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Abstract. The primary goal of this study is to simulate finite transformation
elasto-plasticity problems using the Asymptotic Numerical Method (ANM).
Elastoplastic behavior combines two unilateral conditions; the first concerns the
transition from the elastic domain to the elastoplastic domain and the second con-
cerns the elastic discharge. In the context of the Asymptotic Numerical Method
(ANM), the elastoplastic behaviour law has to be changed to a regular one in order
to obtain an analytical representation of every variable. The main point is to find
an appropriate relationship between the plastic multiplier and the threshold func-
tion of plasticity. The linear problems found are solved using the Finite Element
Method (FEM). An example of a 2D plate subjected to a time dependent mono-
tonic loading is considered, and a study on the different regularization parameters
is presented. The obtained results by the proposed algorithm are compared to the
reference solution (Abaqus code). The comparison shows that this algorithm is
effective for solving such problems.

Keywords: High Order Algorithm · Elastoplastic · Large deformation ·
Regularizations

1 Introduction

To numerically simulate the metal forming process such as lamination, stamping….
we must consider the major changes the metal go through both geometrical and/or
material. These changes are usually permanent inelastic deformation, which means that
the standard elastic behavior lows are no longer valid, which bring us to use plasticity
behavior lows combined with the large strain theory. In previous work that exist in
the literature (Assidi et al., 2009), (Hamdaoui et al., 2016) and (Yoshida et al. 2002),
the majority of researchers have been showing an interest in developing elasto-plastic
models to simulate this type of behaviors. As a matter of fact, the past decades have
seen a great upsurge in research in modeling elasto-plastic materials. The first research
considers that the plastic deformation is small compared to the elastic strain and there,
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one uses the elastoplastic theory in small deformation (Assidi et al., 2009), (Hamdaoui
et al., 2016). The second considers that plastic deformations are important, which is
the case in shaping structures (Yoshida et al. 2002), (El Kihal et al., 2022). In order to
correctly resolve large deformation plasticity problems, onemust take into consideration
the objective stress rate, meaning that the mechanical response of a material should not
depend on the frame of reference.

In this paper, we propose to solve the large deformation elasto-plastic problems using
the Asymptotic Numerical Method (Cochelin et al. 1994) and (Cochelin et al., 2007).
The ANM associates three techniques, a perturbation technic, a continuation procedure
and a discretization method. In this context, the solution of every step is represented by
a power series and forms a family of linear problems. These problems are solved by
decomposing only one tangent matrix per step. The length of every step is determined
using properties of convergence of the Taylor series which result in naturally adapted
step length.

We introduce first the general problem of elasto-plastic structure in large deformation
theory, and then we try to regularized the four equations that prevents us from applying
the perturbation technic (ElKihal et al., 2022). The elasto-plastic behaviorwith the elastic
unloading exhibits three states, the elastic state, the plastic state and the elastic unloading
state. So, to identify a unique regularized constitutive relation, one must regularize the
two corresponding unilateral conditions (El Kihal et al., 2022) and (Assidi et al., 2009).
The key point to establish this regular problem has already been discussed in previous
works of elasto-plasticity in small deformations (Hamdaoui et al., 2016), we take the
same regularization technics as in (Assidi et al., 2009), and adopt it to our problem.
In other words, determine a regularized relation between the plastic multiplier and the
yield function, and add a regularization parameter to the equivalent stress to avoid the
singularity point, then add another regularization parameter to the load function for the
same reason.

2 Large Deformation Regularized Problem

The variational problem translating the equilibrium of solid in the case of large
deformation plasticity is written in the matrix form:

∫
�0

〈δL〉t[A(f )
]{τ }d�0 = C(t) ∫

∂�0

〈δv〉{Fext}dS0 (1)

where �0 is the undeformed configuration and Fd is the force applied to the structure,[
A(f )

]
is the matrix of the inverse of the deformation gradient, {τ } represents the stress

Kirchhoff tensor, {L} represent the vector of the velocity gradient, and v is the velocity
vector. We consider that the strain rate tensor is unambiguously divided into two parts
(elastic and plastic) additively as {D} = {Dp} + {De}. The behavior low that describes
such problem is written in the following matrix form:

{
τ J

}
=

[
Celas

]({D} − {
Dp}) (2)
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where
{
τ J

}
is the Jaumann stress tensor,

[
Celas

]
is the representingmatrix of thematerial

elasticity tensor. The plastic behavior part is written as:

{
Dp} = λ̇

{
∂fy
∂τ

}
= λ̇{n} (3)

where λ̇ is the plastic multiplier, {n} is the vector of direction flow and fy is the yield
function. The normal vector {n} can be written as:

{n} = 3

2

τ d

q
(4)

and the yield function is defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fy = q−τe
τe

τe = τy + h∈̄p

∈̄p = ∫
√

3
2D

p : Dp dt = ∫ λ̇

q2 = 3
2τ

d : τ d

(5)

where τe represents the effective stress, τy is the yield stress, h is the plastic modulus,
∈p is the equivalent plastic strain, q is the equivalent stress and τ d is the deviator of the
Kirchhoff stress tensor. The condition of the yield function and the plastic multiplier can
be reformulated from the Kuhn-Tucker’s condition:

λ̇ ≥ 0, fy ≤ 0, λ̇fy = 0 (6)

Combining the previous relationswith the unilateral relation, one gets the consistency
relation:

λ̇ = g
(
fy

)〈n : D〉 (7)

The unilateral relation is presented by two non-regularized functions g
(
fy

)
and 〈.〉,

which are written as:
{
g
(
fy

) = 0 if fy < 0
g
(
fy = 0

) = 2μ
2μ+h

{ 〈n : D〉 = 0 if n : D < 0
〈n : D〉 = n : D else

(8)

µ represents the shear modulus. The two functions are going to be replaced by:

λ̇ = G
(
fy

)
H (D) (9)

With
⎧
⎨

⎩

G
(
fy

) = η3
f 2y
2μ τe+η3

(
3
2+ h

2μ (1+fy)
)

H (H − ξ) = η22 τ̇
2
c

(10)
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The Von Mises equivalent stress, which isn’t an analytic equation when the stress
tends to zero. So, we add a regularization parameter η1 to avoid the zero in the square
root, and the new expression of the equivalent stress is given by the following formula:
q2 = 3

2τ
d : τ d +η21τ

2
y . Furthermore, two additional F̂ andDen variables are introduced

to simplify the lettering of G
(
fy

)
, that will be split into three elementary equations:

F̂ = f 2y ; Den = F̂

2μ
τe + η3

(
3

2
+ h

2μ

(
1 + fy

)
)

; GDen = η3 (11)

To reproduce a typical behavior of the elastoplastic law (elastic, plastic, elastic
unloading), C(t) is defined by the following hyperbolic equation:

(
C − Cm

t
Tm

)(
C − Cm

(
2 − t

Tm

))
= η24C

2
m (12)

where Cm and Tm are the load parameters and η4 is a regularization parameter.
In structural mechanics problems involving elasto-plastic constitutive law, the

equations are given by:

R(U (t),C(t)) = 0 (13)

where R represents the residual vector and U (t) is the vector of unknowns with the
following components:(

v, τ, τ j,D,Dp,G,H , ω, f ,F,L, l,R, q, n, ξ,Den, fy, F̂, τe, λ̇
)
, andC(t) is a load-

ing parameter.

3 Numerical Resolution

The vector unknown U and the loading C are expressed as a Taylor series expansion
truncated at order N as:

⎧
⎪⎪⎨

⎪⎪⎩

U (a) = Uj +
N∑

i=1
akUk

C(a) = Cj +
N∑

i=1
akCk

a ∈ [0, aamx] (14)

where
(
Uj,Cj

)
are a known and a given regular solutions corresponding to a = 0,

amax is the convergence radius of the series. For this study, we chose to work with the
parameterization equation used in (El Kihal et al., 2022), written as:

a = α1

(
u − uj

)
u1 + α2

(
t − tj

)
t1 + α3

(
C − Cj

)
C1 (15)

where t is the time, C is the load and u represents the displacement. The coefficients
αi, fori = 1, 3 are equals to 0 or 1. By injecting the Taylor series representations (14)
into the nonlinear problem (13) we obtain, the linear problems verified by each term of
the series:

order1 : ∫
�0

〈δL〉(t[A(f0)
]{τ1} +t [

A(f1)
]{τ0}

)
d�0 = C1(t){Fext(δv)} (16)
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order k (2 ≤ k ≤ N ) :
∫

�0

〈δL〉( t[A(f0)
]{τk} + t[A(fk)

]{τ0}
)
d�0 = Ck(t){Fext(δv)} +

{
Pnl
k

}
(17)

where

{τk} = L(vk) +
{
τ nlk

}
; {fk} = L(vk) +

{
f nlk

}
(18)

The terms
{
Pnl
k

}
,
{
τ nlk

}
,
{
f nlk

}
are known and calculated previously. Once the prob-

lem is discretized, we apply the finite element method to solve the linear problems (16)
and (17). The tangent matrix is given by:

[Kt]{v0} = C1
{
Fext

}
for k = 1

[Kt]{vk−1} = Ck
{
Fext

} + {
Pnl
k

}
for k ≥ 2

(19)

The solution of the problem (13) is computed using a path-following method pro-
posed by (Cochelin et al, 2007), where the solution is obtained branch-by-branch and
the final solution point of a branch is the new beginning point of the next branch. The
range of validity amax of the parameter a is evaluated as follow:

amax

(
U (i)

)
=

⎛

⎝∈
∥∥∥
{
U (i)
1

}∥∥∥
∥∥∥
{
U (i)
N

}∥∥∥

⎞

⎠

(
1

N−1

)

(20)

where ∈ represents the tolerance parameter and U (i) represents the components of the
unknown vectorU . For this study, we define the validity range amax as in (El Kihal et al.,
2022) and (Assidi et al. 2009). We chose amax as the smallest of all the components of
the vector U (i):

amax = inf
(
amax

(
U (i)

))
(21)

Once amax calculated, the starting solution
(
Uj,Cj

)
in (13) to the next branch is

evaluated by Uj = U (amax) and Cj = C(amax).

4 Numerical Example

Weconsider a 2D plate of lengthL = 100 mmandwidth l = 40. The plate is submitted to
a monotonic loading in pressure C(t)P on the right edge until reaching an elastoplastic
deformation of 35%. The loading function parameters are chosen as Cm = 55 and
Tm = 55. For symmetry reasons, we work only with the plate quarter as indicated in
Fig. 1.

The Taylor series truncation order and the tolerance parameter are N = 15 and
∈= 10−3. The regularization parameters are η1 = 10−2, η2 = 10−4, η3 = 9.10−5 and
η4 = 5.10−3. We chose for this comparison to work with the parametrization based
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on the load parameter and time (PCT). In Fig. 2, we compare our response curve to
the one obtained by the industrial code ABAQUS (Abaqus, 2014) at the Pt1 indicated
in Fig. 1; we see clearly that the response curve found by the Asymptotic Numerical
Method approach the reference curve. The ANMcompleted the whole curve in 116 steps
where ABAQUS needed 110 increments and 140 iterations which means 250 steps. We
will discuss later on how to optimize more our algorithm in order to obtain the whole
response curve with less steps.

To justify the choice of the parameters of regularization, we present a full study
on the four parameters η1, η2, η3 and η4, in which we discuss the influence of every
parameter on the solution obtained and number of steps. To do so, we are going to fix
the order at 15 and the tolerance parameter at 10−3, and to simplify the task we vary
each parameter while keeping the others fixed to describe the domain validity of each
one with respect to the others. To avoid division by zero, the first parameter η1 is added
to the equation of the equivalent stress q given previously. We vary it in an interval of
η1 ∈ [

10−6, 10−1
]
. The response curve starts to converge from a value η1 = 10−2

where we get the whole response curve in 116 ANM steps, and in 118, 127 steps for
the values η1 = 10−3 and η1 = 10−4 respectively. And it diverges again for the value
of η1 = 10−5 and η1 = 10−6. So, the interval for the first parameter η1 will be from
10−2 until 10−4. Secondly, we discuss the influence of the η2 which influences on the
H function that describe the elastic discharge (10), and it appears also in the equation
of ζ that completes the H function. After testing it in the interval of η2 ∈ [

10−6, 10−1
]
,

the solution start to converge from the value η2 = 10−3 with more accurate results at
η2 = 10−4, where we obtain the whole response curve in 116 ANM steps, and the more
it’s value decreases the more steps are needed, for η2 = 10−6 it needs 128 ANM steps.
So, the interval is η2 ≤ 10−3. The third parameter is used to regularize the functionG

(
fy

)

(10). We do the same test that was previously conducted on the two other parameters,
we vary it in the interval η3 ∈ [

10−6, 10−1
]
, and the solution starts to converge from

the value η3 = 9.10−4. Therefore, the domain of validity is η3 ≤ 9.10−4.
For the final regularization parameter η4 which is linked to the loading equation,

which is described by a triangle and as previously done, we fix the other parameters and
we vary η4. The parameter η4 converges for the values η4 ≤ 5.10−3.

Table 1 indicates the influence of the number of the order for two given tolerance
parameters CRIT1 = 10−3 and CRIT2 = 10−4 for the time parameterization (PT) and
the parametrization based on loading and time (PCT). It is shown that, if the number of
the series order increases the number of the ANM steps decreases considerably for both
parametrization and for the two of the tolerance criteria. In exact numbers, we find that
for PT-CRIT1 we get 42.77% decrease in the number of steps from the order 10 to 30,
and 57.32% decrease for PT-CRIT2.

5 Conclusion

We propose in this study a high order algorithm based on the Asymptotic Numerical
Method technics to simulate large deformation elasto-plasticity problems. We adopted
the regularization used in (El Kihal et al., 2022) for the elasto-plastic behavior in order
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Fig. 1. Tensile test for the 2D plate

Fig. 2. The equivalent plastic strain versus the equivalent stress. The numerical parameters used
are N = 15, ∈= 10−3. The results are compared with the ones of industrial code Abaqus.

Table 1. Number of steps for the two parametrizations (PT, PCT) with two tolerance parameters
(CRIT1, CRIT2) for different truncation orders N = 10, N = 15, N = 20, N = 30.

N-order PT PCT

CRIT1 CRIT2 CRIT1 CRIT2

10 166 239 157 226

15 118 141 116 134

20 104 115 102 114

30 95 102 92 99

ABAQUS 250
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to obtain an analytical representation in the form of a Taylor series. Next, we pre-
sented the resolution strategy using the ANM for the regularized problem, and used the
parametrization equation based on time, loading and displacement. Finally, the model
was practically tested in a tensile numerical simulation of a 2D plate. A comparison
was conducted between the obtained results using the proposed algorithm and the ones
found by ABAQUS code. Also, an investigation of the influence of the parameterization
was presented. The obtained result demonstrates that the algorithm proposed is capable
of computing elasto-plasticity problems in finite transformation.
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