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Abstract. We propose a deterministic version of finite state matrix
automaton (DFSMA) which recognizes finite matrix languages (FML).
Our main result is a generalization of the classical Myhill-Nerode theo-
rem for DFSMA. Our generalization requires the use of two relations
to capture the additional structure of DFSMA. Vertical equivalence ≡v

captures that words sharing the same vertical location, horizontal equiva-
lence ≡h captures that words sharing the same horizontal location. A finite
matrix language is defined to be regular if relations ≡v and ≡h exist that
satisfy certain conditions, in particular, they have finite index. We show
that the language associated to a DFSMA is regular, and we construct,
for each finite matrix language, a DFSMA that accepts this language.
Our result provides a foundation for learning algorithms for DFSMA.

Keywords: Myhill-Nerode equivalence · Deterministic finite state
matrix automata · Finite matrix languages

1 Introduction

Grammatical inference is the realistic common area of research between machine
learning and formal language theory. The concept of Grammatical inference
deals with the automatic learning of grammars, automata and other language
describing devices. We attempt to satisfy both (machine Learning and formal
Language Theory) parts of the potential readership of this paper, as it has
been shown that the inter-dependencies between both areas are strong. The
basic motivation for investigating the learning of DFSMA, is to investigate the
connection between matrix languages and automata learning.

1.1 Learning Aspects

It has been investigated that the passive learning problem of finding a mini-
mal deterministic finite automata (DFA) is NP-hard, and it is compatible with
a finite set of positive and negative examples, in [16]. In spite of this, many
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DFA identification algorithms have been developed. [2] presented an efficient
algorithm for active learning a regular language L, which assumes a minimally
adequate teacher (MAT) that answers two types of queries about L, with a
membership query, the algorithm asks whether or not a given word w is in L,
and with an equivalence query it asks whether or not the language LH of an
hypothesized DFA H is equal to L. If LH and L are not same, a word which
is in the symmetric difference of the two languages gets returned. Also there
are alternative versions of algorithms for learning regular languages in the MAT
model appeared in [7,8,17,30,40]. The limits of the model were investigated in
[3,5]. There was an interesting question arose, whether it can be extended to the
supersets of regular sets.

In [29] Radhakrishnan and Nagaraja proposed a method for the inference
of even linear languages from positive examples, also the proposed method can
be used in a hierarchical manner to infer grammars for complex pictures. The
interesting work of [36] and [34] established the reduction technique of the learn-
ing of even linear languages (introduced in [1]) to the learning of regular lan-
guages. Also, the usefulness of the concept of control languages (originating from
[15]) was shown in the reduction of the learning problem of languages through
controlled fixed grammars in [20,21,36,38,39]. In particular, Takada used this
concept to develop an efficient learning algorithm, called “even equal matrix
languages” [37,39]. Also, in [23,24] polynomial time learning algorithms are pro-
posed for interesting subclasses of contextual array and string languages respec-
tively. Also, in [25], a two dimensional automaton had been defined for array
languages. In this way, we realize the importance of learning matrix languages
and in this paper we deal with finite matrix languages.

In this article, we propose a deterministic version of finite state matrix
automata (DFSMA) which can recognize finite matrix languages (FML). More
importantly, we establish a Myhill-Nerode theorem for DFSMA and FML. We
know that the Myhill-Nerode theorem refers to a single equivalence relation on
words, and constructs a DFA in which states are equivalence classes, our gener-
alization requires the use of two relations to capture the additional structure of
DFSMA. The Myhill-Nerode theorem makes the platform to develope a learn-
ing algorithm for DFSMA using query learning model [2].

Myhill-Nerode theorems are of pivotal importance for learning algorithms.
Angluin’s classical L∗ algorithm for active learning of regular languages, as well
as improvements such as [11,19,30], use an observation table to approximate the
Myhill-Nerode congruence. Maler and Steiger [22] established a Myhill-Nerode
theorem for ω-languages that serves as a basis for a learning algorithm described in
[4]. The SL∗ algorithm for active learning of register automata of Cassel et al. [10]
is directly based on a generalization of the classical Myhill-Nerode theorem to a
setting of data languages and register automata (extended finite state machines).

1.2 Formal Language Aspects

Syntactic approaches, on account of their structure-handling capability, have
played an important role in the problem of description of picture patterns
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considered as connected digitized, finite arrays of symbols. Pioneering work in
suggesting and applying a linguistic model for the solution of nontrivial prob-
lems in picture processing was presented in [27]. Using the techniques of formal
string language theory, various types of picture or array grammars have been
introduced and investigated in [9,13,14,31,32]. Most of the array grammars are
based on Chomskian string grammars. Some recent results on picture languages
can be found in [6,12,26].

A picture can be represented as a m × n matrix in which each entry is aij

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. By an operation on a digitized picture is meant a
function which transforms a given picture matrix into another one. Programming
languages have types and a function may have an argument, which is of type
matrix, and it is not trivial to handle computationally. For practical purposes it
is desirable to work with operations on digitized pictures which can be defined
in terms of functions having considerably fewer arguments.

In this paper we deal with a linguistic model for the generation of matrices
(rectangular arrays of terminals) by the substitution of regular sets [18] into
well-known families of formal languages. In formal language theory the substi-
tution operator operates on ‘string languages’ (languages made up of strings of
terminals). Here the substitution operator operates on a ‘string language’ and
the resultant is a ‘matrix language’ (language whose sentences are matrices, i.e.,
m × n arrays of terminals). In particular, we recall finite/regular matrix lan-
guages and we propose the corresponding deterministic version of automaton,
called deterministic finite state matrix automata (DFSMA). Matrix grammar
refers to a grammar in which the production rules are applied together in fixed
sets. There are several variants where the rewriting rules are regular, context-free
or context-sensitive with arrays of terminals in the place of strings of terminals.
Furthermore, in order to obtain richer families, restrictions are imposed on the
use of production rules in well known families of grammars. Several such studies
are available in the literature [33]. In this paper, our focus is on FML where the
rewriting rules are regular. Some interesting classes of pictures including certain
letters of the alphabet, kolam, (traditional picture patterns used to decorate the
floor in South Indian homes) and wall paper designs (repetitive patterns) can
be generated by finite matrix grammars.

The remainder of this paper is organized as follows. Section 2 recalls the def-
inition of FML and Subsect. 2.1 presents examples of FML for better under-
standing. Section 3 proposes the definition of DFSMA and examples are dis-
cussed in Subsect. 3.1 Section 4 presents some of the important results about
FML. In Sect. 5, we discuss the Myhill-Nerode equivalence and establish the
Myhill-Nerode theorem for DFSMA with illustrations with examples in Sub-
sect. 5.1 and 5.2. Section 6 concludes the work and shows a future direction of
work.

2 Finite Matrix Language (FML)

We recall the definition of FML [35] based on right linear grammar [18].
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Definition 1 (Finite Matrix Language (FML)). A Finite matrix gram-
mar (FMG) is a pair G = (G1, G2), where G1 = (V1, I1, P1, S) is a right
linear grammar with V1, a finite set of horizontal non-terminals, I1, a finite
set of intermediates (i.e., I1 = {S1, S2, ..., Sk}), P1 is a finite set of right lin-
ear grammar production rules called horizontal production rules, and S, the
start symbol where S ∈ V1 and V1 ∩ I1 = φ. We define G2 = (

⋃k
i=1 G2i)

where G2i = (V2i, I2i, P2i, Si) is a right linear grammar, V2i is a finite set
of vertical non terminals, I2i is a finite set of vertical terminals, Si is the
start symbol, P2i is a finite set of vertical production rules, V2i ∩ V2j = φ, if
i �= j. The horizontal derivations and vertical derivations are denoted as =⇒

h
,=⇒

v

respectively. The derivations are obtained by first applying horizontal produc-
tion rules and then the vertical production rules. Firstly a horizontal string
S1S2...Sk ∈ I1

∗ has been generated using horizontal production rules P1 in G1,
i.e., S

∗G1==⇒
h

S1S2...Sn. A vertical derivation has been defined as follows : if there

are rules Si ↓ a1iAi, Ai ↓ a2iB3i, Bji ↓ ajiBj+1i, Bri ↓ ari, 3 ≤ j ≤ r − 1 in G2i,
where i ∈ {1, ..., k} for i = 1, ..., n, then the matrices will be generated in the
following way :

S
∗=⇒
h

[
S1 . . . Sn

]
=⇒
v

[
a11 . . . a1n

A1 . . . An

]

=⇒
v

⎡

⎢
⎢
⎣

a11 . . . a1n

. . . . .
a(r−1)1 . . . a(r−1)n

Br1 Brn

⎤

⎥
⎥
⎦

=⇒
v

⎡

⎢
⎢
⎣

a11 . . . a1n

. . . . .
a(r−1)1 . . . a(r−1)n

ar1 arn

⎤

⎥
⎥
⎦

Here ∗=⇒
v

is the transitive closure of ⇒. The vertical derivation gets terminated if
Bri → ari are all terminal rules in G2i where i = 1, ..., n.

The set of all matrices is defined as follows:

L(G) = {r × n arrays [aij ] | i = 1, ..., r, j = 1, ..., n, r, n ≥ 1, S
∗G1==⇒
h

S1S2...Sn
∗G2==⇒
v

[aij ]}

Remark 1. A single non terminal is produced in each column as the rules are in
the form of A → aB,A → a where a ∈ I2.

Remark 2. No cell in any column is blank or empty as a rule from one of G2i

where i = 1, ..., k is supposed to be ε free.

Remark 3. In the definition of finite matrix grammar, the production rules are
applied in a simultaneous fashion. In that sense, the grammars are matrix gram-
mars. Moreover, the definition is more general in that the set of rules applied at
one stage is not fixed but restricted by the horizontal string generated at the first
stage. The name matrix grammar is retained to refer to this generalization also.
Importantly, it should be noted that in this paper, the matrix grammars generate
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matrix languages whose sentences are matrices (m × n rectangular arrays). On
the other hand, in the formal language theory, the matrix languages are consid-
ered to be string languages where sentences are strings-generated by grammars
written in the form of a matrix.

Remark 4 (Notation). If L′ is the language generated by G1, and R1, ..., Rk (the
subsets of) the regular sets corresponding to G2i where i = 1, ..., k, then we can
write L(G) = (L′) : : (R1, ..., Rk)

2.1 FML - Examples

Example 1. Let G = (G1, G2) where G1 = ({S, S′}, {S1, S2}, {S → S1S
′, S′ →

S2S
′, S′ → S2}, S), G2 = G21 ∪ G22, G21 = ({S1, A}, {X}, {S1 → XA,A →

XA,A → X}, S1), G22 = ({S2, A}, {.,X}, {S2 → .A,A → .A,A → X}, S2),
then L = {S1S

n
2 | n ≥ 1}, R1 = {Xm | m ≥ 1}, R2 = {(.)m−1X | m ≥ 1} and

L(G) = (L′) : : (R1, R2). L(G) is a finite matrix language and consists of m×n
arrays (m > 1, n > 1) describing the token L.

G generates m × n matrices (m > 1, n > 1) which describe the token L. We
illustrate by generating a 6 × 5 matrix from G.

S
∗G1==⇒

h

[
S1 S2 S2 S2 S2

] G2=⇒
v

[
X . . . .
A A A A A

]
G2=⇒
v

⎡

⎣
X . . . .
X . . . .
A A A A A

⎤

⎦

G2=⇒
v

⎡

⎢
⎢
⎣

X . . . .
X . . . .
X . . . .
A A A A A

⎤

⎥
⎥
⎦

G2=⇒
v

⎡

⎢
⎢
⎢
⎢
⎣

X . . . .
X . . . .
X . . . .
X . . . .
A A A A A

⎤

⎥
⎥
⎥
⎥
⎦

G2=⇒
v

⎡

⎣

X . . . .
X . . . .
X . . . .
X . . . .
X . . . .
A A A A A

⎤

⎦

G2=⇒
v

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X . . . .
X . . . .
X . . . .
X . . . .
X . . . .
X X X X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ L(G)

Example 2. Let G = (G1, G2) where G1 = ({S, S′}, {S1, S2}, {S → S′S, S →
S′S1, S

′ → S1S2S2S2}, S), G2 = G21 ∪ G22, G21 = ({S1, A}, {X}, {S1 →
XA,A → XA,A → X}, S1), G22 = ({S2, S

′
2}, {.,X}, {S2 → S′

2S2, S2 →
S′

2X,S′
2 → X..}, S2), then L = {S1S2S2S

n
2 S1 | n ≥ 1}, R1 = {Xm1 |

m1 ≥ 1}, R2 = {(X..)m2X | m2 ≥ 1} and L(G) = (L′) : : (R1, R2).
L(G) is regular and describes rectangular grids made up of r × s rectangles
(r = 1, 2, . . . , s = 1, 2, . . .) of the same size.

G generates the 2 × 4 grid ∈ L(G).

S
∗G1==⇒

h
[ S1 S2 S2 S2 S1 S2 S2 S2 S1 S2 S2 S2 S1 S2 S2 S2 S1 ]
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G1,G2====⇒
h,v

[
X S′

2 S′
2 S′

2 X S′
2 S′

2 S′
2 X S′

2 S′
2 S′

2 X S′
2 S′

2 S′
2 X

A S2 S2 S2 A S2 S2 S2 A S2 S2 S2 A S2 S2 S2 A

]

∗G1,∗G2=====⇒
v

⎡

⎢
⎣

X X X X X X X X X X X X X X X X X
X . . . X . . . X . . . X . . . X
X . . . X . . . X . . . X . . . X
X X X X X X X X X X X X X X X X X
X . . . X . . . X . . . X . . . X
X . . . X . . . X . . . X . . . X
X X X X X X X X X X X X X X X X X

⎤

⎥
⎦ ∈ L(G)

In the next section we define deterministic finite state matrix automata
(DFSMA), to correspond to families of matrices (FML).

3 Deterministic Finite State Matrix Automata (DFSMA)

We define a deterministic version of finite state matrix automata.

Definition 2 (Deterministic finite state matrix automaton(DFSMA)).
A deterministic finite state matrix automaton is defined as a 9 tuple DFSMA =
(Q, I, T, δ, δ′, S, F ′, F, $) where

– T : Set of horizontal symbols and |T | is the number of horizontal symbols and
it denotes the number of horizontal states also.

– I : Set of vertical symbols.
– Q = (

⋃k
i=1 Qi) ∪ Q′ is the finite set of states where Qi is the finite set of

vertical states corresponding to each horizontal state Si ∈ Q′, Q′ is the finite
set of horizontal states where (

⋃k
i=1 Qi) ∩ Q′ = φ and |Q′| = |T | = k.

– Vertical transition function δ : (Qi ∪ Q′) × I → Qi. A vertical transition of
DFSMA is of the form : δ(qi, x) = qj where qi, qj ∈ (Qi∪Q′), if qi = Sj ∈ Q′

where i = 0, then it is the first transition of the automata which starts from
the start state S0 ∈ Q′, and if i �= 0 then it is the first transition from
any other horizontal state Sj ∈ Q′. The vertical transition function δ can be
extended to δ̂ that operates on states and strings (as opposed to states and
symbols), such that, δ̂(qi, ε) = qi, δ̂(qi, xa) = δ(δ̂(qi, x), a).

Qi = {qk | (δ̂(qj , xa) = qk) ∧ (qj ∈ Qi ∨ qj = Sj)}.

– Horizontal transition function δ′ : F ′ × {$} → Q′, then the horizontal transi-
tion is of the form δ′(fi, $) = Sj. (F ′ ∩ Qi) is a singleton set which contains
only fi, x∗,i denotes the ith column vector.

Q′ = {Sj | δ′(fi, $) = Sj ∧ (fi ∈ F ′) : δ′(δ̂(Si, x∗,i), $) = Sj}
– S0 ∈ Q′ : Initial state
– We define finite set of vertically accepting states F ′ = (

⋃k
i=1 fi), such that,

F ′ = {fi | δ̂(qi, x∗,i) = fi ∧ δ′(fi, $) = Sj ∧ (1 ≤ i ≤ k)}

– F = fk denotes the final state of DFSMA, such that, δ̂(Sk, x∗,k) = fk where
fk ∈ Qk and k is the number of horizontal states.
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– $ is the end marker where $ /∈ I

The (standard) semantics of DFSMA is defined as follows.
A vertical run of DFSMA over a vertical word wv = x0 · · · xn, is a sequence

of steps of DFSMA:

Si
x0−→ q1 . . . qn

xn−−→ qn+1

We say a vertical run is accepting if qn+1 = fi ∈ F ′. It is rejecting if qn+1 �∈ F ′

. Vertical word wv is accepted (rejected) if DFSMA has an accepting (reject-
ing) run over wv. There must be an accepting vertical run corresponding each
intermediate state Sj ∈ Q′ where 1 ≤ j ≤ k.

A horizontal run of DFSMA over a horizontal word wh = x∗,0x∗,1 · · · x∗,n

where x∗,i denotes the ith column of the matrix, a horizontal word wh is a
sequence of column vectors where each column vector is followed by the end
marker $ /∈ I, such that, wh = x∗,0$ x∗,1$ · · · x∗,n, is a sequence of steps of
DFSMA :

S0
x∗,0−−→ f0

$−→ S1 . . . Sn
x∗,n−−−→ fn.

We say a horizontal run is accepting if fn = fk ∈ F ′ where |T | = k. Horizontal
word wh is accepted (rejected) if DFSMA has an accepting (rejecting) run over
wh. The language of DFSMA, notation L(DFSMA), is the set of all horizontal
words or images that are accepted by DFSMA.

Our proposed DFSMA has single initial state S0. The automaton starts read-
ing from the first column of the input matrix. All the vertical and horizontal
moves are unique. It reaches fi and then using enmarker $i goes to another
column corresponding to some Sj . If i = j then it will create a loop, otherwise
it will go to new horizontal state. If there exist an input matrix m × n then
the automaton reads till the nth column, there will not be any endmarker $n

followed by the nth column, so the last horizontal move is based on the end-
marker $n−1 which takes the automaton to Sn. The automaton will finish the
reading with the nth set of vertical moves corresponding to Sn, and it ends up
with fn = F , it has single final state (Fig. 1).

3.1 DFSMA - Examples

Example 3. We define DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $) which can accept
the language of Example 2.1 (L token).

– Q = {Q1 ∪ Q2 ∪ Q′} where Q1 = {q11}, Q2 = {q21 , q22} and F ′ = {q11 , q22}
where q11 = f1, q22 = f2 and Q′ = {S1, S2},

– I = {., x},
– T = {S1, S2},
– F ′ = {f1 = q11 , f2 = q22}, and f2 = q22 is the final state.
– S1 is the initial state.
– $ is the end marker where $ /∈ I
– Vertical transitions (δ) and horizontal transitions (δ′) are given below.



A Myhill-Nerode Theorem for Finite State Matrix 161

1. δ(S1, x) = q11 where q11 = f1
2. δ(q11 , x) = q11
3. δ′(q11 , $) = S2

4. δ(S2, .) = q21
5. δ(q21 , .) = q21
6. δ(q21 , x) = q22
7. δ′(q22 , $) = S2

S1start S2

q11 q21

q22q22

x

x

$ .

.

x

$

Fig. 1. Deterministic finite state matrix automaton.

Example 4. We define DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $) which can accept
the language of Example 2.2 (L token).

– Q = {Q1 ∪ Q2 ∪ Q3 ∪ Q4 ∪ Q′} where Q1 = {q11}, Q2 = {q121 , q
1
22 , q

1
23}, , Q2 =

{q121 , q
1
22 , q

1
23}, Q3 = {q221 , q

2
22 , q

2
23}, Q4 = {q321 , q

3
22 , q

3
23} and F ′ =

{q11 , q
1
23 , q

2
23 , q

3
23} where q11 = f1, q

1
23 = f2, q

2
23 = f3, q

3
23 = f4 and Q′ =

{S1, S
2
1 , S2

2 , S2
3},

– I = {., x},
– T = {S1, S

2
1 , S2

2 , S2
3},

– F ′ = {f1 = q11 , f2 = q223 , f3 = q223 , f4 = q323}, and f1 = q11 is the final state.
– S1 is the initial state.
– $ is the end marker where $ /∈ I
– Vertical transitions (δ) and horizontal transitions (δ′) are given below (Fig.

2).

1. δ(S1, x) = q11 where q11 = f1
2. δ(q11 , x) = q11
3. δ′(q11 , $) = S2

1

4. δ(S2
1 ,X) = q121
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5. δ(q121 , .) = q122
6. δ(q122 , .) = S2

1
7. δ(q122 ,X) = q123
8. δ′(q123 , $) = S2

2
9. δ(S2

2 ,X) = q221
10. δ(q221 , .) = q222
11. δ(q222 , .) = S2

2
12. δ(q222 ,X) = q223
13. δ′(q223 , $) = S2

3
14. δ(S2

3 ,X) = q321
15. δ(q321 , .) = q322
16. δ(q322 , .) = S2

3
17. δ(q322 ,X) = q323
18. δ′(q323 , $) = S1

S1start S2
1 S2

2 S2
3 S1

1

q11 q12q121

q122

q123

q221

q222

q223

q321

q322

q323

q12

x

x

$
x

x

$

X

.

.

X

$

X

.

.

X

$

X

.

.

X

$

Fig. 2. Deterministic finite state matrix automaton for 2 × 4 grid

In the next section, we show some of the important results of FML.

4 Properties of Finite Matrix Languages

In this section, we summarize some of the important closure properties of FML
in Table 1. Also, we present some of the decidable results of FML in Table 2.
The following important results had been eastablished in [28].
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Table 1. Closure property results

Union Closed

Concatenation Closed

Kleene Closure Closed

Complementation Closed

Intersection Closed

Table 2. Decidability results

L = φ Decidable

L = Σ∗ Decidable

L1 = L2 Decidable

w ∈ L Decidable

As the membership problem, (w ∈ L), is decidable, it would be possible to
apply MAT model to learn DFSMA. In order to apply MAT model, very impor-
tantly we must establish the important Myhill - Nerode theorem for DFSMA
and FML.

In the next section, we discuss the Myhill - Nerode equivalence of DFSMA
and FML.

5 Myhill - Nerode Equivalence

The Myhill-Nerode equivalence [2] considers two words w and w′ of a language L
equivalent if there does not exist a suffix u that distinguishes them, that is, only
one of the words wu and w′u is in L. The Myhill-Nerode theorem states that L
is regular if and only if this equivalence relation has a finite index, and moreover
that the number of states in the smallest deterministic finite automaton (DFA)
recognizing L is equal to the number of equivalence classes. In this section, we
present a Myhill-Nerode theorem for DFSMA and FML. In string languages,
Myhill and Nerode only needs a single equivalence relation on words to capture
DFAs, we need two relations ≡v, ≡h on words to capture the richer structure of
DFSMA.

Here, first we define Right invariant vertical equivalence relation and Right
invariant horizontal equivalence relation in order to establish the Myhill - Nerode
theorem for DFSMA and FML.

Definition 3 (Right invariant vertical equivalence relation). A vertical
equivalence relation ≡v on I∗ is said to be right invariant if, for x, y, z ∈ I∗,
x ≡v y =⇒ ∀z(xz ≡v yz).

Example 5. Suppose L = (L′) : : (R1, ..., Rk) be a language over I∗∗ where
each Ri, i ≥ 1 be a language over I. If there exist an equivalence relation ≡R on
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I∗ then it is a right invariant equivalence relation on I∗. We define x ≡R y if and
only if ∀z(xz ∈ R ⇐⇒ yz ∈ R). It can be easily cross-checked that x ≡R y is an
equivalence relation as it satisfies reflexive, symmetric, and transitive properties.
We assume that x ≡R y where x, y ∈ I∗ and z ∈ I∗ be an arbitrary, now our
claim is xz ≡R yz, that is, (∀w)(xzw ∈ R ⇐⇒ yzw ∈ R). For any arbitrary
w ∈ I∗, we write u = zw, now since x ≡R y, we have xu ∈ R ⇐⇒ yu ∈ R, so
xzw ∈ R ⇐⇒ yzw ∈ R.

Definition 4 (Right invariant horizontal equivalence relation). Hor-
izontal equivalence relation ≡h on I∗∗ is said to be right invariant if, for
x, y, z ∈ I∗∗, x ≡h y =⇒ ∀z(xz ≡h yz).

Example 6. Suppose L = (L′) : : (R1, ..., Rk) be a language over I∗∗. If there
exist an equivalence relation ≡L′ on I∗∗ then it is a right invariant equivalence
relation on I∗∗. We define x ≡L′ y if and only if ∀z(xz ∈ L′ ⇐⇒ yz ∈ L′) where
x, y, z ∈ I∗∗. It can be easily verified that x ≡L′ y is an equivalence relation as it
satisfies reflexive, symmetric, and transitive properties. We assume that x ≡L′ y
where x, y ∈ I∗∗ and z ∈ I∗∗ be an arbitrary, Now we claim xz ≡L′ yz, that is,
(∀w)(xzw ∈ L′ ⇐⇒ yzw ∈ L′). For any arbitrary w ∈ I∗∗, we write u = zw,
now since x ≡L′ y, we have xu ∈ L′ ⇐⇒ yu ∈ L′, so xzw ∈ L′ ⇐⇒ yzw ∈ L′.

Lemma 1. Suppose DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $). There exist a vertical
equivalence ≡DFSMAv

and it is right invariant.

Proof. We define x ≡DFSMAv
y if and only if δ̂(s0, x) = δ̂(s0, y) where x, y ∈

I∗. It is trivial that x ≡DFSMAv
y is an equivalence relation as it satisfies

reflexive, symmetric and transitive properties. We consider x ≡DFSMAv
y that

is δ̂(s0, x) = δ̂(s0, y), for z ∈ I∗, δ̂(s0, xz) = δ̂(δ̂(s0, x), z) = δ̂(δ̂(s0, y), z) =
δ̂(s0, yz) as we know already that δ̂(s0, x) = δ̂(s0, y). (See Definition 3)

Lemma 2. Suppose DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $). There is a horizontal
relation ≡DFSMAh

on I∗∗, and it is right invariant.

Proof. Suppose w = x∗,0 · · · x∗,n and w′ = y∗,0 · · · y∗,n′ then w ≡DFSMAh
w′ if

and only if -

δ′(δ̂(s0, x∗,0), $) = δ′(δ̂(s0, y∗,0), $)

δ′(δ̂(s1, x∗,1), $) = δ′(δ̂(s1, y∗,1), $)
...

δ′(δ̂(sn, x∗,n), $) = δ′(δ̂(sn′ , y∗,n′), $)

Now it can be easily understood that ≡h is right invariant equivalence relation
if, for all z ∈ I∗∗, wz and w′z leads DFSMA to same state. (See Definition 4)

We can now state and prove the celebrated result of Myhill & Nerode.
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Theorem 1. Suppose there is a DFSMA. Then L(DFSMA) = (L′) ::
(R1, ..., Rk).

Proof. Assume (L′) : : (R1, ..., Rk) is recognized by DFSMA = (Q, I, T, δ, δ′,
S, F, F ′, $),

– For (x ∈ Ri), if δ̂(s0, x) = p, then

[x]i = {y ∈ Ri | δ̂(s0, y) = p}
(All those strings member of Ri, if we put them in the initial state S0 and if
they reach p, they are equivalent to x).

– That is given, (q ∈ Qi), we define -

Cq = {x | (x ∈ Ri) ∧ (Ri ⊆ I∗) ∧ δ̂(S0, x) = q}
(All those strings if we put them in the initial state S0, if they reach q, then
those strings are in equivalence class Cq. Cq is possibly empty if q is reachable.
So corresponding to each state there is an equivalence class of ≡Ri

and it is
finite index.)

– The vertical equivalence classes corresponding to each Ri are completely deter-
mined by the vertical states of DFSMA. More over the number of vertical
equivalence classes of ≡Ri

for each Ri is less than or equal to the number of
vertical states of DFSMA for each Ri. As we know that for each i, |Qi| is
finite, we can conclude that the number of vertical equivalence classes of ≡Ri

for each Ri is finite index.
–

Ri = {x ∈ I∗ | δ̂(S0, x) ∈ F ′}
=

⋃

pv∈F ′
{x ∈ I∗ | δ̂(S0, x) = pv}

=
⋃

pv∈F ′
Cpv

(Cpv
is a vertical equivalence class corresponding to state pv, Ri is union of all

Cpv
for pv ∈ F ′. Some of the intermediate final states may not be reachable,

in that case the set is empty) (See Lemma 1)
– Similarly it can be shown that the horizontal equivalence classes are completely

determined by the the horizontal states of DFSMA, a horizontal word w ∈
I∗∗ is consisting of multiple column vectors, such that, w = x∗,0 x∗,1 · · · x∗,j,

we define, s0
x∗,0$ x∗,1$···x∗,j−1$−−−−−−−−−−−−−→ sj using a sequence of steps of DFSMA:

s0
x∗,0−−→ f0

$−→ s1 . . . sj−1
x∗,j−1−−−−→ fj−1

$−→ sj ,

We define [sj ], if s0
x∗,0$ x∗,1$···x∗,j−1$−−−−−−−−−−−−−→ sj, then,

[x∗,0 x∗,1 · · · x∗,j−1] = {y∗,0 y∗,1 · · · y∗,k ∈ I∗∗ | s0
y∗,0$ y∗,1$···y∗,k$−−−−−−−−−−−−→ sj}
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– More over the number of horizontal equivalence classes of ≡L′ is less than or
equal to the number of horizontal states of DFSMA.

Csj
= {x∗,0 x∗,1 · · · x∗,n′ ∈ I∗∗ | s0

x∗,0$ x∗,1$···x∗,n′$−−−−−−−−−−−−→ sj},

is an equivalence class of ≡L′ and finite index.
–

L′ = {x ∈ I∗∗ | δ′(δ̂(s0, w), $) ∈ Sj}
=

⋃

ph∈Sj

{x ∈ I∗∗ | δ′(δ̂(s0, w), $) = ph}

=
⋃

ph∈Sj

Cph

(Cph
is a horizontal equivalence class corresponding to state ph, L is union

of all Cph
for ph ∈ F . Some of the final states may not be reachable, in that

case the set is empty)(See Lemma 2)

Example 7. In the Example 1 of Subsect. 3.1, the vertical equivalence classes are
following:

– Cq11
= {Xm | (δ̂(s1,Xm) = q11,m ≥ 1}

– Cq21
= {(.)m | (δ̂(s2, (.)m) = q21,m ≥ 1}

– Cq22
= {(.)mX | (δ̂(s2, (.)mX) = q22,m ≥ 1}

Horizontal equivalence class is given below.

Cs1 = {ε | s1
ε−→ s1}

S1 is the start state.

Cs2 = {((.)mX)0 · · · ((.)mX)n | s2
((.)mX)0···((.)mX)n−−−−−−−−−−−−−→ s2}

Theorem 2. Suppose L = (L′) : : (R1, ..., Rk) is an FML over I∗∗. Then
there exist a DFSMA such that L = L(DFSMA).

Proof. We define DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $) where

– Q = Q′′∪Q′ such that Q′′ =
⋃k

i=1 Qi where ∀i Qi = {[x]i | (x ∈ Ri∧Ri ⊆ I∗)}
is a finite set of vertical states corresponds to Si and Q′ = {[x∗,i] | x∗,i ∈ I∗∗}
where x∗,i is the ith column vector and it is followed by the ith end marker
$i, then it goes to another horizontal state Sj. ∀i Qi is the set of equivalence
classes of ≡Ri

and Q′ is the set of equivalence classes of ≡L′ .
(We consider that for each horizontal state Si, i ≥ 0, there is a finite set
Qi of vertical states, all these vertical moves are same as DFA. In case of
horizontal moves, the automaton needs to read atleast one column, if it reads
the ith column vector x∗,i, then it encounters with the ith end marker $i,
finally it goes to some another horizontal state Sj, then it is called horizontal
move.)
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– S0 = [ε]
(Since we assume that L is nonempty, ε ∈ Pref(L). Here S0 is the first
horizontal state, always the first horizontal state will be considered as the
initial state of the automata. Here S0 will have Q0 which will contain a finite
set of vertical states and using them the automata will read the corresponding
0th column vector x∗,0, followed by $0, then it goes to some Sj where j ≥ 0.)

– F = {[w] | w ∈ L} where w = x∗,0 · · · x∗,n.
(w = x∗,0 · · · x∗,n where x∗,0 represents the 0th column, x∗,1 represents 1th
column so on. So 0th to nth column vector, that i, an array of n columns
is getting accepted. Every column is followed by an end marker $ apart from
the last column x∗,n, in case of the last column, it reaches fn which is the
final state. There is no more column, so there does not exist more horizontal
state.)

– F ′ = {[x∗,i] ∈ Qi | [x∗,i] ∈ Ri ∧ (1 ≤ i ≤ k)}.
(Each column vector x∗,i takes the automata to vertical final state fi ∈ F ′.
After reaching the vertical final state, the automaton encounters with end
marker $, then it goes to another horizontal state.)

– Vertical transition : δ([x], a) = [xa] and there exist Qi, such that, [x] ∈ Qi.
– Horizontal transition : δ′([x∗,i], $) = [SiSj ] where Si, Sj corresponds to

x∗,i, x∗,j respectively, [x∗,i] = fi ∈ F ′, [SiSj ] ∈ Q′.

Example 8. Example 1 in Sect. 2.1 is suggested to refer. Now, we show that
L(DFSMA) = Ri.

Corollary 1. (Ri ⊆ L(DFSMA) ∧ L(DFSMA) ⊆ Ri) =⇒ (Ri =
L(DFSMA))

Proof. First we will show that ∀i Ri ⊆ L(DFSMA), wv = x0 · · · xn, if wv =
x0 · · · xn is an arbitrary element, then the vertical run of DFSMA:

Si
x0−→ q1 . . . qn

xn−−→ qn+1

Here the run will be accepted if qn+1 ∈ F ′, so any wv ∈ Ri, that will be accepted
by DFSMA, that is, ∀i Ri ⊆ L(DFSMA).

Now, we need to show that L(DFSMA) ⊆ Ri, using contrapositive we can
write ¬Ri � ¬L(DFSMA), then the run of DFSMA:

Si
x0−→ q1 . . . qn

xn−−→ qn+1

Here the run of DFSMA will be rejected as qn+1 /∈ F ′.

Here, we show that L(DFSMA) = L.

Corollary 2. (L ⊆ L(DFSMA) ∧ L(DFSMA) ⊆ L) =⇒ (L = L(DFSMA))

Proof. First we will show that L ⊆ L(DFSMA), if w = x∗,0$ x∗,1$ · · · x∗,n is
an arbitrary element, then the run of DFSMA:

S0
x∗,0−−→ f0

$−→ S1 . . . Sn
x∗,n−−−→ fn.
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Here the run is accepting if fn ∈ F , so any w ∈ L, that will be accepted by
DFSMA, that is, L ⊆ L(DFSMA).

Now, we need to show that L(DFSMA) ⊆ L, using contrapositive we can
write ¬L � ¬L(DFSMA), then the run of DFSMA:

S0
x∗,0−−→ f0

$−→ S1 . . . Sn
x∗,n−−−→ fn.

Here the run of DFSMA is will be rejected as fn /∈ F .

6 Conclusion and Future Work

In this paper we define deterministic finite state matrix automata, DFSMA,
which can recognize finite matrix languages, FML. DFSMA has single initial
state and single final state. More importantly, we established the Myhill-Nerode
theorem for DFSMA and FML. Unlike the classical Myhill-Nerode theorem,
here we need two equivalence relations, called vertical equivalence relation ≡v

and horizontal equivalence relation ≡h to capture the behaviour of DFSMA.
Now as we have Myhill-Nerode theorem for DFSMA and FML, we can come
up with a learning algorithm for DFSMA.

So, in the form of future work, it could be the immediate step of this work
to develop an efficient learning algorithm for DFSMA, it could be interesting
to explore query learning model [2] in this context.
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