Starter Guide. http://www.terminorgs.net/. Accessed 26 Jul 2022
10. Warburton, K.: A practical approach to terminology: developing lexical resources for

companies. http://www.ccaps.net/blog/lets-talk-terminology/. Accessed 27 Jul 2022
11. Warburton, K.: TheCorporate Terminologist. JohnBenjamins PublishingCompany, Philadel-

phia (2021)
12. Wright, S.E.: Data categories for terminology management. In: Wright, S.E., Budin, G.:

Handbook of Terminology Management, vol. 2, pp. 552–571. John Benjamins Publishing
Company, Philadelphia (2001)

13. Wright, S.E.: Terminology management entry structures. In: Wright, S.E., Budin, G.: Hand-
bookofTerminologyManagement, vol. 2, pp. 572–599. JohnBenjaminsPublishingCompany,
Philadelphia (2001)

14. Wüster, E.: The Machine Tool – An Interlingual Dictionary of Basic Concepts, Comprising
an Alphabetical Dictionary and a Classified Vocabulary with Definitions and Illustrations.
Technical Press, London (1968)

http://www.terminorgs.net/
http://www.ccaps.net/blog/lets-talk-terminology/


Cluster Algorithm for Social Choice

Emanuele d’Ajello, Davide Formica, Elio Masciari, Gaia Mattia,
Arianna Anniciello(B), Cristina Moscariello, Stefano Quintarelli,

and Davide Zaccarella

The 10th Edition of the Workshop New Frontiers in Mining Complex Patterns
(NFMCP) in Conjunction with the European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD
2022), Grenoble, France

ariannaanniciello@gmail.com

Abstract. In order to overcome the classical methods of judgement, in
the literature there is a lot of material about different methodology and
their intrinsic limitations. One of the most relevant modern model to
deal with votation system dynamics is the Majority Judgement.

It was created with the aim of reducing polarization of the electorate
in modern democracies and not to alienate minorities, thanks to its use
of a highest median rule, producing more informative results than the
existing alternatives. Nonetheless, as shown in the literature, in the case
of multiwinner elections it can lead to scenarios in which minorities,
albeit numerous, are not adequately represented.

For this reason our aim is to implement a clustered version of this
algorithm, in order to mitigate these disadvantages: it creates clusters
taking into account the similarity between the expressed judgements and
then for, each of these created groups, Majority Judgement rule is applied
to return a ranking over the set of candidates. These traits make the
algorithm available for applications in different areas of interest in which
a decisional process is involved.

Keywords: Decision making · Social choice · Cluster · Majority
judgement · K-Medoids

1 Introduction

Voting rules are different and behave differently according to their limitations
or sometimes paradoxal traits. Asking for a more inclusive democracy also rep-
resents a modern citizens’ quest, but what does exactly it mean? First of all,
we want to underline why a majority voting system embodies the best option
between the classical judgement methods.

Consider three agents who express their binary judgement (“Yes” or “No”)
for two statements A, B, A ∧ B and A ←→ B. Premised-based rule take majority
decisions on A and B and then infers conclusions on the other two propositions.

As shown in the Table 1, results are quite different based on the used rule.
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We now focus on Agent 2 case: he’s represented in just one of the single
proposition (A), and his judgement doesn’t agree with the outcome, in the other
cases. So, a huge liability of this model could appear: Agent 2 could think about
manipulating the outcome, pretending a disagreement for A. The premised model
reacts by providing as final outcome on 3 agents’ votation a “No” for both A ∧
B and A ←→ B, as originally expressed by Agent 2.

Table 1. Three agent case of voting

A B A ∧ B A ←→ B

Agent 1 Yes Yes Yes Yes

Agent 2 Yes No No No

Agent 3 No Yes No No

Premised rule Yes Yes Yes Yes

Majority Yes Yes No No

In such a way, a strategical approach on voting could lead to a deviation
effect, providing as result the best tricker’s choice.

Looking at the table, we can also highlight another paradoxal aspect: consid-
ering majority-based outcome, the latest two propositions are inconsistent with
“Yes” value assigned to both A and B.

This is known as discursive dilemma and deals with inconsistency problem
in judgement aggregation based on majority rule [10].

Both premised and majority rule present drawbacks, but the latter has one
important feature: it doesn’t suffer from deficiency shown by the first, so that,
if an Agent care about the number of propositions agreeing with his own judge-
ment, then it is always in his best interest to report his true preference. For
this reason we focus our attention on majority rule as a transparent asset in
decisional process, while trying to deal with its intrinsic problems related to
judgement aggregation [11].

Our attempt is not aimed to solve above-mentioned dilemma, rather join-
ing a more refined majority rule (Majority Judgement) with cluster approach’s
advantages in aggregating similar patterns.

2 Majority Judgement

2.1 Formal Aspects

To introduce social choice theory formally, consider a simple decision problem:
a collective choice between two alternatives. The first involves imposing some
‘procedural’ requirements on the relationship between individual votes and social
decisions and showing that majority rule is the only aggregation rule satisfying
them. May (1952) [9,32] introduced four such requirements for majority voting
rule must satisfies:
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– Universal domain: the domain of admissible inputs of the aggregation rule
consists of all logically possible profiles of votes < v1, v2, ..., vn >, where each
vi ∈ [−1, 1] (to cope with any level of ‘pluralism’ in its inputs);

– Anonimity: applying any kind of permutation on individual preferences does
not affect the outcome (to treat all voters equally), i.e.,

f(v1, v2, ..., vn) = f(w1, w2, ..., wn) (1)

– Neutrality: each alternative has the same weight and for any admissible
profile < v1, v2, ..., vn >, if the votes for the two alternatives are reversed,
the social decision is reversed too (to treat all alternatives equally), i.e.

f(−v1,−v2, ...,−vn) = −f(v1, v2, ..., vn) (2)

– Positive responsiveness: For any admissible profile <v1, v2, ..., vn>, if some
voters change their votes in favour of one alternative (say the first) and all
other votes remain the same, the social decision does not change in the oppo-
site direction; if the social decision was a tie prior to the change, the tie is
broken in the direction of the change, i.e., if [wi > vi for some i and wj = vj
for all other j] and f(v1, v2, ..., vn) = 0 or 1, then f(w1, w2, ..., wn) = 1.

The May theorem (Theorem: “An aggregation rule satisfies universal domain,
anonymity, neutrality, and positive responsiveness if and only if it is majority
rule”) provides an argument for the majority rule based on four plausible pro-
cedural desires and the theorem helps us characterize other aggregation rules in
terms of which desiderata they violate.

But that’s with regards to binary choice. Now, we consider a set N =
[1, 2, ..., n] of individuals (n ≥ 2). Let X = [x, y, z, ...] be a set of social alter-
natives, for example possible policy platforms, election candidates, or other [8].
Each individual i ∈ N has a preference ordering Ri over these alternatives that
rapresents a complete and transitive binary relation on X. For any x, y ∈ X,
xRiy means that individual i weakly prefers x to y. We write xPiy if xRiy and
not yRix (‘individual i strictly prefers x to y’), and xIiy if xRiy and yRix (‘indi-
vidual i is indifferent between x and y’). But we must specify that at the heart
of social choice theory is the analysis of preference aggregation [33], understood
as the aggregation of several individuals’ preference rankings of two or more
social alternatives into a single, collective preference ranking (or choice) over
these alternatives [7]. In case of many successful alternatives, we need a more
sophisticated model to deal with preferences’ aggregation [6]. A multi-winner
election (V,C,F,k) is defined by a set of voters V expressing preferences over a
number of candidates C, and then a voting rule F returns a subset of size k win-
ning candidates. A voting rule can perform its role on different types of ordered
preferences, even though the most common refers to a pre-fixed linear order on
the alternatives. In most of cases, these are chosen a priori.

Formally we denote set of judgements performed by the i-th voter as profile
preferences Pi. Each profile contains information about the grade of candidates
by voters. The voting rule F associates with every profile P a non-empty subset
of winning candidates.
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In multi-winner elections more precise traits are required, compared to the
ones stated in May’s theory [12]. Indeed:

– Representation: for each partition of voters

Vi ∈ V (with |Vi| ≥
⌊n

k

⌋)
(3)

at least one successful candidate is elected from that partition;
– Proportionality: for each partition of voters

Vi ∈ V (with |Vi| ≥
⌊n

k

⌋)
(4)

number of elected candidate is proportional to the partition’s size.

An implicit assumption so far has been that preferences are ordinal and not
interpersonally comparable: preference orderings contain no information about
each individual’s strength or about how to compare different individuals’ pref-
erences with one another. Statements such as ‘Individual 1 prefers alternative
x more than Individual 2 prefers alternative y’ or ‘Individual l prefers a switch
from x to y more than Individual 2 prefers a switch from x* to y*’ are consid-
ered meaningless. In voting contexts, this assumption may be plausible, but in
welfare-evaluation contexts-when a social planner seeks to rank different social
alternatives in an order of social welfare-the use of richer information may be
justified.

2.2 Single-Winner Majority Judgement

In order to describe the majority judgement, we need to use a table that refers to
ranking for all the candidates C, by using tuples [5]. Suppose having six possible
choices we may use the words: excellent, very good, good, discrete, bad, very bad.

So each candidate is described by a bounded set of vote.
In general, letting α = (α1, α2, ..., αn) be a candidate A’s set of n grades

(written from highest to lowest, αi ≥ αi+1 for all i), there is a majority of (at
least) n − k + 1 for n A’s grade to beat most αk and at least αn−k+1, for all
1 ≤ k ≤ (n+1)

2 . We call this the (n-k+1) - majority for [αk , αn−k+1].
As already mentioned any possible ranking tuple that we choose to describe

must follow ordering relations.
So the ranking should respect domination: namely, evaluate one candidate

above another when that candidate’s grades dominate the other’s.
The described majority judgement is a single winner system, found comparing

recursively median grade between candidates: first, grades are ordered in columns
from the highest to the lowest according to the order relation, then the middle
column (lower middle if number of grades are even) with the highest grade
between candidates’row is selected. If there’s a tie, algorithm keeps on discarding
grades equal in value to the shared median, until one of the tied candidate is
found to have the highest median (Fig. 1). Before describing how it’s possible to
generalize this single winner system to a multi winner strategy, thanks to the use
of clusters, we focus our attention on how these works, analyzing in particular
K-medoids.
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Fig. 1. Example with 5 grades, between the dashed lines it’s reported the median
grade. Highest occurrences in “Good” determines the winner.

3 Clustering Approach

3.1 How Clusters Work

There’s no precise definition of clustering, mostly due to the huge variety in
different clustering algorithms. We can state that they share the ability to divide
data into groups with some common features. According to some general traits,
we can distinguish types of clustering:

1. Connectivity models: data points in a sample space exhibits similarity
according to the distance between them. Two approaches are equally valid:
bottom-up where each observation constitutes a group and then pairs of clus-
ters are merged; top-down, where observation are included in one cluster and
then it’s segregated; but in both approaches is not included the possibility of
modifying a cluster once created;

2. Distribution models: once created a cluster, model check probabilities
on observations following a particular distribution. Good performances are not
always guaranteed since these models are prone to overfit data if no constraint
on complexity is made;

3. Density models: areas of higher density are identified and local cluster are
there created, while remaining data can be grouped into arbitrary shaped region,
with no assumption about da ta distribution; for their flexibility, these models
are fit to handle noise better than organizing data on fixed required body.

Since we would like to model clusters that satisfy requirements expressed
before, based on pretty fixed structure with no assumption about distribution
followed by data, it seems more accurate considering a different class of clustering
algorithm known as centroid models.

3.2 K-Medoids

Clustering is the process of grouping a set of objects in order to have each similar
object to each other in one cluster, that are dissimilar to objects in other clusters.

For our goal, namely selecting winners from a group of candidates, K-medoids
clustering are used, because medoids are the representative objects that are
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considered, in order to have a result that belongs to the group of candidates: it
is based on the most centrally located object in a cluster, so it is less sensitive to
outliers in comparison with the K-means clustering, which is not the best model
in our case since it could result in something that is not present in the candidate
list due to the fact that is an average-based method rather than median. In
fact, the medoid is a data point (unlike the centroid) which has the least total
distance to the other members of its cluster.

Another advantage for this choice is that the mean of the data points is a
measure that gets highly affected by the extreme points; so, in K-Means algo-
rithm, the centroid may get shifted to a wrong position and hence result in
incorrect clustering if the data has outliers because then other points will move
away from. On the contrary, the K-Medoids algorithm is the most central ele-
ment of the cluster, such that its distance from other points is minimum. Thus,
K-Medoids algorithm is more robust to outliers and noise than K-Means algo-
rithm.

The K-medoid we use is part of the python sklearn library [13], which is
oriented to machine learning. This library supports partitioning around medoids
(PAM) [2] proposed by Kaufman and Rousseeuw (1990), that is known to be
most powerful. The workflow of PAM is described below [1].

The PAM procedure consists of two phases: BUILD and SWAP :

– In the BUILD phase, primary clustering is performed, during which k objects
are successively selected as medoids.

– The SWAP phase is an iterative process in which the algorithm makes
attempts to improve some of the medoids. At each iteration of the algorithm,
a pair is selected (medoid and non-medoid) such that replacing the medoid
with a non-medoid object gives the best value of the objective function (the
sum of the distances from each object to the nearest medoid). The procedure
for changing the set of medoids is repeated as long as there is a possibility of
improving the value of the objective function.

Suppose that n objects having p variables each should be grouped into k (k < n)
clusters, where k is known. Let us define j-th variable of object i as Xij (i =
1, ..., n; j = 1, ..., p). As a dissimilarity measure is used the Euclidean distance,
that is defined, between object i and object j, by:

dij =

√√√√
p∑

a=1

(Xia − Xja)2 (5)

where i and j range from 1 to n. The medoids is selected in this way:

– calculate the Euclidean distance between every pair of all objects;
– calculate vj =

∑n
i=1

dij∑n
l=1 dil

;
– sort all vj for j = 1, ..., n in ascending order and select the first k object that

have smallest initial medoids value;
– from each object to the nearest medoid we can obtain the initial cluster result;
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– calculate the sum of distances from all objects to their medoids;
– update the current medoid in each cluster by replacing with the new medoid,

selected minimizing the total distance from a certain object to other objects
in its cluster;

– assign each object to the nearest medoid and obtain the cluster result;
– calculate the sum of distance from all objects to their medoids, so if the sum

is equal to the previous one, then stop the algorithm; otherwise, go back to
the update step.

In our case, prior knowledge about the number of winners is required, and iden-
tified clusters are restricted in minimum size that is number of voters on the
number of candidates (nk ).

3.3 Clustered Majority Judgement

Multi winner majority judgement exploits clustering approach to apply to each
group majority judgement [4]. Given k the number of candidates to be elected,
algorithm seeks the optimal number of cluster to create.

This ranges from 1 to k and has to satisfy an important additional require-
ment: once selected a number of clusters, if a tie occurs and so k’ vacant seats are
left, algorithm is repeated k’ times until tie’s broken. In case there’s no broken
tie, fixed number of cluster is changed.

3.4 Algorithm

In order to explain how the algorithm deals with polarization problem, most
relevant steps are described in pseudocode and in annotated strides:

1. set the number of winners as maximum number of clusters;
2. cluster are created decreasing the previous maximum number of clusters until

the optimal number is not achieved. This number is bound by the size of
cluster, that satisfies the following proportion: number of voters : number of
winners = number of voters in one cluster : one winner (line 8 in pseudocode);

3. the function winners calculates the median for every created cluster (line 15
of pseudocode);

4. check that winners from cluster are different between each other (line 29 in
pseudocode); in case it’s not true (condition=“ko” on pseudocode) algorithm
goes back to step 2 with a maximum number of cluster equal to number of
vacant seats and the proceedings are held until all seats have been filled.
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Algorithm 1
Require: k ≥ 0
Ensure: n winners = (n1, ..., nk), k > 1

k ← number winners
max cluster ← k
condition ← “ko′′

while condition = “ko′′ do
cluster list ← cluster(vote list)
for all list cluster do

winners per cluster ← compute winners(cluster)
all winners ← list of all winners(winners per cluster)

end for
list winner distinct = list of all distinct winners(all winners)
option remaining ← number winners − len(list winner distinct)
if option remaining = 0 then

condition =′ ok′

else
k ← option remaining
condition ←′ ko′

end if
end while

3.5 Case Studies

In this section, we describe two interesting comparisons of majority judgement
(MJ) and clustered majority judgement (CMJ).

Case Study 1: President of the Republic Election In order to test our
algorithm, we asked an heterogeneous group of voters to express judgements
on a pre-defined list of possible candidates as President of the Republic before
the elections took place. This list has been created according to the rumours
circulated on that period, creating a bias effect on our results, as it was excluded
a possible rielection of Sergio Mattarella.

In spite of it, we focus on how the algorithm has worked in order to balance
polarization, returning a subset of winners with size chosen a priori, that we
may interpret as best solutions for majority of people who took part into the
venture.

Input parameters of Clustered Majority Judgement test are Excellent, Very
Good, Good, Acceptable, Poor, To Reject, No Opinion and the number of winners
is set a priori equal to 3. 125 voters took part into this election and the algorithm
form three clusters, exactly like the number of winners.

Testing our algorithm on the described election has shown how difference
preference has a leverage on judgement aggregation: for example, voters in Clus-
ter 1 are more bound to express “Good” judgement for candidates considered
neutral in terms of political ideas, than the cluster 3 in which voters have a
tendency in judging neutral ones as “Fair” or “Poor”. Cluster 2 has intermediate
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Table 2. CMJ results

Cluster Cluster size Winner

Cluster 1 65 Mario Draghi

Cluster 2 35 Paolo Gentiloni

Cluster 3 25 Anna Finocchiaro

Table 3. Top 3 of single-winner Majority Judgement applied to voters

Ranking MJ Candidate

1 Mario Draghi

2 Paolo Gentiloni

3 Emma Bonino

traits and no particular tendency is emphasized. We can compare CMJ results
with single-winner MJ ranking, comparing the Tables 2 and 3. The compari-
son shows different results for the third candidate, highlighting how clustering
influences outcome, giving more weight to minorities’ judgement.

3.6 Case Study 2: Working Hours per Week

The last case study is a good paradigm for deciding how to manage working
hours in the office, given a fixed number of working hours to be done (18 h). In
this case, we asked 160 students of University Federico II of Naples to choose
the best combination of working hours, in presence (P) or with online lectures
(O). We used again the grades Excellent, Very Good, Good, Acceptable, Poor,
To Reject, No Opinion and the five options are:

1. 6 h (P) - 6 h (O) - 6 h (P or O)
2. 10 h (P) - 4 h (O) - 4 h (P or O)
3. 8 h (P) - 6 h (O) - 4 h (P or O)
4. 7 h (P) - 9 h (O) - 2 h (P or O)
5. 5 h (P) - 5 h (O) - 8 h (P or O)

The results of MJ method, with the traditional compute of medians takes back
as winner the option 4 (7 h (P) - 9 h (O) - 2 h (P or O)) that has the highest
number of “Good” votes.

Instead the compute of winner with CMJ method takes back a different
situation: we fixed 2 as number of winners (and number of clusters) and the first
one is the option 3 (8 h (P) - 6 h (O) - 4 h (P or O)) and the second one is the
option 4, the same winner of MJ method.
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As we can see, probably because the number of voters is quite high, the
results are not the same like in case study 2. With CMJ, we take into account
the wide spectrum of preferences, with special regards for the most polarising
ones, which are the most influent in creating different clusters.

Especially for this reason, we may prefer CMJ to MJ for this case-study’s
lookalike situations, where a shared solution should be taken, considering the
different impact it can have on the heterogenous groups (clusters) the judgement
is made by.

Conclusions

In Sect. 1, we dealt with logical issues involved in voting rules and judgement
aggregation, highlighting majority rule’s resistance to strategical vote.

In Sect. 2, a more fined model of majority rule, Majority Judgement, has
been presented as an option to better estimate the most shared candidate.

In Sect. 3, the related works have been shown and in Sect. 4, all possible
categories of clustering approach has been reported in order to choose the fittest
one for our generalization of Majority Judgement as a multi-winner strategy.
After that, three different case studies are reported, with a particular attention
to the comparison between MJ and CMJ results.

In spite of non-deterministic nature of K-Medoids, Clustered Majority Judge-
ment is thought to be used in high populated disputes. For these reasons, we feel
confident about clustering’s role of taking into account all different perspectives
could be shown in such situation.

Moreover, our implementation is not strictly linked to political field, as is
clearly shown in the case studies, mostly because it requires only some fixed
parameters: number of winners, number of grades and grades themselves.

An important future challenge could be speeding up the algorithm or making
a more flexible structure, even though all the constraints already explained in
previous sections need to be satisfied.

References

1. Park, H.-S., Jun, C.-H.: A simple and fast algorithm for K-medoids clustering.
POSTECH

2. Kaufman, L., Rousseeuw, P.J.: Partitioning around medoids. In: Finding Groups
in Data: An Introduction to Cluster Analysis. Wiley (2015)

3. Balinski, M., Laraki, R.: Majority judgement vs. majority rule. Social Choice and
Welfare. HAL Open Science (2016)

4. Loreggia, A., Mattei, N., Quintarelli, S.: Artificial intelligence research for fighting.
In: Political Polarisation: A Research Agenda, pp. 1–2. Publisher (2020)

5. Balinski, M.: Fair Majority Voting (or How to Eliminate Gerrymandering) (2006)
6. Nehring, K., Pivato, M.: Incoherent Majorities: The McGarvey Problem in Judge-

ment Aggregation. Elsevier (2011)
7. Garcia-Bermejo, J.C.: A plea for the majority method in aggregating judgements.

Oxford J. (2011)



Cluster Algorithm for Social Choice 237

8. Christian, L.: Social Choice Theory, The Stanford Encyclopedia of Philosophy
(2022)

9. May, K.O.: A set of indipendent necessary and sufficient conditions for simple
majority decision (1952)

10. Bellec, G., Scherr, F., Subramoney, A.: A solution to the learning dilemma for
recurrent networks of spiking neurons (2020)

11. Kleinberg, J.: An impossibility theorem for clustering (2002)
12. Fabre, A.: Tie-Breaking the Highest Median: Alternatives to the Majority Judg-

ment (2018)
13. Pedregosa, F., et al.: Scikit-Learn Machine Learning in Python (2011)
14. Streibel, B.J.: The manager’s guide to effective meetings (2003)
15. Tannenbaum, R.S., Schmidt, W.H.: How to Choose a Leadership Pattern (2009)
16. Blake, R.R., Mouton, J.S., Barnes, L.B., Greiner, L.E.: Breakthrough in organiza-

tion development(1964)
17. Vroom, V.H., Yetton, P.W.: Leadership and decision-making (1973)
18. Verzuh, E., American Psychological Association and Others: A Guide to the

Project Management Body of Knowledge: PMBOK Guide (2021)
19. Balinski, M., Laraki, R.: Election by majority judgment: Experimental evidence

(2011)
20. Balinski, M., Laraki, R.: A theory of measuring, electing, and ranking (2007)
21. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of

computational social choice (2016)
22. Serafini, P.: La Matematica in Soccorso Della Democrazia: Cosa Significa Votare
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Abstract. The development of the vaccine for the control of COVID-19
is the need of hour. The immunity against coronavirus highly depends
upon the vaccine distribution. Unfortunately, vaccine hesitancy seems to
be another big challenge worldwide. Therefore, it is necessary to analysis
and figure out the public opinion about COVID-19 vaccines. In this era
of social media, people use such platforms and post about their opinion,
reviews etc. In this research, we proposed BERT+NBSVM model for the
sentimental analysis of COVID-19 vaccines tweets. The polarity of the
tweets was found using TextBlob(). The proposed BERT+NBSVM out-
performed other models and achieved 73% accuracy, 71% precision, 88%
recall and 73% F-measure for classification of positive sentiments while
73% accuracy, 71% precision, 74% recall and 73% F-measure for classi-
fication of negative sentiments respectively. Thus, these sentimental and
spatial analysis helps in world-wide pandemics by identify the people’s
attitudes towards the vaccines.

Keywords: Sentimental analysis · Vaccine · COVID-19 · Vaccine
hesitancy

1 Introduction

The COVID-19, caused by coronavirus, started spreading an infectious disease
in December, 2019 in Wuhan, China [4,14]. The preventive measures of social
distancing and wearing masks were observed in different countries. However,
the long-term solution of this disease was the development of vaccines [6,30].
Moreover, after the vaccines were developed, the acceptance of vaccines among
the general public was next milestone [16]. Most of the population from all over
the world was not willing to get themselves vaccinated because of the its side-
effects and other misinformation [2,12,17]. To overcome this situation, it is a
good strategy if the agencies put their efforts in understanding what people are
thinking about vaccines and design their strategies accordingly [1,28].

The increasing number of social media platforms users made it easy for
researchers to find and extract the user-generated freely data [31]. Such kind
of data can easily be used for public sentiments analysis [10]. This data can be
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very helpful in investigating the people’s behaviour during this disease, during
lockdown and for the vaccine campaign [15,34]. Twitter is considered as the most
popular social media app which has been used worldwide for sharing the feeling,
opinion and ideas [7,25]. Tweets can be useful for analysing the people’s feed-
back on any trending topic [18]. Sentimental analysis is the most famous method
by which people’s feelings are extracted [9]. It uses machine learning and deep
learning for this purpose [13,15]. For performing the sentimental analysis, the
polarity of the tweet is found [22].

In this study, we used tweets related to COVID-19 vaccine and used them
for extracting the sentiments of people towards vaccination of COVID-19. This
research can bring fruitful results for government and policy makers for design-
ing the vaccination campaign according to the sentiments of people. We used
freely available twitter data from Kaggle website and found out the polarity
of the tweets. At the end of the method, we used BERT+NBSVM model for
classification of positive and negative sentiments.

The objectives of this research paper are:

– Using freely available twitter data about COVID vaccines and categorize the
text into different sentiment classes.

– To categorize the tweets based on their polarity values using python script.
– To propose BERT+NBSVM model for positive and negative tweet

classification.

2 Methods

Machine learning and natural language processing are used for sentimental anal-
ysis.

2.1 Sentimental Classification Framework

Our proposed sentimental classification framework consists of three stages as we
can see in Fig. 1.

Fig. 1. Our proposed sentimental classification framework
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First, the dataset is collected and pre-processing is performed.
Secondly, the sentiment polarity is extracted using TextBlob() function.
Third, polarity values are used to classify the positive and negative tweets

with the help of BERT+NBSVM model.

2.2 Collection and Pre-processing of Data

In this study, we used freely available twitter data. The dataset contains tweets
about COVID-19 vaccines. The dataset is then further processed by removing
URLs, hashtags, and stop-words using python script. In Table 1, column 1 shows
the dummy tweets, column 2 shows tweets after hashtag removal, column 3 shows
tweets after URLs removal.

Table 1. Comparison of tweets before and after pre-processing

Dummy samples After removing Hashtags After removing URLs

Fever after first dose
#PfizerBioNTech https://
t.co/xffiee77

Fever after first dose
PfizerBioNTech https://t.
co/xffiee77

Fever after first dose
PfizerBioNTech

Vaccine scheduling
available online https://t.
co/jgeeityc

Vaccine scheduling
available online https://t.
co/jgeeityc

Vaccine scheduling
available online

Any update on booster
dose?? https://t.co/
hdrryuugy

Any update on booster
dose https://t.co/
hdrryuugy

Any update on booster
dose

2.3 Finding Values of Sentiments Polarity

The sentiment analysis depends upon the polarity of the sentence. The polarity
shows that either the given text is neutral, negative or positive. We categorized
the tweets into seven classes of sentiments [27] based on the polarity values.
The classes includes neutral, weakly positive, mild positive, strongly positive,
weakly negative, mild negative and strongly negative. We used principles of [27]
as given in Table 2 to fix the polarity range of each class. We find the polarity
using TextBlob() library of Python, which returns polarity between −1 to +1.

We find the polarity values (between [−1 to +1]) of the given tweets using
the TextBlob() library function of Python. The working principle of TextBlob()
can be seen in Fig. 2.

2.4 Combining BERT and Naive Bayes-SVM for Sentimental
Classification

In this research, we combined the Bidirectional encoder representation of trans-
formers (BERT) with hybrid of Naive Bayes and Support Vector Machine
(NBSVM). BERT is the transformer based model which used attention mecha-
nism. In transformer, encoder and decoder both are used, while in BERT model,

https://t.co/xffiee77
https://t.co/xffiee77
https://t.co/xffiee77
https://t.co/xffiee77
https://t.co/jgeeityc
https://t.co/jgeeityc
https://t.co/jgeeityc
https://t.co/jgeeityc
https://t.co/hdrryuugy
https://t.co/hdrryuugy
https://t.co/hdrryuugy
https://t.co/hdrryuugy
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Table 2. Rules for sentimental classes

Polarity Sentiment class

0 Neutral

> 0 and ≤ 0.3 Weakly Positive

> 0.3 and ≤ 0.6 Mild Positive

> 0.6 and ≤ 1 Strongly Positive

> −0.3 and ≤ 0 Weakly Negative

> −0.6 and ≤ −0.3 Mild Negative

> 1 and ≤ −0.6 Strongly Negative

Fig. 2. How TextBlob() works?

only encoder layers of transformers are used [20,32]. The two famous archi-
tectures of BERT are base and large models. Both of the models have four
differences between them [20].

Naive Bayes and Support vector machines are the machine learning algo-
rithms, the former works good on short sentimental tasks while the later on
longer documents. The hybrid of NB and SVM uses the variances of SVM and
ratio of log NB for better accuracy [19].

BERT+NBSVM System Architecture. The combination of deep learning
and classical machine learning results in the BERT+NB-SVM model, which is
estimated on DTM (document term frequency) features. The DTM is used to
compute the NB log-count ratios. These ratios helps to calculate the word prob-
ability of positive and negative classes in a document. The system architecture of
BERT+NB-SVM is shown in Fig. 3. It can be seen from the figure that, the left
side shows the process of training while the right side shows the classification.

The following steps are adopted for training and classification:

– The training dataset was used in fine tuning of BERT model
– The NB log-count ratios are used for SVM model training
– While prediction, final score is calculated as the weighted sum of the fitted

NB-SVM model and best fine-tuned BERT model.
– The best fine tuned model indicates the model with best performances with

different epochs and batch sizes.

BERT+NBSVM Model Training. To train the model, we used pre-training
and fine tuning. As a loss function, Adam optimizer is used to train the model
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Fig. 3. System architecture of BERT+ NBSVM

and grid search was used for parameter tuning. These best weight for BERT
model is 0.87 and NB-SVM is 0.08. Two classification models, (positive and
negative). The precision, recall and F1 score are used, as shown in Eqs. (1), (2)
and (3) respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

FMeasure =
2 × Precision×Recall

Precision + Recall
(3)

where:
TP occurs when both item and the result are positive.
TN occurs when both item and the result are negative
FP occurs when item is negative while model is giving positive result.
FN occurs when item is positive while model is giving negative result.

State-of-the-Art. We performed the experiments with state-of-the-art in order
to evaluate our proposed model. We used K-nearest neighbour (KNN) algo-
rithm, Support Vector Machine (SVM) algorithm, Random Forest (RF) algo-
rithm, Naive Bayes (NB) algorithm and DT (Decision Tree) algorithm because
of their being mostly used in literature [4,15,24].

Decision tree and random forest have ability to learn from uses [33]. Random
forest works good on non-linear datasets. It chooses randoms samples and fea-
tures from the dataset [23]. While, decision tree works on decision rules from the
entire dataset. It works well on small dataset [5]. Naive Bayes uses the principles
of probability for its working. It considers all the features statistically indepen-
dent [3,5]. Naive Bayes uses Bayesian theorem and calculates the probability of
the items as we can seen in Eq. 4:
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P (H|X) = P (X|H)P (H)/P (X) (4)

The simplest machine learning algorithm, KNN, looks for the most similar
item among its neighbours. It requires alot of time, as it needs to search from the
entire dataset. Therefore, it is good for the small datasets. Moreover, it is the
algorithm, that does not follow test-train mechanism. User provides the number
of neighbours during search [3]. The Eq. 5) is used for find the most similar item.

di =
√

[(xi− x)2 + (yi− y)2] (5)

SVM is the effective algorithm when the dataset contains high dimensional
feature space. It works by generating the hyperplane. The hyperplane thus helps
in classification. It combines features from different sources and make one feature
to train the model. The higher the separation of hyperplane, the more accurate
the classification. Linear function, polynomial function and radial basis function
are the kernels functions used in SVM [8].

BERT works on the principles of masked languages (MLM) by using word
representation model. It has [SEP] and [CLS] as two special tokens. BERT takes
input as [CLS] and then transfers it to the upper layer. At that step, the self
attention is applied. The output from this step is transferred to the feed-forward
network. The vector C, output of the model, is used for classification and trans-
lation. The probability of sentimental classes can be calculated by following
Eq. 6 [29].

P = softmax(CWT ) (6)

3 Results and Discussion

3.1 Sentiment Polarity

The polarity value helps to find the sentiment of the text. Table 3, shows the
polarity values for each text with the sentiments category, described in Sect. 2.3

Table 3. Categorization of sentiments on sample data

Data Sample Polarity Category

Fever after first dose PfizerBioNTech −0.5 Mild Negative

Vaccine scheduling available online 0.7 Strongly Positive

Any update on Booster 0 Neutral
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Fig. 4. Graph showing the results of experiments for positive sentiments

3.2 Sentimental Classification

The results of the experiments are shown in the Figure below:
Figure 4 shows the sub-graphs depicting the classification accuracy, preci-

sion, recall and F1 score of our proposed BERT+NBSVM model in comparison
with BERT, NBSVM, Decision tree, KNN, random forest and SVM for the
classification of positive sentiments. The classification results of positive tweets
classification show that our proposed approach outperformed all other state of
the art models. The proposed BERT+NBSVM showed the best accuracy.

Figure 5 shows the sub-plots of accuracy, precision, recall and F1 score for our
proposed BERT+NBSVM model in comparison with BERT, NBSVM, Decision
tree, KNN, random forest and SVM for the classification of negative sentiments.
The BERT+NBSVM showed best performance among all other state of the art
neural network and machine learning models that have been used in literature.
Deep learning has attracted the attention due to its prediction performance in the
social media domain. Out of all baseline neural network models, BERT+NBSVM
outperformed all others.

Among machine learning models, the performance of SVM was high among
other baseline algorithms because SVM does not show any effect of hyper-
parameters related to data [26]. KNN and decision trees were found with similar
accuracy and they show a significant effect in the classification [11]. Random
forest shows the intermediate performance in both of the scenarios of our study,
because random forest draws observation strategies randomly and requires a
hyper-parameter tuning for good performance [21].
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Fig. 5. Graph showing the results of experiments for negative sentiments

4 Conclusion

Twitter based sentimental analysis for extraction people’s response towards any
general issue or topic is a very fruitful and efficient way for policy makers. Vac-
cine hesitancy is a hurdle in the control of COVID-19 disease and is emerged as
a bigger challenge worldwide. In this research, people’s reaction during COVID-
19 vaccination campaigns are analyzed using twitter data. We categorized the
data into seven categories of sentiments using their polarity. We proposed the
BERT+NBSVM classification models (positive and negative) for sentiment clas-
sification. Hence, such kind of research can help the policy makers and govern-
ment to understand what people are thinking about their campaigns and initia-
tives. So, they can educate people timely about any misinformation regarding
any campaigns and thus can save the lives of citizens from any disease or epi-
demic.
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Abstract. We evaluate the suitability of using supervised and unsuper-
vised rules, subgroups and redescriptions as new features and meaning-
ful, interpretable representations for classification tasks. Although using
supervised rules as features is known to allow increase in performance
of classification algorithms, advantages of using unsupervised rules, sub-
groups, redescriptions and in particular their synergy with rules are still
largely unexplored for classification tasks. To research this topic, we
developed a fully automated framework for feature construction, selec-
tion and testing called DAFNE – Descriptive Automated Feature Con-
struction and Evaluation. As with other available tools for rule-based
feature construction, DAFNE provides fully interpretable features with
in-depth knowledge about the studied domain problem. The performed
results show that DAFNE is capable of producing provably useful fea-
tures that increase overall predictive performance of different classifica-
tion algorithms on a set of different classification datasets.

Keywords: Feature construction · Classification · Redescription
mining · Rule mining · Subgroup discovery · CLUS-RM · JRip ·
M5Rules · CN2-SD

1 Introduction

With the rise of popularity and awareness of different predictive machine learning
algorithms able to provide huge number of often highly accurate predictions for
various tasks, there is also an increasing need to provide tools and techniques to
aid in the construction, extraction and selection of predictive attributes.

The main aim of feature construction is to find new features which capture
non-trivial, possibly non-linear interactions between existing, original features
[21,29]. Its utility is assessed via increase in the predictive performance, high
importance of newly constructed features for the predictive task and through
better understanding of the underlying problem. Various types of feature con-
struction have been studied: creating rules [31] or using decision tree based algo-
rithms (Random Forest [40], Deep Forest [45]). The main advantage of rules is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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that they can simultaneously offer interpretative and performance improvement
for various classifiers [28,31,32,44]. Rules can also be used as local predictors
[5,11,27] to form global classification models.

In this work, we extend the study of rule-based feature construction to include
subgroups, descriptive (unsupervised) rules and redescriptions. The main goal is
to assess if and when the latter can be more informative than supervised rules
or be used in synergy with supervised rules to improve performance. Subgroups
[17,42] have the same form of a logical formula as regular rules, but describe
subsets of instances such that their distribution of target labels significantly
deviates from the target label distribution on the entire dataset. Redescriptions
[9,33] are tuples of logical formulae that can contain a conjunction, disjunction or
negation operator, with the constraint that each formula in a tuple (also called a
query) should describe very similar, or the same subsets of entities. Redescription
mining is an unsupervised, descriptive task, with redescriptions representing a
second order constructs (tuples of rules that are in a near equivalence relation),
forming complex but fully interpretable features.

As previously mentioned, rule-based features necessarily increase the dimen-
sionality of data. The detrimental effect of such increase can be alleviated using
different feature selection techniques [14,21]. These techniques aim to eliminate
features that provide no or very little information about the target concept.
Alternatively, feature extraction techniques [21,39] map existing features, to a
new, very often smaller set of features that capture important information about
the relation of original features and the target concept. Such features can be used
independently of the original feature set, but can also be added and used in syn-
ergy with original features.

2 Notation and Related Work

In this section, we define the most important terms necessary to understand the
approach and provide an overview of related work.

2.1 Notation and Definition

In this work, we use one-view datasets D (one data table), containing |A|
attributes and |E| entities. Since we deal with a classification task, each entity
is assigned a target label y ∈ {c1, . . . , ck}, where a special case of Binary clas-
sification has y ∈ {0, 1}. We use M to denote an arbitrary machine learning
classification model that is trained on some data Dtrain, and it outputs a pre-
diction ŷ for each entity e ∈ Etest, where Etrain ∩ Etest = ∅.

The input data is used to create rules, subgroups and redescriptions. Rules
and subgroups are logical formulae containing conditions and conjunction log-
ical operator, whereas redescriptions contain tuples of logical formulae con-
taining conditions and conjunction, disjunction and negation logical operators.
Each query in a redescription can contain only attributes that are disjoint from
attribute of other queries in the redescription. In this work, we use redescriptions
formed by pairs of queries.
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2.2 Related Work

Feature selection [14,21] and feature construction [21,29] are often used jointly
in predictive tasks. As feature construction increases the number of variables,
feature selection aims to choose the attributes containing the important informa-
tion about the target variable, allowing faster training/predicting with machine
learning models and increasing their accuracy in practice (e.g. [16,23]).

Feature selection approaches [14,21] include correlation-based, forward selec-
tion using Gram-Schmidt orthogonalization, mutual information or model-based
feature ranking, hybrid approaches, various feature subset selection methods,
wrapper and filter methods [22]. Some ensemble algorithms (e.g. random forest)
provide feature ranking which can be used for feature selection (see [15]). Feature
selection methods using models can be divided in performance-based approaches
and test-based approaches [15].

Performance-based approaches (e.g. [6,35]) combine feature selection with
a classifier-based feedback on the quality of the selected set of features. Test-
based approaches (e.g. [1,41]) combine permutation testing of attribute values
with feature ranking obtained by random forest algorithm to assess the real
significance of importance of original features.

Feature construction includes constructive induction [22], construction using
fragmentary knowledge [22], greedy feature construction [29] and hybrid
approaches (e.g. [36]). Self-supervised learning frameworks [2,37] learn useful
new representations for tabular data.

Constructive induction approaches such as [28,31,32,44] construct new
attributes from subsets of existing attributes. Attributes in the subset can be
combined using conjunction, disjunction and negation logical operator [31,32],
or more complex operators such as M-of-N [28] (at least one conjunction of m
out of N attributes is true), X-of-N [44] (for a given instance, it denotes the
number of attribute-value pairs that are true) or using arithmetic combination
of attributes [19]. Gomez and Morales [12] created a learning algorithm RCA,
which tries to build a single rule for each class with a predetermined number
of terms. FRINGE by Pagallo et al. [30] is a decision-tree based feature con-
struction algorithm (it adaptively enlarges the initial attribute set using NOT
and AND logical operators for learning DNF concepts). CITRE [25] and DC
Fringe [43] combine existing attributes using conjunction and disjunction oper-
ators to construct new features. FICUS [24] generalizes previous approaches to
allow combining existing features by some user-predefined function. Garcia et al.
[10] create a fuzzy rule-based feature construction approach. A part of research
uses rules as local patterns to form global prediction models [5,11] or to rectify
predictions of existing classification algorithms [27].

Subgroups have been used as local patterns to build a global regression model
[13], as dummy variables to improve regression fit [7] and as local patterns to
understand the behaviour of spammers in a classification use-case [3].

Redescription mining [33] aims to find subsets of entities that can be
described in multiple ways (re-described), discovering in that manner strong,
equivalence-like relations between different subsets of attributes.
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3 The DAFNE Framework

Fig. 1. DAFNE, framework for automated feature construction and evaluation.

The DAFNE framework (Fig. 1) takes a standard, tabular dataset representing
some kind of classification problem, creates a stratified split to train (80%) and
test (20%) dataset. Train set is used to create supervised rules using state-of-the-
art algorithms JRip and PART implemented in Weka [8], subgroups are created
using the well known CN2-SD algorithm [20]. Descriptive (unsupervised) rules
and redescriptions are created using the state-of-the-art redescription mining
algorithm CLUS-RM [26] on the entire dataset. The CLUS-RM algorithm does
not require knowledge about target labels and can thus utilize all entities to
create rules and redescriptions. Descriptive rules are obtained as a by-product
of redescription mining, these are actually query candidates for redescriptions.
The fact that in many applications rule-pairs match accurately for groups with
homogeneous target label (since these share many common properties) and the
fact that CLUS-RM aims to find pairs of rules that describe common subsets
of entities, led us to believe that this process might create useful unsupervised
rules and redescriptions for classification tasks. After descriptive objects (rules,
subgroups and redescriptions) have been obtained, the tool creates Binary fea-
tures representing each obtained object and enriches the attribute set of both
train and test data. The Boruta framework [18], which utilizes a random forest
of decision trees, is used to detect a subset of provably useful attributes to pre-
dict the given target label on the train set (these features will be used in further
evaluation). In this evaluation setting, we also apply Boruta to obtain provably
important set of features on the test set (users can observe changes in percent-
ages of important attributes for different types of objects compared to train
set). The selected set of provably useful features on a train set is further reduced
using the feature selection approach proposed by Svetnik et al. [35] which returns
the non-redundant set of features useful to predict the target label. To analyse
the usefulness of different types of objects, DAFNE creates a train/test dataset
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containing: a) all original features (O), b) all non-redundant provably useful
original features (Osel), c) all non-redundant provably useful features (Allsel),
d) non-redundant provably useful original and features obtained from supervised
rules (OSRdel), e) non-redundant provably useful original and features obtained
from descriptive rules (ODRsel), f) non-redundant provably useful original and
features obtained from subgroups (OSgsel), g) non-redundant provably useful
original and features obtained from redescriptions (ORdsel). DAFNE further
trains each of the 8 different types of classification capable machine learning
algorithms: multilayer perceptron, J48, Decision Stump, Naive Bayes, Logistic
Model Trees, Logistic Regression and KStar available in Weka [8] and a Random
Forest of 600 Predictive Clustering trees (PCTs) trained using the CLUS frame-
work [4]. Trained models are evaluated on a test set and all constructed, selected
features, model evaluation results and analyses are returned to the user. The
optimized, extended feature set (Optimized extended data representation
in Fig. 1) can be used to produce predictive models with improved performance
and/or use these new features for better interpretation and understanding of the
data and the problem domain.

The feature evaluation procedure performed by DAFNE is rigorous. From
provably important Boruta computed features to non-redundant set of features
and finally evaluation of selected features using different types of classifiers. It is
well known that adding useless features reduces classification accuracy of many
types of classification algorithms, thus newly constructed features on a train set
must be predictive in order to increase classifier score on a separate test set.
To further ensure that increase in classifier score is achieved only due to newly
constructed features or their synergy with original features, default parameters
are used to train all 8 classification algorithms. Using default parameters also
greatly reduces the execution time of feature evaluation. Parameters of each
classification algorithm would need to be tuned for every of 6 newly created
datasets, which is unfeasible for large scale experimentation.

If classification performance of one or more classification algorithms is
increased on a test set compared to using only original features, DAFNE has
achieved the goal of detecting predictive features. Since using supervised rules
as features is known to improve classification accuracy and there exists use-cases
where using subgroups is beneficial as well in this setting, we aim to broaden
the evaluation of subgroups to more different datasets, investigate the use of
descriptive rules and redescriptions and to evaluate the effects of synergy of
these objects on classification accuracy.

3.1 Parameters Used in DAFNE Components

We fixed the parameters of DAFNE components as follows:

– JRip - default options, with minimal weight of entities per rule set to 1.0, 500
batch optimization runs and batch size of 200. Changes compared to defaults
were made to obtain larger number of rules.

– PART - default options with a constraint of minimal 10 entities per rule.
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– CN2-SD - default options (8 iterations, beam size of 5 and γ = 0.7).
– CLUS-RM - default options (redescription accuracy of 0.6) with 20 random

runs, 10 iterations per run, tree depth of 8, using conjunctive refinement pro-
cedure [26], conjunction, disjunction and negation operator, support size in
[10, 0.8|E|], maximal redescription p-value of 0.01 and output non-redundant
redescription set of maximal size 1000 [26]. The main aim is to increase the
number of produced redescriptions. Maximal support enables pruning unin-
teresting redescriptions and tautologies, and is often set to 0.8 · |E|.
Rules and subgroups are filtered to eliminate redundant objects; subgroups

must have p-value ≤ 0.01. Fine-grained selection was performed by the Boruta
[18] and the feature selection approach by Svetnik et al. [35]. We use default
options for Boruta as suggested in [18] and increase the number of trees in a
forest to 2000 as suggested in [6]. For non-redundant feature selection [35], we
use default parameters, as these are well justified in the varSelRF R package.

Classification algorithms were trained with default Weka options with maxi-
mal number of iterations of Logistic regression classifier set to 10000 to disallow
lengthy executions. The random forest of PCTs contains 600 trees with standard√|A| + 1 number of random subspaces. A maximal tree depth of 8 is used.

3.2 Use Case Scenario

DAFNE is constructed to tackle realistic problems in which one data table
(Dtrain) with target labels is available. Also, obtaining additional data table
(Dtest) without target labels is possible (through data collection, domain-level
experimentation or similar). The task is to predict the target label y for instances
in Dtest. When both data tables are available, the DAFNE uses Dtrain to create
supervised rules and subgroups and D = Dtrain ∪ Dtest to create unsupervised
rules and redescriptions. Notice that it is possible to iteratively extend the feature
set with newly constructed unsupervised rules and redescriptions for any con-
secutive test set. DAFNE simulates this process by dividing the annotated data
into artificial train and test set, performing the aforementioned feature construc-
tion procedure and evaluating newly constructed features using several machine
learning algorithms and the target labels for Dtest, which were not used during
any step of rule or model creation. The fact that DAFNE can utilize knowledge
available in the test set is considered to be a significant advantage compared to
the majority of other state-of-the-art feature construction approaches.

4 Data Description

We used 5 datasets: Abalone, Arrhythmia, Breast cancer, Wine and Sports Arti-
cles, downloaded from the UCI Machine learning repository [38], to evaluate
the proposed methodology. We removed rows containing missing values in all
datasets since these are not supported by Boruta and tested DAFNE on the
Arrhythmia dataset in the original multi-class and the derived binary classifica-
tion setting. The binary setting simply predicts existence of arrhythmia (yes/no).
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5 Experiments and Results

DAFNE was run 40 times on each dataset to obtain statistics about the useful-
ness of supervised/descriptive rules, subgroups and redescriptions to predict a
target concept on each of the aforementioned 5 datasets. Supervised rules and
subgroups are created using the same seed every time, effectively returning the
same set of rules and subgroups, redescriptions and descriptive rules change at
each run. Thus, we assess what is the overall change of the system depending on
the introduced descriptive rules and redescriptions.

Median percentage of selected rules, subgroups and redescriptions on a train
and test set by Boruta is reported in Table 1. This table also contains the num-
ber of times (out of 40) at least one member of the object type was found in the
non-redundant set of features. In Table 2, we report the median and maximal
AUPRC measure [34] for each classifier on each dataset. We underline the orig-
inal or selected original features if they lead to the best performance of a given
model, or boldface every combination of features that allow this model to out-
perform an identical model using the original or selected original set of features.
We also boldface the maximal AUPRC score if the model achieves the same
maximal score as using original features, but there exist runs where using newly
constructed features allowed outperforming a model trained only on original fea-
tures or using newly constructed features in synergy with original features allows
obtaining the same (maximal) result. If maximal result is achieved utilizing only
original features, the result is not displayed in boldface.

Results presented in Table 1 suggest that Boruta found that high percentage
of created subgroups are significant, followed by supervised rules, redescriptions
and descriptive rules. This is the expected trend since subgroups and super-
vised rules utilize target label information during creation. It is important to
notice that both redescriptions and descriptive rules are deemed important on
the majority of datasets, and that there are representatives of these objects in
the non-redundant sets of features used to train and evaluate classification mod-

Table 1. Median percentages of supervised rules (SR), descriptive rules (DR), sub-
groups (Sg) and redescriptions (Rd) deemed provably important for predicting the
target class by the Boruta approach on the train (Tr) and test (Ts) set obtained
from each dataset. Num. nn. reports numbers of runs in which at least one subgroup,
supervised rule, descriptive rule and redescription occurred in the non-redundant set
of features used for training/testing of different classifiers.

D SgTr SRTr DRTr RdTr Num.nn SgTs SRTs DRTs RdTs

Abalone 85 42 11 34 32/12/23/9 49 7 3 3

Arrhythmia 100 71 2 <1 40/40/22/3 33 0 0 0

Arrhythmiab 100 69 1 0 40/37/0/0 50 0 0 0

Breast cancer 100 83 5 13 40/37/2/1 100 33 3 11

Wine 100 100 19 27 40/38/30/20 100 100 10 27

Sports articles 100 61 1 1 40/40/2/1 33 11 1 1
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els. Boruta also determined that large number of objects, found important on
the train set, remains important for the prediction of target label on the test set.

Results presented in Table 2 show that newly created features improve per-
formance (or allow obtaining the same maximal performance) of every of the
8 chosen classification models on at least 3 different datasets. Results confirm
that subgroups seem to be the most important features, however other types
of objects have a very important role as well. It is evident that using descrip-
tive rules and redescriptions can significantly increase classifier performance.
For example, the Decision Stump model has achieved the best performance using
redescriptions as features on the Breast Cancer dataset or using descriptive rules
on the Arrhythmia dataset. If there existed supervised rules or subgroups more
useful to predict the target label, these would surely be chosen instead by the
feature selection procedure. Also, if there existed supervised, descriptive rules or
subgroups with similar predictive power as redescriptions on the Breast Cancer
dataset, these would be used in at least some of the runs (where the predic-
tive redescriptions were not present) to obtain similar predictive performance.
Redescriptions and descriptive rules can also improve performance of complex
classifiers such as Multilayer perceptron, Logistic model trees, Decision trees and
Random Forest of PCTs. Thus, synergy or complementarity of different types of
objects has played an important role, as noticeable from the results (there are
instances where using a selected subset from the set of all features yields the
highest score, e.g. Arrhythmia with binary class label).

Table 2. Evaluation results of 8 selected classifiers.

M D O Osel Allsel OSgsel OSRsel ODRsel ORdsel

MLP AB 0.203 0.179 0.194 0.195 0.179 0.194 0.183

0.203 0.202 0.223 0.233 0.217 0.219 0.227

AR 0.668 0.608 0.653 0.691 0.569 0.594 0.611

0.668 0.722 0.733 0.729 0.738 0.722 0.722

ARB 0.798 0.508 0.825 0.822 0.659 0.508 0.508

0.798 0.526 0.849 0.849 0.694 0.526 0.526

BC 0.984 0.966 0.911 0.939 0.956 0.966 0.966

0.984 0.983 0.965 0.968 0.977 0.982 0.983

W 1.0 0.905 0.988 0.927 0.923 0.968 0.905

1.0 1.0 1.0 0.989 0.994 1.0 1.0

SA 0.868 0.855 0.788 0.806 0.842 0.855 0.855

0.868 0.892 0.848 0.855 0.877 0.892 0.892

LMT AB 0.217 0.217 0.206 0.207 0.217 0.212 0.217

0.217 0.217 0.229 0.230 0.225 0.229 0.223

AR 0.788 0.717 0.718 0.715 0.682 0.714 0.717

0.788 0.796 0.780 0.793 0.789 0.792 0.796

(continued)
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Table 2. (continued)

M D O Osel Allsel OSgsel OSRsel ODRsel ORdsel

ARB 0.841 0.662 0.859 0.835 0.666 0.662 0.662

0.841 0.662 0.870 0.846 0.726 0.662 0.662

BC 0.992 0.967 0.948 0.939 0.969 0.967 0.967

0.992 0.982 0.958 0.939 0.976 0.983 0.982

W 1.0 0.928 0.948 0.890 0.887 0.985 0.952

1.0 1.0 0.948 0.995 0.981 1.0 1.0

SA 0.884 0.855 0.888 0.866 0.868 0.855 0.855

0.884 0.881 0.902 0.895 0.896 0.881 0.881

NB AB 0.160 0.160 0.160 0.160 0.160 0.160 0.160

0.160 0.168 0.167 0.167 0.168 0.167 0.168

AR 0.472 0.645 0.713 0.714 0.656 0.647 0.643

0.472 0.715 0.753 0.758 0.729 0.708 0.715

ARB 0.719 0.617 0.863 0.846 0.719 0.617 0.617

0.719 0.618 0.872 0.858 0.720 0.618 0.618

BC 0.983 0.966 0.970 0.971 0.970 0.966 0.966

0.983 0.979 0.974 0.976 0.978 0.979 0.979

W 0.991 0.901 0.976 0.945 0.945 0.975 0.920

0.991 1.0 1.0 0.998 0.998 1.0 1.0

SA 0.845 0.819 0.838 0.828 0.830 0.819 0.819

0.845 0.827 0.855 0.837 0.841 0.827 0.827

DSt AB 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0.08 0.08 0.08 0.08 0.08 0.08 0.08

AR 0.163 0.163 0.162 0.162 0.138 0.163 0.163

0.163 0.163 0.162 0.162 0.138 0.20 0.163

ARB 0.518 0.551 0.682 0.682 0.620 0.551 0.551

0.518 0.551 0.682 0.682 0.620 0.551 0.551

BC 0.816 0.816 0.839 0.839 0.790 0.816 0.816

0.816 0.864 0.839 0.839 0.790 0.867 0.881

W 0.570 0.570 0.604 0.604 0.630 0.605 0.570

0.570 0.610 0.630 0.630 0.630 0.667 0.667

SA 0.724 0.724 0.722 0.722 0.724 0.724 0.724

0.724 0.724 0.722 0.722 0.724 0.724 0.724

LogR AB 0.199 0.199 0.197 0.199 0.199 0.199 0.199

0.199 0.210 0.210 0.210 0.210 0.210 0.210

AR 0.40 0.707 0.647 0.640 0.660 0.707 0.707

0.40 0.776 0.729 0.719 0.734 0.776 0.776

ARB 0.678 0.508 0.857 0.835 0.666 0.508 0.508

0.678 0.520 0.868 0.859 0.701 0.520 0.520

BC 0.985 0.965 0.894 0.962 0.890 0.965 0.965

0.985 0.986 0.952 0.974 0.962 0.986 0.986

(continued)
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Table 2. (continued)

M D O Osel Allsel OSgsel OSRsel ODRsel ORdsel

W 0.995 0.910 0.966 0.942 0.926 0.938 0.914

0.995 1.0 1.0 1.0 1.0 1.0 1.0

SA 0.883 0.867 0.890 0.886 0.865 0.865 0.867

0.883 0.882 0.90 0.891 0.903 0.882 0.882

KS AB 0.187 0.187 0.173 0.173 1.0 0.187 0.187

0.187 0.194 0.191 0.192 0.194 0.193 0.194

AR 0.468 0.50 0.571 0.568 0.513 0.510 0.50

0.468 0.590 0.644 0.640 0.607 0.590 0.590

ARB 0.577 0.634 0.814 0.792 0.737 0.634 0.634

0.577 0.634 0.849 0.821 0.745 0.634 0.634

BC 0.975 0.966 0.969 0.970 0.968 0.966 0.966

0.975 0.981 0.973 0.970 0.968 0.966 0.966

W 0.980 0.878 0.981 0.946 0.955 0.988 0.926

0.980 1.0 1.0 1.0 1.0 1.0 1.0

SA 0.792 0.796 0.784 0.770 0.814 0.796 0.96

0.792 0.837 0.831 0.813 0.862 0.837 0.837

J48 AB 0.10 0.10 0.107 0.102 0.10 0.101 0.10

0.10 0.129 0.129 0.129 0.129 0.129 0.129

AR 0.543 0.331 0.396 0.40 0.351 0.344 0.331

0.543 0.542 0.527 0.530 0.433 0.573 0.542

ARB 0.697 0.575 0.727 0.737 0.658 0.575 0.575

0.697 0.575 0.730 0.754 0.677 0.575 0.575

BC 0.875 0.816 0.844 0.853 0.837 0.816 0.816

0.875 0.922 0.853 0.853 0.934 0.922 0.960

W 0.95 0.738 0.880 0.886 0.880 0.852 0.781

0.95 0.954 0.886 0.886 0.880 1.0 0.963

SA 0.664 0.739 0.793 0.777 0.785 0.739 0.739

0.664 0.773 0.849 0.792 0.807 0.773 0.773

RF 600
PCT AB 0.180 0.176 0.174 0.173 0.176 0.176 0.176

0.180 0.176 0.194 0.185 0.199 0.196 0.189

AR 0.767 0.612 0.672 0.681 0.577 0.606 0.612

0.767 0.728 0.747 0.744 0.707 0.734 0.728

ARB 0.826 0.633 0.812 0.791 0.752 0.633 0.633

0.826 0.633 0.830 0.825 0.765 0.633 0.633

BC 0.988 0.956 0.964 0.960 0.968 0.956 0.956

0.988 0.977 0.973 0.966 0.976 0.976 0.977

W 1.0 0.850 0.991 0.928 0.923 0.986 0.895

1.0 1.0 1.0 0.998 0.998 1.0 1.0

SA 0.938 0.827 0.868 0.827 0.860 0.827 0.827

0.938 0.867 0.875 0.852 0.880 0.867 0.867



258 M. Mihelčić and T. Šmuc

6 Conclusion and Future Work

In this work, we created a framework for improving the representation of tabular
data. A new feature construction and evaluation framework DAFNE, includes
a set of feature generating algorithms, producing supervised and unsupervised
rules, subgroups and redescriptions, and advanced feature selection methodology
to construct relevant and non-redundant feature sets. These are used to extend
original problem representation with new interpretable and informative features
for downstream supervised learning tasks. Evaluation results across 5 different
datasets confirmed benefits of using supervised rules as features in classification
tasks and showed that subgroups represent highly relevant features across tested
datasets. Our study also shows that rules and redescriptions, constructed in a
specific unsupervised manner, can form informative features that help increase
performance of various classification algorithms. This is especially interesting in
cases when unlabelled data is abundant in comparison to labelled data. Finally,
the synergy of different types of features often allowed increasing classification
performance compared to the original representation. Future work includes eval-
uating DAFNE on more challenging datasets or tasks and comparison against
the state-of-the-art self-supervised learning frameworks for learning useful new
representations for tabular data.
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ity Program of the Croatian Science Foundation, funded by the European Union
from the European Social Fund under the Operational Programme Efficient Human
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Abstract. The ever growing amount of data that becomes available
necessitates more memory to store it. Machine learned models are becom-
ing increasingly sophisticated and efficient in order to navigate this
growing amount of data. However, not all data is relevant for a cer-
tain machine learning task and storing that irrelevant data is a waste
of memory and power. To address this, we propose bitpaths: a novel
pattern-based method to compress datasets using a random forest. Dur-
ing inference, a KNN classifier then uses the encoded training examples
to make a prediction for the encoded test example. We empirically com-
pare bitpaths’ predictive performance with the uncompressed setting.
Our method can achieve compression ratios up to 80 for datasets with a
large number of features without affecting the predictive performance.

Keywords: Feature-encoding · Tree-embedding · Dataset-compression

1 Introduction

The ever increasing sizes of data poses challenges. On the one hand, more stor-
age is needed. On the other hand, machine learning (ML) approaches runtime
scales with size and dimensionality of the data. From a ML perspective, ide-
ally the data could be compressed in a way that still enables good predictive
performance [17]. A variety of techniques have been proposed for this task such
as product quantization-based approach [11], using a neural network [15], or
the pattern-mining based KRIMP [12,18]. A drawback to product quantization
is that it is only applicable to real-valued data whereas KRIMP is based on
itemsets and hence is only applicable to discrete data.

This paper proposes a pattern-mining-based compression scheme using ran-
dom forests. Random forests are a popular and powerful method that construct
an ensemble of decision trees learned on random subsets of the data. The value
predicted for an input example is determined by its output configuration [4] –
the ordered set of leaves that are activated by the example in each tree – and
is obtained by combining the predictions of the individual leaves using e.g. a
voting scheme. A decision tree effectively compresses the data by (1) identifying
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relevant patterns by automatically selecting predictive features, and (2) group-
ing together examples that are similar, ignoring differences that are irrelevant
to the task at hand. As the number of trees in an ensemble is relatively small,
and because each leaf can be represented by a small code (at most d bits, with
d the tree’s depth), the concatenation of the leaf codes in an example’s output
configuration is an effective compressed representation of the example. A tree-
based scheme has the added benefit that it can naturally cope with data that
contains both discrete and real-valued features.

Based on these insights, we developed bitpaths, a method that trains a random
forest on the original feature space F . The random forest maps each example
from the original feature space F to the encoded output configuration space
B. During inference, the encoded output configuration of the test example is
computed and a KNN classifier is used on the encoded output configurations of
the training examples to make a prediction for the encoded test example.

The method we developed for compressing the dataset is similar to the
method Pliakos et al., 2016 [16] used for unsupervised learning tasks: Extremely
Random Clustering tree Paths (ERCP). However, they use a different encod-
ing for the output configurations that is not suitable for compression (Sect. 2).
Indeed, depending on the dimensions of the random forest, ERCP usually
expands the size of the dataset. Bitpaths uses a more memory-efficient encoding
while maintaining the same predictive accuracy for supervised learning tasks.

This paper investigates the following 2 key questions to determine whether
our proposed method is suitable for compression.

1. How well in terms of accuracy does bitpaths perform when compared to KNN
on the original feature space F , RF on the original feature space F and the
related method ERCP [16] (Q1)?

2. How much compression of the training set can be achieved by transforming the
original feature space F to the binary code space B using bitpaths without
decreasing predictive performance (Q2)?

2 Preliminaries

Random Forest. A random forest, first proposed by Breiman, 2001 [1], is a
randomized decision tree ensemble that is widely used for both classification
[2,8] and regression tasks [9,13]. A decision tree ensemble consists of several,
independently constructed decision trees. By combining the predictions of all
individual trees, the ensemble can overcome the large variance that individual
decisions trees usually have [16]. A random forest is such a decision tree ensemble,
but it consists of randomized decision trees, which means that each decision tree
can only split on a randomly chosen subset of the features.

Output Configuration. Given a random forest with m trees, the output config-
uration (OC) [4] of an example x is the ordered set of leaf nodes (l1, .., lm) where
each leaf node li of the output configuration contains x. The output configuration
corresponds to a combination of root-to-leaf paths and the corresponding leaf



Compression Without Decreasing Predictive Performance 263

nodes, where there is one such path and leaf node for each tree in the ensemble.
The output configuration of an example x completely determines the prediction
of the random forest for x.

Extremely Random Clustering Tree Paths (ERCP). Pliakos et al., 2016
[16] developed a similar method: Extremely Random Clustering tree Paths
(ERCP). They use an ensemble of extremely randomized trees instead of a ran-
dom forest with randomized trees. The most important difference however is the
encoding of the output configurations. Instead of encoding the root-to-leaf path,
they encode the presence of an example in each node of the tree. Given a tree
T with nodes n1, .., nk, an example x ∈ F is encoded as a binary string b1..bk,
where bi = 1 if x ∈ ni and 0 otherwise. This results in a very sparse encoding of
the example.

3 Bitpaths

The goal of bitpaths is to transform the original feature space F to the encoded
output configuration space B without losing the essential predictive information.
The essential predictive information is extracted by training a random forest on
the training set using the original feature space F . By encoding the root-to-leaf
paths of each example, the information that the random forest uses to make
predictions is kept, while the other information is discarded (Sect. 3.1).

Inference in the encoded output configuration space B is done with a KNN
classifier, which has excellent performance as long as the number of irrelevant
features is small. Since our compression scheme removes irrelevant information,
KNN is an excellent match.

3.1 Feature Construction

First, a random forest of m trees with maximal depth d is trained on the training
set using the original feature space F . Second, the path of each training example
in each tree is encoded in a binary string. At each node of a tree, the example
can take the left branch, in which case a 0 bit is added to the binary code,
or the right branch, in which case a 1 bit is added. This results in a binary
code of d bits. Figure 1 shows a toy example of a random forest with 3 trees
and maximal depth 2. Each leaf node additionally contains the binary code that
represents the path from the root to the leaf node. Finally, the encoded OC for
the training example is obtained by concatenating the binary codes of each tree
in the random forest. In the toy example of Fig. 1, the training example with
f1 = f2 = f3 = f4 = 1 is represented by the encoded OC 01 10 01 and the
training example with f1 = f2 = f3 = f4 = 5 is represented by 10 01 00.

3.2 Inference

At inference time, a k-nearest neighbours model predicts the target variable of
an encoded test example, based on the encoded OC’s of the training examples.
The k-nearest neighbours are determined by the Hamming distance between the
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Fig. 1. Example random forest with 3 trees and maximal depth 2. The leaf nodes
contain the label and the binary code that represents the root-to-leaf path.

Fig. 2. Lines of equal memory usage in function of the number of trees in the ensemble,
the maximal depth of each tree and the number of features in the original feature space.

encoded training examples and the encoded test example. The prediction of the
test example is then the average of the predictions of the k-nearest neighbours.

3.3 Compression

For a random forest of m trees and maximal depth d, bitpaths represents each
example by an encoded OC of m ∗ d bits. If we assume that each feature in the
original feature space F is represented by a 4 byte float and that there are k
features, an example in F consists of 8 ∗ 4 ∗ k = 32 ∗ k bits. Figure 2 shows the
lines of equal memory usage in terms of the number of features in F , the number
of trees in the random forest and the maximal depth of each tree. If the number
of trees and maximal depth is chosen such that you fall below the corresponding
depth line, compression is achieved.

The encoding of the related method ERCP on the other hand is not suitable
for compression. ERCP represents each example by a binary string of (2d+1 −
1) ∗ m bits. This quickly explodes with increasing depth and number of trees
and compression would only be possible for datasets with an enormous number
of features.

4 Experimental Evaluation

In this section, the following research questions will be answered.
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Table 1. Characteristics of the datasets used for evaluation

Nb of instances Nb of features

BreastCancer 699 9

Covertype 581 012 54

Higgs 3 468 33

Gina agnostic 601 970

monks-problem-2 250 000 6

ijcnn1 141 691 22

Webspam 350 000 254

tic-tac-toe 958 9

Scene 2 407 299

Fashion MNIST 14 000 784

1. How does bitpaths compare to KNN on the original feature space F , RF on
the original feature space F , and the related method ERCP [16] in terms of
predictive performance (Q1)?

2. How much compression of the training set can be achieved by transforming the
original feature space F to the binary code space B using bitpaths without
decreasing the predictive performance (Q2)?

We used 10 datasets1 that vary in the number of instances and features (Table 1)
for our experiments. Min-max normalization is first applied to all datasets. We
used the implementation of the RandomForestClassifier class of scikit-learn ver-
sion 1.0 with Gini impurity for all random forests used in the experiments. The
exact number of trees and the maximal depth depend on the specific experiment.
For the other parameters, the default setting of the RandomForestClassifier class
is used. The evaluation is done with 10-fold cross-validation.

4.1 Experimental Evaluation Bitpaths (Q1)

For the first research question, we used a random forest with 50 trees with a
maximal depth of 8 and selected the 10 nearest neighbours during inference.
Table 2 compares bitpaths with KNN evaluated on the original feature space F ,
the same random forest as was used for feature construction and ERCP [16] (see
Sect. 2). It also contains the average and the standard deviation of the rank per
method. Although bitpaths has the best average rank and the lowest standard
deviation, both the Friedman test [6,7] and the test developed by Iman and
Davenport [10] imply that all compared methods do not significantly differ from
each other (α = 0.05). Furthermore, following the approach proposed by Dem-
sar, 2006 [3] to compare multiple classifiers in a statistically correct way, the

1 For the Fashion MNIST dataset, only the examples belonging to class 2 and 4 are
used to make the classifier binary. This will be denoted as Fashion MNIST (2, 4).
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Table 2. Accuracy results for regular k-nearest neighbours (KNN, k = 10), the random
forest used for feature construction in the bitpaths method (RF), the method proposed
by Pliakos et al., 2016 (ERCP) [16] and our proposed method (bitpaths). For each
dataset, the rank of each method is given between brackets. The achieved compression
(not in percent) by ERCP and bitpaths on each dataset is also included, where a higher
compression ratio means that there is more compression and is thus better. The last
column gives the average duration (in seconds) of the compression for bitpaths.

KNN RF ERCP Bithpaths Compression
ERCP

Compression
bitpaths

Compression
time bitpaths (s)

BreastCancer 0.964 (4) 0.969 (1) 0.968 (2) 0.966 (3) 1.13e−2 7.20e−1 1.15e−1

Covertype 0.971 (1) 0.770 (4) 0.905 (3) 0.908 (2) 6.76e−2 4.32 159

Higgs 0.807 (4) 0.826 (1) 0.820 (3) 0.825 (2) 4.13e−2 2.64 11.7

Gina agnostic 0.826 (4) 0.922 (3) 0.937 (1) 0.935 (2) 1.21 77.6 3.55e−1

monks-problem-2 0.809 (4) 0.960 (1) 0.942 (2.5) 0.942 (2.5) 7.51e−3 4.80e−1 1.44e−1

ijcnn1 0.975 (3) 0.964 (4) 0.979 (2) 0.983 (1) 2.76e−2 1.76 8.10

Webspam 0.982 (3) 0.959 (4) 0.984 (1) 0.983 (2) 3.18e−1 20.3 73.4

tic-tac-toe 0.824 (4) 0.926 (2) 0.918 (3) 0.948 (1) 1.13e−2 7.20e−1 1.34e−1

Scene 0.950 (1) 0.908 (4) 0.926 (3) 0.931 (2) 3.74e−1 23.9 2.59e−1

Fashion MNIST (2, 4) 0.870 (3) 0.868 (4) 0.875 (2) 0.881 (1) 9.82e−1 62.7 1.40

Average rank 3.05 2.80 2.25 1.90 – – –

Standard deviation rank 1.150 1.327 0.750 0.663 – – –

Nemenyi test [14], that performs a pair-wise comparison, and the Bonferroni-
Dunn test [5], that additionally corrects for the family-wise error in multiple
hypothesis testing, conclude that our proposed method doesn’t significantly dif-
fer from any of the other methods in terms of accuracy. However, 7 of the 10
datasets are compressed with a compression ratio ranging between 1.76 and
77.6 (not in percent), depending on the dataset. This implies that bitpaths can
compress datasets without affecting the predictive performance. This stands in
contrast with ERCP that uses more memory for 9 of the 10 evaluated datasets.
Furthermore, bitpaths compresses datasets quickly: depending on the size of the
dataset it takes less than a second or up to a few minutes.

4.2 Compression Versus Accuracy (Q2)

For the second research question, we varied the compression ratio of the bitpaths
algorithm to investigate its effect on the accuracy. The number of trees in each
ensemble are chosen such that a compression ratio of 1, 2, 4, 6, 8, 10, 20, 30, 40,
50, 60, 70 and 80 is achieved. The maximal depth of each tree always remained
8. Figure 3 shows that the datasets can be divided in two categories:

1. For the datasets with a low number of features, the best accuracy is found
when no compression takes place (compression ratio = 1) and the accuracy
gradually decreases with a higher compression ratio. The decrease in accuracy
is because the ensembles get smaller and smaller, until eventually they are
unable to accurately capture the relationship between the features and target
variable. For the breastcancer, monks-problem-2 and tic-tac-toe datasets, a
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Fig. 3. Evolution of the accuracy of bitpaths in terms of the compression ratio (not in
percent) for each example in the training set. We evaluated the following ratios: 1, 2,
4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80. The number of trees in each ensemble are chosen
to achieve such a compression ratio. The maximal depth always remained 8.

compression ratio beyond 40, 30 and 30 respectively couldn’t be achieved
because these datasets are a very low dimensionality (<10) and because we
look at depth 8 trees, our codes are always one byte.

2. For the datasets with a high number of features, the initial accuracy is low
(except for Webspam) and gradually increases with increasing compression
until it reaches its peak. From that point, the accuracy has a steady course and
doesn’t drop like the datasets with a low number of features. This behaviour
can be explained by the extremely large number of trees that are needed
when no compression takes place (1000–3000 trees) while this is substantially
fewer for the other datasets (maximum 216 trees with no compression). The
datasets of this category are too small to properly train such a huge forest,
which results in low accuracy results for small compression rates. Webspam
on the other hand is large enough to train its large forest, which explains
its good initial accuracy. The steady course can also be explained by the
number of trees in the ensemble, which for higher compression ratios is still
large enough to make good predictions. It is expected that for even higher
compression ratio’s, the accuracy will also drop.

5 Conclusion

This paper explored how to compress datasets without losing predictive perfor-
mance. Our approach can handle both real-valued and discrete data by using a
random forest to compress the data. The experiments showed that bitpaths can
achieve high compression ratios for datasets with many features without affect-
ing the predictive accuracy. One limitation of our approach is that the encoded
output configuration is suboptimal in terms of compression when working with
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non-balanced trees where most examples take the long branches. A different
encoding of the output configurations might be more suitable in that case.
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Abstract. We present a Deep Learning pipeline for the detection of
astronomical sources within radiointerferometric simulated data cubes.
Our pipeline is constituted by two Deep Learning models: a Convolu-
tional Autoencoder for the detection of sources within the spatial domain
of the cube, and a RNN for the denoising and detection of emission peaks
in the frequency domain. The combination of spatial and frequency infor-
mation allows for higher completeness and helps to remove false positives.
The pipeline has been tested on simulated ALMA observations achiev-
ing better performances and faster execution times with respect to tra-
ditional methods. The pipeline can detect 92% of sources up to a flux
of 1.31 Jy/beam with no false positives thus providing a reliable source
detection solution for future astronomical radio surveys.

Keywords: Deep learning · Object detection · Radio interferometry

1 Introduction

In the last two decades, astronomical measurements underwent a rapid growth in
size and complexity thus driving Astronomy in the big data regime [3,14,18,26]
requiring a redesign of data reduction techniques capable to provide robust
results and substantial speed-up in the solution being sought. Machine learn-
ing demonstrated to be capable to solve a wide spectrum of problems span-
ning all aspects of the astronomical data cycle, from instrument monitor-
ing to data acquisition and ingestion, to data analysis and interpretation
[1,9,10,13,16,22,25]. Particularly challenging are the problems posed by exis-
tent and future infrastructures for radio astronomy, such as the Atacama Large
Millimeter/sub-millimeter Array (ALMA), the Low Frequency Array (LOFAR)
and the Square Kilometer Array (SKA) which are pushing astronomy in the
exabyte and exascale computing. After the initial correlation and calibration of
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the raw signals in Fourier space, these observatories are capable to provide data
in the form of cubes. We consider 3-dimensional cubes provided by an image
space (coordinates on the celestial sphere) combined with a spectrum in fre-
quency. The extraction of the celestial signal from the data cubes requires the
solution of an ill-posed inverse problem:

ID(x, y) = R × I(x, y) + n (1)

where ID(x, y) are the observed measurements, I(x, y) is the unknown signal,
R is a degradation operator due to the response capabilities of the observatories
and n is the additional noise propagated from the observation process to the
calibrated signal. R, also known as forward operator, takes up the very complex
underlying physical processes involved in the observational process. The deconvo-
lution process ideally provides the noiseless observation I(x, y) from the observed
measurements and it is traditionally performed making assumptions about the
signal and the forward operator. Many attempts have been made at solving this
problem using Machine Learning (ML) based approaches [4,7,19,21,27]. In this
paper, we present a deep-learning-based pipeline for the detection of sources
within “uncleaned” data cubes ID(x, y), i.e. data which have not undergone any
prior deconvolution (hereafter “dirty” datacubes). In a first order approximation,
a dirty cube represents the inverse Fourier transform of the observed visibilities
convolved with the instrumental point spread function (dirty beam). Visibilities
are recorded complex values of the interference pattern provided by each antenna
pair. The number of sampled visibilities is limited and a direct inversion of Eq. 1
is not feasible for reconstructing the sky brightness. The most popular deconvo-
lution technique for image reconstruction in the radio wave region of the elec-
tromagnetic spectrum is clean [12]. Given the information of the point-spread
function, bright point sources are identified and subtracted from the dirty image
using an iterative process. The identified point sources are recorded in the model
image. When all point sources are removed from the dirty image, the remaining
dirty image should consist only of noise. A multiscale clean approach extends
the work of [12] allowing point sources to be Gaussian distributed instead of a
delta function [8]. In this work we introduce a new design to the image recon-
struction problem capable to overcome some of the limitations introduced by
the traditional clean algorithm. These limitations are

1. the iterative cleaning procedure optimize the best possible image reconstruc-
tion employing a minor cycle operating in the image domain and a major
cycle to handle residuals from the observed data and the estimated model
image (through a transformation from data and image domains). Hence, each
cube undergoes a time-consuming cleaning procedure which is demanding for
current and future radio interferometers [5].

2. by working on each slice independently, clean completely ignores possible
correlations between pixels along the frequency axis of the cube, and this
leads to the introduction of biases and artifacts in the cleaned cube. For
example, a noise peak would be deconvolved several time with the PSF of the
instrument and then the recovered delta function would be convolved with
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the clean beam thus producing a structure morphologically similar to actual
sources that underwent the same iterative deconvolution process.

The main novelty of our proposed pipeline with respect to other architec-
tures [7,19,21] is to include frequency information (which is usually discarded)
to help detect the sources and remove false detections. As we shall demonstrate,
frequency information can help both in deblending spatially blended (overlap-
ping) sources and in the detection of faint sources.

Our paper is structured as it follows: In Sect. 2 we describe the architectures
of the deep learning models used in our pipeline, the complete data flow within
the pipeline in order to explain its inner workings, and the training strategies
for all the models. In Sect. 3 we present the simulation algorithm used to gener-
ate the realistic ALMA observations needed to train and test our pipeline, and
we analyse the pipeline performances in detecting sources within the test set.
A comparison is also made with the performances of blobcat and Sofia-2 : two
classical source detection algorithms widely used within the community [11,24].
Finally, in Sect. 4 we draw our concluding remarks, and lay the prospect for
future work. We wish to emphasize that while this paper focuses mainly on the
analysis of ALMA data cubes, the methodology is general and can easily be
exported to the processing of similar data (e.g. LOFAR and SKA) as well as to
other fields (such as radiology) requiring an accurate analysis of data cubes.

2 Methodologies

The pipeline can be described as a decision graph interconnecting two deep
learning models, each one taking a specialised role in the detection process.
The architectures were chosen on the basis of their strengths: a convolutional
architecture (we shall call it “Blobs Finder”) to process spatial information and a
Recurrent Neural Network (Deep GRU) to process frequency information. Before
describing the details of the Deep Learning models in the pipeline, we hereby
describe the full flow of data within the pipeline.

2.1 The Pipeline

The pipeline can be divided into tree logical blocks: 2D source detection, fre-
quency denoising and emission detection, and source focusing (these blocks are
marked in Fig. 1). To ease the logical flow of the pipeline, we assume that all DL
models have been trained to act as simple, functional map between their inputs
and outputs.

1. 2D Sources Detection (1–4). The image cube is normalized to the [0, 1]
range and then it is integrated along frequency (1) to create a 2D image. We
refer to this image as the “dirty image”. The dirty image is then cropped to a
size of [256, 256] pixels (which is large enough to contain the whole source and
removes the edge of the images which are characterized by low SNR), normal-
ized to the [0, 1] range (2) and then fed to the first DL model Blobs Finder.
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Fig. 1. The full pipeline schema, the numbers show the logic flow of the data within
the pipeline (see the text for explanations).

The autoencoder processes the image and predicts a 2D probabilistic map
(normalized to the [0, 1] range) of source detection (3). A hard thresholding
value of 0.1 is used to binarize the probabilistic map and then the scikit-learn
[17] label and regionprops algorithms are used to extract bounding boxes
around all blobs of pixels (4). The thresholding value is chosen to be 0.1 in
order to peak all the signal detected by Blobs Finder, while excluding small
fluctuation in the background. We refer to these blobs as source candidates.
Figure 2 shows, respectively, an example of an input dirty image containing
6 simulated sources (outlined by green bounding boxes and of which two
are spatially blended), the target sky model image (with in green the target
bounding boxes and in red the predicted bounding boxes extracted through
thresholding of the predicted 2D probabilistic map), and the 2D prediction
map with in red the predicted bounding boxes.
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Fig. 2. Left: Input dirty image; center: target sky model image; right: blobs finder
prediction image (green = true bounding boxes, red = predicted). (Color figure online)

2. Frequency Denoising (5–7): bounding boxes around source candidates
(blobs) are used to extract dirty spectra from the input cube. The spectrum
of each source candidate is extracted by adding the pixels inside its bounding
box for each of the 128 frequency slices of the cube. The spectra are standard-
ized, i.e. rescaled to have null mean and standard deviation with unity value,
and then fed to Deep GRU. The Deep Gated Recurrent Unit denoises the
standardized spectra and outputs 1D probabilistic maps of source emission
lines (hereafter, cleaned spectra (6)). In order to detect emission peaks, the
cleaned spectra are analysed with the scipy [23] find peaks algorithm (thresh-
old value of 0.1). Each peak is fitted with a Gaussian [2]. All detected peaks
are recorded alongside their FWHMs (7). At this stage, to account for pos-
sible false positives produced by Blobs Finder, all potential candidates that
show no meaningful peak in their spectra are removed. If more than one peak
is found inside a given spectrum, the candidate likely is the superimposition
of two or more blended sources and thus is flagged for deblending.

3. Source Spectral Focusing (8–9): this phase has two main objectives;
deblend sources and remove false positives. The first is tackled via spectral
focusing aimed at increasing the Signal to Noise Ratio (SNR) of the source
(by cropping a [64, 64] pixel box around its bounding box and integrating only
within the peak FWHM. In order to measure sources SNRs, we introduce two
diverse SNR metrics defined as follows:

– Global SNR:

SNR =
median(xs(r))
var(xn(R − r))

(2)

where xs(r) are the values of the source pixels contained within the
circumference of radius r that inscribes the source bounding box, and
xn(R − r) are the pixel values within an annulus of internal radius r and
external radius R which has the same area of the inscribed circumference;
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– Pixel SNR:
snr =

xi

var(X)
(3)

where xi is the value of the given pixel, and var(X) is the variance com-
puted on the full image.

These two SNR estimators are used respectively to disentangle false positives
from true sources and to deblend possible multiple sources within a given
blob.
First, the source is focused on the highest flux peak (primary peak) and the
global SNR calculation is made to understand if the potential source must be
discarded. Also, the pixel SNR measurement is used to find the highest SNR
pixel in the image, which will act as a reference for the next phase of the
deblending process. The candidate source is focused around the secondary
peaks. If the secondary peaks are outside the emission range of the brightest
source, then the latter should disappear from the focused image (because
the image is produced by integrating the cube outside the source emission
range), and the pixel SNR measurement is used to find the highest SNR pixel
in the image. If this pixel is different from the previously found reference
pixel, then the neighboring pixels around this pixel are linked with a friend of
friends algorithm in an iterative manner. At each iteration, the Global SNR
is measured. Pixels are added in this fashion until a plateau in the global
SNR is reached. If the highest SNR pixel and the reference pixel are within
1 pixel and the global SNR measured in the integrated cube image is higher
than the measured SNR in the spectrally focussed image, then the source is
discarded as a False Positive. A bounding box is finally created in order to
encompass all the selected pixels, and a [64, 64] pixel image is cropped around
the bounding box.

2.2 Blobs Finder

Blobs Finder is a 2D Deep Convolutional Autoencoder trained to solve the image
deconvolution problem:

D[x, y] = P [x, y] × M [x, y] + N [x, y] (4)

where D[x, y] is the dirty (stacked) image produced integrating along the fre-
quency the dirty cube, P [x, y] is the dirty PSF, N [x, y] is the combination of all
noise patterns in the data and M [x, y] is the true sky model, i.e. the unaltered
radio signal emitted from the simulated astronomical sources. Blobs Finder is
trained with the dirty images as inputs, and the sky model images as targets.
Both input and target images are normalized to the [0, 1] range. The Blobs Finder
architecture is constituted by an Encoder Network and a Decoder Network. The
Encoder consists of four convolutional blocks and a final fully connected layer.
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Each block contains a 2D Convolution layer with stride 2 and a kernel size of
3, a Leaky ReLU (Rectified Linear Unit) activation function and a 2D Batch
Normalization layer. Each block halves the spatial extent of its input and dou-
bles the number of channels. The Decoder is constituted by a fully connected
layer, followed by four deconvolutional blocks and a final layer. Each deconvo-
lutional block contains a bilinear interpolation function with a stride of 2 which
up-samples spatially the input, a 2D Transposed Convolution with a kernel size
of 3 and a stride of 1 which reduces the number of channels while preserving
the spatial dimensions, a leaky ReLU activation function and a 2D Batch Nor-
malization layer. The final layer (used to normalize the input to the [0, 1] range)
is a 2D Convolution with a kernel size of 1 and a stride of 1 followed by a
Sigmoid activation function. To train Blobs Finder, we use as a loss function
the weighted combination of two well-known losses in the DL image reconstruc-
tion and denoising framework: the l1 loss and the Structural dissimilarity loss
DSSIM .

2.3 The Deep GRU

The Deep Gated Recurrent Unit (GRU) is a Recurrent Neural Network (RNN)
[20] constructed by combining together two layers of GRUs [6] and a fully con-
nected layer. In our implementation, each layer of GRUs outputs 32 hidden
states (or channels to keep the nomenclature homogeneous) which are then con-
catenated to form a latent vector of size [b, 64 × 128] before being fed to a fully
connected layer. The layer transforms its input in a vector with the same size as
the input signal and then a Sigmoid activation function is applied to normalize
it to the [0, 1] range. As loss function, we use the l1 loss.

3 Experiments

To train and test the proposed pipeline, we need a statistically significant sam-
ple of ALMA model and dirty cube pairs. To this effect we generated our own
simulations of ALMA data cubes by combining python and bash scripting with
the Common Astronomy Software Application (CASA) v. 6.5.0.15 [15] python
libraries. CASA provides a set of simulator methods allowing one to create real-
istic ALMA observations at any given configuration and observing time. Cor-
rupting effects as thermal noise and atmospheric pollution are possible. ALMA
simulations are reliable and can also be used to tune parameters of the (real)
data reduction. Each model cube was created by first generating a central source
and then by adding between 2 and 5 additional sources such that each source
emission flux is lower or equal to that of the central source. In order to sim-
ulate 3D sources, we combined 2D Gaussian Components in the spatial plane
with 1D Gaussian components (emission lines) in frequency space. The source
morphological parameters are sampled from the intervals reported in Table 1.
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Table 1. Sampling intervals of the model source parameters. Sources are generated by
randomly sampling from the outlined uniform distributions. The first column shows the
parameter name, the second the range from which the parameter values are sampled,
and the third the unit.

Parameter name Range Unit

Number of components [2–5] –

Amplitude of 2D Gaussian compoment [1–5] Arbitrary

FWHM of the 2D Gaussian component [2–8] Pixel

Spectral index [-2–2] –

Position in the xy plane [100–250] Pixel

Position angle [0–90] Deg

Line amplitude [1–5] Arbitrary

Line center [10–110] Chan

Line FWHM [3–10] Chan

We then feed the sky models to the CASA simobserve taks which simulates
interferometric measurements sets through a series of observing parameters. The
dirty data cubes are then obtained by performing the fast Fourier transform of
the visibility data and gridding. We generate 5, 000 simulated cube pairs contain-
ing a total of 22, 532 simulated sources and divide them into train, validation,
and test sets (60%, 20%, 20%). The three sets contain respectively 13, 512, 4, 465,
and 4, 556 simulated sources. While the two models are trained indipendently in
parallel on the same training data, the predictions are made sequentially given
that the input of each model is the output of the previous one.

3.1 Source Detection

Hereafter, we present the performances of Blobs Finder and Deep GRU in detect-
ing sources within the 1, 000 cubes in the Test set. To check if a source has been
detected by Blobs Finder, we measure the 2D Intersection over Union (2D IoU)
between the true 2D bounding box and the predicted one, while for Deep GRU
we measure the 1D IoU between the true emission ranges and the detected
ones. In both cases, we use a threshold of 0.8. To ensure that the central part
of the source emission of a True Positive (TP) is always detected, we require
the distance between the centres of the true and predicted bounding boxes is
smaller then 3 pixels. Blobs Finder predicts 4056 (89%) sources (TP). Match-
ing them with the true 4, 556 sources in the Test set, 4, 205 (92.3%) pass the
2D IoU criterion, meaning that an additional 149 sources are detected by Blobs



3D Detection of ALMA Sources Through Deep Learning 277

Finder but are spatially blended with another source. Blobs Finder misses 354
sources (FN) and detects no False Positives (FP). The 4056 bounding boxes are
used to extract a corresponding number of dirty spectra from the dirty cubes.
The Deep GRU detects 4, 202 emission peaks out of the 4, 205 present in the
extracted spectra but also produces 62 false positives. Sources are then ”spec-
trally focused” within the predicted frequency emission ranges and SNR checks
are made to detect false positives and, in the case, deblend multiple sources. At
the end of this phase all 62 false positives are correctly identified and eliminated.
In order to compare with blobcat ([11]) and Sofia-2 ([24]), we run them on
the 1000 dirty images (cubes in the case of Sofia-2) in the test set. Blobcat
requires two parameters: a detection (Td) and cut (Tf ) SNR threshold to decide
which peaks in the image are candidates for blobs and where to cut the blobs
boundaries around them (in other words: pixels with a SNR higher than Tf are
selected to form islands and island boundaries are defined by Td). We measured
blobcat performances with different choices of Td and Tf through a grid-search
strategy (Td ∈ [2, 15], Tf ∈ [1, 10]) and, in this paper, we report the best results
(Td = 8σ, Tf = 4σ). Sofia-2 was run with its default set of parameters with
the exception of the filter sizes that were set to [3, 5, 7, 11] in both spatial and
frequency directions and the autokernel parameter that was set to True to auto-
matically determine the reliability kernel size. We run the Sofia-2 smooth and
clip algorithm with a spatial and frequency kernel sizes of [3, 5, 7, 9, 11], a source
finding threshold of 0.5, a spatial linking radius of 1, a frequency linking radius
of 3 and a SNR threshold of 2. We let the algorithm automatically select the
other thresholds. We limit the detection area of Sofia-2 by setting the masking
to a 256 pixel size square centered in the image. blobcat successfully detects
2, 779 (61%) sources, produces 2, 429 false detections and misses 1777 sources.
The majority of sources missed by blobcat are spatially blended with brighter
sources, or present a SNR ≤ 5.0, or are located at the edges of the images.
Sofia-2 detects 1010 (22%) sources, produces 4011 false detections and misses
3546 sources. Regarding Sofia-2 predictions, most false positives are located at
the spatial edges of the image, while it misses most blended sources by merging
their emissions with other sources which leads to all involved sources failing the
2D IoU or distance based thresholds. Table 2 summarises the source detection
performances. Regarding the execution time to process an ALMA cube, the DL
pipeline, blobcat and Sofia-2 take on average 3.2 ms, 32 s and 67 s, respec-
tively. This is a crucial factor for ALMA (which is transitioning to a TB data
regime [5]) and for other future radio interferometers such as SKA.
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Table 2. Comparison between the sequential proposed source finding pipeline com-
posed by Blobs Finder, DeepGRU and Spectral Focusing, and blobscat. Columns
show true positives (TP), false positives (FP), false negatives (FN), precision, recall
and mean intersection over union (Mean IoU) between true bounding boxes and pre-
dicted ones. TP and FN are also expressed as fractions over the total number of sources.

Algorithm TP/ FP FN Precision Recall Mean IoU

Pipeline 4202 (92.3%) 0 354 (7.7%) 1.0 0.923 0.84

Blobcat 2779 (61%) 2429 1777 (39%) 0.53 0.609 0.81

Sofia-2 1010 (22%) 4011 3546 (78%) 0.20 0.22 0.83

4 Conclusions

In this paper, we present a novel pipeline for source detection in radio-
interferometric data cubes. The pipeline is constituted by two DL models: Blobs
Finder (Deep Convolutional Autoencoder) and Deep GRU (RNN). Blobs Finder
detects sources within the integrated data cubes (2D images produced by inte-
grating the cubes along the frequency axis) and the found candidate sources are
used to extract spectra which are then fed to the Deep GRU algorithm. Deep
GRU is capable of denoising the spectra in order to detect emission lines. Spa-
tial and Spectral information is combined to remove false positives and spatially
deblend sources. To test the pipeline capabilities, we produce our own realistic
simulations of ALMA observations, 5, 000 data cubes containing 22, 532 simu-
lated sources with fluxes ranging from 1 to 380 Jy/beam. We also compare the
pipeline performances with blobcat and Sofia-2, two standard source find-
ing algorithms extensively used within the community, showing that our pro-
posed pipeline achieves better performances and faster execution times. The DL
pipeline is 33% and 76% more efficient than blobcat and Sofia-2, respectively,
when compared at the purity level. The DL pipeline is also capable to improve
by a factor of 10 the imaging procedure’s speed. The application to ALMA dirty
cubes shows that the DL pipeline is capable to support CASA redesigning the
imaging procedure in view of the big data era.
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Abstract. Anomaly detection is a machine learning task that has been
investigated within diverse research areas and application domains. In this
paper, we performed anomaly detection for Physical Threat Intelligence.
Specifically, we performed anomaly detection for air pollution and pub-
lic transport traffic analysis for the city of Oslo, Norway. To this aim, the
state-of-the-art method SparkGHSOM was considered to learn predictive
models for normal (i.e. regular) scenarios of air quality and traffic jams
in a distributed fashion. Furthermore, we extended the main algorithm to
make the detected anomalies explainable through an instance-based fea-
ture ranking approach. The results showed that SparkGHSOM is able to
detect anomalies for both the real applications considered in this study,
despite the fact it was designed for different tasks.

Keywords: Anomaly detection · Air pollution · Public transport
traffic

1 Introduction

Anomaly detection is a machine learning task that refers to the problem
of identifying data that do not conform to patterns observed in historical
data. These patterns represent the expected behaviour in normal conditions.
Therefore, anomaly detection is usually performed through a data-driven algo-
rithm to construct a model which will be able to detect a specific measure-
ment/object/instance/observation as anomalous with respect to the historical
data already seen. Anomaly detection is a very general task that finds appli-
cations in many real-domain scenarios such as fraud detection for credit cards,
insurance, or health care, intrusion detection for cyber-security, fault detection
in safety-critical systems, and military surveillance for enemy activities [6].

In this paper, we consider the Anomaly Detection task for the purposes of
Physical Threat Intelligence. Specifically, we propose an algorithm for anomaly
detection which works on data continuously collected by geo-located sensors
located in urban areas. The data refer to physical information (e.g. temperature,
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number of vehicles crossing a gate, number of pedestrians in a given area, PM10
level at certain points in the town, etc.). The goal is to identify an anomalous, not
expected, behaviour for one or many values simultaneously, considering the spe-
cific time, date and spatial coordinates of the considered observation. This would
give the opportunity to Security Operators to understand potentially dangerous
situations and take the appropriate actions in time.

The task we consider hereby is particularly challenging since data generated
by sensors are big in size and have spatial and temporal coordinates that make
the data not independent. Indeed, the spatial proximity of sensors introduces
spatial autocorrelation in functional annotations and violates the usual assump-
tion that observations are independently and identically distributed (i.i.d.) [1].
Although the explicit consideration of these spatial dependencies brings addi-
tional complexity to the learning process, it generally leads to increased accuracy
of learned models [9]. In addition, data generated by sensors are also affected by
temporal autocorrelation, since they i) tend to have similar values at the same
time on close days; ii) have a cyclic and seasonal (over days and years) behavior;
iii) tend to show the same trend over time.

While stream mining algorithms deal with both i) and ii), they may fail to
consider iii), since they tend to better represent the most recently observed con-
cepts, forgetting previously learned ones [2]. On the contrary, time series-based
approaches are able to deal with iii), but may fail to consider i) and ii). In fact,
they typically require the size of the temporal horizon as an input: Considering
a short-term horizon (e.g., daily) excludes a long-term horizon (e.g., seasonal)
and vice versa. On the contrary, in the approach presented in this paper, we
propose a time-series approach that exploits both spatial and temporal features,
in order to take into account all the aspects mentioned before. In particular, the
method addresses the problem of identifying complex spatio-temporal patterns
in sensor data by means of Self-Organizing Maps (SOMs).

A SOM [5] is a neural-network-based clustering algorithm that operates by
mapping high-dimensional input data into a 2-dimensional space implemented
by a grid of neurons called feature map. In this paper, we consider GHSOMs,
(Growing Hierarchical SOMs) that are particularly suitable for time series data
and better capture spatio-temporal information thanks to the hierarchical orga-
nization of the SOMs that better adapt to complex data distribution. Specif-
ically, we consider the distributed extension Spark-GHSOM [6], that exploits
the Spark architecture to process massive data, like those coming from sensors.
Since GHSOMs are designed for clustering and not for anomaly detection tasks,
we extend the learning algorithm Spark-GHSOM in order to learn GHSOMs for
anomaly detection, in an unsupervised fashion.

2 Spark-GHSOM

Spark-GHSOM [6] was introduced to overcome two limitations of the classi-
cal GHSOMs. Indeed, a GHSOM i) requires multiple iterations over the input
dataset making it intractable on large datasets; ii) it is designed to handle
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datasets with numeric attributes only, representing an important limitation as
most modern real-world datasets are characterized by mixed attributes (numer-
ical and categorical). Therefore, Spark-GHSOM exploits the Spark platform to
process massive datasets in a distributed fashion. Furthermore, it exploits the
distance hierarchy [3] to modify the optimization function of GHSOM so that it
can (also) coherently handle mixed-attribute datasets. Spark-GHSOM showed
high accuracy, scalability, and descriptive power on different datasets.

The first step in the GHSOM algorithm is to compute the inherent dissim-
ilarity in the input data with different types of attributes. Classical GHSOMs
exploit the mean quantization error. However, this error is suitable for numeri-
cal attributes only. While there is no standard definition of mean for categorical
attributes, SparkGHSOM replaces the mean quantization error by considering
instead the variance in order to assess the quality of map and neurons. For
categorical attributes, unlikability is a good measure to estimate how often the
values differ from one another [4]. Formally, let D the dataset under analysis,
the unlikability for a categorical attribute A of D is defined as:

U(A) =
∑

i∈domain(A)

pi(1 − pi) (1)

where pi = frequency(Ai,D)
|D| , Ai is the i -th value of the attribute A and

frequency(Ai,D) is the absolute frequency of the value Ai for the attribute
A in D. Therefore, SparkGHSOM computes the overall variance of the dataset
as follows:

σ =
∑

A∈featureset

1num(A)σ(A) + 1cat(A)U(A)
2

(2)

where 1num(A) (resp. 1cat(A)) is 1 when the attribute A is numerical (resp.
categorical), 0 otherwise. σ(A) represents the classical variance for the attribute
A when it is numerical.

The distance hierarchy [3] is considered to compute the similarities among
the categorical values. To compute the distance among categorical values, a
distance hierarchy for each categorical attribute must be provided in advance.
Similar values according to the concept hierarchy are placed under a common
parent which represents an abstract concept. The GHSOM training process takes
into account mixed attributes and consists in finding the winner (closest) neuron
of the SOM w.r.t. the single input instance according to the distance hierarchy.

In the first step, the winner neuron is identified for the input instance accord-
ing to the distance hierarchy. Therefore, the neuron’s weight vector is modified
by a certain amount to match the instance vector. In the hierarchy tree of the
concepts, where the leaves represent the actual values of the instances and the
non-leaf nodes represent the neurons, this process pulls the neuron point towards
its leaf in order to “specialize” what the neuron describes.

In the second step, the closest winner neuron and its surrounding neighbor
neurons of the SOM are adapted moving them towards the input instance. This
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training process requires a defined number training epochs over the input dataset.
The training is governed by the Mean Quantization Error (MQE) of a neuron, that
is the total deviation of the neuron from its mapped input instances. The MQE
for a SOM layer is computed as the average MQE of all the neurons representing
instances. A higher value of the MQE means that the layer does not represent the
input data well and requires more neurons to better represent the input domain.
Moreover, when a single neuron is still not representing the surrounding instances,
then the neuron is expanded as a SOM hierarchically (see Fig. 1).

Fig. 1. A growing hierarchical self organizing map.

3 Spark-GHSOM for Anomaly Detection

The training process of the Spark-GHSOM follows the classical process of the
GHSOM training, except for the use of a different function for the calculation
of the distance between the input vector and the neurons of the feature map,
since the Euclidean distance is not computable on categorical attributes. For
this reason, the hierarchical distance was chosen [3,6].

The hierarchy obtained can thus be used to solve an anomaly detection task.
In particular, when a new input vector is supplied to the hierarchy, the algorithm
looks for the SOM that succeeds in better approximating the input data (that
is, the SOM with the shortest distance with respect to the input vector). Once
found, it is used to carry out the prediction for the new input data, based on the
distance between the input vector and the closest neuron (the winner neuron)
in the map.

More formally, let xi be the new example to be considered, and let e(xi) =
arg min edist(xi, e) the closest neuron to xi according to the distance measure
described before, the example is considered an anomaly if the following inequality
holds:

dist(xi, e(xi)) > (davg + tf ∗ σ) (3)

In the formula, davg is the average distance among the training instances and
the neurons of the model after the training, σ the standard deviation of such
distances, and tf the user-defined threshold.
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As data distributions tend to change over time, it may be necessary to update
the knowledge of the anomaly detector using more recent data. For this reason,
Spark-GHSOM for anomaly detection provides the possibility to update the
weights vectors of the neurons while keeping the generated hierarchy unchanged.
This process can be particularly useful if end users do not have enough time or
data availability to train a new anomaly detector from scratch. Consequently,
having a pre-trained model already available, it is possible to provide the model
with a micro-batch of data, in order to update the knowledge extracted by the
model and adapt it to the user’s needs. This aspect is particularly useful in our
case, where data generated by the sensors can be relatively few.

The anomaly detector could produce different types of output depending on
the level of detail. The simplest approach provides feedback for the current data
in the form of a Boolean response. This kind of output could support raising an
alert if the response is equal to “anomaly”.

This approach presents the advantage that is simple to handle and transmits
the prediction as a binary variable (e.g., anomaly/normal, 0/1, true/false). Its
drawback is that it makes it difficult for the end-user to interpret the raised
alert/anomaly. Therefore, a more informative approach could be considered by
combining the previous one with a ranking of the variables (feature ranking)
according to their importance, indicating the contribution to catching the vari-
able’s anomaly.

Feature ranking is a ranking of the entire set of features composing the data
collection, ordered with respect to the feature importance. Feature importance
is a numerical value between 0 and 1, which expresses how anomalous the value
expressed by the feature is with respect to the data collection, such that the sum
of all the features importance in the feature ranking is equal to 1. The importance
score is determined starting from a distance function between the current data
under analysis and the winner neuron. Specifically, the ranking is proportional
to the contribution provided by the single feature in the Euclidean distance
between xi and e(xi). More formally, the ranking function for the instance xi,
rf (xi), is computed as follows:

rf (xi) =
(xi[l] − e(xi)[l])2∑
l′(xi[l′] − e(xi)[l′])2

(4)

where l represents the feature index.
This approach helps to identify the feature(s) that most contributed to the

anomaly and, therefore, the “reason” for the anomaly.

4 Experiments

The experiments were conducted for the city of Oslo (Norway) by considering
two real domains for the following analyses: air pollution and public transport
traffic.
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Air Pollution Analysis
The proposed method was tested using data coming from air quality monitoring
sensors to identify pollutant concentrations deemed abnormal.

At each location, different pollutants are monitored by the sensors:

– Hjortnes: NO, NO2, NOx, PM10 and PM2.5
– Loallmenningen: NO, NO2, NOx, PM1, PM10 and PM2.5
– Spikersuppa: PM10 and PM2.5

The information on the concentration of pollutants comes with both a timestamp
and the geo-coordinates (latitude and longitude), so that the time series can be
reconstructed. Data, which is publicly available, can be downloaded through a
REST API1.

The period considered for training was from January 2021 to September
2021, with an hourly sampling rate, totalling 18.286 data points from the cho-
sen locations. The period considered for testing is October 2021, totalling 720
acquisitions from the chosen locations. The best value for the parameter tf has
been selected according to an internal cross-validation on the training instances
in the interval [0, 15].

Figure 2 shows the concentrations per hour of NO, NOx, and NO2 pollutants
during the identified test period, i.e., October 2021, from the station of Hjortnes.
The choice fell on these pollutants because they are present within the top-
3 of the feature ranking, for those time instants considered anomalous by the
algorithm, indicated with black arrows in the graph.

Fig. 2. Concentrations per hour of NO, NOx and NO2 pollutants during October 2021,
from Hjortnes station.

It is worth to note that we did not find an abnormal situation during October
21 at 10 a.m., indicated with a green arrow in Fig. 3, when very high concentra-
tions of PM1 were recorded, even though at this time point the pollutant PM1
is correctly present in the first position of the feature ranking.

1 https://api.nilu.no/.

https://api.nilu.no/
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Fig. 3. Concentrations per hour of PM10 and PM2.5 pollutants during October 2021,
from Hjortnes station.

The motivation is because several pollutants are being observed together and
the sudden increase of concentrations of one of them is sometimes not sufficient
to classify the time instant as a potential abnormal situation.

Figure 4 shows the concentration per hour of PM1 pollutant during the test
period, from Loallmenningen. For this place, PM1 is the most decisive pollutant
for the detection of abnormal situations that occurred during October 2021.

Fig. 4. Concentrations per hour of PM1 pollutant during October 2021, from Loall-
menningen station.

As in the previous graphs, the black arrows indicate the time instants in
which we detected abnormal concentrations of the pollutants considered. As
expected, the algorithm was able to correctly detect high concentrations of the
PM1 pollutant.

However, on October 26 at 9 p.m., indicated by the green arrow, the con-
centrations of PM1 were very similar to those of October 27 at 4 p.m., but only
in the latter case, an anomalous situation was found by the algorithm. A more
detailed graph is shown in Fig. 5.
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Fig. 5. A zoom in with respect to the time interval for PM1 pollutant during October
2021, from Loallmenningen station.

The reason is due to a sudden increase in concentrations of the remain-
ing pollutants, which occurred on October 27 at 4 p.m. This situation, as
shown in Fig. 6, allowed the algorithm to identify an anomalous situation at this
timestamp.

Fig. 6. Concentrations per hour of NO, NO2, PM10 and PM2.5 pollutants during
October 2021, from Loallmenningen station.

Figure 7 shows the concentrations per hour of PM10 and PM2.5 pollutants
during the test period, from the area of Spikersuppa. The pollutants shown in the
graph are the only ones the station can monitor. As expected, the algorithm did
not identify any situations deemed abnormal for this place, as the concentrations
of October are quite regular.

Public Transport Traffic
This data consists of one week of data regarding Oslo’s public transport.
The instances represent GPS-tracked busses with latitude and longitude. Each
instance is timestamped according to the standard ISO 8601 with a resolution
in seconds. The Service Interface for Real time Information - Vehicle Monitoring
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Fig. 7. Concentrations per hour of PM10 and PM2.5 pollutants during October 2021,
from Spikersuppa station.

(SIRI-VM) is used to model vehicle-movements and their progress compared to
a planned timetable2.

Fig. 8. The data processing pipeline

For this dataset, the processing pipeline illustrated in Fig. 8 was executed.
Therefore, starting from the week of data from Oslo traffic transport, we per-
formed data cleaning in order to fix some encoding issues. We also aggregated
data by 5-minutes interval periods and by spatial areas according to some prelim-
inary clustering. This step was crucial since the data provided refer to movable
points in the map making the aggregation operations unfeasible. Clustering on
the spatial location was performed by exploiting K-Means algorithm. The vari-
ables of the considered data were extended by considering the cluster identifier
(cluster ID) and the cluster’s centroid latitude and longitude to the data. Since
K-Means algorithm needs the number of clusters to identify, we performed the
well-known silhouette cluster analysis [8] with the aim to identify the number of
areas for monitoring the traffic. According to silhouette analysis, we considered
100 different regions for traffic monitoring (see Fig. 9).

The instances are therefore grouped by two levels: first the time, then the
cluster id previously identified. Various new features are computed as part of the
aggregation (e.g., the average “delay” of the buses in seconds) for each identified
clustered monitoring area. Multiple train and test sets were created as illustrated
in Fig. 10. The n-th evaluation step uses n hours for training, and the (n +
1)-th hour for testing. The 10% of the available test windows are perturbed

2 https://api.entur.io/realtime/v1/rest/vm?datasetId=RUT.

https://api.entur.io/realtime/v1/rest/vm?datasetId=RUT
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Fig. 9. The Oslo street map and the best locations for monitoring traffic according to
the clustering step.

randomly selecting 3 columns for each instance and randomly assigning a new
value for each selected feature. These test windows are considered as anomalous.
The remaining 90% of the available test windows are used without perturbation
and considered non-anomalous for the evaluation. The aim of this setting is
to perform an evaluation based on landmark windows. The best value for the
parameter tf has been selected according to an internal cross-validation on the
training instances in the interval [0, 15].

Fig. 10. Training and testing sets.

In Fig. 11 hour-by-hour histograms are reported for the first day. Stacked
green bars indicate the correct predictions, while the red ones the wrong predic-
tions. The red text in the date indicates that the window is perturbed (anomaly).
The top label contains the total number of instances in the test set. During nor-
mal windows, the anomaly detector results are effective since false positives are
generally avoided. Most of the normal scenarios that occurred during different
time slots (in the morning, afternoon, evening, and night) were recognized as
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normal situations: 99.7% accuracy (we have only 5 false positives at the begin-
ning, when the model is still unstable). From the figure, we can also see that
the system identifies many false negatives at the beginning [01:40–03:40]. This
is expected since the model is still unstable to detect anomalies. Moreover, the
lack of data, due to the lack of public transport late in the night (or early in the
morning, only 48 instances), further complicated the problem. During the day,
after 22 h of training, the anomaly detector appears to be much more stable and
capable to predict most of the anomalies occurred during the two-hours anoma-
lous time slot [16:40–18:40] in the afternoon. After 26 h of training, the anomaly
detector becomes further stable and capable to predict most of the anomalies
occurred during the anomalous time slot [20:40–21:40] in the evening. After 28 h
of training, the anomaly detector becomes further more stable and capable to
predict most of the anomalies occurred during the anomalous time slot [05:40–
06:40] in the evening/early morning. In Table 1, where we report the overall
quantitative results which confirm the fact that the algorithm, after sufficient
data for training, shows very high prediction scores, with very high precision.

Fig. 11. Hour-by-hour histograms indicating True positives, True negatives, False pos-
itives and False negatives for the first day of data.

Table 1. Oslo public transport traffic: quantitative results in terms of accuracy, pre-
cision, recall, and f1-score.

Accuracy Precision Recall f1-score

91.33% 99.77% 85.74% 92.22%

5 Conclusions

In this paper, we tackle the task of anomaly detection. For this purpose we
extended the algorithm SparkGHSOM, originally designed for the clustering
task, in order to consider the task at hand. Furthermore, the main algorithm
has been made more explainable by providing the reasons for each detected
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anomaly in the form of an instance-based feature ranking. The results show
the effectiveness of the proposed approach both qualitatively and quantitatively
in real application scenarios. For future work, we aim to perform further and
more robust experiments with the aim to better evaluate the predictive quality,
the explainability, and the scalability of this new extended version of SparkGH-
SOM. From an architectural viewpoint, we aim to provide anomaly detection
as an additional service according to the a model-based approach for Big Data
Analytics-as-a-service [7].
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9. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network regression with predictive
clustering trees. Data Mining Knowl. Disc. 25(2), 378–413 (2012). https://doi.org/
10.1007/s10618-012-0278-6

https://cordis.europa.eu/project/id/883286
https://doi.org/10.1016/j.patrec.2013.02.005
https://doi.org/10.1016/j.patrec.2013.02.005
https://doi.org/10.1109/TNN.2005.863415
https://doi.org/10.1080/10691898.2007.11889465
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/j.ins.2018.12.007
https://doi.org/10.1109/BigDataCongress.2018.00039
https://doi.org/10.1109/BigDataCongress.2018.00039
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s10618-012-0278-6
https://doi.org/10.1007/s10618-012-0278-6


Workshop on eXplainable Knowledge
Discovery in Data Mining (XKDD 2022)



International Workshop on eXplainable
Knowledge Discovery in Data Mining

(XKDD 2022)

The 4th International Workshop on eXplainable Knowledge Discovery in Data Mining
(XKDD 2022) was held in conjunction with the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD 2022) on Monday, September 19, 2022. Previous editions of the workshop were
also held jointly with ECML-PKDD in 2019, 2020, and 2021. In line with the orga-
nization of ECML-PKDD 2022, the XKDD 2022 workshop was run in a hybrid mode,
with speakers and participants able to connect remotely but also able to present their
research on-site. The majority of papers were presented on-site. Discussed results were
made available on the workshop website1.

In the past decade, machine learning-based decision systems have been widely used
in a wide range of application domains, like for example credit score, insurance risk,
and health monitoring, in which accuracy is of the utmost importance. Although the
support of these systems has a big potential to improve the decision in different fields,
their use may present ethical and legal risks, such as codifying biases, jeopardizing
transparency and privacy, and reducing accountability. Unfortunately, these risks arise
in different applications and they are made even more serious and subtle by the opacity
of recent decision support systems, which often are complex and have internal logic
that is usually inaccessible to humans.

Nowadays most of the artificial intelligence (AI) systems are based on machine
learning algorithms. The relevance and need of ethics in AI is supported and high-
lighted by various initiatives arising from research to provide recommendations and
guidelines in the direction of making AI-based decision systems explainable and
compliant with legal and ethical issues. These include the EU’s General Data Pro-
tection Regulation (GDPR), which introduces, to some extent, a right for all individuals
to obtain “meaningful explanations of the logic involved” when automated decision
making takes place, the “ACM Statement on Algorithmic Transparency and
Accountability”, Informatics Europe’s “European Recommendations on Machine-
Learned Automated Decision Making”, and “The ethics guidelines for trustworthy AI”
provided by the EU High-Level Expert Group on AI.

The challenge to design and develop trustworthy AI-based decision systems is still
open and requires a joint effort across technical, legal, sociological, and ethical
domains.

The purpose of XKDD, the Workshop on eXplainable Knowledge Discovery in
Data Mining, is to encourage principled research that will lead to the advancement of
explainable, transparent, ethical, and fair data mining and machine learning. This year
the workshop also called for submissions addressing uncovered important issues in
specific fields related to eXplainable AI (XAI), such as privacy and fairness,

1 https://kdd.isti.cnr.it/xkdd2022/.

https://kdd.isti.cnr.it/xkdd2022/


application in real case studies, benchmarking, and explanation of decision systems
based on time series and graphs, which are becoming more and more important in
current applications. The workshop sought top-quality submissions presenting research
results in any of the topics of interest, as well as tools and promising preliminary ideas.
XKDD 2022 asked for contributions from researchers in academia and industry,
working on topics addressing these challenges primarily from a technical point of view
but also from a legal, ethical, or sociological, perspective.

Topics of interest included, but were not limited to, the following:

– Explainable Artificial Intelligence (XAI)
– Interpretable Machine Learning
– Transparent Data Mining
– XAI for Fairness Checking Approaches
– XAI for Privacy-Preserving Systems
– XAI for Federated Learning
– XAI for Time Series-based Approaches
– XAI for Graph-based Approaches
– XAI for Visualization
– XAI in Human-Machine Interaction
– XAI Benchmarking
– Counterfactual Explanations
– Ethics Discovery for Explainable AI
– Privacy-Preserving Explanations
– Transparent Classification Approaches
– Explanation, Accountability, and Liability from an Ethical and Legal Perspective
– Iterative Dialogue Explanations
– Explanatory Model Analysis
– Human-Model Interfaces
– Human-Centered Artificial Intelligence
– Human-in-the-Loop Interactions
– XAI Case Studies and Applications

The XKDD workshop papers were selected through a single-blind peer-review
process in which each submitted paper was assigned to at least three members of the
Program Committee. The main selection criteria were the novelty of the proposal and
its impact in explanation/privacy/fairness processes. XKDD 2022 received a total of 29
submissions (over 30% more than in the previous year). In total, 16 papers were
accepted for presentation (an acceptance rate of 55%). We registered an audience of at
least 80 partcipants on site and 20 participants who joined remotely (across the whole
workshop).

The workshop was divided into two parts. The first was mainly focused on XAI
themes. It started with the excellent keynote “From Attribution Maps to Concept-Level
Explainable AI” by Wojciech Samek, Professor at TU Berlin, Head of the AI
Department at Fraunhofer HHI, and Fellow at BIFOLD, Germany. The second part was
more focused on privacy-related themes. It was opened by the second keynote titled
“The Relationship between Explainability & Privacy in AI” by Anna Monreale,
Computer Science Department to the University of Pisa. The workshop concluded with
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a panel discussion on emerging trends in human-centered AI. The panelists included
Andrea Passarella, Anna Monreale, Francesca Naretto, Andreas Theissler, Przemyslaw
Biecek, Wojciech Samek, and Dino Pedreschi.

More information about the workshop, including the papers, can be found on the
workshop website: https://kdd.isti.cnr.it/xkdd2022/. We would like to thank all the
participants for making XKDD 2022 a success, the authors for their interesting works
and presentations, and all workshop attendees for their engagement and the questions.
A special thanks goes to the wonderful Program Committee for their effective and
timely reviews.

The organization of XKDD 2022 was supported by the European Community
H2020 program under the funding schemes INFRAIA-1-2014-2015 Res. Infr. G.A.
871042 SoBigData++ (sobigdat), G.A. 952026 HumanE AI Net (humane-ai), G.A.
825619 AI4EU (ai4eu), G.A. 834756 XAI (xai), and NCN Sonata Bis-9 grant
2019/34/E/ST6/00052 (HOMER).

September 2022 Riccardo Guidotti
Francesca Naretto
Andreas Theissler

Przemysław Biecek
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From Attribution Maps to Concept-Level
Explainable AI

Wojciech Samek1,2

1 EECS Department, Technical University of Berlin
2 AI Department, Fraunhofer Heinrich Hertz Institute

The field of Explainable AI (XAI) has recently developed various techniques to explain
and interpret the predictions of state-of-the-art AI models. Two popular types of
methods are local and global XAI techniques. While the former methods explain
individual predictions by highlighting the relevant input dimensions (e.g., in form of an
attribution map), global XAI techniques shed light on the features and concepts gen-
erally encoded by intermediate neurons of the model (e.g., are not prediction specific).
However, by design both techniques only provide partial insights into the prediction
behavior of the model. For instance, an attribution map explaining the prediction of an
age classifier only shows us “where” the relevant information is in the image (i.e.,
which pixels are relevant), but leaves the burden of interpretation of “what” this
information is to the human. More precisely, even if the attribution map tells us that the
mouth is relevant for the prediction “young woman”, we still do not know whether it is
the fact that the person is laughing or the fact that the person has particularly white
teeth which triggers the model output. By connecting the best of the two worlds (local
and glocal XAI), this talk will introduce a next-generation XAI technique, termed
Concept Relevance Propagation (CPR), which explains individual predictions in terms
of localized and human-understandable concepts. CRP is based on the popular Layer-
wise Relevance Propagation (LRP) framework, which not only explains predictions by
computing an attribution map, but also assigns relevance scores to hidden-layer neu-
rons (encoding concepts which are relevant to this prediction). By relating explanation
to the encoded concepts, CRP overcomes the ambiguities described before and pro-
vides more detailed, human-interpretable explanations. This talk will discuss several
experiments demonstrating the improved explanation capabilities of CRP. In particular,
we will show how CRP can be used for an in-depth understanding of the model’s
internal representations and decision making strategies and how it can be used for
model debugging and the identification of Clever Hans filters focusing on spurious
correlations in the data. By lifting local XAI to the concept level, CRP opens up a new
way to understand and interact with ML models, which can be of particular interest
when designing explainable AI systems.

Bio: Wojciech Samek is a professor at the Technical University of Berlin and is jointly
heading the AI Department at Fraunhofer Heinrich Hertz Institute. He studied computer
science in Berlin and Edinburgh, was a visiting researcher at the NASA Ames Research
Center, Mountain View, USA, and received the Ph.D. degree with distinction from TU
Berlin in 2014. He then founded the Machine Learning Group at Fraunhofer HHI,
which he headed until 2020. Dr. Samek is Fellow at BIFOLD - Berlin Institute for the
Foundation of Learning and Data and associated faculty at the ELLIS Unit Berlin and



the DFG Graduate School BIOQIC. Furthermore, he is a senior editor of IEEE TNNLS,
an editorial board member of Pattern Recognition, and an elected member of the
IEEE MLSP Technical Committee. He is recipient of multiple best paper awards,
including the 2020 Pattern Recognition Best Paper Award, and part of the expert group
developing the ISO/IEC MPEG-17 NNR standard. He is the leading editor of the
Springer book “Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning” (2019), co-editor of the open access Springer book “xxAI – Beyond
explainable AI” (2022), and organizer of various special sessions, workshops and
tutorials on topics such as explainable AI, neural network compression, and federated
learning. Dr. Samek has co-authored more than 150 peer-reviewed journal and con-
ference papers; some of them listed as ESI Hot (top 0.1%) or Highly Cited Papers (top
1%).
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The Relationship Between Explainability
and Privacy in AI

Anna Monreale

Computer Science Department of the University of Pisa

In recent years we are witnessing the diffusion of AI systems based on powerful
machine learning models which find application in many critical contexts such as
medicine, financial market, credit scoring, etc. In such contexts it is particularly
important to design Trustworthy AI systems while guaranteeing interpretability of their
decisional reasoning, privacy protection and awareness. In this talk we will explore the
possible relationships between these two relevant ethical values to take into consid-
eration in the design of Trustworthy AI system. We will answer research questions
such as: how explainability may help privacy awareness? Can explanations jeopardize
individual privacy protection?

Concerning the first research question, we will present EXPERT, an EXplainable
Privacy ExposuRe predicTion framework that exploits (i) machine learning models for
predicting a user's individual privacy risk and (ii) local explainers for producing
explanations of the predicted risk. First, EXPERT extracts from human data individual
profiles describing the behavior of any user. Second, for each user it computes the
associated privacy risk. Third, it uses the profiles of the users with their associated
privacy risks to train a machine learning model. For the prediction task, EXPERT
exploits tree-based ensemble models to effectively handle the class-imbalance problem.
Finally, for a new user, along with the prediction of risk, EXPERT also generates an
explanation of the predicted risk exploiting local explainers, such as SHAP, LORE and
LIME.

Concerning the second research question, we will present a methodology for
assessing the privacy risk of local and global explainers based on the learning of
surrogate models. We applied our methodology for attacking the global explainer
TREPAN and the local explainers LORE and LIME. The privacy risk evaluation is
based on the simulation of the well-known membership inference attack.

Bio: Anna Monreale is an associate professor at the Computer Science Department of
the University of Pisa and a member of the Knowledge Discovery and Data Mining
Laboratory (KDD-Lab), a joint research group with the Information Science and
Technology Institute of the National Research Council in Pisa. She has been a visiting
student at Department of Computer Science of the Stevens Institute of Technology
(Hoboken, NewJersey, USA) (2010). Her research interests include big data analytics,
social networks and the privacy issues raising in mining these kinds of social and



human sensitive data. In particular, she is interested in the evaluation of privacy risks
during analytical processes and in the design of privacy-by-design technologies in the
era of big data. She earned her Ph.D. in computer science from the University of Pisa in
June 2011 and her dissertation was about privacy-by-design in data mining.
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Is Attention Interpretation?
A Quantitative Assessment on Sets

Jonathan Haab, Nicolas Deutschmann(B), and Maŕıa Rodŕıguez Mart́ınez

IBM Research Europe, Saümerstrasse 3, 8803 Zürich, Switzerland
jonathan.haab@ibm.com, {deu,mrm}@zurich.ibm.com

Abstract. The debate around the interpretability of attention mecha-
nisms is centered on whether attention scores can be used as a proxy for
the relative amounts of signal carried by sub-components of data. We
propose to study the interpretability of attention in the context of set
machine learning, where each data point is composed of an unordered
collection of instances with a global label. For classical multiple-instance-
learning problems and simple extensions, there is a well-defined “impor-
tance” ground truth that can be leveraged to cast interpretation as a
binary classification problem, which we can quantitatively evaluate. By
building synthetic datasets over several data modalities, we perform a
systematic assessment of attention-based interpretations. We find that
attention distributions are indeed often reflective of the relative impor-
tance of individual instances, but that silent failures happen where a
model will have high classification performance but attention patterns
that do not align with expectations. Based on these observations, we
propose to use ensembling to minimize the risk of misleading attention-
based explanations.

Keywords: Attention mechanism · Multiple-instance learning ·
Interpretable machine learning

1 Introduction

Attention mechanisms have become a popular tool in multiple areas of machine
learning, in particular in natural language processing (NLP) where their intro-
duction significantly increased performance [2]. Attention-based models have
also been successful in the context of computer vision [4] and have in particular
been attractive in digital histopathology applications (cancer diagnosis based
on stained microscopy images) [6,10,15,19], where a patch-based approach is
particularly well-adapted to analyse the large whole-slide images (WSIs) with
corrupting artefacts typically exploited in this field.

Besides the performance gain provided by attention mechanisms in many
applications, one of their alluring aspects is the promise of interpretability:
attention relies on a dynamically weighted average of representations of data
subcomponents, and it feels natural that these weights should be informative
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 303–321, 2023.
https://doi.org/10.1007/978-3-031-23618-1_21
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of the relative importance of these subcomponents for the final prediction. This
potential interpretability is particularly attractive for biomedical applications,
both in a clinical setting and for research. Indeed, insights into automatic diag-
nostic tools is both a regulatory requirement [16] and a necessary safeguard to
understand and diagnose failure modes for critical decisions [1]. In a biomedi-
cal research context, attention-based interpretability could lead to new break-
throughs in understanding the mechanisms that underlie diseases and help find
new targets for diagnosis and therapy.

While intuitively promising, there is still no clear understanding of the
extent to which attention distributions provide meaningful information about
the amount of signal carried by data subcomponents. This has been the object
of a debate within the context of NLP [7,22], which started at a conceptual level
but was then moved forward by experimental assessments [17,20]. These stud-
ies found imperfect and task-dependent agreement between attention and other
importance attribution metrics, but are limited by the constraints inherent to
NLP: the difficulty of building robust ground truths and evaluation metrics for
token importance [11].

Given the recent interest in using attention in the context of biomedical
applications, we propose to study the quality of attention-based explanations
of instance importance in a simpler context, where we can conceive synthetic
tasks with a well-defined ground truth, therefore allowing more control on the
evaluation. Indeed, histopathological (and biomolecular) applications of atten-
tion can be characterised as multiple-instance learning (MIL) problems or sim-
ple extensions thereof. The goal of this work is to establish synthetic analogies
for the MIL-like problems encountered in biomedical applications, with well-
defined instance-level importance labels, and to quantitatively assess the quality
of attention-based explanations, how frequently they are misleading, and poten-
tial solutions.

Our manuscript is organised as follows: we first introduce MIL as an abstract
set classification problem, as well as some multi-population extensions. We
show how these problems permit a quantitative assessment of instance impor-
tance attributions and why they map satisfyingly to some biomedical problems.
We then describe the synthetic datasets we constructed as analogies and the
attention-based models used to classify them, and conduct experiments to show
to which extent attention-based explanations can be trusted. Finally, we argue
for an ensemble-based solution to respond to the potential weaknesses of single-
model explanations.

2 Importance Attribution as a Binary Classification Task

2.1 Multiple-Instance Learning and Its Extensions

2.1.1 Problem Formulation. Multiple-instance learning (MIL) is a classical
weakly-supervised learning binary classification problem [3,12,14] in which data
points Xi are made of unordered collections of vectors Xi = {xi1, . . . , xiMi

}. The
individual vectors xim are referred to as “instances”, while the data points Xi
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are called bags of instances. Each instance xim has a binary label yim ∈ {1, 0}
(also referred to as positive and negative), which is not available at training time,
but defines the label Yi of the bag Xi as:

Yi = min

(
1,

Mi∑
m=1

yim

)
, (1)

which simply means that Yi is 1 if at least one of the yim is 1, and is 0 otherwise.
This is a formalization of classification problems used in multiple biomedical

applications, such as patient diagnosis from histopathology images. Images are
typically processed as collections of patches, of which only a few might contain
clinically relevant regions. Another interesting medical application of MIL is the
classification of tumors using single-cell molecular profiles. In this case, samples
are a mixture of healthy and cancerous cell profiles, but only patient-level labels
are available.

2.1.2 Multi-population MIL. Inspired by the biological applications of
MIL, especially in the context of cancer, we propose to extend MIL to a multi-
population setting with non-trivial interactions, which we can formalise as logical
problems.

Multi-population AND

• There are three instance populations with three instance labels: yim ∈
{0, 1, 2}.

• Bags have a binary label Yi given as “the set of {yim} contains 1 AND contains
2”. Namely, Yi is one only if it contains population 1 and 2, but 0 if only one
of the two is present. Population 0 is irrelevant.

This problem can model tumours where multiple cell communities can develop
and support each other’s growth by collaboration: the presence of both cellular
communities accelerates disease progression and leads to worse prognosis [18]. In
this case, population 0 would correspond to uninformative cells such as healthy
cells in the tumour microenvironment while populations 1 and 2 would represent
two cancerous populations that can collaborate.

Multi-population XOR

• There are three instance populations with three instance labels: yim ∈
{0, 1, 2}.

• Bags have a binary label Yi given as “the set of {yim} contains 1 XOR contains
2”, i.e. Yi is one only if it contains population 1 but not 2 or 2 but not 1.
Population 0 is irrelevant.

This problem can model tumours where two cell communities can co-evolve but
reduce their joint fitness such as by increasing drug response when both are
present [13].
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2.2 Quantifying Key Instance Attribution

The simple setting of MIL lends itself to quantifying the interpretability of impor-
tance distributions over bags of instances such as those provided by attention. For
standard MIL this is often called key-instance attribution [9], which amounts to
identifying positive instances inside positive bags. When ground truth instance-
level labels are known, this can be formulated as a supervised binary classifica-
tion problem. In this work, we train models with weak, bag-level labels but want
to evaluate the attention scores as a prediction score to identify positive label
instances.

Of course, we cannot expect attention scores to be well calibrated and to allow
their immediate interpretation as a probability score for being “important”. We
therefore need to be careful with some of the standard classification metrics based
on discretising prediction scores, such as accuracy or F1. What we require of our
attention scores is that they discriminate well between positive and negative
instances for some threshold, which can be verified by inspecting the area under
the receiver operating characteristic curve (AUROC or AUC). For the sake of
clarity, we will refer to the AUC of importance attribution as IAUC, so as not to
confuse metrics for the bag-level classification and those for evaluating attention-
based explanations.

The multi-population extensions of MIL, i.e. AND and XOR don’t have
canonically defined importances. We propose to extend the “key instance” label
by assigning it to populations 1 and 2 for both problems defined in Sect. 2.1.2,
while classifying population 0 as unimportant, since its presence or absence does
not impact the bag labels.

3 Methods

3.1 Attention-Based Deep MIL

Permutation-invariant models are best-suited to handle MIL tasks as they intro-
duce an inductive bias tailored to sets of instances where order does not matter.
To this end, the Deep Sets architecture [23] was designed to produce an inde-
pendent latent representation of each instance, which are then aggregated with
a permutation invariant function such as the mean. The aggregated latent rep-
resentation is further processed to produce a bag label, as shown in Fig. 1.

Attention-based aggregation is another permutation-invariant operation that
dynamically performs weighted averages using the attention scores. This was
shown to improve performance and provide insights into the data through
the assigned weights [6]. With attention-based aggregation, a data point X =
{x1, . . . , xM} is mapped to a prediction y as follows:

zi = φ(xi), Z =
M∑

m=1

amzm,

y = ρ(Z), (2)
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where φ and ρ are approximated by neural networks and am is the attention
scores of instance xm, defined as:

am =
exp{w� tanh[Vφ(xm)�]}
M∑
j=1

exp{w� tanh[Vφ(xj)�]}
, (3)

and,V ∈ IRL×K andw ∈ IRL×1 are trainable parameters. Notice that as
M∑
j=1

am =

1, Eq. 3 defines normalized discrete weights over the instances.

Fig. 1. Deep-Sets-like permutation invariant networks map bags of instances xi to bags
of latent representations φ(xi) which are then aggregated as a set representation. This
set representation is processed by a classifier to obtain a prediction ρ. In all experiments
in this paper, the aggregator α is the attention mechanism described in Eq. 2.

3.2 Synthetic Datasets

We generate synthetic datasets with well-defined ground truth instance labels
using three data modalities. These instance labels were kept hidden from the
model at all times and only used to evaluate the performance of the attention
attribution.

The first type of datasets, referred to as Gaussian MIL, Gaussian AND
or Gaussian XOR, was built by sampling instances from normal distributions,
N (μ, σ = 1) with μ ∈ R

4. Populations 0,1 and 2 correspond to three choices of
μ: μ0 = (0, 0, 0, 0)�, μ1 = (1, 1, 1, 1)� and μ2 = (−1, 1, 1, 1)�.

The second type of datasets trades 4-dimensional vectors for 28 × 28 pixels
images of MNIST handwritten digits and are referred to as MNIST MIL, MNIST
AND orMNISTXOR. The bags defined by first specifying the list of digits allowed
in each population and then randomly sampling images of the specified digits from
the original MNIST dataset [8]. Images of the digit “3” are given the instance label
1 in every problem while images of the digit “9” have instance label 2 in the XOR
and AND cases. Any other digits are considered unimportant (label 0).

The last data modality mimics data produced by single-cell proteomics exper-
iments. We used experimental single-cell mass-cytometry (CyTOF) measure-
ments from breast cancer tumours [21] to produce pseudo-samples by randomly
selecting epithelial cells. Each cell is characterised by 27 protein abundance mea-
surements from a panel of markers chosen for cell phenotyping. The work that
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collected and published these data [21] grouped cells into 9 super-clusters of
functionally and phenotypically distinct cells, including 7 clusters of luminal
cells and two clusters of basal cells (B1 and B2). Basal cells are indicative of
more dangerous tumours, in particular, super-cluster B2 was found to be strongly
associated with triple-negative tumours [5]. We therefore define the CyTOF MIL,
CyTOF AND or CyTOF XOR with populations 0, 1, and 2 respectively corre-
sponding to luminal cells, B2 cells and B1 cells.

In all settings, we generate bags of 250 instances, which are drawn from bi-
or trinomial distributions of populations 0, 1 and 2. In the MIL setting, we use a
binomial distribution with equi-probable outcomes while in the multi-population
settings we use a trinomial distribution where population 0 has probability 0.4
and populations 1 and 2 have probability 0.3. While not described in this paper,
we have confirmed that our results are quite robust to changes in these param-
eters except for extreme cases (extremely low fractions of some population or
very small bags).

4 Results

The basis of our analysis is a hyperparameter search for each task and data
modality. We perform a grid search through possible configurations for our mod-
els and train each configuration with five random initialisations. Models are then
ranked and selected on the basis of their performance on a validation set, and
evaluated on a separate test set. More details on the hyperparameter search are
provided in Appendix A.

4.1 Models with High Accuracy Can Have Poorly Behaved
Attention

To reproduce the process of selecting models in a setting where instance-level
importances are unknown, we select five candidate model configurations from
our hyperparameter search based on their validation accuracy and evaluate the
interpretability of their attention distributions. We train 100 repetitions of each
of those top five configurations with different random seeds and evaluate how
well the attention scores separate negative from positive instances in bags with
a positive label. As we show in Fig. 2, some configurations have narrow distribu-
tions of IAUC centred around a reasonable value (0.75), meaning that all model
realisations provide meaningful interpretations through their attention distribu-
tions while others have a non-negligible fraction of outliers with a very poor
identification of important instances (IAUC around 0.5).

This pattern repeats over all problems and data modalities we evaluated. We
summarise the results of our analysis in Table 1, where we report the mean test
IAUC across all configurations and the number of “bad” configurations, defined
as those having 10% or higher fraction of realisations with an IAUC less than
0.65. Detailed results with all IAUC distributions are available in Appendix B.
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Fig. 2. (a) Configuration with stable IAUC. (b) Configuration with significant fraction
of low IAUC. Both configurations were trained on the Gaussian MIL setting. The left
Y-axis refers to the histogram (in green), while the right Y-axis refers to the cumulative
frequency plot (orange line). The magenta line is a guide for the eye showing the 10%
threshold used to define bad configurations in Table 1. (Color figure online)

Table 1. Evaluation of attention explanations performances. Multi-population prob-
lems tend to have more bad configurations than MIL, which can still have poor expla-
nations. In general, AND problems also have an overal lower IAUC.

Data Problem Mean IAUC # bad config.

MIL 0.75 1/5

Gaussian AND 0.59 5/5

XOR 0.72 5/5

MIL 0.80 0/5

MNIST AND 0.69 2/5

XOR 0.84 2/5

MIL 0.76 1/5

CyTOF AND 0.75 3/5

XOR 0.77 3/5

To further illustrate the difference in behavior between “good” and “bad”
models, we show low-dimensional representations of both of our numerical
datasets (Gaussian and CyTOF) in Fig. 3, where the attention distributions
are visible. “Good” models have an essentially constant attention over unim-
portant instances and show a sharp gradient on positive instances moving away
from the class boundary, while “bad” models essentially have uniform attention
over much of the dataset, with the exception of a small minority of the data,
which is not necessarily a subset of the positive instances.

4.2 Repetitions of the Same Model Have Little Correlation
Between Performance and Interpretability

The stochasticity of training multiple neural networks with the same hyperpa-
rameters leads to the variability in the quality of the explanations provided by
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Fig. 3. Low-dimensional projections of MIL data with showing attention scores for
an example of a “good” and a “bad” model, as well as the instance labels shown for
reference.

their attention maps. Of course, this stochasticity also leads to variability in
the validation and test performance of these models. It is therefore natural to
investigate whether, for a fixed configuration, there is a correlation between the
classification performance at the bag level and the quality of the attention-based
explanations. This analysis might provide a way to weed out problematic models
at the validation stage.

For each problem and data modality, we use the top 5 configurations defined
in Sect. 4.1 to evaluate how well validation-time classification performance dis-
criminates between models with low and high-quality explanations. As we show
in Fig. 4, high performance is not a good indicator of good explanations, and
the correlation between accuracy and IAUC exists but is rather mild. A more
detailed picture separated by problem and data modality is available in Appendix
C. In the case of MIL problems on Gaussian data (Fig. 14a), all models with
the top configurations reach a validation accuracy of 100% while having varying
IAUC values. On more complex problems, not all realisations reach perfect accu-
racies, and a limited amount of correlation can be observed. Indeed, as shown
in Fig. 14e, it is often the case that only the models with top validation accu-
racies reach the top values for the IAUC. Nevertheless, there is still significant
variability among the models with top validation accuracies so that filtering out
models with a poorer validation performance is not enough to avoid models with
poor explanations.

We measure the Spearman correlation ρ between the validation-time accuracy
of the 100 repetitions of each top configurations for all our classification tasks
and the IAUC score and report them in Table 2. For each problem, we further
report the configurations with the highest and lowest spreads of IUAC values
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(ΔIAUC) between individual top-performing realisations. Namely, to compute
ΔIAUC, we select the models in the highest decile of validation accuracy for each
configuration and measure the spread between their maximum and minimum
IAUC values. This provides a way of observing how specific configurations have
a large variability of IAUC even when filtering for models with high classification
performance.

Fig. 4. Relationship between validation accuracy and test IAUC for top configurations.
Models are binned by validation accuracy and IAUC and each bin displays the fraction
of total models per column (i.e. per accuracy bin). The total number of models in each
column is reported at the top.

Table 2. Predictivity of classification performance for informative explanations. We
report the Spearman correlation between the validation accuracy and the IAUC as well
as the highest and lowest ΔIAUC found among the models. When all trained models
have accuracy 1, we report the Spearman correlation as 0 since accuracy cannot provide
any information about IAUC.

Data Problem .Spearman ρ High ΔIAUC Low ΔIAUC

MIL 0 0.74 0.13

Gaussian AND 0.50 ± 0.18 0.69 0.12

XOR 0.65 ± 0.16 0.28 0.11

MIL −0.03 ± 0.06 0.41 0.13

MNIST AND −0.01 ± 0.12 0.42 0.10

XOR 0.12 ± 0.24 0.83 0.06

MIL 0 0.62 0.23

CyTOF AND 0.07 ± 0.12 0.81 0.26

XOR 0.04 ± 0.06 0.63 0.27
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4.3 Ensembling Improves Explanation Robustness

While the risk of poor explanations is real, most trained models with good perfor-
mance achieve satisfying interpretation-based explanation quality. We therefore
propose to use ensembling to reduce the risk of encountering poorly-performing
single models. Two strategies are possible:

• Single-configuration ensembling, where a fixed hyperparameter set is chosen
based on validation performance and multiple realisations are trained with
different random seeds.

• Multi-configuration ensembling, where we chose a number of high-performing
models and ensemble realisations of each hyperparameter choice.

For both approaches, the ensembling is performed with the goal of obtain-
ing more robust attention-based explanations. More concretely, for each bag of
instances, each model produces an attention distribution over the instances and
we compute the average attention scores across models. This yields a valid atten-
tion distribution for the ensemble in the sense that the averaged distribution also
sums to 1.

Table 3. Impact of ensembling on the fraction of models with bad explanations.
We compare three situations: no ensembling (N = 1), and ensembling 20 models with
either single configuration ensembling (N = 20, single) or multi-configuration ensem-
bling (N = 20, mult.).

Data Problem % bad configs.

N = 1 N = 20 (single) N = 20 (mult.)

MIL 5.3 5.3 0.0

Gaussian AND 69.3 32.0 15.3

XOR 42.3 0.0 0.0

MIL 1.3 0.0 0.0

MNIST AND 12.3 5.3 6.0

XOR 11.3 0.0 0.0

MIL 6.0 0.0 0.0

CyTOF AND 10.0 0.0 0.0

XOR 10.7 0.0 0.0

As we show in Table 3, ensembling does improve the fraction of models
with bad explanations (as defined in Sect. 4.1), and multi-configuration ensem-
bling provides the best option for most cases. The results we report for single-
configuration ensembling are the average of the results obtained for the top
five configurations found for each problem through hyperparameter search.
As we show in more details in Appendix D, this average hides the fact that
single-configuration ensembling fails badly for some configurations, while multi-
configuration ensembling does not present this failure mode.
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5 Discussion

Our experiments confirm that, most of the time, attention mechanisms provide
meaningful information about the relative importance of instances in set classifi-
cation problems like MIL. Nevertheless, silent failure modes exist where individ-
ual models can have good performance at the main weakly supervised task but
produce attention maps that are not aligned with the amount of signal carried by
data sub-components. This finding is somewhat worrying: with a bit of bad luck,
a researcher could train a good model with poor interpretability and generate
new hypotheses based on nonsensical explanations, which could lead to resource
waste if they are the basis for experimental studies. However, attention-based
explanations should not altogether be discarded, but be considered with care. As
our ensembling experiments show, sporadically appearing bad-behaving models
can be mitigated, but not altogether avoided in a multi-model setup as silent
failures seem to fall in the minority. In some settings, however, ensembling by
averaging attention scores does not improve the failure rate. We suspect that this
is due to poor agreement between the attention assignment of different models,
leading to poor ensemble performance, which could be improved by switching
to majority voting. If this is the case, we could avoid false positive labelling
of important instances by requiring a clear consensus between different models,
which we hope to explore in future work. In any case, some responsible down-
stream analysis and validation of patterns highlighted by attention mechanisms
is warranted when trying to discover new features in data, keeping in mind that
there is a small but non-zero probability that the patterns might be misleading.

6 Conclusion

We showed across a variety of set-classification tasks and data modalities that
silent failure modes exist for attention-based key instance attributions, where
attention does not correlate with instance importance. While ensembling mul-
tiple random initialisations of the same model and multiple model architecture
mitigates the issue, there often remains a probability that explanations based on
attention could be misleading, which can range from problematic for scientific
discovery to dangerous when using explanations to verify predictions in appli-
cation settings. This should not be a reason to abandon attention as a tool for
identifying important sub-components of data for a given model, but shows that
downstream verification of potential patterns is necessary. We have hinted at
the fact that a more fine-grained approach to ensembling could help filter false
positives and this is definitely an interesting avenue for further research. Other
important directions which we plan to pursue is the identification of the features
of tasks where silent failure is less common, as well as understanding which
aspects of model architecture impact the quality of importance attribution.
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for useful discussions, as well as Mattia Rigotti and Janis Born. This project was
support by SNF grant No. 192128 and the H2020 grant “iPC” (No. 826121).
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A Hyperparameter Searches

A.1 Gaussian Data

Table 4. Parameter grid for Gaussian data.

Parameter Values

Batch size 100

Epoch 100, 200, 500

Learning rate 0.001, 0.005, 0.01, 0.02

Weight decay 0.0001

Loss function Cross entropy

Optim. algorithm Adam

Hidden layer size 2, 4, 8

Attention size 1, 2, 4, 8

Featurizer depth 0, 1, 2

Classifier depth 1, 2, 3

A.2 Image Data

Table 5. Parameter grid for image data.

Parameter Values

Batch size 100

Epoch 500

Learning rate 0.001, 0.005, 0.01, 0.02

Weight decay 0.0001

Loss function Cross entropy

Optim. algorithm Adam

Hidden layer size 8, 16, 32, 64

Attention size 1, 2, 4, 8, 10

Featurizer depth 1, 2

Classifier depth 1, 2
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A.3 CyTOF Data

Table 6. Parameter grid for CyTOF data.

Parameter Values

Batch size 100

Epoch 500

Learning rate 0.001, 0.005, 0.01, 0.02

Weight decay 0.0001

Loss function Cross entropy

Optim. algorithm Adam

Hidden layer size 4, 8, 16

Attention size 1, 2, 4, 8

Featurizer depth 1, 2, 3

Classifier depth 1, 2, 3

B IAUC Distributions for Top Models

Models marked with an asterisk have a significant proportion of bad runs, i.e.
10% or more of them achieved an IAUC below 0.65 (Figs. 5, 6, 7, 8, 9, 10, 11,
12 and 13).

Fig. 5. Gaussian MIL

Fig. 6. Gaussian AND

Fig. 7. Gaussian XOR



316 J. Haab et al.

Fig. 8. MNIST MIL

Fig. 9. MNIST AND

Fig. 10. MNIST XOR

Fig. 11. CyTOF MIL

Fig. 12. CyTOF AND

Fig. 13. CyTOF XOR
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C Correlations Between IAUC and Accuracy

Fig. 14. Relationship between validation accuracy and test IAUC for top configura-
tions, separated by problem and data modality. Models are binned by validation accu-
racy and IAUC and each bin displays the fraction of total models per column (i.e. per
accuracy bin). The total number of models in each column is reported at the top.

D Ensembling

Proportion of bad ensembles for single- and multi-configuration ensembles. Bad
ensembles are characterised by an IAUC of 0.65 or below. For each ensemble size,
30 different ensembles were produced. In the single-configuration plots, the light
grey lines show the results for the individual configurations while the black line
shows their average. In the multi-configuration case, the process was repeated
five times. The 95% confidence interval is indicated by the grey area (Figs. 15,
16, 17, 18, 19 and 20).
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Fig. 15. Gaussian MIL

Fig. 16. Gaussian AND

Fig. 17. Gaussian XOR
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Fig. 18. MNIST MIL

Fig. 19. MNIST AND

Fig. 20. MNIST XOR
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problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997). https://
doi.org/10.1016/S0004-3702(96)00034-3

4. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. In: International Conference on Learning Representations
(2020)

5. Elias, A.D.: Triple-negative breast cancer: a short review. Am. J. Clin. Oncol.
33(6), 637–645 (2010). https://doi.org/10.1097/COC.0b013e3181b8afcf

6. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning.
In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

7. Jain, S., Wallace, B.C.: Attention is not explanation (2019). https://doi.org/10.
48550/ARXIV.1902.10186

8. LeCun Y., Cortes, C.: The MNIST database of handwritten digits. Undefined
(2005)

9. Liu, G., Wu, J., Zhou, Z.-H.: Key instance detection in multi-instance learning. In:
Proceedings of the Asian Conference on Machine Learning. PMLR, pp. 253–268
(2012)

10. Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood,
F.: Data-efficient and weakly supervised computational pathology on whole-slide
images. Nat. Biomed. Eng. 5(6), 555–570 (2021). https://doi.org/10.1038/s41551-
020-00682-w

11. Madsen, A., Reddy, S., Chandar, S.: Post-hoc interpretability for neural NLP: a
survey (2022). https://doi.org/10.48550/arXiv.2108.04840arxiv:2108.0484 [cs]
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Abstract. Deep Learning models such as Convolutional Neural Net-
works (CNNs) are particularly successful in computer vision tasks. They
have proven to be tremendously effective and popular in the last decade,
reaching great accuracy in tasks such as image classification and object
recognition. Despite their success, it is well known that conveying what
the model learnt to humans remains challenging. This is due to the fact
that a CNN is still mostly a black-box model, and images are very rich
input data. In this work, we build upon the idea of disentangled repre-
sentation produced from a trained CNN, and explore how such disentan-
gled representation can be used to describe what the model has learned
in terms of semantic concepts. Specifically, we aim at providing a ranked
list of the concepts that are related to both a specific instance or image
(local explainability) and a class (global explainability). In this prelimi-
nary work we use a simple linear classifier for concept ranking. Results
are promising since we reached 95% precision at both local and global
level. This indicates potential in developing our idea further by leverag-
ing external knowledge bases to associate and validate specific properties
and relations among the ranked concepts at both local and global level
as discussed in the final section of this paper.

Keywords: Explainable AI · Disentangled representation ·
Convolutional Neural Network

1 Introduction and Overview

Computer Vision is a branch of Artificial Intelligence that looks into how com-
puter programs can interpret, represent, and act on visual inputs (such as pic-
tures and videos). Deep Learning models such as Convolutional Neural Networks
(CNNs) are specifically tailored to computer vision tasks, and in the last decade

Supported by Science Foundation Ireland - Grant No. 18/CRT/6223.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 322–335, 2023.
https://doi.org/10.1007/978-3-031-23618-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23618-1_22&domain=pdf
http://orcid.org/0000-0002-0408-5756
http://orcid.org/0000-0002-6614-6462
https://doi.org/10.1007/978-3-031-23618-1_22


From Disentangled Representation to Concept Ranking 323

they have become remarkably successful and popular, achieving incredible accu-
racy in tasks such as image classification and object detection.

Despite their success, CNNs are still mostly a black-box model, in that how
and what the model learns is intelligible to the users and cannot be easily pre-
sented in human terms. The difficulty in generating a human-understandable
explanation of the model outcome is hindering the use of CNNs in critical envi-
ronments such as diagnostic imaging, disaster management and security surveil-
lance to mention a few. In these scenarios it is crucial to understand how the
model came to a given outcome and what the model has learned from the train-
ing data, not only to identify and correct mistakes, but also to detect potential
bias in the data or the model.

The majority of approaches for interpreting directly the output of a trained
CNN in a classification task have been focusing on the use of visual cues and
more in general attention-based methods. For example, work in [8] and [5] have
highlighted image pixels or areas contributing to a specific classification. [8]
describes a technique for visualising how the model behaves in each layer for
a particular image. Both approaches aid in localising which parts of the image
were relevant to a specific class. However, because the image concepts are not
declared in the image or the dataset, this visualisation does not represent them,
and there is no guarantee that the model will highlight the same parts for other
images in the same class.

In order to tackle the limitation of visual approaches, other explainability
methods have been proposed in recent years, and the field of Explainable AI has
began to be characterised in different survey papers.

Among others, [4] examines many strategies that employ textual justification
when textual data is learnt and coupled with visual data, increasing the model’s
explainability. This method was utilised in the medical domain to clarify cate-
gorisation by combining image and textual diagnostics. Other techniques include
simplification, which involves creating a white-box model from a complex model
to achieve performance while simplifying the explanation. Feature relevance is
another method which consists of considering each feature’s value and using it
to describe the learning process.

Another perspective in [2] is to explore using human expertise to explain
how the model is learnt in a way that a layperson may comprehend, explained
is rooted in real-world principles. This survey also provides links to the code for
each approach discussed.

Based on the classification in these surveys, our approach would relate to
the feature-relevant method, which in computer vision we would convert to real-
world concepts. Ranking them, we intend to present the concepts more relevant
from a singular image and to an entire class. In further work, we would combine
this approach with the common-sense knowledge database, creating explanations
that an AI system and a regular person can understand.

In this study, we will look at how a basic linear classifier can be used to rank
concepts that characterise not only an instance, but more generally a class from
local disentangled representations, which was not provided in previous works.
We aim to provide a semantic explanation of what the model has learned in
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terms of the most relevant concepts. This is only the first step towards providing
an alternative human-understandable and self-explainable representation of a
trained CNN model. In fact, we plan on building on the ability to not only
identify semantic concepts as in disentangled representations, but also rank them
based on their semantic relevance to an instance or a class (which is our key
contribution in this work). Leveraging such ranking, we believe we can then go
one step further in extracting semantic relations and subsequently learning logic
rules from deep representations, as discussed in the final section of this paper.

The rest of the paper is structured as follows: in Sect. 2 we discuss related
paper that specifically introduce and use the disentangled technique for improv-
ing model interpretability in image classification tasks; Sect. 3 describes our app-
roach, specifically how we retrieved the local and global disentangled concepts
from the trained model; our preliminary experimental evaluation and discussion
of results is provided in Sect. 4, where we also outline how the evaluation should
be extended and strengthened; we conclude in Sect. 5 presenting our ongoing
research which builds upon the work in this paper towards a deeper understand-
ing of the deep CNN model in a self-explainable and human-understandable
way.

2 Related Work

Disentangled representation is a method that divides each characteristic (of an
image) into carefully specified variables and encodes them as distinct dimen-
sions. The idea is to emulate humans’ fast intuitive process.1 This method
can characterise semantic concepts gained by a model throughout its training
phase. This section will list the principal works that employed this strategy to
characterise concepts learned in deep representations: Network Dissection, Deci-
sion Trees-based approach to learn disentangled filters and Concept Activation
Vectors.

Network Dissection. Networks Dissection is a method for extracting meaning
from each layer or filter, using the distillation approach to explain a CNN.
Authors in [11] claim that a DNN may spontaneously learn disentangled repre-
sentations. In order to demonstrate that, they developed a framework for con-
necting human notions to each filter in a CNN model (Fig. 1). The objective is to
provide meaningful labels to individual filters. The initial stage was to generate
the Broden dataset, which contains pixel-annotated low-level notions like colours
and high-level concepts like objects. They then used a trained model and passed
through it the Broden dataset, to assess each filter and comparing the binary
map from each picture and each filter activation map. If the convolutional filter
is strongly activated in parts of the picture containing a human-labelled notion,
authors claim that the filter is “searching for” that idea or concept.

1 https://deepai.org/machine-learning-glossary-and-terms/disentangled-
representation-learning.

https://deepai.org/machine-learning-glossary-and-terms/disentangled-representation-learning
https://deepai.org/machine-learning-glossary-and-terms/disentangled-representation-learning
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Fig. 1. Network dissection framework [11]

Examining different CNN designs, authors discovered certain important
notions, such as the number of unique concepts for each layer in each archi-
tecture and the number of objects increasing into deeper convolutional layers.

Decision Trees Approach. In [10], the authors suggested learning a decision tree
from a trained CNN, detailing the exact reasons for categorisation at a semantic
level. The proposed technique describes which image components activate, which
filters for categorisation and how much each part contributes. In this approach
the authors use simplification method, to extract from a complex model a simple
explanation.

The first part of the approach is training a CNN with disentangled filters on
the high convolution layers to each filter learn a specific concept and associate
each one to semantic meaning since they do not have any annotations of the
concepts. This approach is presented in [9], where a loss function is applied for
each filter in the top convolutional layer.

The trained disentangled filters extract information from each image and
input it into a decision tree that understands its composition. There is no link
between a filter and a human notion at this time, thus the authors use other
datasets to assign a concept to a specific filter. They concentrated on a single
topic (bird) and only used concepts relating to that issue. This method differs
from [11] because it does not employ an extensive concept dataset to assign the
concept to each filter. It can, however, be used to search for ideas that are not
available in the Broaden dataset.

Concept Activation Vectors. Another relevant work in [3] proposes determin-
ing how human notions influence categorisation results. Authors defined and
developed the CAV (Concept Activation Vectors) to transform a neural net-
work’s internal state into human-friendly notions. The method is useful because
a human concept, such as “stripes,” may be shown to impact the “zebra” class.

The core idea is retrieved from a trained model, a vector that characterises
a particular concept, and then a directional derivative is used to assess concept
sensitivity for a specific class. This method gives a local explanation for a specific
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concept within a class, which may be required if the user already understands
which concepts are applicable to a given class and wants to identify among a set
of such concepts which ones are more descriptive for that class from the point of
view of the deep representation, this validating which concepts among the given
ones are affecting a classification most.

The papers and approaches discussed above provide some explanations for
CNNs, incorporating human notions that might assist a non-specialist in deter-
mining how the model learnt a particular categorisation. These techniques, how-
ever, were not employed to describe a global classification, such as how the model
understands a whole class. In this paper, we suggest using the disentangled app-
roach described in [11] to determine how the classes may be interpreted using a
global ranking of semantic concepts. We use a different dataset [7] to examine
the ideas used to categorise a specific image. The model processed the dataset,
and the total of each activation map of a unit in the final layer was used as input
for an SVM classifier. We then use the top-ranked unit weighted by the SVM
model for a particular image to order the identified concepts. Section 3 describes
our naive technique in more detail.

3 Extracting Concepts for Action Classification

This section will outline the approach for concept extraction and ranking we
propose in this paper.

The first step in this process is to extract semantic concepts about a class
or a single instance from a trained CNN model using transfer-learning on an
action classification task on a dataset containing forty actions. We decided to
build upon previous research [11] that has already obtained promising results on
semantic concept identification for a trained CNN model. One of the outcomes
of such work is the ability to quantify how interpretable a CNN is by discovering
how individual hidden units align to semantic concepts at each hidden layer.
Concepts were identified as being part of six categories: object, part, material,
colour, texture and scene. The architecture that identified more unique concepts
among those tested was ResNet-152, as indicated in Fig. 2; therefore this is the
architecture we adopt.

We extend this technique for concept detection by identifying and connecting
such concepts to output classes as well as individual input images (or instances).
We chose to focus on the last CNN layer to maximise the number of unique high-
level semantic concepts discovered; once more different concepts are harnessed,
more concepts may be connected with local or individual examples.

We start from the semantic concepts identified by Network Dissection [11]
from the trained CNN model and build upon the relationship between the convo-
lutional filter and the semantic concept from the Broden [1] dataset. A transfer-
learning approach makes it possible to adapt the Network Dissection method
to be used on different data sets (and classification tasks) and determine which
filters are activated by each new input. With this approach, the concepts learned
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Fig. 2. Unique detectors for each CNN architecture [11]

from Network Dissection are extended to new input images: the top K highest-
scoring filters for each input image are chosen as the identified concepts, consid-
ering the mean of each activation map.

Note that an activation map is a matrix that represents which image part
was activated after the convolution function. It can be represented by a matrix
AM×N of the elements aij , where M = 1..i and N = 1..j. We define the mean
of the activation map matrix MActivation map as follows:

MActivation map =

M∑

i=1

N∑

j=1

aij

#E
(1)

where #E is the number of elements of A.
We then rank the K filters from highest to lowest based on the mean acti-

vation map for each picture, assuming that the highest value identifies the most
representative concept contained in an image. Once the model has identified
other concepts for each image, the order of the pictures of the same class may
be readjusted.

As a result, the approach produces as output a list of K different semantic
concepts that are considered meaningful for each image. For the global concepts,
a linear classifier with model-extracted features is applied to the same dataset
for each class; subsequently, based on feature significance we determine which
semantic concepts are relevant for the global separation. As mentioned previ-
ously, the dataset used for the investigation is the Action40 dataset [7], which
contains action photos labelled for 40 different action classes.

As a first metric for evaluation, we assess a simple precision from the ranked
semantic concepts from local instances to the ranked semantic concepts for their
class using the list of top K high-scored concepts from local and global examples.
To do so, we compare the notions for each local example (image) belonging to
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a specific category to the top concepts that best linearly separate the class. We
consider the globally rated concepts to make sense with the local ones if at least
one concept is offered between them. The formula for this can be expressed as:

Pc =
∑

Clc,gc

#Lc
(2)

where Pc is the precision of the specific class c,
∑

Clc,gc is the sum of the
instances where the global and local shared at least one ranked semantic concept
in the class c, and the #Lc is the number of local instances that belongs to the
class c.

In this paper we assess the relationship between the top-ranked concepts from
local and global examples using this metric. This gives us an indication of how
well the global characteristics, separated linearly, reflect the semantic concepts
acquired by the model for each class. We are aware this is a simplistic metric
and we will discuss in the next section other possible variations that we will test
and compare in future work.

The experimental evaluation of the extracted concepts following this app-
roach will be presented in the next section.

4 Experimental Evaluation

As mentioned in Sect. 3, we build upon the Network Dissection technique to
extract local and global concepts. The task we consider in our investigation is
action classification (Action40 dataset)2. The concepts associated to each filter
in the CNN model are provided by Network Dissection, which was trained on the
Imagenet dataset3, considering only a limited set of categories, namely object,
part, material and colour. We only collected the concepts identified in the CNN’s
last layer, which created 162 distinct concepts. Then, using a transfer-learning
approach, we used the Action40 dataset to capture the concepts learnt for this
data, based on the Network Dissection results.

The local semantic features from the new data were recovered using the mean
of the activation map from each filter in the final layer as per Formula 1. The
same formula was used for global concepts, i.e. concepts for each class, but this
time it is used as feature extraction for the classification input. Following the
intuition in [3] that meaningful higher-level concepts may be simpler to grasp,
we used the SVM linear classifier to detect such concepts per class. We ran the
algorithm using a 5-fold cross-validation, using the learning rate (C) equal to
0.0014 and took the model with the best F1 score. The classification algorithm
produced the confusion matrix in Fig. 3, which displays the precision obtained for
each class. The linear model achieved the precision of 80% in the class separation
(classification task).
2 http://vision.stanford.edu/Datasets/40actions.html.
3 https://www.image-net.org/download.php.
4 Best results from a grid-search technique using: https://scikit-learn.org/stable/

modules/generated/sklearn.model selection.GridSearchCV.html,.

http://vision.stanford.edu/Datasets/40actions.html
https://www.image-net.org/download.php
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Fig. 3. Confusion matrix from SVM classifier

Based on the top-ranked concepts extracted, we calculate the precision (For-
mula 2) between the images and their class in four different ways:

– Top 5 L - Top 1 G: The top 5 local concepts for each instance and the top 1
global concept for each class.

– Top 5 L - Top 5 G: The top 5 local concepts for each instance and the top 5
global concepts for each class.

– Top 5 L - Top 10 G: The top 5 local concepts for each instance and the top
10 global concepts for each class.

– Top 10 L - Top 10 G: The top 10 local concepts for each instance and the top
10 global concepts for each class.

The rationale behind varying the number of top concepts is to determine how
many top global ranking concepts may best represent images from the same class.
We discovered that a linear classifier will provide the feature relevance depending
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on how successfully that feature separated the class, which is not always con-
nected to the top local concepts, for example, from the same class. This means
that in the model, the most common concepts provided in a group of images
from the same class are not necessarily chosen as the best representative char-
acteristics for that class. Therefore, we used this variation to precision between
the local and global concepts belonging to the same class.

The first assessment evaluated whether the top one global concept from a
particular class was present in the top five local concepts. Figure 4 shows that
we could not identify a relevant precision for the majority of the classes utilising
only the top 1 global concept. This behaviour supports the previous intuition
by emphasising that the feature relevance in a linear classifier is aimed at the
characteristics that best distinguish (or separate) the classes.

When we examine the precision between the top ten concepts in local and
global instances (Fig. 5), we can observe that the precision improves significantly,
demonstrating that the global top ten concepts are represented in the local top
ten concepts. Given that the model identified 162 different semantic concepts,
and our technique could identify a mean precision of 95% between only ten
ranking concepts, this is a significant result. The precision mean and standard
deviation for all classes for each different number of global and local concepts
are shown in Fig. 6. Note that all the code is is available in an open repository
on github5 for reproducibility of results.

It is important to note that we only use precision as a quantitative measure
for our concept ranking method. This is because in this instance we only check
if global concepts are presented in local ones. Additional measures like recall
and F1 would not change this result but we agree that they could provide other
interesting insights. In order to further validate the proposed technique, we will
not only explore the insights provided by using alternative evaluation metrics,
but also compare results across different benchmark datasets.

In order to illustrate our outcome qualitatively with an example, we chose
one of the greatest and lowest precision classes, “cutting trees” and “phoning”,
respectively. The class ”cutting trees” had a significant separation result from
the linear classifier (98%) and obtained 100% precision between the global and
local concepts. Based on the feature significance from the linear model, the
global concepts for this class are: “snow”, “tree”, “bird”, “motorbike”, “house”,
“bicycle”, “plant” and “hand”. When we look at all of the photographs in the
same class, the top ten local concepts are: “house”, “tree”, “plant”, “bird”,
“person”, “bicycle”, “hand”, “motorbike”, “snow” and “food”.

This result demonstrates that there is an interesting overlap between global
and local concepts for the class “cutting trees,” which we can use to describe
what the model learned as the pattern of this class. Simultaneously, we may
manually check that the presented notions appear plausible when we consider
the activity of cutting the tree and its images on the dataset. This is just an
intuition, as we said, and a more systematic evaluation (either manually by
humans or automatically via labels) should be conducted.

5 https://github.com/EricFerreiraS/disentangled representation-concept ranking.

https://github.com/EricFerreiraS/disentangled_representation-concept_ranking
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Fig. 4. Top 5 local concepts X Top 1 Global concept

When we look at the “phoning” class, the linear classifier did not produce an
flattering result (precision of 51%), and when compared to the global and local
concepts, the result was the poorest in the method (about 67%). This result
might indicate two possibilities: the linear model did not segregate the concepts
properly (an issue with the linear model) or there is a lack of concepts that could
better describe this class (issue with concept generation). These concerns will
be investigated upon in future work.
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Fig. 5. Top 10 local concepts X Top 10 global concept

To summarise, our quantitative experimental analysis so far showed that our
approach was able to successfully retrieve the top 10 concepts from disentangled
representation that best characterise the local instances (as per Network Dissec-
tion) as well as the global instances. We assessed the method by comparing the
existence of concepts in local and global occurrences. In the next section we will
present the ongoing research we are conducting in this area and our next steps.
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Fig. 6. Mean and standard deviation between the precision

5 Ongoing Work

CNN has shown impressive accuracy in computer vision applications, but the
absence of an explanation for what the model learnt remains an open challenge
for its adoption in high-risk scenarios. This study investigated the potential
of building upon disentangled representations to provide a semantically mean-
ingful interpretation of classification results produced by a CNN in terms of
relevant semantic concepts. We demonstrate how even using a linear classifier
such as SVM, we are able to meaningfully rank top ten concepts that charac-
terise not only an instance, but more generally a class from local disentangled
representations.
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We define and test a method for extracting not only the top local concepts
but also global ones. We demonstrated that we can identify the top concepts
for an image of a given class, and that these are the same concepts necessary
to best separate this class. For example, with a precision of 95% between the
concepts presented in the images and their class, we have that images categorised
as “riding a bike” contain the top local concepts “bicycle” and “wheel”, and
the same top concepts were necessary to separate this class according to the
linear classification. As a result, we argue that the model has learned those
concepts related to a specific class (and instances of that class). This paves the
way for a concept-driven explanation of classification results using disentangled
representations, although different challenges lie ahead.

For example, we notice that no semantic relationship between extracted con-
cepts can be extracted with our method alone. To this aim, we believe leveraging
an external knowledge base can aid in detecting semantic relationships between
those concepts. We are currently investigating on the use of Conceptnet [6], a
common-sense knowledge graph database, to acquire those relationships, thus
improving the transparency and interpretability of what the model has learned.

Another key challenge is that the human expert’s capacity to explain out-
comes semantically is limited due to a lack of information regarding causal link-
ages between those concepts and their relationships. To tackle this we are also
investigating the possibility of leveraging the extracted concepts and relation-
ships to learn symbolic rules about causality, therefore offering a structural and
human-like way of explaining the results of a decision made by the model.
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Abstract. When generating local neural network explanations, many
methods remove or obfuscate information at the input and observe the
effect on the neural network output. If the lack of certain information
causes meaningful changes to the output, we assume it was important
and forms part of the explanation for the prediction result. It is not
trivial, however, to decide on a clear definition for the absence of infor-
mation. Previous methods have blurred, darkened or added normally
distributed noise to certain portions of the input. In this paper, we pro-
pose using interval bounds as a proxy for uncertainty about, or absence
of, information. Using this insight, we developed RangeGrad, a novel
method for generating saliency maps for neural networks. This method
exploits the relationship between uncertainty on the input with predic-
tion uncertainty. We show that the uncertainty framework produces valid
explanations in line with existing methods.

Keywords: Explainable artificial intelligence · Saliency maps ·
Interval bound propagation

1 Introduction

Machine learning is an ever-developing field. These developments, however, often
lead to large and complex models. This is especially the case in the field of
neural networks. At the same time, due to regulatory [4], fairness, and bias
concerns, understanding our models is more important than ever. For this reason,
explainability is gaining attention and importance in recent years.

For neural networks, explainability takes many forms. One of the main qual-
ifiers in the taxonomy of neural network explanation methods is global versus
local explanations. Global explanations provide insight into how the network
generally performs its function, independent of a certain given data point. For
example, Pedapati et al. [10] developed a method to convert a black box model to
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a decision tree model without losing much of the original model’s performance,
while this derived model can be interpreted more easily than the original model.

In contrast to global explanations, the goal of local explanations is to give
insight into a single prediction of the neural network. For example, if the network
classifies a certain image as containing a cat, we would like to know which parts
of the image were important for this prediction. This insight could come in the
form of rules [3,11], dataset examples [8], or saliency maps. The latter is the
subject of this work. With saliency maps, the goal is to identify those input
dimensions which are most critical for a certain prediction of a neural network.
In the example of images, we wish to know which pixels mattered most for the
observed prediction outcome.

There are various ways of defining what makes an input dimension important
for a certain prediction. Here, we use a model based on uncertainty. Intuitively,
if we can be very uncertain about a certain input dimension without a model
gaining much uncertainty about the output, that dimension is less important
for the prediction. If, however, any small uncertainty about an input dimension
introduces large uncertainty about the output, that dimension must be more
important. For example, in image classification, if a pixel value could be any
possible value without having a large effect on the final classification, it was not
important. We then equate uncertainty with intervals on the data. For example,
when evaluating an image, calling a pixel value uncertain means it could be
several steps darker, lighter, or a slightly different color. Guided by this intuition
and definition, we propose RangeGrad. This novel explanation method finds a
correlation between uncertainty at the input and uncertainty at the output of
a neural network through interval-bound propagation. The key insight of this
paper is the assumption of the equality of all following concepts:

– importance of an input
– uncertainty or “lack of information” at the input/output
– interval-bound of an input/output

We will, therefore, use these concepts interchangeably. We then find dimensions
of an input where uncertainty has a large effect on the output uncertainty. We
call these dimensions more important for the prediction.

For the sake of readability and clearer examples, we will mostly be discussing
explanations in the context of image classification models. However, most methods
and theories can be applied to other machine learning settings straightforwardly.
For example, inputs are not limited to images and the output can represent any
predicted value besides class scores without any changes to the method.

The organization of the paper is as follows. In Sect. 2 we will review ear-
lier research most similar to ours. Section 3 outlines the formal framework this
paper uses to generate explanations. Next, Sect. 4 describes RangeGrad, our
implementation of the framework, applicable to neural network image classifi-
cation models. In Sect. 5, we apply RangeGrad to different DNN architectures
and compare results to existing and state-of-the-art methods. Next, we perform
various experiments to show the strengths and weaknesses of RangeGrad. The
final Sect. 6 reflects on the results and outlines future possible research topics
that this paper has created.
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2 Related Work

2.1 Saliency Maps

The earliest method for generating saliency map explanations for a single predic-
tion was based on a point gradient [2]. Here, backpropagation is used to compute
the gradient of the output in function of the input. The idea is that we get a
correlation between change at the input and the output. So we can observe which
input dimensions have little effect on the output and are therefore considered less
important. These gradients are crucial for training a neural network. Therefore,
obtaining a sensitivity map in this way is trivial in most Deep Neural Network
(DNN) frameworks. However, as again shown in our experiments, noise is an
issue using this method.

One early method addressing the noise issue is SmoothGrad [16], developed
by Smilkov et al. Instead of only observing the gradients at a single point, obser-
vations are made at multiple samples around the point. These samples are cre-
ated by adding normally distributed noise to the input vector and measuring the
gradient at that point. These different measurements can then be combined to
yield a more robust view of the behavior of the network around a given input.

In [18], Sundararajan et al. developed Integrated Gradients (IG). There is a
similarity with SmoothGrad, in that the method aims to take more samples to
eliminate noise in the local gradients. The main difference, however, is the part
of the input space where samples are taken from. SmoothGrad samples from a
normal distribution around the input image, IG samples on the line between the
input image, and a “null” point. The latter point represents the complete lack of
information. In image-based experiments, this is often a black image. This line,
therefore, represents all samples ranging from the input under evaluation to no
input to the network.

Another method for finding important dimensions in the input is Guided
Back-propagation [17,21] (GP). Like other saliency map methods, the goal here
is to find the inputs which contribute most to the output of a neural network.
In this case, this is done by finding those inputs that positively contribute to an
output value. This is done by removing or setting to zero the negative gradients
during the backpropagation.

Selvaraju et al. have proposed Grad-Cam [14], a generalization of Class Acti-
vation Mapping [22]. Convolutional layers retain spacial information, meaning, a
value in every channel directly relates to a defined region in the input image. This
method, therefore, analyses the last convolutional layer in particular. Through
backpropagation, Grad-Cam finds the values in this layer which, for all channels
combined, have a positive gradient with regards to the predicted class score.
That is, those values that increased the score during the forward propagation.
These gradients can then be further back propagated to get a saliency map for
the input. The full procedure is generally referred to as Guided Grad-Cam.

The main difference between existing methods and RangeGrad is the gradient
that is calculated. Existing methods compute a gradient on the input for one or
more samples. This finds the input dimensions which have the strongest impact
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on the output. RangeGrad, however, computes the gradient of an interval on
the input and output. That is, we view an interval as uncertainty or “lack of
information” at the input. Intuitively, when a value has a larger range, there are
more possible values and the uncertainty is greater. We then look for the input
uncertainty that has the largest effect on output uncertainty.

2.2 Interval-Bound Propagation

Our method uses interval-bound propagation to estimate the effect of “lack of
information” at the inputs on the uncertainty of the output of a neural network.
Here, an interval, or range of possible values, is defined in the input space and
propagated through all layers of the network. The interval at the network output
always contains any possible point the network can produce given any input in
the input interval. This idea is commonly used by formal verification methods.
In this field, the ultimate goal is to give formal guarantees on the output of a
neural network given a certain input range. For example, Wang et al. [20] use
such bounds to prove the safety of a neural network under certain conditions.
In this way, it becomes possible to prove that certain behaviors of a neural
network are impossible. The bounds have also been used to improve robustness
at the training stage [5,19]. Here, the aim is to ensure that not only the training
samples are classified correctly, but also the samples which lie close in the input
space. As shown in the cited works, networks trained in this way are usually
more resilient to adversarial attacks.

Modern formal verification and interval-bound propagation methods, such as
[9,13], provide strict bounds for a neural network. RangeGrad does not require
that bounds are strictly lower and upper bounds. There are two important dif-
ferences in the requirements for the bounds used by RangeGrad and those used
in formal verification or robustness training:

1. Our bounds do not need to be strict. That is, even though our method prop-
agates bounds, we do not need a formal guarantee that any input which lies
in the input range is covered by the output range. This stands in contrast
with the formal verification setting, where this property is critical. For our
purposes, we are mainly interested in the relative sizes of the intervals in
each dimension. It is, in our case, preferable to sacrifice bound strictness for
relative accuracy.

2. The functions that transform the input bounds to the output bounds need
to be derivable in our case. This is an important factor in deciding which
bounding method to use. We don’t just want a bound on the output, we
want to know which dimensions at the input have a larger impact on this
bound.
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3 Problem Statement

We want to find the correlation between the inputs and outputs of a deep neural
network. We propose that those inputs where the uncertainty has a larger impact
on the uncertainty of the outputs are more important to the prediction. The
inputs with more correlation to the output are then more important and form
an explanation.

Take a neural classification network f : Rd → R
C with d input dimensions

and C output classes. We are interested in a local explanation of the network
around some data point x ∈ R

d. We consider a d-dimensional interval Ir ⊆ R
d

centered around x depending on a range vector r ∈ R
d
+, that is

Ir := [x1 − r1, x1 + r1] × · · · × [xd − rd, xd + rd]

We aim to find an uncertainty function U : Rd
+ → R

C
+ such that

Uc(r) = max
p∈Ir

fc(p) − min
p∈Ir

fc(p)

for any class c ∈ {1, . . . , C}; in that case, we call the gradient of the function
Uc(r) our explanation for the class c at the point x:

E(x, c) = ∇Uc(r)

If c = arg maxi∈{1,...,C} fi(x) then E(x, c) corresponds to the explanation for
the prediction of f at the point x since dimensions where this gradient is larger
have a larger impact on the output range of f . In other words, there is a correla-
tion between the uncertainty of x and the uncertainty of fi(x) or the predicted
class. Note that this explanation is of the same dimensionality as input point
x. Therefore, for every dimension in x, there is a measure of importance. This
forms a saliency map in the image classification setting.

In practice, it is infeasible to create this exact uncertainty function for a
neural network, as evidenced by the work done in the formal verification field
(see Sect. 2.2). However, what is most important to us are relative gradients. As
long as U correlates to the true bound, the explanations generated are valid. This
implies that we could use an approximation Ũ instead of U itself and change the
explanation accordingly

Ũc(r) ≈ max
p∈Ir

fc(p) − min
p∈Ir

fc(p)

Ẽ(x, c) = ∇Ũc(r)

The way to approximate U by some Ũ is considered an implementation
choice. This section is focused on the theory behind the uncertainty framework.
Therefore, the method for computing Ũ in our setting is discussed in Sect. 4.1.
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4 RangeGrad

In this section, we explain the RangeGrad algorithm. The algorithm consists of
the following steps described in detail in the remainder of this section:

– Define an interval around the input sample, indicating the uncertainty added
to each of the input dimensions.

– Forward propagate the bounds, where for each linear part of the neural net-
work we estimate the bounds after the linear transformation. Since these
bounds are generally too loose, compensate for the loss in bound tightness
before applying any activation functions.

– Take the bounds on the output, and backpropagate the gradient such that
the bound on the value for the predicted class increases. That is, the gradi-
ent related to increasing the uncertainty about the predicted class. As with
existing methods, the bound on the output is taken before any softmax or
similar layers.

– Measure the gradients on the interval added to the input initially. Here larger
values indicate the dimension was more important for creating uncertainty at
the output. We then take these larger values to mean the dimension is more
important for the prediction.

4.1 Interval Bound Propagation

To implement an uncertainty function we first define a way to generate true lower
and upper bounds. For this, we need an upper and lower bound for each neuron
in the network. This can be done by correctly rewiring the connections in the
network. An example is shown in Fig. 1. When a neuron is weighted by a positive
weight, the upper bound of that neuron affects the upper bound of a neuron in
the next layer. For negative weights, the lower bound is used to compute the
upper bound for a neuron in the next layer. It is clear that this process is not
computationally expensive. Propagating bounds (together with the center value)
in this manner has the same cost as propagating a single sample 3 times.

Using the neuron model, lower and upper bound layers can be developed for
many common layer types such as linear and convolutional layers. Also, a sum
of two signals as is needed for residual neural networks [6] can be implemented
using this procedure. Monotonic layers such as max-pool, avg-pool, dropout,
and normalization layers can simply be applied to the lower bound and upper
bound separately. Many functions such as softmax can also be converted into a
bounded equivalent. However, as with existing methods, during the RangeGrad
backpropagation, the output gradient is applied to the final output before the
softmax layer.
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Fig. 1. This figure shows an example of part of a network layer (Original) rewired for
lower and upper bounds respectively. In this example wi

1,1, w
i
i,2 > 0 and wi

1,3 < 0. Note
the impact of the sign of the weight on which bound (lower or upper) of the earlier
neuron is used. Using these rewired networks, forward and backward propagation can
be done as if they were regular neural networks.

Using the notation common for a neural network layer, bounds are propa-
gated through a layer as follows:

yi = W i ∗ xi + bi

yi = W i
+ ∗ xi +W i

− ∗ xi +bi

yi = W i
+ ∗ xi +W i

− ∗ xi +bi

xi+1 = ϕ
(
yi

)

xi+1 = ϕ
(
yi

)

xi+1 = ϕ
(
yi

)

where

– W i
+ and W i

− are the positive and negative weights of layer i respectively.
– bi is the bias term of the layer.
– ϕ is any monotonic activation function. A non-monotonic activation function

can be used but is outside of the scope of this work. In short, it introduces
extra computation but no fundamental changes to RangeGrad are needed.

– xi and xi are respectively the lower and upper bound for the output of f at
the i-th layer. In particular x0 := x − r and x0 := x + r.

– yi and yi are the bounds for the neurons before the application of the acti-
vation function ϕ.
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Using this expression, we can replace each linear transformation in the neural
network.

4.2 Rescaling

This way of propagating bounds provides true lower and upper bounds. However,
the bounds are not tight. There is a single and clear cause for this; neuron value
dependencies. That is, when we combine values of previous neurons, for example
in a sum, we compute the minimum output by summing the minima of both. For
example, Fig. 2 shows a small network where we know the output range should
be [0, 0], but the described procedure will bound the output as [−1, 1]. This
is because the bounding method completely omits any dependence between the
neurons. Whenever two dependent neurons are combined, our bound will loosen.

As a practical example, when the input interval is an image where every
pixel can be 1/256 brighter or darker, the output interval is problematically
loose. Even using such a small input interval, the output bounds often enclose
every output the network generates on any sample in the dataset. We have stated
before that the bounds can be approximate, however, the ranges need to cover a
functional part of the network. That is, in every layer i, the lower (xi) and upper
(xi) bounds need to be close enough to the true sample (xi) to be meaningful.

As mentioned in Sect. 2, computing a tighter true bound introduces sev-
eral issues, such as non-derivability and expensive computation. Therefore, we
propose a scaling factor to compensate for the loss of meaning due to bound
approximation error:

yi
λ

= λ ∗ yi +(1 − λ) ∗ yi

yi
λ = λ ∗ yi +(1 − λ) ∗ yi

xi+1 = ϕ
(
yi

λ

)

xi+1 = ϕ
(
yi

λ

)

Fig. 2. This figure shows an example of how dependent neurons in earlier layers can
cause the bounds to loosen in subsequent layers. Assume no other neurons are connected
to the ones shown and ϕ := Relu, it is clear the output range should be [0, 0] instead
of [−1, 1].
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Note that the lower and upper bounds are always scaled relative to yi. This
ensures our bounds undergo similar non-linearities of the network as x during
the forward propagation.

There are numerous ways to set this λ. It can be set as a constant, that is, in
every layer, the bounds are scaled by the same relative amount. The main pur-
pose of scaling, however, is to mitigate the effects of dependent values. Therefore,
a constant λ can be used when each layer contains the same relative dependency
between neurons. However, we cannot make this assumption for an arbitrary
neural network.

In our experiments, we used a dynamic scaling method, producing a different
λ for every layer. The metric used for scaling is:

λ = sup{μ : dimyi − (sign yi
μ
)ᵀ(sign yi

μ) ≤ 2k dimyi}

with dimyi the number of neurons in layer i. This method does this in such a way
that there are only k dimyi neurons for which the lower bound lies below 0 and
the upper bound lies above 0. Most activation functions change the most around
an input of 0 and display the least linear behavior in that region. Therefore this
scaling method ensures that some but not too many of the dimension bounds
enclose regions with this behavior in the activation functions.

This scaling method introduces a parameter k. In our experiments we set
k = 1

C . However, in the experiments, we show that the explanations are not
sensitive to this value. That is, explanations change little under different values
for k.

Besides scaling the data in the propagation steps, we can use this same k
value to set the range vector r on the input data point. That is, we set r to be
the largest value for which the data does not need to be scaled in the first layer.

5 Experiments

In this section, we do 4 types of experiments. First, we compare RangeGrad
to existing saliency map methods. Here, we show that even though RangeGrad
uses fundamentally different assumptions, explanations fall in line with those
from existing methods, with notable differences. The similarities and differences
are best illustrated with these real-world data experiments. For this reason,
with the space limitation in mind, we do not include numerical experiments
and experiments with other data types. Moreover, the former is non-trivial as
illustrated by the lack of such experiments in saliency map papers such as [16].
Secondly, we study the sensitivity of the scaling parameter k. We show that this
parameter is not sensitive, and saliency maps change little under different values
of k. In the third experiment, we observe that RangeGrad explanations lose
quality when applied to deeper neural networks. Finally, we apply some sanity
checks to RangeGrad to ensure the resulting explanations are not meaningless.
Note that most saliency map figures are better visible in full color.

All code needed to run these experiments or develop further bounding layers
can be found at https://github.com/SamPinxteren/RangeGrad.

https://github.com/SamPinxteren/RangeGrad
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Fig. 3. A set of images from ImageNet classified correctly using VGG19. We show a
comparison of explanations by simple gradients, SmoothGrad, Grad-Cam and Range-
Grad. No filtering or post-processing was applied to any of the explanations. (Color
figure online)

5.1 Method Comparison

First, we compare RangeGrad explanations or saliency maps to those of existing
methods. Here, we use the VGG19 [15] neural network. The model was trained
on the ImageNet [12] dataset. Figure 3 shows a comparison of RangeGrad to the
simple gradient (baseline), SmoothGrad, and Grad-Cam. No post-processing was
applied to the saliency maps, what is shown is the output of each method, lin-
early scaled such that the lowest value is white and the highest is red. In the
related work, we have also discussed guided backpropagation and integrated gra-
dients. Given the limited space, we do not include these methods here. Grad-Cam
already uses guided backpropagation and SmoothGrad is similar in principle to
integrated gradients.

It is common for filters to be applied to the output of explanation methods.
This is because, in many cases, the explanations generated are often focused
mainly on a few pixels. When applying smoothing or blurring to these saliency
maps, larger sensible regions of an image are marked. During this process, how-
ever, a lot of the detail in the explanation is lost. With RangeGrad, there is
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Table 1. This table shows run times (in seconds) for different methods and samples.
These results were obtained using the VGG19 network on a CPU-only system. The
times are mostly explained by how many samples (or sample-equivalent operations)
each method needs to propagate forward and backward through the neural network.

Gradient SmoothGrad Grad-Cam RangeGrad

Forward Propagations 1 35 ≈ 1 3

Backward Propagations 1 35 ≈ 1 2

Weimaraner (Dog) 2.16 40.70 1.48 4.48

Red Fox 1.35 28.31 1.06 3.07

Parachute 2.96 45.44 2.30 9.02

Radio Telescope 5.73 242.98 5.45 18.63

no need for this type of post-processing. As is the case with Grad-Cam, larger
areas of importance are marked. However, in comparison to Grad-Cam, the
areas are also much more detailed. RangeGrad clearly shows the boundaries
between regions of larger and smaller importance. For example, on the Range-
Grad saliency map of the dog image in Fig. 3 the edges of the dog can more
clearly be seen. In the example of the red fox, far more of the body can be seen
in the saliency map.

Table 1 shows the run times of the different methods. We have also added
the number of forward and backward propagation steps each method requires.
These values explain most of the differences in run times. Note the 3 forward
propagation steps RangeGrad needs. This consists of two passes for the bounds,
and one for the center. During backpropagation, only the bounds are propagated.
This means taking two backpropagation steps. RangeGrad is, therefore, in terms
of run times, in line with other non-sampling-based methods. We conclude that
RangeGrad run times are not prohibitive. For example, it takes more time to
train a DNN than to generate a saliency map for every sample in the used
dataset.

5.2 Scaling Factor Impact

In this section, we investigate the impact of the scaling factor on the explanation
results. Figure 4 shows the resulting explanation under various scale factors.

The main finding is that the method is not too overly sensitive to this param-
eter. That is, it is not difficult to set a scaling factor that generates sensible
results. Moreover, explanations do not change much for all scaling factors in
the interval k ∈ [0.01%, 5%]. Note that in all other experiments we are using
k = 1

C = 0.001. This insensitivity is important since it avoids selecting a k that
works for a few observed samples but generates unusable or non-sensible expla-
nations for others. It is clear, however, that at high factors the explanation does
not relate in any way to the input image or the predicted class. This is to be
expected since, at these levels, we are exploring regions of the network which
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Fig. 4. This figure shows the impact of the scaling factor on the saliency map. The
percentages indicate the maximum allowed number of non-linear activations for any
layer. In other words, how many dimensions are allowed to have a minimum below 0
and a maximum above 0 before the activation function. It is clear that the explanations
change little for any k ∈ [0.01%, 5%]. Note, for all other experiments k = 0.1% is used.

are not in any way related to the class. That as an example a network using
ReLU activation functions. In that case, within the bounds, some neurons are
activated or deactivated which normally would never do so under any sample of
the given class.

5.3 Performance on Deeper Networks

As was described earlier in Sect. 4.1, our uncertainty function is an approxima-
tion. While propagating bounds through any layer, the size of the bounds is
influenced by two factors:

1. The underlying true minimum and maximum. This is the factor we are
interested in. This factor leads to usable explanations under our model and
assumptions.

2. The omitted dependency between neurons. This factor will increase the
bounds for the value of a neuron more when the value of the neurons it
depends on are more correlated. That means, using our method, we are par-
tially measuring which nodes are more dependent. We do not expect this to
increase the quality of the explanations.

With more layers, the signal of the first factor can get lost in the noise of the
second. We, therefore, expect the method to perform worse when used with very
deep networks.

We show several examples in Fig. 5. These explanations are generated for
Densenet121, a 121-layer image classification network. These results show that
RangeGrad explanations are far less focused on the subject of the image. One
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Fig. 5. A set of images from ImageNet classified correctly using DenseNet121 [7]. We
show a comparison of explanations by simple gradients, SmoothGrad, Grad-Cam and
RangeGrad. No filtering or post-processing was applied to any of the results. It is clear
that performance is degraded when compared to results on the VGG19 network.

could argue that this is because these deeper networks are inherently more com-
plex. The context around the subject may be taken into account more than for
more shallow neural networks. However, we can see a clear deviation between
the explanations of RangeGrad and SmoothGrad. Since the latter uses a sam-
pling method, the neuron-neuron dependencies are inherently accounted for. If
the background was truly more important for these deeper networks, we would
expect this signal to show up in the saliency maps of the other networks.

The relevant parts of the image are still marked in the saliency map of a 121-
layer network. However, this is the deepest network this version of the method
should be applied to. The signal-to-noise ratio gradually degrades when adding
more layers.

5.4 Sanity Checks

It is hard to numerically assess the quality of an explanation. Moreover, humans
are not always accurate in their visual assessment of these methods. To address
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this issue, Adebayo et al. [1] propose certain sanity checks to perform on explain-
ability methods. These checks do not prove that an explanation is valid, but
failing these checks implies that an explanation is guided more by network archi-
tecture or other factors. Since the assumption is that an explanation should be
guided by network training and sensible training data, eliminating these two
factors should yield no sensible explanation. Moreover, we expect the generated
saliency maps to change significantly when these factors are removed.

Fig. 6. This figure shows simple gradient, SmoothGrad, Grad-Cam and RangeGrad
explanations for a trained and untrained VGG19 network. To clearly show which parts
are marked as important, the saliency maps are used to decide transparency in the
images. When a pixel is more important for the prediction, it has the original color.
Less important pixels are turned white. It is clear that RangeGrad, like other methods,
clearly marks important regions for a trained network. However, no clear preference
for these regions is shown when explaining an untrained network.
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Figure 6 shows the explanations for a trained and untrained VGG19 network.
Both the trained and random networks follow the VGG19 architecture, so the
only difference is the set of network weights. In these images, we have used the
saliency maps as transparency layers. That is, a pixel is closer to the true color
when it was important and more white if it was less important. These results
show that RangeGrad falls in line with other methods. Some details are still
marked as more important than others, but this is largely due to network archi-
tecture and is true for all methods. Convolutional layers, even when untrained,
often function as edge detectors. It can be seen that the explanations of a trained
network largely focus on the subject. Explanations of the randomized network,
however, mark every part of the input as equally important. In all cases, the
background is marked as far more important as compared to the trained net-
work results. These results show us we should not reject RangeGrad for being a
simple edge detector.

6 Conclusion

We have shown that interval bounds are useful to obscure information from a
neural network, effectively conveying uncertainty as larger bounds. With this
insight, we were able to explore the relationship between uncertain inputs and
prediction uncertainty. We showed that this model leads to explanations in line
with, or in certain aspects better than, current gradient-based methods and
principles. Moreover, sensible saliency maps are generated when applying Range-
Grad.

We have seen that correlated dimensions in the hidden layers degrade the
performance of deeper neural networks. Since there is a trend towards networks
with many hidden layers, the method would be more future-proof if this degra-
dation can be countered. We propose to focus on more complex and accurate
uncertainty functions, possibly leading to improved results in the future.

This work has also opened the way to explore the newly proposed theoreti-
cal “explanation through uncertainty” framework in other fields. Any model for
which a derivable uncertainty (or bound) function can be generated could be
explainable using these principles.
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Abstract. In this work, we empirically examine human-AI decision-
making in the presence of explanations based on predicted outcomes.
This type of explanation provides a human decision-maker with expected
consequences for each decision alternative at inference time—where the
predicted outcomes are typically measured in a problem-specific unit
(e.g., profit in U.S. dollars). We conducted a pilot study in the context of
peer-to-peer lending to assess the effects of providing predicted outcomes
as explanations to lay study participants. Our preliminary findings sug-
gest that people’s reliance on AI recommendations increases compared to
cases where no explanation or feature-based explanations are provided,
especially when the AI recommendations are incorrect. This results in a
hampered ability to distinguish correct from incorrect AI recommenda-
tions, which can ultimately affect decision quality in a negative way.

Keywords: Explainable AI · Prescriptive AI · Predicted outcomes ·
Human-AI decision-making

1 Introduction

In real-world decision-making, human decision-makers are confronted with a
range of available decision options with diverging future outcomes. For this rea-
son, several approaches in the field of prescriptive AI emerged to support human
decision-makers by not only recommending a decision option but also quantify-
ing the predicted outcomes of all available decision options (e.g., expected profit
in U.S. dollars). For decades, these approaches have been leveraged in a range of
real-world high-stakes decision-making scenarios, such as in medical and health-
care [6,7,44], financial [19], manufacturing [3,27], or strategic management [33]
domains. In line with this, large tech companies such as GE [45], IBM [46], or
Microsoft [47] have been investing in prescriptive AI. However, there is a lack
of empirical analyses on the effects of these predicted outcomes on human-AI
decision-making in general. We hypothesize that presenting predicted outcomes
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of decision options to human decision-makers can influence their reliance on AI
recommendations (e. g., a human decision-maker might refrain from choosing
decision options with a negative predicted outcome and, therefore, follow the AI
even when the AI is incorrect). Hence, this work sets out to empirically assess
the influence of predicted outcomes on the performance of human-AI decision-
making in general and on humans’ reliance on AI recommendations specifically.

Predicted outcomes inform human decision-makers why a certain decision
option is recommended instead of an alternative one (e.g., “do not lend money
to this person because the predicted financial return of lending the money is
negative”). This is in line with the definition of why not explanations [25]. Why
not explanations provide information on why an inferred recommendation and
not an alternative one was produced. Hence, these explanations are contrastive
in the sense that they allow for a pairwise comparison between the inferred and
an alternative recommendation (see, e.g., [28]). Typically, why not explanations
take into account current input values to inform human decision-makers why a
specific decision option is recommended instead of alternative options. In con-
trast to this, predicted outcomes explain why a decision option is recommended
based on expected future returns of all decision options, which are inferred by
the model together with a decision recommendation. Thus, instead of descriptive
information about the model input, predicted outcomes explain decision recom-
mendations based on expected future consequences. This characteristic makes
studying predicted outcomes of decision alternatives especially relevant for the
XAI community.

The results of our in-progress work indicate that study participants tend to
follow AI recommendations more often when these recommendations are supple-
mented with predicted outcomes, as compared to other conditions where they
are given no explanation or feature-based explanations. This effect is particularly
pronounced when AI recommendations are incorrect—a phenomenon commonly
referred to as over-reliance. Importantly, when the AI recommendation is sup-
plemented with predicted outcomes, we observe a tendency towards a reduced
ability of study participants to distinguish between correct and incorrect AI
recommendations. Thus, our preliminary findings suggest that using predicted
outcomes as explanations can be detrimental to human-AI decision-making.

2 Related Work

In the following subsections, we present related literature on XAI and reliance
in human-AI decision-making.

2.1 Explainable AI

AI algorithms can provide powerful decision support and have already become
ubiquitous in many domains [21,40]. Problematically, many AI algorithms are
opaque, which means it is difficult for users to gain insight into the internal
processes and to understand why the AI suggests a specific decision [1]. XAI is
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concerned with making AI-based systems more transparent by providing expla-
nations for black-box models [16] or by using interpretable machine learning
models [35]. Transparency is widely assumed to improve human-AI decision-
making by enabling users to detect and correct errors of the AI and by ensuring
that AI decisions are fair [8,13,14,42]. Additionally, there is a demand for expla-
nations to comply with legislation, for example, the EU General Data Protection
Regulation (GDPR).

Despite these claims, recent research shows that XAI does not necessar-
ily improve human-AI decision-making over cases where no explanations are
provided [2,15,37]. Even worse, [34] find that providing people with an inter-
pretable model can result in less accurate predictions. Yet, some studies show
better human-AI decision performance when AI predictions are supplemented
with explanations, compared to the performance when only predictions are pro-
vided (e.g., [9,22]).

Common XAI methods are feature-based and rule-based explanation
approaches [2]. Feature-based models provide the most important features
responsible for the output of the machine learning algorithm and its asso-
ciated weights. Rule-based explanations output if-then-else rules which state
the decision boundary between the given and contrasting predictions [2,43].
Since feature-based explanations are among the most commonly employed XAI
approaches, we include them in our study as a baseline.

2.2 Reliance in Human-AI Decision-Making

Reliance is defined as a behavior [24] that, in the context of human-AI decision-
making, is referred to as following an AI recommendation [36,41]. However, it
is not always beneficial to rely on AI recommendations, given that AI may be
imperfect and may provide incorrect recommendations. People following incor-
rect AI recommendations—also referred to as over-reliance—is a major issue
that can inhibit human-AI complementarity [10]. To establish human-AI comple-
mentarity, humans need to appropriately rely on AI recommendations, meaning
people must be able to distinguish correct and incorrect AI recommendations
and act upon that differentiation [36,39].

Prior findings regarding the effects of XAI on reliance are inconclusive but
show a tendency towards increased over-reliance. For example, [43] discovered an
increased reliance for example- and rule-based explanations—also on incorrect AI
recommendations. In the study of [22], study participants followed AI recommen-
dations significantly more often when provided with example- and feature-based
explanations, even if they contained random content. [34] observed that study
participants supplemented with an interpretable model were less able to detect
mistakes of the model compared to study participants provided with a black-box
model—likely due to information overload. Besides information overload, over-
reliance in human-AI decision-making may be caused by, for example, heuristic
decision-making [10]. The authors of the study hypothesize that people develop
heuristics about the overall competence of the AI [10]. In this context, explana-
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tions are interpreted as a general sign of competence of the AI, which then leads
people to follow AI recommendations without thoroughly vetting them.

In prior XAI research, many approaches for explaining AI systems have been
developed and evaluated with respect to their effects on human-AI complemen-
tarity. However, the effects of predicted outcomes as explanations have not been
studied yet. As predicted outcomes play an important role in scenario analyses
and high-stakes decision-making (e. g., medical [6], financial [19], or strategic
management [33] domains), we aim to better understand the effects of such
explanations on human-AI decision-making.

3 On the Relationship of Reliance and Human-AI
Decision-Making Accuracy

In the following, we discuss the general influence of reliance r on human-AI
decision-making accuracy A for a given AI performance. For this, we define
reliance as the proportion to which people follow AI recommendations in human-
AI decision-making. Over-reliance then refers to a situation in which people fol-
low the AI not only in cases when the AI recommendation is correct but even
when the given recommendation is incorrect. We define the opposite phenomenon
as under-reliance. We then model the human-AI decision-making accuracy as a
function of reliance A(r). We observe that for r −→ 1, the human-AI decision-
making performance will converge to the accuracy of the AI. For r ∈ (0, 1), the
human-AI decision-making accuracy ranges in an interval A(r) = [min,max]
that indicates the minimum and maximum of the possible human-AI accuracy.
Imagine, for example, an AI accuracy of 66.7% and a reliance of r = 66.7%. Peo-
ple may correct the AI in all cases where the AI recommendation is incorrect,
which would result in a human-AI decision-making accuracy of 100%. However,
when people incorrectly override the AI in all cases where the AI recommen-
dation is correct, the resulting human-AI decision-making accuracy would be
33.3%, i. e., A(r = 66.7%) = [33.3%, 100%].

4 Study Design

In this section, we first formulate our research hypotheses. Then, we outline the
use case and dataset chosen for this study, and we address technical preliminaries.
Finally, we introduce our experimental design and the process of recruiting study
participants.

4.1 Hypotheses

Prior research already discovered that XAI can have effects on reliance. While
many studies report XAI leading to over-reliance [38], the effect demands fur-
ther investigation [37]. The results of multiple studies remain inconclusive, some
pointing towards over-reliance [10,39], some to under-reliance [31,36]. When it
comes to the effects of predicted outcomes, multiple researchers raise the question
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on their influence on reliance and accuracy [4,29]—with some suspecting a trend
towards over-reliance [18,30]. Thus, we conducted an exploratory pilot study to
examine the effects of predicted outcomes as explanations on human-AI decision
accuracy and human reliance on AI recommendations.

H1 People provided with predicted outcomes as explanation follow an AI rec-
ommendation more often than people provided with an AI recommendation
without explanation.

We further hypothesize that on average and for a certain level of reliance,
the empirical human-AI decision-making performance will be close to the mean
value A(r) = (max−min)/2 of the interval, as introduced previously. Thus, even
when people follow the AI in too many cases (i. e., over-reliance), we hypothesize
that the human-AI decision-making accuracy is still given by A(r).

H2 The empirical human-AI decision-making accuracy is close to the mean value
A(r) of the theoretical function A(r).

For many use cases, human-AI decision-making represents a special form
of decision-making under risk, as defined by [17]. When predicted outcomes
as explanations come into play (e.g., in terms of potential future consequences
of the available decision options), we follow prospect theory in assuming that
losses loom larger than gains. We thus expect that people tend to follow AI
recommendations supplemented by negative predicted outcomes more often in
order to avoid potential losses in the future.

H3 People follow AI recommendations supplemented by predicted outcomes
more often when the predicted outcomes are negative.

4.2 Preliminaries

Use case. For our study, we train the prescriptive AI on a real-world dataset. We
use a publicly available dataset on peer-to-peer loans from the financial company
Lending Club1. Lending scenarios have been frequently studied in prior XAI
user studies (e. g., [12,15]) and constitute a relevant use case for prescriptive AI.
The Lending Club dataset comprises real-world observations from a peer-to-peer
lending platform that enabled individuals to lend money to others. As borrowers
potentially fail to completely pay back the owed money, it is essential for lenders
to accurately assess the risk of defaulting. In this scenario, prescriptive AI could
provide valuable decision support.

1 https://www.kaggle.com/datasets/wordsforthewise/lending-club (last accessed July
27, 2022).

https://www.kaggle.com/datasets/wordsforthewise/lending-club
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Dataset. Our dataset contains 2,260,701 loans issued from 2007 until the end of
2018. We only consider loans that were either fully paid off or defaulted, resulting
in a dataset of 1,331,863 loans. About 80% of these loans were fully repaid. The
dataset contains 150 features and the label whether the borrower defaulted on
the loan or not. To achieve a reasonable task complexity for human-AI decision-
making, we limit the data to 6 features: borrower’s monthly income, FICO credit
score, interest rate, loan amount, number of months to pay off the loan, and the
amount of each monthly installment. This selection of features from the Lending
Club dataset is consistent with related literature (e. g., [15]).

Technical Preliminaries. Prescriptive AI methods recommend (i. e., prescribe)
the best option among a set of available decision alternatives—typically by
maximizing the predicted outcome of the set of available decision options. In
our case, we utilize prescriptive trees as an exemplary prescriptive AI to calcu-
late predicted outcomes and the resulting AI recommendation [6]. Several other
approaches of prescriptive AI utilize predicted outcomes as well (e. g., [5,11]).
Note, that prescriptive trees provide a range of additional measures designed
for human experts to increase the interpretability of the prescriptive AI, which
are not part of our study. A major challenge for decision-making in general
(and, therefore, also for prescriptive AI), is that the true outcome can only be
observed for the selected decision option in real-world use cases. Hence, outcomes
of alternative decision options and the overall correct decision are unknown [23].
These unknown outcomes are often called counterfactuals. The prescriptive AI
is, therefore, trained for an accurate estimation of the counterfactual outcomes.

In the following, we outline the technical approach behind several prescrip-
tive AI. The prescriptive AI is trained on observational data {(xi, yi, zi)}ni=1,
including feature values xi ∈ R

d of each observation i with d-dimensional fea-
ture vectors, the assigned decision zi ∈ {1, ...,m} and the corresponding outcome
yi ∈ R under the decision for n ∈ N realizations. For the accurate estimation
of the counterfactual outcomes, the model aims at minimizing the squared pre-
diction error for the observed data:

∑n
i=1 (yi − ŷi (zi))

2. Here, ŷi(t) refers to the
unknown outcome that would have been observed if decision t had been chosen
for sample i. The overall goal of the prescriptive AI is to simultaneously esti-
mate counterfactual outcomes for all decision options and to prescribe the option
that optimizes the predicted outcome. Thus, in contrast to predictive AI, the
prescriptive AI implicitly infers both predicted outcomes and a recommended
decision option within a single model.

We evaluate the performance of the prescriptive AI by comparing the pre-
scribed decision with the optimal decision based on synthetic ground truth,
following, for example, [6]. The model achieves an accuracy of 85% accompanied
by an area under receiver operating characteristic (AUROC) score of 86%. The
model prescribes to lend money to the borrower for approximately 62% of the
instances.
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4.3 Experimental Design

The purpose of our study is to examine how supporting humans with predicted
outcomes affects human-AI decision accuracy and the reliance of humans on AI
recommendations. Therefore, we conduct a scenario-based online experiment.
In our experiment, we present loan applications to the study participants and
ask them to decide whether to lend money to the applicant or not. The study
participants are assisted by AI recommendations and different types of explana-
tions. We use a between-subjects design with three experimental conditions as
outlined in Table 1. We utilize feature-based explanations as a baseline to better
understand the effect sizes of explanations based on predicted outcomes. As the
utilized prescriptive AI is tree-based, we follow [6] and calculate the global fea-
ture importance. The importance of each feature is denoted by the total decrease
in the loss function as a result of each split in the trees that include this fea-
ture. The resulting scores are normalized so that the feature importance sums
to 100%.

Table 1. Experimental conditions of our study design.

Condition Explanation

AI without
explanation

Study participants are provided only with an
AI recommendation, not with predicted
outcomes associated with the decision options

AI with
predicted
outcomes

Study participants are provided with an AI
recommendation and, additionally, with the
predicted outcomes for both decision options

AI with
feature-based
explanation

The AI recommendation is shown to the study
participants and, additionally, the feature
importance scores calculated by the model.
This condition represents a common XAI
approach and therefore serves as a baseline

The study participants are randomly assigned to one of the conditions. In
each condition, study participants are working on the same set of loan appli-
cations. Each loan application is characterized by the 6 observational features.
A description of the features and the range of values (in the entire dataset)
are displayed throughout the decision-making task (see Fig. 1). By varying only
the type of explanation, we can measure the effect of each treatment on the
decision-making behavior. Human-AI decision-making accuracy is measured by
the percentage of instances where study participants select the correct decision
option (i. e., the option the reward estimation suggests). We quantify reliance
by measuring the share of instances for which humans follow the AI recom-
mendation. Over-reliance is given by the share of instances for which human
decision-makers follow an incorrect recommendation.
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Fig. 1. Exemplary trial from our study presenting the task and relevant information
in the AI with predicted outcomes condition.

Our study includes a consent form followed by an introduction to the task,
a training and testing phase, as well as questions about demographic informa-
tion and proficiency in the fields of AI and lending. In the training phase, study
participants are familiarized with the procedure of the experiment, the domain,
and the AI recommendations. The training phase consists of three randomly
ordered trials. In each trial, study participants are shown the instructions for
the task specific to the assigned condition, a loan application, the AI recommen-
dation, and the corresponding explanation depending on the assigned condition
(see Fig. 1 for an exemplary trial with predicted outcomes as explanations, and
Fig. 2 with feature-based explanations). The study participants must then choose
whether they would lend money to the applicant. In the training phase, after
submitting a decision, the study participants are informed about what would
have been the correct decision. For the training phase, we randomly sample two
loan applications where the model recommends the correct decision option and
one application where the model is incorrect. Thus, the study participants learn
that the AI recommendation could be incorrect. We do not report results from
this training phase.

In the testing phase, study participants decide on 12 loan applications. Sim-
ilar to the training phase, the AI recommendation is correct for 8 loan appli-



Predicted Outcomes in Human-AI Decision-Making 361

cations and incorrect for the remaining 4 trials. Thus, in our sampling, the AI
recommendation is correct in 66.7% of the cases. The cases where the AI rec-
ommendation is incorrect are composed of two trials where the AI incorrectly
recommends to give a loan, and two trials where the AI incorrectly recommends
to reject a loan application. The incorrect AI recommendations later allow us
to determine whether study participants over-rely on the AI by following wrong
AI recommendations. The trials are then presented to the study participants in
random order. The procedure in the testing phase resembles the one in the train-
ing phase, except that we do not provide information on which decision would
have been correct after study participants submit their decision. We collect the
decisions of the study participants throughout the testing phase and later report
our results based on the study participants’ decisions.

Fig. 2. Exemplary trial from our study presenting the task and relevant information
in the AI with feature-based explanation condition.
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4.4 Study Participants

We recruited 121 study participants via Prolific—a crowdworking platform for
online research2 [32]. Study participants were not required to have explicit exper-
tise in lending or loan applications to participate in our study. The study par-
ticipants were randomly assigned to one of the three conditions. Each study
participant received a base payment of $1.50 for completing the study. As an
incentive for study participants to do their best during the test phase, they were
rewarded with an additional bonus payment of $0.04 for each correct decision,
resulting in a maximum total bonus of $0.48. The median time to complete the
study was approximately 10min.

5 Results

In this section, we report the results from our pilot study and analyze the effects
of the different conditions on (a) the reliance of study participants on AI recom-
mendations, and (b) human-AI decision-making performance.

5.1 Reliance on AI Recommendations

As we cannot confirm the assumption of normality, we employ non-parametric
Kruskal-Wallis tests [20] to test for differences across the conditions in our exper-
iment. Subsequently, we conduct post-hoc pairwise comparisons between con-
ditions by utilizing Bonferroni-corrected Mann-Whitney U tests [26]. Figure 3
shows the reliance of study participants on correct and incorrect AI recommenda-
tions for each condition. First of all, study participants generally followed correct
AI recommendations more often than incorrect AI recommendations (p < 0.001).
This also applies to each specific condition, where we find a significant difference
in reliance on correct versus incorrect AI recommendations. We infer from this
that study participants were able to distinguish between correct and incorrect
AI recommendations—even without explanations.

Importantly, our results in Fig. 3 imply a difference between the over-reliance3
on AI recommendations without explanations (mean = 62.0%, std = 26.2%)
and the over-reliance on AI recommendations with predicted outcomes as expla-
nations (mean = 70.9%, std = 21.7%). This observation aligns with hypothesis
H1. However, due to the relatively small sample size in our pilot study, we cannot
report statistical significance (p = 0.14). We further do not observe this tendency
when comparing the over-reliance on AI recommendations without explanations
with the over-reliance on AI recommendations supplemented with feature-based
explanations (mean = 62.5%, std = 23.8%).

We additionally analyze the influence of positive and negative predicted out-
comes on the reliance on AI recommendations in Fig. 4. The results indicate
that study participants tend to follow AI recommendations more often when
2 https://www.prolific.co/ (last accessed July 27, 2022).
3 Recall that we define over-reliance as following incorrect AI recommendations.

https://www.prolific.co/
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Fig. 3. Reliance of study participants on correct and incorrect AI recommendations
per condition. Error bars represent 95% confidence intervals.

negative predicted outcomes are displayed compared to the conditions where
no predicted outcomes are displayed (negative predicted outcomes: mean =
80.6%, std = 21.3%; no explanation: mean = 70.7%, std = 28.4%; feature-based
explanation: mean = 68.4%, std = 24.8%). This behavior is not observed when
predicted outcomes are positive. Here, reliance is relatively similar across con-
ditions. Thus, the observed over-reliance for predicted outcomes in general can
be largely attributed to an increasing reliance on recommendations to not lend
money due to a negative predicted outcome. This is in line with our hypothesis
H3. In our pilot study, we find a p-value of p = 0.08 for the observed difference
in reliance across the conditions when AI recommendations are supplemented
with negative predicted outcomes.

5.2 Human-AI Decision-Making Accuracy

In addition to the (over-)reliance behavior of study participants, we analyze the
effect of each condition on human-AI decision-making accuracy in general. These
results are summarized in Table 2. Our preliminary results indicate that accuracy
is not affected by an increasing over-reliance based on predicted outcomes, which
is in line with our expectation based on the relationship of reliance and human-
AI decision-making accuracy (see hypothesis H2). Importantly, the observed
human-AI decision-making accuracy in each condition (65.9% / 65.5% / 66.9%)
closely resembles A(r) = 66.7%, i. e., the mean value from the interval defined
by our theoretical function A(r). In fact, we observe two compensating effects of
reliance on human-AI decision-making accuracy: first, study participants seem
to override fewer incorrect AI recommendations that are supplemented with pre-
dicted outcomes (29.1% of incorrect AI recommendations). Second, study partic-
ipants tend to follow correct AI recommendations including predicted outcomes
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Fig. 4. Reliance of study participants on AI recommendations with negative and pos-
itive predicted outcomes per condition.

more often (83.8%). The overall human-AI decision-making accuracy over the
three conditions is 66.1% (std = 11.0%), thus surpassing the accuracy of random
guessing (50.0%). On average over all three conditions, study participants over-
rode 35.1% of incorrect AI recommendations, thus recognizing errors of the AI
to a certain degree. However, study participants did not always adopt correct AI
recommendations (81.6%), which reduces the overall human-AI decision-making
accuracy. Similar to the previous analysis of reliance, we conduct Kruskal-Wallis
tests to evaluate differences in the human-AI decision-making accuracy between
conditions. Here, we find no significant difference in accuracy across the condi-
tions (p = 0.70).

Table 2. Observed decision-making accuracy (in %) by condition.

Condition Overall AI correct AI incorrect
Mean (± Std) Mean (± Std) Mean (± Std)

AI without explanation 65.94 (± 9.91) 79.89 (± 17.97) 38.04 (± 26.21)
AI with pred. outcomes 65.54 (± 9.65) 83.78 (± 14.98) 29.05 (± 21.66)
AI with feat.-based expl. 66.89 (± 13.49) 81.58 (± 17.85) 37.50 (± 23.79)
Average 66.11 (± 11.01) 81.61 (± 17.00) 35.12 (± 24.28)
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6 Discussion and Outlook

In our pilot study in the context of peer-to-peer lending, study participants fol-
lowed correct AI recommendations significantly more often than incorrect ones,
regardless of the condition they were assigned to. Our results thus suggest that
study participants were able to recognize when the AI recommendations were
incorrect—even when provided with no additional explanation.

Preliminary finding 1: Across all conditions, study partici-
pants were able to distinguish correct from incorrect AI recom-
mendations.

Our results further indicate that study participants tend to be less able to
distinguish correct from incorrect AI recommendations when AI recommenda-
tions are supplemented with predicted outcomes. This implies that providing
predicted outcomes can be detrimental to human-AI decision-making.

Preliminary finding 2: In contrast to other explanations, pre-
dicted outcomes may lead to over-reliance on AI recommenda-
tions.

However, we find that over-reliance does not necessarily translate to worse
human-AI decision-making performance. In fact, our empirical results indicate
that the human-AI decision-making is similar across conditions while reliance
levels differ.

Preliminary finding 3: The empirical human-AI decision-
making performance closely resembles the mean of the interval
A(r) of the theoretical function A(r).

We further aim at better understanding potential causes of the observed over-
reliance when AI recommendations are supplemented by predicted outcomes.
Following prospect theory, we hypothesized that over-reliance is particularly pro-
nounced when predicted outcomes are negative.

Preliminary finding 4: The empirical over-reliance observed
for predicted outcomes can be largely attributed to a higher
reliance on recommendations to not lend money given a negative
predicted outcome.

All our preliminary findings will have to be tested more thoroughly in follow-
up work. As we conducted a pilot study with relatively few study participants,
most observed effects are not statistically significant. However, we observe several
interesting patterns in our results regarding the effects of predicted outcomes on
human-AI decision-making that we will investigate in more depth in our main
study. Additionally, we will examine potential reasons for the increase in over-
reliance when AI recommendations are supplemented with predicted outcomes.
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Abstract. Multi-label classification is a challenging task, particularly
in domains where the number of labels to be predicted is large. Deep
neural networks are often effective at multi-label classification of images
and textual data. When dealing with tabular data, however, conventional
machine learning algorithms, such as tree ensembles, appear to outper-
form competition. Random forest, being a popular ensemble algorithm,
has found use in a wide range of real-world problems. Such problems
include fraud detection in the financial domain, crime hotspot detection
in the legal sector, and in the biomedical field, disease probability pre-
diction when patient records are accessible. Since they have an impact
on people’s lives, these domains usually require decision-making systems
to be explainable. Random Forest falls short on this property, especially
when a large number of tree predictors are used. This issue was addressed
in a recent research named LionForests, regarding single-label classifica-
tion and regression. In this work, we adapt this technique to multi-label
classification problems, by employing three different strategies regard-
ing the labels that the explanation covers. Finally, we provide a set of
qualitative and quantitative experiments to assess the efficacy of this
approach.

Keywords: Explainable artificial intelligence · Interpretable machine
learning · Random forest · Multi-label learning

1 Introduction

Multi-label classification is a popular machine learning task, concerned with
assigning multiple different labels to a single sample [28]. There are plenty of
applications employing multi-label classification, such as semantic indexing [21]
and object detection [10]. Multi-label classification has also proven useful in
the predictive maintenance [16] and financial sectors [3], where tabular data
are mainly used. When this sort of data is available, ensemble methods are
typically outperforming other families of methods [25,29]. Ensembles, however,
are intrinsically not explainable. This is an important weakness, as explainability
is useful for the vast majority of ML applications, and a necessity when they
impact human lives or incur economic costs [1,12].
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This paper focuses on the explainability of random forest (RF) [4] models in
the context of multi-label classification. There is a lot of work on the explain-
ability of RF for regression and single-label classification tasks [6,13,14,17].
However, adapting these methods to multi-label tasks, where RF models find
frequent use [15,26,30], is not straightforward. There are also techniques that
have been specifically designed for multi-label tasks [20,27]. These are, however,
independent of the explained model’s architecture, and therefore cannot exploit
the specific properties of RF models to their benefit.

To address the lack of RF-specific explainability techniques for multi-label
classification in the literature, we propose an extension of LionForests [17]
towards explaining multi-label classification decisions. We introduce three dif-
ferent strategies concerning the scope of the provided explanation (single-label,
predicted labelset, label subsets). We compare these strategies against similar
state-of-the-art techniques, through a set of quantitative and qualitative experi-
ments. The results highlight the conciseness of the explanations of the proposed
approach.

The rest of this paper is organized as follows. Section 2 discusses relevant
research, while Sect. 3 introduces important concepts of the LionForests method.
Section 4 presents the three novel strategies for explaining multi-label RFs. The
experimental procedure, along with the data sets used, and the results, are men-
tioned in Sect. 5. Finally, we conclude and propose future steps for this research
in Sect. 6.

2 Related Work

Explainability techniques can be classified into two categories, depending on their
applicability to different types of models. Model-agnostic techniques ignore model
structure and are therefore applicable to any ML model, whereas model-specific
techniques are designed to interpret a certain family of models. The latter can
either alter the model’s structure to achieve explainability, or simply leverage
information from the architecture without affecting it. Another distinction is
between global and local explainability techniques, with the former explaining
the entire model and the latter focusing on particular predictions of instances.

We first discuss model-agnostic explainability methods, which could be
applied to multi-label classification, with some modifications. The use of sim-
pler surrogate models that mimic the behavior of more complex ones, while also
being more interpretable, is a topic studied in the literature and can be applied
in a multi-label setting as well. Surrogates are built based on the input and the
produced output of the model, and can be used to provide both global and local
interpretations.

LIME [22], one of the most well-known explainability techniques, provides
local interpretations for all types of models by estimating feature importance
using perturbation methods. Similarly, Anchors [23] extracts rule-based inter-
pretations using a slightly different perturbation approach. Another interesting
technique, LORE [11], uses a genetic algorithm to generate neighbors, which
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are then used to train a decision tree that produces rule-based explanations.
By constructing a decision tree to approximate the performance of complicated
models, single tree approximations are used to simplify the prediction pattern
of complex black-box models. TREPAN [5] approaches this task as an induc-
tive learning problem, aiming to represent a complex model, such as a neural
network, with symbolic knowledge. This is a rule learning task, according to
RuleFit [9], in which each rule covers a small portion of the input space. RuleFit
extracts rules from each decision tree to build a sparse linear model that incor-
porates both the original features and the retrieved rules, using decision trees
as base learners for the various input variables. The final interpretation is based
on feature importance.

We continue with explainability methods designed specifically for RF. A
model-specific approximation technique for RF called DefragTrees [13] formu-
lates the simplification of tree ensembles as a model selection problem. The aim
of this work is to derive the simplest model possible that has similar performance
to the whole ensemble. To do so, they employ a Bayesian model selection method
to optimize the simplified model. InTrees [6], on the other hand, approaches the
same problem by providing a framework for selecting and pruning specific rules
from the entire ensemble, effectively summarizing the relevant rules into a new
simpler and more interpretable learner that can be used for future predictions.

The RF explainability techniques discussed so far concern global explanations
covering the whole model. We now move to local explanation methods. [18]
introduces a local explainability method, which provides rule-based explanations
exploiting feature importance. CHIRPS [14] extracts the relevant paths for an
instance from each decision tree and filters them to reduce the complexity of the
explanation. LionForests (LF) [17] provides explanations for the decisions of a
random forest in the form of rules. A key advantage of LF is that it distills the
interpretation from the knowledge already present in RF, while also providing
complete explanations. This in turn means that these explanations are provided
without any demerits in the model’s performance or complexity. LF can be used
in binary or multi-class classification and regression problems.

Finally, we discuss RF explainability methods with a focus on visualization.
iForest [31] supports the visualization of relevant paths by multi-dimensional
projection. It further allows the summarization of those paths into a final one
that can be used as an explanation. Another visualization tool that can provide a
global overview of a random forest model in conjunction with local explanations
is ExMatrix [19]. Both the global and local explanations provided by this method
come in the form of a table.

We close the related work section with a method that has been designed
specifically for multi-label classification, which is applicable to RF as well. MAR-
LENA [20] is a model-agnostic approach that can provide local interpretations
for black-box models by creating a neighborhood of similar instances to the one
to be explained and training a decision tree. This approach is applicable to any
black-box model and was evaluated mainly on health applications.
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3 LionForests

This section introduces the fundamental concepts of LF. LF does not affect the
performance of the RF model, because it is applied post-hoc and only explains
decisions. The main step behind the interpretation extraction process of the
technique is the estimation of the minimum number of paths across the different
estimators of the RF model that cover the examined instance. From each tree
estimator, we extract one path responsible for the instance’s prediction. Then,
the set of paths that positively vote for that instance is identified. Through
feature and path reduction, as well as feature-range formulation upon those
paths, LF builds the interpretation. The estimation of the minimum number of
paths is not a straightforward task, especially since it needs to comply with LF’s
main property, namely conclusiveness. This property requires the rules produced
by an explainability technique to be free of misleading or erroneous elements.

Since a multi-label classification task can be decomposed into multiple binary
classification tasks, one for each label, we will further discuss how LF computes
the minimum number of paths for binary classification tasks. To better under-
stand the following statements, we first need to mention Proposition 1 introduced
in the original paper, which is pivotal in LF’s procedure.

Proposition 1. An RF model with a set of trees (T ), casting |T | votes, always
predicts class M if and only if class M has at least a quorum of votes or more,
where quorum = � |T |

2 + 1� out of |T | votes.
Proposition 1 states that the minimum number of paths needed for the RF

model to maintain its original prediction is � |T |
2 + 1�. The validity of this state-

ment is proved in the original paper. With that in mind, the minimum number
of paths which cover the examined instance that LF tries to compute is actually
the quorum based on Proposition 1.

Given the minimum number of paths, LF reduces the paths extracted from
each RF decision tree using a sequence of procedures, obtaining the reduced set
of paths extracted from the reduced trees (T ′). In this order, they are a) reduc-
tion through association rules, b) reduction through clustering, and c) reduction
by random selection. Each procedure serves a different purpose. Reduction by
association rules and by clustering aim to reduce features by selecting paths with
similar feature sets, whereas reduction by random selection reduces the number
of paths to the quorum.

Finally, after obtaining the reduced paths, LF identifies the common features
and their ranges, merging them to obtain a single range for each feature, which
we call feature-range. The lower (upper) bound of the combined range is the
maximum (minimum) of the lower (upper) bounds found across all ranges. This
step is called feature aggregation. When categorical features are present, LF
performs OneHot encoding on them, effectively obtaining OneHot features equal
to the number of possible values the initial one had.

These new OneHot features are handled based on the following principle: if
a OneHot encoded feature is present in at least one path, with a value of 1,
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then the categorical feature it originates from is added to the final rule with
the encoded feature as its value. For example, in a categorical feature regarding
Country, if the examined instance has the value Greece, then the OneHot feature
would be Country_Greece= 1. In this case, we would include in the final rule
this statement Country=Greece. The reduced paths cannot contain any other
OneHot encoded feature of Country with a value of 1, as that would mean that
the path would not cover the instance. In contrast, if it is absent from all paths,
this value of the categorical feature does not affect the outcome. In that case, LF
searches for the other OneHot features originating from the same categorical one
that have value of 0 and adds them to the rule as values of the original feature,
which can affect the outcome. Following our example, if Country_Japan = 0,
Country_United-States = 0 (or any other), appears in the reduced paths, and
given that Country_Greece= 1 does not exist in any, these features are included
in the final rule in the following form Country �= [Japan, United States, ...]. This
procedure is called categorical feature handling.

4 LionForest Multi-label Explainability

In multi-label classification, predictions come in vectors of size |L|, with L denot-
ing the set of all labels. In this case, an explanation could concern: i) the set of
positively predicted labels, Lp ⊆ L, ii) subsets of it, L′

p ⊆ Lp, or iii) each one
of its individual labels, l ∈ Lp. We propose three corresponding strategies that
allow LF to output multi-label explanations, each calculating the quorum in a
different way, based on the subset of Lp that we want our explanation to cover.
As in the original, the three strategies do not meddle with the performance of
the RF model.

We also introduce an example, which will be used for all strategies. Consider
an RF model with |T | = 9 estimators, that outputs its prediction concerning
|L| = 5 labels for a given input. Based on the theory presented before, the
quorum equals � 9

2 + 1� = �5.5� = 6. For a given instance, RF predicts the
following labelset [0, 1, 0, 1, 1]. From each t ∈ T tree estimator, we extract the
path and the prediction for this instance. Then, based on the strategy, we proceed
to the appropriate reduction and eventually the formulation of the final rule
interpretation. In Fig. 1, the predicted labelsets from each t tree are visible.

4.1 Explaining Each Predicted Label Separately

The first step of this strategy (LF-l) is the extraction of all paths regarding
a decision from the tree predictors comprising the RF model. Then, for each
predicted label l ∈ Lp, a multi-stage process takes place, which first identifies
the paths that vote for its prediction. The next step is the reduction of T ,
as explained in Sect. 3, to the number denoted by the quorum, obtaining the
minimum number of paths from T ′ trees. The rule building steps remain the same
as those in the original technique, namely feature aggregation and handling of
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Fig. 1. Running example. Greyed out predictions do not cover the examined
label/labelset, whereas black and red (underlined) do. The predictions whose paths
were decreased are shown in red (Color figure online)

categorical features. After formulating a rule for each predicted label l, we use
these rules as an explanation for the examined instance.

In columns 2 to 4 (Per Label) in Fig. 1, we can see how LF selects and reduces
the paths to the quorum. It identifies the paths that voted for each of the three
predicted labels (black and red font). If the number of paths exceeds the quorum,
the LF reduction strategies are used to decrease them to the bare minimum
(black font). Treating each label separately can result in smaller feature sets in
the final interpretation. This is because LF has a greater number of possible
paths to reduce to the minimum.

4.2 Explaining All the Predicted Labelset

This strategy is largely similar to the previous one, with the main difference
being that instead of an iterative process for each label (LF-a), this time a single
process is executed for the whole predicted labelset. This in turn means that LF
must now identify the paths from the T trees that include the whole predicted
labelset in its prediction, greatly limiting the number of available paths to be
reduced in the following step, if possible. Furthermore, during the path reduction
step, each produced path set must cover the whole prediction, restricting the
number of paths LF can safely remove to obtain |T ′|.

It is worth noting that, due to the above conditions, the final rule obtained
after applying the rule-building steps is very specific to the examined instance.
There is a possibility that the number of recognized paths covering all predicted
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labels will be less than the quorum. This prevents us from further decreasing
them, but also prohibits us from using them alone to form the final rule. In this
scenario, regardless of their vote, we use all the paths.

Connecting this strategy with the running example of Fig. 1, we focus on the
third column, All. Only 6 paths include all the predicted labels at the same time.
LF will use the reduction strategies to decrease those pathways to 5 (quorum).
However, because there is so little room for reduction, the strategy’s effectiveness
is limited, and therefore, we might not observe the desired feature reduction. This
strategy is more effective in confident classifiers, where the number of individual
estimators voting the whole predicted labelset is larger.

4.3 Explaining Frequent Label Subsets

This strategy provides explanations for subsets (LF-p) of the predicted labelset
that frequently appear inside the examined data set. These subsets are identified
with the use of association rules and specifically the fpgrowth algorithm. Then, a
process comparable to the one present in the first strategy is performed. For each
subset, the paths that vote for all the labels present inside it are identified and
then reduced to |T ′|, before the rule building steps that formulate the final rule
for this subset are implemented. The final explanation for the frequent subsets
is an aggregation of the rules built by the aforementioned process.

In case of larger labelsets, as well as a large set of predicted labels, the number
of activated subsets can be very high. Therefore, the end-user is given an option
to limit the number of subsets. Hence, if the activated subsets are X and the
user asks for N < X, the first N subsets and their explanation will be provided,
ordered based on the support of the subset across the labelsets of the training
data set.

In the example (Fig. 1), the last column presents the explanation of one
identified subset [0, 1, 0, 1, 0] ⊂ [0, 1, 0, 1, 1], the paths which cover this set, and
the removed path.

5 Experiments

This section summarizes the experiments that we carried out to compare the
performance of our strategies to state-of-the-art techniques frequently used in
the literature. To further the reliability of our results we performed a 10-fold
cross validation and present the standard deviation of our showcased results in
each table. We performed three distinct sets of experiments. The first compares
our various strategies to each other, in order to gain insight into their effective-
ness with multi-label data. The second focuses on techniques that explain the
entire predicted labelset, pitting our second strategy against MARLENA, due
to its relevance to our task, and two baselines: local (LS) and global (GS) tree
surrogates. The third and final set compares our first strategy to Anchors and
CHIRPS. Anchors was selected for its prominence in the literature, and CHIRPS
for its similarity to our approach, concerning the per label experiments. Both
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techniques have been adjusted to provide explanations for each of the predicted
labels. The code for these experiments is available in GitHub1 and DockerHub2.

5.1 Data Sets

Here, we present the data sets used and the pre-processing steps we followed
for each one of them. We selected four multi-label tabular data sets, whose
main statistics and performance3 can be found in Table 1. The values inside the
parentheses concern the numbers after the pre-processing steps for each data
set.

Table 1. Data set information

ID Dataset Performance Instances Features Labels Cardinality

D1 Food Truck 51.73% 407 21 (29) 12 2.29
D2 Water Quality 51.79% 1060 16 14 5.07
D3 Flags 76.82% 194 19 7 3.39
D4 AI4I 88.77% 10K (339) 7 (6) 6 (4) 1.04

D1: Food Truck. This data set was compiled from the replies of 407 survey par-
ticipants, concerning their food preferences, personal information, time of meal
(input variables) and types of food trucks they eat from (target variables) [24].
We replaced missing values with the mean value across their column. Further-
more, four categorical features were present. As such, two of them were handled
as ordinal (gender and time of the day) and the rest were one-hot encoded (moti-
vation and marital status). Finally, the data were min-max scaled.

D2: Water Quality. This scientific data set was used for modeling the quality
of water in Slovenian rivers. It contains features like the water’s temperature,
pH, and concentration of different chemicals. The target variables correspond
to different water quality indicators [2]. The pre-processing was minimal only
including min-max scaling.

D3: Flags. The third data set used in our experiments contains information
about certain countries and their culture. The target variables concern the colors
that are present on the flag of each country [7]. No pre-processing took place for
this data set other than min-max scaling.

1 https://tinyurl.com/c5y8uxm4.
2 https://tinyurl.com/2nh4zyj3.
3 Performance was estimated following a grid search, and is estimated based on micro

averaged F1 score.

https://tinyurl.com/c5y8uxm4
https://tinyurl.com/2nh4zyj3
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D4: AI4I. The last data set employed in our experiments is a synthetic predic-
tive maintenance data set concerning the prediction of certain types of machine
failures [16]. Aiming to emulate real predictive maintenance problems encoun-
tered in the industry, the data set contains features like temperature, torque,
rotational speed of different machines to predict possible failures. There is a sin-
gle categorical feature (type) inside the data set which we handle as ordinal, and
a feature without information (product ID). We then min-max scale all features.
Regarding the labels, there is a strong dependency between the first denoting
whether there is a failure or not and the rest of the labelset, which are the types
of failures. As such, we only keep the examples exhibiting some kind of failure,
while removing the first. Finally, we also remove the final label which denotes a
random failure, of which very few instances exist in the data set.

5.2 Quantitative Experiments

In order to perform our quantitative experiments, we made use of four different
metrics, each one covering a different aspect of a produced rule. Rule length (L)
denotes the number of feature-ranges present inside the rule. Smaller lengths are
easier for the end-user to comprehend but can also indicate that the explanation
is problematic. Furthermore, expert users tend to prefer larger rules, due to their
richer information [8]. It is worth noting that for techniques providing rules for
each label or label subset separately, the final rule length is the sum of the
lengths of those individual rules. Coverage (C) describes the average number
of instances each rule satisfies. Precision (P) refers to the fraction of correctly
covered instances among the ones covered by each rule. Higher values on both
metrics correspond to better performance. Time response (T) describes the run
time of the technique in seconds.

Table 2. Comparison between the different strategies of LF

Datasets Algorithm L T

D1 LF-a 20.33±0.70 6.25±0.96

LF-l 30.06±3.47 10.30±0.86

LF-p 44.71±9.04 11.33±1.16

D2 LF-a 16.37±0.40 0.94±0.04

LF-l 57.64±5.71 1.37±0.11

LF-p 153.34±16.76 2.87±0.29

D3 LF-a 18.24±0.49 1.05±0.10

LF-l 62.58±5.24 5.66±0.40

LF-p 111.72±7.32 7.38±0.48

D4 LF-a 4.92±0.46 1.38±0.30

LF-l 5.04±0.48 1.41±0.31

LF-p 5.04±0.48 1.41±0.30
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We first discuss the results of the comparison among our proposed strategies
that can be seen in Table 2. The goal of this setup was to compare the length of
the rules produced by each strategy, along with the time needed to produce them.
As expected, the strategy providing one rule for the whole predicted labelset
results in shorter rules and smaller run times. This can be seen in all four data
sets, albeit the differences are minimal in the last one. The frequent pair strategy
seems to be the one with the longest run times and lengthiest rules. Such an
outcome was anticipated, given that in most cases the number of frequent subsets
present in a labelset is higher than the number of distinct labels comprising it.

The comparison regarding the techniques providing explanations for the
whole predicted labelset can be seen in Table 3. Exploring each metric sep-
arately reveals that all four techniques evaluated have rather poor Coverage,
with MARLENA having the best performance and LF-a having the worst. In
terms of Precision, LF-a always achieves perfect precision due to its conclusive-
ness property, while both surrogate models surpass MARLENA. In all datasets,
LF-a produces the lengthiest rules, while MARLENA produces the shortest.
Finally, save for LF-a’s poor performance on the first dataset, there is no clear
winner among the other local techniques in terms of time response, except for
GS which is a global technique trained only once and has zero inference time.

Table 3. Comparison between techniques explaining the whole predicted labelset

Dataset Algorithms C L P T

D1 LF-a 0.02±0.00 20.32±0.65 1.00±0.00 6.25±0.98

GS 0.06±0.03 7.81±1.39 0.77±0.08 0.00±0.00

LS 0.07±0.02 6.96±0.59 0.75±0.07 1.52±0.02

MARLENA 0.15±0.04 4.42±0.27 0.73±0.05 2.40±0.02

D2 LF-a 0.01±0.00 16.36±0.40 1.00±0.00 0.94±0.04

GS 0.02±0.00 8.78±0.36 0.66±0.05 0.00±0.00

LS 0.03±0.00 6.67±0.20 0.65±0.03 1.41±0.03

MARLENA 0.05±0.01 5.97±0.33 0.62±0.05 2.04±0.01

D3 LF-a 0.05±0.00 18.24±0.48 1.00±0.00 1.05±0.10

GS 0.08±0.01 5.22±0.65 0.90±0.05 0.00±0.00

LS 0.08±0.02 5.31±0.62 0.91±0.03 3.41±0.06

MARLENA 0.13±0.03 4.41±0.20 0.85±0.05 0.86±0.00

D4 LF-a 0.03±0.00 4.92±0.46 1.00±0.00 1.38±0.30

GS 0.24±0.15 3.62±0.57 0.92±0.07 0.00±0.00

LS 0.24±0.14 3.41±0.38 0.94±0.04 1.43±0.04

MARLENA 0.33±0.13 2.52±0.26 0.75±0.06 0.80±0.01

The last set of experiments concerns explanations for each predicted label and
can be seen in Table 4. This setup allows us to use single-label interpretation
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Table 4. Comparison between techniques explaining each predicted label separately

Dataset Algorithms C L P T

D1 LF-l 0.03±0.00 41.85±4.8 1.00±0.00 10.26±0.90

Anchors 0.06±0.02 8.95±2.3 0.99±0.02 341.62±105.93

CHIRPS 0.73±0.09 3.66±1.1 0.89±0.03 8.47±0.35

D2 LF-l 0.01±0.00 57.64±5.71 1.00±0.00 1.37±0.11

Anchors 0.04±0.01 31.05±3.47 0.96±0.02 302.07±44.43

CHIRPS 0.38±0.05 10.36±1.37 0.76±0.05 8.24±0.50

D3 LF-l 0.05±0.00 62.58±5.24 1.00±0.00 5.77±0.42

Anchors 0.31±0.05 7.36±1.24 0.97±0.02 63.00±17.91

CHIRPS 0.71±0.05 2.09±0.45 0.94±0.03 2.35±0.19

D4 LF-l 0.03±0.00 5.04±0.48 1.00±0.00 1.41±0.31

Anchors 0.14±0.05 3.98±0.52 0.92±0.07 29.53±3.42

CHIRPS 0.33±0.14 2.44±0.66 0.93±0.06 1.25±0.09

techniques like Anchors and CHIRPS. In all datasets, CHIRPS outperforms
its competitors in terms of Coverage. The longest rules are provided by LF-l,
while the shortest are provided by CHIRPS. In terms of precision, LF-l works
flawlessly, with Anchors ranking second with a small advantage over CHIRPS.
Regarding the time response, LF-l and CHIRPS produce similar results with
small deviations. Anchors, on the other hand, requires a significant amount of
computational resources, leading to longer time responses.

5.3 Qualitative Experiments

Our qualitative experiments focus on the AI4I (D4) data set, as its small feature
set makes it easier to present and analyze an example. The features available in
this data set along with their ranges and the values of a sample instance can be
found in Table 5.

Table 5. Dataset features, their ranges, and the values of a sample instance

Feature Range Instance values

Type [1, 3] 3

Air temperature [K] [295.6, 304.4] 300.7

Process temperature [K] [306.1, 313.7] 310.2

Rotational speed [rpm] [1212, 2874] 1364

Torque [Nm] [4.2, 76.2] 65.3

Tool wear [min] [0, 251] 208
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Table 6. Example Rules by the proposed strategies

Techniques Interpretation

LF-a If 2.5 ≤ Type ≤ 3 and 300.6 ≤ Air temperature ≤ 301.7 and
310 ≤ Process temperature ≤ 313.7 and
1351 ≤ Rotational speed ≤ 1380 and 65.2 ≤ Torque ≤ 65.5 and
207.5 ≤ Tool wear ≤ 209 then TWF PWF OSF

LF-l If 2.5 ≤ Type ≤ 3 and 295.6 ≤ Air temperature ≤ 301.7 and
1322.5 ≤ Rotational speed ≤ 1419.5 and 65.2 ≤ Torque ≤ 76.2 and
206.5 ≤ Tool wear ≤ 251.0 then TWF
If 2.5 ≤ Type ≤ 3 and 295.6 ≤ Air temperature ≤ 301.7 and
1351 ≤ Rotational speed ≤ 1380 and 65.2 ≤ Torque ≤ 76.2 and
188 ≤ Tool wear ≤ 251 then PWF
If 2.5 ≤ Type ≤ 3 and 300.6 ≤ Air temperature ≤ 300.8 and
65.2 ≤ Torque ≤ 65.5 and 207.5 ≤ Tool wear ≤ 251 then OSF

LF-p If 2.5 ≤ Type ≤ 3 and 295.6 ≤ Air temperature ≤ 301.7 and
1351 ≤ Rotational speed ≤ 1380 and 65.2 ≤ Torque ≤ 76.2 and
185 ≤ Tool wear ≤ 251 then PWF OSF

The first qualitative comparison found in Table 6 includes the rules produced
by the different strategies of LF for the examined instance. As the quantitative
experiments in Table 2 suggested, we can see that LF-a, the strategy explaining
all predicted labels, provides the lengthier and more specific individual rule.
When LF-l is employed, we can see that for the predicted label ‘OSF’, the rule
is 2 feature-ranges smaller, while the rule regarding the predictions ‘PWF’ and
‘TWF’ are 1 feature-range smaller and have wider ranges. The third strategy, LF-
p, produces rules explaining frequent label subsets. In this example, it produces
a rule explaining the labels ‘PWF’ and ‘OSF’, a frequent labelset present in the
prediction, and the rule is 1 feature-range smaller. Therefore, the user can choose
between the available strategies based on their needs. We should mention that
all these rules are conclusive, therefore, any change on the features between the
given ranges, or any change on the features not appearing in the rules will not
impact the prediction.

Table 7. Example rules for the whole labelset

Technique Interpretation

GS If Air temperature ≤ 301.7 and Tool wear > 176.5 and
Torque > 65.2 then TWF PWF OSF

LS If Air temperature ≤ 301.7 and Tool wear > 188 and
Torque > 48.4 and Type > 2.5 then TWF PWF OSF

MARLENA If Air temperature ≤ 303 and Rotational speed ≤ 1382.4 and
Type > 2.97 then TWF PWF OSF
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Continuing our comparisons, Table 7 presents the explanations given by GS,
LS, and MA for the whole predicted labelset. These techniques provide rules that
are substantially shorter and have broader feature-ranges than LF-a. However,
the trade-off for these properties is the loss of conclusiveness. To support our
claim, we perform three separate modifications on the values of the examined
instance (one feature at a time), to demonstrate that the rules provided by the
competitors do not account for these changes, in contrast to LF-a. GS does
not contain a feature-range for Type, suggesting that it does not impact the
prediction. Nonetheless, changing the value of this feature to either 1 or 2 alters
the prediction to ‘OSF’. The feature-range given by LS for Torque is deceptively
wide. Lowering the value of this feature from 65.3 to 50 changes the prediction
like before. Additionally, the range displayed by MA regarding Air temperature
is inaccurate, as increasing its value from 300.7 to 302 causes the prediction
to change from ‘TWF’, ‘PWF’, and ‘OSF’ to ‘OSF’. Finally, both LS and MA
incorrectly ignore a feature, Air temperature and Torque, respectively, since
both affect the prediction as seen before.

Table 8. Example rules per label

Technique Interpretation

Anchors If Air temperature ≤ 301.6 and Type > 2 and Tool wear > 207.5 and
Torque > 61.2 and Rotational speed ≤ 1365 then TWF
If Torque > 61.2 and Air temperature ≤ 301.6 and Type > 2 and
1326.5 < Rotational speed ≤ 1365 and
309.5 < Process temperature ≤ 311.2 then PWF
If Tool wear > 207.5 and Torque > 61.2 then OSF

CHIRPS If {} then TWF
If Air temperature ≤ 302.5 and Torque > 65 then PWF
If Tool wear > 176.5 and Torque > 65 then OSF

Concluding our qualitative study, we present the rules provided by Anchors
and CHIRPS in Table 8. We can see that Anchors provides rules of similar length
to LF-l, compared to the significantly shorter ones of CHIRPS. Nevertheless,
similarly to before, the shorter rules are inconclusive. Rules provided by CHIRPS
have a lot of inaccuracies, with the most obvious being the empty rule for the
‘TWF’ prediction. We also spot few inaccuracies in the lengthier rules of Anchors.
For example, the explanations for labels ‘TWF’ and ‘PWF’ suggest that values
above 61.2 for Torque lead to predictions containing these 2 labels. However,
increasing the value to 65 results in both not being predicted by the model.
Contrarily, the rules provided by LF-l contain the correct feature ranges for
Torque.
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6 Conclusion

This paper proposed three different strategies that extend LF, so it can also
be used to provide explanations for multi-label classification problems. Each of
these strategies, explain the predicted labelset from a different point of view,
resulting in rules of different length for each one of them, as well as different
time responses. All three, however, retain the conclusiveness property of the
original technique, providing concise explanations.

This was validated by our experimental procedure, where all strategies
achieve a Precision of 1 throughout all the different setups and data sets, some-
thing that no other competitor manages to reach. Having said that, our strategies
tend to produce lengthier rules that cover a smaller portion of instances than
the competitors, meaning they are more specific. This attribute is not necessar-
ily a shortcoming, considering that expert users prefer longer, more informative
explanations. In addition, the low rule length of the other techniques can be
misleading, as they tend to provide even empty explanations as showcased in
our qualitative experiments. However, the user is also given the option to reduce
the quorum, resulting in smaller rules losing the conclusiveness property.

Some of the future steps of this research include the extension of the tech-
nique, so it can also be applied to multi target regression problems, in conjunction
to an extensive experimental procedure including new competitors, more data
sets and additional metrics. Furthermore, a user study to assess the quality of
the rules the three different strategies produce, can be performed. Doing so, will
allow us to obtain insight from different types of users about the strategies and
their applicability in various domains. Finally, applying a similar strategy to
produce explanations for other ensemble models can also be explored in another
work.
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Abstract. This paper deals with the challenging problem of simultane-
ously integrating interpretablility and reliability into prediction models
in machine learning. It proposes to combine the interpretable models of
decision rules with the reliable models based on conformal prediction.
The result is a new technique of conformal decision rules. Given a test
instance, the technique is capable of providing a point prediction, an
explanation, and a confidence value for that prediction plus a prediction
set. The experiments show when and how conformal decision rules can
be used for interpretable and reliable machine learning.

Keywords: Interpretable machine learning · Reliable machine
learning · Decision rules · Conformal prediction

1 Introduction

Machine learning in critical domain applications needs to provide predictions
that are both interpretable and reliable [7]. Following [8] we informally define,
interpretablility of a prediction as the degree that the cause for the prediction
can be understood by a user. Analogously, we define reliability of a prediction
as the degree that a user can trust the prediction [13]. Thus, the acceptance
process of a prediction can be facilitated using additional information on the
interpretablility and reliability of the prediction.

Integrating interpretable and reliable machine learning is usually imple-
mented using the Mondrian scheme summarized in [1]. The scheme consists
of two steps:

(1) train an interpretable prediction model (e.g. a decision tree) on the available
data T and view that model as a taxonomy that partitions the data into
categories r (i.e. through leaf nodes).

(2) train a reliable prediction model on the data Tr of each category r.
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https://doi.org/10.1007/978-3-031-23618-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23618-1_26&domain=pdf
https://doi.org/10.1007/978-3-031-23618-1_26


386 H. Abdelqader et al.

In this context, when a test instance is processed, it is first handled by the
interpretable prediction model that provides a point prediction plus a cause
for that prediction. In addition, the model identifies the category that fits the
instance and calls the reliable prediction model that corresponds to that category.
The latter outputs a confidence value in the point prediction and/or a region
prediction, i.e. a set of labels that with a high probability contains the true label
of the test instance.

To provide a data-distribution free guarantee integrating interpretable and
reliable machine learning is realized using the conformal prediction framework
[13,14]. This framework provides a set of techniques for establishing precise
level of confidence in new predictions in the presence of finite training data and
without any assumption on data distribution. It allows computing valid region
predictions, i.e. regions that contain the true labels of test instances within a
user-acceptable error probability.

In general, the conformal prediction framework operates as follows [14]. Given
a test instance x, it first provisionally labels x with label y; i.e. it considers hypo-
thetically labeled instance (x, y). Then the (confidence) p-value py for label y is
calculated as the proportion of the instances in T ∪{(x, y)} whose nonconformity
scores α are greater than or equal to that of the instance (x, y). If py > ε for
a chosen significance level ε, label y is added to the region prediction set Γ for
test instance x.

To apply conformal prediction we need to compute for each instance non-
conformity score α that indicates how untypical the instance is w.r.t. the rest
of the data. This computation is realized by a nonconformity function A that
is trained on the data. There are different scenarios for this based on different
validation procedures which result in different conformal predictors.

Conformal prediction was integrated with interpretable prediction models
for regression and classification using variations of the Mondrian integration
scheme presented above [1,5,6,11]. The interpretable prediction models used
were regression/decision trees while the reliable prediction models were confor-
mal predictors. The proposed integrations employed a global approach to train
conformal predictors. The regression/decision tree trained is viewed as a taxon-
omy that imposes a partition Ph on training data T . Each element Tr ⊂ T of
this partition corresponds to a concrete leaf node r. Conformal predictors are
trained, one for each node r, however, in a global manner. This means that first
each Tr is split into a proper training set T t

r and a calibration set T c
r . Then

the global proper training set
∑

r T t
r is used to train the global nonconformity

function A shared by all the conformal predictors. The conformal predictor for
each leaf node r employs the global function A to compute the nonconformity
scores of the calibration training instances in T c

r associated with that leaf node.
Thus, each test instance receives label p-values and region prediction from the
conformal predictor of the leaf node in which it arrives.

The global approach to train conformal predictors is based on the assumption
that larger data result in more accurate nonconformity functions that in turn
decrease the sizes of the region prediction sets. However, in this paper we argue
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that the global approach has a fundamental problem that concerns integrating
interpretable and reliable machine learning following the Mondrian scheme. This
problem is a label-imbalanced problem: the probability distributions that gener-
ate the global proper training set

∑
r T t

r and leaf-node calibration subsets T c
r

can be very different since the trees are learned by minimizing the class entropy
or output-variable variance in leaf nodes. This implies that the global noncon-
formity function can be inaccurate on test data that arrive in a particular leaf
node. This is due to the fact that this function is trained on the global proper
training set

∑
r T t

r while the test data is generated from the distribution similar
to that of subset Tr associated with that node.

In this paper we propose a local approach to train conformal predictors to
address the label-imbalanced problem. The key idea is to train the nonconfor-
mity functions of the conformal predictors locally, i.e. on the proper training
subsets Tr. We show that this approach has a potential to improve integrating
interpretable and reliable machine learning for large data.

The second contribution of our paper is that we propose to combine decision
rules [4] and conformal prediction according to the Mondrian integration scheme,
i.e., we continue the research line of conformal interpretable models in classifi-
cation as outlined in [5,11]. Following the criteria for model interpretablility in
[9] we motivate our choice for decision rules as follows. First, decision rules are
more interpretable than decision trees [4]. On a model level decision rules are
usually shorter, i.e. more general, than the rules encoded by decision trees1. This
implies that for the same classification problem we need less decision rules; i.e.
we need less modules for global interpretability (in terms of [9]). On a prediction
level decision rules provide individual prediction explanations. For the reason
given before these explanations are usually shorter than those of decision trees.
Thus, (again in terms of [9]) the local interpretability for a single prediction is
better. Finally, we note that while still disputable decision rules are algorithmi-
cally more transparent than decision rules. We believe that it is easier to explain
the separate-and-conquer strategy of decision rules than the divide-and-conquer
strategy of decision trees [4] (check the pseudo-code in Algorithm 1).

The rest of the paper is organized as follows. In the next section we formal-
ize the classification task in the context of point estimation and prediction-set
estimation. In Sect. 3, we present decision rules. The conformal prediction and
its basic set predictors are presented in Sect. 4. In Sect. 5, we propose our app-
roach and explain the underlying algorithms. The experiments and results are
provided in Sect. 6. Section 7 concludes the paper.

2 Classification

Let X be an instance space, Y be a finite discrete class variable, and P be
a probability distribution over X × Y . Training data set T is a multi set of M
instances (xm, ym) ∈ X×Y drawn from the distribution P under the randomness
1 The decision tree rules partition the data which assumes these rules are longer; i.e.

more specific.
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assumption. In this context, we can define two possible tasks: point classification
task and region classification task.

The point classification task is to find an estimate y ∈ Y of the true class for
a test instance x ∈ X according to P . To solve the task we first learn a point
predictor h in a hypothesis space H using training data T . The predictor h is a
function of type h : X → Y . It first computes for test instance x a distribution
of posterior scores {sy}y∈Y over all the classes in Y . Then, h outputs class y
with the highest score sy as the estimated class for test instance x.

The region classification task is to estimate a prediction set Γ (x) ⊆ Y that
contains possible classes for a test instance x ∈ X according to P . To solve
the task we need a class set predictor. The two most desired properties of such
predictor are validity and informational efficiency. A class set predictor is said
to be valid iff the probability that the prediction set Γ ε(x) ⊆ Y does not contain
the class for the test instance x is at most the chosen significance level ε ∈ [0, 1].
A class set predictor is said to be informationally efficient if the prediction set
Γ ε(x) ⊆ Y is non-empty and small. In Sect. 4 we briefly introduce the conformal
framework that is used for designing valid set predictors [14].

3 Decision Rules

Decision rules form an approach to point classification [4]. They are “if-then”
rules that can be learned from training data T . The antecedent of any rule r is
a condition that can be tested for any instance x ∈ X. The consequent part of r
consists of a single class value y ∈ Y that is assigned to any test instance x ∈ X
as a class point estimate. The final point predictor h is a set of decision rules r.

Decision rules can be used for descriptive and classification tasks. For descrip-
tive tasks they provide interpretations/summarization of the training data w.r.t.
class information. For classification tasks decision rules provide class predictions
plus their explanations based on the conditions in the rule antecedents. This
makes decision rules an important tool in interpretable machine learning.

The separate-and-conquer learning algorithm of decision rules is given in
Algorithm 1. In an iterative manner it executes the following steps. First, the
algorithm learns one rule r from T . If rule r is acceptable (e.g. a high TPr rate
for the class assigned by r), it is added to point predictor h and subset Tr of
training instances covered by r is removed from T . In this way the algorithm
focuses only on those training instances in each new iteration that have not been
covered so far. The iteration process ends when a stopping criterion is met. The
criterion can be a threshold on the percentage of covered data, the validation
performance of the final point predictor h etc. Once the criterion holds, the
algorithm adds the default rule r that holds when all other rules logically fail.

To use point predictor h of decision rules r, a classification procedure has to
be defined. We assume that the rules are ordered in decreasing order of their
performance on a separate validation data. A test instance x receives a class
value of that rule r ∈ h that matches x first in the order.

There are several techniques for implicit regularization of decision rules due
their sensitivity to over-fitting. One of the most accurate of those is Incremental
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Algorithm 1: Decision Rule Learning
Input: Training set T ;
Output: Point predictor h of decision rules;

1 Set h equal to empty set ∅;
2 repeat
3 Learn rule r from T ;
4 if rule r is acceptable then
5 Add rule r to point predictor h;
6 Remove set Tr of instances covered by r from T ;

7 until stopping criterion is met ;
8 Add default rule r to point predictor h;
9 return point predictor h.

Algorithm 2: Incremental Reduced Error Pruning (IREP)
Input: Training set T ;
Output: Point predictor h of decision rules;

1 Set h equal to empty set ∅;
2 repeat
3 Split T into growing set T g and prune set T p;
4 Learn rule r from T g;
5 Prune r on T p;
6 if rule r is acceptable then
7 Add rule r to point predictor h;
8 Remove instances covered by r from T ;

9 until stopping criterion is met ;
10 Add default rule r to point predictor h;
11 return point predictor h.

Reduced Error Pruning (IREP) given in [4]. The pseudo-code of IREP is provided
in Fig. 2 and it is very similar to that of decision rule learning. The only difference
is the manner of learning new rules (steps 3 to 5). IREP first splits the current
training data T into growing set T g and prune set T p. Then it trains a new rule
r on T g and subsequently prunes that rule on T p. Since the data covered by rule
r are removed from T , the next rule will have a small overlap with r on instance
space X if at all. If we extrapolate this finding over the whole sequence of rules r
in the final point predictor h, we may conclude that IREP minimizes the overlap
between the (subsequent) rules. This in turn reduces the number of decision rules
r in h compared with any other technique for decision rule pruning. Thus, IREP
is an excellent candidate for prediction interpretability.

The order of decision rules r in final point predictor h, that we have assumed
for classification purposes, imposes a partition Ph on training set T . Each element
Tr ⊂ T of this partition corresponds to a concrete decision rule r and, thus, it
is biased toward class y ∈ Y that r assigns. This implies that the probability
distributions that generate sets T and Tr can be very different.
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In addition, we note that partition Ph can be viewed as a rule-induced tax-
onomy. The categories of this taxonomy are intensionally represented by rules r
while extensionally by training sets Tr. This property is used for combining deci-
sion rules and conformal prediction following the Mondrian integration scheme.

4 Conformal Prediction

This section provides a short intro to conformal prediction. First, it considers
transductive and inductive conformal prediction. Then, it proceeds with Mon-
drian conformal prediction.

4.1 Transductive and Inductive Conformal Prediction

The conformal prediction framework [12,13] allows us to train class set predic-
tors that are automatically valid. They operate as follows. Given a test instance
xM+1 ∈ X, to decide whether to include a class y ∈ Y in prediction set
Γ ε(xM+1) ⊆ Y , the labeled instance (xM+1, y) is provisionally considered. Then
the nonconformity scores αm of all the instances (xm, ym) in T ∪ {(xM+1, y)}
are computed. The p-value py of class y for test instance xM+1 is computed as
follows:

py =
#{(xm, ym) ∈ T |αm > αM+1} + τ#{(xm, ym) ∈ T |αm = αM+1}

M + 1
(1)

where αM+1 is the nonconformity score of (xM+1, y) and τ is an uniformly
distributed random variable in [0, 1].

Once we have fixed significance level ε, class y is included in prediction set
Γ ε(xM+1) of test instance xm+1 if py > ε. Thus, in a long run we get validity:
the error e when prediction sets do not include the true classes is bounded from
below by ε.

The art to apply conformal prediction is to decide how to compute non-
conformity scores. A nonconformity score αm for any instance (xm, ym) is a
score that indicates how untypical is (xm, ym) w.r.t. the instances in data
(T ∪ {(xM+1, y)}) \ {(xm, ym)}. To compute such a score we need a nonconfor-
mity function A. Formally, this function is of type A : (X × Y )(∗) × (X × Y ) →
R

+ ∪{+∞}2. Given a data set T ⊆ X ×Y and an instance (xm, ym) ∈ (X ×Y ),
it returns a nonconformity score αm ∈ R

+ ∪ {+∞} indicating how untypical
the instance (xm, ym) is for the instances in (T ∪ {(xM+1, y)}) \ {(xm, ym)}.
An example of function A is the general nonconformity function applicable for
any point predictor h(x) [14]. Given an instance (xm, ym), the function outputs∑

y �=ym
sy, i.e. the sum of the scores sy of all the classes y ∈ Y computed by h

without that of ym. This makes the conformal prediction predictor-agnostic.
We note that in general the nonconformity score αm for any instance (xm, ym)

is w.r.t. all the remaining instances in data (T ∪ {(xM+1, y)}) \ {(xm, ym)}.

2 (X × Y )(∗) denotes the set of all multi sets defined over X × Y .
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Thus, computing the nonconformity scores αm for all the instances (xm, ym)
in T ∪ {(xM+1, y)} is realized by a leave-one-out process implemented in so-
called transductive conformal predictors (TCPs). To reduce the computational
complexity of TCPs [10] proposed inductive conformal predictors (ICPs). ICPs
use a hold-out process and thus they split the training data set T of size M
into the proper training set T t ⊆ T of size L < M and the calibration set
T c ⊆ T of size M − L. Set T t is used to train the nonconformity function A.
The function is then applied over all the instances in data T c ∪ {(xM+1, y)} to
compute their nonconformity scores. The p-value py of class y for test instance
xM+1 is computed in a similar manner, however, over nonconformity scores of
instances in T c ∪ {(xM+1, y)} only; i.e.,

py =
#{(xm, ym) ∈ T c|αm > αM+1} + τ#{(xm, ym) ∈ T c|αm = αM+1}

M − L + 1
(2)

where αM+1 is the nonconformity score of (xM+1, y) and τ is an uniformly
distributed random variable in [0, 1].

We note that ICPs are computationally more efficient than TCPs. However,
their informational efficiency (prediction set size) is usually lower than that of
TCPs. Still, in the rest of the paper will be using ICPs.

4.2 Mondrian Conformal Prediction

Assume that we have a taxonomy P of disjointed categories. P partitions T into
disjointed subsets Tr intensionally represented by categories r from P . Due to
the disjointedness the probability distributions behind sets T and Tr can be very
different. In this case any conformal predictor trained on T is valid for any data
set generated by the probability distribution that generates T . However, it may
be invalid for data sets generated by the probability distributions that generate
subsets Tr for some categories r in P . To guarantee predictor validity within the
categories, Mondrian conformal prediction was introduced in [14].

The key idea is to train a separate conformal predictor for each subset Tr.
In case of ICP this is realized as follows. First, each subset Tr is split into
proper training set T t

r and calibration set T c
r . Then, a global proper training

set T t is formed equal to
⋃

r∈P T t
r to train the global nonconformity function

A. The function is used to compute the nonconformity scores of the instances
in calibration set T c

r of each ICPr. Once this process is complete, we receive
individual ICPr for each category r in taxonomy P .

The process of region classification is simple. Given a test instance xM+1,
we first determine category r from taxonomy P that matches xM+1. Then we
apply the corresponding ICPr on xM+1 to compute a prediction set Γ ε(xM+1).
We note that each ICPr is a valid conformal predictor on data sets generated by
the probability distributions that generate the corresponding subset Tr. Thus,
we receive a local validity within the categories and, thus, a global validity of
the conformal predictors.
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5 Conformal Decision Rules

In this section we propose to integrate decision rules and conformal prediction.
The key idea is simple: decision rules imposes a taxonomy on training data, and,
thus, we integrate by training a Mondrian conformal predictor on the taxono-
mized data. This implies that a conformal decision rule is a decision rule r with
its own ICPr and the final predictor is a set of conformal decision rules.

The learning algorithm of conformal decision rules is given in Algorithm 3.
The algorithm input consists of the training set T , calibration set ratio c, and
Boolean variable global. First, the algorithm trains point predictor h of decision
rules r on training set T using Algorithm 1 (step 1). Since rules r are ordered,
they represent intensionally a taxonomy that can be employed for Mondrian
conformal prediction. Therefore, the algorithm uses the rules to partition training
data T into disjointed subsets Tr ⊆ T s.t. each rule r covers exactly one Tr (steps
3–4). Then, to prepare the data for training ICPs, all the subsets Tr are divided
in a class-stratified manner into proper training sets T t

r and calibration sets T c
r

according to calibration set ratio c in a class-stratified manner (step 5).
In steps 7–16 a Mondrian conformal predictor is trained on the partitioned

data; i.e. an ICPr is trained for each rule r. Two strategies are employed to train
ICPs: global (steps 7–11) and local (steps 12–15). The global strategy is similar
to that from [1]: a global nonconformity function A is trained on the union of
proper training sets T t

r over all the rules r, and each ICPr employs A on its own
calibration set T c

r . The local strategy is a new strategy that we propose: each
ICPr gets its own local nonconformity function Ar trained on its own proper
training set T t

r and this function is applied on its own calibration set T c
r .

Once all the ICPs have been trained, the algorithm outputs point predictor
h of all decision rules and the set of all ICPs. Thus, each conformal decision rule
is given a rule r and its corresponding ICPr.

The classification procedure is straightforward. Given a test instance xM+1,
the decision rules r ∈ h are visited in the order imposed on h (see the explanation
of Algorithm 1). If xM+1 matches the antecedent of the current rule r, its receives
a point (class) prediction y ∈ Y associated with r, an explanation (of how xM+1

matches the antecedent) plus a prediction set Γ ε(xM+1) ⊆ Y provided by ICPr

on a given significance level ε.
We note that conformal decision rules are valid class set predictors; i.e. the

probability that the prediction set Γ ε(x) ⊆ Y does not contain the class for the
test instance x is at most ε. This is due to the fact that they are essentially
Mondrian conformal predictors (see above).

The global and local strategies for setting up ICPs of decision rules are rather
different. The global strategy trains global nonconformity functions A that are
accurate on data generated by the original data distribution P . However, the
calibration sets T c

r of decision rules r might come from different distributions
since the rules usually cover subsets that are class biased. Thus, the label imbal-
anced problem might be present. As a result, global nonconformity functions A
can be less accurate on these sets which can result in less accurate nonconformity
functions (which in turn will decrease the informational efficiency).
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Algorithm 3: Conformal Decision Rule Learning
Input: Training set T , calibration set ratio c ∈ (0, 1.0), and Boolean variable

global;
Output: Point predictor h of decision rules r and set {ICPr}r∈h;

1 Train point predictor h of decision rules r on training set T ;
2 for each rule r ∈h do
3 Determine training subset Tr ⊆ T covered by rule r;
4 T := T \ Tr;
5 Split Tr into proper training set T t

r and calibration set T c
r according to c;

6 if global then
7 T t :=

⋃
r∈h T t

r ;
8 for each rule r ∈h do
9 Set up inductive conformal predictor ICPr using T t and T c

r ;

10 else
11 for each rule r ∈h do
12 Set up inductive conformal predictor ICPr using T t

r and T c
r ;

13 Output Point predictor h of decision rules r and set {ICPr}r∈h.

The local strategy does not suffer from the label-imbalanced problem above:
the local nonconformity functions Ar are trained on the proper training sets T t

r

and process calibration sets T c
r that if stratified can be viewed coming from the

same data distribution. Thus, the functions Ar can be accurate on T c
r which

can result in accurate nonconformity functions (which in turn will boost the
informational efficiency). However, this happens only if the proper training sets
T t

r and calibration sets T c
r are not small. Due to the nature of decision rule

learning, the size of the covered set Tr of each new rule usually decreases. This
implies that the local strategy has to be used for relatively large data.

6 Experiments and Results

This section presents our experiments. The data sets used for this research are
described in Subsect. 6.1. The experimental setup is provided in Subsect. 6.2.
The results are given in Subsect. 6.4.

6.1 Data Sets

In the experiments, we consider 10 binary classification data sets from the UCI
machine learning repository [3]. The sets are summarized in Table 1. We note
they are pre-processed where necessary: missing values are replaced by mean for
numeric features and by mode for discrete features.
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Table 1. Public data sets characteristics

Data set Short hand Instances Majority class

Heart cleaveland HC 303 54%

Heart VA HV 200 74%

Haberman HM 306 74%

Spam base SB 4601 61%

Australian credit card AC 1372 56%

Cancer C 569 63%

Ionosphere I 351 64%

Hepatitis H 155 79%

German credit GC 1000 70%

Indian liver IL 583 71%

6.2 Experimental Settings

We experiment with two types of conformal set predictors: pure ICP and con-
formal decision rules based on IREP and ICP denoted by IREP-ICP. IREP-ICP
employs the local strategy and global strategy denoted by IREP-ICP(L) and
IREP-ICP(G), respectively. The minimal number of training instances per rule
is set to 30 for IREP. The pure ICP predictors and ICP predictors in IREP-ICP
use the nearest-neighbor nonconformity function from [14]. This function out-
puts for any instance (x, y) a nonconformity score α equal to Dy

K

D−y
K

, where Dy
K

(D−y
K ) is the sum of distances between x and Knearest neighbors of x that do

(not) belong to class y. For all ICPs 2
3 of the training data is used for the proper

training set and 1
3 for the calibration set.

The set predictors are tested using a stratified 5-fold cross validation pro-
cedure. We employ several metrics to estimate the performance of the models.
To test experimentally the validity of a conformal set predictor we use the error
rate e. The error rate e for a significance level ε is defined as proportion of test
instances whose predicted prediction-sets Γ ε do not contain the correct class.
To show experimentally that a conformal set predictor is valid, we need to show
that for any significance level ε ∈ [0, 1] we have e ≤ ε.

To test experimentally the informational efficiency of a set predictor on sig-
nificance level ε we employ three main metrics: rate re of empty prediction sets,
rate rs of single prediction sets, and rate rm of multiple prediction sets. The
empty prediction sets, single prediction sets, and multiple prediction sets have
their own errors. Rate re of empty prediction sets is an error, since the correct
classes are not in the prediction sets. Error rate es (em) on single (multiple)
prediction sets is defined as the proportion of the single (multiple) prediction
sets that do not contain the correct classes.
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6.3 Algorithm Output

For any test instance the output of conformal decision rules consists of a point
prediction, an explanation, confidence values for all possible predictions plus a
prediction set for a chosen significance level ε. We provide the output of IREP-
ICP(L) on the Indian Liver data. This data consists of 583 liver patients records
divided into two classes, patients with a liver problem and patients with no liver
problem. The input variables are presented in Table 2. IREP-ICP(L) was trained
on the data and tested on two instances given in Table 3. The output for these
instances for significance level ε = 0.05 is as follows:

Table 2. Indian liver data set input variables

Name Description Name Description

Age Age of the patient Sgpt Alamine Aminotransferase

Gender Gender of the patient Sgot Aspartate Aminotransferase

TB Total Bilirubin TP Total Protiens

DB Direct Bilirubin ALB Albumin

Alkphos Alkaline Phosphotase A/G Albumin and Globulin Ratio

Table 3. Indian liver data Set examples

Instance Age Gender TB DB Alkphos Sgpt Sgot fTP ALB A/G Class

58 48 Female 0.9 0.2 175 24 54 5.5 2.7 0.9 no liver problem

206 45 Male 2.5 1.2 163 28 22 7.6 4 1.1 liver problem

– Instance 58:
• Point Prediction: liver problem
• Explanation: liver problem since Alkphos is between 21.0 and 25.0
• p-value of no liver problem is 0.49; p-value of liver problem is 0.51
• Prediction Set for ε = 0.05: { no liver problem, liver problem }

– Instance 206:
• Point Prediction: liver problem
• Explanation: liver problem since TB is between 0.88 and 1.6
• p-value of no liver problem is 0.04; p-value of liver problem is 0.84
• Prediction Set for ε = 0.05: { liver problem }

6.4 Results

Illustrative Comparison. In this sub-subsection we study pure ICP versus
IREP-ICP as well as the local strategy versus the global strategy of IREP-ICP.
The performance of the rules created by IREP has been studied in [2]. The
results are presented in Figs. 1(a) and 2(a) for the Haberman data and Spam
base data. Figures 1(a) and 2(a) show that ICP, IREP-ICP(L) and IREP-ICP(G)
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Fig. 1. Error and prediction-set size plots for the haberman dataset

are valid set predictors. Their informational efficiency, however, are different. For
the Haberman dataset ICP is more informationally efficient than both IREP-
ICP predictors. Figure 1(e) shows that rate rm of ICP decreases faster with
significance level ε while Fig. 1(c) shows that the max rate rs of ICP is 0.96
against 0.71 and 0.79 of IREP-ICP(L) and (G), respectively. In addition, we



Interpretable and Reliable Rule Classification 397

note that in Fig. 1(d) error rate es of ICP is always lower than those of IREP-
ICP predictors.

For the Spam base dataset IREP-ICP(L) is more informationally efficient
than ICP and IREP-ICP(G) for significance level ε < 0.2. Figure 2(e) shows
that rate rm of IREP-ICP(L) decreases faster with significance level ε while
Fig. 2(c) shows that the rate rs of IREP-ICP(L) is 0.93 against 0.78 of ICP and

Fig. 2. Error and prediction-set size plots for the spambase data set
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IREP-ICP(G), respectively. In addition, we note that in Fig. 2(d) error rate es

of IREP-ICP(L) is always lower than those of ICP.
The results from Figs. 1 and 2 can be explained as follows. The informational

efficiency of ICP is usually better than that of the IREP-ICP(L) and (G) since
ICP employs all the available data for training nonconformity functions A and
calibration. However, there are cases similar to one we observed for the Spam
base data when IREP-ICPs are better. This happens when decision rules impose
taxonomies that make easier learning local nonconformity functions Ar.

Information efficiency of IREP-ICP(G) depends on the extent the distribu-
tions of the global proper training set T t and calibration sets T c

r of the ICPr

predictors are close. For the Haberman data the distributions are close (e.g. the
majority class is positive over all the sets). This observation and a relatively small
size of the data make the global nonconformity function A more accurate than
the local nonconformity functions Ar. As a result IREP-ICP(G) has a better
performance than IREP-ICP(L) on the Haberman data. However, for the Spam
base data the situation is rather different: the distributions of the global proper
training set T t and calibration sets T c

r are not close (e.g. the positive class is
the majority class for calibration sets T c

r and is the minority class for the global
proper training sets T t). This implies that the global nonconformity function
A is not very accurate which explains why the performance of IREP-ICP(G) is
worse than that of IREP-ICP(L). The latter keeps the distribution of the local
proper training set T t

r and calibration sets T c
r through stratified splitting, and,

thus, the local nonconformity functions Ar are more accurate on the Spam data.

Results on ten UCI Data Sets. Table 43 contains the experimental results
for ICP, IREP-ICP (L), and IREP-ICP (G) on all data sets from Table 1. From
the tables we observe that for significance level ε ∈ {0.01, 0.05, 0.1}
– the error rate e is smaller than or equal to ε for ICP, IREP-ICP (L), and

IREP-ICP (G) up to some statistical fluctuations;
– the rates re of empty prediction sets for IREP-ICP (L) and IREP-ICP (G)

are usually greater than or equal to those of ICP;
– the rates rs of single prediction sets for IREP-ICP (L) are usually higher than

those of ICP and IREP-ICP (G), especiallly for larger data sets;
– the rates rm of multiple prediction sets for IREP-ICP (L) and ICP are usually

lower than those of IREP-ICP (G);
– the error rates es of single prediction sets for IREP-ICP (L) and IREP-ICP(G)

are usually lower than those of ICP.

3 Multiple prediction set error rate em is excluded from the table as it equals 0.0.



Interpretable and Reliable Rule Classification 399

Table 4. Public data sets results

Set ε
ICP IREP-ICP (L) IREP-ICP (G)

e re rs rm es e re rs rm es e re rs rm es

HC

0.01 0.01 0.0 0.069 0.931 0.143 0.003 0.0 0.05 0.95 0.067 0.003 0.0 0.026 0.974 0.125

0.05 0.026 0.0 0.195 0.805 0.136 0.036 0.0 0.267 0.733 0.136 0.046 0.0 0.172 0.828 0.269

0.1 0.086 0.0 0.386 0.614 0.222 0.099 0.0 0.538 0.462 0.184 0.096 0.0 0.386 0.614 0.248

0.01 0.005 0.0 0.005 0.995 1.0 0.005 0.0 0.04 0.96 0.125 0.005 0.0 0.055 0.945 0.091

0.05 0.04 0.0 0.13 0.87 0.308 0.035 0.0 0.255 0.745 0.137 0.06 0.0 0.285 0.715 0.211HV

0.1 0.075 0.0 0.305 0.695 0.246 0.095 0.0 0.53 0.47 0.179 0.09 0.0 0.5 0.5 0.18

HM

0.01 0.003 0.0 0.007 0.993 0.5 0.0 0.0 0.039 0.961 0.0 0.013 0.0 0.059 0.941 0.222

0.05 0.026 0.0 0.242 0.758 0.108 0.029 0.0 0.212 0.788 0.138 0.056 0.0 0.245 0.755 0.227

0.1 0.075 0.0 0.458 0.542 0.164 0.069 0.0 0.425 0.575 0.162 0.108 0.0 0.471 0.529 0.229

0.01 0.007 0.0 0.191 0.809 0.037 0.01 0.0 0.233 0.767 0.044 0.008 0.0 0.196 0.804 0.042

0.05 0.047 0.0 0.489 0.511 0.097 0.063 0.002 0.692 0.307 0.089 0.053 0.0 0.537 0.463 0.099SB

0.1 0.102 0.0 0.744 0.256 0.137 0.128 0.024 0.924 0.051 0.113 0.1 0.0 0.744 0.255 0.134

AC

0.01 0.01 0.0 0.049 0.951 0.206 0.01 0.0 0.177 0.823 0.057 0.01 0.0 0.071 0.929 0.143

0.05 0.048 0.0 0.206 0.794 0.232 0.051 0.0 0.557 0.443 0.091 0.042 0.0 0.223 0.777 0.188

0.1 0.104 0.0 0.443 0.557 0.235 0.107 0.016 0.87 0.114 0.105 0.109 0.0 0.438 0.562 0.248

0.01 0.007 0.0 0.568 0.432 0.012 0.007 0.0 0.23 0.77 0.031 0.004 0.0 0.16 0.84 0.022

0.05 0.053 0.005 0.928 0.067 0.051 0.032 0.0 0.547 0.453 0.058 0.032 0.002 0.489 0.51 0.061C

0.1 0.093 0.033 0.967 0.0 0.062 0.074 0.04 0.938 0.021 0.036 0.1 0.044 0.926 0.03 0.061

I

0.01 0.006 0.0 0.473 0.527 0.012 0.003 0.0 0.425 0.575 0.007 0.003 0.0 0.41 0.59 0.007

0.05 0.043 0.0 0.689 0.311 0.062 0.037 0.0 0.664 0.336 0.056 0.026 0.0 0.661 0.339 0.039

0.1 0.074 0.0 0.769 0.231 0.096 0.1 0.014 0.849 0.137 0.101 0.094 0.011 0.849 0.14 0.097

0.01 0.0 0.0 0.032 0.968 0.0 0.0 0.0 0.045 0.955 0.0 0.0 0.0 0.071 0.929 0.0

0.05 0.045 0.0 0.271 0.729 0.167 0.052 0.0 0.477 0.523 0.108 0.026 0.0 0.361 0.639 0.071H

0.1 0.058 0.0 0.452 0.548 0.129 0.097 0.0 0.665 0.335 0.146 0.052 0.0 0.503 0.497 0.103

GC

0.01 0.01 0.0 0.077 0.923 0.13 0.011 0.0 0.077 0.923 0.143 0.01 0.0 0.064 0.936 0.156

0.05 0.038 0.0 0.214 0.786 0.178 0.048 0.0 0.273 0.727 0.176 0.045 0.0 0.27 0.73 0.167

0.1 0.079 0.0 0.422 0.578 0.187 0.093 0.0 0.488 0.512 0.191 0.087 0.0 0.453 0.547 0.192

0.01 0.003 0.0 0.017 0.983 0.2 0.007 0.003 0.021 0.976 0.167 0.009 0.003 0.036 0.961 0.143

0.05 0.039 0.007 0.276 0.717 0.118 0.034 0.005 0.144 0.851 0.202 0.036 0.005 0.178 0.816 0.173IL

0.1 0.089 0.007 0.484 0.509 0.17 0.079 0.015 0.381 0.604 0.167 0.11 0.029 0.419 0.552 0.193

From the above we may conclude that for significance level ε ∈ {0.01, 0.05,
0.1, 0.2} on the experimental data:

– ICP, IREP-ICP(L), and IREP-ICP(G) are valid class set predictors; i.e. they
comply with the theory of conformal prediction.

– ICP is more informationally efficient than IREP-ICP(G).
– IREP-ICP(L) is more informationally efficient than IREP-ICP(G). Its supe-

riority grows with the size of the data.
– IREP-ICP(L) is comparable with ICP in terms of informational efficiency

(i.e. there is no clear winner although IREP-ICP has more wins).

From the above we provide the following recommendations:

– ICP and IREP-ICP(L) can be used interchangeably for reliable prediction.
However, if interpretability is need, IREP-ICP(L) has to be employed.
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– IREP-ICP(G) can be used for relatively small data sets when the number of
final rules is small. If this is not the case IREP-ICP(L) has to be preferred.

7 Conclusion

This paper used the Mondrian scheme to integrate decision rules and conformal
prediction. The result is a new technique of conformal decision rules capable
of providing a point prediction, an explanation, and confidence values for all
possible predictions plus a prediction set for any test instance.

An analysis of the Mondrian integration scheme showed that the global app-
roach for computing the nonconformity scores can cause the label imbalance
problem. To address this problem we proposed a local approach. We experimen-
tally compared both approaches using conformal decision rules and showed when
they can be used.

References

1. Boström, H., Johansson, U.: Mondrian conformal regressors. In: Proceedings of
the 9th Symposium on Conformal and Probabilistic Prediction with Applications,
COPA 2020. Proceedings of Machine Learning Research, vol. 128, pp. 114–133.
PMLR (2020)

2. Cohen, W.W.: Fast Effective Rule Induction. In: Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

3. Dua, D., Graff, C.: UCI machine learning repository (2017) http://archive.ics.uci.
edu/ml

4. Furnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Springer,
Berlin (2012). https://doi.org/10.1007/978-3-540-75197-7
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Abstract. In this paper, we use counterfactual explanations to offer a
new perspective on fairness, that, besides accuracy, accounts also for the
difficulty or burden to achieve fairness. We first gather a set of fairness-
related datasets and implement a classifier to extract the set of false neg-
ative test instances to generate different counterfactual explanations on
them. We subsequently calculate two measures: the false negative ratio
of the set of test instances, and the distance (also called burden) from
these instances to their corresponding counterfactuals, aggregated by
sensitive feature groups. The first measure is an accuracy-based estima-
tion of the classifier biases against sensitive groups, whilst the second is a
counterfactual-based assessment of the difficulty each of these groups has
of reaching their corresponding desired ground truth label. We promote
the idea that a counterfactual and an accuracy-based fairness measure
may assess fairness in a more holistic manner, whilst also providing inter-
pretability. We then propose and evaluate, on these datasets, a measure
called Normalized Accuracy Weighted Burden, which is more consistent
than only its accuracy or its counterfactual components alone, consider-
ing both false negative ratios and counterfactual distance per sensitive
feature. We believe this measure would be more adequate to assess clas-
sifier fairness and promote the design of better performing algorithms.

Keywords: Algorithmic fairness · Counterfactual explanations · Bias

1 Introduction

Machine Learning (ML) models assist decision-making in different applications,
such as recommender systems [16,18], vehicle localization [7], student grading [6],
credit assessment [1], disease diagnoses [9] and recidivism prediction [3]. These
decisions should be taken impartially across sensitive features, such as religion,
gender, ethnicity and age [20,27]. In order to achieve fair outcomes, the ML
models must avoid making decisions based on these qualities. There are several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 402–417, 2023.
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challenges in attaining these unbiased model decisions, and we hereby describe
and focus on three of them, namely fairness evaluation, interpretability and
fairness accuracy trade-off :

1. Fairness evaluation: The first challenge refers to the fact that the difficulty
of defining a measure for model fairness assessment lies on its selection. While
there exist at least 20 such measures [8,20], none of them is perfectly suitable
for all situations. More importantly, Kusner et al. [8] argue that some mea-
sures might exacerbate the perceived discrimination, and may not eliminate
the biases entirely even after optimizing for them [2].

2. Interpretability: The second challenge is knowing the models’ features
weighting. The increase in model complexity and capacity to represent highly
nonlinear functions to achieve superior prediction performance has raised a
new challenge, that of providing trustable model explanations to understand
how different features are prioritized [5,14,21,22,26]. Given that highly com-
plex and opaque models may focus on sensitive features to elaborate a decision
(even when the sensitive features are omitted from the data due to correla-
tions with other nonsensitive, proxy features [8,18,20]), it is important to
obtain model explanations to understand whether this is occurring or not. A
subfield of ML, called ML Interpretability, aims to provide these model expla-
nations. Specifically, an interpretability technique known as Counterfactual
Explanations (CE) answers the following question: how should an instance
change its feature values so as to switch a model’s predicted label from an
undesired to a desired label? An analogous nontrivial problem to the fair-
ness evaluation challenge exists for CE generation: there are several different
CE algorithms, each minimizing a distinct cost function and producing fairly
contrasting CEs [27].

3. Fairness-accuracy trade-off: The third challenge refers to the fact that
altering the model to deter biases naturally found in the datasets, due to
highly correlated sensitive features and labels, may reduce the models perfor-
mance, leading to a fairness-accuracy trade-off [13,18,20].

In this paper, we address these challenges by combining two fairness measures:
one accuracy-based and one counterfactual-based.

In particular, we assume that for each sensitive feature, there are at least two
sensitive groups, e.g. the sensitive feature Sex has two sensitive groups Male and
Female, and that we have a binary classification task. To measure accuracy, we
use predictive equality [27], which states that the False Negative Ratio (FNR),
i.e., the fraction of false negative predictions, should be the same across sensitive
groups. Other accuracy-based fairness definitions, such as predictive parity, are
left for future work.

The CE x′ of an item x is a similar item to x for which the classifier produces
an outcome different than the outcome of x. Let x be an item in a sensitive
group that was falsely predicted to belong to the negative class. Intuitively, the
distance between x and its counterfactual x′ measures the amount of change
that is needed to counteract unfairness in accuracy, that is, to correctly classify
x in the positive class. We call Burden the average such distance for all items in
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the sensitive group that were falsely assigned to the negative class. In a sense,
Burden captures the cost of achieving fairness.

The main advantages of counterfactual-based fairness are three-fold: first, it
aligns with a fair treatment intuition, since the difficulty of achieving a desired
output among sensitive groups should be similar [8]. This similar difficulty may
be seen as a similar burden value among different groups; second, burden is
calculated using a generated CE (x′), which inherently indicates the models fea-
tures relevances, providing important information to tackle the models opacity;
and third, it may provide both individual and group fairness assessment [23],
while other metrics, like statistical parity and equalized odds, focus on group
fairness.

Hence, the first contribution of this paper is a study between the FNR and the
measure of burden, where the set of CEs are generated by minimizing different
cost functions. The study uses 11 fairness-related, binary classification datasets
from four different fields. We analyze the differences in burden among different
CE methods and their relation to FNR. Moreover, the second contribution of
the paper is a new measure, Normalized Accuracy Weighted Burden (NAWB),
that assesses fairness holistically and may be used to optimize classifiers training
and address the accuracy-fairness trade-off challenge.

2 Related Work

In this work, two areas converge: machine learning fairness and counterfac-
tual explainability. From the perspective of machine learning fairness, differ-
ent approaches have been taken to both measure and correct biases in different
applications [18–20,25,29].

2.1 Fairness and Bias Measurement

To avoid model discrimination biases, the biases must be first detected [8]. Quy
et al. compiled 15 datasets from different fields that are frequently used for
fairness-related research in ML and use statistical parity, equalized odds and
Absolute Between-ROC Area (ABROCA) to detect biases among a set of sen-
sitive features in each dataset [20]. Machine learning models may amplify the
users input biases according to common user preferences [25]. Zafar et al. relate
the recommendation bias increase to stereotypical-based biases, and highlight
the strong relation of false positive rates with sensitive groups in recidivism
prediction biases against African Americans, and in less-paid jobs for women
[29].

2.2 Counterfactual Explainability

Verma et al. propose a rubric to compare different CE generation algorithms,
reviewing 39 papers where methods and metrics are discussed [27]. They high-
light the existence of linear and mixed-integer programming CE methods, such
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as the Actionable Recourse algorithm by Ustun et al. [26], that provides action-
ability (actionable decisions) with low computational demand, at the cost of
using low-accuracy, linear classifiers.

Among the metrics discussed by Verma et al. are likelihood (the closeness of
the CE to the data distribution) and sparsity (the number of changed features)
[27]. Related to actionability is the property of feasibility, which considers the
feature direction of change and the plausibility of the obtained feature values.
Linked to sparsity is proximity, which is the inverse of the distance between the
Instance of Interest (IOI) and its CE [12,26]. Finally, faithfulness may also be
prioritized, as it indicates how likely (through likelihood) or justified [11] a CE
is according to the data. Different algorithms prioritize different metrics.

The Nearest Neighbor Tweaking (NN) method selects the closest positive
ground truth label instance in the training set to the IOI. The Minimum Observ-
able (MO) method selects the closest counterfactual instance from the whole
dataset (including the test instances with their predicted labels). These two
methods minimize the euclidean distance function and preserve the plausibility of
the feature values [12,28]. The Random Forest Tweaking (RT) method selects the
most frequent counterfactual training instance inside the same leaves that the IOI
falls in, in a Random Forest (RF) classifier, providing plausibility and faithful-
ness. The Counterfactual Conditional Heterogeneous Autoencoder (CCHVAE)
CE method prioritizes likelihood, outputting counterfactual instances that are
likely according to the data. The method uses a variational autoencoder and cre-
ates random perturbations in its latent space. These perturbations are brought
to the original space and become the generated counterfactuals [17].

Other notable more complex methods exist. Model-Agnostic CE (MACE) [4]
delivers best-in-class proximity performance but with the longest computational
times; Growing Spheres (GS) [10] attempts to obtain close counterfactuals by
growing spheres from the IOI; Diverse CE (DiCE) [15] allows users to obtain a
set of CEs instead of a single one, where the set is chosen to provide diverse fea-
ture changes. Local Rule-based Explainability (LORE) is able to provide feature
relevances and CEs through the training of a local rule generation model.

2.3 Counterfactual Fairness

At the intersection of these two areas lies counterfactual fairness: a characteristic
of decision processes treating individuals equally in the as-is situation, and in
a world where their sensitive features are different [8]. Currently, CEs provide
insights on why a decision was taken and potential actionability, but cannot indi-
cate whether these decisions are fair [13]. On the other hand, fairness measures
lack the actionability and feature relevance that CEs ellicit.

Ustun et al. propose an interesting measure between the classifier model and
the instances attributes, and use this to design a fair model. This measure uses
the covariance between the sensitive features values and the distance between
the subjects and the decision boundary. If this covariance is high, that means
the distance between the instances and the decision boundary are highly related,
indicating that the model may be biased according to those features [26]. This
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measure is however intended for linear classifiers and assumes a linear relation
between classifiers and features. The authors also present an interesting evalua-
tion of the relation between the cost of achieving a given counterfactual (cost of
recourse) and split it by false and true negative prediction groups.

Coston et al. argue that traditional measures of fairness, like parity, may
not necessarily lead to fairness in counterfactual scenarios. Therefore, they indi-
cate that counterfactual reasoning must be implemented to measure fairness,
and apply a set of methods to achieve fairness in a policy design framework [2].
Finally, Sharma et al. define the counterfactual-based fairness metric called bur-
den, and indicate its usage for both individual and group fairness assessment.
The authors use this metric as part of the fitness function in a genetic algorithm
that generates counterfactuals [23].

3 Methodology

Given a dataset X, with labels Y ∈ {−,+}, + being the desired, positive label,
a classification function f , such that f : X → Y and a set of sensitive features
Si, i ∈ {1, 2, ...,M}, where M is the number of sensitive features, the accuracy-
based metric of False Negative Ratio (FNR) per sensitive group is defined as
follows:

FNRs = P (f(x) = −|S = s, Y = +), (1)

where FNRs is the false negative ratio of the sensitive group s.
For the counterfactual-based measure, we first formally define the counter-

factual search as [12,24]:

x∗ = argmin
x′

c(x, x′)|f(x) = y ∧ f(x′) = y′ , (2)

where c(x, x′) is a distance-based cost function, and y′ is the opposite label to y.
The counterfactual reasoning is mainly applied by analyzing whether it is equally
difficult to change the model outcome, from an undesired label f(x) = y = −, to
a desired predicted label f(x′) = y′ = +, among sensitive groups or individuals
[23,26]. Hence, the counterfactual-based measure may be obtained by calculating
the average cost function c(x, x′) with x ∈ Xs, where Xs is the set of instances
belonging to the sensitive feature group s, and the counterfactuals found x′ for
each x. This measure is defined as Burden and is formulated as follows:

Burdens =
1

|Xs|
∑

xi∈Xs

c(xi, x
′
i), (3)

where Burdens is the average value of the cost function c(.), which may be defined
as the euclidean distance, based on the concept defined by [23].

We propose and examine a combined measure based on Burdens and FNRs

that could potentially be used to design a fair and accurate classifier. The pro-
posed measure is called the Accuracy Weighted Burden or AWB. To derive
it, we define the set of false negative instances per sensitive group s as:
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Xs
FN = {x ∈ X|f(x) = −, S = s, Y = +} and multiply Burdens and FNRs

as shown:

AWBs = P (f(x) = −|S = s, Y = +)
1

|Xs
FN |

∑

xi∈Xs
FN

d(xi, x
′
i) (4)

AWBs =
|Xs

FN |
|{x ∈ X|S = s, Y = +}|

1
|Xs

FN |
∑

xi∈Xs
FN

d(xi, x
′
i) (5)

AWBs =

∑
xi∈Xs

FN

d(xi, x
′
i)

|{x ∈ X|S = s, Y = +}| (6)

where x′
i represents the CE of the xi instance, and function d(.) is the euclidean

distance or burden. If we plot Burdens versus FNRs, and locate each sensitive
group as a point in this plane, a point located in the upper-right corner would
present a higher general bias than one located in the lower-left corner. The FNRs

is the ratio of instances falsely classified as belonging to the negative class, whilst
the Burdens measures how far the IOI is from an existing, desired counterfactual
instance, per group. In this sense, a high FNRs and a high Burdens indicates a
high number of difficult-to-correctly classify points for a given group and classifier
f . This may be translated to the area of the box formed between the location of
the dots and the origin. This area is calculated by multiplying these variables,
leading to Eq. 6.

By normalizing each of the L features in the dataset inside the [0,1] range, the
range of values for d(.) is [0,L], so we divide Eq. 6 by L to obtain the Normalized
Accuracy Weighted Burden or NAWB:

NAWBs =

∑
i∈Xs

FN

d(xi, x
′
i)

L|{x ∈ X|S = s, Y = +}| (7)

After defining the basic metrics, let us outline the steps of our methodology.
In order to study classifier fairness, for each dataset and classification task, we
test several classifiers and search for the model parameters that provide the best
performance in each case (see Sect. 4). A single classifier (the one with the best
F1 score) is used per dataset. We then execute a four-step process: (1) Calculate
the FNR per sensitive group, (2) obtain CEs for the false negative instances
using different CE methods (different ways and cost functions in solving Eq. 2,
(3) estimate the aggregated Burden per sensitive group, per CE method, and
(4) study the relation of Burdens and FNRs to provide a holistic view on the
classifier fairness and evaluate AWB, our new combined measure.

The first step of the process is carried out using Eq. 1, where s is the sensitive
group of a feature (Male, Female or White, Non-white, etc.). Ultimately, a fair
classifier would have a similar FNRs among the different s values belonging to
each S sensitive feature.
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The second step is using NN, MO, RT and CCHVAE to generate the CEs.
We concentrate on the four mentioned algorithms, as they represent a set of
relevant objectives currently prioritized in CE algorithms, namely proximity,
feasibility and faithfulness (through likelihood), whilst maintaining relatively
low complexity and computational times. These methods are applied to the false
negative instances (XFN ), i.e., obtaining a set of four CEs for each of them.

The third step is calculating the aggregated burden by sensitive feature
Burdens using Eq. 3. A higher burden for a given group of subjects, in com-
parison to another, would mean that the individuals belonging to that group
have a higher difficulty, in terms of the distance, to achieve the positive class,
according to the model f .

In the fourth and final step, we discuss these metrics, presenting their eval-
uation on the fairness-related datasets. We analyze the FNRs per dataset and
evaluate the Burdens per dataset and CE method. We then relate both measures
and study their correlation and finally examine the combined measure AWBs and
its normalized version NAWBs.

4 Empirical Evaluation

We describe here the datasets based on [20] and discuss the obtained results.
The datasets, their main sources, and codes are available at the GitHub1.

4.1 Datasets

The datasets and relevant characteristics are shown in Table 1. Preprocessing is
carried out according to [4,20], reducing the number of features and instances by
removing duplicates, missing values and low-importance features. Further details
may be observed in the repository. The test group and true positive distributions
are obtained after preprocessing.

4.2 Results and Discussion

In this section we show the classification performance, analyze the FNRs per
dataset, discuss the Burdens measure per dataset and CE method, and finally
present and analyze an accuracy-counterfactual combined fairness measure.

Model Selection. We implemented four different types of classifiers and used
grid search with 5-fold validation to identify the optimal parameters according to
the F1 score. The implemented classifiers are Support Vector Machines (SVM),
Decision Trees (DT), Multilayer Perceptrons (MLP) and Random Forests (RF).
The RF classifier achieved the best performance for 5 out of the 11 datasets
(shown in Table 2 along with the model parameters), while the MLP classifier

1 https://github.com/alku7660/counterfactual-fairness.

https://github.com/alku7660/counterfactual-fairness
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Table 1. Datasets instances, features, labels and sensitive groups distributions

Dataset Items
(feat.)

Classes Sensitive groups Test group
distribution

True positive
distribution

Adult 48842
(15)

+:>50kUSD
-:≤50kUSD

Male/Female
White/Nonwhite
<25/25–60/>60

9112/4455
11666/1901
2214/10500/853

2848/499
3032/315
31/3102/214

KDD census 299285
(41)

+:>50kUSD
-:≤50kUSD

Male/Female
White/Nonwhite

43193/46593
75268/14518

4374/1180
5052/502

German 1000
(21)

+:low risk
-:high risk

Male/Female 208/92 55/28

Dutch 60420
(12)

+:low risk
-:high risk

Male/Female 9090/9036 6024/3401

Bank 45211
(17)

+:deposits
-:no deposit

Sing./Marr./Divor.
<25/25–60/>60

3785/8171/1608
244/12939/381

574/849/196
68/1384/167

Credit 30000
(24)

+:no default
-:defaults

Male/Female
Marr./NotMarr.
Oth./HS/Uni./Gra.

3547/5350
4131/4756
143/1435/4122/3187

854/1118
980/992
10/355/1006/601

Compas 7214
(52)

+:improved
-:recidivist

Male/Female
Caucasian/African

1276/308
619/965

624/209
379/454

Diabetes 101766
(50)

+:recovered
-:readmitted

Male/Female 6326/7527 4743/5767

Student 395
(33)

+:high grade
-:low grade

Male/Female
<18/≥18

55/64
93/26

40/45
66/19

Oulad 32593
(12)

+:pass exam
-:fail exam

Male/Female 5142/4303 2393/2061

Law 20798
(12)

+:pass bar
-:fail bar

Male/Female
White/Nonwhite

3426/2703
5148/981

3274/2557
4990/841

achieved the best performance for the other 6 datasets (shown in Table 3 along
with the model parameters). We used the best classifier for each dataset.

FNRs Evaluation. The dataset is split into 70% train and 30% test. The models
are used to predict the label of positive ground truth test instances.

The FNRs are shown in Fig. 1. In the Adult dataset, the highest FNRs corre-
sponds to the < 25 age group. This indicates that younger adults are expected
to earn less than those with longer careers and higher education, both correlated
to age. Additionally, Females present a considerable unfavorable bias, relative
to Males. Non-whites are unfavored, though not as Females and young people.
A similar behavior is observed in the KDD Census dataset FNRs with respect
to the unfavored Female and Non-white groups.

An inverted bias behavior is observed in the German and Dutch datasets,
where Males are more likely to be incorrectly classified with bad credit or low-
level occupation, respectively, than Females. The FNRs is double for Males in
the German dataset (similar in the Oulad dataset), while it is close to 5 times
in the Dutch dataset, compared to Females.

In the Bank and Credit datasets, all FNRs are considerable. In the Bank
dataset the >60 age group has the lowest FNRs (<1%), while in the Credit
dataset the Other education group has the highest FNRs (>80%).
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Table 2. Datasets with RF as best classifier and F1 score

Dataset Adult KDD Census Dutch Bank Student

F1 0.83 0.87 0.84 0.86 0.70

Max. depth 10 10 10 10 2

Min. samples/leaf 1 5 3 1 5

Min. samples/split 5 5 5 2 2

Num. trees 100 100 50 200 200

Table 3. Datasets with MLP as best classifier and F1 score

Dataset Credit German Diabetes Oulad Law Compas

F1 0.72 0.70 0.61 0.67 0.82 0.66

Activation Tanh ReLU Logistic Logistic Tanh Tanh

Hidden layers (50, 1) (100, 10) (100, 2) (100, 10) (50, 1) (100, 10)

Solver Adam SGD SGD SGD Adam Adam

Fig. 1. FNRs for each sensitive group
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In the Compas dataset, the African-Americans and Females are more than
twice as likely to be incorrectly classified as recidivist as Caucasians and Males,
respectively. The Diabetes dataset shows the highest Females FNRs caused by
the low classifier performance. In the Student dataset, the highest FNRs is
observed in the >=18 age group (>60%), in comparison with the lower FNRs

for the Female, Male and < 18 groups with 40% or lower. Finally, in the Law
dataset, all FNRs are close to 20%, except for the Non-white group with 50%.

BurdensEvaluation. Figure 2 present datasets in rows and CE methods in
columns. In general, all datasets show a similar relative burden among sensitive
groups for NN and MO methods, since they prioritize distance and pick the
counterfactual from the pool of observations (MO’s Burdens measure is lower
because it also considers test instances). RT and CCHVAE present a relative
different Burdens behavior in both magnitude and relative position among sen-
sitive groups, since these two prioritize frequency and likelihood, respectively,
over proximity. The CEs obtained through CCHVAE are particularly further
from their respective IOIs because they are closer to the data distribution cen-
ters to maximize likelihood. Specifically, for the Adult dataset, in the age feature,
we may see that >60 has a high Burdens, compared to < 25 and 25–60, spe-
cially in the NN, MO and RT methods. This could indicate a bias against older
people who may have a higher difficulty of achieving a high income.

In the KDD Census dataset, the relative Burdens magnitude is the same
for all methods: higher for Females than Males and higher for Non-whites than
Whites. The KDD Census dataset presents a similar behavior in terms of relative
burden with the Law dataset.

In the German dataset, the correlation of burden with FNRs is inverted in
CCHVAE, while NN, MO and RT preserve the same higher bias for Males than
Females. In the Dutch dataset, Burdens is higher for Females, while the FNRs

ratio was higher for the Males (Fig. 1).
In the Bank dataset, there is a higher burden for the < 25 and Divorced

groups relative to their counterparts in the NN, MO and RT methods, however,
it is the >60 group that has a higher burden according to CCHVAE. These
behaviors are contrasting with the FNRs in the age groups, because the >60
has a significantly lower FNRs.

In the Credit dataset, the behavior among groups is similar to the FNRs rel-
ative behavior in the NN, MO and RT methods. However, it drastically changes
in the CCHVAE, where the burden is high and similar across groups.

In the Compas dataset note that the RT FNRs shows a different relative
magnitude: the Males and African-Americans FNRs is higher, whilst the burden
is higher for Females and Caucasians.

In the Diabetes dataset the FNRs of Females is higher than that of Males
(even though the data is balanced among genders) but Burdens shows a relative
similar behavior for both Females and Males.

In the Student dataset, all methods showed a similar relative Burdens behav-
ior, which is a strong contrast with the highly unfavored age group of >18
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Fig. 2. Burdens for each sensitive group
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according to FNRs. Finally, in the Oulad dataset, Females present a slightly
higher Burdens than Males in all methods except RT.

FNRs and Burdens. The relation between FNRs and each CE method’s
Burdens is observed in Fig. 3 for some of the datasets. Each scatter plot shows the
FNRs in the x-axis and Burdens in the y-axis. The dots represent the sensitive
groups location in the Burden−FNR plane. Each color indicates a sensitive fea-
ture and each dot has its group name. Positively correlated Burdens and FNRs

measures show dots of the same color (belonging to the same feature) scattered
across the positive diagonal, whilst a negative correlation shows these dots closer
to the negative diagonal. For example, in the Diabetes dataset, Male and Female
dots are located in the negative diagonal in NN, and RT, whilst in the positive
one in MO and CCHVAE.

Fig. 3. False negative ratio (FNRs) versus Burden (Burdens)

A dot located in the upper-right corner of Fig. 3 has the highest area and
therefore the highest general bias. This area measure is the Accuracy Weighted
Burden or AWB, shown in Eq. 6. We then calculate its normalized version,
NAWBs, for all the datasets and models and show it in Fig. 4.

Normalized Accuracy Weighted Burden (NAWB). The NAWBs mea-
sure is not as sensitive to the CE method used, due to the FNR factor, however,
the magnitude may still change significantly. This is observed throughout all
the datasets. In the Adult dataset, Females, Non-whites and < 25 are the most
unfavored in terms of bias, and the ordering of the age groups is the same across
methods. This was not true for the Adult Burdens measure alone, in which (see
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Fig. 4. Normalized Accuracy Weighted Burden (AWB) for each dataset and sensitive
group
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Fig. 2) the Burdens was higher for the >60 group. In the German dataset the
NAWBs measure shows a higher bias against Males than Females than FNRs

or Burdens alone indicating that the difficulty of each IOI to change its label
brings an added level of bias against Males to the already higher ratio of false
negatives in that group, compared to Females. This indicates that it is important
to consider both metrics and in that way improve the overall perspective on the
relative biases among groups. Additionally, the consistency between these rela-
tive measures is greatly improved. For example, the German and Dutch datasets
Burdens measure showed a different behavior among groups, compared to the
more holistic NAWBs measure. However, in terms of magnitude, the NAWBs

measure indicates a higher value for the RT and CCHVAE methods, which is still
justified by the objectives they prioritize, as mentioned before. This may indi-
cate that, although relative NAWBs among the groups is more consistent across
diverse CE methods, the magnitude is still dependent on the CE method. Fur-
ther improvements may be done on normalization of the measures with respect
to each sensitive feature, or across the features, for example, considering the
NAWBs fraction over the sum of all NAWBs to make this metric less dependent
on which CE method is applied.

5 Conclusions and Future Work

In this study, we performed an evaluation of four different CE methods to assess
the burden on different sensitive groups due to a classifier model. The distance
between the CEs and the instances are seen as a measure of fairness through
counterfactual reasoning. We compared this measure with an accuracy-based
fairness measure, the False Negative Ratio per sensitive group, and propose a
combined product of these measures that attempts to more consistently mea-
sure the (un)fairness of classifiers. Hence, we proposed NAWBs as a normalized,
accuracy and counterfactual-based measure to determine the existence of classi-
fier bias, proving that it may enhance the evaluation of biases among sensitive
groups. We assessed the difference among the groups burden identified by dif-
ferent CE methods, and that future work may deal with a further normalization
process to make this measure independent of the CE method used.

Additionally future work should also consider other methods, such as MACE,
GS, DiCE and LORE. Finally, an extension to multi-class tasks and the applica-
tion of the combined measure in the design of a classifier may be done, in order
to make a generalized system that optimizes for both fairness and accuracy.
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Abstract. In this paper, we examine the bias towards high-entropy fea-
tures exhibited by SHAP values on tree-based structures such as classi-
fication and regression trees, random forests or gradient boosted trees.
Previous work has shown that many feature importance measures for
tree-based models assign higher values to high-entropy features, i.e. with
high cardinality or balanced categories, and that this bias also applies
to SHAP values. However, it is unclear if this bias is a major problem
in practice or merely a statistical artifact with little impact on real data
analyses. In this paper, we show that the severity of the bias strongly
depends on the signal to noise ratio (SNR) in the dataset and on adequate
hyperparameter tuning. In high-SNR settings, the bias is still present but
is unlikely to affect feature rankings and thus can be safely ignored in
many real data applications. On the other hand, in low-SNR settings,
a feature without ground-truth effect but with high entropy could be
ranked higher than a feature with ground-truth effect but low entropy.
Here, we show that careful hyperparameter tuning can remove the bias.

1 Introduction

With the rising popularity of machine learning also came a growing need to
understand prediction models through interpretability methods. These methods
can have differing aims ranging from visualising the workings of the black-box
model to feature importance measures to understand which features are the
most important to the model or to some underlying relationship. One such inter-
pretability method is SHAP (SHapley Additive exPlanations) [1]. SHAP values
are based on Shapley values [2], a method from game theory that was first intro-
duced to machine learning applications by Štrumbelj & Kononenko [3]. Lundberg
& Lee [1] later introduced SHAP as the only additive feature attribution method
satisfying the properties of local accuracy, missingness and consistency. Lund-
berg et al. [4] introduced a new method for efficiently calculating SHAP values
for tree based structures (TreeSHAP).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Several feature importance methods for tree-based methods have been shown
to have a bias towards high-entropy features, i.e., numerical features with many
unique values, categorical features with high cardinality or balanced category
frequencies. This phenomenon was already shown by Breiman et al. [5] for clas-
sification and regression trees and later made popular for model-specific random
forest feature importance [6–9]. Loecher [10,11] and Adler & Painsky [12] have
shown that the same kind of bias is rooted deeper in the underlying tree struc-
ture and is thus not exclusive to random forests and its model-specific feature
importance measures but rather extends to SHAP values for random forests and
also to other tree-based prediction methods such as gradient boosted trees.

In this paper, we show that the bias observed for SHAP values is only a
problem when the signal to noise ratio (SNR) in the dataset is very low. The
bias becomes less important the higher the SNR and, while it is still present,
hardly matters in practice in settings with high SNR. We do this by performing
simulation studies on datasets with different levels of SNR. We also use two
real-world datasets with different levels of SNR to show the impact of SNR on
the bias. We further show that proper hyperparameter tuning can remove the
bias in SHAP values.

2 Simulation Study

To investigate whether SHAP values exhibit a bias towards high-entropy fea-
tures for tree-based models we conducted a simulation study. We used a data
generating process (DGP), which consists in first generating four categorical
explanatory variables (features) X1,X2,X3,X4 with 2,4,10 and 20 categories
[6] and one continuous explanatory variable X5 ∼ N (0, 1), respectively. Let X
be the n × 5 matrix of explanatory variables. We used a sample size of n = 100
throughout Sect. 2. All categorical variables were multinomially distributed with
equal probabilities for each category. The categories were 1, .., nc where nc corre-
sponds to the number of categories of the variable in question. The explanatory
variables were simulated independently of each other. We used an outcome vari-
able O = f(X) + ε = X · β + ε, where β is a 1 × 5 vector and ε ∼ N (0, σ2)
with variance σ2 selected such that we attain a pre-specified signal to noise ratio
(SNR) which we define as SNR = V ar(f(X))/σ2.

Since we have an output O that is linear in X1, ...,X5 we can calculate
ground-truth SHAP values. First, for SNR = 0, we set β = 0, which is analogous
to the no-effect case in [6]. Second, we set β to (1, 0, 0, 0, 0)T so that only the
first variable has an effect on the outcome O. With Var(x1) = 0.25: SNR =
V ar(β1 · x1)/σ2 = β2

1 · 0.25/σ2

For each of the generated datasets, we fitted a random forest (R package
ranger) and gradient boosted trees (R package xgboost). We then calculated
SHAP values with TreeSHAP (R package treeshap) and KernelSHAP (R package
shapr). We ran the same data-generating process 100 times, computing SHAP
values for every observation at each repetition. Further, we calculated the SHAP
variable importance by calculating the mean absolute SHAP values over the
instances in the dataset [13].
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Figure 1 shows the results for the no-effect case (SNR=0). As we can see,
SHAP importance values exhibit a very similar behavior to uncorrected impurity
importance in Strobl et al. [6], where the importance of the first continuous
variable X1 is the highest and the categorical variables are more important the
more categories they have. We see the same behavior with random forests and
xgboost and both with KernelSHAP and TreeSHAP.

XGBoost with KernelSHAP XGBoost with TreeSHAP
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SHAP importance values in the null case

Fig. 1. Boxplots of SHAP variable importance for the no-effect case with SNR=0 with
random forest and xgboost, KernelSHAP and TreeSHAP. The red dots correspond to
the ground-truth SHAP values from the data-generating linear model, the red line is
at 0. (Color figure online)

Figure 2 shows the result for the effect case with β = (1, 0, 0, 0, 0)T and
increasing SNR. We see that for very low SNR (SNR = 0.01), X1 receives the
lowest variable importance on average, even though it is the only feature with
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a true effect. For a higher SNR (SNR = 0.1), the bias is still visible but X1

can be clearly distinguished from X2, ...,X5. For a high SNR (SNR = 1), the
bias is almost negligible. In the replicates of the experiment with SNR = 1 the
SHAP importance value for X1 was always the highest SHAP value out of the
five variables.

Figure 10 (Appendix) shows boxplots of SHAP importance values for a neural
network trained on the same data. The results confirm the fact that the bias
is inherent to tree-based structures and is not necessarily exhibited by other
methods.
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SHAP importance values in the power case with random forest and TreeSHAP

Fig. 2. Boxplots of SHAP variable importance for the effect case with β = (1, 0, 0, 0, 0)T

and SNR set to 0.01, 0.1 and 1, with random forest and TreeSHAP. The red dots
correspond to the ground-truth SHAP values from the data-generating linear model,
the red line is at 0. Similar plots for xgboost and KernelSHAP can be found in the
Appendix. (Color figure online)



422 R. Baudeu et al.

3 Effect of Model Tuning

We are interested in the effect of optimally tuning Random Forests on the
observed bias in SHAP importance values. In this section, we present results
from a grid search aimed at finding those values for max depth and mtry, which
minimize the log loss or MSE on a hold-out set. Both for synthetic and real
data sets (see Sect. 4) we find that the observed bias is inevitably due to a sub-
optimally tuned model.

We follow the same procedure as in Sect. 2, but omit the often studied null
case (β1 = 0) since clearly the optimal model would just be a mean prediction.
Instead we focus on the so-called power case (β1 > 0) and tune the model
parameters for various signal to noise ratios.

Figure 3 demonstrates that the out-of-bag loss is smallest for max depth =
1 and mtry = 5, which is not surprising: if only the binary predictor x1 is
informative, the best model would be a stump with no randomization in the
columns (mtry = 5) which is confirmed by the graphs. In this light, the observed
bias in the simulated data by Strobl et al. [6] could be viewed simply as an
artefact of “throwing” an overly complex, non-tuned model at a data set with
an extremely simple structure.
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Fig. 3. Simulated data (n = 1000): Out-of-bag (OOB) error as a function of max depth

and mtry for SNR = 1,2 respectively. The optimal RF parameters are seen to be
max depth = 1 and mtry = 5, consistent with the obvious fact that a tree stump would
be the ideal model. The Bayes error (= 1) is added as a brown dashed horizontal line.

A similar story emerges from the effect of model tuning on SHAP values as
illustrated in Fig. 4: the (global) SHAP values for the non-informative features
show the familiar biased pattern - the dependence on feature cardinality x5 >
x4 > x3 > x2 > x1 as well as the overall increase with max depth. But strikingly,
for max depth = 1 and mtry = 5, the bias completely disappears and the only
non-zero SHAP scores arises for x1. The expected/true SHAP value shown in
Fig. 4 can be computed as follows: The overall expected value of y is

E(y) = β1E(x1) = 1.5 · β1 = 1.5 ·
√

SNR/0.5 = 3 ·
√

SNR.
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Hence
φ1 = ±

√
SNR ⇒ |φ1| =

√
SNR,

since β1x1 takes on the values 2
√

SNR and 4
√

SNR, respectively.
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Fig. 4. Simulated data (n = 200): Global SHAP distributions (100 repeated simula-
tions) as a function of max depth for mtry = 2,5 respectively (SNR = 1). At max depth

= 1 and mtry = 5 (rightmost panel), the SHAP scores seem entirely unbiased: zero
for non-informative features and centered around the expected/true SHAP value for
x1 which is added as a red dashed horizontal line. Note the square-root y-scale which
greatly amplifies the small SHAP values for the non informative predictors.

We repeated these simulations for a sequence of decreasing SNRs and noticed
marked deviation from this unbiasedness only for very low values of SNR< 0.08.
In comparison, even a linear model fails to reliably identify the estimated slope
β1 as significantly different from zero for values of SNR< 0.05. So again, we
conclude from this subsection that the well publicised bias seems to be of concern
only in low SNR situations with poorly tuned models.

4 Real Data Analysis

The cervical cancer data set contains indicators and risk factors for predicting
whether a woman will get cervical cancer. The features include demographic
data (such as age), lifestyle, and medical history. The data can be downloaded
from the UCI Machine Learning repository and was used in [13] to illustrate
the utility of SHAP values to yield feature importance rankings, as illustrated in
Fig. 11 in the Appendix. As there appears to be a general consensus/expectation
that random forests rarely overfit [14–16] it is frequently common practice to
accept its default parameters and not spend more resources in tuning the model,
which is the case for the results in Fig. 11. On closer inspection though, these
feature attributions may reflect a fair degree of overfitting: Fig. 5 suggests that
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the optimal model is simply the baseline mean prediction and that more complex
ones fare worse on validation data. We speculate that this unexpected result is
due to the extreme imbalance of the outcome (ŷ = 0.94).
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Fig. 5. Cervical cancer data: Inbag versus out-of-bag (oob) loss as a function of the two
main tuning parameters of random forests. Somewhat surprisingly, the validation loss is
highly insensitive to the exact choices of max-depth and mtry and is in fact minimized
by the lowest complexity model, tree stumps. The baseline (mean predictions) log loss
is overlaid as a dashed brown line. (Color figure online)

To study how the bias affects SHAP values on real data, we added permuted
versions of the original features, fitted random forests with default parameters
and calculated TreeSHAP variable importance values. We applied this procedure
to the cervical cancer (see above) and Boston housing data sets. The Boston
housing dataset contains various measures related to housing for the census
tracts of Boston recorded in the 1970 census. The dataset was first published in
Harrison et al. [17] Fig. 6 shows the results on both data sets: For the cervical
cancer data, half of the top ten features are permuted ones, the two top permuted
features are the ones with highest cardinality (age and hormonal contraceptives
years) and for some features the permuted version even ranks higher than the
original (e.g. age). Thus, the top ten feature selection appears to be mostly
random, with a tendency to rank high-cardinality features high. On the other
hand, on the boston housing data, all top ten features are original features. These
results confirm our findings from the simulation studies: The bias towards high-
cardinality features is notable in low-SNR settings (cervical cancer) but does not
affect high-SNR settings (boston housing) much.
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Fig. 6. SHAP variable importance (top 10) for the cervical cancer and boston housing
data sets with original and permuted features. Permuted features are permuted versions
of the original features in the data.

5 Related Work

Strobl et al. [6] showed that variables with more categories have a higher Gini
importance. Permutation importance was also shown to be unbiased but vari-
ables with more categories have higher variance which leads to higher false pos-
itive rates for global importance measures. The authors argued that the bias is
inherent to the tree structure. Many solutions have been proposed to address
this bias, often by modifying the tree-building algorithm: Strobl et al. [6] suggest
using conditional inference trees or forests [18] and sub-sampling without replace-
ment to solve the problem. Wright et al. [8] make use of maximally selected rank
statistics to avoid the bias, whereas Loh & Shih [19] use ANOVA F-statistics.

Loecher [20] showed that SHAP values exhibit the bias just like Gini and
permutation importance in the null and power case for random forests. Adler
& Painsky [12] extended the result by showing that gradient boosting machines
exhibit the same bias in importance measures for Gini, permutation and SHAP
importance. SHAP is originally a local measure of variable importance. To use
SHAP as a global importance measure we are forced to first calculate SHAP
values for each individual observation before taking the mean of the absolute
value of SHAP values for each variable across observations [13]. An alternative
method to calculate global SHAP values is SAGE [21], which estimates Shapley
values for each variable to explain the reduction in the risk function induced by
adding this variable to a coalition of variables instead of explaining each model
prediction individually. Sutera et al. [22] shows that SAGE applied to tree-based
models is very similar to the Gini importance. Further methods to calculate
global SHAP values have been proposed [23–25]. However, as argued above the
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bias is due to the underlying tree-structure and thus, all of these methods inherit
it, as long as the tree-building algorithm is unchanged.

Through comprehensive experiments, Yasodhara et al. [26] evaluate both
the accuracy and stability of estimated global feature importance scores such
as SHAP and Gini and report disappointingly low correlations with the true
feature rankings even in the absence of added noise. When inputs or models
are perturbed, the correlations drop even lower. The authors did not investigate
the influence of uninformative variables of varying cardinality. The stability of
local explainability methods has been studied by Alvarez et al. [27] who show
that LIME [28] and (Kernel) SHAP [1] lack stability for complex black-box
models. Perhaps the most interesting take-away from these studies is the possible
coexistence of stable predictions with fragile explanations that change drastically
in response to the perturbations.

6 Discussion

SHAP variable importance measures show a bias when trying to infer an inher-
ent relationship in the data similar to the bias observed by Strobl et al. [6].
The bias towards high-entropy variables, i.e. variables with more categories and
continuous variables, is present not just for random forests, but also for trees
and XGBoost trees, suggesting that this bias is due to the tree structure itself,
as was put forward in [6]. We showed that SHAP variable importance inherits
this bias but that the signal to noise ratio (SNR) plays an important role: In
low-SNR settings, the bias is evident, up to the point where a variable with many
categories and no effect on the outcome can have a higher SHAP importance
value than a variable with few categories but an effect on the outcome. On the
other hand, in high-SNR settings, the bias is still there but its magnitude is
vanishingly small, compared to true effects and thus of no major concern for the
practitioner.

The real world examples show the importance of SNR to determining the
importance of the bias. On the cervical cancer dataset with low SNR, some of
the variables with the highest SHAP values were permuted copies with high car-
dinality. On the Boston housing dataset with high SNR, the permuted features
were not in the top ten most important features by SHAP importance. We also
showed that in the power case, careful tuning of the hyperparameters of a ran-
dom forest can effectively eliminate the bias. Picking the mtry and maximum
tree depth combination with the lowest validation error, we end up with mtry=5
and max depth=1. If we let the model have a maximum depth of 1 and let it
choose between all five variables at each split, the bias disappears.

It is important to note that the bias studied in this paper can only be con-
sidered a bias when we use variable importance measures to infer which variable
is important for some underlying relationship in the data [29]. If we are instead
interested in understanding the tree-based model itself, than this “bias” in fact
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corresponds to a true effect, as the tree-based structure does in fact use variables
with more categories more often and closer to the top of trees than variables
with fewer categories. This leads to an important distinction between biases:
A variable importance measure can be biased for identifying which variable is
important in determining the true outcome and it can also be biased for iden-
tifying which variable is important in determining the predicted outcome, i.e.
the model output. If the model to be explained is not a perfect rendition of the
underlying relationship in the data, then any variable importance measure will
exhibit one of these biases. Thus, when using a variable importance measure one
should always consider what the measure should explain, the model output or
the real-world outcome (Fig. 7).

In conclusion, recommend practitioners to consider the bias towards high-
entropy features when interpreting SHAP-based variable importance. If low pre-
diction performance on validation data indicates a low signal to noise ratio, the
bias can affect feature rankings and careful hyperparameter tuning is particu-
larly important. A strategy to detect the impact of the bias in sensitivity analyses
could be to add permuted feature copies as fake feature to the data. One step
further, one could also apply a correction method, as e.g. proposed by Nembrini
et al. [9].

Funding Information. MNW received funding for this project from the German

Research Foundation (DFG), Emmy Noether Grant 437611051.

A Appendix

Figures 7, 8, 9, 10 and 11 provide more results and additional details on the
simulations as well as the cervical cancer data.
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Fig. 7. Boxplots of SHAP variable importance for the effect case with β = (1, 0, 0, 0, 0)T

and SNR set to 0.01, 0.1 and 1, with random forest and KernelSHAP. The red dots
correspond to the ground-truth SHAP values from the data-generating linear model,
the red line is at 0. (Color figure online)
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Fig. 8. Boxplots of SHAP variable importance for the effect case with β = (1, 0, 0, 0, 0)T

and SNR set to 0.01, 0.1 and 1, with XGBoost and TreeSHAP. The red dots correspond
to the ground-truth SHAP values from the data-generating linear model, the red line
is at 0. (Color figure online)
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Fig. 9. Boxplots of SHAP variable importance for the effect case with β = (1, 0, 0, 0, 0)T

and SNR set to 0.01, 0.1 and 1, with XGBoost and KernelSHAP. The red dots cor-
respond to the ground-truth SHAP values from the data-generating linear model, the
red line is at 0. (Color figure online)
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Fig. 10. Boxplots of SHAP variable importance for a neural network with two layers
of 64 units with relu activation, Adam optimization and a linear output layer. The
first plot is for the no effect case and the second and third plots are for the effect case
with β = (1, 0, 0, 0, 0)T and SNR set to 0.1 and 1. The red dots correspond to the
ground-truth SHAP values from the data-generating linear model, the red line is at 0
(Color figure online)
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Fig. 11. left: SHAP feature importance measured as the mean of the absolute SHAP
values. right: SHAP “beeswarm” plot showing the distributions of SHAP values per
feature color coded by the sign and magnitude of the corresponding feature value. Low
number of years on hormonal contraceptives reduce the predicted cancer risk, a large
number of years increases the risk. (Random Forest with default parameter settings,
ntree = 100) (Color figure online)
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Abstract. Phenotyping is essential in medical research, as it provides
a better understanding of healthcare problems owing to the fact that
clinical phenotypes identify subsets of patients with common charac-
teristics. Subgroup discovery (SD) appears to be a promising machine
learning approach because it provides a framework with which to search
for interesting subgroups according to the relations between the individ-
ual characteristics and a target value. Each single pattern extracted by
SD algorithms is human-readable. However, its complexity (the number
of attributes involved) and the high number of subgroups obtained make
the overall model difficult to understand. In this work, we propose a
method with which to explain SD, designed for the clinical context. We
have employed a two-step process in order to obtain SD model-agnostic
explanations based on a decision tree surrogate model. The complexity
involved in evaluating explainable methods led us to adopt a multiple
strategy. We first show how explanations are built, and test a selection
of state-of-the-art SD algorithms and gold-standard datasets. We then
illustrate the suitability of the method in a clinical use case for an antimi-
crobial resistance problem. Finally, we study the utility of the method
by surveying a small group in order to validate it from a human-centric
perspective.

Keywords: Explainable artificial intelligence · Subgroup discovery ·
Biomedical informatics

1 Introduction

Although explainability is a term that predates this century, there is now an
increasing interest in explainable artificial intelligence (XAI). Much of the work
in this field revolves around classification and Deep Learning techniques, while
some areas - such as unsupervised and semi-supervised learning - are barely
explored.

This is the case of subgroup discovery (SD) [15,36], a family of descriptive
induction algorithms that find subgroups of interesting members of a particular
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population with regard to a certain characteristic (target attribute). SD tech-
niques are, in practice, particularly helpful in biomedical science for the purpose
of patient phenotyping, i.e. the characterisation of groups of patients given their
traits and clinical evidence [9,12,25]. However, from the XAI point of view, the
main limitations as regards making SD outcomes understandable are the volume
of subgroups obtained and their complexity (the number of descriptors involved
in order to define each pattern discovered). In this work, we tackle both aspects
of the problem with the objective of providing a more compact and understand-
able representation of the whole SD model. The main contributions of this paper
are the following:

– A new SD model-agnostic explanation method based on a global surrogate
model.

– The evaluation of the explanatory SD capacity of our proposal: (1) using
gold-standard datasets, (2) illustrating the utility of the proposal with a real
clinical phenotype problem concerning infectious diseases, and (3) carrying
out an empirical survey analysis to study subjective human satisfaction.

The paper is organised as follows. In Sect. 2, we introduce the background
knowledge and the notation used. The SD explainer is described in Sect. 3, while
Sect. 4 shows the preliminary experimental results obtained with synthetic data,
a proof of concept in the antimicrobial infection domain and a study of the use-
fulness of our proposal by means of a survey. Finally, Sects. 5 and 6 respectively
provide a discussion of the results obtained and our conclusions.

2 Background

2.1 XAI Methods and Healthcare

In XAI, it is possible to distinguish between model-specific and model-agnostic
explanations. The objective of the former is to explain the model itself and can
be understood as explainability by design, whereas model-agnostic explanations
are independent of the model. Model agnostic methods are post-hoc, i.e. we first
train a machine learning (ML) model and we then attempt to explain it by
considering the outputs of that model.

An example of a model-agnostic technique is the global surrogate model,
which consists of approximating the results obtained by a black box using a sim-
ple and intrinsically interpretable model [24]. We first train the original (black
box) model, and the outputs obtained are then used to train the interpretable
model, after which it is necessary only to study the interpretable model. Sim-
ilar works have already been carried out using this approach in the context of
explaining neural networks [6].

Given the importance of transparency in the healthcare domain, there has
been a growing interest in improving the explainability of opaque yet powerful
models, such as random forests [20] and different types of artificial neural net-
works [13,22]. The use of model-agnostic methods, such as local explanations
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provided by LIME [30] or SHAP [21], makes it possible to both maintain high
accuracy in the system and provide approximate explanations of the reasoning.

Although the aforementioned methods have yielded relatively good results,
they are designed to explain classification tasks. We are, therefore, of the opin-
ion that the current state of the art lacks an exploratory analysis of descriptive
methods, and believe that a promising approach would be to adapt the philoso-
phy of the global explanations to these methods. The use of a global surrogate
approach might, for example, make it possible to gain further insights into the
relations between the data and the output, which is exactly what doctors require
when SD is explained to them.

Decision trees have been adopted by the healthcare community as a graphical
method with which to express most of the medical decisions described in clinical
guidelines and protocols [27]. The later success of decision tree algorithms in
the 1990s s contributed to these structures becoming gold standards for clinical
knowledge extraction using ML [29]. Clinicians’ familiarity with decision trees
helps to answer questions about the importance of features, data distribution
and the output (subgroups) obtained [8].

Other models that could be considered as surrogates are the state-of-the-art
algorithms designed with the philosophy of being interpretable and transparent.
Generalized linear rule models [35] generate a linear combination of interpretable
rules for classification and regression using column generation to deal with the
explosion of possible conjunctions/disjunctions of the rules. Similarly, in [7], an
algorithm with which to construct rules in conjunctive and disjunctive normal
forms, denominated as boolean decision rules via column generation, is pre-
sented. However, both methods generate a set of rules rather than compacting
all the information into a single structure.

2.2 Subgroup Discovery

SD can be defined [15,36] as a ML task at the intersection of predictive and
descriptive modelling [26] whose objective is to discover the most interesting
subgroups within a given population according to a certain set of characteristics
of interest and to a target variable.

In this work we provide the following conventions based on [3]:
Given a dataset D = (I,A) where I defines the set of individuals and A =

{a1, . . . , am} is the set of attributes, a selector condition sc describes a constraint
on the values of an attribute ai ∈ A of the dataset.

A selector is a function ssc : I → Boolean that returns True if an individual
i ∈ I of the dataset has the characteristics described by the selector condition
sc.

A pattern P is a finite set of selectors P = {s1, . . . , sl}, interpreted as a
conjunctive or disjunctive form. For the sake of simplicity, in this work we restrict
the patterns to their conjunctive form.

A subgroup is a 2-tuple SG = (P, st), where P is a pattern and st is a selector.
The subgroup can be interpreted as an IF-THEN rule. For example, given the
selector condition st = (susceptibility = Resistant) and the pattern P = {age >
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35, culture = EnterococcusFaecium} the following subgroup can be defined:
IF (age > 35 ∧ culture = EnterococcusFaecium) THEN susceptibility =
Resistant. Given a dataset D = (I,A) and the subgroup SG = (P, st), the
instances of a subgroup are formalised as SG(·) = {∀i ∈ I|ssc(i) = True,∀sc ∈
P}. It is worth mentioning that SG(·) also includes false positive instances, that
is i ∈ I where st(i) = False.

The interest of a subgroup is computed by employing a quality function
qf(P,D) ∈ R

+ that maps every pattern P in the search space onto a real number
that reflects the quality of the subgroup. For example, in Eq. (1) we formalise
the weighted relative accuracy (WRAcc) [16], a widely used quality measure
that provides a trade-off between the generality and distributional unusualness
of the subgroup [5,17]. The first part of the product refers to the support of the
subgroup, whereas the second refers to the relative accuracy, i.e., the accuracy
minus the proportion of (true and false) positives instances.

WRAcc(SG) =
|SG(·)|

|I| ·
( |{∀i ∈ SG(·)|st(i) = True}|

SG(·) − |{∀i ∈ I|st(i) = True}|
|I|

)
. (1)

2.3 SD Algorithms and Explainability

SD algorithms generally follow a top-down search approach in order to find sub-
groups of interest. The algorithm starts from the most basic subgroup descrip-
tions, and explore the search space by specialising the most promising subgroup
descriptions. According to [31], it is possible to distinguish between exhaustive
and beam search approaches. For reduced data sets, the whole space is often
traversed using adapted versions of frequent pattern mining algorithms, such as
SD-MAP [4], Dp-Subgroup [11] or BSD [18]. If an exhaustive search is not
possible (owing to, e.g., certain medical problems), beam search is frequently
adopted in order to explore only a portion of the vast space of solutions by
relying on heuristics such as SD [9], CN2-SD [17] or SD4TS [25] algorithms.
Finally, other local-search strategies, such as evolutionary techniques [34], have
also been considered.

To the best of our knowledge, little attention is paid to SD algorithms and
explainability principles. In [19], the utility of employing SD strategies to provide
model-agnostic local (or even global) explanations for recommending systems is
discussed. However, rather than use SD to explain other more complex systems,
we are interested in studying how explainable is SD itself.

Some proposals use ontologies to generate Subgroup explanations [32,33].
In these works, a SD algorithm is first used to obtain subgroups, after which
the dataset is labelled with the subgroups that cover each example, an algo-
rithm ranks the attributes according to their capability to discriminate between
subgroups and, finally, a semantic SD algorithm is applied, taking more generic
ontology terms as characteristics and the induced subgroups as the target. Other
than this approach, as far as we know, there is no literature regarding SD explain-
ability that does not rely on additional knowledge.
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3 Methods

In this section, we propose an approach with which to explain SD: the Subgroup-
Explainer methodology, which can be summarized as follows: (0) We apply a SD
algorithm. Any algorithm can be used without restrictions, since our proposal
is model agnostic; (1) the dataset is automatically labelled, according to the
subgroup coverage of the examples; (2) the surrogate model is learnt from the
labelled dataset taking the newly created label as the target attribute. This will
build an explainable model for the dataset that has the objective of helping to
interpret the SD task. The key elements of the SubgroupExplainer methodology
are shown in Fig. 1.

Fig. 1. Intuitions of SubgroupExplainer methodology

The first step in our methodology with which to explain SD is that of
labelling each instance of the dataset according to the subgroups to which the
instance belongs. The fact that an instance belongs to each of the k induced
subgroups can be expressed as a k-dimensional boolean label, where true in i
signifies that the instance belongs to the i-th subgroup and false is the opposite,
with i ∈ 1..k.

Formally, let SSG = {SG1, . . . , SGk} be the set of subgroups discovered by
a SD algorithm from a given dataset D(I,A). We temporally label the dataset
by adding to A a new k-dimensional binary attribute L′ = (l′1, . . . , l

′
k) which

expresses the fact that the individual i ∈ I belongs to the subgroup SGj ∈ SSG

(Eq. (2)). We then transform the vector of labels L′ into a single label L, using
a label powerset. Working with binary numbers, this equates to transform each
label l′j of the vector L′ into one-hot encoding with a 1 bit in the position j if
the instance belongs to subgroup j and then sum all of them, getting then a
single binary string L in which, consequently, a 1 in the position j means that
the instance belongs to subgroup j and a 0 means the opposite. Finally, we label
the dataset, D′ = (I,A ∪ L) (Eq. (3)).
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l′j(i) =
{

1 if i ∈ SGj(·)
0 otherwise (2)

L(i) =
k∑

j=1

l′j(i)
j (3)

The second step consists of building a global surrogate model in order to
explain SD outcomes. This methodology specifically employs a decision tree,
which is a human-interpretable graphical model that has been widely used by
clinicians to represent medical decision knowledge and can potentially be interac-
tive and improved by using visual tools to make it more user-friendly. Moreover,
the tree will make it possible to visualise the overlapping between subgroups,
as the instances that belong to multiple subgroups will be represented by their
own branches on the tree.

Although the SubgroupExplainer methodology states that any decision tree
algorithm can be used, we illustrate the suitability of our approach by using the
CART algorithm [10]. This decision was motivated by the binary nature of the
selectors, which allows them to be used as splits for a binary tree.

We propose a new strategy with which to simplify and accelerate the con-
struction of the tree described in Algorithm1 using the information obtained
from the subgroups. The algorithm considers only as possible splits for the nodes
the selectors present in the subgroups, and we have prioritised the use of splits
(selectors) that are present in generic subgroups (the one with fewer selectors).
We additionally decided to split each node using the selector with the high-
est WRAcc rather than computing the Gini impurity or entropy of the possible
splits, thus giving the splits a semantic sense closer to that of the SD framework.
When Gini is employed, the branching maximises the classification accuracy of
a random instance, whereas our proposal distinguishes between those examples
that (according to the WRAcc) belong to the best one-selector subgroup and
those that do not.

4 Experiments

Explainable AI is a multi-disciplinary field that involves computer science,
human-computer interaction and social sciences [23], signifying that a more
complex evaluation that is not limited to numerical experiments is required.
Our evaluation method, therefore, comprised three stages: (1) the scalability
and computational properties of the proposal were studied using various SD
algorithms and gold-standard datasets commonly used in the SD domain, as
shown in Sect. 4.1; (2) the suitability of the method was studied by employing
it in a clinical use case for an antimicrobial resistance problem, as described in
Sect. 4.2, and (3), since the ultimate goal of XAI is for it to be understood by
actual people, the utility of the method was studied by surveying a small group
in order to validate it from a human-centric perspective, as explained in Sect. 4.3.
The results obtained are preliminary and will be discussed in Sect. 5.
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Algorithm 1. Selection of the SD-split attribute
Input: D′, qf , Output � Labeled dataset D′, a quality function qf , the set Output
of subgroups founded by the black-box algorithm
Output: split � Split attribute

1: SSG ← ∅ � List of all possible one-selector-pattern subgroups of D
2: S ← ∅
3: L ← Set of all feasible labeled-classes � Target-value tuples
4: i ← 1
5: repeat
6: S ← selectors present in patterns of Output whose length = i
7: if S �= ∅ then
8: ∀s ∈ S, ∀l ∈ L, add SG = (s, l) to SSG � “IF s THEN l”
9: (s, l) ← arg maxSG∈SSG

qf(SG, D′) � “best pattern subgroup”
10: split ← s
11: return split
12: else
13: i ← i + 1

14: until length(out) < i, ∀out ∈ Output
15: return ∅ � No possible split was found

Table 1. Dataset description

Dataset |D| Categorical Numerical Dataset |D| Categorical Numerical

autoMPG8 392 0 6 abalone 4177 0 8

dee 365 0 6 puma32h 8192 0 32

ele-1 495 0 2 elevators 16599 0 18

forestFires 517 0 12 bikesharing 17379 2 10

concrete 1030 0 8 california 20640 0 8

treasury 1049 0 15 house 22784 0 16

With regard to SD algorithms, we selected a local search strategy, since these
strategies perform better than exhaustive search algorithms in large databases,
such as those used in biomedical and healthcare domains. We specifically selected
SD, CN2-SD and SD4TS. The last two algorithms are implemented in the
Pyhton3 library Subgroups1, whereas the already the SD algorithm already
implemented was improved in terms of execution time efficiency and the qual-
ity of the subgroups found. The other experiments were implemented outside
Subgroups, in a separate repository2.

4.1 Performance and Scalability

The aim of these preliminary experiments was to understand the performance
and scalability of our proposal in terms of the complexity of the explanation
1 Available at PyPI, https://pypi.org/project/subgroups/.
2 Available at GitHub, https://github.com/Enrique-Val/SubgroupExplainer.

https://pypi.org/project/subgroups/
https://github.com/Enrique-Val/SubgroupExplainer
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model - studying the size, branching and complexity of the tree - and its relation
to: (1) the SD Algorithm selected, and (2) the characteristics of the subgroups
obtained. The study was essential in order to attain a first impression of the
usefulness of the tree from a computational perspective. A further evaluation
will be carried out in the following sections.

The experiments were carried out using 12 gold-standard datasets for SD
analysis [28], which are available in the Keel repository [1] and have a wide
range of examples and features. The description of the datasets is summarised
in Table 1. While most of them are not related to the healthcare domain, these
datasets allowed us to study the viability of our algorithms in numerical terms
(number and size of subgroups, size of the trees...). The datasets selected are
intended to be used in regression tasks, and the target attribute is, therefore,
numerical (discrete or real). However, we are interested in classification tasks
with a discrete target for our use case and thus we grouped all the possible
values of the target into five equal-sized bins that would be used as the new
target attribute.

As stated previously, all of the three algorithms selected (SD, CN2-SD,
SD4TS) use a beam search to traverse the space of solutions, but they require
different parameters and use diverse quality measures that shape how the algo-
rithms behave in different manners. The most noteworthy divergence concerns
the quality function. SD uses the Qg quality function, whose parameter g allows
a trade-off between general and specific subgroups, while CN2-SD uses a mod-
ified version of the WRAcc that considers example weighting (referred in this
work as WRAcc’). In [25], the algorithm SD4TS use a domain-specific qual-
ity measure, but in our experiments we selected the WRAcc. The selection of
parameters is summarised in Table 2.

Since the size of the tree can sometimes grow rapidly, we decided to add an
input parameter min split to the tree. This parameter specifies the minimum
number of samples of the total dataset that a node should contain in order to
be split. If min split = 0, we will split each node regardless of the number of
examples that it contains and, as a result, the leaf nodes of the tree will be
completely pure, whereas if min split ≥ 0 some leaf nodes might be impure
(contain instances with a different label L), but the number of nodes might
decrease. This provides an interesting trade-off between accurate trees and small
trees that will be discussed in the following sections.

Table 2. Algorithms and parameters used

Algorithm Quality measure Beam width Min. support Weighting scheme

SD Qg (g = 10) 20 15% None

CN2-SD WRAcc’ 3 None (0%) Multiplicative (γ = 0.3)

SD4TS WRAcc 20 15% None



442 E. Valero-Leal et al.

The results of the experiments are depicted in Tables 3 and 4. The study
parameters regarding SD will be the number of induced subgroups |SSG|, the
total number of selectors |S| of the set SSG, the number of non-repeated selectors
of S, namely |Su|, and the mean cardinality of the subgroups card = |S|

|SSG| . The
study parameters of the tree, will be the number of nodes (T ), the depth of the
tree (Depth), the depth of the shortest branch of the tree (Min depth) and a
purity ratio (Purity), which is a measure that we defined as the proportion of
examples of the training set that have been perfectly classified, i.e. the number
of instances that attain a pure leaf node that label them correctly divided by the
total number of instances. Two trees will be generated for each SD algorithm:
one with the parameter min split set to 0 and the other with a min split value
of 0.05, thus allowing for some degree of impurity in the leaf nodes.

Table 3. Results (1)

Dataset SG alg. SG metrics min split SGExplainer metrics

|SSG| |S| |Su| card |T | Depth Min depth Purity

autoMPG8 SD 20 117 9 5.85 0 9 5 2 1.0

0.05 9 5 2 1.0

CN2-SD 24 63 33 2.62 0 413 17 5 1.0

0.05 73 13 4 0.16

SD4TS 20 67 13 3.35 0 5 3 2 1.0

0.05 5 3 2 1.0

dee SD 20 112 10 5.6 0 9 5 2 1.0

0.05 9 5 2 1.0

CN2-SD 24 68 33 2.83 0 457 17 5 1.0

0.05 79 12 4 0.09

SD4TS 20 68 11 3.4 0 59 8 4 1.0

0.05 43 8 3 0.81

ele-1 SD 11 20 4 1.82 0 17 5 3 1.0

0.05 17 5 3 1.0

CN2-SD 29 59 15 2.03 0 49 9 3 1.0

0.05 49 9 3 1.0

SD4TS 20 55 7 2.75 0 13 5 2 1.0

0.05 13 5 2 1.0

forestFires SD 20 25 16 1.25 0 455 15 5 1.0

0.05 91 15 3 0.09

CN2-SD 29 84 56 2.9 0 953 22 6 1.0

0.05 93 12 4 0.01

SD4TS 20 27 19 1.35 0 671 14 6 1.0

0.05 65 8 4 0.0

concrete SD 20 88 8 4.4 0 49 8 3 1.0

0.05 39 7 3 0.9

CN2-SD 38 107 40 2.82 0 945 19 5 1.0

0.05 73 9 4 0.0

SD4TS 20 26 17 1.3 0 711 14 6 1.0

0.05 65 8 4 0.0

treasury SD 20 117 24 5.85 0 21 8 2 1.0

0.05 15 8 2 0.97

CN2-SD 19 51 39 2.68 0 273 21 4 1.0

0.05 97 16 3 0.34

SD4TS 20 25 20 1.25 0 127 16 4 1.0

0.05 57 16 3 0.82
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4.2 Use Case: Patient Phenotype

The objective of this use case is to identify potential patient phenotypes of
antimicrobial resistance. In this problem, we analyse the increase in its Mini-
mum Inhibitory Concentration (MIC). The MIC is the lowest concentration of
a chemical that will inhibit the growth of a microorganism, and they are con-
sidered highly important when determining the susceptibility of bacteria to an
antibiotic [2].

Table 4. Results (2)

Dataset SG alg. SG metrics Min split SGExplainer metrics

|SSG| |S| |Su| card |T | Depth Min depth Purity

abalone SD 20 96 14 4.8 0 9 5 2 1.0

0.05 9 5 2 1.0

CN2-SD 35 95 40 2.71 0 945 22 5 1.0

0.05 135 18 3 0.32

SD4TS 20 20 20 1 0 425 13 5 1.0

0.05 51 13 3 0.61

puma32h SD 20 61 5 3.05 0 21 6 3 1.0

0.05 21 6 3 1.0

CN2-SD 40 84 37 2.1 0 12097 26 6 1.0

0.05 49 9 3 0.0

SD4TS 20 21 12 1.05 0 351 10 6 1.0

0.05 69 10 4 0.28

elevators SD 20 111 8 5.55 0 9 5 2 1.0

0.05 9 5 2 1.0

CN2-SD 53 150 63 2.83 0 20757 30 6 1.0

0.05 89 13 3 0.0

SD4TS 20 20 20 1.0 0 135 9 5 1.0

0.05 49 9 3 0.84

bikesharing SD 20 72 8 3.6 0 5 3 2 1.0

0.05 5 3 2 1.0

CN2-SD 20 48 22 2.4 0 309 13 3 1.0

0.05 63 10 3 0.58

SD4TS 20 57 7 2.85 0 7 4 2 1.0

0.05 7 4 2 1.0

california SD 20 35 11 1.75 0 471 12 6 1.0

0.05 77 12 3 0.4

CN2-SD 47 115 45 2.45 0 5075 23 6 1.0

0.05 79 10 4 0.0

SD4TS 20 51 8 2.55 0 65 7 3 1.0

0.05 25 7 3 0.79

house SD 20 83 9 4.15 0 169 10 3 1.0

0.05 39 8 3 0.63

CN2-SD 62 164 71 2.65 0 40335 33 6 1.0

0.05 85 13 4 0.0

SD4TS 20 51 8 2.55 0 65 7 3 1.0

0.05 25 7 3 0.79
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For the sake of reproducibility, in this research we used a dataset obtained
from the public database MIMIC-III [14], which integrates information from the
health records of over 60,000 admissions. The dataset used contains 1280 sam-
ples that represent medical episodes. These contain clinical information about
the episode registered, such as the sex and age of the patient, the month, year and
season of the medical episode, the episode ID (the same patients that have the
same episode ID) or the duration of the episode. Key attributes of the dataset
are: (1) Microorganism: the bacteria observed in the study of the MIC; (2)
Susceptibility: the microbiological study of the reaction of bacteria to an antibi-
otic; (3) MIC Increases: whether or not the Minimum Inhibitory Concentration
increases. If it increases, this means that the susceptibility was lower in a previ-
ous observation, and (4) Culture service: the hospital service (ICU, cardiology,
etc.) that requested the bacterial culture used in the study. The problem falls
in the category of binary classification, as we are interested to study if the MIC
increases or not.

Table 5 provides a summary of the dataset used for the experiments. The
EiD column shows the duration of the patient episode in days.

Table 5. Dataset: Minimum inhibitory concentration (only 2 rows shown)

Sex Age Season Month Year Episode Id Microorganism EiD Susceptibility MIC increases Culture service

F ELDERLY SPRING 6 2015 10119 S. EPIDERMIDIS 1 SENSIBLE Yes TRA

M ADULT SUMMER 8 2016 12731 S. COAGULASA NEG 1 SENSIBLE No ORL

. . . . . . . . . . . . . . . . . . . . . . . . .

We are interested in studying the subgroups of a population in which there
is a high chance of a microbiological resistance being developed. We use the
CN2-SD algorithm instead of the less sophisticated SD and SD4TS. According
to our experiments (see Sect. 4.1), CN2-SD tends to induce subgroups with a
higher variety of non-repeated selectors. We used the same parameters as in the
previous section (see Table 2). In addition, we focused the search ton only look
for subgroups with the target MIC Increases = yes rather than subgroups with
any target value, since we were specifically interested in defining the population
in which the resistance is prone to appear. This can be easily done in CN2-SD,
since it launches an individual beam search procedure for every target value. As
shown in Tables 3 and 4, the use of CN2-SD algorithm results also in larger tree
sizes, and we accordingly placed the threshold of instances on a node for it to be
split by 5%. The numeric results and subgroups obtained can be seen in Table 6,
while a visual representation of the tree is shown in Fig. 2.
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Table 6. MIC detection results

SG metrics Min split SGExplainer metrics

|SSG| |S| |Su| card |T | Depth Min depth Purity

4 12 7 4.95 0 17 7 3 1.0

0.05 15 7 3 0.98

IF microorg not E. FAECALIS, microorg not E. FAECIUM AND
microorg not MARSA THEN MIC Increases
IF age not NEWBORN, microorg not S. AUREUS, microorg not S.
COAGULASE NEG. THEN MIC Increases
IF microorg not E. FAECALIS, microorg not MARSA, microorg not
S. EPIDERMIDIS THEN MIC Increases
IF microorg not E. FAECIUM, microorg not S. AUREUS, microorg
not S. EPIDERMIDIS THEN MIC Increases

4.3 Human Subjective Study

Interpretations are social [23] and thus have a strong cognitive and subjective
factor. The usefulness of an interpretation can depend on many variables, such
as the users’ academic background, their cognitive abilities or their knowledge of
ML and statistics. It is insufficient to study the characteristics of an explanation
by simply looking at the numbers obtained. We, therefore, decided to carry out

Fig. 2. SD explanation tree: global surrogate model
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a survey that would allow us to study the efficacy of a decision tree with which
to explain SD.

The study was carried out with a total of 18 participants, most of whom
(90%) had University studies and were between 18 and 25 years old. Furthermore,
70% of the respondents had a background in Computer Science and 55% of them
(a third of the total population) had knowledge of Artificial Intelligence and ML.
However, SD is a highly specific task that is not usually taught at universities,
and is, therefore, known only by ML practitioners.

In the survey, we first provided an intuitive explanation of what a subgroup
and SD are, and the idea of SubgroupExplainer, after which we presented a set
of five subgroups and posed a control question in order to validate whether the
respondents had understood what the key concepts of SD are. Two thirds of the
population understood the intuitive concept of subgroup, while the other third
assumed that the members of a subgroup always had to have the value of the
target specified by the subgroup description (which, although desirable, does not
always hold true).

Three SubgroupExplainer trees were then presented, each with a different
threshold with which to divide a node. The first had no threshold, in the second,
a node had to have at least 15% of the examples and in the third, 30%. There
were two questions for each tree regarding whether an individual belonged to the
subgroups presented, showing descriptions of both the subgroup and the tree.
Domain-specific and more subjective questions, such as identifying key features,
were not included, since we were focusing on the actual comprehension of the
subgroups. After this objective question, we then asked the users whether they
found the tree helpful, complete (the tree is sufficient to be able to visualise and
classify the subgroup) and simple, rating each tree along these axes on a scale
of 1 to 5, where 1 was “Not at all” and 5 was “Very”.

With regard to the objective question, the percentage of correct answers
varied depending on the tree: (1) in the case of the first, 86% of the answers
given were correct once the average for the two questions had been obtained;
(2) in that of the second, 94% of the respondents answered correctly, and (3), in
that of the third, 17% answered the first question correctly and 94% answered
the second correctly (an average of 56%).

With regard to the subjective evaluation of the explanation, the results are
shown in Table 7, in which the overall results and the answers given by AI/ML
practitioners are separated. As will be noted, the average user prefers a tree with
a certain trade-off between node purity and tree size (second tree). In contrast,
AI students prefer a precise tree, even if it has more nodes. They actually rate
the precise (first) tree as being less simple than the second, despite the fact that
the second has more nodes. Both groups rate the highly-pruned tree (the third)
as being the least helpful, complete and simple, showing that, overall, a more
accurate tree is preferred to a small one.
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Table 7. Summary about the mean user experience with the SubgroupExplainer trees.

Polled Tree Helpful Complete Simple Mean
help.-simple

Mean
compl.-simple

All No min. samples 4.94 4.56 4.06 4.5 4.32

Min. samples = 15% 4.89 4.61 4.28 4.58 4.44

Min. samples = 30% 4.06 3.89 4 4.03 3.94

AI/ML knowledge No min. samples 4.83 4.33 4.33 4.58 4.33

Min. samples = 15% 4.83 4.33 4 4.42 4.17

Min. samples = 30% 4.33 3.83 3.83 4.08 3.83

5 Discussion

5.1 Scalability of the SD Algorithms

With regard to the results of the scalability analysis described in Tables 3 and 4,
it is worth noting that the CN2-SD discovers more subgroups because it is not
limited to 20 subgroups, as opposed to SD and SD4TS. While the algorithm
that generates more or less selectors is dependent on the dataset, it will be noted
that the variety of selectors induced is always higher in CN2-SD, and that the
SD algorithm discovers subgroups with a higher selector cardinality in 9 out of
12 experiments.

5.2 Decision Trees as Explainers

The trees built with the subgroups obtained with CN2-SD are the largest, while
those obtained with SD have a slight tendency towards being the smallest. In
the cases, the trees tend to be very imbalanced - that is, there is a considerable
difference between the longest and shortest branch. As expected, the purity ratio
when min split is set to 0 is maximum, since all the nodes are pure and the tree
perfectly classifies the instances into subgroups. When min split is set to 0.05
the trees that have a higher number of nodes are those that are reduced the
most, possibly owing to an inefficient branching that occurs when attempting to
classify very specific and unique instances. The reduction in the size of the tree
comes at the cost in its Purity, which tends to be higher in the trees obtained
with the CN2-SD subgroups.

In the case of the relation between the characteristics of each set of subgroups
obtained and the trees, it is possible to observe that the size and depth of the
tree is independent of the number of subgroups induced and the cardinality.
Although we cannot state that there is a clear dependence between the number
of unique selectors and the size of the tree, the probability of the tree growing
larger seems to be higher when the number of unique selectors is also large.

Our use case (Sect. 4.2) proves the potential of compacting all the subgroups
are compacted into a single tree. It helps to highlight the attributes that make
it possible to better discriminate between subgroups, which are the attributes
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that are in a higher position in the tree and that are selected more frequently as
split. This specific use case shows us that if the microorganism is an Enterococcus
Faecalis or MARSA, the individual will not belong to subgroups 0 and 2.

Visualising the tree makes it possible to see the imbalance previously iden-
tified in Sect. 4.1. The tree contains only 15 nodes, a quantity of information
that is usually easy to handle, but the imbalance makes the tree look large and
complex, thus potentially limiting the explanation.

5.3 Understanding of the Subgroups by Humans

Concerning the opinions gathered from the users in Sect. 4.3, we highlight that
most people find it difficult to understand the fact that an individual may belong
to two subgroups. The tree can be helpful as regards solving this problem, as it
can explicitly show that an individual with certain characteristics can belong to
multiple subgroups.

The AI/ML practitioners’ preference for the larger (although more accurate)
decision tree can be explained by their greater familiarity with ML models. Anal-
ogously, non ML students have favoured a smaller tree for the sake of simplicity,
even if it was not as accurate because it is a completely new concept for them.

6 Conclusions

The objective of this paper is to provide clinicians with tools that will allow them
to better understand SD algorithms and their outcomes for patient phenotyping.
We propose SubgroupExplainer, a methodology that provides SD model-agnostic
explanations. This method is based on the hypothesis that decision trees are an
effective approach by which to provide global surrogate explanations for medical
problems. We have evaluated the suitability of our proposal by studying the ML
pipeline and by providing a clinical use case and a human-centric analysis.

Unlike the state-of-the-art approaches [32,33], SubgroupExplainer does not
require additional knowledge (ontologies) in order to generate explanations. As
a result, the subgroup explanations might be less compact than those obtained
using higher level concepts of an ontology, but structuring the partition of the
space in a tree-like form is still helpful as regards understanding the data and
the subgroups.

While interviewing clinicians would have been more helpful for our study,
the results obtained with our current sample are still helpful in order to validate
the usefulness of the explanations of SD.

In future research it will be necessary to analyse both the explanatory poten-
tial of n-ary decision trees, as well as looking for correlations between the char-
acteristics of the subgroups and the size of the tree. Even if subgroup discovery
is not strictly designed for classification, a comparison between the accuracy of
the subgroups and the surrogate tree would be another method to examine its
fidelity. A baseline comparison with a tree whose split are found using the Gini
impurity would also be a valuable addition. The trees could be further improved
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by using visual and interactive keys, such as colouring the nodes and branches
and allowing user interaction. From a practical perspective, we plan to extend
the study to clinicians working in MIC detection or related problems.
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1 Lab-STICC UMR CNRS 6285, École Nationale d’Ingénieur de Brest, Brest, France
{boidot,augereau,deloor}@enib.fr
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Abstract. EXplainable AI (XAI) was created to address the issue of
Machine Learning’s lack of transparency. Its methods are expanding, as
are the ways of evaluating them, including human performance-based
evaluations of explanations. These evaluations allow us to quantify the
contribution of XAI algorithms to human decision-making. This work
performs accuracy and response time measurements to evaluate SHAP
explanations on an e-sports prediction task. The results of this pilot
experiment contradict our intuitions about the beneficial potential of
these explanations and allow us to discuss the difficulties of this evalua-
tion methodology.

1 Introduction

Machine Learning (ML) has made significant progress in the last decade, not just
in research, where beating “state-of-the-art algorithms” has become a standard,
but also in business. Its use is becoming commonplace, as shown by the growing
need for regulation [10]. However, employing these models frequently entails
putting a process under the control of a black box: an algorithm whose behavior
is unknown to the user [11]. A data scientist can look back on the behavior of his
model. However he will rarely be able to specify the role of each parameter in his
model, let alone guarantee the calculation’s logic. However, not all operations
may be left in the hands of a black box for reasons of control, safety, trust, or
legal liability: in industries such as medicine, banking, and the military industry,
models are needed to provide not only results but also a valid interpretation of
those results [3,24]. Explainable Artificial Intelligence (XAI) is a field of study
that has grown in popularity in recent years to address these demands.

Depending on the specific ML framework or model, one will find various XAI
methods, given that many methods try to be compatible with any model. This
variety of methods matches the variety of goals of XAI, and questions about users’
needs should be asked before one chooses a method. Do the explanations convey
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accurate representations, and helpful information? Is the user overloaded by infor-
mation or put off by its formulation? Algorithmic properties of the methods can
be studied but the effects these explanations will have on different persons remains
uncertain. That is partly because the graphical presentation of the explanations
and interface ergonomics can interfere with these effects.

XAI therefore requires the implementation of explanations’ evaluations in
order to know whether the explanations produced the desired effects. One
such evaluation technique is human task performance evaluation, also called
application-grounded evaluation, which is one of the techniques that involve
humans in the loop. In this work, we consider the user an expert without ML
knowledge: explanations have to support their decision-making process. Evalu-
ating the usefulness of XAI methods by measuring performance requires a given
framework: a task, training data, a human operator, and an ML model intended
as a decision aid.

The model is trained using the data, and the user makes decisions based on
AI guidance and its own understanding of current data. The decision support
system can thus be limited to provide the result of the model on the current
data, or it can be complemented by additional information-rich interfaces in the
XAI framework.

Accuracy is the main metric for binary decision, and decisions are made
sequentially so that we can measure speed. Using these performance criteria,
we compare the results of decisions made with and without explanations. This
performance analysis should provide a quantifiable determination of the quality
of human decision-making.

Hoffman et al. proposed different evaluation techniques in their review [14],
and measuring performance is the closest to the human agent’s actual use. That
is why we find it valuable, and we want to apply it to simple data (i.e., tabular)
and a simple task format: binary classification.

In this paper, we attempt to evaluate a popular XAI method, SHAP [21],
on a simple task: predicting the outcome of an e-sports match. E-sport offers us
possibilities because a lot of players could be treated as experts: we can hope to
generalize results to other domains’ expert explanations. On top of that, we can
easily find open data about this game.

Our goal is to predict which of the two teams will win, using event sum-
mary data from the first few minutes of a League of Legends match. This task
sets the stage for our performance evaluation. Our XAI system measures the
accuracy and speed with which human users respond. The difference between
human performance from data and an ML analysis explained by SHAP vs. per-
formance without explanation should establish an evaluation of SHAP’s influence
on decision-making for our task with our interface.

The rest of the article is organized as follows: Sect. 2 presents the state of
the art in XAI, focusing on its evaluation techniques, with the work of Jesus
et al. [15] that we partially replicate. Section 3 describes our expectations of the
results and the methodological framework used. Section 4 reports our results,
which are then discussed more broadly in Sect. 5 before concluding in Sect. 6.
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2 State of the Art

The explainability of ML models can be approached in different ways. It can be
seen as the global explanation of a model’s functioning, or as a process that seeks
to explain the output of a model for a particular input. This study fits into the
general “post-hoc” explanation framework [1], which consists in developing an
explanatory method for models already designed and trained without concern
for interpretability (as opposed to the development of transparent models). We
can distinguish the following explanation methods: features importances [25],
counterfactuals explanations [27], prototypes [2], model simplification [4], textual
explanations [8] and model visualization [18]. These categories are not mutually
exclusive: we can find methods at the borders of two categories [16].

One of the most famous XAI methods is SHAP [21], a post-hoc explanation
method by feature importance, designed for local analysis (but it can be used for
global explanation). It uses calculations from game theory to determine the pos-
itive or negative contribution of each input feature to each individual outcome.
This method is particularly popular for explaining tree-based models, thanks to
an optimized implementation that circumvents the computational costs of the
method [20].

2.1 Evaluation of XAI

In addition to creating explanatory methods, one must also be concerned with
their evaluation. One of the ongoing problems in XAI field is the lack of a
fixed definition of what an explanation should be [9]. This problem is due to
the subjective essence of explanations, the diversity of situations in which they
are used, and the numerous and potentially conflicting objectives (simplicity,
fidelity, completeness) they may pursue from one context to another. In partic-
ular, this context includes the nature of the target audience of the explanation
(data scientist, layperson, application domain expert, or auditor). The methods
created have therefore generally been evaluated more qualitatively than quan-
titatively [6,22]. However, the thoughts on how to assess XAI methods have
flourished so that the main categories can be identified.

On the one hand, we can use purely computer-based evaluations: we test
properties of the explanations such as the diversity of the answers or their com-
plexity. On the other hand, we can use human evaluation, either through simple
test tasks, or in real conditions. The first ones allow a quantitative evaluation
but can be disconnected from the fundamental objectives of explainability, if
the relevance of the tested tasks is not assessed. Moreover, these evaluations
are generally adapted to the type of explanation evaluated and do not allow for
comparing explanations of a different nature [19].

In the area of human evaluation, a distinction is made between two
approaches. Firstly, those which are based on subjective measurements (the user
is asked to rate the “comprehensibility” or various criteria related to their feel-
ing) [7]. Then, those that will study the human-AI system from the outside,
by measuring the subject response times, or the accuracy of the decisions made,
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and comparing the use of explanations against different baselines. Such objective
measurements can also be done to evaluate more subjective properties: simu-
latability [12] can be measured to estimate the impact of explanations on user’s
mental model of the AI.

If we rely only on the former, there is a risk that the research will move
towards pleasant but misleading explanations: Ehsan et al. [7] suggest that our
positive biases towards AI may prevent us from adequately evaluating its out-
come and result and its explanation. However, both are often performed simul-
taneously in the same experiment.

2.2 Application-Grounded Evaluation Methodology

We want to deploy an XAI system and evaluate it. We restricted this pilot
development to a case of binary decision task with tabular data. This case has
not been intensively evaluated but the work of Jesus et al. [15] seems particu-
larly significant to us, for the conclusions they draw as for their methodology.
Their study is an example of performance-based evaluation that does not rely
on hypotheses about the structure of explanation or mental model [17].

Jesus et al. evaluate through practice three types of explanations (SHAP,
LIME and TreeExplainer) for financial fraud detection task. Each transaction is
scanned out for fraud detection, independently of the others (data is therefore
tabular, not sequential). They evaluate the decisions of three expert fraud ana-
lysts, through five experimental conditions. Their tests are performed with data
sampled around the decision boundary of the model: the three experts are not
systematically exposed to the same data but only partially, on a sample used
to establish an agreement score. The five experimental conditions are presented
successively to each subject, as a long series of decisions to be made, first with
the data alone (first condition), then with the data and the ML score (second
condition), then with each of the three explanations in the last three conditions.

Their study raises a first half-tone analysis: if the explanations have made
it possible to make decisions faster, the accuracy of the experts’ judgment has
not improved compared to the case where they analyze the raw data and would
even degrade it.

We want to know if this conclusion generalise to other XAI systems designed
to support expert decision. In the following, we adapt their methodology to an
other application domain: e-sport prediction.

3 Methodology

Hypotheses. For our performance measures, our predictions are based on the
work of Jesus et al. [15]. Our null hypothesis is that SHAP explanations should
have the following impact:

1. The accuracy of user responses should be improved by the explanations
2. The response time should not be affected by the explanations.
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These assumptions stem from the fact that we chose a “data + ML score”
condition as the baseline. Otherwise, the explanation may represent a gain in
time and a loss in accuracy. We measure different indicators of satisfaction, trust,
and transparency (described in Appendix), where we expect to have “neutral”
indicators with respect to the scales proposed to the user (answers centered on
a Likert scale).

User. The subjects for these early experiments are students, with a potentially
wide spectrum of expertise on the proposed task (some may spend all their
free time on the game, and others may meet it for the first time through the
experiment). Specifically, we could only to retain data from five research training
students with little or no knowledge of machine learning. Of the five, only one
knows the game well (user 5 in the results section).

Data. Data are aggregate match stats from League of Legends, taken at 10 min
of play1. League of Legends is an competitive online game, known for its high
visibility on the e-sports scene. This data thus contains a potentially engaging
problem for students, given the popularity of the game; the task makes sense in
that there is a market for betting on these matches.

On the presented dataset, 23 columns have been selected to be displayed
to the users. Redundant columns have been removed: we preferred using direct
statistics applied independently on the two teams instead of differences between
both teams. The 39 games displayed were balanced regarding both blue and red
teams’ victories and error rates in both cases.

Model. The model chosen to perform the AI prediction is a Random Forest2.
We would not use deep learning models but rather tree ensemble methods as
they constitute state of the art for tabular data [26].

A few remarks about the data: each column corresponds to a performance of
one of the two teams, and there is always a symmetrical column representing the
result of the other team (except for “FirstBlood” feature). The model does not
exploit this property. Moreover, this data is highly aggregated: one may wish
to access individual performances for each team’s different players, or even to
display a video of the match to the users. These data are doubly “incomplete”
since the outcome of a match is not defined after 10 min: there can be many
turnovers so the problem may be considered from a probabilistic angle. Our
model achieves a performance of 72% on its test data, which represents 25% of
the dataset.

Experimental Procedure. We use two different experimental conditions: the
first starts with explained data, the second starts with just data and row score.
1 kaggle.com/bobbyscience/league-of-legends-diamond-ranked-games-10-min.
2 sklearn implementation, scikit-learn.org.
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In both conditions, the user is exposed successively to “explained” and “non-
explained” views in equal proportions. Each participant is first assigned an ID
that determines the condition used. The whole experiment is implemented using
an interface made with streamlit3, which presents the context of the experiment,
data format, and the explanations format through two example pages before
starting the prediction task. Then, the prediction task is done on each match
data with the interface in Fig. 1. This graphical block is left empty for data with
no explanations. Decisions are made using a cursor set on a scale of seven values,
in order to express potential uncertainty on the result. We use sub-series from 4
to 10 matches, after which the interface mode changes (between explained and
not explained interface4).

For each game, the answer and the response time are recorded. After the
predictions, a form is proposed to the user to get feedback and collect informa-
tion about his profile. The experiment lasted between 30 and 45 min for each
candidate. In both conditions, users are exposed to the same data, in the same
order, only the presence of explanations may vary.

Fig. 1. Decision interface displayed to the user: on the left, the data are presented
in three column: feature names, feature value for the current match and averages for
reference. On the right at the top, prediction with SHAP in graphical format: the
last bar of the graph represents the lesser contributions of SHAP added together.
Below, a seven-step cursor that allows the user to express his prediction (translation
in Appendix). (Color figure online)

3 streamlit.io.
4 The users with an odd number have first matches without SHAP explanation, the

pairs start with SHAP. From match 19 on, they are exposed to the same interface
mode.
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4 Results

Response Accuracy. For the full analysis, we set aside the nuances in the
degree of certainty of the responses to keep only three-valued data: they can
only be neutral, predictions of the red team victory or the blue team victory.
For the accuracy calculations, neutral responses are difficult to interpret. We
decided to keep them as they represent about 10% of the responses. As correct
answers were counted 1 and incorrect answers were counted 0, we decided to
count the neutral as 1/2.

A first observation is that our users have mostly made decisions in accordance
with the the AI’s suggestions. On the 195 predictions produced, we find 23
neutral predictions (12.3%) that are not or not easily analyzable, 27 predictions
going against the AI (13.3%) and 145 predictions that follow the AI (74.4%).

If we consider that AI scores near .5 express uncertainty (we will consider
a score of 60% or less as uncertain), we can see that this rate of agreement
increases to 86% for cases where the AI looks confident and 64% for cases where
the AI looks uncertain. We can guess that the users answered intuitively in this
case, while they would rather tend to follow the AI’s decision.

In general, the presence of explanations seems to have little influence on
users’ agreement with the model. At best, we can observe a negative effect on
the accuracy of the decisions, as shown in Fig. 2. This result is opposite to the
results of Jesus et al. [15], which suggested that exposure to SHAP explanations
should increase accuracy compared to exposure to the ML score alone.

Fig. 2. Accuracy minimal and maximal estimates, considering neutral responses as
misses (left points) or as good answers (right points). Our choice to count them as
1/2 equate to using the middle of these intervals as estimates. Above, we consider the
global influence of the explanations’ exposure on these measures, below we consider
the influence of the user.
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Response Time. Interestingly, it is difficult to identify any effect on response
time: some decisions were made in a matter of seconds, while the longest took
about 2 min. In Fig. 3, there is no observable effect of the explanations: the
variance seems to be dominated by users’ internal factors.

Some partial continuity appears in the sequences of response times, with
explainable exceptions: peaks at the first decision and at the first change of
interface (removal/addition of SHAP to indexes 10 19 25 30 35). We could also
see that decision time decreases on average during the experiment, likely because
of habituation, and assume that some data intrinsically require longer analysis
(Fig. 4).

Table 1. Mean performances of users, with and without explanations.

User SHAP Accuracy Time

1 without 0.57 31.6 ± 32.8

1 with 0.5 38.4 ± 19.7

2 without 0.65 18.7 ± 16.8

2 with 0.53 10.8 ± 10.8

3 without 0.48 52.0 ± 27.6

3 with 0.58 49.2 ± 28.7

4 without 0.55 35.6 ± 26.3

4 with 0.39 14.4 ± 17.3

5 without 0.57 24.9 ± 13.3

5 with 0.5 22.3 ± 11.0

Fig. 3. On the left, box plots of the response time of the different user. On the right,
the same data separated given the presence or absence of SHAP explanations.
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Fig. 4. Decision times graphs of the five users for each match

Although negative, these results indicate the need to solicit a large number of
users and not neglect the influence of experiment construction on the measure-
ment. The first trials of the users will necessarily be long: it is necessary to foresee
a training phase and avoid changing the users’ context inside the experiment too
often or too abruptly.

Subjective Evaluation. This experiment used only one method of explana-
tion, SHAP. The questions were asked in French (an English translation can be
found in the appendix). Likert scales with seven levels were systematically used
to collect the answers (adapting the formulation to the question). Two subjects
answered the open-ended questions that were offered. Despite the explanation’s
lack of objective benefit, there was still some positive feedback. For example, the
question “The analysis interface5 was useful to me in making a prediction” was
answered with: “somewhat agree”, “agree”, “agree”, “strongly agree”, “strongly
disagree”. Only the last user gave consistently negative responses, commenting
in the open field: “I did not use it, it did not always give a true representation of
the gap between two teams. A small gap could be represented with a large bar
and therefore could be misleading. In addition, not all important values were
used” (in response to “How was your experience with the model analysis inter-
face? How did you use it?”). To the question “What would you expect from an
AI trying to explain its decision to you?”, he answered: “His ability to be very
sure of a result but also to say when one cannot conclude anything definite”. In
addition to user 5, user 3 answered the same questions: “I used it to either help
me with aspects I didn’t understand/didn’t know how to interpret, or to validate
what I thought” and “Schematics but maybe also additional captions/additional
explanations”.

5 i.e., the graphical representation of Shapley values.
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5 Discussion

Our data support our second hypothesis: explanations do not seem to alter the
decision time (compared to the case with ML score). However, they do not favor
our first hypothesis: the accuracy was not improved but decreased. We must be
cautious about drawing any conclusions about these measures. On the one hand,
our users do not know much about the game: for example, the most experienced
one does not play ranked games, which is however common among frequent
players. Moreover, even if a subject would have a deeper experience of the game,
understanding the tabular data certainly requires an effort of adaptation, which
can reverse our model of what an “expert” would be. Obviously, the small num-
ber of users coupled with the small number of predictions made per user is the
major limitation of our study: we will scale up the experiment a revised protocol.

One of the troublesome points of this experiment and of Jesus’ et al. is the
choice to work on a subsample of the data selected by the model. We can con-
sider that the model is relatively inaccurate on these data, and therefore has
little useful information to bring through the explanation. This would explain
why user accuracies above 50% fall back to the mean once exposed to the expla-
nations but not the cases where it falls below. Of course we do not already know
what kind of understanding our model could have, and whether our explanation
will indeed convey such an understanding to the user. Nevertheless, that is pre-
cisely why we should be cautious that our model has learnt complex patterns
before using it on XAI evaluation purpose. Reciprocally, if the human capacities
seem wholly exceeded by the model, the information it would provide a sort of
popularization or justification (at best teaching [5]) than explanation. Consid-
ering this distinction, we see that establishing a framework of measurement to
compare humans and AIs before any explanatory experiment is crucial. Only in
this way can we have an a priori idea of the explanatory situation in which we
are situated and of the benefit that we will draw from a method of XAI. It seems
to us that the model’s explanations, by analogy with its use between humans,
are to be considered in a cooperative framework between entities of comparable
expertise. XAI’s usefulness would be demonstrated in terms of performance if it
allowed a “joint decision-making” strictly more accurate than the one made by
the human alone or the model alone. That was the way of proving the existence
of the “wisdom of the crowds” for instance [13].

In first approach, we use the accuracy of answers as an indicator of intelli-
gence and expertise in the task. An independent sample must be used to provide
an objective comparison of the accuracies of a model and humans. Therefore, the
sample should not be artificially balanced against ML’s errors. However, this is
open to some criticism: it potentially leaves many “simple cases” on which humans
and AI would have agreed anyway and where the addition of an explanation does
not seem relevant from the point of view of accuracy. It then becomes vital to esti-
mate the intrinsic “difficulty” of each data point, but there is no general approach
to this problem. We should not let a model estimate this difficulty for itself, nor
humans judge it for themselves. Also, we should distinguish in this difficulty what
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is an actual complexity, exploitable by a calculation, and what is a simple absence
of information.

Beyond this idea of local data difficulty in our experimental sample, the
global nature of the task can greatly influence on the human capacity to han-
dle the problem and the possibility for the models to reach high performances:
characterizing this nature is not always easy. Two other major factors that are
difficult to control for our evaluations are the user profiles, and the influence of
the user interface. Beyond the selection criteria for our subjects, which of course
introduce biases, humans represent noisy decision systems, which do not neces-
sarily return the same result twice for the same problem [23]. This noise can be
ignored when the number of users is high but could present an important limi-
tation to implementing meaningful measures with small populations and should
then be estimated.

Finally, there is nothing to tell us that the choice of SHAP is precisely respon-
sible for the user’s different decision-making. Maybe the simple provision of a
graphical interface with importance values that are consistent with the problem
but ultimately independent of the model could have an equal influence on our
experience.

5.1 Future Works

In general, it seems to us that a map of datasets and corresponding tasks, accom-
panied by estimates of human performance (expert if possible) and model per-
formance on these tasks, would be very useful for XAI evaluation research. It
would help to direct evaluation by performance measures to promising applica-
tion topics to demonstrate the usefulness of the explanations. Of course, such a
census, represents a considerable amount of work for a moderate epistemic gain.

It seems reasonable to put aside possible investigations regarding interface’s
and local difficulty’s influence. We will carry out more precise profiling of our
users with respect to the task at hand. This approach must also be accompanied
by the development of a training phase in the interface, which gives feedback to
the user on these decisions. Otherwise, their predictions cannot fit the problem
by themselves: only the response time may decrease according to the user’s habit-
uation to the interface. It will be necessary to reduce the number of inopportune
changes in the interface that may have affected the experience and to keep only
two series (with/without explanation), with an intermediate re-training for the
user.

Ideally, our measures should be extended to other tasks and datasets but
the need for some form of human expertise, in the face of an ML model, may
be limiting. We could also use another explanation format: performance mea-
sures’ advantage is evaluating wholly different explanations (like counterfactuals,
prototypes, or model simplifications) on standard axes.

Finally, our choice for e-sport data as an application domain seems relevant to
us because human decisions, although correlated a priori with those of a model,
offer a significant margin of variation. For the exploitation of temporal measures,
we now have to experiment a baseline without exposure to the ML score, which
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should allow us to observe an effect. Replicating of the experiment on a larger
number of users will allow us to cope with the large variability intrinsic to this
measure.

6 Conclusion

This study evaluates SHAP explanations through human performance measures
on an e-sport prediction task. This methodological approach is crucial because
it allows a firm grounding of XAI evaluations in the human consequences of
XAI use, without any assumption about explanation type or mental model. The
results of this evaluation indicate that the explanation would have caused our
users to lose accuracy. The numerous methodological difficulties of the experi-
ment have been discussed and make us hope for progress in the exploitation of
the collected measures, thanks to the development of our methodologies.

Acknowledgements. This research has been supported by the group Crédit Mutuel
ARKEA. We would like to thank members of the Datalabs service at the Innovation
and Operation Pole at Crédit Mutuel ARKEA for their collaboration.

A Translation of the Main Interface

On the Fig. 1, over the Shap visualisation, user could read:
“Predicted victory: red team
Estimated probability: 71%”. Under the graph, they could read:
“What is your prediction?”
The likert scale then use the following phrasing:
“the blue team will definitely win, the blue team is likely to win, the blue team
has a slight advantage over the red team, I do not know, the red team has a
slight advantage over the blue team, the red team is likely to win, the red team
will definitely win”.

B Translation of the Questionnaire

The following question have been asked at the end of the experiment. Ques-
tions preceded by an asterisk are open-ended, so people could write whatever
they want. Most of questions were asked as affirmative sentence, and the likert
scale went from “strongly disagree” to “strongly agree” (centered on “neutral”).
Other likert scale went from “absolutely no” to “absolutely yes” (centered on
“undecided”).

– Do you know anything about the game League of Legends?
– Have you ever played or watched a full game?
– Do you play MOBAs regularly?
– Do you think you can make good predictions about winning after 10 min of

play?
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* (If you play ranked games) what is your rank?

– The analysis interface included all relevant information to help me make a
decision.

– The analysis interface allowed me to make a decision more quickly.
– The analysis interface was helpful in making a good prediction.
– The analysis interface was easy to use.
* How was your experience with analysis interface? How did you use it?

– The analysis interface allowed me to understand how the AI worked.
– The AI used is able to make good predictions.
– The model analysis interface explained the model well, in a clear and concise

way.
* What would you expect from an AI that tries to explain its decision to you?
– If you were to actually make 10-minute predictions, would you like a model

to assist you?

– If you were to actually make 10-minute predictions, would you like to have
the mean data?

– If you were to actually make 10-minute predictions, would you like to have
the explanations of the model?

– Do you have confidence in the future development of AI?
– Would you be willing to use a similar AI system, with explained results, in

another context?
* What are your expectations of using AI in a similar application setting?

– What is your level of education in computer science/engineering sciences?
– Do you have any knowledge of Artificial Intelligence?
* Do you have any other knowledge related to AI or XAI in particular?
– Do you think you are able to estimate the probability of the red team winning?
– Do you feel you made progress during use?
– Were you very focused during the experiment?
– Did the experiment make you tired?

References

1. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020)

2. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep
learning for interpretable image recognition. In: Advances in neural information
processing systems 32 (2019)

3. Cirqueira, D., Nedbal, D., Helfert, M., Bezbradica, M.: Scenario-based require-
ments elicitation for user-centric explainable AI. In: Holzinger, A., Kieseberg, P.,
Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279, pp. 321–341.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8 18

4. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained net-
works. Adv. Neural. Inf. Process. Syst. 8, 24–30 (1995)

https://doi.org/10.1007/978-3-030-57321-8_18


Limits of XAI Application-Grounded Evaluation 465

5. Das, D., Chernova, S.: Leveraging rationales to improve human task performance.
In: Proceedings of the 25th International Conference on Intelligent User Interfaces,
pp. 510–518 (2020)

6. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

7. Ehsan, U., et al.: The who in explainable AI: how AI background shapes percep-
tions of AI explanations. arXiv preprint arXiv:2107.13509. https://arxiv.org/abs/
2107.13509v1 (2021)

8. Ehsan, U., Tambwekar, P., Chan, L., Harrison, B., Riedl, M.O.: Automated ratio-
nale generation: a technique for explainable AI and its effects on human percep-
tions. In: Proceedings of the 24th International Conference on Intelligent User
Interfaces, pp. 263–274 (2019)

9. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: a overview of interpretability of machine learning. In: 2018 IEEE 5th
International Conference on Data Science and Advanced Analytics (DSAA), pp.
80–89. IEEE (2018)

10. Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-
making and a “right to explanation.” AI Magazine 38(3), 50–57 (2017)

11. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Pedreschi, D., Giannotti, F.:
A survey of methods for explaining black box models. arXiv: 1802.01933. http://
arxiv.org/abs/1802.01933 (2018)

12. Hase, P., Bansal, M.: Evaluating explainable AI: which algorithmic explanations
help users predict model behavior? arXiv: 2005.01831 (2020)

13. Herzog, S.M., Hertwig, R.: Harnessing the wisdom of the inner crowd. Trends Cogn.
Sci. 18(10), 504–506 (2014)

14. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI:
challenges and prospects. arXiv: 1812.04608 (2019)

15. Jesus, S., et al.: How can i choose an explainer? an application-grounded evaluation
of post-hoc explanations. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 805–815 (2021). https://doi.org/10.1145/
3442188.3445941

16. Kim, B., et al.: Interpretability beyond feature attribution: quantitative test-
ing with concept activation vectors (TCAV). In: International Conference on
Machine Learning, pp. 2668–2677. PMLR (2018). http://proceedings.mlr.press/
v80/kim18d.html. iSSN: 2640–3498

17. Lage, I., et al.: Human evaluation of models built for interpretability. In: Proceed-
ings of the AAAI Conference on Human Computation and Crowdsourcing, vol. 7,
issue: 1, pp. 59–67 (2019)

18. Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and understanding neural
models in NLP. arXiv preprint arXiv:1506.01066 (2015)

19. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018).
ACM New York, NY, USA

20. Lundberg, S.M., et al.: Explainable AI for trees: from local explanations to global
understanding. arXiv preprint arXiv:1905.04610 (2019)

21. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

22. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artificial Intelligence 267, 1–38 (2019)

23. Mueller, S.T., Weidemann, C.T.: Decision noise: an explanation for observed viola-
tions of signal detection theory. Psychonomic Bullet. Rev. 15(3), 465–494 (2008).
https://doi.org/10.3758/PBR.15.3.465

http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/2107.13509
https://arxiv.org/abs/2107.13509v1
https://arxiv.org/abs/2107.13509v1
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/2005.01831
http://arxiv.org/abs/1812.04608
https://doi.org/10.1145/3442188.3445941
https://doi.org/10.1145/3442188.3445941
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
http://arxiv.org/abs/1506.01066
http://arxiv.org/abs/1905.04610
https://doi.org/10.3758/PBR.15.3.465


466 C. Boidot et al.

24. Panigutti, C., Perotti, A., Pedreschi, D.: Doctor XAI: an ontology-based approach
to black-box sequential data classification explanations. In: Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency. pp. 629–639. FAT*
2020, Association for Computing Machinery, New York, NY, USA (2020). https://
doi.org/10.1145/3351095.3372855

25. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

26. Shwartz-Ziv, R., Armon, A.: Tabular data: deep Learning is not all you need.
arXiv: 2106.03253 (2021)

27. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31,
841 (2017)

https://doi.org/10.1145/3351095.3372855
https://doi.org/10.1145/3351095.3372855
http://arxiv.org/abs/2106.03253


Improving the Quality of Rule-Based
GNN Explanations

Ataollah Kamal1, Elouan Vincent2, Marc Plantevit2, and Céline Robardet1(B)
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Abstract. Recent works have proposed to explain GNNs using activa-
tion rules. Activation rules allow to capture specific configurations in the
embedding space of a given layer that is discriminant for the GNN deci-
sion. These rules also catch hidden features of input graphs. This requires
to associate these rules to representative graphs. In this paper, we pro-
pose on the one hand an analysis of heuristic-based algorithms to extract
the activation rules, and on the other hand the use of transport-based
optimal graph distances to associate each rule with the most specific
graph that triggers them.

1 Introduction

One of the purposes of artificial intelligence is to help human beings to perform
cognitive tasks, especially categorization which is among the most important
ones. Supporting human beings in this process can be considered in two ways:
either by carrying out the process for them or by just helping them so that
they keep control of the ongoing process. In this paper, we adopt the second
point of view and consider the use of machine learning tools to automatically
associate objects with classes in a very efficient way (generally using numerical
models with many learned parameters) to then seek to interpret the classification
mechanisms to understand how the classification has been made. By making the
models explicit, we hope to increase their scope of application in areas with high
societal challenges (medicine, justice) but also for the discovery of knowledge
(scientific impact). The effectiveness of many recent learning algorithms is at
the price of their interpretability, as they rely on the learning of latent variables.
This is particularly the case for Graph Neural Networks (GNNs) [22] that classify
graphs by learning embedding vectors to represent each of the graph nodes in a
metric space so that the classification task based on these vectors is optimized.
These vectors encode a lot of information that is unreadable to humans and need
to be “interpreted”.

Interpretation is an ill-defined concept that has been specified in [5] as cov-
ering three distinct aspects: the comprehensibility, i.e. the ability for the user to
understand the model well enough to be able to apply it manually to new data,
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the justifiability, which specifies whether the model is in line with existing knowl-
edge, and the plausibility, i.e. the pragmatic value of the model for the user. In
this article, we mainly address the first two aspects by identifying the main acti-
vation rules as well as the subgraph that they characterize. The first step relies on
pattern mining techniques that have been shown to be valuable for interpreting
machine learning black box models [19], especially by providing comprehensible
interpretations of a latent space. The second step leverages techniques of Opti-
mal Transport on graphs [17] to transform comprehensible interpretations into
justifiable models that makes it possible to evaluate whether the model is in line
with existing knowledge expressed in a graph language.

2 Related Work

GNNs are generating considerable interest thanks to their performance in several
tasks such as node classification [14], link prediction [27] and graph classifica-
tion [22,23]. Many cutting-edge techniques improve the performance of models.
However, there are few studies that address the explainability of GNNs in com-
parison to the areas of image and text where an abundance of methods have
been proposed [2,11]. As established by [26], the existing methods for the expla-
nation of convolutional neural networks for the classification of images cannot
be directly used on data which is not grid-like such as graphs. For example, the
methods that computes an abstract images via back-propagation [16] provide
non-exploitable results when they are applied to discrete adjacency matrices.
Those that learn soft masks to find important regions of images [13] do not
apply to discrete data as well. Though, some methods have been proposed to
explain GNNs over the past four years. One can identify three types of explana-
tion methods: (i) instance-level and (ii) model-level explanation methods, that
both explain the output of the model, and (iii) rule-based approaches that in
addition consider the latent space built by the GNN.

2.1 Instance-level Methods

Given an input graph, instance-level methods aim to provide input-dependent
explanations by identifying important input characteristics on which the model
builds its prediction. The gradient/feature-based methods [1] use the gradients
or hidden feature map values to compute the importance of the input features.
Perturbation-based methods [9,24] learn a graph mask by studying the predic-
tion changes when perturbing the input graphs. GNNExplainer [24] learns a soft
mask by maximizing the mutual information between the original prediction
and the predictions of the perturbed graphs. PGExplainer [9] uses a genera-
tive probabilistic model to learn succinct underlying structures from the input
graph data as explanations. Surrogate methods [6,20] explain an input graph
by sampling its neighborhood and learning an interpretable model. GrapheLime
[6] uses a Hilbert-Schmidt Independence Criterion Lasso as a surrogate model.
PGM-Explainer [20] builds a probabilistic graphical model for explaining node or
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graph classification models. These surrogate models can be misleading because
the user tends to generalize beyond its neighborhood an explanation related to
a local model. GraphSVX [4] falls into these 4 categories by learning a surrogate
explanation model on a perturbed dataset, the explained prediction is decom-
posed among input nodes and features based on their respective contribution.

2.2 Model-level Methods

The only existing model-level method is XGNN [25]. It consists in training a
graph generator to maximize the predicted probability for a certain class and
uses such graph patterns to explain this class. However, it is based on the strong
assumption that each class can be explained by a single graph, which is unreal-
istic when considering complex phenomena.

2.3 Rule-based Methods

INSIDE-GNN [18] does not only consider the output of the model when building
its explanations: it also considers the intern weight matrix and derive rules that
associate a set of activated components to a class. This work is rooted in the
FORSIED framework [3] which allows to address the problem of pattern flooding
by identifying a set of non redundant and informative patterns. As our work
heavily relies on it, we detail below its main characteristics.

Activation Matrix. Considering a set of graphs G where each graph G =
(V,E,L) has labels L on vertices. A Graph Neural Network classifies each graph
of G into two categories {0, 1}: GNN :G→ {0, 1}. We use a Graph Convolutional
Networks (GCN) [7] that computes vectors h�

v associated to the ego-graph cen-
tered in vertex v with radius �, recursively. Such an ego-graph is the sub-graph
of G induced by v and all its neighbors at distance �. Each vector is of size K
and � varies from 0 up to L (the maximum number of layers in the GNN), two
hyperparameters of the GNN. The vectors h�

v capture the key characteristics of
the graphs for the classification task, especially vector components of high value.
We therefore consider the activation matrix that has to be interpreted:

̂H�[v, k] =
{

1 if (h�
v)k > 0, with k = 1 . . . K, the dimension of the embeddings

0 otherwise

Activation Rules. Activation rules group vector components that are mostly
activated together in graphs having the same GNN decision. A� → c is composed
of a binary vector A� of size K and c ∈ {0, 1} a decision class of the GNN. A
graph gi = (Vi, Ei, Li) ∈ G activates the rule if there is a node v in Vi such that
̂H�[v, k] = (A�)k, ∀k = 1 · · · K. The activated graphs with GNN decision c form
the support of the rule. Activated rules are more interesting if their supports are
largely homogeneous in term of GNN decisions, i.e. the graphs of the support
are mainly classified either in class 0 or in class 1.
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Measuring the Interest of an Activation Rule. As theorized in the FOR-
SIED framework [3], the knowledge extracted from the activation matrix is
modeled by a background model that is used to evaluate the interest of a
rule. Considering the discrete random variable H�[v, k] associated to the activa-
tion matrix ̂H�[v, k]1, the background knowledge is defined by the probabilities
P (H�[v, k] = 1). Considering the assumption that all H�[v, k] are independent
of each other, the interest of a rule is evaluated by the negative log-probability
of the product of P (H�[v, k] = 1), for v activated by the rule and k such that
(A�)k = 1:

IC(R, G) =
∑

gi∈Supp(R,G)

min
v ∈ Vi,

Act(R, v)

∑

(A�)k=1

log(P (H�[v, k] = 1))

with R = A� → c, Supp the supporting graphs and Act the nodes that activate
the rule. A pattern with a large IC is more informative but is more difficult to
assimilate. Thus, IC value is contrasted by its description length which measures
the complexity of communicating the pattern to the user:

SI(A� → c,G) =
IC(A� → c,G)

α.|A�| + ν

with α the cost for the user to assimilate each component and ν a fixed cost
for the pattern2. However, in order to identify rules specific to a GNN decision,
we consider the difference of subjective interestingness of the measure evaluated
on the two groups of graphs. We denote by G0 (resp. G1) the graphs gi ∈ G
such that GNN(gi) = 0 (resp. GNN(gi) = 1). The subjective interest of the rule
A� → c with respect to the classes is evaluated by

SI SG(A� → c) = ωc SI(A� → c,Gc) − ω1−c SI(A� → c,G1−c).

The weights ω0 and ω1 are used to counterbalance the measure in unbalanced
decision problems. The rational is to reduce the SI values of the majority class.
We set ω0 = max(1, |G1|

|G0| ) and ω1 = max(1, |G0|
|G1| ).

Computing the Background Model. The background model is initialized
with basic assumptions about the activation matrix:

∑

v

P (H�[v, k] = 1) =
∑

v

P (Ĥ�[v, k] = 1),
∑

k

P (H�[v, k] = 1) =
∑

k

P (Ĥ�[v, k] = 1).

However, these constraints do not completely specify the probability matrix. and
we choose the probability distribution with the maximum entropy.

Once a rule A� → c has been extracted, it brings some information about
the activation matrix that can be integrated into P : P (H�[v, k] = 1) is set to 1,
∀k such that (A�)k = 1 and v such that ̂H�[v, k] = (A�)k, ∀k = 1 · · · K.
1 We use hats to signify the empirical values.
2 We set ν = 1 and α = 0.6, as the constant parameter ν does not influence the relative

ranking of the patterns, and with a value of 1, it ensures that the DL value is greater
than 1. With α = 0.6, we express a slight preference toward shorter patterns.
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2.4 Limitations and Desiderata

Most of the introduced methods attempt to explain a GNN model from its final
decision. INSIDE GNN [18], is the only one to analyze the internal structure of
the network and to build an explication on the different layers of GNN. However,
due to the exhaustive search employed to construct the activation rules, this
method is time-consuming, which makes it difficult to use for large sets of graphs.
Moreover, these rules are not intelligible in themselves and it is important to
know which parts of the graphs they capture. These are the two limits that we
address in the following.

3 Computing Activation Rules

We propose and study three approaches to compute iteratively the activation rule
R = A� → c with the largest SI SG value and to integrate it in the background
distribution P to take into account the knowledge provided by the rule. The
first method is an exact algorithm, the two others are approximation methods.
In the two last approaches, we are able to consider activated components (indices
k such that (h�

v)k > 0) and non-activated components (when (h�
v)k ≤ 0).

3.1 Using an Exhaustive Search

This enumerate-and-rank approach starts with the empty rule ∅ → c and recur-
sively add components to A. We use a branch and bound approach, updating
the current best SI SG value found so far, using the following upper bound:

UB SI(R) =
wc

α(|A|) + ν
×

∑

gi∈Supp(R,Gc)

min
v ∈ Vi,

Act(R, v)

∑

(A&D)k=1

log(P (H�[v, k] = 1))

− w1−c

α(|A&D|) + ν
×

∑

g∈Supp(A&D,G1−c)

min
v ∈ Vi,

Act(R, v)

∑

(A)k=1

log(P (H�[v, k] = 1))

with D a vector whose one’s values represent the activated components that can
be further added to A during the enumeration process, and A&D the bitwise
and operation between vectors A and D. |A| is the L1 norm of A. UB SI makes
the recursion stop if its value is less that the one of the current best rule found.

3.2 Using Beam Search

This algorithm is a tree search algorithm pretty similar to the breadth-first
search with the difference that in each stage it only keeps a fixed number of
descendants. A selector, an atomic proposition of the form X == Y , where X
is a component and Y ∈ {True, False}, describes the status of a component. A
conjunction D of selectors forms a description. For a description D, the length of
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the description is the number of its selectors. A graph g is in the support of D, if
D is true for at least one node of g from logical point of view. Therefore, we can
have a mapping between a rule and a description and thanks to this mapping
we can define subjective interestingness (SI SG) for a description. To this ends,
the SI SG of a description is the subjective interestingness SI SG of its mapped
rule. Each node of the beam search tree corresponds to a description and its
children are those descriptions by adding one new selector to the corresponding
description. The root of the tree is the description with length 0. Thus, nodes in
the depth = 1 are selectors. At each stage of the algorithm we use a beam-width
(bw) parameter that indicates the number of nodes that at the end of the stage
would be kept. Those with the highest SI SG values are kept. Besides discovering
the new nodes, we save the node with the best SI SG that so far we have found.
As the depth of the tree can be too high and regarding the fact that we are
interested in simple rules, we limit the exploration up to a certain depth. In our
task, bw = 20 and the maximum depth is 9. After each run, we get one rule in
return. Then we update the model with respect to the rule. We use PySubgroup
framework [8] for this task.

3.3 Using Monte Carlo Tree Search

MCTS partially explores the tree of possible rules where each node v represents
a partial rule as a tuple (free, fixed): the components of the embedding vector
are either in the free or the fixed set of the tuple. The free set contains
the components that have not been treated yet, and fixed is a set of couples
(x, y) that indicates that component x has the state y, y being either activated,
non − activated or loose meaning that x is activated, non-activated or there is
no constraint on it. A partial rule with free = ∅ is called a rule.

MCTS focuses on analyzing the most promising partial rules, expanding the
search tree based on random sampling of the search space. Monte Carlo tree
search is based on many roll-outs. In each playout, a rule is constructed by
selecting component values at random until free = ∅. The value of SI SG from
the obtained rule is then used to weight the nodes in the tree so that the best
nodes are more likely to be chosen in future roll-outs. To that end, v1 and v2 are
two numerical values also associated to each node v, with v1 is the subjective
interestingness value of the rule fixed ∪ {(x, loose) : x ∈ free}, and v2 value
is defined in the roll-out and propagation step of the algorithm. Each round of
Monte Carlo tree search consists of four steps:

– Selection: Starting from the root node, it selects successive child nodes until
a leaf node is reached. A leaf is any node that has a potential child and
from which no simulation (roll-out) has yet been done. The section of child
nodes is biased so that the tree expand towards the most promising rules,
which is the essence of Monte Carlo tree search. A child v is selected if it
satisfies SI UB(v) ≥ SI SG(best rule) and maximizes the value: v1 + v2

nv
+

κ
√

n∗log(Nv)
nv

. Nv is the number of times the parent of v has been visited, nv
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is the number of times v has been visited, and n = |fixed|. Note that in case
nv = 0, this function equals to ∞. κ is set to 100.

– Roll-out and Propagation: From a leaf-node, if this node is not terminal
(i.e. free 
= ∅), we randomly assign values to the components in free to
reach a rule. Then the subjective interestingness of this rule is computed and
added in v2 variables of all the nodes in the path from this node to the root
(propagation). In case that SI SG of this node is the best value found so
far, we store it as the best rule. To avoid visiting already visited terminal
nodes, we add to each ith node of the path the value (−1)i x

2i to v2, where
x = SI SG.

– Expand Children: Once a node has been visited, we expand all its children
and we pursue with the first child u such that SI UB(u) ≥ SI SG(best rule).
The expand consists in building 2×|free| children by taking a component in
free and assigning values activated, desactivated, or loose.

Each run of the algorithm finds one rule and consists of 100,000 iterations of the
above steps. There is another termination condition for a run: if there is a node
v, with nv > 500, the run terminates. After finding a rule, we update the model
the same as the exact method. We run the MCTS until either we reach 10 rules,
or reach a rule with SI SG < 10 or there would be at least one rule r for each
component c in which c has a non-free state.

4 Transforming Rules into Subgraphs

The activation rules make it possible to isolate the characteristics of the graphs
useful to the task of classification. However, although we know that the graphs
supporting the rule have common characteristics, we do not know which ones it
is. We then propose to search for these properties that the graphs supporting
the rule have in common by searching for the median graph of this set. This
approach makes it possible to summarize the whole set of supporting graphs
by a single realistic graph. As we would like to calculate a median for a set of
graphs, we need to define a distance between two graphs. Being able to leverage
both features and structural information from graphs to calculate their distance
can be time consuming, requiring the combination of these two pieces of infor-
mation in a way that makes it possible to capture the similarity between graphs.
We opt for the use of a distance based on Optimal Transport known to unveil
the geometric nature of attributed graphs. Wasserstein or Gromov-Wasserstein
metrics focus only on features or structure respectively. However, in [17] authors
introduced the distance Fused Gromov-Wasserstein (FGW) that exploits jointly
both information.

4.1 Optimal Transport

Optimal Transport (OT) defines a distance between two probability distribu-
tions. It already prove its utility in a lot of fields, this is not yet very developed
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for graphs. Features can be compared using a standard metric, such as l2. At
the same time, structural comparison should be done via an isometric invariant
metric.Gromov-Wasserstein distance has been introduced in [10] to compare two
distance metrics.

In [17], authors introduce the Fused Gromov-Wasserstein (FGW) using OT
which uses Gromov-Wasserstein distance on structure and Wasserstein distance
on features. At each graph, vertices will be mapped into two metric spaces. One
to capture the features (with metric d) and one to capture the structure of the
graph (with metric C).

The FGW distance looks for the coupling π between the vertices of the graph
that minimizes a cost function which is a linear combination of a cost d(ai, bj)
of feature transportation between the vertices of the two graphs and a cost
|C1(i, k)−C2(j, l)| of structure transportation, where C1 and C2 are the structure
matrix of the two graphs which are compared. FGW is null iff graphs have the
same number of vertices and if there exists a one to one mapping between the
vertices of the graphs which respect both shortest-paths and the features. The
complexity is in O(n2m + nm2) and FGW defines a semi-metric.

4.2 Barycenter

A notion of barycenter is also introduced in [17] based on FGW distance. It
looks for the graph that minimizes the sum of (weighted) FGW distances within
a given set of structured data associated with structure matrices, features and
base histograms. We cannot use directly the barycenter in our method for the
following reasons: (1) To compute the barycenter of a set of graphs, we need
to specify the parameter n that defines the number of vertices in the generated
graph; (2) Graphs that are generated are not guaranteed to be realistic; (3) It
cannot work on graphs labeled with discrete values. This justifies our following
proposal for computing median graphs.

4.3 Associating a Graph to a Rule

To generate completely realistic graphs with an embedding close to an activation
rule, we propose to calculate the median graph of all the graphs of the support
(those that activate the rule), and then to perform a best first enumeration to
find the subgraph with the highest score on the activation rule.

Median Graph. Computing a median graph guaranties that the graph is realist
as it is an element of the set of graphs. Also, we are sure that this graph activates
the rule. The median graph of a set G of graphs is the graph of G whose aver-
age FGW distance to other graphs of G is minimal. It requires to compute all
distances between every pair of graphs which can be time expansive. Therefore,
we propose to compute an approximation of the median. It makes it possible to
avoid considering graphs that are close to other ones.
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In Algorithm 1, the approximate median of a set of graphs G starts with and
empty set of selected graphs S. It first draws a graph g uniformly at random in
G and adds it to S. Then, all the distances between g and the graphs of G are
computed. A loop starts that consists in drawing at random a new graph g from
G \ S, but this time according to the distances dist(g, S). This graph is added
to S. The loop stops when dist(g, S) is small enough.

The further the graph is from the set, the higher its probability of being
drawn and added to the set S. When the loop stops, the median graph on the
set S is computed and returned.

Algorithm 1. Approximate median graph
Require: G a set of graphs, t a threshold
Ensure: Median graph
1: S ← {}
2: g ← drawn from G
3: S ← S ∪ {g}
4: repeat
5: draw g ∼ dist(g, S)
6: S ← S ∪ {g};
7: until (dist(g, S) < t)
8: return median(S)

The approximate median graph procedure only computes
∑q

i=i(n − i)i =
q(q + 1)

(

n
2 − 2q+1

6

)

FGW distances, instead of n2, with n the size of G and q
the number of iterations3. In practice q is between 10% to 40% of n.

Improving the Median Graph to Better Describe the Rule. The median
graph supports the rule but it is potentially not specific to it and may contain
additional information not related to the rule. Starting from the median graph,
or its approximation, we search for a subgraph whose embedding vector is the
closest to the activation rule. This proximity between the embedding vector and
the rule is evaluated by the Cosine metric between the vectors as in [19]. To
maximize the Cosine value from a graph g, we first compute the Cosine value
for g. Then, we enumerate all the subgraphs of g that are obtained by removing
a single vertex. The subgraph with the largest Cosine value is taken, and the
process iterates until no better graph is found.

5 Experiments

The purpose of the experiments is twofold: the comparative study of the algo-
rithms to extract activation rules in terms of computation time and rule quality,
and the study of distances based on the optimal transport to associate the most

3 ∑q
i=1 (n − i) i = n

∑q
i=1 i−∑q

i=1 i2 = n q
2
(1+q)− q(q+1)(2q+1)

6
= q(q+1)

(
n
2

− 2q+1
6

)
.
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specific graph to each of the rules. For these experiments, we trained a GNN with
3 layers of dimension K = 20 for each dataset. We mined at most 10 rules for
each layer and class with SI SG > 10. All the experiments have been written in
python and done on a machine with 8 Intel(R) Xeon(R) W-2125 CPU 4.00GHz
cores 128GB RAM, and Debian GNU/Linux operating system.

5.1 Datasets

We have used four datasets Aids [12], BBBP [21], Mutagen [12] and BA2 [24].
BA2 is a synthetic dataset in which graphs with the label 0 have a cycle of length
5 and the graphs of opposite class, have “house” motifs. Graphs in the rest of
the datasets represent real molecules. Main characteristics of these datasets are
given in Table 1 (left).

Table 1. Dataset description: number of graphs, number of graphs with positive and
negative labels, and average number of nodes and edges in each dataset (left). Time
comparison for MCTS and exhaustive search. Times are in the format of hh:mm (right).

Dataset Name #Graphs (#neg, #pos) Avg. Nodes Avg. Edges

Aids 2000 (400,1600) 15.69 322

BBBP 1640 (389,1251) 24.08 51.96

Mutagen 4337 (2401, 1936) 30.32 61.54

BA2 1000 (500, 500) 25 50.92

Dataset MCTS Exhaustive search

Aids 14:24 11:14

BBBP 05:15 13:29

Mutagen 35:10 69:16

BA2 00:37 02:22

5.2 Computing Rules

We evaluate two approximation methods, beam search and MCTS, in compari-
son with the exhaustive search method. The main goal of our work is to reduce
the running time. However, we should be careful what we lose in price of the
time. Therefore, we measure the total interestingness of patterns obtained by
each method in comparison to the exhaustive search. To assess how explainable
our patterns are, we use fidelity, infidelity, and sparsity measures.

Time Comparison. Among all the methods, beam search has the best time.
All the experiments have been done under twenty minutes. In the second place,
MCTS has a better time in three datasets (BA2, BBBP and Mutagen) than
exhaustive search. However, in the Aids dataset, the process did not complete
in less time than the exhaustive search. This problem is due to the computation
of rules for the last layer of the GNN. In the Table 1 (right), the time needed by
MCTS and exhaustive search methods are compared.
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Cumulative Subjective Interestingness (CSI). To evaluate how good is the
quality of the rules mined by beam search and MCTS, one factor is cumulative
subjective interestingness of them. Figure 1 shows that exhaustive search has
the best CSI in non-synthetic datasets, MCTS works better than beam search
despite its early termination in the Aids due to the runtime exceeding. Another
interesting point is in the BA2 dataset with MCTS. For the last layer and class
0, the first and second rules discovered by exhaustive search have SI SG of 700
and 261 respectively and for the same class and layer, by MCTS, the first two
rules have SI SG of 674 and 433 respectively which resulted to have a better
CSI in MCTS, which is an approximate method than exhaustive search as an
exact algorithm. Therefore, although that MCTS in some places can be time-
consuming, it can have interesting features to study.

When we consider non-activated components, although we have more general
space, we cannot get better results than when we have only activated compo-
nents, except for BA2 and Aids. In BA2 we obtain results even better than the
exhaustive search and in Aids they are better than the approximation methods
but not better than the exact one. The main drawback of the MCTS with the
mode consisting activated and non-activated components, is the running time.
We could not obtain results for the Mutagen dataset due to this problem.

Fig. 1. Cumulative subjective interestingness comparison between the three methods
(exhaustive search, MCTS and beam search). In each chart, the horizontal axis is the
number of the rules and the vertical axis is SI SG. The suffix “.neg”, represent methods
while considering non-activated patterns.

Fidelity, Infidelity, and Sparsity. So far we have rules that are not still
human interpretable. To have some human-friendly explanations, in each graph
that activates a pattern we build a mask for that pattern. Considering a graph
g in the support of the considered rule and s ⊆ Vg is the set of its vertices that
activate all the components of the rule. Then the mask for graph g is the induced
subgraph by s ∪ N(s) where N(s) is the neighbors of s. We expect the mask to
be the reason for the decision of the GNN for graph G. To measure how well
these masks capture the decision of the GNN, we use three measures fidelity,
infidelity, and sparsity [15]. Fidelity measures how the GNN decision changes
when removing the mask from the graph. It should be maximized. The infidelity
measures the difference in the GNN decision when considering the whole graph
and only the mask. It should be minimized. These metrics are not enough to
assess a set of masks. As an illustration, assume that mi = gi for 1 ≤ i ≤ n. In
this case, infidelity can be 0. Therefore, we need another metric that is sensitive
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Table 2. Assessing the explanations with several metrics. A better explainer achieves
higher fidelity, lower infidelity while keeping a sparsity close to 1. The suffix (neg)
represent methods while considering activated and non-activated components.

(a) Fidelity

Model Aids BBBP Mutagen BA2

Exhaustive 0.179 0.312 0.499 0.343

MCTS 0.178 0.624 0.526 0.343

BS 0.792 0.522 0.514 0.343

MCTS neg. 0.172 0.322 N/A 0.341

BS neg. 0.808 0.304 0.417 0.343

GnnEx 0.036 0.100 0.177 0.093

PGEx 0.032 0.098 0.157 0.004

PGM-Ex 0.080 0.212 0.123 0.222

SVXEx 0.003 0.008 0.039 0.004

(b) Infidelity

Aids BBBP Mutagen BA2

0.767 0.420 0.305 0.003

0.767 0.131 0.344 0.004

0.074 0.170 0.309 0.002

0.767 0.385 N/A 0.029

0.036 0.352 0.341 0.006

0.036 0.099 0.140 0.223

0.038 0.098 0.157 0.353

0.766 0.482 0.347 0.296

0.771 0.489 0.356 0.341

(c) Sparsity

Aids BBBP Mutagen BA2

0.884 0.916 0.962 0.032

0.877 0.265 0.939 0.041

0.270 0.452 0.938 0.028

0.901 0.899 N/A 0.105

0.132 0.804 0.989 0.058

0.501 0.501 0.505 0.804

0.547 0.534 0.515 0.955

0.862 0.884 0.900 0.746

0.988 0.940 0.931 0.943

to the proportion of a graph used as its mask: Sparsity(M) = 1
n

∑

i = 1n(1 −
|mi|
|gi| ). So in the case that we have masks identical to their corresponding graphs,
which minimizes the fidelity, sparsity will be zero too. Thus, the greater sparsity
means the better masks.

Table 2 shows the values of these metrics compared to state of the art methods
for explaining GNNs. As it can be seen, on the Aids dataset, MCTS has com-
parable results in all of the metrics to the exhaustive search. Although beam
search has better fidelity and infidelity than MCTS and exhaustive search, it
has lower sparsity. It can be interpreted that activation rules obtained by this
method cover too many nodes. On the BBBP, both methods in terms of fidelity
and infidelity have outperformed the exhaustive search. However, sparsity for
both of them is lower than the one of exhaustive search. On the Mutagen and
BA2 datasets, metrics are pretty close which means that rules captured by the
two approximation methods are as explainable as those captured by the exact
method.

These preliminary experiments do not make it possible to conclude on the
added-value of the non-activated components. Other rules evaluation measures
would be necessary.

5.3 Finding a Representative Graph for a Rule

Our goal is to generate a representative graph for each rule with median approx-
imation and best first enumeration4. This experimental study aims to answer
the following questions: Is the median approximation good? Is the reduction
of the execution time of the approximation significant? How close the median
approximation is to the embedding of a targeted rules? How good the best first
enumeration improves the score? We compare the generated graph to those gen-
erated by DISCERN [19]. For FGW, we set α = 0.9, giving more importance to

4 All algorithms are implemented in Python, using the FGW code given by the author
https://github.com/ElouanV/optimal transpor for gnn.

https://github.com/ElouanV/optimal_transpor_for_gnn
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the structural information, but in molecule, features and structure information
are correlated. We use shortest path as a method for structure matrix of graphs
and sqeuclidean to compute the cost matrix between the features. In median
approximation, we set the threshold t = 10−10. In score computation, we use
Cosine metrics to compute the similarity between an ego-graph and a rule. Most
of the experiments are done on two rules of Mutagen datasets (rule 23 and 28)
as we know that they are highly correlated to the mutagenicity.

Median Approximation Quality. To study the median approximation qual-
ity, the distance between the median of a set and its approximation, we compute
at each iteration the distance between the real median and the median of the
set S (see Fig. 2). But, in this set of graphs, there are a lot of graphs that are
really close to each others, and even some graphs are identical. For example, the
real median graph of this set exists in nine copies. The median approximation
function uses a threshold to stop when the distance between the newly selected
graph and the set S is too small. This distance is monitored over iterations on
the same rule and shown in Fig. 2.

Fig. 2. Distance between the selected graph and the set S at each iteration on a loga-
rithmic scale in red, distance between real median of a set of 3490 graphs supporting
rule 23 of Mutagen and the approximation of median over iterations using FGW dis-
tance in blue. (Color figure online)

Here, the algorithm stops at iteration 1239 over 3490. It means that we only
compute the median on 35% of the graphs of the set. The distance between the
median of this set and its approximation is 0.8 which seems to far comparing
to all distances between graphs of this set, but it shows that there is a lot of
duplicated graphs in the set, and the approximation eliminates them and find a
median graph that may better represent the set. On other rules, like the rule 28
of Mutagen, the approximation converges quickly to the same graph as the real
median. On the set of graph that are not big enough i.e. less than 200 graphs,
the approximation methods is useless since.
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Fig. 3. The real median of the graphs from rule 23 of Mutagen (left) and the approxi-
mation with t = 10−10 (middle). Graphs generated by DISCERN on rule 23, red cross
highlights unrealistic bonds or molecules (right). (Color figure online)

On Fig. 3, we compare the median graph of all graphs of the rule 28 of Muta-
gen and the median approximation of the same set. First of all, they have the
same number of vertices. The difference between them comes from the nitrogen
atom, which is not present in the median approximation, and the structure also
is a bit different, but in both cases, we can identify three part link by an atom of
carbon in the middle. Moreover, both graphs have the same number of atoms of
carbon. When we compare it to the graph generated by the DISCERN method
on the same rule Fig. 3 (right), we find in both of our graphs the three carbon
chains, but the nitrogen atom is only present on the real median.

Median Approximation Execution Time. We also want to study the exe-
cution time we can win to balance with the loss of accuracy. The execution time
reduction depends on each set. On the same rule of Mutagen in Fig. 4 (left),
we can observe that the execution time over iterations is almost linear, so by
selecting only 35% of the graphs, we highly reduce the execution time by almost
60%. In Fig. 4 (right), we can see the percentage of graphs use to compute the
median from a set thanks to the approximation. Among these 60 rules, some of
them contain more than 10 000 graphs, which is a lot more than what we have
seen in rule 23 of Mutagen. We can see that the percentage of graphs sectioned
for the approximation decreases when the number of graphs in the set increases.
When there is more than 10 000 graphs, we only select less than 10% of them
which allows us to reduce the computation time significantly. When there is less
than 1000 graphs, the approximation use almost all the graphs to compute the
median, but it is not an issue.

Are the Result Good?. We compute the median approximation on the 60
rules of AIDS dataset, and use the computed median as starting seed for the
best first enumeration. In Fig. 5, we focus on the rule 54, and we compare the
median approximation to the output of the best enumeration first. The score is
increasing from 0.48 to 0.65 thanks to the exploration, and the result is a cycle
of 5 atoms.
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Fig. 4. Computation time over iterations of median approximation (rule 23 of Muta-
gen) in second (left). Proportion of graphs use from a set in for an approximation for
the 60 rules of AIDS dataset in blue (sorted) and number of graphs in each set of
graphs in red (right). (Color figure online)

Fig. 5. Median approximation of the rule 54 of AIDS dataset (left) and the subgraph
generated by the best first enumeration (right).

6 Conclusion

We have proposed two alternative algorithms for computing activation rules.
Experiments showed that beam search reduces the computation time signifi-
cantly and in terms of fidelity and infidelity has acceptable results. We have
also introduced a novel method for explaining internal representations of GNNs.
With a median graph computation and a better first enumeration, we associate
each rule with a realistic graph that fully embeds in the subspace defined by the
activation rule. The study shows that the median approximation makes it possi-
ble to reduce the computation time without losing the quality of the generated
graphs. In future work, we might try adding vertices and edges to the median
graphs to see if this can improve the generated graph, giving the median graph
as an exploration seed for MCTS as the method DISCERN did.
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Abstract. Biases can arise and be introduced during each phase of a
supervised learning pipeline, eventually leading to harm. Within the task
of automatic abusive language detection, this matter becomes particu-
larly severe since unintended bias towards sensitive topics such as gen-
der, sexual orientation, or ethnicity can harm underrepresented groups.
The role of the datasets used to train these models is crucial to address
these challenges. In this contribution, we investigate whether explain-
ability methods can expose racial dialect bias attested within a popu-
lar dataset for abusive language detection. Through preliminary exper-
iments, we found that pure explainability techniques cannot effectively
uncover biases within the dataset under analysis: the rooted stereotypes
are often more implicit and complex to retrieve.

Keywords: ML · NLP · Explainability · Interpretability · ML
Evaluation · Fairness in ML · Algorithmic bias · Bias discovery ·
Algorithmic auditing · Data awareness · Discrimination

1 Introduction

Biases can arise and be introduced during each phase of a supervised learning
pipeline, eventually leading to harm [17,41]. Within the task of automatic abu-
sive language detection, this matter becomes particularly severe since unintended
bias towards sensitive topics such as gender, sexual orientation, or ethnicity can
harm underrepresented groups. The role of the datasets used to train these mod-
els is crucial. There might be multiple reasons why a dataset is biased, e.g., due
to skewed sampling strategies or to the prevalence of a particular demographic
group disproportionately associated with a class outcome [30], ultimately estab-
lishing conditions of privilege and discrimination. Concerning fairness and biases,
in [24] is conducted an in-depth discussion on ethical issues and challenges in
automatic abusive language detection. Among others, a perspective analyzed is
the principle of non-discrimination throughout every stage of supervised machine
learning pipelines. Several metrics, generic tools, and libraries such as [8,39] have
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I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 483–497, 2023.
https://doi.org/10.1007/978-3-031-23618-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23618-1_32&domain=pdf
http://orcid.org/0000-0003-2251-1824
http://orcid.org/0000-0002-7692-8134
https://doi.org/10.1007/978-3-031-23618-1_32


484 M. M. Manerba and V. Morini

been proposed to investigate fairness in AI applications. Nevertheless, the solu-
tions often remain fragmented, and it is difficult to reach a consensus on which
are the standards, as underlined in a recent survey by [9], where the authors
criticize the framing of bias within Natual Language Processing (NLP) systems,
revealing inconsistency, lack of normativity and common rationale in several
works.

In addition to fairness, another crucial aspect to consider related to these
complex models used on high-dimensional data lies in the opaqueness of their
internal behaviour. In fact, if the dynamics leading a model to a certain auto-
matic decision are not clear nor accountable, significant problems of trust for
the reliability of outputs could emerge, especially in sensitive real-world contexts
where high-stakes choices are made. Inspecting non-discrimination of decisions
and assessing that the knowledge autonomously learned conforms to human val-
ues also constitutes a real challenge. Indeed, in recent years working towards
transparency and interpretability of black-box models has become a prior-
ity [11,21]. We refer the reader to the introduction conducted in [23], where
authors cover selected explainability methods, offering an overall description of
the state-of-the-art in this area.

Few approaches in the literature are at the intersection of fairness and
explainability. In [1], through a user study, authors investigate the effects of
explanations and fairness on human trust, finding that it increased when users
were shown explanations of AI decisions. [6] develops a framework that evaluates
systems’ fairness through LIME [34] explanations and renders the models less
discriminating, having identified and removed the sensitive attributes unfairly
employed for classification. A model-agnostic strategy is proposed in [45]: from
a biased black-box it aims at building a fair surrogate in the form of decision
rules, guaranteeing fairness while maintaining performance. In [4] is described a
Python package that allows for model investigation and development following
a responsible ML pipeline, also performing bias auditing. We refer the reader to
the review conducted in [2], where authors collect works that propose strategies
to tackle fairness of NLP models through explainability techniques. Generally,
authors found that, although one of the main reasons for applying explainability
to NLP resides in bias detection, contributions at the intersection of these ethical
AI principles are very few and often limited in the scope, e.g., w.r.t. biases and
tasks addressed.

Given these evident socio-technical challenges, significant trust problems
emerge, mainly regarding the robustness and quality of datasets and the related
trustworthiness of models trained on these collections and their automated deci-
sions. This work aims to investigate whether explainability methods can expose
racial dialect bias attested within specific abusive language detection datasets.
Racial dialect bias is described in [14] as the phenomenon whereby a comment
belonging to African-American English (AAE) is more often classified as offen-
sive than a text that aligns with White English (WE). For example, in [38], it
is shown that annotators tend to label as offensive messages in Afro-American
English more frequently than when annotating other messages, which could lead
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to the training of a system reproducing the same kind of bias. Paradoxically, the
systems learn to discriminate against the very demographic minorities they are
supposed to protect against online hate, for whom it should help in creating a
safe and inclusive digital environment.

To explore this issue, we chose the collection presented in [19] that gathers
social media comments from Twitter manually annotated through crowdsourc-
ing. The advantage of having data labelled by humans resides in the annotation’s
precision. However, it is a task that requires domain knowledge and can be very
subjective [5] and time-consuming. We chose this dataset since it has been shown
to contain racial dialect bias, introduced by the human annotator, who demon-
strates a disparate treatment against certain dialect words [14]. For example,
suppose terms belonging to the African-American language variant are used in
the social media post. The instance is often more likely to be classified as abusive,
even when, in fact, the content expressed is neutral, endorsing the importance of
specific word variants rather than the offensive charge of the sentences. The focus
of this work thus lies also in the impact on human annotation data, which can
introduce different problems into the information formalized from the texts. As
a result, the emerging biases propagate to the models drawn from these skewed
collections. The quality of the annotation, and thus the models learned on these
data, are significantly affected.

In this work, we adopt a qualitative definition of bias strongly contextual
to abusive language detection and the type of unfairness we are investigating.
We define as bias the sensitivity of an abusive language detection classifier con-
cerning the presence in the record to be classified of terms belonging to the
AAE dialect. Specifically, a classifier is considered biased or unfair if it tends
to misclassify as abusive AAE records more often than those characterized by
a white alignemnt linguistic variant. To understand whether these biases affect
a model’s outputs, we rely on explainability techniques, checking which aspects
are relevant for the classification according to the model and the data on which it
was trained. Suppose the explanation techniques give importance to misleading
terms, not semantically or emotionally relevant. In that case, the explanation
methods are effective for this debugging since they highlight how the knowledge
learned from the model is neither reliable nor robust, revealing imbalances, pos-
sibly resulting from skewed and unrepresentative training data. Therefore, the
question we try to answer is focused on testing if purely explanation techniques
can identify biases in models’ predictions inherited from problematic datasets.
Specifically, according to our hypotheses, we would like to highlight those models
demonstrate biases based on latent textual features, such as lexical and stylistic
aspects, and not on the actual semantics or emotion of the text.

The rest of the paper is organized as follows. In Sect. 2 we briefly present
necessary background knowledge. In Sect. 3, we conduct preliminary experiments
to assess the effectiveness of explainability techniques application for evaluation
and bias elicitation purposes. Finally, Sect. 4 discusses the limitations of our
approach and indicates future research directions.
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2 Setting the Stage

The following section reports the main methods and techniques leveraged in
this contribution. We start by describing the AI-based text classifiers predicting
the abusiveness, and then we proceed to the explanations algorithms used to
interpret model outputs.

2.1 Text Classifiers

The task of detecting and predicting different kinds of abusive online content
in written texts is typically formulated as a text-classification problem, where
the textual content of a comment is encoded into a vector representation that is
used to train a classifier to predict one of C classes.

Of course, when dealing with textual data, it is of utmost importance to
consider both the suitable type of word representation and the proper type of
classifier. Since traditional word representation (i.e., bag-of-words model) encode
terms as discrete symbols not directly comparable to others [25], they are not
fully able to model semantic relations between words. Instead, word embeddings
like Word2vec [29], BERT Embeddings [16] and Glove [32] mapping words to
a continuously valued low dimensional space, can capture their semantic and
syntactic features. Also, their structure makes them suitable for deployment
with Deep Learning models, fruitfully used to address NLP-related classification
tasks. Among the available NLP classifiers (e.g., Recurrent Neural Networks like
LSTM [22]), recently, in the literature have been introduced the so-called Trans-
former models that, differently from the previous ones, can process each word in a
sentence simultaneously via the attention mechanism [44]. In particular, autoen-
coding transformer models such as Bidirectional Encoder Representations from
Transformers (BERT) [16] and the many BERT-based models spawning from
it (e.g., RoBERTa [26], DistilBERT [37]), has proven that leveraging a bidi-
rectional multi-head self-attention scheme yields state-of-the-art performances
when dealing with sentence-level classification.

Abusive Language Detection. Automatic abusive language detection is a
task that emerged with the widespread use of social media [24]. Online discourse
often assumes abusive and offensive connotations, especially towards sensitive
minorities and young people. The exposition to these violent opinions can trigger
polarization, isolation, depression, and other psychological trauma [24]. There-
fore, online platforms have started to assume the role of examining and remov-
ing hateful posts. Since the large amount of data that flows across social media,
hatred is typically flagged through automatic methods alongside human moni-
toring. Several approaches have been proposed to perform both coarse-grained,
i.e., binary, and fine-grained classification. As noted, pre-trained embeddings
such as contextualized Transformers [43], and ELMo [33] embeddings are among
the most popular techniques [47]. For this reason, we adopt BERT in the exper-
iments presented in the following sections.



Exposing Racial Dialect Bias in Abusive Language Detection 487

2.2 Post-hoc Explanation Methods

Following recent surveys on Explainable AI [11,18,20,21,27,31,36], we briefly
define the field to which the explainers we use in this contribution belong, i.e.,
post-hoc explainability methods. This branch pertains to the black-box expla-
nation methods. The aim is to build explanations for a black-box model, i.e.,
a model that is not interpretable or transparent regarding the automatic deci-
sion process due to the complexity of its internal dynamics. Post-hoc strategies
can be global if they target explaining the whole model, or local if they aim
to explain a specific decision for a particular record. The validity of the local
explanation depends on the particular instance chosen, and often the findings
are not generalizable to describe the overall model logic. In addition, the expla-
nation technique can be (i) model-agnostic, i.e., independent w.r.t. the type of
black-box to be inspected (e.g., tree ensemble, neural networks, etc.), or (ii)
model-specific, involving a strategy that has particular requirements and works
only with precise types of models. Thus, given a black-box b and a dataset X,
a local post-hoc explanation method ε takes as input b and X and returns an
explanation e for each record x ∈ X. Returning to the general definition of
post-hoc explainability, we now introduce more formally the objective of these
methods. Given a black-box model b and an interpretable model g, post-hoc
methods aim to approximate the local or global behaviour of b through g. In this
sense, g becomes the transparent surrogate of b, which can mimic and account
for its complex dynamics more intelligibly to humans. The approaches proposed
in the literature differ in terms of the input data handled by b (textual, tabular);
the type of b the interpretable technique can explain; the type of explanator g
adopted (decision tree, saliency maps).

In the following, we briefly present the explanation techniques we chose to
adopt. Specifically, Integrated Gradients and SHAP are used locally and globally,
as described in Sect. 3.4.

Integrated Gradients. Integrated Gradients (IG) [40] is a post-hoc, model-
specific explainability method for deep neural networks that attributes a model’s
prediction to its input features. In other words, it can compute how relevant a
given input feature is for the output prediction. Differently from mostly attri-
bution methods [7,42], IG satisfies both the attribution axioms Sensitivity (i.e.,
relevant features have not-zero attributions) and Implementation Variance (i.e.
the attributions for two functionally equivalents models are identical). Indeed,
IG aggregates the gradients of the input by interpolating in small steps along the
straight line between a baseline and the input. Accordingly, a large positive or
negative IG score indicates that the feature strongly increases or decreases the
model output. In contrast, a score close to zero indicates that the feature is irrel-
evant to the output prediction. IG can be applied to any differentiable model and
thus handle different kinds of data like images, texts, or tabular ones. Further,
it is adopted for a wide range of goals like: i) understanding feature importance
by extracting rules from the network; ii) debugging deep learning models perfor-
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mance and iii) identifying data skew by understanding the important features
contributing to the prediction.

SHAP. SHAP [28] is among the most widely adopted local post-hoc model-
agnostic approaches [11]. It outputs additive feature attribution methods, a form
of feature importance, exploiting the computation of Shapley values for its expla-
nation process. High values indicate a stronger contribution to the classification
outcome, while values close to or above zero indicate negligible or negative con-
tribution. The importance is retrieved by unmasking each term and assessing
the prediction change between the score when the whole input is masked versus
the actual prediction for the original input. SHAP can also compute a global
explanation over multiple instances and provides, in addition to the agnostic
explanation model, the choice among different kernels, according to the specifics
of the ML system under analysis.

3 Preliminary Experiments

In this section, we present the experiments1 conducted to assess the effective-
ness of explainability techniques application for evaluation and bias elicitation
purposes.

3.1 Dataset Description

As dataset, we leverage the corpus proposed in [19], which collects posts from
Twitter. The collection includes around 100K tweets annotated with four labels:
hateful, abusive, spam or none. Differently from the other datasets, it was
not created starting from a set of predefined offensive terms or hashtags to
reduce bias, which is a main issue in abusive language datasets [46]. This choice
should make this dataset more challenging for classification. The strategy con-
sisted of a bootstrapping approach to sampling tweets labelled by several crowd-
source workers and then validated them. Specifically, the dataset was constructed
through multiple rounds of annotations to assess raters’ behavior and usage of
the various labels. The authors then analyzed these preliminary annotations to
understand which labels were most similar, i.e., related and co-occurring. The
result consists of the labels to retain, i.e., the ones most representative and those
to eliminate since they were redundant. From the derived annotation schema,
labelling was conducted on the entire collection. For our experiments, we have
used a preprocessed data version: retweets have been deleted, so the collection
contains no duplicates; urls and mentions are replaced by ‘@USER’ and ‘URL,’
and the order is randomised. We also removed the spam class, and we mapped
both hateful and abusive tweets to the abusive class, based on the assumption
that hateful messages are the most severe form of abusive language and that the

1 The results of the experiments are available at https://github.com/MartaMarchiori/
Exposing-Racial-Dialect-Bias.

https://github.com/MartaMarchiori/Exposing-Racial-Dialect-Bias
https://github.com/MartaMarchiori/Exposing-Racial-Dialect-Bias
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term ‘abusive’ is more appropriate to cover the cases of interest for our study [12].
The dataset thus organized contains 49430 non-abusive instances and 23764 abu-
sive ones. The number of abusive records is high since it results from the union
of hateful and abusive tweets, as reported above. Besides, the class imbalance is
typical of abusive language detection datasets: it reflects the dynamics of online
discourse, where most content is not hateful. We do not introduce any other
alterations to the dataset as the intention is precisely to examine the presence
of bias in the collection as conceived and published by the data collectors.

We chose this dataset since in [3] is identified as a relevant source of racial
dialect bias. As [3] claim, although this kind of bias is present in all of the
collections investigated in their work, it is far more robust in the Founta dataset
[19]. The authors trace this problem by making several assumptions. One reason
may lie in the annotations not being conducted by domain experts. In addition,
the platform used to collect and curate the collection may have had a significant
impact. Therefore, a text classifier trained on this data will surely manifest a
kind of racial bias, as the set is neither representative nor fair. Following such
reasoning, the goal of this contribution focused on this collection is to assess via
explanation methods if the trained model can correctly detect the comment’s
abusiveness or if it is predicting the grade of offensiveness based on dialect terms,
i.e., manifesting an evident racial bias.

3.2 Methods Overview

Following the rationale in Sect. 2.1, we rely on a BERT-based model to predict
the abusiveness. In the following paragraph, we explain the experimental setup
and evaluation steps.

The dataset is split into ∼ 59, 000 records for training and ∼ 15, 000 for test-
ing. As for the classifier architecture, we used the pre-trained implementation
of BERT [15], i.e., bert-base-uncased, available through the library Trans-
formers2. We varied the learning rate between [2e−5, 3e−5, 5e−5]. We trained the
model for 5 epochs, finding that the best configuration was derived from the sec-
ond iteration, reaching a weighted F1-score of 94.1% on the validation set. The
performance achieved on the test set was also high (93.6% weighted F1-score).

Regarding the XAI techniques, IG’s Sequence Classification Explainer
was exploited, while for SHAP the Logit one, both with default parameters.
Details on the subsets of instances for which explanations were calculated are
provided in Sect. 3.4.

3.3 Local to Global Explanations Scaling

Before presenting the preliminary results, we briefly explain how we scale to a
global explanation from the local ones for IG, attempting to represent the whole
model. A straightforward way to accomplish this task consists of obtaining local
predictions for many items and then averaging the scores assigned to each feature

2 https://huggingface.co/bert-base-uncased.

https://huggingface.co/bert-base-uncased
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across all the local explanations to produce a global one. Accordingly, for each
record in the dataset, we store the local explanation, consisting of a key, i.e.,
the word present in the phrase, and a value, i.e., the feature importance. Then
we average the obtained scores for each word. This process is repeated for each
class predicted by the model in such a way to find what are the words that led
the model to output a specific class.

3.4 Results

This section reports the experiments’ results to test our hypotheses. We focus
the analysis on the BERT-based abusive language detection classifier, adopting
IG and SHAP as explanation techniques.

Global Explanations. We begin the analysis by illustrating the outcomes
obtained by IG: the results are reported in Fig. 1 (a) as WordClouds. Among the
most influential words for the predicted non-abusive class, we find portrait and
creativity, followed by terms that belong to holidays, such as passport, christmas,
and to a positive semantic sphere (excitedly). Interesting to note that the third
most relevant non-abusive word is bitch. This behavior could be motivated by
the fact that IG gives importance to this term in phrases that the classifier
gets wrong, i.e., that it considers non-abusive when, in fact, they are. Another
possible explanation could be found in the frequent use of this word informally
with a friendly connotation in the African-American dialect, stripping this term
of its derogatory meaning in specific linguistic contexts. As we would expect,
among the most relevant terms for the predicted abusive class, we encounter
insults, swear words, and imprecations, such as fucked, shit, idiots, bastard, bitch,
goddamn, crap, bullshit. To note the presence of neutral words in this setting,
which acquire a negative connotation in sentences with a strong toxic charge,
such as streets, clown, pigs, ska (African-Jamaican folk music) and demographic
groups like homosexual, gay, lesbian, queer, jew.

Sub-global Explanations. Although the most relevant patterns are primarily
consistent with the related sentiment, e.g., toxic words for the abusive class, from
this global overview, terms belonging to the African-American dialect did not
clearly emerge. We, therefore, isolated from the test set the comments highly
characterized by this slang, using a classifier3 specifically trained to recognize
texts belonging to the African-American English dialect [10]. The classifier works
as follows: taking in input a text, such as Wussup niggas, it emits the probability
that the instance belongs to AAE (0.87). Although authors suggest trusting
the classifier prediction when the score is equal to or above 0.80, we relax this
constraint by imposing 0.70 as bound to have a sufficiently populous subset to
conduct preliminary sub-global analysis. We identified a cluster of only 74 AAE
records, 65 abusive, and 9 non-abusive.

3 https://github.com/slanglab/twitteraae.

https://github.com/slanglab/twitteraae
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Fig. 1. For each predicted class is shown a WordCloud representing the terms that
obtained the higher global scores by IG for the whole test set and for the AAE subset
respectively.

The results for IG, reported in 1 (b), are not remarkable, except for the
importance of ho in the predicted non-abusive class. The hypothesis could be
the same as that underlying the importance of bitch: ho is used informally in
this slang. Among the words of lesser importance (with a score between 0.28 and
0.26) for the predicted abusive class, we find em and gotta, non-standard variants
but not highly relevant to our bias detection. For comparison, we employ SHAP
as additional explainer4 (Fig. 2). SHAP already offers the possibility to compute
explanations for multiple records; therefore, we do not have to perform the same
local to global scaling applied to IG. For this predominantly abusive subset, the
most important words identified by the logit explainer SHAP are fucked, damn,
fuck, bitch, fucking, dirty, shit, dick, ass.

Since the findings concerning the evidence of racial dialect bias in this cor-
pus are not as observable as we might have expected, we decide to narrow the
investigation by focusing on local instances belonging to this subset to assess the
classifier further.

4 SHAP was not used on the entire test set (i.e., within the Global Explanations
Section) due to the high computational costs of this explainability method. It was
therefore preferred to apply it when analysing a narrower subset, i.e., in the sub-
global setting.
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Fig. 2. Explanation for the AAE subset returned by the SHAP logit explainer, con-
sisting of the average impact of each term for the abusive class.

Local Explanations. To further investigate possible racial dialect bias, we
inspect local instances. Specifically, we focus the analysis on sentences belonging
to the AAE subset according to different scenarios.

As a first exploration, we calculate the explanation for the three non-abusive
instances misidentified as abusive by the classifier (specifically, with a probability
> 0.5) precisely to assess whether there are AAE terms among the crucial words
misleading the prediction. In Fig. 3, both IG and SHAP agree in finding ass as an
important term, although in these contexts it is used with a neutral connotation,
as is hoes, broken in both cases in ho and es. SHAP also gives importance to the
contract negative form ain’, typically belonging to AAE writers.

Another aspect that we preliminarily investigate is the predicted abusive
instances containing the most salient words (identified by the global IG scores).
From both explanation methods, the locally most salient words in Figs. 4 and
5 turn out to be ass, stupid ass, fuck, bitch. Interestingly, both methods give
importance to nigga, often split as ni gga. This kind of importance could be
misleading if this term is used with a friendly informal connotation.

Summarizing, as first insights, we can easily assess that the global explana-
tions highlight informative patterns, i.e., toxic terms for the predicted abusive
class. By preliminary assessing certain local instances, we can gather additional
findings regarding the influence of specific terms belonging to the AAE variant.
Except in these isolated cases, the explainers, and therefore the classifier, do not
seem to give importance to terms belonging to the AAE dialect. We can conclude
that, in this setting, the pure explanation techniques cannot effectively highlight
the racial bias instilled by the crowd-sourcing process, which, for this particular
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Fig. 3. Local explanation for the instance: @USER: You hoes gotta stop cutting y’all
hair it ain’t for everybody&#129315.

Fig. 4. Local explanation for the instance: Same thing with why gang members on IG
live showing guns, talking bout nigga shit...then they get arrested and say somebody
snitching.

dataset, is instead well documented in several works [3,38]. Since this stereo-
type is highly implicit, more specific and sophisticated bias checking techniques
are needed to uncover it. Further, we see that the number of records belong-
ing to the AAE variant in the test set is low. Further attempts by averaging
the results from different subsets from cross-validation might yield more robust
insights. Therefore, further experiments are needed to explore these preliminary
hypotheses, involving individuals who speak AAE in everyday conversations and
domain experts like linguists.
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Fig. 5. Local explanation for the instance: @USER: If u came n I didn’t. I fucked u,
don’t tell ya mans you smashed me. I smashed. I beat it up, lil bitch ass nigga.

4 Conclusion and Future Work

In this contribution, we investigated whether explainability methods can expose
racial dialect bias attested within a popular dataset for abusive language detec-
tion, published in [19]. Although the experiment conducted is restricted to a
single dataset and thus cannot directly lead to generalisable inferences, insights
from the analysis of this specific collection are relevant to start discussing the
limitations of applying explainability techniques for bias detection. The pure
explainability techniques could not, in fact, effectively uncover the biases occur-
ring in the Founta dataset: the rooted stereotypes are often more implicit and
complex to retrieve. Possible reasons for this issue include the limited frequency
of the AAE dialect identified in the test set and the shortages of explanation
methods applicable to text but mainly developed for tabular data. In agreement
with as pointed out in [2], current explainability methods applied to fairness
detection within NLP suffer several limitations, such as relying on specific local
explanations could foster misinterpretations, and it is challenging to combine
them for scaling toward a global, more general level.

For future experiments, first, we want to explore other explanation techniques
in addition to IG and SHAP, to compare whether other methods succeed bias
discovery, e.g., testing Anchor5 [35] and NeuroX6 [13]. It would also be interesting
to evaluate other transformer-based models to assess the impact of different
pretraining techniques on bias elicitation.

Overall, labels gathered from crowd-sourced annotations can introduce noise
signals from the annotators’ human bias. Moreover, it is clear that when the
labelling is performed on subjective tasks, such as online toxicity detection, it
becomes even more relevant to explore agreement reports and preserve indi-

5 https://github.com/marcotcr/anchor.
6 https://github.com/fdalvi/NeuroX.

https://github.com/marcotcr/anchor
https://github.com/fdalvi/NeuroX
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vidual and divergent opinions, as well as investigate the impact of annotators’
social and cultural backgrounds on the produced labelled data. Having access to
the disaggregated data annotations and being aware of the dataset’s intended
use can inform both models’ outcome assessment and comprehension, including
facilitating bias detection [41].
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Abstract. Current methods for Black-Box NLP interpretability, like LIME or
SHAP, are based on altering the text to interpret by removing words and model-
ing the Black-Box response. In this paper, we outline limitations of this approach
when using complex BERT-based classifiers: The word-based sampling produces
texts that are out-of-distribution for the classifier and further gives rise to a high-
dimensional search space, which can’t be sufficiently explored when time or com-
putation power is limited. Both of these challenges can be addressed by using
segments as elementary building blocks for NLP interpretability. As illustration,
we show that the simple choice of sentences greatly improves on both of these
challenges. As a consequence, the resulting explainer attains much better fidelity
on a benchmark classification task.

1 Introduction and Related Work

Interpretability of Natural Language Processing (NLP) models can be addressed by
developing inherently interpretable classification models [5,10,14] or with Post-Hoc
interpretability that can be applied to already trained models. With the latter, neural
network architectures can be interpreted by white box approaches, which need access
to model internals like gradients and activations [2,8]. Patterns in attention layers are
also used, but the validity of this practice has been under heavy discussion, see [3] for
an overview of recent literature in this domain. However, when model access is not
possible or preprocessing methods hinder gradient flow, a Black-Box approach without
model access is more suitable. Models like LIME [24] and SHAP [17] are examples of
Black-Box interpreters which can be applied to texts. They create an interpretation for
a text sample, called local interpretation. To this end, a dataset of similar texts, called
the neighborhood, is sampled by repeatedly removing words from the original text and
observing the change in output. The local behaviour of the model is then approximated
using a regression on the presence of words, whose weights are interpreted as local
effects of the word presence on the prediction. While LIME and SHAP perform the
sampling of the neighborhood directly in the text domain, other approaches use for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 498–512, 2023.
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example auto-encoders to generate neighboring texts [11]. While such approaches are
promising, their performance heavily depends on the performance of the text generation
model. Since in practice, resampling in the text domain is still the most prevelant, we
will consider this approach in this work.

We explore the limits of the approach of using words when it comes to complex
language models like BERT [7]. In concurrent work, Zafar et al. [27] also investigate if
sentences are more suitable for NLP interpretability. They find that sentence interpreta-
tions are more robust than word based interpretations and lead to lower variability when
using approximation techniques. We hypothesize that these two results may be direct
consequences of the results in Sects. 2.1 and 2.2 respectively. Our work can thus be seen
as complementary to [27], as it confirms the results independently and gives interpre-
tation for the source of the better performance of sentence-based methods. Our main
contributions are the identification of the granularity (words/sentences/paragraphs) as
a crucial, often overlooked hyper-parameter in black-box NLP interpretability. In addi-
tion to displaying the problems arising from this negligence, we show that an interpreter
using sentences as elementary units is able to greatly address the identified problems.
Finally, we achieve substantially higher performance in the benchmark problem used
for assessing fidelity to the underlying classifier. With this work, we hope to spark a
discussion in the literature about the importance of granularity for NLP interpretability.

2 Limits of Word-Based Black-Box Interpretability

While removing words to interpret a model is suitable for Bag-Of-Words (BOW) mod-
els without n-grams, the use of models like BERT [7], which try to model word inter-
actions using the attention mechanism, warrants a discussion if this is the appropriate
sampling mechanism for such models: Removing random words from a text can make it
unreadable for humans, since key interactions, like verb-subject, are broken. Is this also
observed with BERT? What are other consequences of word-based sampling? We com-
pare the commonly used word based sampling to sentence-based sampling. We argue
it is a more natural choice for interpretability, since sentences represent syntactically
closed units and can greatly reduce the dimensionality of the neighborhood to explore.

2.1 Distributional Shift

Sampling the neighborhood is done by altering the text. The sampling mechanism thus
has an effect on the embedding of the altered text. For neural networks, it is well stud-
ied that the Out-Of-Distribution (OOD, different distribution than training distribution)
performance can be significantly worse than In-Distribution (ID, same distribution as
training data) performance [1,9,15,19,20], with sometimes dramatic errors known as
adversarial attacks. In order for the explanation, which is based on the altered texts, to
be truthful, downstream classifier accuracy must be maintained for those altered texts.
This can only be guaranteed if texts remain in-distribution after alteration, which we
will show is not the case with word-based sampling.

Consider a simple example: Assume a perfect classifier which is able to correctly
identify the sentiment of any natural text. However, if the text does not contain a verb,
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it predicts the opposite sentiment. Consider now the text “The food was nice.”. Any
text alteration method, which removes the verb, produces an adversarial text for which
the model makes an incorrect prediction. An explanation based on such an alteration
method does not reflect the behaviour of the classifier on natural (ID) text. Inspired by
[13] where hidden activations were used to detect OOD samples for images, we use the
text embedding produced by language models ([CLS]-Token) to detect distributional
shift in two experiments. This is because in many approaches, the [CLS]-Token is used
as an input for downstream models, which may receive an OOD input.

Fig. 1. t-SNE of distributional shift with 10,000 samples. W1(words) = 8.6, W1(sentence) =
4.1 (Color figure online)

Visualizing Distributional Shift. In the first experiment, we compare the distribution
of the embeddings of the original text, after removing a random sentence and after
randomly removing the same number of words. We compute the embeddings for 10,000
randomly selected Wikipedia snippets from the SQuAD dataset [23] using BERT [7].
On a t-SNE visualisation (Fig. 1) of the distributions of the embeddings (original text,
sentence removed, words removed) one can observe that the distribution obtained by
removing randomly selected words (orange) is significantly different from the original
one (blue), while no big difference is observed with removing sentences (green). To
quantify this effect, we consider the Wasserstein Distance. Given two distributions P
and Q, it is defined as

W1(P,Q) = min
π∈Π(P,Q)

E(x,y)∼π[‖x − y‖],

where Π(P,Q) is the set of all couplings between P and Q. The Wasserstein Distance
or “earth mover distance” measures the minimum cost (probability mass multiplied by
distance moved) to turn one probability distribution into another. We now consider byQ
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the empirical distribution of the embeddings of original text, Ps the empirical distribu-
tion of the embeddings of texts with a sentence removed and Pw the empirical distribu-
tion of the embeddings of texts with words removed. We obtain W1(Pw,Q) = 8.6 and
W1(Ps,Q) = 4.1, which confirms that texts with sentences removed are closer to stan-
dard text than texts with words removed. Since the classifier is trained on normal texts,
its accuracy on the texts obtained by word-sampling, as used by current state of the art
model-agnostic interpretability methods, is questionable, since they are OOD. However,
sentence sampling produces ID texts, for which normal accuracy can be expected.

Fig. 2. Comparing distributional shift classifier accuracy

Evaluating Distributional Shift with Classifier Accuracy. Onemay wonder if the dis-
tributional shift observed in the previous experiment is only because a relatively high
number of words was removed, reflecting a strong alteration of the text. We perform
a second experiment, by framing the detection of distributional shift as a classifica-
tion problem: The classifier is given text embeddings and tasked with distinguishing
between altered and unaltered texts. We compare the embeddings of the original texts,
with 5 words removed and with 1 sentence removed. In order to further study if the
distributional shift effect is present across different pretraining schemes and prevails
after distillation, we use a range of language models other than BERT [7], namely Dis-
tilBERT [26], ROBERTA [16] and ELECTRA [6], where DistilBERT is a distilled ver-
sion of BERT, while ROBERTA and ELECTRA use different pretraining tasks, notably
loosing next sentence prediction. We employ a variety of different text domains by
using context from SQuAD 2.0 [22] and SQuADShifts [18]. While SQuAD 2.0 contains
texts fromWikipedia, SQuADShifts contains texts from other domains, which are often
encountered in practice. These include user generated text (from Amazon reviews and
Reddit comments) and newspaper articles (New York Times). For each binary classifi-
cations (Original-Word and Original-Sentence for all datasets and transformer models),
we train a Random Forest Classifier on the embeddings and observe its performance on
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a randomly selected, held-out test set. The results are given in Fig. 2. Since the binary
classifications are balanced, random predictions would yield a classification accuracy
of 0.5. We observe that for all datasets and Language Models, the classification accu-
racy for sentence-removal is much lower compared to word-removal, almost down to
random prediction. This suggests that the distributional shift with sentence-removal is
much lower, confirming the results from Sect. 2.1. The fact that the result is not only
observed on the Wikipedia subset, but also Amazon, New York Times and Reddit, sug-
gests that distributional shift is a problem across text domains and transformer-based
Language Models. Further, using sentences seems to successfully address the issue for
most language models except ROBERTA, where the altered text seems to still be OOD,
although an improvement can be observed, indicated by the lower accuracy. While this
behaviour of the different language models is an interesting property, we leave its analy-
sis for further works. For the arguments presented here, it suffices to note that sentence
based interpretability shows preferable distributional properties with reduced distribu-
tional shift.

2.2 Computational Complexity

Since language models often require substantial computation power, even in inference,
computational complexity is another issue with word based methods. We can view
the sampling from the neighborhood as sampling binary vectors, encoding the pres-
ence/absence of words or sentences, where the number of possible choices, i.e. the
size of the neighborhood is exponential in the number of words/sentences. Taking the
SQuAD 2.0 [22] dataset for illustration, the texts contain on average 137.7 words in 5.1
sentences. The number of elements in the neighborhood are thus 2137.7 = 2.8 ∗ 1041

for word-based alteration and 25.1 = 34.3 for sentence-based alteration. Since in prac-
tical applications, computation time is often constrained, only a limited number of sam-
ples from the neighborhood can be evaluated. Since the neighborhood resulting from
sentence-based alteration is much smaller, a higher portion of it can be explored. If for
example time permits only exploring 20 samples, then 58% of the sentence-based neigh-
borhood can be explored. However, of the word based neighborhood, less than 10−39%
can be explored. This results in a better estimation of the model’s decision surface with
sentence-based methods when computation power is limited.

3 Sentence-Based Interpretability

To explain a sample, standard post-hoc model-agnostic interpretability approaches cre-
ate a dataset of the local neighborhood by repeatedly perturbing parts of the input. The
created dataset is then used to train an interpretable surrogate model, for example a
linear regression, on the model predictions.

Based on the insights from Sect. 2, we propose to use sentences as atomic units for
explanations. In addition to sentence-based alteration, we use a different methodology
to select which parts to alter. For tabular data, [12] conclude that defining locality is a
crucial issue for local Black-Box interpretability. We hypothesize that the same holds
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for text classification: Texts should be sampled such that small changes are more fre-
quent than large changes. This is why we use the most local neighborhood possible: we
enumerate the alterations with the fewest sentences removed. Since the dataset of the
neighborhood is well localized, using a weighted regression like in LIME or SHAP is
not necessary.

We propose the GUTEK1 approach in three steps: We first split the text into sen-
tences (Segmentation). We then repeatedly remove some sentences in order to create
a dataset reflecting the local neighborhood of the sample to explain (Local Sampling).
This dataset is then used to fit a linear regression on the presence/absence of sentences
(Surrogate Training). The weights of the regression can be interpreted as the local
effect of the presence of sentences on the prediction.

4 Fidelity Experiment

In Sect. 2 we point out the main reasons for proposing sentence-based interpretability:
computational complexity and distributional shift. While we give theoretical arguments
why these are important drawbacks of word-based methods, we ultimately want to give
better explanations. Defining what is a good explanation is still an open question in
interpretability research, but we identify fidelity as a desirable property. This means
that the given explanation well reflects the reasoning of the underlying classifier.

In order to assess if GUTEK correctly explains the classifier’s reasoning, we test if
it is able to detect which parts of the text were important for the prediction. We use the
QUACKIE [25] benchmark. QUACKIE aims to address the human bias in the ground-
truth generation for NLP interpretability tasks. This is done by, instead of human anno-
tating ground truth labels for existing classification tasks, constructing a specific classi-
fication task for which the ground-truth labels arise directly from the underlying dataset.
That is, for a given question-context pair in Question-Answering datasets, the classifi-
cation models are tasked with determining if the question can be answered with the
context. The sentence containing the answer in the context is then used as ground-truth
interpretability label. QUACKIE comprises three performance metrics, namely IOU,
calculated as the intersection-over union in terms of sentences and measuring how well
the ground truth has been found, HPD, computing inverse rank of the ground truth sen-
tence and SNR, computing the square of the score of the important sentence divided by
the variance of the scores of unimportant sentences.

We compare our approach to LIME with sum aggregation of token scores for each
sentence, which represents the current best-performing Black-Box method in the bench-
mark in the primary metrics IoU and HPD, representing performance of correctly iden-
tifying the important sentence and highly ranking the important sentence respectively.
We report the results for the SQuAD 2.0 dataset in Table 1, results from other domains,
such as Reddit posts or New York times Articles, are given in Appendix D and show
the same behaviour. We outperform the previous method by a substantial margin in both
IoU and HPD for both classifiers. Notably in IoU, our approaches scores are more than
double LIME’s scores with the same number of samples, which implies that we find

1 GUTEK, “Gutenberg” in Polish, for Generating Understandable Text Explanations based on
Key segments.
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Table 1. Results on QUACKIE (SQuAD)

Classif QA

Method IoU HPD SNR IoU HPD SNR

GUTEK 10 88.55 90.75 39.48 90.53 92.37 37.37

LIME 10 37.70 50.29 39.23 38.47 50.83 38.20

LIME 100 58.04 66.50 39.30 69.90 75.98 40.91

the most important sentence twice as often as the word-based approach. When allow-
ing LIME 10 times as many samples as our approach (100 samples vs. 10 samples for
GUTEK) it gets closer to our performance in IoU and HPD without matching it.2 Obvi-
ously, drawing 10 times as many samples also results in roughly a 10 fold increase in
required computation power and thus a roughly 10 fold increase in computation time.
Using 100 samples with the sentence-based approach results in a minor improvement of
about 3% points in the primary metrics IoU and HPD, suggesting that the neighborhood
is already sufficiently well explored with 10 samples. In the SNRmetric, measuring how
much higher the score for the important sentence is compared to the unimportant ones,
LIME is performing better than GUTEK, possibly due to the use of LASSO regression,
which was pointed out by the benchmark authors as a possible attack to improve the
SNR score. Overall, the explanations from the sentence-based approach thus better rep-
resent the model’s reasoning. We hypothesize that the improvement in fidelity is due
to the reduced distributional shift (Sect. 2.1) and much reduced search space (Sect. 2.2).
This is in line with the observation that LIME is able to improve its performance when
using more samples.

5 Discussion

We have shown that word-based sampling mechanisms which alter the text by removing
words create a distributional shift in the input texts. This may lead to OOD inputs to the
underlying model when the neighbourhood is explored. We further showed that the
neighborhood created by word-based methods is very big and can not be well explored
with a limited number of samples. While using an iterative approach, first finding the
important sentences in a text, then the important words in the important sentences would
address the second problem, the first would prevail.

While in this work, we used sentences as elementary building blocks for NLP inter-
pretability, this is not the best choice in all applications. For example, in short texts like
tweets, where less interdependence between words is present, word-based approaches
may be preferable. Similarly, for very long texts where there is a strong interdependence
between sentences, even bigger segments, such as paragraphs, may be used. Finally,
also parts of sentences may be used. However, this raises the problem of text segmenta-
tion, which is beyond the scope of this paper.

2 The scores are also better than the ones obtained for LIME on a random subset of samples
using a neighborhood of 1000 samples.
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While we have illustrated the importance of the granularity hyperparameter in
terms of distributional shift, computational complexity and fidelity, the explanations
created by different choices of granularity are also inherently different. For example,
the sentence-based interpretations give context, while the word-based methods are eas-
ier to understand at a glance. In Fig. 3, we show the interpretations by GUTEK and
LIME for a negative movie review given. (TF-IDF based Random-Forest Classifier is
used, further examples are given in Appendix C) We can see that both approaches cor-
rectly identify worst as a key driver for negative prediction. However, since the sentence
also contains the context, giving it as explanation also provides the information that it
was in fact the worst villain and not the worst screenplay or worst story-line. A sim-
ilar effect is observed with poorly. Which interpretation is easier to understand may
be domain and application specific. Nonetheless, this effect should also be considered
when choosing the granularity of NLP interpretability applications.
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Fig. 3. Comparison of explanations for TFIDF movie sentiment classifier, GUTEK (left) vs LIME
(right) (negative sample id 875)

6 Conclusion

In this work, we illustrated limits of current state-of-the-art model-agnostic inter-
pretability methods based on word sampling (e.g. LIME, SHAP), prone to out-of-
distribution sampling when it comes to complex NLP classifiers like BERT and ques-
tioning the truthfulness of the explanations. Word-based sampling also suffers from
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high computational complexity, limiting the exploration of the neighborhood of the text
whose prediction is to explain. These limitations are addressed with a sentence-based
approach resulting in better fidelity. The main take-aways thus are (1) the challenges
arising with word-based approaches (distributional shift, computational complexity and
human interpretability) and (2) the illustration that a simple sentence based model
(GUTEK) attains improved performance compared to word-based methods.

A Reproducibility

To ensure reproducibility, we give the implementation details of our experiments. Direct
implementations can also be found directly on our Github3.

A.1 The Case Against Word-Based Black-Box Interpretability

Distributional Shift. We use the last embedding of the classification token as repre-
sentation of the whole text. We use base uncased BERT [7]. For the visualisation exper-
iment, we directly use this embedding to calculate Wasserstein distance. To visualize,
we use t-SNE on the combined dataset (word removed + sentence removed + original)
with PCA initialisation and a perplexity of 100. The algorithm is given a maximum of
5000 iterations, for other parameters we used SKLearn [21] defaults.

For evaluating distributional shift with classifier accuracy, we use base uncased
BERT [7], base RoBERTa [16], base uncased DistilBERT [26] and the small ELEC-
TRA [6] discriminator. The text embeddings are pairwise used to create a classification
problem, which uses a random 75–25 train test split. We train a Random Forest Classi-
fier using default SKLearn parameters, controlling for complexity using the maximum
depth with options 2, 5, 7, 10, 15 and 20. The best choice is selected using out-of-bag
accuracy. Results in Fig. 2 and Table 2 represents performance on the test-set.

Computational Complexity. In order to have normal flowing text, we use text
from Wikipedia, notably contexts from SQuAD 2.0 [22]. We compare the number
of sentences and the number of words, obtained using NLTK [4] sent tokenize and
word tokenize respectively.

A.2 Experiments and Analysis

Fidelity Evaluation with QUACKIE. We use code provided with QUACKIE [25] to
test GUTEK. In our implementation of GUTEK, we use NLTK sent tokenize to split
the text into sentences and use the SKLearn implementation of the Linear Regression
as surrogate. The coefficients of the linear regression are used as sentence scores.

3 https://github.com/axa-rev-research/gutek.

https://github.com/axa-rev-research/gutek
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B Tabular Results for OOD Classification

In addition to plotting, we give the results from Fig. 2 in Table 2.

C Qualitative Evaluation

In Figs. 4 and 5, we give some more illustrations of the different explanations, similarly
to Fig. 3

Table 2. OOD Classification Accuracy in Tabular Form

Dataset lm Word Sentence

Wikipedia BERT 0.81 0.57

DistilBERT 0.79 0.56

ROBERTA 0.86 0.70

ELECTRA 0.92 0.60

Amazon BERT 0.81 0.59

DistilBERT 0.79 0.56

ROBERTA 0.87 0.76

ELECTRA 0.92 0.60

NYT BERT 0.81 0.59

DistilBERT 0.78 0.57

ROBERTA 0.87 0.76

ELECTRA 0.91 0.61

Reddit BERT 0.79 0.59

DistilBERT 0.78 0.56

ROBERTA 0.86 0.76

ELECTRA 0.92 0.60

D Complete QUACKIE Results

We also give results for all datasets in QUACKIE and report the scores for all other
methods currently in QUACKIE in Tables 3, 4 and 5.
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Fig. 4. Comparison of explanations for TFIDF movie sentiment classifier, GUTEK (left) vs LIME
(right) (sample id 370)
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Table 3. IoU results

SQuAD New Wiki NYT Reddit Amazon

Interpreter Aggregation Samples Classif QA Classif QA Classif QA Classif QA Classif QA

GUTEK – 10 88.55 90.53 87.7 89.54 87.66 88.04 71.62 76.86 79.09 78.95

100 91.38 90.53 90.83 90.53 91.56 91.84 80.62 86.98 84.77 86.14

LIME† sum 10 37.70 38.47 40.72 41.40 40.22 41.98 31.35 35.34 32.69 35.27

100 58.04 69.90 60.74 70.82 62.02 73.50 50.33 69.02 53.57 67.58

max 10 34.06 35.36 36.98 37.77 36.19 36.43 26.52 28.89 29.80 32.12

100 57.86 68.30 59.65 68.43 61.57 72.00 48.22 65.23 53.09 66.24

SHAP† sum 10 30.48 32.90 31.66 32.84 29.26 31.03 22.13 23.75 24.59 25.43

100 54.85 65.92 57.53 65.79 56.38 67.70 49.35 65.02 54.03 67.68

max 10 29.69 30.81 30.72 31.68 28.32 30.00 21.17 22.58 22.72 23.84

100 52.45 62.34 54.56 63.18 53.19 64.78 45.79 60.03 49.54 63.35

Saliency sum – 74.74 91.12 72.19 91.18 68.87 88.46 57.57 85.26 64.82 85.91

max – 66.27 80.79 65.04 80.78 58.95 76.07 48.41 77.33 59.52 79.70

Integrated Gradients sum 50 66.73 85.93 65.00 85.93 65.44 85.20 51.62 79.73 51.96 78.21

max 50 62.73 87.05 60.70 86.73 61.63 85.92 50.24 82.35 49.09 82.45

SmoothGrad sum 5 60.98 91.28 60.29 90.56 60.25 88.29 50.32 84.51 52.34 84.40

max 5 59.48 82.16 61.45 82.38 56.93 78.33 45.95 77.72 53.03 78.26

Random – – 24.64 25.38 26.86 27.39 24.53 24.36 16.51 16.09 18.71 19.17

Table 4. HPD results

SQuAD New Wiki NYT Reddit Amazon

Interpreter Aggregation Samples Classif QA Classif QA Classif QA Classif QA Classif QA

GUTEK – 10 90.75 92.37 90.17 91.68 89.64 90.02 74.93 79.5 81.76 81.71

100 93.02 92.37 92.72 92.37 93.02 93.36 83.04 88.66 86.84 88.17

LIME† sum 10 50.29 50.83 53.32 53.76 51.62 53.12 39.99 43.56 42.31 44.64

100 66.50 75.98 68.93 76.93 69.17 78.58 56.60 72.97 60.12 72.25

max 10 45.12 46.19 47.85 48.62 46.60 47.11 34.47 36.74 38.43 40.63

100 63.74 71.33 65.47 71.89 67.28 75.25 53.23 67.65 58.41 69.21

SHAP† sum 10 41.22 44.09 42.87 44.57 39.06 41.38 28.94 31.26 32.97 34.63

100 63.93 72.75 66.18 72.91 64.39 73.74 55.59 69.44 60.48 72.29

max 10 37.74 39.28 39.29 40.68 36.40 38.54 27.30 29.13 30.24 32.05

100 59.85 67.47 61.80 68.35 60.80 69.98 51.19 63.41 55.32 66.86

Saliency sum – 79.91 93.01 78.20 93.06 74.97 90.71 63.05 87.21 69.96 88.01

max – 72.99 84.83 72.40 84.81 66.86 80.94 55.10 80.32 65.31 82.74

Integrated Gradients sum 50 73.52 88.85 72.39 88.93 71.99 88.00 57.84 82.46 58.93 81.56

max 50 70.15 89.67 68.93 89.48 68.73 88.52 56.51 84.70 56.35 85.10

SmoothGrad sum 5 69.03 93.08 68.92 92.59 68.05 90.52 56.77 86.58 59.36 86.72

max 5 67.83 85.77 69.64 86.12 65.32 82.65 53.00 80.64 59.84 81.43

Random – – 40.28 40.71 42.66 42.92 39.23 39.18 27.41 27.17 30.79 31.34
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Table 5. SNR results (Examples for which noise cannot be estimated are omitted)

SQuAD New Wiki NYT Reddit Amazon

Interpreter Aggregation Samples Classif QA Classif QA Classif QA Classif QA Classif QA

GUTEK – 10 39.48 37.37 42.63 37.86 32.21 30.68 19.12 17.69 26.11 22.22

100 35.49 37.37 39.5 37.37 30.38 33.13 18.22 19.48 20.9 22.92

LIME sum 10 39.23 38.20 41.82 40.66 36.98 37.26 25.89 22.84 27.87 27.08

100 39.30 40.91 42.30 43.96 39.41 39.38 32.90 46.71 27.42 32.52

max 10 91.76 91.54 94.38 88.83 93.24 85.01 107.89 110.55 93.77 95.83

100 125.98 176.07 124.96 162.51 133.54 184.66 171.42 305.21 151.52 232.94

SHAP sum 10 73.24 67.24 74.17 67.85 71.42 68.34 91.28 83.95 68.02 60.68

100 42.27 42.09 44.80 45.60 37.31 43.69 34.30 40.05 28.76 34.64

max 10 99.16 102.31 97.42 101.44 97.10 92.66 130.98 127.01 99.87 102.16

100 107.51 137.77 102.01 132.57 94.43 132.64 149.95 240.47 135.62 207.62

Saliency sum – 37.29 39.92 40.88 40.14 35.14 34.23 19.10 19.77 22.90 23.34

max – 35.58 38.20 39.75 39.81 34.08 36.35 19.15 20.04 22.17 23.78

Integrated Gradients sum 50 37.28 37.32 39.16 40.19 33.30 33.04 18.96 20.60 22.50 24.60

max 50 35.71 34.99 38.74 38.09 32.55 32.80 18.41 20.57 21.80 23.69

SmoothGrad sum 5 38.13 37.22 41.29 40.15 35.16 33.04 19.40 20.33 23.34 23.11

max 5 37.55 36.61 40.29 40.04 34.85 35.98 19.23 19.62 22.45 22.69

Random – – 37.70 37.34 40.63 40.52 34.87 35.06 19.24 19.79 23.21 23.70
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Uplift Modeling Tutorial and Workshop
(UMOD 2022)

Uplift modeling concerns the data-driven estimation of individual treatment effects for
optimizing or customizing decision-making in business. Uplift modeling is receiving
growing interest, both in academia and industry, with an increasing number of appli-
cations in marketing, pricing, learning analytics, operations management, etc. Uplift
modeling draws from both the field of causal inference and the field ofmachine
learning, and is closely related to causal effect estimation (heterogeneous treatment
effect estimation and individual treatment effect estimation) but is strongly application
oriented. For example, unlike most research on causal discovery, uplift modeling puts
emphasis on randomized trials which are widely available in the industry (e.g,. A/B
testing), ranking-based performance measures, and taking into account costs. The
motivation behind the workshop was a belief that a large number of open research
questions are still to be addressed and that the domain would benefit from tighter
integration of its community.

The Uplift Modeling Tutorial and Workshop at ECML-PKDD 2022 attracted a
significant number of uplift modeling researchers and brought together experts from
both academia and industry. The tutorial part, presented by the organizers, provided a
broad but concise overview of the state of the art in uplift modeling and highlighted
challenges and directions for future research.

An invited talk by Eustache Diemert, Senior Staff Research Lead at Criteo AI Lab
in Grenoble, on “Uplift Modeling for Online Advertising” provided an industry per-
spective. Eustache discussed how uplift modeling is used at Criteo, presented many
practical problems encountered in real life, and discussed open issues faced by the
online advertising industry.

The workshop part included presentations of new results by researchers from both
academic and business environments. Several interesting results were presented related
to uplift model estimation and evaluation, as well as business application scenarios.
Interesting problems such as out-of-distribution generalization were also discussed.

We believe that the event provided an opportunity for researchers and developers to
present new uplift modeling approaches and novel business applications, and to discuss
open issues and connections with related research fields.

September 2022 Szymon Jaroszewicz
Wouter Verbeke



Organization

UMOD 2022 Chairs

Szymon Jaroszewicz Institute of Computer Science, Polish Academy
of Sciences, and Warsaw University of
Technology, Poland

Wouter Verbeke KU Leuven, Belgium

Program Committee

Mouloud Belbahri TD Bank Group, Canada
Artem Betlei Criteo, France
Jeroen Berrevoets University of Cambridge, UK
Kristof Coussement IESEG School of Management, France
Eustache Diemert Criteo AI Lab, France
Robin Gubela Humboldt University of Berlin, Germany
Leo Guelman Royal Bank of Canada, Canada
Stefan Lessman Humboldt University of Berlin, Germany
Diego Olaya ACA Group, Belgium
Krzysztof Rudaś Polish Academy of Sciences, Poland
Piotr Rzepakowski Warsaw University of Technology, Poland
Sam Verboven Vrije Universiteit Brussel, Belgium



Estimating the Impact of Coupon
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Abstract. Coupon incentives are a common tool used by marketers to
persuade customers to make purchases in the ecommerce marketplace.
While not all coupons are redeemed by users, for the most part due to
lack of interest or need, we find a number of users not using coupons at
their disposal even when they do make a purchase. In this paper, we do
not investigate the causes for such a phenomenon. Instead, we measure
the business implication of such a phenomenon. We do so by introducing
a partially observable variable U that indicates whether or not a user
is able to use a coupon. We then estimate how users are affected by
comparing with counterfactual scenarios where the coupons delivered
would have been usable to all users. With the help of the estimated
impact on users, we then prescribe next actions for the business to follow
to improve the effectiveness of coupon campaigns.

Keywords: e-commerce · Causal inference · Coupon redemption

1 Introduction

In online marketplaces, coupons are often used to persuade customers to make
purchases. While it is expected that not all coupons get redeemed, it is with great
intrigue that we notice a considerable number of users make purchases without
using a coupon in spite of possessing one. We observe this phenomenon in our
company, a large e-commerce platform with millions of monthly active users, in
multiple campaigns across multiple countries and so believe this phenomenon to
be highly prevalent in the industry.

At a glance, this may appear to be a favorable phenomenon from a business
perspective. After all, if the target users of a buying campaign buy items without
using coupons, then the campaign meets its business objective without incurring
extra costs. It could after all be the case that users were motivated to make the
purchase solely because of the notification message that accompanied the coupon
incentives and not the incentive itself. However, one can also reason that if there
are users who buy items without coupons even though they received coupons,
there may be even more users who don’t buy items because they didn’t know
they could use coupons. Since we don’t know which of the above cases are true
and to what extent they are true, we need to estimate the business impact of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 517–523, 2023.
https://doi.org/10.1007/978-3-031-23618-1_34
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existence of users buying items without coupons. The following is the summary
of our contributions:

– We use causal inference to formally define the problem of coupon non-usage
in marketing campaigns.

– We define segments of users based on how they respond to coupons taking
into account whether or not they were able to use the coupon.

– We show how to estimate the size of the newly defined user segments using
Bayesian models and also show how the estimations can be used to make
data-driven decisions.

The rest of the paper is structured as follows. We first describe the above
scenario in the language of causal inference in Sect. 2. We then define the problem
statement with the help of the user segments generated from a causal diagram.
We model the user response in Sect. 3 and then train a Bayesian model to fit
the model to the data. We explain our results in Sect. 4. We consider related
methods in Sect. 5 and finally conclude in Sect. 6.

2 Background and the Causal Model

We perform experiments using data obtained from Mercari, a large online CtoC
marketplace where one can buy and sell items. Mercari conducts a number of
marketing campaigns for the acquisition, onboarding, and retention of buyers
(and sellers). When we run marketing campaigns at Mercari, we perform AB
tests to measure their impact, randomly dividing the target population into a
treatment and control group. In all campaigns, we observe a strange phenomenon
wherein a substantial number of users in the treatment group make purchases
in the campaign period without using the coupon they were offered. The above
scenario can be depicted by the causal diagram as shown in Fig. 1.

According to the causal diagram, treatment (T) can cause a purchase (Y) in
two ways. The first way is through the incentive itself; in this case, treatment
can only cause the purchase if the incentive is usable (U) for that particular
customer. For the second way, we draw an arrow directly between T and Y to
allow for the possibility of the incentive causing a purchase without the coupon
being redeemed; a customer can have after all been induced to make a purchase
just from the notification message through which the coupon was delivered. X
consists of measurable confounders such as coupon usage history, prior purchase
activity, etc. that can potentially affect both usability (U) and purchase (Y). We
control for X to get a better estimate of the causal effect of U on Y. By using
the causal diagram, we assume that unobservable confounders such as education
level, IQ, etc. don’t bias the estimations strongly.

Once the causal diagram has been established, we divide the users into seg-
ments based on the usability of the coupon and resulting response of each user
to coupons. The segments created are similar to those created for the uplift
modeling [2] and we build on the terminology to label our segments. Since we
are interested in the user’s binary response (Y) for three specific cases:
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Fig. 1. The causal diagram depicting users who buy items without coupons.
X: user attributes
Y: purchase during the campaign period (yes/no)
T: campaign segment (treatment/control)
U: usability of the coupon (yes/no)

– User is in the control group (T = 0)
– User is in the treatment group (T = 1)
– User is in the treatment group (T = 0) and the coupon is made usable (do(U

= 1))

we have 23 = 8 segments to start with. To simplify the analysis, we make an
assumption to prune the segments. We assume that treatment on a user who
can use the coupon can’t have a negative effect on the future purchase propen-
sity. Our assumption can be formulated using the language of do-calculus [1] as
follows:

Y (T,U = 0) <= Y (do(T = 1), do(U = 1))

Eliminating segments that violate the above assumption, we end up with five
segments as shown in Table 1.

In order to measure the potential gain in business impact by raising the
usability of coupons, we need to estimate the number of users in each of the
groups A to E. Of all the groups, group C and E are the most desirable segments
under the current scenario and if only such users existed, then leaving things
unchanged would be the best course of action from a business perspective. We can
call these users “persuadable anyway” and “organic anyway” users respectively.
Making the coupons more usable will not change the outcome for these users
but will result in the redemption of the coupons and therefore an increase in
campaign costs.

However, there are two other segments of users who are negatively affected
by the current situation: groups B and D. B users are users who don’t make
an uplift-contributing purchase because they can’t use the coupon while D users
don’t make an organic purchase because they had a bad experience not being able
to use the coupon. We can consider these users to be “persuadable if usable” and
“organic if usable” users respectively. In both cases, we miss out on purchases
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from users because of coupons lacking in usability rather than the user lacking
in motivation. Making the coupons more usable in this case will improve the
outcome for these users albeit with an increase in campaign costs.

Table 1. User segments obtained from the causal diagram

Group Y (T = 0) Y (T = 1) Y (T = 1, do(U =1))

A 0 0 0

B 0 0 1

C 0 1 1

D 1 0 1

E 1 1 1

3 Modeling the User Response to Coupons

There are many ways to go about modeling the causal graph. Machine learning
algorithms like Gradient Boosted Trees [5], Support Vector Machines [10], etc.
can be used to estimate different parts of the graph. While we can expect good
results with all of the above methods, we find it more convenient to use machine
learning algorithms more suited to graphs, so that a single model can make all
the inferences we need. Neural networks have shown great promise with various
data forms, including graphs [11], though they have only been recently used
in tandem with causal graphs [15]. In our case, however, we require a more
interpretable model in order to get useful insights. We use a Bayesian model [12]
to simulate the causal diagram in Fig. 1 with the following formulation:

ln

(
pU

1 − pU

)
= fU (X) (1)

U ∼ Bernoulli(pU ) (2)

ln

(
pY

1 − pY

)
= fbaseline(X)

+ 1T=treatment ∗ ftreatment(X)
+ 1T=treatment ∗ U ∗ fcoupon(X) (3)

Y ∼ Bernoulli(pY ) (4)

Note that fU , fbaseline, ftreatment and fcoupon are all affine functions and
1T=treatment is an indicator function that indicates whether or not a user
belonged to the treatment group. X is a vector of user attributes.

U indicates whether or not the coupon was usable. It is a partially observable
variable whose value can be observed only for buyers in the treatment group. It
equals 1 when the coupon was used to make a purchase and 0 when a coupon
wasn’t used to make a purchase. If the user is in the control group, or if they
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did not make a purchase, then the value of U is unknown. We use our Bayesian
model to extrapolate from the users whose U values are known and estimate the
value of U for the other users.

We use a Monte Carlo Markov Chain to fit the data to the model and obtain
estimates of pU , fbaseline(X), ftreatment(X), and fcoupon(X) for each user. With
the help of the estimates, we use Eqs. 3 and 4 to estimate the counterfactual
responses of each user for different interventions on U and T. More concretely,
for each user, we sample Y for three different cases:

– T = 0
– T = 1
– T = 1 and U = 1

Based on the values of Y sampled, we assign the user to one of Groups A to E.
We repeat the sampling procedure multiple times for each user to ensure steady
results. With each user assigned to segments, we estimate the fraction of users
residing in each of the segments of Table 1.

4 Observed Estimates from Real World Data

With the help of the Bayesian model and by following the process outlined in
the previous section, we estimate the relative sizes of the segments of the users
of a campaign as shown in Table 2. We use AB test data from a buyer campaign
targeting hundreds of thousands of users with discount coupons. We leave out
the intermediate treatment effects estimated to focus on the main output which
is the estimated segment sizes. We also leave the estimation of error estimates
and confidence intervals to future work.

The largest segment of users is group A (lost cause) which is to be expected;
a large majority of users don’t respond at all to coupon campaigns. The next
greatest majority of users reside in group B: users who would have converted if
the coupon was made usable (do(U = 1)). This suggests that in this particular
case, making the coupons more usable can greatly improve the business impact
achieved by the coupon campaign.

Table 2. Estimates of the sizes of the user segments

Group Fraction of users

A 53%

B 36%

C 04%

D 06%

E 01%

We also see a significant number of users in group D (6%), suggesting that
a considerable number of users give up on making a purchase because they
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originally wanted to make, perhaps because they had trouble using the coupons
offered to them. About 4% of users reside in group C. While the model suggests
that it may be good from a business perspective to allow the usability of the
coupon to stay as it is for such users, it may not be a good strategy for those
users too in the long term. Lastly, we see around 1% of users are organic users
who make a purchase irrespective of the usability of the coupon.

Overall, we see that the number of users whose behavior will be positively
affected by improving the usability of the coupon is far greater than the number
of users who will use the (now usable) coupon without further contributing to
the uplift in purchases. For this buyer coupon campaign, we therefore recom-
mend identifying the cause of the lack of usability of the coupon and resolving it.
Potential causes could be lack of awareness of the existence of coupons, uncer-
tainty as to whether the coupon was actually applied or not, etc.

5 Related Work

Causal inference is a versatile tool commonly used to estimate unbiased treat-
ment effects [13]. Statistical models [3], tree-based models [6] and neural networks
[14] have been applied to model causality. Causal graphs help depict causal rela-
tions between multiple independent and dependent variables. It can be used to
embody both causal and probabilistic assumptions [9], analyse missing data due
to partially observed outcomes [7], and help recover from selection bias [1].

Many have applied causal graph to model the causality between variables.
Nair et al. [8] use causal graphs to incorporate additional information when
modeling a stochastic multi-armed bandit problem. They model the causality
between item exposure, user interaction and purchase with the help of a causal
graph, though they didn’t use a Bayesian model. Gu et al. [4] aim to identify
the groups of users that are truly affected by advertisements. They plot a causal
diagram to model the user response to advertisement exposure and propose an
algorithm to predict the counterfactual behavior of users. We use a similar causal
diagram in our experiments, though we allow for the possibility of the case where
a coupon (our treatment variable) can cause a purchase even if not used.

6 Conclusion

In this paper, we consider the phenomenon of buyers in an ecommerce mar-
ketplace not using coupons they could have used when making a purchase. We
model the scenario with a causal graph and apply a Bayesian model to estimate
the effect of this lack of usability of coupons. Contrary to our expectations, we
find that the phenomenon has a strong negative effect on the performance of the
campaign and therefore stress the need to identify and resolve the root cause of
the lack of usability of the coupons.
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1 Introduction

Uplift modeling is an approach using a set of statistical and machine learning
methods to solve the problem of selecting observations that should be targets of
an action (i.e. marketing campaign, medical treatment). To clarify the problem,
let us introduce a motivational example. Suppose that we are the owner of the
shop. To increase the sale of the given product, we send a discount to the pop-
ulation of our potential customers. Some customers may decide to spend more
money because they obtain a discount (i.e. someone who will never buy when
a discount is not sent to him, but after obtaining it he decides to buy some of
them). The second group of customers are those who spend the same sum of
money (i.e. they will never buy independently of obtaining a discount). The last
group is those who spend less money (they buy a certain number of products
independently of obtaining a discount). Our goal is to find observations from the
first group. We should compare the response of observation when action is taken
on it and when it is not. Unfortunately, we do not have these two responses at
the same time. It is known as Fundamental Problem of Causal Inference [3].

To solve this problem, we divide our population into two groups: control
(observations on which action is not taken) and treatment (observations on which
action is taken). We assume that responses in both groups are linear:

yC = XCβC + εC , (1)

yT = XT βT + εT = XT βC + XT βU + εT , (2)

where yC and yT are nT and nC-dimensional responses in the control and treat-
ment groups. εT and εC are independent normal error vectors with standard
error σT and σC respectively. We assume that matrix XT has nT rows and p
columns. Similarly XC is nC × p dimensional matrix. We denote n = nT + nC .
XT βU is an additional effect observed only in the treatment group which can be
identified as an effect of our action assuming the random assignment of obser-
vations to the treatment and control groups.

The goal of our article is to find a good estimator of βU . As a measure of
goodness of fitting we assume the mean squared error:

MSE(β̂U ) = E(Xβ̂U − XβU )′(Xβ̂U − XβU ),

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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where X =
[
XT

XC

]
. In the next chapter, we will describe shrinkage estimators

that existed for ordinary least squares models. Next, we will describe existing
methods of estimating βU . In the next part, we concentrate on constructing
shrinkage estimators for the best method of estimating βU described in the pre-
vious chapter. We will also describe some theoretical properties of new shrinkage
estimators. Finally, we will discuss the results of experiments on artificial and
real datasets. We will conclude that uplift shrinkage estimators improve the MSE
of their basic versions.

2 Shrinkage Estimators

We now present a short review of shrinkage estimators for classical ordinary least
squares models. The relation between dependent variable y and independent
variable X is given by the formula:

y = Xβ + ε

The goal of shrinkage methods is to improve the MSE of the OLS estimator:

β̂ = (X ′X)−1X ′y.

It is a widely known fact that the OLS estimator is unbiased: Eβ̂ = β and has the
following variance Varβ̂ = σ2(X ′X)−1. The idea behind shrinkage methods is to
multiply β̂ by α̂ < 1 which may depend on estimators of unknown parameters
of a linear model. Using appropriate forms of α̂ we may obtain a small bias of
the new shrinkage estimator but significantly lower variance. Knowing that MSE
depends on bias and variance of the estimator we conclude that the MSE of our
new approach will be lower than the MSE of ordinary least squares estimator.
In the further part of the chapter, we will present the two most typical shrinkage
methods James-Stein estimator and MSE minimizing estimator.

2.1 James-Stein Estimator

The first method of creating a shrinkage estimator for linear models is the James-
Stein estimator, firstly described in [4] for a more general case. The authors
proved that this method allows for obtaining a lower MSE than the maximum
likelihood estimator, which came as a shock to the statistical community. More
precisely consider p-dimensional random variable Z ∼ N(μ, I). Assume that we
construct maximum likelihood estimator μ̂ of mean μ using only one observation.
Obviously μ̂ = Z, which is unbiased. However in [4] authors proved that the
estimator:

μ̂JS =
(
1 − (p − 2)

μ̂′μ̂

)
μ̂

has lower MSE than μ̂:

E(μ̂JS − μ)′(μ̂JS − μ) � E(μ̂ − μ)′(μ̂ − μ).
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James-Stein estimator for linear regression problem was defined in [1]:

β̂JS =

⎛
⎜⎝1 − p − 2

β̂′
(
Varβ̂

)−1

β̂

⎞
⎟⎠ β̂ =

(
1 − σ2(p − 2)

β̂′ (X ′X) β̂

)
β̂ (3)

If σ2 is unknown then we replace it with standard estimator: σ̂2 = r′r
n−p where r

is a vector of residuals. It can be shown that β̂JS has a smaller MSE than the
OLS estimator [1].

2.2 MSE Minimizing Estimator

Another method of constructing MSE-reducing shrinkage estimators is finding
optimal α which will minimize:

MSE(αβ̂) = E(Xαβ̂ − Xβ)′(Xαβ̂ − Xβ)

After some calculations α has the following formula:

α =
β′X ′Xβ

β′X ′Xβ + σ2p

After replacing unknown β with β̂ we obtain the following estimator:

β̂MSE =

(
β̂′X ′Xβ̂

β̂′X ′Xβ̂ + σ2p

)
β̂. (4)

If σ2 is unknown we also replace it with σ̂2 = r′r
n−p . Similar estimators and their

theoretical properties were considered in [6,9].

3 Uplift Estimators

We now introduce some basic methods of estimating β̂U . All of them were
described in [2,7,8].

3.1 The Double Estimator

The first, basic idea of creating an estimator of βU is creating two single OLS
estimators for treatment and control groups:

β̂T =
(
XT ′

XT
)−1

XT ′
yT

β̂C =
(
XC ′

XC
)−1

XC ′
yC
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Basing on Eqs. 1 and 2 we notice that βU = βT − βC , so the double estimator
is defined as:

β̂U
d = β̂T − β̂C

It can be proved that Eβ̂U
d = βU and Varβ̂U

d = σT 2
(
XT ′

XT
)−1

+

σC2
(
XC ′

XC
)−1

[2].

3.2 The Uplift Estimator

An alternate approach for estimating βU is creating a single estimator on whole
data and modified response variable. More precisely, the estimator has the fol-
lowing formula:

β̂U
z = (X ′X)−1X ′ỹ (5)

where

ỹ =

{
n

nT yT , if gi = T

− n
nC yC , if gi = C.

(6)

and nT and nC are sizes of treatment and control group respectively. We notice,
that we invert the full matrix, which gives us better prediction properties. We
also observe that assuming the same size of control and treatment groups and
the relation between the number of attributes p and the number of observations
n is n > p > n

2 then matrix in the uplift estimator is invertible but matrices
in the double not. In [2] were proved basic properties of the uplift estimator.
Assuming that βT = −βC and nT = nC :

Eβ̂U
z = βU

and

Varβ̂U
z = 4σT 2

(X ′X)−1
XT ′

XT (X ′X)−1 + 4σC2
(X ′X)−1

XC ′
XC (X ′X)−1

.

Unfortunately, the variance of the uplift estimator may be significantly worse
than the variance of the double estimator. Intuitively it can be described by Fig. 1
where distributions of the response variable in the double and uplift model when
βT ≈ βC are presented. We notice that modified response in uplift estimator has
bimodal distribution and variance become very large.

3.3 The Corrected Estimator

The last method is based on good properties of the double estimator (small vari-
ance) and the uplift estimator (matrix X ′X instead of XT ′

XT and XC ′
XC).

The main idea is to decrease the distance between two modes of response dis-
tribution (Fig. 1). Wherefore we define some β∗ and replace βT and βC with
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βT∗ = βT − β∗ and βC∗ = βC − β∗ respectively. The difference between new
parameters is still βU so the value which we want to estimate, but when we take
β∗ = nT

n βT + nC

n βC , then humps of the response of uplift model constructed
on modified parameters are in the same place. Unfortunately β∗ is unknown, so
firstly we define its estimator:

β̂∗ = (X ′X)−1X ′y∗

where:

y∗
i =

⎧⎨
⎩

nC

nT yi, if gi = T

nT

nC yi, if gi = C,

0.0

0.1

0.2

0.3

0.4
yT

yC

−15 −10 −5 0 5 10 15
0.00

0.05

0.10

xβU 2xβT−2xβC

ỹ

Fig. 1. Distributions of response in the double model (upper plot) and the uplift model
(lower plot)

Then we modify the response: yc = y − Xβ̂∗ and create the corrected esti-
mator:

β̂U
c = (X ′X)−1X ′ỹc (7)

Experiments on artificial data show that this approach has often better prop-
erties than previous estimators, especially for βC ≈ βT which is a situation
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often observed in real-life problems. In [2] were presented basic properties of the
corrected estimator. Assuming βT = βC and nT = nC we obtain:

E β̂U
c = βU = 0 (8)

and:

Var β̂U
c = 16(σT )2(X ′X)−1XC ′

XC(X ′X)−1XT ′
XT (X ′X)−1XC ′

XC(X ′X)−1

+ 16(σC)2(X ′X)−1XT ′
XT (X ′X)−1XC ′

XC(X ′X)−1XT ′
XT (X ′X)−1.

(9)

4 Shrinkage Uplift Estimators

Now we introduce new estimators based on shrinkage modifications of the cor-
rected estimator. We will present results assuming nT = nC . Under this assump-
tion, we may prove theoretical results. We will present two methods, the first will
base on the James-Stein method, second is an adaptation of the MSE minimizing
method.

4.1 James-Stein Estimator

Firstly we will define the James-Stein version of the corrected estimator:

β̂U
cJS =

(
1 − p − 2

β̂U ′
c (Varβ̂U

c )−1β̂U
c

)
β̂U

c , (10)

where variance is given by Eq. 9. Now we will show that under some assumptions
MSE of β̂U

cJS is lower than β̂U
c . Firstly, when σT = σC we will redefine the

variance of the corrected estimator:

Var β̂U
c = 16σ2

(
(X ′X)−1XC ′

XC(X ′X)−1XT ′
XT (X ′X)−1XC ′

XC(X ′X)−1

+(X ′X)−1XT ′
XT (X ′X)−1XC ′

XC(X ′X)−1XT ′
XT (X ′X)−1

)

= 16σ2 W−1

We may prove the following theorem:

Theorem 1. Assume that nT = nC , βT = βC , σT = σC , TrW−1X ′X ≥ p > 2
and W ≥ X ′X. Then:

MSE(β̂U
cJS) � MSE(β̂U

c )

The proof of the theorem can be found in the Appendix.
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4.2 MSE Minimizing Estimator

To obtain a new shrinkage method we will reformulate the definition of the
corrected estimator:

β̂U
c = 2(X ′X)−1XT ′

(yT − XT (X ′X)−1X ′y∗)

− 2(X ′X)−1XC ′
(yC − XC(X ′X)−1X ′y∗)

then, we multiply the base estimator by αT and αC :

β̂U = αT (X ′X)−1XT ′
(yT − XT (X ′X)−1X ′y∗)

− αC(X ′X)−1XC′
(yC − XC(X ′X)−1X ′y∗)

After some calculations we obtain:

β̂U = (αT + αC)(X ′X)−1
(
XC ′

XC(X ′X)−1XT ′
yT − XT ′

XT (X ′X)−1XC ′
yC
)

.

Noting αTC = αT + αC , we obtain following formula:

αTC =(βU ′
AβU )/(βU ′

A(X ′X)−1AβU + Tr{(σT )2 A(X ′X)−1XC ′
XC(X ′X)−1

+ (σC)2 A(X ′X)−1XT ′
XT (X ′X)−1}),

where A = XT ′
XT (X ′X)−1XC ′

XC . Replacing βU with β̂U
c we obtain:

β̂U
cMSE = α̂TC β̂U

c ,

where:

α̂TC =(β̂U ′
c Aβ̂U

c )/(β̂U ′
c A(X ′X)−1Aβ̂U

c + Tr{(σT )2 A(X ′X)−1XC ′
XC(X ′X)−1

+ (σC)2 A(X ′X)−1XT ′
XT (X ′X)−1}).

If variances σT and σC are unknown, they may be replaced by their standard
estimators based on treatment and control group respectively.

5 Simulations

Now we will check the efficiency of our proposed methods on artificial data.
We assume that angle between generated normalized vectors βT , βC is π

10 , and
rows of matrices XT and XC are generated from standard p-dimensional normal
distribution Np(0, I). Vectors εT and εC are also generated independently from
the standard normal distribution. Vectors of responses yT and yC are generated
using Eqs. 1 and 2.

We will compare different methods of estimation for different n. When n grows,
new rows are added to existing matrices XT and XC . This procedure is repeated
1000 times. For each iteration, we calculate MSE for each n. Then for each n, we
calculate the mean of MSE over repetitions and the standard deviation.
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Firstly we will show results for the double, uplift, and corrected estimators
(Fig. 2). In situations where the influence of our action is slight, the corrected
estimator is the best basic method of estimating β̂U .

Now we will compare the basic corrected estimator with their shrinkage meth-
ods (Fig. 3). MSE-minimizing estimator is always better than a basic corrected
approach. James-Stein estimator obtains the best results from all of the consid-
ered estimators.

6 Evaluation on Real Data

6.1 Description of the Data

In this section we will describe results obtained on Lalonde datasets [5]. This
dataset describes the effects of a job training program that addressed a popula-
tion of low-skilled adults. People were divided into the treatment group (people
who were invited to take part in the job training program) and the opposite
control group. The response variable is their third-year income after assigning
them to one of the two groups. Our goal is to find these people who earn more
money, because of the job training program.

Fig. 2. Comparison of MSE of base estimators
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6.2 Evaluation Method

We divide Lalonde dataset into training and testing parts. We construct our
estimators on training data and check their efficiency on the test part. Unfortu-
nately, for a given observation, we observe only part of response yT or yC , never
both of them. As a result, we cannot calculate MSE and we must find another
similar measure. In this paper, we will use a measure called Average Treatment
Effect on the Treated (ATT), where we compare the mean of the predicted values
on the observations from the treated test dataset with the difference in means of
true responses in the treated part of the test dataset and the control part. More
precisely:

ATTmodel(β̂U ) =
1

nT

nT∑
i=1

xi.β̂
U with ATTmeans =

1
nT

nT∑
i=1

yT
i − 1

nC

nC∑
i=1

yC
i .

The error of the estimator β̂U is defined as:

ErrATT (β̂U ) = |ATTmodel(β̂U ) − ATTmeans|.

Fig. 3. Comparison of MSE of shrinkage corrected estimators
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We repeat this procedure for different partitions for the training and testing
part and calculate the mean of ErrATT (β̂U ) over repetitions.

6.3 Results

As in the previous chapter, we start with a comparison of the basic meth-
ods (Table 1). We observe that results are comparable, but the lowest error is
obtained by the corrected estimator. Now we will compare the results for shrink-
age methods of the corrected estimator (Table 2). We notice that shrinking the
basic estimator gives slightly better results.

Table 1. Comparison of the basic uplift estimators

Estimator Mean ErrATT

Double 0.138635
Uplift 0.139411
Corrected 0.136275

Table 2. Comparison of the shrinkage corrected estimators

Estimator Mean ErrATT

Corrected 0.136275
Corrected JS 0.135449
Corrected MSE 0.132260

7 Conclusions

In this paper, we present methods of constructing shrinkage estimators for the
corrected uplift estimator, which is usually the best method for the small influ-
ence of the uplift. For James-Stein corrected estimator, we present theoretical
results which show that its MSE is lower than the MSE of the basic corrected
estimator. For the shrinkage corrected estimators we conclude, based on numeri-
cal experiments, that they will work better than the basic version of an estimator.
We recommend using new shrinkage methods for real-life uplift problems.

A Proof of Theorem 1

Proof. Notice that inequality in the thesis can be presented as:

E
[
(βU − β̂U

cJS)
′X ′X(βU − β̂U

cJS)
]

≤ E
[
(βU − β̂U

c )′X ′X(βU − β̂U
c )
]
.
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Assuming that, βT = βC , we obtain that βU = 0. Then, we may reduce
following expression to the following form:

E
[
β̂U
cJS

′
X ′X β̂U

cJS

]
≤ E

[
β̂U
c

′
X ′X β̂U

c

]
.

We structure the proof as follows:

– we will show: E
[
β̂U
cJS

′
X ′X β̂U

cJS

]
≤ E

[
β̂U
cJS

′
W β̂U

cJS

]

– we will show: E
[
β̂U
cJS

′
W β̂U

cJS

]
≤ 4σ2p

– we will show: E
[
β̂U
c

′
X ′X β̂U

c

]
≥ 4σ2p. This will finish the proof.

Consider left side of inequality. Assuming W ≥ X ′X we obtain
E
[
β̂U
cJS

′
X ′X β̂U

cJS

]
≤ E

[
β̂U
cJS

′
W β̂U

cJS

]
.

Now we will consider expression E
[
β̂U
cJS

′
W β̂U

cJS

]
. We will show that:

E
[
β̂U
cJS

′
W β̂U

cJS

]
= E

[
(β̂U

cJS − β̂U
c )

′W (β̂U
cJS − β̂U

c )
]

︸ ︷︷ ︸
1

− E
[
β̂U
c

′
W β̂U

c

]
︸ ︷︷ ︸

2

+2E
[
β̂U
cJS

′
W β̂U

c

]
︸ ︷︷ ︸

3

.
(11)

Starting from the right side of the equation:

E
[
(β̂U

cJS − β̂U
c )

′W (β̂U
cJS − β̂U

c )
]

− E
[
β̂U
c

′
W β̂U

c

]
+ 2E

[
β̂U
cJS

′
W β̂U

c

]

= E
[
β̂U
cJS

′
W β̂U

cJS −2 β̂U
c

′
W β̂U

cJS + β̂U
c

′
W β̂U

c − β̂U
c

′
W β̂U

c +2 β̂U
cJS

′
W β̂U

c

]

= E
[
β̂U
cJS

′
W β̂U

cJS

]

We show that Eq. (11) is correct. Now we will consider parts 1 , 2 and 3
separately. We start with (β̂U

cJS − β̂U
c ) from 1 .

β̂U
cJS − β̂U

c =

(
1 − p − 2

β̂U
c

′
(Var β̂U

c )−1 β̂U
c

)
β̂U
c − β̂U

c =
p − 2

β̂U
c

′
(Var β̂U

c )−1 β̂U
c

β̂U
c
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Using the fact that Var β̂U
c = 4σ2W−1, we may write 1 as:

E

[(
p − 2

β̂U
c

′
(Var β̂U

c )−1 β̂U
c

β̂U
c

)′
W

(
p − 2

β̂U
c

′
(Var β̂U

c )−1 β̂U
c

β̂U
c

)]

= E

⎡
⎣
(

p − 2

β̂U
c

′
(Var β̂U

c )−1 β̂U
c

)2

β̂U
c

′
W β̂U

c

⎤
⎦

= E

⎡
⎣
(
(p − 2)4σ2

β̂U
c

′
W β̂U

c

)2

β̂U
c

′
W β̂U

c

⎤
⎦ = E

[
(p − 2)242σ4

β̂U
c

′
W β̂U

c

]

Now we will consider 2 . Notice that this is a one-dimensional expression. Using
the trace operator we obtain:

E
[
β̂U
c

′
W β̂U

c

]
= Tr

{
E
[
β̂U
c

′
W β̂U

c

]}
= E

[
Tr
{

β̂U
c

′
W β̂U

c

}]

= E
[
Tr
{

β̂U
c β̂U

c

′
W
}]

= Tr
{
E
[
β̂U
c β̂U

c

′
W
]}

= Tr
{
E
[
β̂U
c β̂U

c

′]
W
}

When βT = βC we have E β̂U
c = βU = 0. So we may write 2 as:

Tr
{
E
[
β̂U
c β̂U

c

′]
W
}
= Tr

{
E
[
(β̂U

c −E β̂U
c )(β̂

U
c −E β̂U

c )
′
]
W
}
= Tr

{
Var β̂U

c W
}

= Tr
{
4σ2 W−1W

}
= Tr

{
4σ2Ip

}
= 4σ2p

Now we will consider 3 .

E
[
β̂U
cJS

′
W β̂U

c

]
= E

[
p∑

i=1

(β̂U
cJS)i[W β̂U

c ]i

]
=

p∑
i=1

E
[
(β̂U

cJS)i(W )i· β̂U
c

]

Firstly we need the density formula for β̂U
c . We notice that β̂U

c has a normal
distribution with 0 mean and variance equal to 4σ2W−1. Then density of β̂U

c is
given by the formula:

f(β̂U
c ) =

1
(2π)p/2|4σ2 W−1|1/2

exp
{

−1
2

β̂U
c

′ 1
4σ2

W β̂U
c

}
.

Now we will transform 3 using integration by parts.
p∑

i=1

E
[
(β̂U

cJS)i(W )i· β̂U
c

]
=

p∑

i=1

∫
· · ·

∫
(β̂U

cJS)i(W )i· β̂U
c f(β̂U

c )d β̂U
c i d β̂U

c 1 . . . d β̂U
c p

=

⎡

⎢⎣
f = (β̂U

cJS)i dg = (W )i· β̂U
c f(β̂U

c )

df =
d

d β̂U
c i

(β̂U
cJS)i g = −4σ2f(β̂U

c )

⎤

⎥⎦

=

p∑

i=1

( [∫
· · ·

∫
−4σ2(β̂U

cJS)if(β̂
U
c )

]∞

−∞

+

∫
· · ·

∫
4σ2 d

d β̂U
c i

(β̂U
cJS)if(β̂

U
c )d β̂U

c i d β̂U
c 1 . . . d β̂U

c p

)
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The first part is 0 because of the exponential decay of the density function of
normal distribution. Now we will transform the second part. We will use the
β̂U
cJS formula and calculate the derivative of multiplication.

p∑

i=1

∫
· · ·

∫
4σ2 d

d β̂U
c i

(β̂U
cJS)if(β̂

U
c )d β̂U

c i d β̂U
c 1 . . . d β̂U

c p

=
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E4σ2 d
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c i
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′
W β̂U
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c

′
W β̂U
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U
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′
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)
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Now we back to (11) and substitute obtained results of 1 , 2 i 3 .

E
[
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cJS)
′W (β − β̂U

cJS)
]
= E

[
(β̂U

cJS − β̂U
c )

′W (β̂U
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c )
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︸ ︷︷ ︸
1

− E
[
(β̂U

c −β)′W (β̂U
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c
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β̂U
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′
W β̂U

c

]
≤ 4σ2p

The last inequality results from the fact that matrix W is positive semi-definite.
Now we will prove the last thing:

E
[
(β − β̂U

c )
′X ′X(β − β̂U

c )
]

≥ 4σ2p.

Using the same line of reasoning as in 2 and assuming that Tr{W−1X ′X} ≥
p we obtain:

E
[
(β − β̂U

c )
′X ′X(β − β̂U

c )
]
= Tr

{
4σ2 W−1X ′X

} ≥ 4σ2p,

which ends the proof.
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Machine learning (ML) is still among the most promising approaches to address
learning and reasoning under uncertainty. While today’s deep learning algorithms
continue to advance state-of-the-art performance, notable trends include a shift to more
“complex-connected” network architectures as well as large ensembles. While for
image processing peak performance is already achieved for simple classification tasks,
more complex tasks such as segmentation of natural language processing remain
challenges. On the contrary, due to a staggering Moore’s law and technology scaling,
even simple classification tasks usually face limited hardware capabilities when map-
ped to IoT, edge, or mobile devices. For more complex tasks, deployment on such
devices is often impossible.

On-device processing is of paramount importance though, not only for privacy
constraints when avoiding cloud-based services, but also when moving ML “to the
wild” as solutions have to face real-time constraints, limited availability of cloud
services and connectivity issues. In this setting, the tasks are often complicated by
incomplete and/or noisy data, resulting in network architectures that are substantially
more complex than their plain counterparts.

As a result, we observe a strong need for new ML methods to address the
requirements of emerging workloads deployed in the real-world, such as uncertainty,
robustness, and limited data. In order to not hinder the deployment of such methods on
various computing devices, and to address the gap between application and computer
hardware, we furthermore need a variety of tools. As such, this workshop aims to
gather new ideas and concepts on ML methods for real-world deployment, methods for
compression and related complexity reduction tools, dedicated hardware for emerging
ML tasks, and associated tooling like compilers and mappers. Furthermore, the
workshop also serves as a platform that gathers experts from ML and systems for joint
tackling of these problems, creating an atmosphere of open discussions and other
interactions.

The third edition of ITEM took place in September 2022 in Grenoble, France, and
actually was the first edition to be held in-person. Due to substantial space and time
constraints, this edition was notably selective, and to accommodate more contributed
articles, the organizers opted to not include a keynote presentation. As a result, the
workshop’s program was two-fold: while the first session focused on tools, the second
session put a focus on methods.

Contributed talks included authors from the Netherlands, Germany, Romania,
Belgium, Italy, France, the UK, and China, representing from industry and academia.
Topics of concern with regard to tools covered design space explorations, automated
partitioning, deep convolutional neural networks, and predictive modeling. Topics on
model architectures included recurrent neural networks, cell optimization, and



quantization, while discussed applications covered document localization, speech
enhancement, fault diagnosis, denoising, and image processing.

Early take-aways and insights include the increasing trend towards edge computing
as well as heterogeneity resulting in more interest in model partitioning, with the main
objective to find a good balance between wimpy and brawny processors. Similarly, the
complexity associated with distributing processing over edge and cloud, and other
examples of heterogeneity, sparked research interest in automated searches to diminish
the complexity implication on users, as well as predictive performance modeling to
improve reasoning about partitioning decisions. Beyond that, recurrent neural networks
as well as convolutional network architectures were again in the focus of acceleration.
Quantization is still a major method in model compression, and while quantization-
aware training is state of the art, work was presented that proposed a method without a
need to involve costly training when quantizing a model. Discussions showed a
community-wide interest in benchmarking and performance evaluation, in particular
with regard to energy.
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It is planned to continue ITEM, so any interested researcher or scientist is invited to
contribute to future editions. Also, while ITEM’s main focus is to be an academic
platform with peer-reviewed contributions, there is also a more informal counterpart
called the Workshop on Embedded Machine Learning (WEML), which is annually
held at Heidelberg University. WEML distinguishes itself from ITEM by being a
platform that only includes invited presentations from the community for mutual



updates on recent insights and trends, but without the vigorous demands of scientific
peer-review. For more information about these two workshops, please refer to:

https://www.item-workshop.org
https://www.deepchip.org

Last, the co-organizers of ITEM would like to acknowledge the commitment of the
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exchange required to organize such a large event. Similar acknowledgements go to the
time and effort spent by our Program Committee, and, last but not least, to the strong
commitment of our authors. Ultimate acknowledgements go to Springer for publishing
the workshop’s proceedings.
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Abstract. Convolutional Neural Network (CNN) models for modern
applications are becoming increasingly deep and complex. Thus, the
number of different CNN mapping possibilities when deploying a CNN
model on multiple edge devices is vast. Design Space Exploration (DSE)
methods are therefore essential to find a set of optimal CNN mappings
subject to one or more design requirements. In this paper, we present
an efficient DSE methodology to find (near-)optimal CNN mappings for
distributed inference at the edge. To deal with the vast design space of
different CNN mappings, we accelerate the searching process by propos-
ing and utilizing a multi-stage hierarchical DSE approach together with
a tailored Genetic Algorithm as the underlying search engine.

1 Introduction

Convolutional Neural Networks (CNNs) have been intensively researched and
widely used in many domains, including audio recognition, computer vision, and
natural language processing. Since CNNs became the state-of-the-art in large-
scale visual recognition and classification, countless advancements in improving
CNN models have been made to solve traditionally challenging problems such
as image recognition, classification, etc. Deploying these modern CNN models
and performing the inference directly on an edge device is typically not possible
because of limited resources in terms of memory capacity, computation capacity,
and power budget of the edge device. Therefore, to perform CNN inference on
edge devices, users typically need to rely on additional compute resources pro-
vided as service by the cloud. Realizing CNN inference on edge devices using
such cloud services requires users to communicate a substantial amount of data
between an edge device and a cloud server. Such data communication may cause
data privacy concerns as well as low device responsiveness due to data transmis-
sion delays or temporal unavailability of the cloud services.

One approach to address the above problems and achieve CNN inference on
an edge device without cloud services, is to perform CNN model compression,
such as pruning, quantization, or knowledge distillation [6] that will allow to
deploy the entire CNN model on the device. However, such an approach sac-
rifices the accuracy of the model to some extent, especially when high model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 545–556, 2023.
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compression rates are required. Another approach is to deploy only a part of the
CNN model on the edge device and the rest of the model in the cloud. Such an
approach [10], however, still suffers from data privacy and cloud communication
latency concerns. A third approach, which solves the aforementioned issues of the
other two approaches, is to partition the CNN model and distribute the parti-
tions across multiple edge devices to collaboratively perform the CNN inference.
A general direction is to utilize model and data parallelism methods [7] to divide
CNN computations over a number of edge devices. Such distributed execution of
the CNN model inference often needs to take multiple requirements into account,
like latency, throughput, resource usage, power/energy consumption, etc. Here,
the way how the different CNN layers are distributed and mapped onto the edge
devices plays a key role in optimizing/satisfying these requirements. For exam-
ple, using model-parallelism techniques and mapping CNN layers in a balanced
way may reduce the maximum per-device memory footprint or energy consump-
tion. Or, some CNN mappings may generate a balanced data processing pipeline,
thereby improving the overall throughput. As CNN models for modern applica-
tions are becoming increasingly deep and complex, the number of different CNN
mapping possibilities when deploying multiple edge devices, and the various com-
pute resources in each of them, is vast. Efficient Design Space Exploration (DSE)
methods are therefore essential to find a set of (near-)optimal CNN mappings
subject to one or more design requirements (i.e., objectives).

In this paper, we present an efficient DSE methodology to find optimal CNN
mappings for distributed inference at the edge. To this end, we leverage our
AutoDiCE framework [1] to assess the quality (in terms of inference through-
put, memory footprint, and energy consumption) of a particular CNN mapping.
AutoDiCE is a fully automated framework for distributed CNN inference over
multiple edge devices. To deal with the vast design space of different CNN map-
pings, we accelerate the searching process by using a multi-stage hierarchical
DSE approach together with a tailored Genetic Algorithm (GA) as the under-
lying search engine. At every stage, we perform DSE at two hierarchical levels.
In the first level, we use analytical models inside a GA to approximate each
objective function (i.e., throughput, memory, and energy consumption) to avoid
relatively long evaluation times through real on-device (i.e., on-board) measure-
ments using our AutoDiCE framework. The near-optimal solutions found in the
first level together with Pareto-optimal solutions from a previous DSE stage are
utilized as the parents for the second level DSE. In this second level, we evalu-
ate each design point using real measurements taken from AutoDiCE-generated
CNN inference implementations to determine the Pareto front for a next DSE
stage. The output of the last DSE stage provides the final Pareto-optimal solu-
tions. Our contributions can be summarized as follows:

– enhance the DSE process by creating analytical models to approximate each
objective function in order to reduce the on-board evaluation cost during the
DSE process;

– accelerate the DSE convergence by performing the DSE process in multiple
stages where, at each DSE stage, we consider only specific part of the design
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space and use as input Pareto-optimal solutions from the previous DSE stage
in order to find Pareto-optimal solutions for the next DSE stage;

– improve the searching efficiency with a tailored chromosome encoding
method, thereby scaling down the search space.

2 Related Work

Today’s prevalent CNN models for computer vision tasks are becoming increas-
ingly large. Their execution, i.e. model inference, requires increasing amounts
of memory and compute resources, putting a large burden on the cloud infras-
tructure. Offloading parts of a single CNN model to the edge has gained the
attention of researchers to relieve the pressure on the cloud. For example, Neu-
rosurgeon [10] vertically partitions a CNN model between a single edge device
and the cloud. DDNN [17] also tries to partition a model between the cloud and
edge devices, but model retraining is needed for each early-exit branch. How-
ever, the methods in [10,17] execute only the first few layers of a CNN model
at the edge, after which the rest of the computation is still offloaded to the
cloud. The unpredictable low responsiveness and data privacy issues are still
present in such partitioned CNN inference due to the partial involvement of the
cloud [5]. To perform CNN inference on a fully distributed system at the edge,
without any cloud involvement, data partitioning or CNN model partitioning
is often required. For example, in [19], a data partitioning strategy is used in
an object detection CNN-based application to split input data frames. Alterna-
tively, CNN model partitioning splits CNN layers and/or connections of a large
CNN model, thereby creating several smaller sub-models (partitioned models)
where each sub-model is executed on a different edge device [16]. For instance,
Hadidi et al. [7] exploits model-partition methods to perform single-batch infer-
ence over several collaborative and resource-constrained edge devices and utilizes
their aggregated computing power via a local network. In addition to using data
and CNN model partitioning to map large CNNs on resource-constrained edge
devices, researchers try to optimize the CNN mapping to improve the inference
performance. For example, the methodologies in [9,18,20] propose efficient algo-
rithms to determine partitioning policies that generate efficient CNN mappings
in order to improve the performance of cooperative inference over multiple edge
devices. However, these methodologies optimize and evaluate CNN mappings
based on analytical models only and consider limited number of objectives. In
contrast, our DSE methodology optimizes more objectives, and besides analytical
models, it uses AutoDiCE to evaluate mappings by real on-device measurements.

Distributed inference of large CNN models typically needs to consider a
range of different design requirements, such as latency, throughput, resource
usage, power/energy consumption, etc. These requirements/objectives can be
conflicting, implying that there usually does not exist a single optimal CNN
mapping that satisfies all requirements. Typically multiple solutions, so-called
Pareto optimal solutions, co-exist and the set of all optimal solutions is called the
Pareto front. Finding these Pareto-optimal CNN mappings for a given number
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of edge devices to perform distributed CNN inference under several requirements
is the topic of study in this paper. A popular approach to perform such a search
for Pareto-optimal solutions is by using multi-objective evolutionary algorithms
[4]. More specifically, in the domain of DSE, multi-objective Genetic Algorithms
(GAs), such as the Non-dominated Sorting Genetic Algorithm (NSGA-II) [3], are
widely used and have demonstrated to produce good results [15]. For instance,
[11,12] use the NSGA-II GA to explore the design space to find improved neu-
ral network architectures for CNN-based applications. Our DSE methodology
also employs NSGA-II to explore the Pareto-optimal CNN mapping solutions
with respect to throughput, maximum memory usage per device, and maximum
energy consumption per device. However, NSGA-II can easily get stuck in so-
called dominance resistant solutions [14], that are far away from the true Pareto
front. How to search the optimal CNN mappings for distributed inference using
NSGA-II, and efficiently find the Pareto front in the huge search space, are the
main challenges we try to tackle in this paper.

3 Evaluation Methods

In this section, we discuss two different methods to evaluate the three objec-
tives at every stage in our two-level DSE. The first level DSE applies analytical
models to approximate the objectives, and the second level uses our AutoDiCE
framework to evaluate the objectives of distributed CNN inference by real imple-
mentations and measurements on hardware boards.

3.1 Analytical Models

In the first level, we adopt analytical models to approximate the system through-
put, memory usage, and energy consumption for each CNN mapping. We use
tlj , Mlj , Elj to represent the execution time, the memory usage, and the energy
consumption of layer lj in a CNN model, respectively. A CNN mapping x is
denoted as x = [x1, x2, · · · , xL], where L is the number of layers in the CNN
model and xj = PEi means that layer lj is mapped on processing element PEi,
which could, e.g., be a CPU or GPU inside an edge device. For a given mapping
x, the three objectives of the distributed system can be computed as follows.

Throughput. The overall system throughput Tsystem is defined as the images
processed per second (IPS) over multiple PEs:

Tsystem =
1

max1≤i≤N (ti)
; ti =

∑

∀j:1≤j≤L∧xj=PEi

tlj + tcomm

where ti is the time to process one image on PEi,N is the total number of deployed
PEs in the distributed system, and tcomm is the time needed for data communica-
tion related to PEi. We assume that the size of input images are already deter-
mined as well as the input and output tensors of every CNN layer are also fixed.
Then, we can estimate the total number of operations in every layer and the total



Hierarchical DSE for Distributed CNN Inference at the Edge 549

size of communicated data related to PEi. The execution time tlj is estimated
through the number of multiply-accumulate operations (MACs). A proper approx-
imation for communication time tcomm depends on data movements, and involves
intra-node shared memory communication, intra-node communication between
CPU and GPU, or inter-node communication over the network.

Memory. Every PEi allocates memory M i which consists of three parts: mem-
ory for CNN coefficients (i.e. weights, bias, and parameters), memory for output
buffers to store intermediate results of layers, and memory for input buffers of
some layers to receive data from other PEs:

M i =
∑

∀j:1≤j≤L∧xj=PEi

(M j
coeffs +M j

outbuffs +M j
inbuffs)

where M j
coeffs, M

j
outbuffs, and M j

inbuffs denote the sizes of the aforementioned
memory parts associated with layer lj mapped on PEi. These sizes (in number
of elements) are approximated based on the type of CNN layer lj . For example,
given a convolutional layer lj , the memory sizes are calculated as follows:

M j
coeffs = wk ∗ hk ∗ Cin ∗ Cout + Cout

M j
outbuffs = wout ∗ hout ∗ Cout M j

inbuffs = win ∗ hin ∗ Cin

where wk and hk are the width and height of the convolution kernel, Cin and
Cout are the number of input and output channels of layer lj , and win, hin, wout,
hout are the width and height of the input and output tensors of layer lj . If layer
lj mapped on PEi does not receive data from layers that are mapped on other
PEs then M j

inbuffs = 0.

Energy. Every PEi consumes energy Ei to execute the CNN layers mapped
on PEi. In our energy consumption analytical model, Ei includes the energy
consumed for inference computation and data communication with other PEs:

Ei =
∑

∀j:1≤j≤L∧xj=PEi

Ej
comp +

∑

∀j:1≤j≤L∧xj=PEi

Ej
comm

where Ej
comp and Ej

comm denote the computation and communication energy
consumption for layer lj , respectively. Here, Ej

comm is non-zero only when layer
lj actually communicates with another PE. We calculate Ej

comp and Ej
comm as

follows:

Ej
comp =

∫ tjcomp

0

P j
comp (t) dt; Ej

comm =
∫ tjcomm

0

P j
comm (t) dt

where P j
comp(t) is the power consumption during the execution of layer lj , and

P j
comm(t) is the power consumption during data communication of layer lj with

another PE. P j
comp(t) and P j

comm(t) can be acquired by measurements during
CNN layer profiling on an edge device.
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3.2 AutoDiCE Framework

As explained in Sect. 1, in the second level we use our AutoDiCE framework [1]
to evaluate the fitness (i.e., the quality) of a given CNN mapping in terms of the
following objectives: CNN inference throughput, maximum memory usage per
device, and maximum energy consumption per device. AutoDiCE enables us to
evaluate the quality of a CNN mapping through actual on-device measurements.
AutoDiCE is a fully automated framework for distributed CNN inference over
multiple edge devices. Given a specific input CNN model and specifications of the
model partitioning and mapping of the partitions to (various resources within)
multiple edge devices, AutoDiCE automates the actual model partitioning, code
generation, and deployment of the CNN partitions on the edge devices.

Figure 1 shows the user interface and design flow of AutoDiCE, where the
main steps in the flow are divided into two modules: front-end and back-end. The
interface is composed of three specifications, namely a Pre-trained CNN Model
(provided as an .onnx file), Mapping Specification (a .json file), and Platform
Specification (a .txt file). The Pre-trained CNN Model specification includes the
CNN topology description with all layers and connections among layers as well as
the weights/biases that are associated with the layers and obtained by training on
a specific dataset using deep learning frameworks like PyTorch, TensorFlow, etc.
Many such CNN model specifications in ONNX format [2] are readily available in
open-access libraries and can be directly used as an input to the framework. The
Platform Specification lists all available edge devices together with their compu-
tational hardware resources and specific software libraries associated with these
resources. The Mapping Specification is a list of key-value pairs that explicitly
specifies how all layers described in the Pre-trained CNN Model specification
are mapped onto the computational hardware resources listed in the Platform
Specification. Every unique key corresponds to an edge device with a selection
of its hardware resources, like CPUs or GPU, to be used for computation. Every
value corresponds to a set of CNN layers to be deployed and executed on the
edge device resources. Such Mapping Specification can be provided manually by
the user or, like in this paper, generated by an external mapping DSE tool.

The three aforementioned specifications are given as an input to the front-
end module as shown in Fig. 1, which then performs two main steps: Model
Splitting and Config & Communication Generation. The Model Splitting takes
as an input the Pre-trained CNN Model and Mapping specifications, splits the
input CNN model into multiple sub-models, and generates these sub-models in
ONNX format. The number of generated sub-models is equal to the number
of unique key-value pairs in the Mapping Specification. The Config & Commu-
nication Generation step takes all three input specification files and generates
specific tables in JSON format containing information needed to realize proper
communication and synchronization among the sub-models using the well-known
MPI interface. In addition, a configuration text file (MPI rankfile) is generated
to initialize and run the sub-models as different MPI processes.

The back-end module subsequently uses the output from the front-end for
code and deployment package generation. During the Code Generation step, effi-
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Fig. 1. The AutoDiCE design flow and its user interface

cient C++ code is generated for every edge device based on the input sub-models
and tables. In the generated code, primitives from the standard MPI library are
used for data communication and synchronization among sub-models as well as
primitives from a custom CNN Inference Library are used for implementation of
the CNN layers belonging to every sub-model. This CNN Inference Library also
integrates OpenMP support. This means that if a CNN layer is mapped onto
multiple CPU cores in an edge device, the actual execution of such layer will be
multi-threaded using OpenMP to efficiently utilize the multiple CPU cores by
exploiting data parallelism available within the layer. Finally, the Package Gen-
eration step packs the generated C++ code, the MPI rankfile, and a sub-model
together to generate a specific deployment package for every edge device.

4 Multi-stage Hierarchical Design Space Exploration

Our DSE methodology utilizes a Genetic Algorithm (GA), namely the NSGA-
II algorithm [3], to search for optimal mappings of (complete) CNN layers to
different, distributed edge devices. We assume that each edge device contains a
number of internal compute resources (i.e. PEs), like a CPU and GPU, and we
map CNN layers directly to these specific PEs within an edge device.

Given a trained CNN model with L layers, a layer lj performs a compu-
tation operation in the CNN model such as a convolution (Conv), a matrix
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(1) Naive Encoding (2) SplitPoint Encoding

l1 l2 l3 l4 l5 l6 l7 l8 8 layers CNN, 4 PEs  

PE1 PE1 PE2 PE3 PE4PE4 PE4 40 2 5PE2

Fig. 2. Two chromosome encoding methods

multiplication (FC), etc. As mentioned in Sect. 3.1, a mapping x of the CNN
layers onto a total of N PEs is denoted as x = [x1, x2, · · · , xL]. Such map-
ping notation x is typically encoded with the GA’s chromosome where PEi, i ∈
[1..N ] define the gene types in the chromosome. An example of such encod-
ing, called Naive Encoding (NE), is shown in Fig. 2. The GA chromosome
[PE1,PE1,PE2,PE2,PE3,PE4,PE4,PE4] encodes an 8-layer CNN (L = 8)
mapped onto four PEs (N = 4), where layers l1 and l2 are mapped on PE1, l3
and l4 on PE2, l5 on PE3, and l6, l7, l8 on PE4. Such naive encoding for CNN
mappings is simple and intuitive but it may require exploration of a huge design
space because the space size depends exponentially on the number of layers L
in a CNN model and L is typically large. Therefore, in our DSE methodology,
we propose and utilize a tailored chromosome encoding method, called Split
Point Encoding (SPE). It encodes points in a CNN model that partition the
model into N groups of CNN layers, where each group consists of consecutive
layers and is mapped on one PE. In Fig. 2, the Split Point Encoding example
encodes the same mapping as the Naive Encoding example. It can be seen that
the 8-layer CNN has four split points, visualized with the vertical dashed lines,
at positions 0, 2, 4, and 5 determined by the layer index j. Therefore, the GA
chromosome using our SPE method is [0, 2, 4, 5] and it encodes four groups of
layers each mapped on one PE as follows: 1) for j ∈ (0..2], lj mapped on PE1;
2) for j ∈ (2..4], lj mapped on PE2; 3) for j ∈ (4..5], lj mapped on PE3; 4)
for j > 5, lj mapped on PE4. The length of our SPE chromosome is equal to
the number of PEs which is N , thus SPE requires exploration of a design space
which size depends exponentially on N . Since N is typically much smaller than
the number of CNN layers L, our SPE method largely scales down the design
space and improves the search efficiency compared to the NE method.

Given a trained CNN model and all edge devices with in total N PEs, our
DSE methodology searches for Pareto CNN mappings to optimize the three
objectives, mentioned in Sect. 3. In Fig. 3, we present the general structure of
our multi-stage hierarchical DSE methodology. On the left, the K stages in our
DSE workflow are depicted, and on the right a zoomed-in view of each stage
is provided with the two rectangular boxes showing the two hierarchical levels
per stage. We accelerate our DSE process by splitting it into K different stages,
where K is the ceiling value of log2(N). At each stage, we perform a two-level
DSE. In both levels, the NSGA-II GA is deployed to evolve a population of CNN
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Fig. 3. The DSE methodology workflow

mappings over multiple generations to search for a Pareto front in terms of the
targeted objectives. In the first DSE level, we use the analytical models, intro-
duced in Sect. 3, inside the GA to approximate each objective function. In the
second DSE level, we use real distributed CNN inference implementations gener-
ated by AutoDiCE (see Fig. 1) for evaluation, thereby producing more accurate
Pareto solutions as they are based on real (on-board) measurements.

At every DSE stage k ∈ [1, · · · ,K−1], we search for optimal CNN mappings
on 2k target PEs. Figure 3 shows that to initialize the GA population at stage
k, with k > 1, the Pareto optimal results found by the previous stage k − 1
are used. By doing so, we can retain the information of Pareto CNN mappings
in previous stages to improve the DSE convergence. Moreover, the second level
DSE at each stage also uses the results from the first level of DSE to initialize
its population. Finally, the output of the last DSE stage (k = K) provides the
final Pareto-optimal solutions for N PEs.

5 Experimental Evaluation

In this section, we evaluate the search efficiency of our multi-stage hierarchical
DSE methodology by conducting three DSE experiments and comparing the
obtained experimental results in terms of the quality of the found solutions and
how this quality changes over time during the DSE process (i.e., the search).

5.1 Experimental Setup

In our three DSE experiments, we search for Pareto-optimal mappings of the pop-
ular ResNet-101 [8] CNN model onto a cluster of four edge devices. ResNet-101
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has 344 layers with diverse types leading to an immense number of different CNN
mappings, i.e., we have to perform the search in a vast design space. Therefore,
ResNet-101 is a sufficiently representative model to apply our DSE methodol-
ogy on and to demonstrate its merits. Our 4-device edge cluster consists of four
NVIDIA Jetson Xavier NX development boards [13] that are connected via a
Gigabit network switch. Each board has an embedded MPSoC featuring a 6-core
CPU (NVIDIA Carmel ARMv8) and a GPU (Volta with 384 NVIDIA CUDA
cores and 48 Tensor cores). Thus, we have 8 PEs in total in our edge cluster (4
boards with 1 CPU and 1 GPU per board). The On-Board Evaluation step in
the second level of our DSE methodology (see Fig. 3) measures and collects the
CNN inference throughput, memory usage per device, and energy consumption
per device over 20 CNN inference executions and represents them as average
values over these 20 executions.

In the first DSE experiment, referred as 3s-2l-SPE, we utilize our multi-
stage hierarchical DSE methodology as presented in Sect. 4 with 3 stages, 2
levels per stage, and the chromosome is encoded using our SPE method. In
the second experiment, referred as 1s-non-SPE, we utilize a classical 1-stage,
non-hierarchical DSE methodology based on the NSGA-II algorithm with our
On-Board Evaluation as the fitness function and our SPE as the chromosome
encoding method. In the third experiment, referred as 1s-non-NE, we utilize the
same DSE methodology as in the second experiment but we replace SPE with
the NE method mentioned in Sect. 4. In all experiments, every CNN layer can be
mapped either onto a 6-core CPU or a GPU present in any of the aforementioned
four board. The NSGA-II algorithm is executed with a population size of 100
individuals, a mutation probability of 0.2, and a crossover probability of 0.5.
In each DSE experiment, we run the search for optimal mappings for 70 h and
compare the quality of solutions found within these 70 h.

5.2 Experimental Results

Figure 4 shows how the quality of the found mappings in terms of the three
objectives, discussed in Sect. 3, improves during the search in the three DSE
experiments. The results for each objective are plotted in a separate chart where
the X-axis represents the search time in hours and the Y-axis represents the
objective value in images per second (IPS) for the CNN inference throughput,
in mega bytes (MB) for the maximum memory usage per edge device, and in
joules per image (J/img) for the maximum energy consumption per edge device.
Every point in a chart represents the best found mapping with respect to the
objective at a given point in time.

The results in Fig. 4 clearly indicate that the 1s-non-NE DSE gets easily stuck
in dominance resistant solutions, which means that such DSE cannot find high-
quality mappings even after hundreds of generations. In contrast, by replacing
the common NE encoding method with our tailored SPE method, the search
efficiency is significantly improved as shown in Fig. 4 where the 1s-non-SPE DSE
delivers high-quality mappings for the three objectives after 20 h. This is because
our SPE method ensures that only consecutive CNN layers will be mapped on
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Fig. 4. Quality of found mappings during the three DSE experiments

a PE, thereby scaling down significantly the design space and allowing only
exploration of mappings with reduced data communication among PEs. Such
mappings are better than less restricted mappings allowed by the NE method.

Finally, comparing the 1s-non-SPE and 3s-2l-SPE results shown in Fig. 4, we
see that by introducing multiple stages and hierarchy in the DSE process, it is
accelerate further in finding high-quality mappings. For example, after 40 h of
search time, our 3s-2l-SPE DSE delivers better mappings for the three objectives
than the 1s-non-SPE DSE.

6 Conclusion

We have presented a novel multi-stage hierarchical DSE methodology for dis-
tributed CNN inference at the edge. To accelerate the DSE process and improve
its efficiency, our DSE methodology combines analytical models with real on-
board measurements to speedup the evaluations of individual design points
and utilizes a tailored chromosome encoding method to effectively scale down
the explored design space. The methodology has been experimentally evaluated
by searching for optimal distributed mappings of the ResNet-101 CNN model
onto an edge cluster of four NVIDIA Jetson Xavier boards. The experimental
results show that our multi-stage hierarchical DSE methodology has significantly
improved search efficiency in comparison to a classical one-stage, non-hierarchical
DSE methodology which employs the commonly used, naive chromosome encod-
ing method.
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Abstract. Deep Neural Networks (DNNs) are currently making their
way into a broad range of applications. While until recently they were
mainly executed on high-performance computers, they are now also
increasingly found in hardware platforms of edge applications. In order to
meet the constantly changing demands, deployment of embedded Field
Programmable Gate Arrays (FPGAs) is particularly suitable. Despite
the tremendous advantage of high flexibility, embedded FPGAs are
usually resource-constrained as they require more area than compara-
ble Application-Specific Integrated Circuits (ASICs). Consequently, co-
execution of a DNN on multiple platforms with dedicated partitioning
is beneficial. Typical systems consist of FPGAs and Graphics Process-
ing Units (GPUs). Combining the advantages of these platforms while
keeping the communication overhead low is a promising way to meet the
increasing requirements.

In this paper, we present an automated approach to efficiently par-
tition DNN inference between an embedded FPGA and a GPU-based
central compute platform. Our toolchain focuses on the limited hard-
ware resources available on the embedded FPGA and the link bandwidth
required to send intermediate results to the GPU. Thereby, it automat-
ically searches for an optimal partitioning point which maximizes the
hardware utilization while ensuring low bus load.

For a low-complexity DNN, we are able to identify optimal partition-
ing points for three different prototyping platforms. On a Xilinx ZCU104,
we achieve a 50% reduction of the required link bandwidth between the
FPGA and GPU compared to maximizing the number of layers executed
on the embedded FPGA, while hardware utilization on the FPGA is only
reduced by 7.88% and 6.38%, respectively, depending on the use of DSPs
and BRAMs on the FPGA.
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1 Introduction

In the recent decade, Deep Neural Networks (DNNs) became the preferred algo-
rithm for evaluating complex data, like images or radar information. These
algorithms show great performance and accuracy, while they usually can be
deployed readily. However, DNN inference for complex data can cause high com-
putational complexity, resulting in extensive power consumption. This especially
becomes an issue when DNN are used in energy-constrained or safety-critical
environments like embedded low-power systems. Hence, the execution of DNN
moved from traditional computing devices such as Central Processing Units
(CPUs) and Graphics Processing Units (GPUs), further into hardware accel-
erators designed for fast or energy-efficient DNN execution. These are either
implemented in an Application-Specific Integrated Circuit (ASIC) or an embed-
ded Field-Programmable Gate Array (FPGA). The latter provides flexibility
regarding runtime reconfiguration or future architecture updates and provides
significantly reduced development time. Dedicated accelerators for a given DNN
offer a great trade-off between power consumption and performance, but they
often lack flexibility to model different kinds of DNNs.

Accelerators for DNNs in autonomous driving or assistive robotics are espe-
cially demanding as resource and real-time requirements in those multisensory
systems are high. These platforms, such as the humanoid assistive robot ARMAR-
6 [2], are usually based on a system architecture as shown in Fig. 1. For visual per-
ception, ARMAR-6 is equipped with a stereo camera and an RGB-D camera. As
the bus is highly occupied, images are directly streamed to the compute platform
consisting of three PCs, a GPU and an FPGA. The actual data processing not
only consists of image processing, e.g., person recognition, human pose estima-
tion, object detection and localization, but speech recognition, force control, task
planning, etc. as well. These tasks are distributed among the different devices of
the compute platform, realizing DNN-based tasks on the GPU and FPGA, respec-
tively. Time-sensitive applications, e.g., face and gesture recognition, are acceler-
ated on the FPGA [17]. However, acceleration of the whole DNN within the FPGA
as dataflow is not feasible for each model. Therefore, we propose the co-execution
of DNNs in the distributed system of GPU and FPGA.

The example above shows that there is a need for highly efficient and per-
formant DNN accelerators, which also offer a great flexibility for many different
DNN workloads. Over the past years, different optimization strategies for DNN
have evolved to make the underlying operations more efficient, such as quanti-
zation [8] or pruning [5]. A more recent optimization scheme considers DNNs
that are executed on complex System-on-Chips (SoCs) with multiple different
domains like CPUs, GPUs or FPGAs. Those systems allow combining the advan-
tages of the various system components to achieve a high overall performance.
However, efficient partitioning between the different domains is an emerging chal-
lenge. Therefore, we present in this paper our approach to automatically parti-
tion a DNN workload between FPGAs and GPUs, which are common domains
in novel SoC-architectures. Our toolflow takes a model description from PyTorch
and interacts with the FPGA design tools to generate different bitstreams and
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Fig. 1. Conceptual overview. Camera images are captured from the environment and
forwarded to the computing platform, which executes a DNN. The scene perception
obtained is then used to interact with the environment. Thereby, the DNN inference
takes place either on the FPGA, the GPU, or both. For distributed processing, our
toolflow determines the optimal partitioning point.

their resource utilization. These are then evaluated considering the given user
and FPGA design constraints. Our approach also takes the communication link
between the FPGA and the GPU into account, which can be an on-chip solution
but also a link between two physically separated platforms. Finally, our tool
returns a partitioning point for the DNN that maximizes energy efficiency and
performance based on the evaluation results collected before. In summary, our
paper makes the following contributions:

• We present our toolflow for determining an optimal partitioning point regard-
ing hardware resource usage and required link bandwidth.

• We apply the toolflow to estimate bandwidth and hardware utilization of
quantized DNNs.

• We exemplary show beneficial partitioning points of quantized MobileNet V1
for different FPGA architectures.

2 Related Work

Distributing DNN inference over multiple compute platforms has been a widely
studied topic in recent years. Several publications showed that DNN partitioning
is a beneficial approach for edge platforms in terms of latency, memory consump-
tion and link bandwidth utilization [7,10,11,14]. Some of these studies use an
adaptive approach to further improve efficiency of the distributed systems by
dynamically allocating computational resources depending on the overall sys-
tem utilization.
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Teerapittayanon et al. proposed DDNNs (Distributed Deep Neural Networks)
which consider distributed compute hierarchies from cloud to end devices during
training [16]. Thereby, they define local exit points within the DNN architecture
for each compute platform in the system. According to the presented results,
this approach leads to improved accuracy and reduced communication costs in
contrast to combining a small DNN on the end device and a large DNN on the
central platform or in the cloud.

However, research on distributing inference mostly focuses on DNN parti-
tioning for commercially available off-the-shelf (COTS) platforms such as Ten-
sor Processing Units (TPUs) and GPUs, neglecting evaluation of more energy
efficient ASICs or FPGA-based hardware architectures. Since Internet-of-Things
(IoT) platforms are often power constrained, a comprehensive hardware/software
co-design across multiple platforms is required to allow for larger and more com-
plex DNNs in end devices. In addition, the design space exploration must include
an evaluation of link utilization, as distributed systems are severely limited in
terms of available bandwidth between computing platforms.

Efficient DNN inference on multi-FPGA architectures has been studied by
some works recently [4,9,12,13]. As an example, Zhang et al. propose a mapping
approach for large-scale DNNs on asymmetric multi-FPGA platforms consider-
ing the required link bandwidth in the system as well as resource allocation to
achieve increased performance [18]. The presented mapping problem is solved by
dynamic programming for DNN partitioning. Alonso et al. presented Elastic-DF,
a framework for resource partitioning in multi-FPGA systems including dynamic
mapping of applications to an available accelerator in the FPGA cluster [1].
Thereby, the tool can automatically optimize the performance of a pipelined
dataflow DNN inference based on the available hardware resources of each
individual FPGA. Although both approaches apply resource- and bandwidth-
aware DNN partitioning to increase performance, these target datacenter infer-
ence and do not provide any investigation on low-power platforms used in IoT
applications.

3 Partitioning Toolflow

Distributed sensor platforms, as found in many applications such as autonomous
driving or assistive robotics, often face the problem of limited available band-
width and limited compute resources in the central computing platform. Espe-
cially in safety-critical use cases, minimum latency must be guaranteed. In addi-
tion, since DNN topologies are still a major research topic, the hardware architec-
tures also have to provide certain flexibility to cope with varying requirements.
Hence, we propose a bandwidth- and resource-aware toolflow for pipelined DNN
inference partitioning as shown in Fig. 2. In contrast to state of the art, this
approach takes limited resources on the embedded FPGA as well as the limited
bandwidth to the central compute platform in low-power embedded systems into
account. Thereby, to achieve low latency and high throughput, the hardware
implementation on the FPGA is designed in a pipelined manner, i.e. each layer
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Fig. 2. Overview of our toolflow. As input, we take any given DNN workload, an
FPGA specification and user constraints, e.g. available link bandwidth, to determine
an optimal partitioning point. The toolflow outputs the partitioned DNN model and
generates a bitstream fulfilling the system requirements.

is mapped to a dedicated accelerator. These are not shared between multiple lay-
ers of the DNN. Consequently, full hardware implementation on an embedded
FPGA would consume a lot of space on the SoC.

3.1 Overview

Our approach offers a toolflow that evaluates any given DNN workload. The
DNN is partitioned between an embedded FPGA and a GPU to maximize the
performance, while also considering the communication link. Along with the
network model, our toolflow also requires an embedded FPGA specification and
user constraints as input to distinguish an optimal partitioning point of the
DNN regarding resource utilization and required link bandwidth. Especially, the
used link bandwidth is an important metric in multi-sensor systems as they
can be found in assistive robotics or autonomous driving. In such use cases, the
available bandwidth is severely limited by the large amount of data being sent
from different nodes on the bus. Hence, the user can set maximum available link
utilization to account for other traffic on the bus. Embedded FPGAs on the other
hand are often limited in area and thus in available hardware resources. These
constraints also have to be taken into account to find an optimal partitioning
point of a DNN.

As a whole, our toolflow first optimizes the given DNN by quantizing weights
and layer outputs during training to reduce computational complexity and
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memory footprint. Based on the resulting quantized DNN, a static analysis is
performed taking FPGA specifications like available Block RAM (BRAM) and
Digital Signal Processor (DSP) resources into account. In addition, finding an
optimal partitioning point of the DNN requires calculation of the required band-
width. Finally, with the estimated hardware resource utilization, the calculated
link bandwidth of each layer, and the given user constraints, our tooflow can
determine an optimal partitioning point and generate an appropriate bitstream.

3.2 Training and Static Analysis

Achieving low latency and high throughput on the embedded FPGA is a crucial
part which enables usage of such platforms in embedded systems. Hence, we
need to automatically optimize a DNN architecture and analyze the resulting
model to efficiently map the layers to dedicated hardware accelerators.

Various works in recent years have shown that quantization and pruning lead
to a drastic reduction in hardware resource consumption, with only a minimal
loss of accuracy [17]. Therefore, in use cases such as assistive robotics which
require low power consumption, optimizing DNN is inevitable. Our toolflow
makes use of Brevitas [15] to achieve this goal during training. It is based on
PyTorch and supports quantization-aware training of DNNs through evaluat-
ing reduced precision hardware building blocks at different levels. The resulting
optimized DNN is then exported to ONNX file containing custom node types.

Since our approach targets Xilinx FPGAs as test platform, we implement
FINN framework as one of the central components our toolflow interacts with
for static analysis [3]. The FINN framework provides an end-to-end workflow
covering design space exploration based on resource cost estimations and perfor-
mance predictions, as well as automated code generation for High-level Synthesis
(HLS). It takes the ONNX file generated by Brevitas of the DNN as input and
provides estimates of hardware resource consumption and performance, among
others. In addition, FINN can generate a bitstream for the given FPGA based
on Vivado HLS.

3.3 DNN Partitioning

Even though the FINN framework tries to find an optimal implementation of
the DNN taking multiple constraints into account, the size of the FPGA is not
considered during design space exploration. Hence, if the network model requires
more hardware resources than available on the given FPGA, the implementa-
tion will fail. Our approach addresses this problem by searching for an optimal
partitioning point regarding FPGA usage and required link bandwidth.

To estimate the resources per layer, we use the predictions of the FINN
framework, which are automatically generated during HLS. FINN offers differ-
ent ways to estimate the required hardware resources per layer, before and after
IP block generation and also after out-of-context synthesis including hardware
optimizations. The latter thereby allows for precise resource estimates at the
expense of runtime. Since we aim to find an optimal partitioning point for a
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Algorithm 1: Search algorithm to determine an optimal partitioning
point, considering hardware resource usage and required link bandwidth.
1 function GetOptimalSplitNode;

Input : hardware resources per layer, layer output size
Output: Partitioning Point

2 max layer ← last DNN layer fitting on hardware;
3 part pnt ← max layer;
4 for each layer in [max layer, first layer] do
5 bw ratio ← bandwidth[part pnt] / bandwidth[layer];
6 hw ratio ← hw resources[part pnt] / hw resources[layer];
7 if bw ratio > 1 and bw ratio/hw ratio > threshold ratio then
8 part pnt ← layer;
9 end

10 if stop condition fulfilled then
11 break;
12 end

13 end
14 return part pnt;

given DNN and thus runtime is not critical, our toolchain takes resource esti-
mates of FINN generated after IP block generation. The link bandwidth can be
calculated according to the output feature size of the intermediate layers and
the corresponding data bit width. Consequently, this analysis can be neglected
with respect to the runtime of the toolflow.

Besides estimating FPGA hardware resources and calculating required link
bandwidth, distinguishing an optimal partitioning point of the DNN involves
the input of constraints by the designer. This includes the embedded FPGA
specifications regarding number of available basic building blocks, the targeted
hardware utilization, and the available link bandwidth. Based on these inputs,
our approach searches for a suitable partitioning of the DNN, which does not
violate any of the given constraints such as area or required link bandwidth.
Algorithm 1 presents our approach for finding an optimal partitioning point.
First, the algorithm determines a partitioning point in the DNN where the hard-
ware utilization is maximized for a given embedded FPGA platform. Afterwards,
the algorithm aims at minimizing the communication overhead while still keep-
ing the hardware utilization as high as possible. To achieve this goal, we set
two parameters in advance: The first parameter defines the minimum allowed
hardware utilization, which is used as a stop condition and should not be under-
cut. The second parameter defines a threshold for the maximum acceptable ratio
between optimization of communication overhead and deterioration of hardware
utilization. Based on this, the algorithm iterates through the layers starting from
the partitioning point determined in the first step of the algorithm and evaluates
link bandwidth utilization and hardware resource utilization. Subsequently, these
are compared with the current best partitioning point. Only if the bandwidth
can be reduced and the threshold value is exceeded, the layer is set as the new
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Table 1. Available hardware resources on the evaluated SoC.

Platform LUTs FFs BRAM blocks DSP slices

ZedBoard 53,200 106,400 280 220

Ultra96-V2 70,560 141,120 432 360

ZCU104 230,400 460,800 624 1,728

partitioning point. Finally, when the stop condition is reached, the algorithm
returns the partitioning point with the best ratio.

In summary, our toolflow optimizes the system towards high resource utiliza-
tion of the embedded FPGA and low link bandwidth. After the partitioning point
of the DNN is set, our toolflow splits the DNN model into two sub-models accord-
ingly. Thereby, both are exported to ONNX format based file, which ensures
machine learning interoperability. For the embedded FPGA, our toolflow finally
generates the bitstream using Xilinx Vivado HLS and Vivado.

4 Evaluation

In this section, we evaluate our toolchain for a DNN on embedded FPGAs. Since
we use FINN framework as one of the central components, we exemplary show
the results of inference partitioning for three different Xilinx FPGAs. In order
to address the various possible sizes of embedded FPGAs, we evaluate DNN
partitioning using the following platforms: ZedBoard, Avnet Ultra96-V2 and
Xilinx Zynq UltraScale+ MPSoC ZCU104. The available hardware resources on
each SoC are listed in Table 1.

The system we use for the evaluation of our toolflow consists of an Intel
Core i7-8565U, a quad-core SoC, running Ubuntu 18.04. To ensure the correct
functioning of the FINN framework, we use a Docker container generated from
the Dockerfile provided by Xilinx for this purpose. Finally, Vivado 2020.1 is used
for HLS to determine the required hardware resources.

4.1 Workload

Low-complexity DNNs are required in embedded systems that need to provide
low latency and power consumption. Several DNNs architectures have been pro-
posed in recent years fulfilling these properties, such as MobileNet V1 [6]. There-
fore, we select it as an exemplary workload and identify optimal partitioning
points for a distributed system combining GPUs and embedded FPGAs. To
achieve lower hardware resource utilization, we use a pretrained and quantized
model with 4-bit weights and activations for the evaluation. The MobileNet
V1 was originally proposed in 2017 and achieves an accuracy of 70.6% on the
ImageNet dataset while only using 569 million multiply-accumulate operations
and 4.2 million trainable parameters. This is achieved by introducing depthwise-
separable convolution blocks, where each block consists of a depthwise convolu-
tion followed by a convolution with 1× 1 kernels. In total, MobileNet V1 uses
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13 depthwise-separable convolution blocks, preceded by a standard 3× 3 convo-
lution and followed by a fully-connected layer and softmax for classification.

4.2 Results

Executing DNN inference on an FPGA requires to map layers to one or more
basic building blocks depending on the layer type. For MobileNet V1, FINN con-
verts the DNN into 86 layers that can be directly translated to the components
available in its hardware library. Without considering the runtime for training
the DNN, it takes about 81.6 min on our system in dual-core mode from loading
the ONNX file in FINN to finishing HLS. As expected, the IP block generation
of each building block takes the most time, about 79 min, which is almost 97% of
the whole runtime. However, since this step only needs to be performed once for
a quantized DNN model and our evaluation was performed on a low-performance
SoC, the runtime is still within an acceptable range.

The results of the IP block generation and the output size of each layer are
shown in Fig. 3. It can be seen, that the output size tends to decrease towards
the last layer. However, the DNN requires large hardware accelerators, especially
towards the last layers, which significantly increases the demands on the available
resources of the embedded FPGA. Consequently, the identification of an optimal
partitioning point depends in particular on the deployed hardware platform and
the defined user constraints.
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Fig. 3. Resource utilization of each translated MobileNet V1 layer taking LUTs as an
example and the corresponding output size in bytes. In this configuration, only LUTs
and FFs are used to implement the building blocks in the FPGA.

In the following, we apply our toolflow to find an optimal partitioning point
of MobileNet V1 on the three aforementioned exemplary FPGA platforms. Since
we want to analyze the impact of DNN inference partitioning independently of
the IP cores present on the platforms, we will also evaluate the hardware resource
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Table 2. Toolflow evaluation results. Depending on the size of the SoC and whether
all resources or only LUTs and FFs are used, the maximum number of layers (max.
Layer) that can be implemented on the platform varies. It can be seen that reducing
the number of layers executed on the FPGA can significantly reduce the required link
bandwidth (BW Red.) since the optimal partitioning point (Part. Point) does not
always match the max. layer. Thereby, the hardware utilization reduction (HW Red.)
is small.

Only LUTs/FFs All resources

Platform max Part BW Red. HW Red. max Part BW Red. HW Red.

Layer Point [%] [%] Layer Point [%] [%]

ZedBoard 22 21 6.78 1.19 19 19 0 0

Ultra96-V2 31 25 50 18.73 25 25 0 0

ZCU104 79 73 50 7.88 79 73 50 6.38

consumption of architectures containing only Look-Up Tables (LUTs) and Flip-
Flops (FFs). We set the stop condition to 70% minimum hardware resource
utilization to allow for low DNN inference latency and the threshold ratio to 1.
The results of our exploration are shown in Table 2.

For the ZedBoard, the algorithm finds layer 21 as the optimal partitioning
point when only using LUTs and FFs. Even though many hardware resources
could be saved when choosing layer 20 instead, this would lead to an increased
link bandwidth requirement as can be seen in Fig. 3. Hence, the selected parti-
tioning layer offers a good trade-off between high throughput and low commu-
nication overhead. Similarly for Ultra96-V2, layer 25 is identified as an optimal
partitioning point since bandwidth can be reduced by 50% in comparison to layer
31 without offloading too many layers to the GPU. In this case, the required
hardware resources on the FPGA are significantly reduced by 18.73%, however,
the stop condition is still exceeded.

Compared to the consideration of the optimizations for an implementation
solely based on LUTs and FFs, only the evaluation results for the ZCU104 show
different partitioning than maximum layer. This is due to the fact that FPGA
platforms are usually severely limited in terms of BRAM and DSP resources.
Since the maximum number of layers that can be implemented on ZedBoard
and Ultra96-V2 is small considering all hardware resources, there is no potential
to reduce link bandwidth on these platforms. In contrast, link bandwidth can be
reduced by 50% on ZCU104, at the cost of a reasonable reduction in hardware
utilization.

5 Conclusion and Future Work

DNN inference partitioning can be very advantageous depending on the neu-
ral architecture and the deployed hardware. Our results show that it is also
beneficial for embedded FPGAs to outsource workload partly from a central
compute node to a platform closer to the sensor since this approach reduces the
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required bandwidth while maximizing the hardware utilization of the embedded
FPGA. The latter can thereby result in lower DNN inference latency depending
on the hardware deployed on the central compute node. Especially in appli-
cations using multiple sensors, our approach can propose a bandwidth-aware
partitioning to enable parallel execution of several DNN-based applications in a
distributed system. Using our toolflow, we were able to identify several advan-
tageous partitioning points depending on the platform deployed and the type of
hardware resources used on the embedded FPGA. In the best case, our approach
can reduce the required link bandwidth by 50% compared to implementing the
maximum possible number of layers in the FPGA.

In the future, we plan to further investigate DNN inference partitioning by
evaluating not only the sensor node and the link but also the central com-
pute platform of the embedded system. Depending on the workload, analyzing
latency on both partitions increases the design space but allows to investigate
DNN partitioning for even more applications where minimum latency or energy
consumption is the main optimization goal.
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Abstract. Edge computing is a paradigm in which data is intelligently
processed close to its source. Along with advancements in deep learning,
there is a growing interest in using deep neural networks at the edge
for predictive analytics. Given the realistic constraints in computational
resources of edge devices, this combination is challenging. In order to
bridge the gap between deep learning models and efficient edge analytics,
a container-based framework is presented that evaluates user-specified
deep learning models for efficiency on the edge. The proposed framework
is validated on a rotating machinery fault diagnosis use case. Conclusions
on efficient state-of-the-art models for rotating machine fault diagnosis
were drawn and appropriately reported.

Keywords: Deep learning · Constrained edge devices · Machine fault
diagnosis · Model benchmarking

1 Introduction

Internet of Things (IoT) refers to devices (or groups thereof) that are equipped
with firmware, a limited amount of processing power and memory, and other
technologies that enable communication between and within networks. This
communication is possible between nearby devices or services that are linked
remotely. IoT is a fairly broad concept with several possible uses. The amount
of linked IoT devices is growing at a pace of 22% annually, in contrast to a
modest annual growth rate of roughly 2% for traditional IT devices [4]. By 2025,
there will be close to 150 billion devices, producing an estimated 180 Zettabytes
of data, based on current trends and needs [7]. At the same time, the advance-
ments in the domain of Artificial Intelligence and Deep Learning (DL) enables to
analyse ever larger amounts of data. Analysing this data on cloud-based server
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infrastructure given these resources can easily be scaled to match the computing
requirements. However, at the same time this also requires the exchange of data
between the edge devices and the cloud, which is increasingly leading to bot-
tlenecks due to the limitations of the current network infrastructure. Therefore,
to reduce the amount of bandwidth needed for IoT data communication and to
improve reaction times, the edge computing paradigm has emerged as a solution.
In this paradigm, the edge infrastructure is supposed to serve as a middleman,
strengthening and sustaining the link between widespread endpoints and the
cloud.

The combination of edge computing and Artificial Intelligence has boosted a
wide spectrum of applications, spanning from real-time video analytics, cognitive
assistance, precision agriculture, smart home, and Industrial Internet of Things
(IIoT) [13]. Although performing analytics at the edge eliminates the issue of
network congestion, it also creates a number of novel challenges, imposed by the
edge devices’ computing capabilities that form one of the main constraints for
such intelligent application deployment. It is impossible to sidestep the difficulty
of edge computing given the limitations on processing power. Therefore, the
amount of information that can be processed at the edge is increasingly being
studied. This question becomes ever more relevant as deep learning becomes the
predominant approach to obtain state-of-the-art accuracy in different application
domains.

Despite the fact that there has been a lot of research on intelligent data pro-
cessing using DL models and optimizing the same for particular edge platforms,
to the best of the author’s knowledge there is no framework or tool to assess the
viability of those models under a given set of computational constraints. There-
fore, in order to close this gap, as a first contribution, an open-source framework
is proposed that can evaluate and compare user-provided models and datasets,
in order to gain more detailed insights into the training and inference efficiency
of these models when performed on the edge. The aim is to simplify and improve
the model selection for constrained edge applications. Second, the framework is
validated on the use case of industrial fault diagnosis. Implementation of DL
models at the edge is challenging for this problem because of the stringent limits
on efficiency, latency, and energy. At the same time, high-frequency data process-
ing and analysis (e.g., from vibration or acoustic measurements) is required to
perform accurate and proactive fault diagnosis. Next to a validation of the func-
tionality of the framework, the results provide initial insights into the existing
tradeoffs between model accuracy and used runtime parameters in constrained
settings.

This paper is organised as follows. The next section reviews related work from
the perspective of the use case. Section 3 summarizes the contribution and formu-
lates the respective research questions. Section 4 details the proposed framework,
whereas Sect. 5 introduces the aforementioned case study used to evaluate the
framework. Finally, the article is concluded with a detailed discussion of the
results and resulting insights into current machine fault diagnosis models for the
constrained edge setting.
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2 Related Work

Despite the promise of DL models in enabling edge-based applications, there are
significant barriers to effective deployment [13]. While some research focuses on
enhancing the efficacy of a model given particular hardware restrictions, other
works focus on more advanced models to accomplish more accurate results. In
particular, it is crucial yet difficult to select suitable models while taking com-
putational constraints into account.

To illustrate that, rotating machinery diagnosis will be considered as a use
case in the industrial machine monitoring and prognostics domain. There are
several deep learning models in the literature that differ depending on the task
to be performed. While there are generic models such as Multilayer Percep-
trons (MLP), Convolutional Neural Networks or Auto-Encoders, there is also
a plethora of more advanced models such as LiftingNet, Deep Belief Networks,
Long Short-Term Memory Networks, Generative Adversarial Networks, or Cap-
sule Networks that have been proposed for various fault prognosis use cases [10].

Tang et al. investigated DL models encompassing diverse application scenar-
ios within rotating equipment fault diagnosis while emphasizing the need for
generalizable models. The authors evaluated the models based on their perfor-
mance (prediction accuracy) [8]. In contrast, Zhang et al. analyzed and compared
state-of-the-art DL models for the specific use case of rotating machine defects,
namely bearing fault diagnosis [10]. Although remarkable results of up to 99%
accuracy were reported with various DL models, they reveal a gap in the models’
generalizability across conditions. Similarly, Lei et al. conducted a comprehen-
sive evaluation of machine fault diagnostics, including an extensive discussion
of several DL models for Intelligent Fault Diagnosis. Furthermore, the history,
present, and future challenges within this domain have been discussed, along
with a proposed roadmap [3]. Surprisingly, the suggested roadmap emphasizes
model transparency and transferability while making no mention of edge-based
implementability. Khan et al. released a survey paper for DL-based system health
management. While detailing the development of DL for system health manage-
ment, they also point out the absence of suitable benchmark results [2]. Zhao
et al. [12] benchmarked a number of cutting-edge DL models for rotating equip-
ment fault diagnosis, but they only compared the models’ diagnostic accuracy.

Summarizing the literature for different fault diagnosis applications, we can
state with confidence that most comparisons are limited to classification or detec-
tion performance and are highly customized for a specific use case. Although
many of these recent surveys talk about cutting-edge DL models and their future
challenges, almost all of them ignore or fail to take into account the issue of their
implementability on the edge. While many of the reviewed DL models perform
well (in terms of prediction metrics) for certain applications, specific use cases
or specific datasets, none of them are ubiquitous. This presents a challenge in
practice because the computing limitations of the edge system are currently not
taken into account when choosing an effective model.
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3 Overall Description of the Framework

This paper proposes a open-source framework1 to address the issue of effective
model selection. The aim of the developed framework is to enable empirical
comparison of user-specified DL models in terms of their overall performance,
time and spatial complexity for a practical implementation on edge devices.

More specifically, the aim of the framework is to provide insights to the
following questions:

– Which of the user-provided DL models are most efficient in terms of prediction
metrics (e.g., accuracy, F1-score) at a constant system setting?

– Which of those models can efficiently be trained or used for inference at test
time given the reduced hardware capabilities?

– What are the tradeoffs between the imposed hardware limitations and the
performance of the models, and can particular critical thresholds in terms of
resource limitations be identified?

This proposed framework allows to change different system characteristics
effortlessly.

One possible approach to achieve this ability of systematically reducing the
machine characteristics and benchmark DL models for various resource con-
straints, is using virtual machines (VM) that can successfully simulate machine
hardware. VMs have been a tested and proven technology for dynamic resource
allocation, substantiated by the research in the domain of Dynamic Virtual
Machine Placement. Various computing platform parameters, such as RAM,
CPU, energy use, etc. are monitored, and modified VMs with lower or higher
resources are deployed in accordance with the specified awareness scheme [5,11].

Another approach is based on container technology, i.e., OS-level virtualiza-
tion to provide software in packages called containers. One important difference
between the containers and VMs is the application-only virtualization. Contain-
ers only consist of the code and all the dependencies that are necessary to run a
particular application. This leads to a minimal weight of containerized applica-
tion compared to that of VMs. In addition, container technology also satisfies a
more important requirement of our framework, namely the replication and cus-
tomization properties of these virtualization tools for systematic resource mod-
ification. In this respect, containerized virtualization scores higher compared to
VMs [9]. Consequently, containerized applications were considered as platform
virtualization tool and form the basis for the proposed framework.

4 Framework Implementation and Experimental Setup

This section details the implemented framework. As explained previously, the
systematic virtualization of the hardware to emulate constrained edge devices
1 The source code of the framework as well as the associated scripts to reproduce

the performed experiments on the fault diagnosis use case are available via https://
gitlab.com/Chandu1007/edge-benchmarking-framework.

https://gitlab.com/Chandu1007/edge-benchmarking-framework
https://gitlab.com/Chandu1007/edge-benchmarking-framework
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is performed using containerized applications, for which Docker2 is employed.
Docker is one of the main container technology frameworks that eases the devel-
opment of containerized applications. The ability to alter the container runtime
parameters is a significant feature of this tool as, despite being a virtualized
app, containers cannot restrict the utilized resources by themselves. Theoret-
ically, they may utilize the resources as required to operate the application.
During runtime Docker can manage the progressive reduction in the resources
consumed by the container.

Data: Framework Image
Result: Run time Logs
1. User selects task (train/evaluate) and parameter to monitor (CPU/RAM);
2. User selects dataset/model combination;
3. User selects top and bottom limits + step;
current limit = top limit;
while current limit > bottom limit do

run benchmark;
if run successful then

current limit = current limit-step;
else

report error;
end

end
Algorithm 1: Pseudo-code of the experimental framework

As shown in Algorithm 1, first, the runtime results given certain control value
parameters must be obtained. Subsequently, these results are plotted in order to
obtain a visual representation of the data. The Framework Image referred to in
Algorithm 1 is a containerized application image created using Docker.

More specifically, as a first step, the datasets and models intended for eval-
uation have to be configured on the host machine. Once the configuration is
in place, we build a Docker image including the datasets, the models and the
Python scripts that implement training and inference cycles. The built image
provides the environment for the application containers. After the Framework
Image has been built using the Docker daemon, the input limits for either CPU
or RAM are provided as arguments. These limits and the arguments specific
to models and datasets are further considered by a shell script to automate
the container deployment and to orderly modify the runtime parameters of the
containerised application.

Python is used to run the models within the containerized application
instance. The input arguments to the Python script define the combination of
models and datasets as well as the implemented routines (inference or train-
ing). While the application is running, logs are created according to the model

2 https://www.docker.com.

https://www.docker.com
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and dataset in use, and are saved in a shared workspace as a CSV file. These
logs include the time incurred for tasks like argument parsing, setup, evalua-
tion (training or inference), etc. This process of new container creation by a
shell script and the evaluation of a particular model/dataset combination con-
tinues till the specified limits are reached. The runtime parameters referred here
are RAM and percentage of CPU core used. While the RAM is measured in
Megabytes, CPU core is measured as the percentage of time the core is used
per second by the application. Finally, the logged data is plotted to visually
represent the evaluation results. A flow diagram of the developed framework is
presented in Fig. 1.

An Advantech UNO-2272G, a palm-sized embedded computer has been used
to implement the proposed framework [1]. It is a rugged embedded system that
can run embedded operating systems like Linux-Embedded. With 2GB of RAM
and quadcore Intel R© Atom N2800/J1900 2GHz processors, it came across to be
a suitable platform for verifying our framework.

Fig. 1. Flow diagram of the proposed benchmarking framework.
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5 Case Study: Fault Diagnosis for Rotating Machinery

To validate the framework, fault diagnosis for rotating machinery on embedded
devices has been chosen as a case study. This is motivated by the fact that
real-world deployments in this domain often necessitate the implementation of
analytics at the edge. Hence, gaining insights into the efficiency of these algo-
rithms in terms of both performance and resource constraints can drastically
speed up the selection of the appropriate model for embedded deployment. In
addition, this can allow one to gain a better understanding regarding possible
methodological improvements.

For this validation, various DL models along with benchmark datasets for
fault diagnosis in rotating machinery are used. Both the models and datasets
were selected based on the benchmark study of Zhao et al. [12]. In their exten-
sive benchmark study they evaluated the efficacy of DL models for intelligent
fault diagnosis of rotating machinery while considering various publicly-available
datasets. Also the respective source code is publicly available for research repro-
ducability. The following subsections discuss the selected models and datasets
that were used for validation in more detail.

5.1 Models

Out of the 9 models evaluated by Zhao et al., a selection of 6 models was made
for this evaluation. The choice of the models is of secondary importance, as the
objective of the experimental validation is to test the feasibility of the frame-
work rather than performing a general comparison regarding the fault diagno-
sis performance of these models. The considered models are the Multi-Layer
Perceptron (MLP), AlexNet-1D, Convolutional Neural Network-1D (CNN-1D),
ResNet-1D, LeNet-1D and BiLSTM-1D. All the models used in this study are
one-dimensional as the provided inputs are single channel time domain signals.
A detailed description of each of the models can be found in [12].

5.2 Datasets

A total of 7 datasets are evaluated in the benchmark study, of which 6 are
bearing fault datasets and 1 is a gearbox fault dataset. To facilitate a certain
variation in the analyzed datasets, one from each category is chosen for final
evaluation, i.e., the MFPT bearing set for bearing fault diagnosis and the SEU
dataset for gearbox fault diagnosis. Given the impact of the data characteristics
on the training and inference performance, each of these datasets will be briefly
discussed in more detail.

MFPT Bearing Dataset. The Machinery Failure Prevention Technology
(MFPT) dataset is proposed by the Society for Machinery Failure Prevention
Technology. It consists of three subsets of data: 1) a baseline dataset, 2) seven
outer ring fault datasets, and 3) seven inner ring fault datasets. Taken together,
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the dataset contains data from 15 classes (1 non-faulty and 14 faulty). Each
observation from these 15 classes has a length of 1024 timestamps. Overall, the
dataset contains 2059 observations for training and 515 observations for testing.
These will be the inputs with which the multi-class classification models will be
trained and tested for categorizing the fault classes.

SEU Gearbox Dataset. The Southeast University (SEU) gearbox dataset con-
tains two subsets, including a bearing fault dataset and a gearbox fault dataset,
which were both acquired on a dynamic drivetrain simulator. For the evaluation,
only the gearbox faults were considered. It contains a total number of 5 classes,
i.e., 4 fault states and 1 normal operating state. Within each original data file,
there were eight rows of vibration signals, and we used the X-axis signals of
the planetary gearbox mentioned in the experimental setup [6]. Similar to the
previous dataset, a window of 1024 timestamps was used to create observations
from the original data files. In total, there are 1640 observations for training and
420 observations for testing the model performance.

Thus, the experimental validation of the developed framework was set up
using 6 models and 2 datasets, which is considered a solid benchmark.

6 Results and Discussion

The results upon running the framework with these model/dataset combinations
are multifold and are discussed in this section.

Fig. 2. Accuracy versus the number of training epochs for SEU and MFPT datasets.
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6.1 General Results

The framework’s first set of outputs is a comparison of the generic implementa-
tion of selected models with the datasets of choice. The generic implementation
here implies that the models are trained and evaluated on the selected edge plat-
form without any resource limits. According to the findings shown in Fig. 2 for
the MFPT and SEU datasets, ResNet-1D appears to be converging to a solution
in fewer epochs than the other models. This phenomenon is consistent across the
datasets and in line with the conclusions from Zhao et al. [12]. Based on this, it
can be concluded that the top performing models in order are ResNet-1D, CNN-
1D, BiLSTM-1D, AlexNet-1D, LeNet-1D, and MLP. This order of performance
is as expected according to the benchmark study of Zhao at al., at least for the
datasets under discussion here.

Fig. 3. Minimum RAM (in MB) required for inference and training various models.
The plots are the output of the framework ran till it reaches the out-of-memory point.
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Fig. 4. Effect of the used CPU cores on the inference time. Presented results are for
one observation over 5 inference iterations.

6.2 Inference Results

Following the general performance evaluation, the framework was used to sys-
tematically adjust the runtime parameters, i.e., RAM and percentage of CPU
in use, of the containers. First, model inference was considered, for which the
corresponding results are presented in Fig. 3. From these observations, it can
be concluded that RAM is a constant parameter that has no influence on the
inference time as soon as the model has access to a bottom limit of RAM. More
specifically, either the model has sufficient RAM to execute the computation,
or the model is not able to perform the inference task as it runs out of mem-
ory. Comparing the RAM necessary for the implemented models, it is evident
from Fig. 3 that the CNN-1D needs more RAM compared to the other models.
This amounts to a factor of at least 13% when compared to the second highest
RAM-consuming model, being ResNet-1D. Compared to the lowest resource con-
suming models like MLP and LeNet-1D, CNN-1D uses 60% more RAM. When
comparing the utilized resources with models that perform similarly in terms of
accuracy, AlexNet-1D and BiLSTM-1D are more desirable when considering the
implementation on an edge device that is constrained in terms of RAM. This
result underlines the ability of the platform to assess this type of tradeoffs when
considering deploying deep neural networks on the edge.

The percentage of CPU core used is another parameter of the container
that has been systematically modified to evaluate model performance. Figure 4
presents the results for the inference analysis when changing CPU core values
from 0.2 to 0.01% with a step size of 0.01. As expected, the percentage of cores
used has a great influence on the inference time. The computation latency of
the MLP and LeNet models are growing from 1 s to approximately 46 s over 0.2
to 0.01% of the CPU cores. Meanwhile, BiLSTM and ResNet demonstrate very
high inference times, up to 500 s at the lower limit and approximately 40 s at
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Fig. 5. Effect of the used CPU cores on the training time.

the highest. Overall, the results indicate that AlexNet and CNN are the optimal
models to be used for edge-based inference in fault diagnosis systems.

6.3 Training Results

When it comes to real-world applications, next to inference also on-device train-
ing is crucial. With respect to the case study under consideration, most state-of-
the-art DL models are neither resilient nor generalizable across conditions [12].
This necessitates the (continuous or periodic) re-training for some or most of the
layers of a DL model using the newly incoming data. As a result, training near
or on the edge is critical for cross-conditional robustness. Using the developed
framework, the models can be analyzed against the datasets for training and
their performance evaluated for the considered runtime parameters, i.e., RAM
and CPU core usage.

The results presented in Fig. 3 show that training the ResNet-1D model
takes twice as much RAM than during inference. This is in contrast to CNN-
1D’s usage, which goes up by about 30%. This is comparatively low to that of
ResNet-1D’s training. Out of the best performing models, BiLSTM-1d was con-
suming the lowest resources and for one of the datasets it was similar to that of
AlexNet-1D.

As can be observed from Fig. 5, overall the results for the model training
with changing CPU cores are rather consistent with the results provided for
the inference time. The main difference is that AlexNet-1D and BiLSTM-1D
switched positions. AlexNet-1D takes more time for training than BiLSTM-1D,
while the reverse was true in terms of inference time.
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7 Conclusion and Future Work

This paper presented a container-based framework to compare deep learning
models for resource-constrained applications on the edge. It facilitates the sys-
tematic restriction of runtime parameters such as RAM and percentage of CPU
cores used to emulate the edge hardware. Moreover, it is application-independent
and allows to test any set of datasets and models to assess how well they function
on hardware platforms with limited resources. This analysis can be performed
both for inference and training. Additionally, the framework has been validated
using a case study on rotating machinery fault diagnosis. Next to an illustration
of the framework’s capabilities, based on the results, also a number of initial
conclusions could be drawn regarding the performance of the different models
in resource-constrained circumstances, as well as on the possible tradeoffs that
could influence the model choice. AlexNet-1D clearly comes out as the best
solution for an edge-based intelligent fault diagnostic application, as it provides
competitive multiclass predictive accuracy while being resource-efficient during
both inference and training.

In future work, the runtime parameter limits that are currently specified
manually could be complemented with a list of predefined hardware constraints
for commonly-used (industrial) IoT edge devices. Other ideas include extending
the list of resource constraints that can be imposed. Next to constraining RAM
and CPU usage, one could consider to also constrain GPU usage, or to limit
the capabilities of the processing unit to test for specific microcontrollers (e.g.,
FPGAs with only integer computation capabilities). Furthermore, the aim is also
to validate the framework for additional use cases by means of other model and
dataset benchmarks, in order to gain additional insights in possible tradeoffs
between runtime constraints and accuracy on different tasks (e.g., classification,
regression) and model types (e.g., models tailored for computer vision).
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Abstract. We present an estimation methodology, accurately predict-
ing the execution time for a given embedded Artificial Intelligence (AI)
accelerator and a neural network (NN) under analysis. The timing pre-
diction is implemented as a python library called (MONNET) and is
able to perform its predictions analyzing the Keras description of an
NN under test within milliseconds. This enables several techniques to
design NNs for embedded hardware. Designers can avoid training net-
works which could be functionally sufficient but will likely fail the timing
requirements. The technique can also be included into automated net-
work architecture search algorithms, enabling exact hardware execution
times to become one contributor to the search’s target function.

In order to perform precise estimations for a target hardware, each
new hardware needs to undergo an initial automatic characterization pro-
cess, using tens of thousands of different small NNs. This process may
need several days, depending on the hardware.

We tested our methodology for the Intel Neural Compute Stick 2,
where we could achieve an (RMSPE) below 21% for a large range of
industry relevant NNs from vision processing.

Keywords: Execution time · Prediction · Neural networks ·
Analytical model

1 Introduction

With the constant rise of (AIs) and (NNs) in the industry it becomes important
to obtain definitive data about execution constraints of these algorithms. An
algorithm must be verified to be able to work within a certain set of hardware
and application constraints. As an example the execution time may not exceed a
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certain threshold in an autonomous vehicle, so that it is still capable of reacting
to the input within safety limits.

The best way to determine this execution time is to measure it on the tar-
get hardware. For complex neural networks and difficult to obtain hardware
this is not always feasible, for example in an automated network architecture
search (NAS). One way of performing hardware execution time aware NAS is to
rely on readily available metrics such as MAC count or number of parameters,
which leads to suboptimal results [9]. Another is to obtain the execution metrics
through hardware in the loop measurements, where feasible [3]. An alternative
is to estimate the execution time of the neural network.

The goal of this work is to develop a gray box modeling methodology, which
is capable of estimating the latency of a given NN, when running on a spe-
cific hardware. This library will be called Model of Neural Network Execution
Time (MONNET). After an initial time intensive analysis (characterization) of
the hardware, the estimator has to be able to run independently of the hard-
ware itself and within an execution time, small enough to allow comparing dif-
ferent solutions in a design space exploration or network architecture search
conveniently.

The only input parameters of the final timing estimator have to be the topol-
ogy of the NN graph and the characterization data for the target hardware. Thus,
it will be possible to apply the estimator directly after specification, avoiding
time expensive training of solutions, which do not meet given constraints.

Another design constraint is the reduction of hardware knowledge needed to
port the estimator to a different target platform. It should be possible to define a
model of a layer type and use it on multiple hardware types. The only hardware
related knowledge required should be how to deploy and benchmark a neural
network on the target hardware.

The rest of this work is organized as follows. In Sect. 2 similar and flanking
work is discussed. This results in a new approach to execution time estimation in
Sect. 3. The timing model is leveraged to estimate the execution time in Sect. 4.
Experimental results of the approach and an evaluation of memory modeling
are discussed in Sect. 5. Section 6 summarizes the work and lays out some future
directions, where this work can be taken.

2 Related Work

Execution time and power consumption modeling is a topic of much research
in literature. NVIDIA uses performance and energy consumption estimation to
inform design decisions in the development of deep NN accelerator hardware [4].

For traditional algorithmic software, there are multiple approaches in litera-
ture. In the area of power measurement different levels of abstraction are used to
represent the modeled process. These are in order from least to most abstracted
gate-, register-transfer-, transaction- and function level modeling [7].

The advantage of lower abstraction levels is higher accuracy in the estima-
tions. Function level and higher abstracted models on the other hand need less
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in depth knowledge about the exact behaviour of the underlying hardware. This
allows for easier portability of the model to different platforms [7].

A useful aspect for time and power modeling is knowledge about the memory
utilization and caching strategies utilized. This allows integration of memory
latency into the estimation. In general purpose Central Processing Units (CPUs)
there are different strategies to manage caching. Direct mapped caches allow
writing of memory blocks to predefined locations in the cache. Increasing the
associativity of the cache allows distribution of the cached content to different
places [5].

NN accelerators such as the herein used Neural Compute Stick 2 (NCS2)
use application specific caching strategies. [6] describes some common memory
caching strategies. Different approaches use different amounts of cache for the
same NN layers, since they change the hierarchy of caching. This would lead to
different amounts of cache accesses in each scheme.

Runtime optimization and complexity estimation of NNs is often done by
comparing either the number of parameters or the number of floating point
operations (FLOPs) for a given NNs. This does not accurately match the execu-
tion time of the NN as shown in [9]. A better approach is shown in [8]. Here the
authors use an interpolation driven approach to capture the timing behaviour
of various NN layers. It uses little hardware knowledge to estimate layer timing.

The contribution of this paper uses a similar approach to the one in [8]. It
simplifies the estimator at the cost of a need for a higher amount of samples
to create the model compared to [8]. This should allow for easier use in NAS
approaches [1].

[1] shows several hardware aware NAS-systems. These utilize different met-
rics to determine hardware timing. The simplest method is the integration of
hardware in the loop measurements. Others use models to estimate execution
time ranging from lookup tables to meta-AIs, which learn the timing behaviour
of the hardware.

MONNET, which is presented in this work, leads to better abstraction from
hardware and framework artefacts. This in turn leads to overall higher accu-
racy and better transferability to other hardware accelerators and thus simpler
application in dependant applications such as NAS.

3 Characterization and Model Building

The timing modeling approach can be separated into two general steps. At first
the model needs to be created and characterized, which is discussed in this
section. A model needs to be defined once for each neural network layer type to
be supported. The characterization needs to be done once per target hardware.

3.1 Model Creation

The general model used in this approach is shown in Eq. 1.
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tl = topl
· nopl

(1)

Here the execution time per layer tl is modeled as the number of operations in one
layer nopl

(the layer complexity) multiplied by the time required per operation
topl

(the efficiency). The number of mathematical operations in a layer, which
is the same for each hardware, is separated from the actual hardware-specific
execution time. This way only the topl

needs to be heuristically determined
(i.e. measured on the target hardware), with nopl

being mathematically derived
from the layer parameters.

The efficiency topl
is not a constant, but depends on the actual layer config-

uration. topl
, as a function of the input parameters, is thus depending on and

reflecting the influence of the hardware itself as well as configuration and arti-
facts of the neural network library and hardware deployment frameworks. Due
to this, it has to be sampled over a large range of parameters for each layer type.

Applying this to one of the most time-consuming and most used layers in a
convolutional neural network, the Convolutional 2D (Conv2D) layer, the com-
plexity can be calculated as follows:

nopl
= kx · ky · c · x′ · y′ · f (2)

The number of operations for each filter is the number of outputs as x′ · y′

multiplied by the kernel size kx · ky and the number of input channels as c.
Multiplying this by the number of filters f results in the number of operations
for each layer.

x′ and y′ themselves are functions of the input size x and y, the stride and
if no padding is applied the kernel size. They are calculated as shown in Eq. 3,
with y′ being calculated similarly.

x′ =

{
�x−kx

sx
+ 1�, if padding = 0(valid)

�x−1
sx

+ 1�, if padding = �kx

2 �(same)
(3)

To estimate the hardware and deployment framework dependent efficiency
for a given layer, a dataset needs to be collected, containing samples at different
complexities in different configurations. At the time of writing, the sample loca-
tions are determined using manual testing to detect the limits of the hardware
and use case fitting, through evaluation of the test networks and determining
the upper bounds of the network sizes.

For characterization and timing estimation, Eqs. 1–3 are used. For each layer
the execution time tl can thus be inferred using the base cost per operation topl

and the complexity nopl
.

The modeling methodology generally relies on the fact, that the inference
time of an entire neural network is the sum of the inference times of all its layers.
This is an assumption which is in general valid and was already introduced by [4].

During initial measurements it turned out, that separating single NN layers
for a characterization can nevertheless have a significant impact on the timing,
measured in hardware. E.g. a Conv2D layer with a 3 × 3 kernel and 32 filters
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Table 1. Result of per layer measurement in the MONNET-tool. Full HW measure-
ment refers to the measurement of the per layer timing, if the layer is still executed
in sequence with all other layers (here in the DenseNet121). Isolation mode 0 is the
measurement of the same layer with identical parameters, but isolated and running
standalone. This huge difference is typical and would render all layer wise modeling
impossible. Thus better isolation techniques, mode 1 and mode 2 (see Fig. 2) with
better per layer isolation had to be developed.

Measurement type Execution time in mS

Full HW measurement 23 ± 0
Isolation mode 0 45.2 ± 1.46
Isolation mode 1 26.1 ± 0.696
Isolation mode 2 24.8 ± 0.533

working on 7 × 7 × 128 input data has an execution time of 23.0 ± 0.0 ms
(see Table 1), when measured within a DenseNet121. Cutting out this layer and
synthesizing it standalone on hardware will increase the execution time to 45.2
± 1.46 ms. A characterization has to be independent of a specific NN, so that
the approach can be transferred. To eliminate this separation effect, the layers
need to be embedded in a representative testing NN.

In order to gather enough data for a characterization of the estimation model,
an automated synthesis flow is used. The flow starts with the host system, speci-
fying a benchmark or characterization NN for the given layer configuration. Then
it synthesizes the NN for the target hardware, after which it is executed and mea-
sured. Keras was used in order to generate a protobuf description and followed by
the OpenVINOTM[2] toolchain to convert this into a hardware-agnostic, yet run-
time optimized intermediate XML representation. From there, the NN could be
compiled and flashed onto the hardware, using the OpenVINO inference engine.
This toolchain is shown in Fig. 1.

Fig. 1. MONNET toolchain

In order to prevent the layer isolation issue presented in Fig. 1, several meth-
ods were developed and tested to properly embed the layer under test. The
embedding mode, which was determined to be the best, is to have a feeding
layer and a consuming layer, both of type Conv2D with a standardized config-
uration and to measure only the timing of the middle layer under test, seen in
Fig. 2.

From Eqs. 2 and 3 the following parameters of a layer, which can be directly
influenced can be extracted: x, y, c, kx, ky, f , sx, sy and the padding. To decrease
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Fig. 2. When measuring a single neural network layer in isolation, the timing may sig-
nificantly differ from a measurement of the same layer inside a larger neural network.
In order to measure each layer independently, but in a typical environment, in char-
acterization, the layer under test is embedded between a feeding layer (mode 1 and 2)
and a consuming layer (mode 2)

the amount of measurements needed, the following assumptions are made for
the characterization of the efficiency term: x = y =: i, and sx = sy =: s. In
the model application, independent input sizes and strides can be described via
the complexity term. This focuses on the most prevalent networks, which are
benchmarked. In those the inputs of the layer are mostly square. Furthermore,
the padding was so far set to same, meaning, that kx and ky have no influence on
the output size as seen in Eq. 3. This omission is automatically accounted for by
the complexity term, which calculates the amount of mathematical operations
based on the output size. As a result the characterization space for Conv2D layers
can be described as a hypercube with six dimensions. The characterization space
is the same for (SepConv2D) layers.

To ensure reliable data for the characterization, each measurement is repeated
until a likelihood of above 95% of being within the 95% confidence interval of the
unknown real mean value is reached. Numpy’s build in statistic tools are used to
compute the probabilities after the fifth measurement first and then again after
each further measurement until measurements converge.

The open source code from OpenVINO was adapted to allow for a repeated
measurement and a stopping condition. As a result of this, the metric to deter-
mine the convergence of the execution time could be tightly integrated into the
measurement process. Before a reflashing of the device was necessary for every
measurement. This step can now be removed, speeding up the characterization
process.

The multilinear interpolation, which is used for the estimation and, which
will be explained in Sect. 4 requires the sampling points to be on a regular grid
in a hypercube. For hardware related reasons not every parameter combination
can be synthesized or executed. If for example the layers are too large and have
atypical parameter combinations such as highest values of input size, channels
and filters at the same time, the hardware might not have enough memory to
execute a layer. In other cases the synthetization requires too much memory on
the host platform. This results in missing sample points.

To mitigate their impact those are automatically determined by interpolation
after hardware characterization. For this a slightly different approach is taken
than is used in the final interpolation for end use. If neighboring values were
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validly sampled, the value is in one axis interpolated. Otherwise, it is set to a
default value, which is determined by the lowest value yet seen in the dataset.

Even though this might seem arbitrary, it is well-chosen and leading to the
best final estimation results. Missing data points typically exist for large and
untypical parameter combinations such as input sizes, channels and filters all in
the several thousands. For large regular tensors, the efficiency of the hardware
tends to flatten out towards the maximum hypothetical efficiency as defined by
the memory bandwidth and/or FLOPs rating.

An attempt was made to replicate the memory modeling from [8], which
is integrated in their approach. Some studies were performed to determine the
viability of automating this on a hardware-agnostic level. Attempts were made
to map the memory models in [6] to our hardware. This led to no usable results
as will be shown in Sect. 5.

4 Timing Prediction

Section 3 discussed the creation of the model. To predict an execution time,
which is not within the characterization dataset, a multilinear interpolation is
used.

In this approach the sample space is viewed as an n-dimensional hypercube.
For the Conv2D and SepConv2D layers it has six dimensions as discussed in
Sect. 3. Two-dimensional activation layers can be reduced to a three-dimensional
characterization space, with the dimensions being ins, inc and activation
function.

Fig. 3. A multidimensional linear interpolation can be performed for any dimensional-
ity of the to be evaluated layer model by recursively doing linear interpolations for pairs
of neighbouring points along one of the dimensions, reducing the problem dimensions
by one.

The interpolation is done stepwise as shown in Fig. 3. At each step the dimen-
sionality of the hypercube is reduced by one. This is done by interpolating the miss-
ing value along the axis linearly. As soon as it reaches a 0-dimensional state, the
value left is the scalar corresponding to topl

. Obtaining the execution time of the
layer requires calculation of the layer complexity and multiplication of this by topl

.
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This approach assumes that topl
changes at a local level nearly linearly, mean-

ing the characterization in Sect. 3 needs to be granular enough to ensure this.
Another approach could be to interpolate the dataset using a piece-wise defined
polynomial, which passes through all sample points. Using this a slope in the
data could be easily modeled. This was attempted but resulted in the following
problem. An erratic behavior was observed if the sample points are too close
together while having a high deviation. This can occur if the data is not con-
tinuous but as observed stepwise. For this see Sect. 5. This resulted in a worse
performance than the linear approximation, which is only influenced by two
sample points and only affects values in between.

5 Evaluation

For the evaluation of the timing estimation common NN architectures are used.
These can show the strengths and weaknesses of the current model. Specifically
the networks from Table 2 were used.

Table 2. Benchmarking networks

Network name Number of layers Number of parameters

AlexNet 34 25730506
DenseNet121 429 8062504
DenseNet169 597 14307880
DenseNet201 709 20242984
InceptionResNetV2 782 55873736
InceptionV3 313 23851784
MobileNet 91 4253864
NASNetLarge 1041 88949818
NASNetMobile 771 5326716
ResNet101 347 44707176
ResNet152 517 60419944
ResNet50 177 25636712
VGG16 23 138357544
VGG19 26 143667240
Xception 134 22910480

The characterization and testing is performed on the NCS2, which
is a NN hardware accelerator developed by Intel R©. It uses the Intel
MovidiusTM MyriadTM X architecture, serving as a Vision Processing Unit. Due
to the usage of the OpenVINO toolchain, multiple NN libraries can be used. In
this work the decision was made to use the TensorFlow Keras libraries, which
allows usage of the predefined models in the Keras applications.
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Table 3. Search space for Conv2D-characterization

Input size 1, 2, 4, 7, 14, 28, 56, 112, 224
Input channels 2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1024, 2048, 4096
Kernel x 1, 3, 5, 7, 11
Kernel y 1, 3, 5, 7, 11
Filters 2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1024, 1536
Stride 1, 2

Table 4. Search space for SepConv2D-characterization

Input size 1, 2, 4, 7, 14, 21, 28, 42, 56, 112, 168
Input channels 2, 4, 8, 16, 32, 64, 128, 256, 512, 513, 768, 1024, 1280, 1536
Kernel x 3, 5
Kernel y 3, 5
Filters 2, 4, 8, 16, 32, 64, 128, 192, 256, 512, 513, 768, 1024, 1536, 2048
Stride 1, 2

The comparison focuses primarily on the measured execution time of the
modeled layers compared to the estimated execution time. As of the writing of
this work the only modeled layers are of type Conv2D and SepConv2D. Other
layers such as Activation layers and Pooling layers are being worked on, but the
isolation of the layer still needs work, since the measured timings of layers from
real NNs strongly deviate from the extracted versions.

In most convolutional neural networks (CNNs) the Conv2D-layers require
the highest amount of time to execute. Yet depending on the target application
other layer-types need to be modeled as well, to estimate the timing accurately.

For evaluation purposes a characterization with the parameters in Tables 3
and 4 was performed for Conv2D and SepConv2D layers respectively.

This results in 70,200 measurements taken for the Conv2d-layers, which is
around twice as much as in [8] and 18,480 for the SepConv2D. This is seen
as a reasonable tradeoff, since the measurements need to be taken only once.
The search space is adapted to the target application, to increase the relevance
of the measurements taken, but could be expanded upon in different target
applications. Networks from the Tensorflow Keras Applications library were used
for benchmarking the timing estimation approach (see Table 2).

Using this characterization the results for the benchmarking networks are
shown in Fig. 4. Blue shows the (MAPE) for the benchmark networks. Red is
the deviation of the estimated execution time from the real execution times
of the layers under test. This results in a root mean squared percentage error
(RMSPE) of 19.02% for all Conv2D- and 26.38% and for all SepConv2D-layers.
[8] in comparison achieves 42.6% RMSPE for all Conv2D-layers on a different
set of evaluation networks on the same hardware.
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Most of the network estimations stay within a 20% error margin. The excep-
tions are Xception and DenseNet201. In the case of Xception the fault is within
the estimation of the SepConv2D layers. This could be mitigated by a larger
characterization space for SepConv2D. The DenseNet201 total deviation seems
to occur, since it has many repeating layers. Some of these repeating layers are
not well estimable by MONNET. This results in an accumulation of errors over
the entire network. By including these within the measurement space, the error
could be mitigated. This shows the need for automated selection of the sampling
points.

Fig. 4. Benchmark results showing the MAPE for all Conv2D and SepConv2D lay-
ers(blue). These stay mostly under 20% with the notable exception of the Xception
network which has numerous SepConv2D layers (34 SepConv2D to the 6 Conv2D lay-
ers). The red bars show the total deviation from the estimable execution time. Here
DenseNet 201 stands out, as it has several repeating layers, on which the estimation
performs poorly. (Color figure online)

To evaluate the viability of independent memory modeling several measure-
ment sweeps were performed. Figure 5 shows sweeps varying the input size in y
direction, the kernel size in x and y and the amount of input channels.

All measurements show a general linear rise according to the increase in
complexity. However, at certain parameter values, the execution time jumps
(e.g., for 1024 channels on a (17, 25) input at a (1, 1) kernel [blue curve]). These
jumps are not separable per dimension, but depend on all other parameters, too.
With just one less row of the input size in y direction [green curve], the step size
is significantly reduced from 201% to 42%.

Increasing the kernel size from (1, 1) to (3, 3), the curve shows a completely
counterintuitive behavior between 670 and 800 channels, rising in timing by
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Fig. 5. Execution time as a function of number of input channels for various parameter
combinations. A similar behavior can be observed, when measuring over the input size
of the filter count. (Color figure online)

almost 140% and then falling back to the linear progression. This behavior is
counteracted by decreasing the input size in y direction again to 24.

The results show, that while there are certain regularities, which could be
modeled, large amounts of data would be needed to model the memory behavior
more accurately. At the time of writing the leading theory is, that the system is
layered in such a way, that the OpenVINO toolkit performs different optimiza-
tions on different levels, adding to the size dependent behavior of the memory.
The latter was described in [6].

Due to this the added complexity of a memory modeling approach was left
out of this work, allowing for a simpler model, which could be used for hardware
aware NAS-approaches, while being less hardware dependent than a handcrafted
memory model.

6 Conclusion

In this work MONNET, a timing estimation approach, was presented, which
does not create the need for regarding programming artifacts of the synthesis
flow and/or hardware artifacts of the embedded AI accelerator. Instead, the
model averages over such artifacts, leading to an unavoidable average error for a
concrete evaluation, but on the other hand leading to a much more steady (and
differentiable) description of the general behaviour of the hardware, which can
be used to control manual or automatical architecture searches. The deviation
in the range of 20% can be corrected by a single hardware measurement after
the neural networks’ topology was defined, and the network was trained. This
work thus introduces a significant improvement over the designer’s best guess or
a MAC and parameter count based timing optimization.

Future work will entail usage of the modeling approach in a hardware aware
NAS loop as shown in [1]. Furthermore, the approach needs to be validated
on other hardware types such as Graphics Processing Units and Field Pro-
grammable Gate Arrays. In the future a system could be created, which auto-
matically determines the upper limits of the hardware capabilities.

To circumvent problems regarding inter-layer optimizations which could be
performed by the NN compiler, future work could focus on modeling these
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optimizations. This would work similarly to [8], modeling whether a layer is
optimized out or by mapping the higher level operations to lower level hardware
operations.

Acknowledgment. This publication was created as part of the research project KI
Delta Learning (project number: 19A19013K) funded by the Federal Ministry for Eco-
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Abstract. To process sensor data in the Internet of Things (IoTs),
embedded deep learning for 1-dimensional data is an important tech-
nique. In the past, CNNs were frequently used because they are simple
to optimise for special embedded hardware such as FPGAs. This work
proposes a novel LSTM cell optimisation aimed at energy-efficient infer-
ence on end devices. Using the traffic speed prediction as a case study,
a vanilla LSTM model with the optimised LSTM cell achieves 17534
inferences per second while consuming only 3.8 µJ per inference on the
FPGA XC7S15 from Spartan-7 family. It achieves at least 5.4× faster
throughput and 1.37× more energy efficient than existing approaches.

Keywords: IoT · LSTM cell · Energy-efficiency · Embedded FPGA

1 Introduction

Time-series analysis is a crucial topic in Machine Learning. The introduction
of the Long Short-Term Memory (LSTM) model has significantly enhanced the
accuracy of time-series analysis. In IoT-related application scenarios, such as
temperature forecast and traffic speed prediction, end devices often send data
to the Cloud, where data is analysed using the LSTM model. However, once
the Internet connection to the Cloud is broken, end devices can no longer anal-
yse. Additionally, the data transmission consumes energy. For these reasons,
on-device intelligence, i.e., performing the LSTM model on the end devices, is
preferable.

However, IoT devices’ microprocessors (MCUs) are often designed with lim-
ited memory and processing power to meet constraint power and energy bud-
gets. Performing LSTM model inference on MCUs is therefore a challenge. Our
approach is to add a Field Programmable Gate Array (FPGA) as additional
computational power to create energy-efficient LSTM accelerators on it. Our
paper’s contributions are summarised below:

– We propose a novel optimised LSTM cell for embedded FPGAs. It is imple-
mented with VHDL, with a combination of optimisation methods. By solving
the throughput bottleneck of the LSTM cell, we maximise its performance
while improving the energy efficiency of FPGAs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Koprinska et al. (Eds.): ECML PKDD 2022 Workshops, CCIS 1752, pp. 594–605, 2023.
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– We apply the optimised LSTM cell in the vanilla LSTM model for traffic
speed prediction and verify its performance in real-world applications. The
optimised LSTM cell is also applicable to other time series analysis tasks in
IoT application scenarios.

– We integrate the optimised LSTM cell into a PyTorch-based code generation
tool, the elastic-ai.creator1, enabling developers to easily use our approach
to develop their accelerators for FPGAs.

We present our work by first discussing some related work in Sect. 2, followed
by background of the LSTM model (especially the LSTM cell in it) in Sect. 3.
After explaining the optimisations of the LSTM cell in Sect. 4, we give an evalu-
ation of this work in Sect. 5. Finally, we conclude this paper and plan our future
work in Sect. 6.

2 Related Work

Previous research applied FPGAs as accelerators to assist LSTM model inference
on the Cloud. For example, Cao et al. [3] focused on improving inference speed.
However, their approach consumes up to 19 W power and is therefore unsuitable
for energy-sensitive IoT application scenarios. With the increased demand for
near-end computing, Azari et al. [1] proposed a more energy-efficient FPGA-
based LSTM accelerator. Although they optimised the power consumption of the
FPGA to 1.19 W, their approach is still too expensive for long-term monitoring
with battery power.

Recently, researchers have started considering the energy efficiency of on-
device FPGA accelerators. In 2020, Hasib-Al-Rashid et al. [6] proposed a LSTM
processor for FPGA XC7A100T from Artix-7 family. Their design only utilises
1% of LUTs, 9% of BRAM and 1.67% of DSP slices of this FPGA by extremely
reusing the hardware resources, such as only implementing two multiplica-
tion and accumulation (MAC) units in the LSTM cell. It only consumes 17
mW dynamic power and performs 0.055 GOP/s. However, idling the hardware
resources of the FPGA does not reduce the static power consumption of the
FPGA, which was estimated as 92 mW. The high portion of static power leads
to poor overall energy efficiency (0.5 GOP/J).

Noticing this problem, Chen et al. [4] implemented a similar accelerator on a
much smaller FPGA iCE40 UP5K in 2021. Thanks to the ultra-low static power
(at µW scale) of this FPGA, the overall power consumption during inference is
approximately equal to the dynamic power of the FPGA, which is 17 mW. The
energy efficiency is increased to 3.9 GOP/J, while the throughput is slightly
improved to 0.067 GOP/s due to the same parallelism strategy they applied as
in [6].

In both works [4,6], researchers applied fixed-point logic to simplify the
design and reduce the loss of precision compared to aggressive quantisation.
The activation functions tanh() and sigmoid() were replaced with hard tanh()
1 https://github.com/es-ude/elastic-ai.creator.

https://github.com/es-ude/elastic-ai.creator
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and hard sigmoid() respectively, which simplifies the computations but leads to
a large reduction of precision [10]. Namin et al. and Meher et al. used lookup
tables to implement activation functions for higher speed and precision [7,8].

Inspired by this previous work, we chose a slightly larger FPGA than the
iCE40 UP5K, the XC7S15, which has about 2.5 times LUTs, 10 times BRAM
and 2.5 times DSP. Therefore, it can afford higher parallelism and deeper lookup
tables with wider fixed-point data for higher precision. As it has around 10% of
resources of the XC7A100T, it still consumes relatively low static power.

3 LSTM Background and Analysis

Before presenting our optimisations, we first introduce the basic concepts of
LSTM models, layers and cells. We then analyse the timing complexity of a
single LSTM cell to determine the optimisation potential.

3.1 LSTM Model vs Layer vs Cell

The most conventional and simplistic LSTM model is constructed with one
LSTM layer followed by a dense layer. By setting an activation function in the
dense layer, the LSTM model can perform regression or classification tasks. We
use an LSTM model (see Fig. 1) taken from [5], to predict traffic speed. It takes
6 historical data points as inputs (xt−5, ..., xt−1, xt), and predicts the next data
point (x′

t+1) as its output.

output

LSTM
Cell

Ct-5LSTM
Cell

xt-5

h0

C0 LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM Layer

Dense 
Layer

input

Ct-4 Ct-3 Ct-2 Ct-1

xt-4 xt-3 xt-2 xt-1 xt

x't+1ht-5 ht-4 ht-3 ht-2 ht-1 ht

Fig. 1. The unfolded architecture of the LSTM model in the time dimension

Inside the LSTM layer, a single LSTM cell processes the 6 input data points
recurrently to perform the long and short-term memory logic, which is visualized
as 6 recurrent steps in the time dimension in Fig. 1.

In the LSTM cell (see Fig. 2) the information is carried through the sequence
chain in the cell state Ct and the hidden state ht. Internally, the cell contains
three so-called gates, the input gate it, the output gate ot and the forget gate ft
to control which information to retain or discard. All computations that happen
in the LSTM cell can be described by Eqs. 3.1 to 3.6, which are explained in
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detail in [9]. We use ∗ to denote the Hadamard product, [·, ·] to denote the
concatenation of two vectors. Weight matrices are denoted by W .

Fig. 2. The structure of an LSTM cell

An important factor affecting the model performance is the size of the hid-
den state, i.e. how many neurons are necessary to represent it. Commonly used
hidden sizes include 1 [5], 12 [6], 32 to 256 [13]. In our application case we use a
hidden size of 20. The resulting model has a high accuracy on the test set, while
being small enough to fit our target FPGA.

3.2 Timing

As Fig. 1 shows, the computation of each recursion depends on the result of the
previous recursion, so increasing the number of LSTM cells in the LSTM layer
cannot help to improve throughput. A possible way to increase the throughput
of the LSTM model is to reduce the time spent processing an LSTM cell. Based
on the timing model of the sequentially executed LSTM model in [11], we plotted
the timing decomposition of a sequentially processed LSTM cell whose input size
is 1 and hidden size is 20. Figure 3 shows that the processing of Eq. 3.1, 3.2, 3.3
and 3.6 take up 97.1% of the time to process the whole cell, indicating that the
throughput bottleneck of the LSTM cell lies in the computations of these four
equations. In contrast, the operations in the dense layer only consume 0.6% of
the time.

4 Optimised LSTM Cell Design

This section begins with a description of the parallelisation optimisation in the
LSTM cell. Then, we will discuss memory optimisation.

4.1 Parallelising the LSTM Cell

To solve the mentioned performance bottleneck, we analysed the dependencies
of Eqs. 3.1, 3.2, 3.3 and 3.6. They take the same data (xt, ht−1) and process it
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Fig. 3. Time breakdown of a single recursion in a sequentially processed LSTM cell

independently, i.e., they can be computed simultaneously. We therefore create
four identical ALU modules (see ALU1, ALU2, ALU3, and ALU4 in Fig. 4).
Each of them consumes 1 DSP slice. These ALU modules are used to execute
multiply-accumulate operations of these equations concurrently. By quadrupling
the number of ALU modules, the computation speed of gates in the LSTM cell
is increased by a factor of four, making the increase in throughput possible. Note
that previous work used two DSP slides, one for calculating Wixt, another one
for Whht−1 [4,6]. Due to the different complexity of xt and ht−1, this leads to
bad utilisation of the DSPs. Our assignment avoids this problem.

Our ALU modules do not include activation functions. Instead, we instantiate
a lookup table for each kind of activation function (see the sigmoid LUT module
and the tanh LUT module in Fig. 4). It is well known that the greater the depth
of the lookup table, the smaller the degradation in the accuracy of the model
inference. By placing the lookup tables once and sharing them on demand, the
optimised LSTM cell can save more hardware resources, which can be used to
implement larger lookup tables, helping to improve the precision of the activation
function. However, even with four ALU modules running concurrently, waiting
for the whole matrix multiplication (e.g., Wf [ht−1, xt]) to finish before updating
Ct and ht still takes unacceptable time. Thus, the longest stage of our pipeline
is only for computing one row of the matrix multiplication. Once new elements
with index n (ft[n], it[n], gt[n], ot[n]) are computed, the computation for Ct[n],
ht[n] can start.

As shown in Fig. 4, we add another ALU module (ALU5 ) to execute the
multiply-accumulate operations in Eqs. 3.4 and 3.5. Since these operations are
less complex than the others, it is possible to reuse a single ALU module for
both of them without reducing the overall performance. However, this is only
true for cells with a larger hidden size. Since we had free DSPs available, we
decided to implement ALU5 with three DSPs. This makes our design suitable
for cells with smaller hidden sizes (down to 3).

Figure 5 shows the time breakdown when the above-mentioned parallel com-
puting is applied in an LSTM cell. Although the processing time of each ALU
for its corresponding equation has not improved, the overall time consumption
of the entire recursion is squeezed to 860 clock cycles, which would give us a
4.1-fold improvement in throughput compared to sequential computing.
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Fig. 4. Architecture of our LSTM cell on an FPGA. nact ft denotes that ft is not
activated, others have similar meaning.

Fig. 5. Time breakdown of a single recursion in a parallelly processed LSTM cell

4.2 Memory Management

Our approach uses only on-chip memory, so-called Block- and Distributed-RAM
(BRAM and LUTRAM), to store data (including parameters and intermediate
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results) on the FPGA. On-chip memory is relatively limited in capacity but
extremely fast and flexible in terms of placement, construction and connection.

Since the inputs required for the computation performed by ALU1 to ALU4
are the same, we store xt and ht−1 in the same memory module. Due to the
flexible wiring feature of the FPGA, these four ALU modules share the data in
the memory and simultaneously share the read-out data via a data bus.

Furthermore, the static parameters (i.e., weights and bias) are stored in the
bitstream and automatically initialised at startup-time. Therefore, the overhead
of loading parameters is eliminated at run-time. Eliminating circuits for loading
parameters can significantly simplify the design further. In addition, weights
and bias are separately allocated and placed close to their corresponding ALU
to minimise the signal delay.

5 Evaluation

To discuss our evaluation, we first describe the used data set and our model
implementation. Then we present our evaluation results with respect to FPGA
resource utilisation, timing, and power consumption. Finally, we compare our
results to other approaches.

5.1 Data Set and Training Settings

For our experiments, we aimed to predict traffic speed. We used the publicly
available data set PeMS-4W2, which contains 11,160 time series corresponding
to sensor measurements at different locations of sensors over four weeks. Each
time series contains a measurement every 5 min, leading to 8064 time points.
From these, we randomly selected one time series to form our data set. We
divided it into a training set and a test set in a ratio of 3:1. Our full-precision
(double-precision floating-point) LSTM model was trained on the selected train-
ing set with 30 epochs with a batch size of 1. We used an Adam optimiser with
beta1 = 0.9, beta2 = 0.98 and epsilon = 10−9. The initial learning rate was set
to 0.01, while a learning rate scheduler with step size = 3 and gamma = 0.5
was used. Mean-Squared Loss was used as the loss function, and Mean Squared
Error (MSE) as the evaluation metric. The MSE of the trained full precision
LSTM model is 0.1663.

5.2 Model Implementation

We implemented our optimised LSTM cell using our elastic-ai.creator tool.
Given a trained PyTorch model, the elastic-ai.creator can automatically trans-
form a full precision model into an optimised model and translate it into VHDL
code for an FPGA. The elastic-ai.creator includes implementations for different
layers. Most importantly for us, it contains a built-in optimised dense layer that

2 https://doi.org/10.5281/zenodo.3939793.

https://doi.org/10.5281/zenodo.3939793
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uses only 1 DSP slice (see [2]). We used this for our model and extended the
tool with an implementation of our LSTM cell design.

We performed post-training quantisation to fixed-point representations on
the LSTM model. We describe this representation with a notation of (x, y),
where x is the number of fractional bits (representing numbers < 1) and y is the
total width in bits [2].

To evaluate the effect of the fractional digit x on the model inference, we
varied it from 4 to 12 while utilizing 8 bits for the integer part. We performed
this on a custom Python simulator with all parameters and variables at the cor-
responding fixed-point width. We kept the activation function in full precision.
Figure 6 shows that the MSE (0.1722) on the test set no longer drops significantly
when x is greater than 8. Therefore, our experiments below are conducted with
a fixed-point configuration of (8, 16). Clearly, this can be optimised further in
the future. Our design supports scalable bit-width for fixed-point data so that
AI developers can choose other settings based on the output of the Python
simulator.

Fig. 6. The MSE of the quantised LSTM model on test set with various fractional bits

Furthermore, we replaced all full precision activation functions with lookup
tables of depth 256. We conducted experiments with different lookup table
depths both in our simulator and on an XC7S6 FPGA. The results differ slightly,
which may be due to their different rounding mechanisms. As shown in Table 1,
the MSE on the test set decreases as the depth of the lookup table increases. Note
that the depth of the lookup tables is the same for different activation functions.
At depth 256, the MSE (0.1821) is close enough to the MSE with full precision
activation functions (0.1722). Since we instantiate only one lookup table for each
type of activation function and share it over time, even such lookup tables with
larger depths can be used on embedded FPGAs.

5.3 Resource Utilisation on FPGA

Using a fixed-point configuration (8, 16) and lookup tables of depth 256, we
analysed the resource consumption using a synthesis tool integrated into the
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Table 1. The MSE of the test set when using lookup tables of different depths

Depth of lookup table MSE on python simulator MSE on FPGA

64 0.6920 0.6833

128 0.2485 0.2491

256 0.1821 0.1659

Vivado IDE from Xilinx. We synthesised our design into three target FPGAs of
the Spartan-7 family with different on-chip resources.

As shown in Table 2, our design can fit the XC7S6 which is the smallest
FPGA of the Spartan-7 family. Although 80% of the DSP slices (the most crit-
ical resource) are used, we still have a considerable amount of other available
resources to make the design more accurate. Our optimised LSTM cell requires
seven DSP slices, while the dense layer consumes one DSP slice, so we could,
e.g., add two more dense layers to the model and still fit onto the XC7S6.

Furthermore, the resource utilisation on the XC7S15 is below 50% for all
types, which means that we can either deploy two such LSTM models on this
device or at least double the number of layers of the current LSTM model.
The XC7S25 FPGA has 1.8 times more LUTs and 4 times more DSPs than
the XC7S15, so there is no doubt that the XC7S25 can be the choice for more
complex models using our optimisation method.

Table 2. Resource utilisation on Spartan-7 FPGAs

Resource Estimation Utilisation on FPGAs (in %)

XC7S6 XC7S15 XC7S25

LUT 1435 38.3 17.9 9.8

LUTRAM 60 2.5 2.5 1.2

BRAM 2 40.0 20.0 4.4

DSP 8 80.0 40.0 10.0

5.4 Processing Time

Our design does not follow the usual CPU-based sequential computing nor a
large FPGA-based parallel computing. Therefore, we proposed a timing model
to estimate the system throughput.

By calculating the required number of operations ntotal, we can estimate
the processing time of the LSTM model. The simplified timing model we have
designed is defined by Eq. 5.1, where tclock is the reference clock period of the
FPGA, nll and ndense are the clock cycles of the LSTM layer and the dense layer
respectively.

tmodel = tclock ∗ ntotal = tclock ∗ (nll + ndense) (5.1)
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nll = nseq ∗ nlc = nstep ∗ (ni + nh) ∗ 2 ∗ (nh + 1) (5.2)

ndense = nf ∗ no ∗ 2 (5.3)

nll can be further represented by Eq. 5.2, where nseq represents the length of
input sequences, ni and nh are the input size and hidden size of the LSTM cell
respectively. Furthermore, the factor 2 indicates that our ALU module requires
2 clock cycles to produce an output. Similarly, ndense can be defined by Eq. 5.3,
where nf and no represent the number of input and output features of the dense
layer. For our model structure, nf is always equal to nh since only the latest
hidden state is fed into the dense layer.

These equations allow the processing time of our LSTM model to be esti-
mated. The total number of clock cycles ntotal is 5332. Assuming that we deploy
the LSTM model on the XC7S15 with a clock frequency of 100 MHz, the esti-
mated processing time is 53.32 µs. Our design can then process up to 18754
samples per second.

We validated the timing of the LSTM model on the actual XC7S15. The
processing time measured in hardware with a 100 MHz clock is 57.25 µs, which
is 3.93 µs more than the estimated processing time. Although there is still some
discrepancy, it proves that our timing model is valid.

5.5 Inference Power

Using the XPE software, we estimated the power consumption during the infer-
ence of the LSTM model for the target FPGAs. We also applied the calibration
process according to the guidelines provided by Xilinx [12] to improve the con-
fidence of the estimation. The estimated power can be divided into static and
dynamic power.

The static power consumption of the FPGAs is characterised by the chip
design and independent of switching activity. As Fig. 7 shows, the static power
of the XC7S6 and XC7S15 is identical (32 mW), while the static power of the
XC7S25 is much higher (87 mW). We infer that the XC7S6 and XC7S15 use
the same chip (with some resources on the XC7S6 not being available to users).

The dynamic power is modelled based on the switching activity during infer-
ence. The dynamic power of both XC7S6 and XC7S15 is 38 mW. In comparison,
the dynamic power of the XC7S25 is 43 mW.

Based on the estimated power consumption and the processing time on the
XC7S15, the estimated energy per inference is 3.7 µJ. On the actual XC7S15
hardware, the measured energy per inference is 4.1 µJ.

5.6 Comparison with the State-of-the-Art

As a final evaluation step, we computed the throughput and energy efficiency of
our LSTM model on real hardware (see Table 3). Our model is 5.4 times faster
than [4] and 6.6 times faster than [6]. The energy efficiency of our model is 10.66
times higher than [6]. Although the XC7S15 in our work consumes more static
power than the iCE40 UP5K in [4], due to the improved throughput, the energy
efficiency of our model is still 1.37 times higher than theirs.
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Fig. 7. Power estimation for inference on different FPGAs

Table 3. Compare throughput and energy efficiency with the state-of-the-art

Platform This work [4] [6]

XC7S15 iCE40 UP5K XC7A100T

Clock (MHz) 100 17 52.6

Power (mW) 71 17 109

Throughput (GOP/s) 0.363 0.067 0.055

Energy efficiency (GOP/J) 5.33 3.9 0.5

6 Conclusion and Outlook

Energy-efficient artificial intelligence on end devices enables interesting IoT
applications. It offers the opportunity to ensure the quality of IoT services with-
out relying on the Internet connection.

Our approach improves the energy efficiency of the LSTM cell by solving
its throughput bottleneck. The model with optimised LSTM cell achieves 17534
inferences per second with only 71 mW power consumption. Its super high energy
efficiency (5.33 GOP/J) can promise longer battery life for continuous analysis
of time series data on the device.

In the future, we plan to increase throughput by achieving lower bit quan-
tisation through quantisation-aware training. In addition, we will validate our
approach on further time-series classification tasks, enabling users to solve more
targeted applications.
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Abstract. This paper presents an optimized methodology to design and
deploy Speech Enhancement (SE) algorithms based on Recurrent Neural
Networks (RNNs) on a state-of-the-art MicroController Unit (MCU),
with 1+8 general-purpose RISC-V cores. To achieve low-latency exe-
cution, we propose an optimized software pipeline interleaving parallel
computation of LSTM or GRU recurrent blocks, featuring vectorized 8-
bit integer (INT8) and 16-bit floating-point (FP16) compute units, with
manually-managed memory transfers of model parameters. To ensure
minimal accuracy degradation with respect to the full-precision models,
we propose a novel FP16-INT8 Mixed-Precision Post-Training Quanti-
zation (PTQ) scheme that compresses the recurrent layers to 8-bit while
the bit precision of remaining layers is kept to FP16. Experiments are
conducted on multiple LSTM and GRU based SE models trained on
the Valentini dataset, featuring up to 1.24M parameters. Thanks to the
proposed approaches, we speed-up the computation by up to 4× with
respect to the lossless FP16 baselines. Differently from a uniform 8-bit
quantization that degrades the PESQ score by 0.3 on average, the Mixed-
Precision PTQ scheme leads to a low-degradation of only 0.06, while
achieving a 1.4–1.7× memory saving. Thanks to this compression, we cut
the power cost of the external memory by fitting the large models on the
limited on-chip non-volatile memory and we gain a MCU power saving
of up to 2.5× by reducing the supply voltage from 0.8 V to 0.65 V while
still matching the real-time constraints. Our design results >10× more
energy efficient than state-of-the-art SE solutions deployed on single-core
MCUs that make use of smaller models and quantization-aware training.
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1 Introduction

Novel speech-centric devices, e.g. miniaturized Hearing Aids, make use of AI-
based methods to process audio data in real-time for improving the signal intel-
ligibility. Given the small sizes, these devices present a limited energy budget: a
lifetime of up to 20 h can be achieved with a small 60 mAh battery if the average
power consumption is 10 mW, considering sensing, computation and actuation
costs. Because of the severe energy constraints, low-power Micro-Controller Units
(MCUs) are typically chosen as Digital Processing Units to handle control and
processing tasks. These processing units feature a limited computational power
(single core CPU) and up to few MB of on-chip memory, making the integration
process of complex AI speech processing pipelines extremely challenging.

Speech Enhancement (SE), the ability of removing background noises from a
(noisy) audio signal, is getting popular among the AI capabilities of speech sen-
sors. While in the past SE methods relied on digital signal processing filters [1,2],
recent approaches integrate Deep Learning (DL) strategies, which have demon-
strated a superior effectiveness to deal with non-stationary noises [10]. To cancel
out noise components, DL based approaches learn in a supervised fashion to esti-
mate spectral suppression masks from a set of features extracted from the noisy
speech. Among the causal models tailored for real-time computation, Recurrent
Neural Networks have shown promising results [6,8,15,16]. These approaches
encode the input signal, typically in the frequency domain (e.g. STFT or Mel
spectrograms), into an embedding vector that feeds one or multiple recurrent
layers, i.e. GRU or LSTM, acting also as memory components of the RNN based
SE filter. The cleaned audio signal is reconstructed by decoding the outputs of
the recurrent layers in a frame-by-frame streaming fashion.

Unfortunately, current DL methods target real time execution on high-end
devices [11] and are not fully-optimized for MCUs. Only [9] and [4] described
design methodologies of RNN based SE models, with less than 0.5M parameters,
for single-core MCUs. More in details, the NNoM framework was used to deploy
the RNNoise model [14] on a single-core ARM Cortex-M MCU [9]. The RNNoise
algorithm includes small GRU layers with constrained activation ranges, leading
to an effective 8-bit quantization. On the other side, TinyLSTM [4] made use of
Quantization-Aware Training (QAT) [7] to compress an LSTM based model to 8
bit without accuracy degradation. Despite its effectiveness, the QAT technique
is not always applicable because of the additional compute and data resources
needed to simulate the non-linear quantization error at (re-)training time [5].
Hardware-specific fine-tuning such as Block Pruning has been also developed
to efficiently map SE RNNs on MicroNPU accelerators [12] Differently from
these solutions, (i) we aim at a lossless and low-cost Post-Training Quantization
methodology for scalable RNN-based SE algorithms and (ii) we investigate an
optimized deployment flow for general-purpose multi-core MCUs, to achieve a
final design more energy-efficient than state-of-the-art solutions.

To this aim, we combine multiple strategies. Firstly, we target a multi-core
compute platform with 1+8 RISC-V CPUs, featuring 8-bit integer (INT8) and
16-bit floating-point (FP16) MAC vector units. Secondly, we design an optimized
software pipeline, in charge of scheduling at runtime parallel compute calls with
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Fig. 1. TinyDenoiser models for Speech Enhancement on MCUs.

Table 1. Characteristics of the RNN-based TinyDenoiser variants.

LSTM256 GRU256 LSTM128 GRU128

k 256 256 128 128

RNN 0 layer LSTM (257, 256) GRU (257, 256) LSTM (257, 128) GRU (257, 128)

RNN 1 layer LSTM (257, 256) GRU (257, 256) LSTM (128, 128) GRU (128, 128)

Params 1.24 M 0.985 M 0.493 M 0.411 M

% rnn params 84% 80% 66.50% 59.80%

manually-managed memory transfers, also from external L3 memories. To gain an
almost lossless compression, we also propose a novel Mixed-Precision FP16-INT8
(MixFP16-INT8) Post-Training Quantization scheme, which quantizes only the
RNN parameters and activations to INT8 while keeping the bit precision of other
tensors to FP16. This paper makes the following contributions:

– We present an optimized HW/SW design for LSTM and GRU based SE
models for multi-core MCU systems with limited memory space.

– We propose an almost lossless Mixed-Precision FP16-INT8 Post-Training
Quantization scheme to accelerate RNN-based SE on MCUs.

– We provide a detailed analysis of latency and HW/SW efficiency on a 22-nm
RISC-V 1+8-core MCU.

Our work demonstrates, for the first time, an optimized design for RNN-
based SE models relying only on PTQ, without any need for expensive QAT,
with Mixed-Precision FP16-INT8. When benchmarked on the Valentini dataset,
the RNN trained models show an average reduction of the PESQ and STOI
scores of only 0.06 and 0.007. The proposed HW/SW design results >10× more
energy efficient than state-of-the-art solutions deployed on single-core MCUs.

2 RNN Based Speech Enhancement on Multi-core MCUs

This Section firstly describes the scalable RNN-based SE model family, denoted
as TinyDenoiser, that we consider for this study. Second, we detail the target
HW platform and the mapping of the proposed software pipeline. Lastly, we
present our novel Mixed-Precision FP16-INT8 PTQ method.
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Fig. 2. Micro-architecture of the target platform. The cluster on the right includes
1+8 cores. An external memory or an on-chip non-volatile memory can be used to
permanently store the model parameters.

2.1 TinyDenoiser Models

Figure 1 shows the TinyDenoiser pipeline. The model takes as input the STFT
frequency map of a noisy speech signal and predicts a spectral gain mask, whose
values are in the range [0, 1]. In more detail, the audio input is sampled at 16
kHz and the STFT frequency features are computed over a 25 ms audio frame,
after Hanning windowing. For every audio frame, a total of 257 STFT magnitude
values are fed into the model and 257 gain values are returned as output. The
hop size is 6.25 ms (25% of the window length), which determines the real-time
constraint of the inference task. The filtered frequency spectrum of the audio
frame, computed by masking the noisy spectrum, is converted back to the time
domain using an inverse STFT transform. In a real-time streaming processing
scenario, the denoised speech signal is obtained by overlap-and-add operations
of the cleaned audio frames.

Drawing inspiration from TinyLSTM [4], the TinyDenoiser includes two RNN
layers with a parametric output size of length k, a Fully-Connected (FC) input
layer producing 257 features and two final FC layers both producing 257 fea-
tures. With the exception of the last layer, which features a Sigmoid activation
to estimate the frequency gains, the other FC layers are followed by a batchnorm
and a ReLU activation. Concerning the RNN layers, we experiment with both
LSTM and GRU layers with an output size of k = {128, 256}, originating multi-
ple variants of the TinyDenoiser denoted as LSTM256, GRU256, LSTM128 and
GRU128. As reported in Table 1, these variants feature a number of parameters
ranging from 0.4M and 1.24M. Note that the majority of the parameters (and
the operations) are due to the RNN layers (up to 84% for LSTM256 ).

2.2 Memory Management for RNN Deployment on the Target HW

Figure 2 depicts the architecture of the MCU platform targeted for the deploy-
ment of the RNN-based SE model. Internally, the system includes a cluster
with 8 RISC-V CPUs tailored for computation and 1 core for control operation,
denoted as the Cluster Controller (CC). The 1+8 cores can load data from a 128
kB Tightly Coupled Data Memory, namely the L1 memory, in a single clock-
cycle. Note that the L1 memory is not a data cache. Every core has a 8-bit MAC
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vector unit, capable of computing a dot-product between two 4 × 8-bit vectors
and accumulation in a single clock-cycle (i.e. 4 MAC/clk), while 4 floating point
units are shared among the 8 compute cores, implementing single-cycle 2×FP16
vector MAC (2 MAC/clk). Outside the cluster, the platform includes a 1.5 MB
L2 memory; the cluster cores can access data from the L2 memory ∼10× slower
than accessing the L1 memory. To reduce this overhead, the cluster DMA can
be programmed by the CC core to copy data between L2 and L1 memories with
a peak bandwidth of 8Byte/clk. In the background of the DMA operations, the
Control Core dispatches and synchronizes parallel tasks on the 8 compute cores.

To deploy the RNN-based TinyDenoiser on the HW target platform, the layer
parameters are permanently stored into a non-volatile memory. Because the stor-
age requirements can grow up to several MBs, we use an off-chip FLASH memory
(ExtFLASH ), also denoted as L3 memory, with a capacity of 8 MB and connected
to the MCU via OctoSPI. Data can be copied from L3 to L2 memories in the
background of other operations by programming the MicroDMA module. Note
that the IO memory interface reaches a max bandwidth of 1Byte/clk, 8× slower
than the L2 peak bandwidth. Alternatively, the on-chip eMRAM non-volatile
memory can be used for permanent storage, gaining a lower power consumption
and a higher bandwidth but the total capacity reduces to 2 MB.

At runtime, but before entering the infinite inference loop, layer-wise network
parameters can be copied from L3 (either ExtFLASH or eMRAM ) to L2, based
on the available space. Thanks to this process, named tensor promotion, the
time to copy parameters to the L1 memory during inference decreases linearly
with respect to the amount of promoted tensors. If a parameter tensor does not
fit the available L2 parameter buffer space, it is partitioned in sub-tensors that
are sequentially loaded from L3 to L2. Besides storing the promoted parameters,
the L2 memory must reserve space to store an activation buffer, for temporarily
keeping the activation feature maps, and a parameter buffer, serving the dynamic
load of not-promoted parameters from L3 to L2.

During the inference task, the L1 memory inside the cluster acts as the work-
ing memory because of the fast access time from the compute cores: parameters
and activation features are copied to this memory and then fetched concurrently
by the cores. Because of the small size, the L1 memory is kept free from static ten-
sor allocation. Activation or parameter tensors or sub-tensors are rather loaded
from L2 to L1 at inference time using the Cluster DMA, as depicted in Fig. 2.

2.3 SW Computation Model

The CC core runs the RNN-based SE inference SW code, which includes a
sequence of layer-wise processing calls. Figure 3 shows the pseudo C-code for
a RNN layer processing task; the same software architecture applies for FC
layer processing. The input and output activation tensor arguments, including
the RNN states, are L2 memory arrays. On the contrary, the RNN parameter
array (Weights) can be stored in L2 or L3 memory, depending if any promotion
occurred as discussed before.

Every layer-wise function interleaves data copies from L3 and L2 memories
to the L1 memory and calls to the compute tasks. These latter are dispatched



Accelerating RNN-Based SE on an MCU with Mixed FP16-INT8 PTQ 611

static void RNN_Layer0
( In, // input L2 vector

Weights, Bias, // input L2 or L3 vector
Out, // output L3 vector

){
//tile sizes of In, Weights, Bias computed offline
//L1 buffer acts as working memory

uDMA load first tiles to L2 memory buffer 
(if L3 weights)

DMA load first tiles to L1 memory buffer

for any tile t of Weights:

uDMA load next next tiles to L2 memory buffer
(if L3 weights)

DMA load next tiles to L1 memory buffers

Out[t] = ParRNN( Weights[t], In[t]) on L1 tile

DMA write results (Out[t]) to L2 
}

xs = [x_in, h_state]
parallel for j in size(h_state):

for i in size(xs):
acc_f += mac ( xs[i], w_f);
acc_i += mac ( xs[i], w_i );
acc_g += mac ( xs[i], w_g );
acc_o += mac ( xs[i], w_o );

Of = Sigmoid(Of);
Oi = Sigmoid(Oi);
Og = Tanh(Og);
Oo = Sigmoid(Oo);
next_c_state[j] = c_state[j] * Of + ((Oi * Og));
next_h_state[j] = Tanh(c_state[j]) * Oo; 

h_state = next_h_state
c_state = next_c_state

xs = [x_in, h_state]
parallel for j in size(h_state):

for i in size(xs):
acc_r += mac ( xs[i], w_r );
acc_z += mac ( xs[i], w_z );
acc_h += mac ( xs[i], w_h );

Or = Sigmoid(Or);
Oz = Sigmoid(Oz);
Oh = Tanh(Oh);
next_h_state[j] = (1-Oz)*Oh +Oz * h_state[j]; 

h_state = next_h_state

LSTM
based 
kernels

GRU
based 
kernels

Inner 
loop

Inner 
loop

Fig. 3. Pseudo C code of layer-wise RNN processing. The CC core runs the code on
the left. The parallel GRU and LSTM basic kernels dispatched on the compute cores
are on the right. Biases are omitted for simplicity.

and parallelized over the 8 compute cores of the cluster. To be more specific,
the CC core programs the MicroDMA and Cluster DMA modules to operate,
respectively, asynchronous data copies from L3 to L2 and from L2 to L1. Note
that L3 transfers occurs only if layer parameters are not promoted to L2; in this
case the MicroDMA is not programmed.

Typically, input, weight and output tensors of a layer cannot entirely fit the
L1 memory (limited to 128 kB). For this reason, large tensors are sliced in sub-
tensors, also referred as tiles, during the code generation process. The size of the
tiles are computed such as to maximize the memory occupation of the available
L1 memory. Therefore the layer-wise software routine implements a for loop to
sequentially loads (with the DMAs) the tensor slices in the background of the
computation that applies on the previously copied data (Fig. 3 on the left). To
realize this mechanism, we double the memory requirement of the tensor slices
to account both the L1 memory needed by the compute cores and the memory
buffer used by the DMA.

Based on the proposed execution model, the minimal theoretical latency
t̃layer to process a layer can be estimated as:

t̃layer = Ntiles · max(tL3−L2
dma , tL2−L1

dma , tcore) (1)

where Ntiles is the number of tiles, tL2−L1
dma and tL3−L2

dma are the latencies required
by, respectively, the Cluster DMA and the MicroDMA to copy a single data tile
from L2 to L1 and L3 to L2 and tcore is the compute time due to the parallel
task. Based on HW architecture described in Sect. 2.2, tL3−L2

dma ≈ 8 × tL2−L1
dma

if considering an external SPI flash. tL3−L2
dma decreases when using instead the

on-chip non-volatile memory (up to 2.6× for eMRAM).
Figure 3 shows on the right more in details the parallel SW kernels for LSTM

and GRU computation. Both kernels consists of a 2 nested loops. The outer loop,
which is parallelized over the available compute cores, iterates over the size of the
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output feature tile. The inner loop computes the MAC between the combination
of input features and the previous state and the GRU or LSTM weight tensors.
More specifically, we target INT8 or FP16 computation depending on the used
quantization type. To speed-up the computation of the dot-product, we exploit
vectorized INT8 and FP16 MAC instructions, which can perform respectively
4 or 2 MAC/cyc per core. Concerning the FP16 tanh and sigmoid functions
applied on the accumulators, we use a fast approximation exploiting vectorized
FP16 instructions, while the INT8 version makes use of LUTs.

Because of the high number of iterations of the inner loop, the total latency
of the kernel is typically dominated by the computation of this loop. For INT8
LSTM and GRU, we account a minimal theoretical per-core latency of 9 (5 vect
LD + 4 vect MAC) and 7 (4 vect LD + 3 vect MAC) clock cycles to compute
4×4 and 3×4 MAC operations, respectively. In case of FP16, the software kernel
computes half of the MAC operations during the same period, if not considering
the stalls occurring while accessing concurrently the shared floating-point units.

Note that the peak computation power scales linearly with number of com-
pute cores, up to reach the memory bottleneck (see Eq. 1). In fact, as we increase
the number of compute cores, the total bandwidth requirement for RNN compu-
tation exceeds the capacity of the target platform for both L3 and L2 memories.
For instance, a FP16 LSTM layer processing on 8 cores demands for 8 (cores)
× 5 (LD) × 2 (FP16 datatype) bytes every 9 cycles, which is much higher than
the bandwidth from ExtFlash memory (1 byte/clk). In this case, using a lower
datatype, e.g. 8-bit, results in faster computation for multiple reasons. Firstly,
the memory bandwidth requirements of INT8 kernels is 2× lower than FP16
ones. Secondly, the 2× higher memory saving can lead the model parameters to
entirely fit the on-chip non-volatile eMRAM memory. Lastly, a smaller tensor
parameters can be promoted permanently to the L2 memory. On the other side,
INT8 leads to a higher quantization error with respect to a full-precision model
than FP16, potentially affecting the prediction quality of the full model. Our
solution to this problem is discussed in the next section.

2.4 Mixed FP16-INT8 Post-training Quantization

TinyDenoiser models are quantized with Post-Training Quantization. We refer
to the IEEE 754 standard for the FP16 format and quantization, i.e. a casting.
On the other side, we follow [7] for INT8 symmetric quantization. According to
this, every full-precision tensor x is approximated as an integer tensor X as:

X =
⌊

clamp(x, qmin, qmax)
S

⌉
, S =

qmax − qmin

2n − 1
(2)

where n is the number of bits, S is the scale factor, which impacts the conversion
resolution, and [qmin, qmax] is the quantization range of an individual tensor.
In particular, the PTQ routine estimates the quantization range of activation
tensors (Eq. 2) by collecting the intermediate tensor statistics after feeding a
trained model with a set of calibration samples. For the parameters, we refer to
the min/max values.
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Table 2. STOI and PESQ scores and memory footprint of the quantized TinyDenoiser
models after Post-Training Quantization using FP16, INT8 or MixFP16-INT8 options.

Quant Clamp FC Clamp RNN LSTM256 GRU256 LSTM128 GRU128

pesq stoi MB pesq stoi MB pesq stoi MB pesq stoi MB

FP32 2.78 0.942 4.75 2.78 0.942 3.76 2.76 0.941 1.88 2.69 0.940 1.56

FP16 2.78 0.942 2.37 2.78 0.942 1.88 2.76 0.941 0.94 2.69 0.940 0.78

INT8 max max 2.42 0.922 1.18 2.19 0.932 0.93 2.40 0.922 0.47 2.20 0.925 0.39

std3 std3 2.35 0.885 2.17 0.902 2.51 0.911 2.12 0.892

std3 max 2.34 0.886 2.48 0.929 2.51 0.910 2.36 0.910

MixFP16-INT8 std3 max 2.69 0.926 1.37 2.72 0.940 1.13 2.67 0.925 0.67 2.63 0.935 0.55

max max 2.73 0.930 2.56 0.941 2.69 0.927 2.49 0.937

For RNN-based TinyDenoiser models, we observe a degraded quality, mea-
sured using objective metrics (see Sect. 3), if using a uniform 8-bit quantization
on the whole model. On the contrary, the FP16 quantization works lossless.
We hypothesize the INT8 accuracy drop to originate from unbounded tensor
ranges, e.g. STFT input or ReLU output, which are clamped after quantiza-
tion (Eq. 2) or causing a large scale factor S. Quantization error propagates also
over time on RNN-based models. However, we noticed that both LSTM layers
and GRU layers use constrained activation functions (tanh and sigmoid), i.e.
output features maps features a numerical range limited by design, with the
exception of the LSTM C state. This motivates us to quantize only the RNN
layers, which demands the highest memory requirement of the whole model, to
INT8 while leaving the rest to FP16. We named this quantization as Mixed-
Precision FP16-INT8, also referred in short as MixFP16-INT8. To this aim,
we restrict the tensor statistic collection during PTQ to the input, states and
output values of the RNN layers. In addition, two extra-layers, computationally
inexpensive, are inserted in the inference graph for data type conversion purpose
between FP16 and INT8 nodes and viceversa, according to Eq. 2.

3 Experimental Results

Before showing the effectiveness, in terms of memory, latency and energy gains,
of our optimized design, we report the accuracy of the trained SE models after
quantization. Lastly, we compare our approach with state-of-the-art solutions.

3.1 Accuracy After Mixed-Precision PTQ

We train the TinyDenoiser models on the Valentini dataset [13], which consists
of clean and noisy speech audio clips from 28 speakers sampled at 16 kHz.
The training environment is taken from [3]: the loss functions is a weighted
combination of the L1 loss and the STFT loss and an ADAM optimizer is used
with a learning rate of 3e−4. We use a batch size of 64 and set 200 epochs of
training. At the end of the training procedure, we select the trained model with
the highest score on a validation dataset composed by audio clips of speakers
p286 and p287, opportunely removed from the train set. For evaluation purpose,
we refer to the PESQ and STOI objective metrics.
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Fig. 4. (Top) Latency, measured in terms of MAC/cyc, and (Bottom) Power Consump-
tion, in mW, of the TinyDenoiser models running on the target HW.

We implement the Post-Training Quantization procedure as a module of the
GAPflow toolset1. The script imports a trained full-precision graph and quan-
tizes it to FP16, INT8 or MixFP16-INT8, before generating the application code
for deployment purpose. We use 4 randomly-chosen samples of the validation set
(p286 035, p286 166, p287 151, p287 269 ) for the calibration of the quantiza-
tion ranges. In particular, we consider either the maximum absolute values of
the activation parameters x or qmax = mean(x) + 3 · std dev(x), that we denote
as max and std3 calibration settings, respectively. Additionally, we make use of
a moving average filter in the estimation of the quantization ranges when feeding
the models with multiple calibration samples as done in [7].

Table 2 reports the PESQ and STOI scores of the TinyDenoiser models on the
Valentini test dataset after PTQ, together with the memory occupation (in MB)
of the whole quantized parameters. The FP16 models are lossless with respect to
FP32 trained models but gain 2× memory saving. On the contrary, despite the
additional 2× memory compression factor, a uniform 8-bit quantization leads to
a score degradation of, on average, 0.3 and 0.015 concerning the PESQ and the
STOI metrics, respectively. We applied multiple combinations of max and std3
quantization ranges to the RNN layers activations (Clamp RNN in the table) or
the FC layers, including the input of the SE model. For INT8, we observed max
quantization ranges to bring benefits to the RNN layer quantization, therefore
we applied this setting also for MixFP16-INT8 quantization. On the contrary,
we have not found any experimental evidence to select between std3 or max on
other layers. Overall, our proposed Mixed Precision FP16-INT8 PTQ recovers
the accuracy degradation of INT8: on average, PESQ and STOI scores result to
degrade of only 0.06 and 0.007, respectively. The effectiveness of the approach
is also assessed by the 1.4–1.7× less memory to store the model parameters.

1 https://greenwaves-technologies.com/tools-and-software/.

https://greenwaves-technologies.com/tools-and-software/
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3.2 RNN-Based SE Inference Performance on a Multi-core MCU

We analyze the effectiveness of the proposed software pipeline (Sect. 2.3) and the
novel quantization strategy by measuring the TinyDenoiser inference latency and
energy consumption on a 22 nm prototype of the target architecture (Sect. 2.2).
The chip prototype can be powered at 0.8 V or 0.65 V with a maximum clock
frequency of 370 MHz and 240 MHz, respectively. More in details, we deploy
LSTM256, GRU256, LSTM128, GRU128 models after FP16 and MixFP16-
INT8 quantization. If exceeding 2 MB of storage requirement for model param-
eters, we make use of an external FLASH memory while, on the contrary, the
on-chip eMRAM memory can be used. This latter features a peak BW of 640
MB/s, independently of the voltage supply.

Figure 4 reports on the top the measured inference latencies, expressed in
terms MAC/cyc, and the MCU power consumption (in mW) on the bottom. In
case of FP16 LSTM256 and GRU256 models, the ratio of parameters stored in
the L3 memory over the total amount of parameters, denoted as ρL3, achieves
0.84 and 0.79, thanks to the tensor promotion mechanism. However, the exe-
cution is L3 memory-bounded in this scenario. In accordance to the model of
Eq. 1, the read time of a FP16 parameter from the ExtFlash takes 2 clock cycles
that explains a latency close to 0.5MAC/cyc (every MAC requires one parameter
to be loaded). Because of the activity of the external memory, an extra average
power cost of 40–45 mW is measured, corresponding to ∼50% of the total power.

While FP16 LSTM256 cannot fit the on-chip non-volatile memory, the FP16
GRU256 can cut the extra power cost by storing the FP16 parameters into
the eMRAM. The MCU power consumption increases because of the on-chip
memory utilization, which was OFF before, and the higher density of operations
(higher MAC/cyc) due to the higher eMRAM memory BW than the ExtFlash.

If leveraging MixFP16-INT8 for LSTM256 and GRU256, the ratio ρL3

decreases to 0.45 and 0.33, meaning more tensors are promoted to L2 in contrast
to FP16 quantization. Thanks to this and the faster INT8 kernels, the computa-
tion efficiency increases up to 1.9 and 2.2 MAC/cyc (one of the two RNN layer is
still L3 memory-bound). At the same time, the power cost of the MCU increases
because of the higher operation density. Lastly, we obtain a power saving of ∼2×
by reducing the power supply to 0.65 V. Also note the MAC/cyc improves by
up to 8% because the eMRAM bandwidth is independent from the system clock
frequency, bringing benefits to the memory-bounded layers.

On the other side, FP16 LSTM128 and GRU128 fits the eMRAM memory
capacity and show a ρL3 ratio as low as 0.13 and 0.0, meaning that the majority
or all the memory parameters are promoted to the L2 memory before the infer-
ence. This explains the high FP16 latency efficiency, reaching up to 2.2 MAC/cyc.
The MixFP16-INT8 quantization further decreases latency by 1.8× and 1.3×. In
case of LSTM128 the power consumption of MixFP16-INT8 slightly decreases
with respect to FP16 because eMRAM is not used, while GRU128 presents a
1.8× higher power, in line with other settings. Scaling down the supply voltage
do not contribute to a higher MAC/cyc metric because of the low (or null) L3
memory utilization, while the power consumption is reduced by 2.5×.
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Table 3. Comparison with other SE solutions for MCUs.

Model Mpar Quant QAT Device Deployment msec/inf MAC/cyc MMAC/W

TinyLSTM [4] 0.33 INT8 Yes STM32F746VE N/A 4.26 0.36 0.14

TinyLSTM [4] 0.46 2.39

RNNoise [9] 0.21 INT8 Yes STM32L476 NNoM w/CMSIS-NN 3.28 0.45 1.84

LSTM256 [ours] 1.24 MixFP16-INT8 No 8-core RISC-V GAPFlow 2.50 2.11 17.78

GRU156 [ours] 0.98 1.70 2.41 17.46

Figure 4 also reports on the bottom the latency and the energy measures for
the inference tasks in the most energy efficient configuration. Even if reducing
the clock frequency, the real-time constraints (6.25 ms) are matched. When con-
sidering a duty cycled operation with a sleep power much lower than the active
power, the average power reduces up to 3 mW for the smallest model.

3.3 Comparison with Other Works

Table 3 compares our solution with state-of-the-art SE solutions on MCUs:
TinyLSTM [4], which is benchmarked on a STM32F7 MCU, and RNNoise [14]
deployed on a low-power STM32L4 using the NNoM software with CMSIS-NN
backend [9]. Both solutions leverage on single-core devices and 8-bit quantiza-
tion, which results effective thanks to QAT and the model design constraint of
using intermediate activation features with limited numerical ranges. Despite our
solution being more subject to memory bottleneck issues because of 2.6–6× more
parameters and the higher bit precision, we achieve a top latency efficiency, up
to 5.3× and 6.7× MAC/cyc higher than RNNoise and TinyLSTM, respectively.
This acceleration is obtained thanks to the optimized software pipeline that
efficiently exploit the underlying hardware. Additionally, the energy efficiency
results up to 9.7× and 123× higher than previous solutions. We also remark
that our solution achieves low-degradation with respect to full-precision model
without relying on any expensive QAT training procedures.

4 Conclusion

This work proposed a novel design approach to efficiently bring RNN-based SE
models on low-power multi-core MCUs. On the one side, we proposed a novel
quantization scheme that mixes FP16 and INT8 PTQ to obtain low-accuracy
degradation without relying on expensive QAT. On the other side, we designed
an optimized software pipeline to efficiently exploit the compute performance
of low-power 8-core MCU. Our design demonstrated the fastest RNN-based SE
solution for MCUs, featuring > 10× energy-efficiency than previous solutions.
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Abstract. Modern online services often require mobile devices to con-
vert paper-based information into its digital counterpart, e.g., passport,
ownership documents, etc. This process relies on Document Localization
(DL) technology to detect the outline of a document within a photo-
graph. In recent years, increased demand for real-time DL in live video
has emerged, especially in financial services. However, existing machine-
learning approaches to DL cannot be easily applied due to the large
size of the underlying models and the associated long inference time.
In this paper, we propose a lightweight DL model, LDRNet, to local-
ize documents in real-time video captured on mobile devices. On the
basis of a lightweight backbone neural network, we design three predic-
tion branches for LDRNet: (1) corner points prediction; (2) line borders
prediction and (3) document classification. To improve the accuracy, we
design novel supplementary targets, the equal-division points, and use
a new loss function named Line Loss. We compare the performance of
LDRNet with other popular approaches on localization for general doc-
uments in a number of datasets. The experimental results show that
LDRNet takes significantly less inference time, while still achieving com-
parable accuracy.

Keywords: Document localization · Real time · Mobile devices

1 Introduction

The integration of paper documents and digital information is an essential pro-
cedure in many online services today. An increasing number of users start to
use mobile devices (i.e., smartphones) to take photos of the paper documents.
The preliminary step to extract digital information from those photos is Doc-
ument Localization (DL) [3]. DL is a machine learning technology that focuses
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on detecting and segmenting document outlines within image frames. The input
is usually a digital photo containing the paper document and the outputs are
the predicted quadrilateral (i.e., four-sided polygon) coordinates of the docu-
ment outline. Accurate DL is crucial for the follow-up process such as Optical
Character Recognition (OCR).

In most online services that use DL, photos captured by mobile devices are
uploaded to servers for DL processing. Recently, some service providers, for safety
purposes, have started to demand users to capture a video of the paper document
instead of a static photo [7]. This is because a video is naturally more difficult
to counterfeit than a static photo. One concrete example is illustrated in Fig. 1,
where the user uses its smartphone to record a video of the identity document.
During the video recording, the mobile application (developed by the service
provider) requests the user to move the document properly to fit the guidance
displayed on the screen (the white borders in the figures). In the previous design
using a static photo, an impostor can cheat the system with a scanned copy of
the document. However, in this scheme with a live video it needs to hold the
actual document to finish the process. Furthermore, the laser security marks
on identity documents change dynamically in the recorded video depending on
the light environment and camera angle, which provides more comprehensive
materials for the verification process.

Fig. 1. An example of document localization based on video.

The premise to achieve the above video-based process is that the document
outline and trajectory can be tracked in real-time during the video recording. A
video is actually a series of images, called frames, that are captured at certain
frequency, e.g., 30 Frames Per Second (FPS). Thus DL performed on a video can
be understood as a series of DL tasks, where each task is performed on one frame.
Therefore, real-time DL on a live video means the DL process on each frame
needs to be finished within the time interval between two consecutive frames
(e.g., 33.3 ms for a 30 FPS video). However, existing DL approaches cannot
fulfill these real-time demands due to the long inference time (e.g., over 100 ms
even on a PC according to [10]). Furthermore, state-of-the-art DL models are
complex and require large storage space, which potentially exhausts the capacity
of mobile devices [3,12].

To break through this bottleneck we propose a novel document localiza-
tion neural network, LDRNet, to Localize Document in Real-time. Previous
works dive into the design of the new network architectures to improve the accu-
racy, which is time-consuming and diminishes the efficiency. We start from a
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lightweight Convolutional Neural Network (CNN), MobilenetV2 [15], which is a
fundamental feature extractor especially designed for devices with limited mem-
ory and resources. Unlike feature pyramid networks [14], we design a feature
fusion module that does not enlarge the model size. Existing DL approaches
require postprocessing after prediction, which is cumbersome and inefficient.
Therefore we design our prediction target to be the coordinates of the quadri-
lateral corners instead of the contour of the document thus avoiding postpro-
cessing. The orientation of the document also can be obtained from the order of
the output coordinates. We propose a novel loss function, Line Loss, to improve
the precision. By adding equal-division points between contiguous corner points,
LDRNet achieves better formalization of the borderlines.

In summary, the main contributions of this paper include:

– We present LDRNet, a document localization approach with significantly
lower computational cost than the state-of-the-art methods. LDRNet paves
the way for real-time DL on a live video recorded by mobile devices.

– We design the Line Loss function and equal-division points feature for LDR-
Net to guarantee the localization accuracy without undermining its efficiency
or enlarging its model size.

– In the experiments, we compare the performance of LDRNet with other pop-
ular DL approaches on localizing general document datasets. The results indi-
cate that LDRNet achieves comparable accuracy while outperforming other
approaches in terms of efficiency.

2 Related Work

There exist three main kinds of approaches for DL: Mathematical Morphology-
based Methods, Segmentation-based Methods and Keypoint-like Methods.
Mathematical morphology-based methods are based on mathematical morphol-
ogy [2]. There are some other hand-designed features used in mathematical
morphology-based methods, like the tree-based representation [4]. Along with
the popularity of CNN in this field, many CNN-based methods have emerged.
Segmentation-based methods regard DL as the segmentation [16] task using the
CNN to extract the features. Same as segmentation-based methods, using the
features extracted by the CNN, keypoint-like methods [10] predict the four cor-
ners of the document directly, considering DL as the keypoint detection task.

Mathematical Morphology-based Methods inherit the ideas which detect
the contour of the documents using traditional image processing methods, image
gradients calculations [2], Canny border detectors, Line Segment detectors [17]
and image contours detectors, etc. Although there are many kinds of differ-
ent mathematical morphology-based approaches, they are all developed on the
basis of the technologies mentioned above, which makes the performance unsta-
ble when the datasets change. The accuracy of these methods heavily depends
on the environmental conditions in the image. For instance, if the color of the
background and the document are difficult to distinguish, or if the image is
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captured with insufficient lighting, the borders of the document may not be
detected. Another weakness of these mathematical morphology-based methods
is that they output the four borders or four points disorderly so a necessary step
for determining the orientation of the document is the postprocessing, which
leads to extra cost.

Segmentation-based Methods regard DL as a segmentation task. Segmen-
tation adapts dense predictions, outputs the heat map for every pixel on the
image, and uses classification labels to determine whether the pixels belong to
the object or the background. Then by grouping the pixels with the same labels,
the document is segmented. By adopting the CNNs to extract the image feature,
the segmentors get rid of the impacts from the complex environment conditions.
Since every segmentor is a data-driven deep-learning model, it can reach high
precision as long as enough data are fed. U-Net [14] and DeepLab [5] are the
popular segmentors. However, the large model size and long inference time make
these segmentors incompetent for real-time DL. Similar to the mathematical
morphology-based methods, postprocessing is inevitable to find the orientation
of the document content.

Keypoint-like Methods output the coordinates of the quadrilateral corner
points of the document directly. Recent keypoint detection networks do not
regress the coordinates of the key points, instead, they produce dense predic-
tions like segmentation networks do. [13] predict heat maps of the keypoints and
offsets. [10] predict the points in a sparse-prediction way to locate the four points
directly. To improve the precision, it uses CNN recursively to fix the coordinates
errors. These key-point models indeed get high precision, but also have the same
weakness which segmentation-based methods have, the large model size and the
long inference time.

3 Context and Methodology

3.1 Problems and Challenges

In previous online services, DL task is performed on the server while the mobile
device only captures and uploads the photo of the document. This structure can
not fulfil the real-time DL task on a video due to the transmission cost. Therefore
we aim to embed DL module on mobile devices in our work. Tracking the document
outline and trajectory in a live video means the DL process for each frame should
be completed within the frame interval (33.3 ms for a 30 FPS video). This calls for
strict demands on both the accuracy and speed of DL model.

Specifically, the challenges of this study come from four facets: (i) The compu-
tational resource on mobile devices is very limited while existing DL approaches
require large memory and long inference time. (ii) In addition to the contour of
the document, the direction of the content should also be detected to determine
the trajectory of the document in a video. (iii) It is complex and time-consuming
to calculate the precise angle between the document and the camera to obtain
the trajectory. (iv) During the video recording, the corner points of the document
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may be occluded by the user’s fingers, therefore the ability to predict occluded
corner points is necessary.

3.2 Task Analysis

To address the challenges listed above, we present a novel neural network model,
LDRNet, to Localize Documents in Real-time. Instead of calculating the precise
angle between the document and camera, we calculate the distance between each
target corner point and the corresponding localized point to track the trajectory of
the document. This provides considerable accuracy while consuming less compu-
tational resources on mobile devices. As summarized by the following equation,
(xi

doc, y
i
doc) is the coordinate of the ith corner point of the localized document,

while (xi
target, y

i
target) represents the coordinate of the ith target corner point.

Then we sum the Euclidean distances of the four sets of corresponding points.

Distance =
4∑

i=1

√
(xi

doc − xi
target)2 + (yi

doc − yi
target)2. (1)

The orientation of the document can be simply inferred from the order of
the corner points. Thus our goal is to predict the four quadrilateral coordinates
of the document in counter-clockwise order. The order of the four quadrilateral
points is determined by the contents of the document instead of the direction
that the document is placed. Throughout this paper, we use N to denote the
total number of points we predict for each document. In addition to the four
corner points, we predict (N − 4)/4 equal-division points on each border of the
document. These extra N − 4 points are used to refine the localization of the
document. Moreover, we add a classification head to our network architecture
for classifying the document in the input images. Depending on the specific DL
task, this classification head is adjustable. The minimum number of classes is two,
which represents whether the image contains a document or not, respectively.

3.3 Network Architecture

Fully Convolutional Feature Extractor. As we aim to run DL on mobile
devices, we choose a lightweight backbone network, MobilenetV2 [15]. It applies
both depth-wise convolution and point-wise convolution operations to achieve
faster and lighter extraction. As illustrated in Fig. 2, the last output feature
map from the backbone is Fb ∈ R

H
32×W

32 ×1280 with H denoting the height of the
input image and W denoting the width. To improve the accuracy, we extract
five feature maps with different spatial resolutions from the backbone.

Feature Fusion Module. The low and high-level feature maps are fused
together by the feature fusion module. The first step is feature compression,
where we use global average pooling to downsample the feature maps, and resize
them to the same size. Then we add the five feature maps directly instead of the
top-down architecture used in [11].
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Fig. 2. The network architecture of LDRNet.

Network Output Branches. The outputs of the LDRNet consist of three
branches. The first branch is the corner points branch. It outputs in the form
of a 4 × 2 vector, four corners’ coordinates (x, y) in order. The second branch
is the borders branch, it outputs in the form of an (N − 4) × 2 vector, where
(N − 4) is the number of points to be predicted on the four borders. Each
border has (N − 4)/4 points so there are N − 4 coordinates of points in total on
the second branch. The third branch outputs the classification label, denoting
the type of document in the input image. Unless the size of the classification
output is specified, the classification output contains two elements, one denoting
the likelihood of having documents in the image, the other one denoting the
likelihood that no document is detected in the input image.

Line Loss. Standard Deep Convolutional Neural Network architectures are
inherently poor at precise localization and segmentation tasks [9]. This is because
the last convolutional layer only contains high-level features of the whole image.
While these features are extremely useful for classification and bounding box
detection, they lack the information for pixel-level segmentation [10]. In order
to improve the precision of DL, we combine the two branches of the LDRNet’s
outputs (corner points branch and borders branch), we predict the corners in a
line-prediction fashion. In addition to the four corner points, we also predict the
equal-division points on the lines thus the labels can be generated automatically
and no more human effort is required. The proposed Line Loss is formulated
as Lline(p) = βLSim(p) + γLDis(p), which is a weighted sum of the similarity
loss LSim and the distance loss LDis. The similarity loss is used to restrict the
points from the same border along an identical line, while the distance loss is
used to guarantee that along this line the points are equally divided.

To guarantee that the predicted points from each border are on a straight
line, we use the similarity loss LSim to calculate the similarity of two vectors of
the three successive points on the line. The details of LSim are shown in Eq. (2),
(3), (4).
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LSim(p) = [
∑

k∈l,r,t,b

N
4 −3∑

i=0

sim(p[k]i, p[k]i+1, p[k]i+2)]/(N − 4), (2)

sim(p[k]i, p[k]i+1, p[k]i+2) = (
−−→
p[k]i+1

i · −−→
p[k]i+2

i+1)/(
∣∣∣
−−→
p[k]i+1

i

∣∣∣ ×
∣∣∣
−−→
p[k]i+2

i+1

∣∣∣), (3)
−−→
p[k]i+1

i =
(
p[k]xi − p[k]xi+1, p[k]yi − p[k]yi+1

)
. (4)

where p[l], p[r], p[t], p[b] denote the points on the left border, on the right border,
on the top border and on the bottom border, respectively.

The distance loss is used to constrain the points we predict to be equal-
division points. We use Eqs. (5) and (6) to make sure the successive points of
each border have the same distance in both x-direction and y-direction.

LDis(p) = [
∑

k∈l,r,t,d

N
4 −1∑

i=0

dist(p[k]i, p[k]i+1, p[k]i+2)]/(N − 4), (5)

dist(p[k]i, p[k]i+1, p[k]i+2) =
∣∣∣∣p[k]xi − p[k]xi+1

∣∣ − ∣∣p[k]xi+1 − p[k]xi+2

∣∣∣∣ +
∣∣∣∣p[k]yi − p[k]yi+1

∣∣ − ∣∣p[k]yi+1 − p[k]yi+2

∣∣∣∣ . (6)

Furthermore, we use L2 loss for the regression and cross-entropy for the
classification. The regression loss LReg is an L2 loss between the predicted
points p and the ground truth points g, which can be formulated as:

LReg(p, g) =
1

N − 4

N∑

i=0

∑

j∈x,y

2
√

(ĝji − pji )2, (ĝx = gx/W, ĝy = gy/H). (7)

where (gxi , gyi ) denotes the i-th ground truth point of the document. Our regres-
sion target is ĝ, which is the normalization of g by image width (W ) in x-
coordinate and image height (H) in y-coordinate.

The classification loss LCls is soft-max loss over multiple classes confi-
dences (x), which is calculated as:

LCls(x, c) =
Ncls∑

i=0

−ci log x̂i, (x̂i =
exp(xi)∑
j exp(xj)

). (8)

where ci ∈ {0, 1} is an indicator denoting whether the image contains the i-th
category document and Ncls is the number of the total document categories.

Finally, we define the total loss as the weighted sum of the regression loss
LReg, the classification loss LCls and the Line Loss LLine:

L(x, c, p, g) = LReg(p, g) + δLCls(x, c) + Lline(p). (9)

where the weights δ, β and γ are chosen depending on the experimental results,
and the values normally range from 0 to 1.
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4 Experimental Evaluation

For the comparison experiment, we use the dataset from ‘ICDAR 2015 Smart-
Doc Challenge 1’ [3]. Training and inference setting details are listed in this
section. The experimental results are compared to the previous work to show
the advantages of our approach. Then we use the ablation study to analyze the
contribution of each component of our model. Finally, we test our model on the
MIDV-2019 dataset [1] to highlight the characteristic of our model, the ability
to predict occluded corner points.

4.1 Training and Inference Details

Unless specified, we use MobilenetV2 with the width multiplier α equal to 0.35
(used to control the width of the network) as our backbone network. We set the
number of regression points (N) to 100. Our network is trained with RMSprop
optimizer, which uses only one set of hyperparameters (rho is set to 0.9, momen-
tum is set to 0, and epsilon is set to 1e−7). We trained our networks for 1000
epochs, with an initial learning rate of 0.001 and a batch size of 128 images. The
learning rate is reduced in a piecewise constant decay way, and is set as 0.0001,
0.00005, 0.00001 at the 250th, 700th and 850 epochs, respectively. Our backbone
network weights are initialized with the weights pretrained on ImageNet [6]. We
use the Xavier initializer [8] as the final dense layer. The input images are resized
to which both the width and the height are 224 pixels. Regarding the Line Loss
function parameters, δ is set to 0.32, β and γ are configured as 0.0032.

For the inference, we first forward the input image through the network to
obtain the quadrilateral points’ coordinates of the documents and the predicted
class. Then we multiply the quadrilateral points’ coordinates by the width (W )
and height (H) of the input image. Note that we only use four quadrilateral
points’ coordinates instead of the predicted N coordinates, because we found
little difference between their performance. Thus we can remove the weights of
the final dense layer that are not used for the four quadrilateral coordinates. The
size of the input image is the same as we used for training.

4.2 Comparison of Accuracy

To evaluate the accuracy of our DL model, we use the Jaccard Index (JI), which is
also adopted in others’ work [3,10,12]. First we remove the perspective transform
of the ground-truth G and the predicted results S, then obtain the corrected
quadrilaterals S

′
and G

′
. For each frame f , the JI is computed as JI(f) =

area(G
′ ∩ S

′
)/area(G

′ ∪ S
′
). The value of JI range from 0 to 1 and higher JI

indicates higher accuracy.
As shown in Table 1, the images in the dataset can be divided into five cat-

egories according to different backgrounds. Only backgound05 is complex, with
strong occlusions. We compare the accuracy of LDRNet to seven previous DL
models. It is observed that our LDRNet outperforms the previous works in terms
of background02 and background05 (results in bold). For other backgrounds,
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Table 1. Accuracy compared with previous works. The results are listed from top to
bottom in the descending order of overall JI.

Method Background Overall

01 02 03 04 05

HU-PageScan [12] / / / / / 0.9923

LDRNet-1.4 (ours) 0.9877 0.9838 0.9862 0.9802 0.9858 0.9849

SEECS-NUST-2 [10] 0.9832 0.9724 0.9830 0.9695 0.9478 0.9743

LRDE [3] 0.9869 0.9775 0.9889 0.9837 0.8613 0.9716

SmartEngines [3] 0.9885 0.9833 0.9897 0.9785 0.6884 0.9548

NetEase [3] 0.9624 0.9552 0.9621 0.9511 0.2218 0.8820

RPPDI-UPE [3] 0.8274 0.9104 0.9697 0.3649 0.2163 0.7408

SEECS-NUST [3] 0.8875 0.8264 0.7832 0.7811 0.0113 0.7393

LDRNet reaches comparable performance with the best ones. The overall JI
of LDRNet exceeds the other methods except for HU-PageScan in [12], which
does not provide the results of background01 to background05. However, HU-
PageScan uses 8,873,889 trainable parameters which is over 21 times the number
of parameters in our LDRNet-0.35 (denotes LDRNet with α = 0.35). Therefore
HU-PageScan requires significant memory and computing time thus can not
fulfill the real-time demand. This will be introduced in the next section. Addi-
tionally, since HU-PageScan is segmentation-based, it only predicts the contour
of the document. Thus the orientation of the document is unknown and requires
follow-up process to calculate the document trajectory.

4.3 Comparison of Inference Time

Fig. 3. The inference time comparison between LDRNet and the previous DL methods
on the ‘ICDAR 2015 SmartDoc Challenge 1’ dataset. The horizontal axis is log scaled.

Our Network is tested on iPhone11 using TNN engine. HU-PageScan is tested
on a PC equipped with Intel Core i7 8700 processor, 8 GB RAM, and 6 GB



LDRNet: Enabling Real-Time Document Localization on Mobile Devices 627

NVIDIA GTX 1060 [12]. In Fig. 3, the vertical axis is the JI of the model while
the horizontal axis is the log scaled inference time. We illustrate the result of
four settings of LDRNet, all using MobilenetV2 but with different values of α
(0.1, 0.35, 0.75, 1.3, 1.4). We observe that higher α leads to higher JI but longer
inference time. The JI of HU-PageScan (run on a PC) is 0.0074 (absolute value)
higher than LDRNet-1.4 (run on smartphone), whereas the inference time is
about 4x longer. The short inference time of LDRNet meets the demand for
localizing documents in the image frames in a live video (usually photographed
at 30 FPS, represented by the dashed vertical line in Fig. 3). For general usage,
LDRNet-1.4 is the best option and its model size is only 10 MB.

4.4 Ablation Study

Fig. 4. The JI of LDRNet with different α and with or without feature fusion module.
The number of regression points is set to 100. All are trained with Line Loss.

In our experiments using LDRNet, we construct the feature fusion module
using average pooling and add operation. To evaluate the efficiency of this fea-
ture fusion module, we run experiments with this module enabled and disabled.
Figure 4 compares the JI of these two scenarios with α ranging from 0.1 to 1.4.
We can observe that the feature fusion-enabled models outperform those without
feature fusion. Since the model complexity grows as we increase α, it is observed
that the efficiency of our feature fusion module drops as the model becomes more
complex. Thus in the cases that α > 1.0, feature fusion is not recommended.

We also evaluate the efficiency of the Line Loss by comparing the JI of models
with and without Line Loss. For LDRNet-0.35, enabling Line Loss improves the
JI from 0.9643 to 0.9776.

4.5 Predictions of the Occluded Points

Benefiting from the task analysis and the network architecture, LDRNet is able
to predict the occluded points, including the points occluded by other objects
and the points out of the input image. This characteristic is crucial for video
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Fig. 5. Examples of occluded points prediction. Each case contains three images,
namely, the input image (top left), the predicted corners on the input image (top right),
the localized document after removing the perspective transformation (bottom).

recording since the document is usually occluded by the user’s fingers during the
interaction. For evaluation we test our model on the MIDV-2019 dataset, which
contains video clips of identity documents captured by smartphones in low light
conditions and with higher projective distortions [1]. As depicted in Fig. 5(b),
LDRNet can predict the corner occluded by fingers. Even if more than half of
the passport is out of the image, as illustrated in Fig. 5(d), our LDRNet predicts
the occluded corners correctly.

5 Conclusion

We design LDRNet, a real-time document localization model for mobile devices.
LDRNet extracts the image features using neural networks and predicts the coor-
dinates of quadrilateral points directly. We propose the novel loss function, Line
Loss, and design the equal-division points feature to guarantee its efficiency and
accuracy. The most practical scenario of LDRNet is tracking the trajectory of
document in a live video captured on mobile devices. The experimental results
show that LDRNet has lower inference time than other methods, while achiev-
ing comparable accuracy. Currently, LDRNet is being deployed in the identity
verification system of a company that serves about 3.8 million customers. The
code is available at: https://github.com/niuwagege/LDRNet. In future work, we
will finetune the hyper-parameters more precisely, use low-level and high-level
image features fusions like FPN, or a larger backbone, etc.

References

1. Bulatov, K., Matalov, D., Arlazarov, V.V.: MIDV-2019: challenges of the modern
mobile-based document OCR. In: Twelfth International Conference on Machine
Vision (ICMV 2019), vol. 11433, p. 114332N. International Society for Optics and
Photonics (2020)

2. Bulatov, K.B.: A method to reduce errors of string recognition based on combina-
tion of several recognition results with per-character alternatives. Bull. South Ural
State Univ. 12(3), 74–88 (2019). Series: Mathematical Modeling and Programming

https://github.com/niuwagege/LDRNet


LDRNet: Enabling Real-Time Document Localization on Mobile Devices 629

3. Burie, J.C., et al.: ICDAR 2015 competition on smartphone document capture and
OCR (SmartDoc). In: 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pp. 1161–1165. IEEE (2015)
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Rudaś, Krzysztof I-524
Rugolon, Franco II-291
Rusci, Manuele I-606
Rychener, Yves I-498

Salles, Rodrigo I-55
Sarmadi, Hamid II-438
Sasubilli, Sravani II-128
Schiele, Gregor I-594
Schlör, Daniel II-79
Schmid, Marco II-259
Schöffer, Jakob I-353
Schoutens, Wim II-97
Seddah, Djamé I-498
Shaji, Nirbhaya I-181
Smirnov, Evgueni I-385
Šmuc, Tomislav I-248
Soares, Cláudia I-71
Sorescu, Tiberius-George I-569
Soukup, Dominik II-170
Sousa Tomé, Emanuel II-410
Stefanov, Todor I-545
Sulis, Emilio I-89

Šuštar, Katarina Sitar II-7
Swift, Stephen I-197

Taghiyarrenani, Zahra II-159, II-423, II-451
Teixeira Lopes, Carla I-23
Teixeira, Sónia I-150
Tritscher, Julian II-79
Tsaparas, Panayiotis I-402
Tse, David II-339
Tseng, Elizabeth II-339
Tsoumakas, Grigorios I-369
Tucker, Allan I-197, II-243
Turnbull, David I-219
Tychoniec, Lukasz I-269

Ugwu, Cynthia Ifeyinwa II-364
Ullah, Muhammad Habib I-238
Umair, Areeba I-238
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