
Reneta P. Barneva
Valentin E. Brimkov
Giorgio Nordo (Eds.)

LN
CS

 1
33

48 Combinatorial
Image Analysis
21st International Workshop, IWCIA 2022
Messina, Italy, July 13–15, 2022
Proceedings

Lecture Notes in Computer Science 13348

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Reneta P. Barneva · Valentin E. Brimkov ·
Giorgio Nordo (Eds.)

Combinatorial
Image Analysis
21st International Workshop, IWCIA 2022
Messina, Italy, July 13–15, 2022
Proceedings

Editors
Reneta P. Barneva
State University of New York at Fredonia
Fredonia, NY, USA

Giorgio Nordo
University of Messina
Messina, Italy

Valentin E. Brimkov
SUNY Buffalo State
Buffalo, NY, USA

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia, Bulgaria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-23611-2 ISBN 978-3-031-23612-9 (eBook)
https://doi.org/10.1007/978-3-031-23612-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-23612-9

Preface

This volume contains the proceedings of the 21st International Workshop on Combina-
torial Image Analysis (IWCIA 2022) organized by theMIFT Department (Mathematics,
Computer Science, Physics, and Earth Sciences) of the University of Messina, Italy, and
held during July 13–15, 2022.

Image analysis provides theoretical foundations and methods for solving real life
problems arising in various areas of human practice, such as medicine, robotics, defense,
and security. Since typically the input data to be processed are discrete, the “combina-
torial” approach to image analysis is a natural one and therefore its applicability is
expanding. Combinatorial image analysis often provides advantages in terms of effi-
ciency and accuracy over the more traditional approaches based on continuous models
that require numerical computation.

The IWCIAworkshop series provides a forum for researchers throughout theworld to
present cutting-edge results in combinatorial image analysis, to discuss recent advances
and new challenges in this research area, and to promote interaction with researchers
from other countries. IWCIA had successful prior meetings in Paris (France) 1991, Ube
(Japan) 1992, Washington DC (USA) 1994, Lyon (France) 1995, Hiroshima (Japan)
1997, Madras (India) 1999, Caen (France) 2000, Philadelphia, PA (USA) 2001, Palermo
(Italy) 2003,Auckland (NewZealand) 2004,Berlin (Germany) 2006,Buffalo,NY(USA)
2008, Playa del Carmen (Mexico) 2009, Madrid (Spain) 2011, Austin, TX (USA) 2012,
Brno (Czech Republic) 2014, Kolkata (India) 2015, Plovdiv (Bulgaria) 2017, Porto
(Portugal) 2018, and Novi Sad (Serbia) 2020. The workshop organized by the University
of Messina retained and enriched the international spirit of these previous editions. The
IWCIA 2022 Program Committee was comprised of renowned experts coming from 19
different countries in Asia, Europe, and North and South America.

The workshop received 24 submissions from authors based in seven different coun-
tries. Each submitted paper was sent to at least three reviewers for a double-blind review.
Easychair provided a convenient platform for smoothly carrying out the rigorous review
process. The most important selection criterion for acceptance or rejection of a paper
was the overall score received. Other criteria included relevance to the workshop topics,
correctness, originality, mathematical depth, clarity, and presentation quality.We believe
that as a result, only papers of high quality have been accepted for publication in this
volume, comprising the 19 papers presented at IWCIA 2022.

Excellent keynote talks were given by our invited speakers. Bhargab Bhattacharya
from the Indian Institute of TechnologyKharagpur spoke about digital geometry applica-
tions in medical diagnostics and biochemistry. Benedek Nagy from the EasternMediter-
ranean University gave a talk on the advances and challenges of the non-traditional 2D
grids in combinatorial imaging. Jessica Zhang from Carnegie Mellon University pre-
sented machine learning enhanced simulation and PDE-constrained optimization for
material transport control in neurons.

The contributed papers included in this volume are grouped into four sections. The
first one consists of one invited talk. The second section contains seven papers devoted

vi Preface

to digital geometry and topology. The third consists of six papers discussing picture
languages. The last section, containing six papers, is devoted to various applications.
Webelieve thatmany of these paperswould be of interest to a broader audience, including
researchers in scientific areas such as computer vision, shape modeling, pattern analysis
and recognition, and computer graphics.

Many individuals and organizations contributed to the success of IWCIA 2022.
The editors are indebted to IWCIA’s Steering Committee for endorsing the candidacy
of Messina for the 21st edition of the workshop. We wish to thank everybody who
submitted their work to IWCIA 2022.We are grateful to all participants and especially to
the contributors of this volume. Our most sincere thanks go to the IWCIA 2022 Program
Committee whose cooperation in carrying out high-quality reviews was essential in
establishing a strong scientific program. We express our sincere gratitude to the keynote
speakers, Bhargab B. Bhattacharya, Benedek Nagy, and Jessica Zhang, for the excellent
talks and overall contribution to the workshop program.

We are indebted to the organizations and individuals who supported IWCIA 2022 –
to the Mayor of Reggio Calabria, Paolo Brunetti, to the Metropolitan Mayor of Reggio
Calabria, Carmelo Versace, to the Delegate of the Rector of the University of Messina,
Filippo Grasso, to theMIFTDepartment Research Delegate, Valentina Venuti, and to the
University of Messina, the Metropolitan City of Reggio Calabria, the city of Messina,
Comune di Reggio Calabria, Bronzi di Riace 50th Years Committee, and Calabria
Formazione.

The success of the workshop would not have been possible without the hard work
of the Organizing Committee. We are grateful to the host organization – the MIFT
Department of the University of Messina – for its support. Finally, we wish to thank the
team at Springer for the efficient and kind cooperation in the timely production of this
book.

October 2022 Reneta P. Barneva
Valentin E. Brimkov

Giorgio Nordo

Organization

The 21st International Workshop on Combinatorial Image Analysis, IWCIA 2022, was
organized by theMIFTDepartment (Mathematics, Computer Science, Physics and Earth
Sciences) of the University of Messina and was held during July 13–15, 2022.

General Chair

Giorgio Nordo University of Messina, Italy

Program Chairs

Reneta P. Barneva SUNY Fredonia, USA
Maddalena Bonanzinga University of Messina, Italy
Valentin E. Brimkov SUNY Buffalo State, USA
Mario De Salvo University of Messina, Italy
Saeid Jafari Topositus, Denmark

Steering Committee

Gabor Herman CUNY Graduate Center, USA
Valentin E. Brimkov SUNY Buffalo State, USA
Tibor Lukić University of Novi Sad, Serbia
Renato M. Natal Jorge University of Porto, Portugal
Joao Manuel R. S. Tavares University of Porto, Portugal

Program Committee

Eric Andres Université de Poitiers, France
Buda Bajić University of Novi Sad, Serbia
Péter Balaźs University of Szeged, Hungary
George Bebis University of Nevada at Reno, USA
Partha Bhowmick Indian Institute of Technology Kharagpur, India
Arindam Biswas Indian Institute of Engineering Science and

Technology, Shibpur, India
Boris Brimkov Slippery Rock University, USA
Alfred M. Bruckstein Technion, Israel
Li Chen University of the District of Columbia, USA
Lidija Čomić University of Novi Sad, Serbia

viii Organization

Mousumi Dutt St. Thomas College of Engineering and
Technology, India

Fabien Feschet Université d’Auvergne, France
Leila De Floriani University of Maryland, USA
Chiou-Shann Fuh National Taiwan University, Taiwan
Atsushi Imiya Chiba University, Japan
Krassimira Ivanova Bulgarian Academy of Sciences, Bulgaria
Kamen Kanev Shizuoka University, Japan
Kostadin Koroutchev Universidad Autónoma de Madrid, Spain
Walter G. Kropatsch TU Wien, Austria
Jerome Liang SUNY Stony Brook, USA
Tibor Lukić University of Novi Sad, Serbia
Benedek Nagy Eastern Mediterranean University, North Cyprus
Kálmán Palágyi University of Szeged, Hungary
Meenakshi Paramasivan University of Trier, Gemany
Hemerson Pistori Dom Bosco Catholic University, Brazil
Konrad Polthier Freie Universitaet Berlin, Germany
Paolo Remagnino Kingston University London, UK
Nikolay Sirakov Texas A&M University – Commerce, USA
Josef Slapal Technical University of Brno, Czech Republic
Ivan Štajduhar University of Rijeka, Croatia
K. G. Subramanian Madras Christian College, India
João Manuel R. S. Tavares University of Porto, Portugal
D. G. Thomas Madras Christian College, India
László Varga University of Szeged, Hungary
Petra Wiederhold CINVESTAV-IPN, Mexico
Jinhui Xu SUNY Buffalo, USA

Invited Speakers

Bhargab B. Bhattacharya Indian Institute of Technology Kharagpur, India
Benedek Nagy Eastern Mediterranean University, North Cyprus
Jessica Zhang Carnegie Mellon University, USA

Organizing Committee

Bhimraj Basumatary Bodoland University, India
Maddalena Bonanzinga University of Messina, Italy
Mario De Salvo University of Messina, Italy
Farkhanda Afzal National University of Sciences and Technology,

Pakistan
Saeid Jafari Topositus, Denmark

Organization ix

Arif Mehmood University of Science and Technology Bannu,
Pakistan

Giorgio Nordo University of Messina, Italy

Additional Reviewers

Henriette-Sophie Lipschuetz
Ulrich Reitebuch
Eric Zimmermann

Contents

Invited Paper

Non-traditional 2D Grids in Combinatorial Imaging – Advances
and Challenges . 3
Benedek Nagy

Digital Geometry and Topology

Rectangularization of Digital Objects and Its Relation with Straight
Skeletons . 31
Anukul Maity, Mousumi Dutt, and Arindam Biswas

On the Number of 0-Tandems in Simple nD Digital 0-Connected Curves 46
Lidija Čomić

On Density Extrema for Digital Discs . 56
Nilanjana G. Basu, Partha Bhowmick, and Subhashis Majumder

Sufficient Conditions for Topology-Preserving Parallel Reductions
on the BCC Grid . 71
Kálmán Palágyi, Gábor Karai, and Péter Kardos

On the Construction of Planar Embedding for a Class of Orthogonal
Polyhedra . 84
Nilanjana Karmakar, Arindam Biswas, Subhas C. Nandy,
and Bhargab B. Bhattacharya

Extractive Text Summarization Using Topological Features 105
Ankit Kumar and Apurba Sarkar

Largest Area Parallelogram Inside a Digital Object in a Triangular Grid 122
Md Abdul Aziz Al Aman, Raina Paul, Apurba Sarkar, andArindam Biswas

Picture Languages

Weighted Three Directions OTA and Weighted Hexapolic Picture Automata . . . 139
Meenakshi Paramasivan and D. G. Thomas

xii Contents

A Myhill-Nerode Theorem for Finite State Matrix Automata and Finite
Matrix Languages . 154
Abhisek Midya and D. G. Thomas

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 171
K. Janaki, R. Arulprakasam, Meenakshi Paramasivan,
and V. Rajkumar Dare

Adjunct Partial Array Token Petri Net Structure . 189
T. Kalyani, K. Sasikala, D. G. Thomas, and K. Bhuvaneswari

2D Oxide Picture Languages and Their Properties . 204
Helen Vijitha Ponraj, Robinson Thamburaj, and Meenakshi Paramasivan

Lyndon Partial Words and Arrays with Applications . 226
Meenakshi Paramasivan, R. Krishna Kumari, R. Arulprakasam,
and V. Rajkumar Dare

Theory and Applications

Tomography Reconstruction Based on Null Space Search 247
Tibor Lukić and Tamara Kopanja

Instance Segmentation with BoundaryNet . 260
Teodor Boyadzhiev and Krassimira Ivanova

Curvature-Based Denoising of Vector-Valued Images . 270
Christian Gapp and Martin Welk

Face Characterization Using Convex Surface Decomposition 288
Somrita Saha and Arindam Biswas

Characterization and Reconstruction of Hypergraphic Pattern Sequences 301
Michela Ascolese and Andrea Frosini

The Generalized Microscopic Image Reconstruction Problem
for Hypergraphs . 317
Niccolò Di Marco and Andrea Frosini

Author Index . 333

Invited Paper

Non-traditional 2D Grids
in Combinatorial Imaging – Advances

and Challenges

Benedek Nagy(B)

Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey

nbenedek.inf@gmail.com

Abstract. On the one hand, the digital image processing and many
other digital applications are mostly based on the square grid. On the
other hand, there are two other regular grids, the hexagonal and the
triangular grids. Moreover, there are eight semi-regular grids based on
more than one type of tiles. These non-traditional grids and their dual
grids have various advantages over the square grid, e.g., on some of them
no topological paradoxes occur. Most of them have more symmetries,
i.e., more directions of symmetry axes and also a smaller angle rotation
may transform most of these grids into themselves. However, since most
of these grids are not point lattices, we need to face some challenges to
work with them; they may define various digital geometries. We show
how a good coordinate system can be characterized, what type of digital
distances are studied, tomography and distance transform. Other grid
transformations, including translations and rotations with some of their
interesting properties are mentioned. Mathematical morphology and cell
complexes are also shown. The advantages and challenges are overviewed
by various examples on the triangular grid, as a characteristic example
for a non-traditional grid.

Keywords: Digital geometry · Regular and semi-regular grids · Dual
grids · Coordinate systems · Digital distance · Discrete tomography ·
Digital topology · Topological paradoxes · Transformations ·
Mathematical morphology · Cell complexes

1 Introduction – Why (Not) the Traditional Square
Grid?

In this paper, we give an overview about the usage of non-traditional grids in
combinatorial image processing and in digital geometry. In contrast, the most
used grid is the square grid, and it is referred to as the traditional grid in this
context. It is “traditional” as most people including researchers met with this
grid already in elementary school, the Cartesian coordinate frame (restricting
the used coordinates to integer values) fits very well to this grid, and also both
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 3–27, 2023.
https://doi.org/10.1007/978-3-031-23612-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_1

4 B. Nagy

hardware and software industry use it almost as if it were the only possibility
to have a 2D digital platform. Unfortunately, there are people who identify the
digital plane by Z

2.
On the other hand, there are various “problems” with this grid that could

make the life of researchers and software engineers hard. As many times peo-
ple, including students, researchers, reviewers, are asking why do you use this
or that grid, I would say that they should ask, why do they use solely the
square/rectangular grid, even if it is not the ideal choice. Both nature [102]
and ancient people used various other structures (Fig. 1), as our world is not
square/rectangular grid based.

Fig. 1. Various tilings on the floor in the ancient city of Salamis.

On the one hand, the geometry of every “digital plane/world” differs from the
Euclidean geometry [44,45], as e.g., in any discrete space based on a grid, the
neighborhood relation plays an essential role. In contrast, there are no neighbor
points in the Euclidean plane, but for any ε > 0, there are continuum many points
that have distance less than ε from any point of the plane. On the other hand,

Non-traditional 2D Grids in Combinatorial Imaging 5

the square grid is not the best choice to “digitize” the world/plane. The follow-
ing facts are well-known. The square grid has the following topological paradoxes:
There are lines that go through on each other without a common tile, e.g., think
about the two diagonal lines of a usual chessboard: the white and black diagonals
connect opposite corners, but there is no common tile. In this way the inner and
outer parts of a closed curve can also be connected (violating the Jordan curve
theorem of Euclidean geometry). In contrast, on the hexagonal grid similar para-
doxes do not occur (see, e.g., [19]). Also, there are various traditional hardware,
i.e., kitchenware product, where circular objects are arranged according to the
square grid, see, e.g., muffin-trays (Fig. 2) or the most usual egg-trays. It is prob-
ably by the lack of knowledge of the designers/producers to put these into square
grid based structure. Already the bees know that the hexagonal grid would be the
most efficient way to build minimal perimeter for maximal-size storages (for more
precise mathematical description and proof see [35]) and also it gives the ideal way
to pack same-size circular objects [23].

Fig. 2. Usual arrangements for muffins/cupcakes.

We should also mention here, last in this section, but not with least impor-
tance, that the digital distances based on the sole usage of any of the two type
of motions on the square grid results digital distance functions that has

√
2

factor difference for points with the same Euclidean distance [103]. The digi-
tal disks defined by distances based on any of the sole neighborhood relation
are squares. (In this way, as one may interpret, the unsolvable ancient problem
to square a circle is finally resolved, but, in fact, rather it shows how rough
are the approximations of the Euclidean distance – L2 metric – by these dig-
ital distances – equivalent to L1 and L∞, respectively.) To reduce this error
on the square grid, first, octagonal distances, i.e., distances based on neighbor-
hood sequences were introduced and studied [26–28,66,78,103,111,112] with the
approximation of the Euclidean distance made by their help [25,32]. The digital
discs by these distances, i.e., the set of pixels that have at most a given distance
(radius) from a pixel (called center) are octagons with these distances, hence
the name. However, these distances may easily violate the triangular inequality,
and thus, the metricity condition, too. (To obtain a metric distance a sufficient

6 B. Nagy

and necessary condition has been published in [66,72], we discuss it with similar
issues in Sect. 4). Chamfer (or also called weighted) distances [15] are always
metric, based on the two types of neighborhood, the digital disks are, again,
octagons (based on the two type of neighborhood) [16]. These distances have
also been expanded by using larger motions, e.g., knight movements or even
larger neighborhood [16,20] with various weights. Further techniques to have
digital distances to approximate the Euclidean distance are also investigated
as t-cost distances [29], their combination with chamfer distances [61,62] and
the combination of weighted and neighborhood sequence based distances [108].
The weight-sequences [97–99] allows to have a digital distance that has perfect
Euclidean distance of the points of the perimeter of a square from its midpoint.
Another technique to have digital (path-based) distances that have small rota-
tional dependency is to use a non-traditional grid, and this leads us to one of
the main topics of this paper. In the next section we give a brief visit to some
non-traditional grids.

2 Regular, Semi-regular Grids and Their Duals

Let us fix some terminology first. When we are talking about grids, we think
about tessellations of the plane based on one or more geometric shapes, referred
to as tiles, without overlaps and gaps in a periodic manner (such that they are
periodic with two independent directions of the plane). In fact, we use periodic
representations of infinite planar graphs with polygon regions put in a side-by-
side manner. The grid-points or vertices of a grid are those points where some
gridlines meet. The regions of the planar graph, the tiles, as we mainly refer to
imaging, are also called pixels.

There are three regular grids in the plane and eight semi-regular grids [22,34].
All these grids are also referred to as Archimedean, they are built up by regular
polygons in an isogonal way (the grid-points of the tiling are identical, isometric
transformations may map any of them to any other). Already Kepler studied and
described them. The dual (by planar duality) of a grid is obtained by inverting
the roles of the pixels and gridpoints (corners): by putting a point to the midpoint
of each tile/pixel and connecting those which points representing side-neighbor
pixels, the dual grid is obtained. The first observation is that the square grid
is self-dual, thus the same, Cartesian coordinate system fits also to the dual.
In fact, one can decide which representation has more meaning, to use and
address the pixels or the grid points. In image processing usually the pixel-
based representation is preferred, but in other disciplines, e.g., building and
simulating communication networks, the dual approach is more adequate. The
second observation is that the other two regular grids, the hexagonal and the
triangular grids are in the duality relation.

Tables 1 and 2 show the names and the patterns of the non-traditional grids
including also the three regular grids, the eight semi-regular grids and their
dual tilings. Each semi-regular grid has the property that their grid points are
indistinguishable. One of their official naming method is based on that, by listing

Non-traditional 2D Grids in Combinatorial Imaging 7

Table 1. Various grids with some of their properties. The three regular grids (on the
left), and three of the eight semi-regular grids (on the right), and their dual grids are
below.

Name Square Hexagonal Tri-hexagonal Truncated
hexagonal

Truncated
trihexagonal

Notation (4,4,4,4) (6,6,6) (3,6,3,6) (3,12,12) (4,6,12)
Tiles 1:

square
1:

hexagon

2: triangles

and hexagon

2: triangles

and

dodecagon

3:
squares,
hexagon,
and
dodecagon

Neighbors 8 (4) 6 (6) 12 (6); 6 (3) 12 (12); 3 (3) 12(12);6(6);4(4)
Rotation
angle 90 60 60 60 60

Symmetry
axes angle 45 30 30 30 30

Grid

Dualgrid

(3,3,3,3,3,3)
Dual name Square Triangular Rhombille Kisdeltille Kisrhombille
Tiles 2: triangles 3: rhombuses 6: triangles 12: triangles
Neighbors 12 (3) 10 (4) 21 (3) 16 (3)

the regular polygons in the order they are next to each other at a common vertex
(see the row “Notation” for a possible way to write this information), moreover
the types of the polygons of the tiles are also listed (we wrote a polygon in
singular form if each of their occurrences are identical up to translations and
used plural form if the polygon appears in more than one orientations). Based
on the property that the gridpoints of the semi-regular tilings are identical, the
tiles of their dual grids are indistinguishable, i.e., the dual grids built up by a
sole tile (but usually with various orientations), this information is given in the
row “Tiles” under the name of the dual grid. Actually, for this reason, to have
same size pixels, we may recommend to use the dual grids of the semi-regular
grids in image processing, pictures on them could have better properties from
this point of view than on the semi-regular grids (on which sometimes there
are large differences on the size of the various polygons). Further, the table
shows the smallest rotation angle that transforms the grid into itself (it is 90◦

for the square grid), the smallest angle between two symmetry axes of different

8 B. Nagy

directions (that is 45◦ for the square grid). This information applies for both the
grid and its dual in the given column. The values highlighted by purple color
show smaller values than the actual values for the square grid, thus one may
easily see that many of the non-traditional grids overperform the square grid,
i.e., usually smaller angles are enough for rotations, and there are symmetry
axes in more directions than on the square grid. The table gives also the number
of different types of tiles (for semi-regular grids) and the number of different
orientations (for the triangular and the dual of the semi-regular grids). As one
may see that only the square and hexagonal grids are point lattices, i.e., they
are discrete subgroups of the 2-dimensional Euclidean space, meaning that any
of their pixel has exactly the same role, every vector connecting the midpoints
of any two pixels translate grid into itself. None of the other grids have a similar
property, and thus, the triangular grid may share various properties with the dual
grids of the semi-regular ones. For this reason, in some of the other sections, we
concentrate on the triangular grid. The table also show the number of pixels
that share at least one corner with a given pixel, we call those tiles adjacent to
the original tile. This number is 8 for the square grid. As we can see, in most
of the non-traditional grids, except the hexagonal, the Khalimsky grid (i.e.,
truncated quadrille or truncated square tiling), the Cairo pattern (also called
4-fold pentille) and the iso(4-)pentille (that is also called prismatic pentagonal)
tiling, the non-traditional grids have larger extended neighborhood of pixels
which may either give more flexibility to play with various types of neighborhood
or provide more isometric directions of the plane to move.

Almost all grids have alternative names: the triangular grid is also called iso-
metric grid, the hexagonal grid has an alternative name honeycomb grid. Actu-
ally, these alternative names may fit better if instead of the pixels, the gridpoints
are used and the edges of the grid give the moving directions between them. How-
ever, as we already mentioned, in image processing, in computer graphics and in
imaging applications, usually, the tiles are used as pixels. The tri-hexagonal grid
is also called hexadeltille tiling. The truncated hexagonal tiling is also called trun-
cated hextille. The truncated trihexagonal is also called truncated hexadeltille
tiling. The rhombitrihexagonal is also called rhombihexadeltille tiling. The snub
hexagonal tiling is also called snub hextille. The snub square tiling is also called
snub quadrille tiling. The isosnub quadrille tiling is also called elongated tri-
angular tiling. Their dual grids also have alternative names, e.g., the kisdeltille
tiling is also called triakis triangular grid; the tetrille tiling is also called deltoidal
trihexagonal grid; and the 6-fold pentille tiling is also called floret pentagonal
tiling.

In the rows entitled neighbor, the number of tiles sharing at least one point on
their boundary are counted and in brackets the number of neighbors with which
a full edge (side) is shared. That latter is actually the number of sides of the given
tile. At the hexagonal, the truncated hexagonal, the truncated trihexagonal and
the Khalimsky grids, green color shows that the number of all neighbors of each
tile is the same as the number of side-neighbors and in this way, the topological
paradox mentioned in the previous section does not occur in these grids. Actually,

Non-traditional 2D Grids in Combinatorial Imaging 9

Table 2. Various grids with some of their properties (cont.) Five of the eight semi-
regular grids and their dual grids are below. The ‘−’ sign in the row Symmetry means
that in fact the given semi-regular grid and its dual are not axial symmetric, instead
there are two variants of both these grids, and the variants are axial mirror images of
each-other.

Name Rhombitri-
hexagonal

Snub-
hexagonal

Snub-square Isosnub
quadrille

Khalimsky

Notation (3,4,6,4) (3,3,3,3,6) (3,3,4,3,4) (3,3,3,4,4) (4,8,8)
Tiles 3: triangles,

squares and
hexagon

2: triangles
and
hexagon

2: triangles
and squares

2: triangles
and square

2:
square
and
octagon

Neighbors 12(6);8(4);6(3) 18 (6); 9 (3) 12 (4); 9 (3) 12 (4); 9 (3) 8 (8); 4 (4)
Rotation
angle 60 60 90 180 90

Symmetry
axes angle 30 90 90 45

Grid

Dualgrid

Dual name Tetrille 6-Fold Pentille Cairo pattern Iso(4-)Pentille Kisquadrille
Tiles 6: deltoids 6: pentagons 4: pentagons 2: pentagons 4: triangles
Neighbors 9 (4) 8 (5) 7 (5) 7 (5) 14 (3)

_

this property gives the importance of the Khalimsky grid in various applications
[42]. Furthermore, the Khalimsky grid shares the symmetric properties with the
square grid, and thus, it is relatively easy to convert images and algorithms from
the traditional square grid to this grid.

Based on the displayed properties, we may conclude that non-traditional
grids provide nicer underlying structures with more symmetries and better prop-
erties (e.g., larger and more flexible neighborhood structure) for various appli-
cations than the square grid (see e.g. [86]).

To use them in, e.g., image processing and other computer oriented disci-
plines, some mathematical background, the first steps of digital geometry should
be given by coordinate systems that are elegant and easy to use.

10 B. Nagy

3 Coordinate Systems

As grids can be seen as graphs, they can be bipartite and non-bipartite. In
bipartite grids, based on steps/moves on side neighbors, every cycle has an even
length, while at non-bipartite grids there are paths between the same two tiles
such that the difference of their lengths is odd [46]. For bipartite grids one may
find a coordinate frame such that between two side neighbor tiles exactly one of
the coordinates is changing and it is changing by ±1. However, for a grid that
is not bipartite, it is impossible to have such a coordinate system with integer
triplets that is changing exactly one of the coordinate by ±1 in each move to a
side neighbor tile (pixel). One may check that some of the grids have a bipartite
structure, e.g., the square grid, the triangular and the trihexagonal grids and
the kisquadrille tiling. Other grids, e.g., the hexagonal, the rhombille, the 6-fold
pentille and the isosnub quadrille and the Khalimsky grids are not bipartite.

Thus, in some cases, e.g., in the hexagonal grid, to preserve also the symmetry
of the grid, extra coordinate(s) can be introduced. As Her [37,38] proposed, zero-
sum integer triplets can efficiently be used for the hexagonal grid (Fig. 3). In this
way, by a move to a neighbor two of the coordinates are changing, one of them
is increased, the other is decreased by 1.

Actually, the triangular grid is a bipartite grid, and it is easy to see it by
the orientations of its tiles. The symmetry of the grid suggests to use coordinate
triplets [63,68,107] with sum 0 and 1 according to the two types of pixels. The
0-sum integer triplets are used to address the even, the 1-sum integer triplets to
address the odd trixels (triangle pixels). As every even pixel has three odd side
neighbors, and vice versa, the names even and odd are very apt for these tiles.
A part of the grid with coordinates is shown in Fig. 4.

The formal, mathematical description of the neighbor relations is also nice
and reflects the symmetry caught by the 3-valued coordinate systems.

In the hexagonal grid two hexagonal pixels (hexels) are neighbors if and only
if one of their coordinate values are common, and the difference on the other
two coordinates are +1 and −1, respectively. The three types of neighborhood
on the triangular grid was already mentioned and used in the 1970’s [30] in rela-
tion to image processing. They can be written as: the triangular pixels (trixels)
p(p̂1, p̂2, p̂3) and q(q̂1, q̂2, q̂3) are m-neighbors (with m ∈ {1, 2, 3}) if and only if

– |p̂i − q̂i| ≤ 1 for each i ∈ {1, 2, 3}, and
–

∑
i |p̂i − q̂i| = m.

Observe that these conditions are pretty much the same for the two types of
neighborhood on the square grid (where m ∈ {1, 2} the number of changing
coordinates of a cityblock or a chessboard move). We note that in [36], to avoid
some of the difficulties, the moves for the 1-neighbors are called ‘half moves’,
while moves to 2-neighbors were called ‘full moves’, and 3-neighbors were not
used.

In fact, based on the previously described coordinate systems, the hexagonal
and triangular grids can be seen as those subspaces of the cubic grid which are
built up by the points of one and two parallel oblique planes. In this way, the

Non-traditional 2D Grids in Combinatorial Imaging 11

Fig. 3. The symmetric coordinate frame for the hexagonal tessellation. Lanes are
obtained by fixing a value of a coordinate (e.g., x = 1 at the pixels with red color
and y = −3 with blue color).(Color figure online)

trihexagonal grid can be seen as a grid built up by three parallel oblique planes
[67,69], and thus, integer coordinate triplets can efficiently be used with sum
−1, 0 and 1 to address the tiles of this grid.

Some of the dual semi-regular grids have also been addressed, see, e.g., for a
general method to assign a coordinate system for periodic tessellations in [106].
Digital geometry of various grids are shown based on various coordinate sys-
tems, e.g., on the truncated hexagonal [51], snub-square [17], Khalimsky [48,49],
rhombille, tetrille tilings [106], on the Cairo pattern [47], and on the kisquadrille
tiling [21,106], just to mention a few possible solutions.

To show why it is important to find a good coordinate frame that reflects
the symmetries of the grid, we show discrete tomography examples.

12 B. Nagy

Fig. 4. The symmetric coordinate frame for the triangular tessellation. Lanes are
obtained by fixing a value of a coordinate in both grids (e.g., x = 1 at the pixels
with red color and y = −3 with blue color), while diamond chains are also shown (e.g.,
at the pixels with yellow color x − z = −2 and with green color y − z = −2). (Color
figure online)

3.1 Discrete Tomography

In discrete (and especially, in binary) tomography, the sum of the values of
some special subsets of the pixels are given (projections), and the task is to find
(reconstruct) an image that fits (maybe perfectly or with a relatively small error)
to these values.

The original problem on the square grid was based on two orthogonal pro-
jections, i.e., by row and column sums [33,104]. Observe that these projections
are summing up the pixel values for pixels with either a fixed first coordinate
(column) or a fixed second coordinate (row).

On the hexagonal grid usually three directions are considered based on the
natural structure (symmetry) of the grid [55–57]. Actually, the lanes of the
hexagonal grids are sets of hexels where one of the coordinates is fixed, e.g., the
first coordinate is 1; or, another example is when the second coordinate is −2
(see also Fig. 3). In this way, all the three lane directions are analogous to the
rows/columns of the square grid. Since there is only type of neighborhood on
the hexagonal grid, and by the three lane directions through a hexel all its six

Non-traditional 2D Grids in Combinatorial Imaging 13

neighbors are already taken into account, it is very opt to use these three natural
grid directions in tomography.

On the square grid (based on the other type of neighborhood), diagonal
projections can also be considered to decrease the number of possible solutions.
These directions can be described by either fixing the sum or the difference of
the two coordinates.

Now, we show how elegant is the coordinate system for the triangular grid.
The main directions of the grid are by lanes, i.e., by the set of trixels with a fixed
given coordinate. These lanes, also by their mathematical description, are closely
analogous to the rows and columns of the square grid also on the triangular grid.
The first paper on binary tomography on the triangular grid used these three
directions and based on a genetic algorithm [60]. Another approach was based
on Ryser’s algorithm, in which for two directions perfect projection values were
obtained and the error was minimized for the third direction by using switching
pairs (for the first two directions, not to destroy those errorless values) [95].

Moreover, since the perpendicular lines to the lanes are not lanes on the
triangular grid, but in fact, they are exactly the bisectors of the angles of two
lanes, they play similar roles as the diagonal lines on the square grid. These
diamond-chain directions are described by fixing the difference of two of the
coordinates (see also Fig. 4). Binary tomography based on these three alternative
directions were studied in [93], while all the six directions were used in [94] in a
memetic approach. Some types of ghosts (switching patterns) causing multiple
solutions for projections by the three lane-directions were also presented in [94].

Finally, in this section, we recall a phenomenon that is not on the square
grid. By measuring the lengths of the projection lines inside the trixels, with
various tricks, the number of even and odd trixels of the image can also be dif-
ferentiated and computed separately, in this way supporting (a better) solution
of the tomographic problem (we used energy minimization methods in [90–92]).

4 Digital Distances

The second step of creating digital geometry on a grid is to compute path based,
digital distances between any pair of pixels. Digital distance on the hexagonal
grid based on the usual neighborhood is determined in [54] with two coordinates,
and in [65] by the symmetric coordinate system obtaining a more symmetric
formula: for two hexels p(p̂1, p̂2, p̂3) and q(q̂1, q̂2, q̂3), their path-based distance,
i.e., the number of steps to neighbor hexels to reach p from q or vice versa is

max
i∈{1,2,3}

|p̂i − q̂i| =

3∑

i=1

|p̂i − q̂i|
2

.

Further, in this section, we concentrate on the triangular grid. First, we
present a formula for distances based on the 1-neighbors (analogously to the

14 B. Nagy

cityblock distance of the square grid) [65]. Let p(p̂1, p̂2, p̂3) and q(q̂1, q̂2, q̂3) be

two trixels; their (1)-distance is
3∑

i=1

|p̂i − q̂i|.
To complement it, now a formula for the distance based on adjacent trixels,

i.e., allowing to use any of the three types of neighborhood in every step of the
path (analogously to the chessboard distance of the square grid) is shown [88].
The (3)-distance of p and q is max

i∈{1,2,3}
|p̂i − q̂i|.

As we can see, the symmetric coordinate systems allow us to use very similar
distance formulae than the ones on the square grid.

Further in this section, we briefly recall neighborhood sequence based and
weighted distances on the triangular grid with some of their interesting proper-
ties. These types of distances are already mentioned in the introduction for the
square grid, here we recall their definitions on the triangular grid (they can be
defined analogously on the other grids).

A neighborhood sequence is an infinite sequence B = (b(i))∞
i=1 of possible

neighbor relations b(i) ∈ {1, 2, 3} (for all i ≥ 0). A path p = p0, p1, . . . , pn = q of
adjacent trixels is a B-path if pi−1 and pi are at most b(i)-neighbors (we call such
moves b(i)-steps) for each 1 ≤ i ≤ n. Obviously, for any two trixels p and q there
are various B-paths for any neighborhood sequence B, however some (at least
one) of them has the minimal length, i.e., the minimal number of steps/moves.
The number of steps n of such a minimal path defines the B-distance of p and q.
These distances were introduced in [63,64] and further studied in various other
papers. If the sequence B is periodic, we may abbreviate its writing giving only
the first period. Observe that the (1)-distance and the (3)-distance are special,
actually, extremal cases of the neighborhood sequence based distances. A wide
variety of distances can be defined and studied between these two distances.

We present some examples to highlight the interesting properties of these
distances.

Example 1. Let B1 = (3, 1). Further let p = (0, 0, 0), q = (1, 1,−2), r = (1, 1,−1)
and s = (2, 1,−2) be trixels. Then, p, r, q is a B1-path with a 3-step and a 1-step,
and it is the shortest, yielding that the distance from p to q is 2. On the other
hand, from q to p a shortest path is q = (1, 1,−2), (0, 1,−1), (0, 1, 0), p = (0, 0, 0),
thus this distance is 3. Observe that the first 3-step of this path is also a 2-step,
i.e., it is not to a 3-neighbor.

Now, from p to r the distance is 1, as a 3-step is enough to reach r from
p. From r to s, the distance is 1: a 3-step suffices (in fact a 2-step would
also be enough). Now, from p to s, a shortest path is p = (0, 0, 0), r =
(1, 1,−1), (1, 1,−2), s = (2, 1,−2), thus this distance is 3. (The second step
must be a 1-step according to B1.) Thus, the B1-distance fulfills neither the
symmetry nor the triangular inequality.

Let B2 = (1, 3, 3, 3, 3, 3, ...) having only one value 1, then B2 does not fulfill
symmetry, but fulfills the triangular inequality.

Let B3 = (2, 1), then the triangular inequality does not hold in general, but
this distance is symmetric.

The (1, 1, 2)-distance and the (1, 2, 3, 2, 2, 2, ...)-distance are metric.

Non-traditional 2D Grids in Combinatorial Imaging 15

A formula to compute B-distance on the triangular grid is provided in [71,75]
(in such a way that B-paths of the cubic grids are restricted to use only 0-sum and
1-sum triplets). Another interesting phenomenon is that there are neighborhood
sequences that define the same distance function. (This is impossible on the
square grid, for any two neighborhood sequences B1 and B2 that are not identical
we can find two pixels such that their B1- and B2-distances differ.) On the
triangular grid two consecutive 3-steps are equivalent to a 3-step and then a 2-
step. This gives equivalent classes of neighborhood sequences, and allow to define
the smallest element of each class, namely the minimal equivalent neighborhood
sequence (see [64] where it is shown how to obtain such sequence).

A necessary and sufficient condition for B to define a metrical distance is as
follows [64,76]. B defines a metric if both of the following conditions hold:

– if B contains an element 3, then let � be the smallest value such that b(�) = 3,
further

• the sum of the elements before the first occurrence of 3, i.e.
�−1∑

i=1

b(i) is

even, and
• after the occurrence of 3, only 2s and 3s may occur, i.e., b(i) > 1 if i > �.

–
i∑

k=1

b(k) ≤
j+i∑

k=j+1

b(k) for all pairs i, j with i + j < � (or generally for all

i, j ∈ N if 3 does not occur in B).

Actually, the first part of the condition is taking care about not to violate
the symmetry, while the last condition (which actually regulates the distance to
fulfill the triangular inequality) is very similar to the condition of metricity on
the square grid [72]. This latter can be written formally as follows: for all j, k
i+1∑

k=1

b(k) ≤
j+i∑

k=j+1

b(k).

The digital disks based on a digital distance, as we have already mentioned,
contains the set of pixels that are at most the given distance (called radius) from
its centre pixel. The digital disks by neighborhood sequences are dodecagons
(maybe degenerated to enneagon, hexagon or triangle, they are fully character-
ized in [70,74]). Approximation of the Euclidean distance and Euclidean disks
are studied in [77,96]. The approximation results, not surprisingly, better than
the best approximations on the square grid (as a dodecagon is much closer to
the circle than an octagon). Moreover, in [96], the idea to use the intersection
of two digital disks was mentioned and it was shown that by this method the
approximation can be even better than without this trick. To have two disks
with the same radii such that none of them contains the other is again such a
phenomenon that do not occur on the square grid, and it made possible on the
triangular grid to use the intersection of two disks as a more round object than
the disks themselves.

Moreover, a digital disk as a set of trixels may have more than one radius
depending on the used neighborhood sequence, i.e., by radius 2 with the sequence
(1, 1, ...) and by radius 1 with the sequence (2, ...) the same disk is obtained. This

16 B. Nagy

is again such a property which do not occur on the square grid. Some of the men-
tioned interesting properties were studied and used in various communication
scenarios in [83].

Now, we turn to the other type of popular digital distance functions gen-
eralizing the (1)- and (3)-distances in another way. The weighted/chamfer dis-
tances are also defined on the triangular grid based on three positive weights
α, β, γ ∈ R

+ assigned to the three types of neighborhood relations [81]. As
usual, the natural condition 0 < α ≤ β ≤ γ may be applied. A path
p = p0, p1, . . . , pn = q of adjacent trixels has its cost/weight

α · |{i|(pi − 1, pi) are 1-neighbors}| + β · |{i|(pi − 1, pi) are 2-neighbors}|
+ γ · |{i|(pi − 1, pi) are 3-neighbors}|.

Again, usually for any two trixels p and q there are various paths with various
costs, however some (at least one) of them has the minimal cost, and this minimal
cost defines the (α, β, γ)-weighted distance of p and q. It is known that the
chamfer distances defines metric in any grid structure.

We highlight here one of the main advantages of the digital disks defined
by chamfer distances on the triangular grid over the similar approaches on the
square grid. On the one hand, there are digital disks which are polygons with
many corners and sides, e.g., a 63-gon is obtained by α = 8, β = 15, γ = 18
and radius = 723. On the other hand, the roundness of the digital disk with
data α = 29, β = 56, γ = 68, radius = 892 measured by its non-compactness
(also called isoperimetric) ratio, κ = (perimeter)2

area is 12.628 [59] (this value is the
smallest for the Euclidean circle, and it is exactly 4π ≈ 12.566, while it is 16
for the square). To compare these results to the analogous results on the square
grid, we recall that by two weights for the usual two types of neighbors on the
square grid, the chamfer balls are octagons. On the square grid by 3 weights
(including knight moves, and in this way, based on 5×5 size neighborhood), the
chamfer disks are 16-gons, further, by 7 × 7 size neighborhood (with 5 weights),
they are 32-gons [20]. As we have recalled, we have obtained better results (using
only the 3 natural neighborhood) on the triangular grid.

Since, the shortest path is usually not unique, a related combinatorial topic
is the path-counting which can be used to analyse images [103], but plays also a
significant role in networking to find routing/rerouting strategies. The number of
shortest paths were computed on the square grid by neighborhood sequences [24,
85] and by chamfer distances [6], as well. There are also results on the hexagonal
grid, by the distance based on the sole neighborhood [43,88] and on the triangular
grid by paths based on 1- or 2-neighborhood [31], 3-neighborhood [88] and also
for shortest weighted paths [89] for some of the chamfer distances. In some cases,
the results can easily be written by the binomial coefficients, however in other
cases, the obtained formulae are more complex and, e.g., the Fibonacci numbers
may also appear.

As our main aim is to consider image processing and analysis oriented appli-
cations as well, we recall the concept of distance transform [16]. In a binary

Non-traditional 2D Grids in Combinatorial Imaging 17

image, the pixels may have two values, and thus we may differentiate them as
object and background pixels. The distance transform computes the distance
map, i.e., it assigns to each object pixel its distance to the closest background
point. Usually, path based distances are very opt to compute distance transform,
as incremental algorithms can efficiently be used to generate the distance map
of an object.

We should mention that various digital distances, e.g., simple step based
and/or weighted distances have already been introduced and computed, for
instance, on the trihexagonal grid in [50], on the truncated hexagonal tiling
in [51], on the Cairo pattern in [47], and on the Khalimsky grid in [48,49]. In
this latter, digital disks were also characterized, with their holes and islands.
Already on the square grid non-convex balls can be obtained when the weights
of the diagonal moves is smaller than the weight of the cityblock moves. It is
an interesting phenomenon that holes and islands may also appear in the semi-
regular grids due to their various types of tiles. (After computing their necessary
and sufficient conditions, one may decide if for the given application point of view
they are advantageous or disadvantageous, and choose the weights for the dis-
tance according to his or her decision.) In the grids which are not point lattices,
in general, the distance cannot be translation invariant (and norm). However,
this leads us to the next section, to investigate how images can be transformed
on non-traditional grids.

5 Transformations

With the distance transform in the previous section we have already mentioned
transformations. Among many possible transformations, in this section we con-
centrate on digitized isometric transformations of the grid, i.e., mapping a picture
in the grid as if the analogue of an isometric transformation is done.

In the Euclidean plane, the isometric transformations, the translations, rota-
tions and various reflections (mirroring) are always bijective. This is not the
usual case of similar transformations of the digital plane and, therefore, of the
digital images. In fact, there are usually very few rotation angles that may map
the grid into itself. And it is a real practical problem, as we are making images by
smart phones such that the horizontal and vertical directions may not precisely
match, but when we want to print out the picture or we want to show on a tv
screen or on a projector, the image should be shown in a rotated way having
the horizontal and vertical directions matching. However, as it is well-known,
digitized transformations, especially, rotations are usually degrading the quality
of the image [41], moreover, iterated use of rotations usually leads to lose more
and more information till all information has been lost.

For the triangular grid, all isometric transformations that map the grid into
itself were shown in [73,79]. On the other hand, when the transformation does not
map the grid into itself, by using a nontraditional grid, usually similar problems
arisen as with similar transformations on the square grid. However, as some of the
non-traditional grids are more symmetric, i.e., they are mapped to themselves

18 B. Nagy

by smaller rotation angles, or with other words, by more angles (of the interval
[0◦, 360◦]), one may expect better average performance by using a non-traditional
grid (somewhat similarly as digital disks are more round on a non-traditional
grid, as we have discussed in the previous section). Rotations with arbitrary
angles on the triangular grid were also studied recently by various approaches,
e.g., by neighborhood motion maps (where a pattern by a pixel and its neighbors
are studied under the given transformation) [10–12] and by shear based method
[8].

On the other hand, discretized rotations have a relatively large literature on
the square grid, see, e.g., [7,18,109]. Rotations on the hexagonal grid has also
been investigated with various approaches, e.g., by neighborhood motion maps
representing the hexels by Eisenstein integers of the complex plane [100,101]
and shear based bijective rotations in [9]. Comparisons of rotations on the three
regular grids are presented in [13,14] showing that non-traditional grids really
have a good potential also from this point of view: in various experiments (with
various rotation centers) each integer degree angle of the interval [0◦, 360◦] is
studied, rotations are classified to three classes:

– where the neighborhood motion map are not bijective, i.e., there are pixels
that mapped to the same pixel by the rotation;

– where it is bijective, but the result is not digitally continuous, i.e., there are
pixels which were neighbors, but they are mapped not to neighbor pixels;

– where the neighborhood motion map shows bijectivity and also the neighbor-
hood is kept (in this small pattern).

On the other hand, we should also mention translations. While on the point
lattices, i.e., on the square and hexagonal grids, all (digitized) translations are
bijections, it is not the case on the other grids. Whenever a translation vector
is taken that does not map the grid into itself (and if the grid is not a point
lattice, then there are grid vectors also having this property), one may face
some interesting phenomena. Here again, we restrict ourself to the case of the
triangular grid, but similar things happen also on the other grids with the non-
lattice property. On the triangular grid there are three types of translations
[4,5]:

– non-bijective translations which map two neighbor triangles to the same tri-
angle tile (see Fig. 5, left).

– strongly bijective translations: they are bijective and digitally continuous
keeping the neighbor pixels as neighbors. These translations map each type
of tile to the same type as the original tile (see Fig. 5, middle).

– weakly bijective translations: they are bijective, but digitally not continuous,
i.e., some neighbor pixels are mapped to non-neighbor pixels. These transla-
tions map each pixel to the opposite type of pixel (see Fig. 5, right).

We should mention here that to work with transformations that may map
some gridpoints (i.e., midpoints of pixels) not to gridpoints, as the general case
of the digitized isometric and many other transformations, continuous exten-
sions of the symmetric coordinate systems could be very helpful. They play a

Non-traditional 2D Grids in Combinatorial Imaging 19



















































































































































  


























  




















































































































Fig. 5. Three types of translations on the triangular grid: non-bijective (left), strongly
bijective (middle) and weakly bijective (i.e., bijective but not continuous, right).

similar role, as, at the case of square grid, we may use R
2 in the computation

instead of Z2, and we may do a digitization, a rounding operation, in the end just
before displaying the result. The continuous extension of the symmetric hexago-
nal coordinate system uses all 0-sum triplets of R3. While continuous extension
of the triangular coordinate system is introduced and studied in [3,87], in this
system at least one of the coordinated is always an integer, and the sum of the
three values is always in the interval [−1, 1].

5.1 Mathematical Morphology

As we have already seen, the translations are not trivial on non-traditional grids.
However, some important operators on images, including operators of mathemat-
ical morphology are usually defined based on local translations. Since we have
more than one type of pixels, their neighborhood structures are different, and
thus it is an interesting challenge to define morphological operators on non-
traditional grids. In mathematical morphology an object image is given, and we
may perform the operations by the help of another image-like object, by the
so-called structural element.

On the one hand, if the structural element is restricted to the neighbor trixels,
cellular automata may perform dilation and erosion based on the number of
object pixels in the neighborhood (e.g., in [105] 1-neighborhood was used).

Let us consider a more general approach allowing a larger set of possible
structural elements, as usual also in point lattices. The simplest approach is
when only those vectors are allowed to use for translations, i.e., in the structural
elements, which transform the grid into itself [2]. Another approach allows to
define the structural element as a pair, and in this way to provide the set of vec-
tors for the even and odd trixels independently [1]. As there is no free lunch, we
need to pay the fee that the grid is not a point lattice, we need to release some of
the usual properties of the morphological operators, i.e., the role of the picture
and structural elements cannot be interchanged without any additional condi-
tion, and thus the dilation is not generally commutative. In other approaches we

20 B. Nagy

may force the commutative property of dilation, but we may loose the adjunction
relation of dilation and erosion. Some possible solutions to define morphological
operators on the triangular grid were already coined (e.g., in [84]) and details
are coming in forthcoming papers.

5.2 Thinning and Abstract Cell Complexes

Finally, we have arrived back to one of our initial points, namely to the topolog-
ical paradoxes and to the coordinate systems. As we have stated, the topological
paradoxes occur in various grids (including the square grid). One way to avoid
these paradoxes, as we have already proposed, to shift the underlying grid struc-
ture to an appropriate tessellations where all neighbor tiles share a full side.
There is also another method, namely the use of topology based on abstract cell
complexes. In these complexes, not only the tiles, but the edges (sides) and also
the vertices of the grid are parts of the objects and images, they also have values,
see, e.g., [110].

To make all these things in an elegant way, topological (also called combina-
torial) coordinate systems can be used that are addressing not only the largest
dimensional cells of the structure, but all smaller dimensional cells. To see more
about on the square grid, see, e.g., [52,53]. The self-duality of the square grid
allows to use, e.g., even-valued integer pairs to address the tiles, odd-valued
integer pairs to address the gridpoints (the corners), and pairs with an odd and
an even value to address the edges of the grid, where the position of the even
value determines also the direction of the edge. Combinatorial coordinate system
for the hexagonal and the triangular grids are presented in [80,82], to use only
integer coordinates the original coordinate system has also been rescaled (simi-
larly as it is rescaled in the case of the square grid), some details are recalled in
Table 3. By the help of these coordinate systems, it is easy to perform various

Table 3. Some properties of topological/combinatorial coordinate system for the
hexagonal and triangular grids.

Grid Triangular Hexagonal

Pixel 3 odd coordinates
−1-sum for even
+1-sum for odd

3 even coordinates
0-sum

Side/Edge 2 odd, 1 even coordinate, 0-sum the even coordinate
position determines the direction

Vertex 3 even coordinates
with 0-sum

3 odd coordinates
±1 sum depending on the corner type (Y,

Y

)

operations on cell complexes, e.g., collapsing, cuts, thinning and skeletonization.
Thinning and skeletonization algorithms are important techniques used in vari-
ous applications, e.g., in character recognition. It is of high importance to keep

Non-traditional 2D Grids in Combinatorial Imaging 21

the topology of the original object. We note here that there are also various
algorithms based on objects represented solely by their pixels, some of those
techniques have also been implemented on the hexagonal and triangular grids
[39,40].

6 Final Comment

Finally, we recall that various image processing algorithms were considered on
the hexagonal grid in [58] (as it is the simplest non-traditional grid and it is a
point lattice). With this paper, we encourage the members of the image process-
ing communities to consider also other non-traditional grids which may show
better performance from various points of view.

Acknowledgements. The author thanks the work of many of his collaborators,
including his PhD students and discussions with various members of the community.

References

1. Abdalla, M., Nagy, B.: Dilation and erosion on the triangular tessellation: an
independent approach. IEEE Access 6, 23108–23119 (2018). https://doi.org/10.
1109/ACCESS.2018.2827566

2. Abdalla, M., Nagy, B.: Mathematical morphology on the triangular grid: the strict
approach. SIAM J. Imaging Sci. 13, 1367–1385 (2020). https://doi.org/10.1137/
19M128017X

3. Abuhmaidan, K., Aldwairi, M., Nagy, B.: Vector arithmetic in the triangular grid.
Entropy 23(3), paper 373 (2021). https://doi.org/10.3390/e23030373

4. Abuhmaidan, K., Nagy, B.: Non-bijective translations on the triangular plane.
In: 16th World Symposium on Applied Machine Intelligence and Informatics
(SAMI 2018, Kosice, Slovakia), pp. 183–188. IEEE (2018). https://doi.org/10.
1109/SAMI.2018.8324836

5. Abuhmaidan, K., Nagy, B.: Bijective, non-bijective and semi-bijective translations
on the triangular plane. Mathematics 8(1), paper 29 (2020). https://doi.org/10.
3390/math8010029

6. Alzboon, L., Khassawneh, B., Nagy, B.: Counting the number of shortest cham-
fer paths in the square grid. Acta Polytechnica Hungarica 17(4), 67–87 (2020).
https://doi.org/10.12700/APH.17.4.2020.4.4

7. Andres, E.: Discrete circles, and discrete rotations. Ph.D. thesis, Universite Louis
Pasteur, France (1992)

8. Andres, E., Largeteau-Skapin, G., Zrour, R.: Shear based bijective digital rotation
in triangular grids. HAL report, hal-01900149 (2018/2022)

9. Andres, E., Largeteau-Skapin, G., Zrour, R.: Shear based bijective digital rotation
in hexagonal grids. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM
2021. LNCS, vol. 12708, pp. 217–228. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-76657-3 15

10. Avkan, A., Nagy, B., Saadetoğlu, M.: Digitized rotations of closest neighborhood
on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Tavares, J.M.R.S. (eds.)
IWCIA 2018. LNCS, vol. 11255, pp. 53–67. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-05288-1 5

https://doi.org/10.1109/ACCESS.2018.2827566
https://doi.org/10.1109/ACCESS.2018.2827566
https://doi.org/10.1137/19M128017X
https://doi.org/10.1137/19M128017X
https://doi.org/10.3390/e23030373
https://doi.org/10.1109/SAMI.2018.8324836
https://doi.org/10.1109/SAMI.2018.8324836
https://doi.org/10.3390/math8010029
https://doi.org/10.3390/math8010029
https://doi.org/10.12700/APH.17.4.2020.4.4
https://doi.org/10.1007/978-3-030-76657-3_15
https://doi.org/10.1007/978-3-030-76657-3_15
https://doi.org/10.1007/978-3-030-05288-1_5
https://doi.org/10.1007/978-3-030-05288-1_5

22 B. Nagy

11. Avkan, A., Nagy, B., Saadetoğlu, M.: On the angles of change of the neighborhood
motion maps on the triangular grid. In: 11th International Symposium on Image
and Signal Processing and Analysis (ISPA 2019), pp. 76–81. IEEE (2019). https://
doi.org/10.1109/ISPA.2019.8868526

12. Avkan, A., Nagy, B., Saadetoğlu, M.: Digitized rotations of 12 neighbors on the
triangular grid. Ann. Math. Artif. Intell. 88(8), 833–857 (2020). https://doi.org/
10.1007/s10472-019-09688-w

13. Avkan, A., Nagy, B., Saadetoğlu, M.: A comparison of digitized rotations of neigh-
borhood motion maps of closest neighbors on 2D regular grids. Signal Image Video
Process. 16(2), 505–513 (2022). https://doi.org/10.1007/s11760-021-01993-4

14. Avkan, A., Nagy, B., Saadetoglu, M.: A comparison of 2D regular grids based on
digital continuity of rotations. In: ISAIM 2022 (abstract)

15. Borgefors, G.: Chamfering: a fast method for obtaining approximations of the
Euclidean distance in N dimensions. In: 3rd Scandinavian Conference on Image
Analysis, Copenhagen, Denmark, pp. 250–255 (1983)

16. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph.
Image Process. 34(3), 344–371 (1986)

17. Borgefors, G.: A semiregular image grid. J. Vis. Commun. Image Represent. 1(2),
127–136 (1990)

18. Breuils, S., Kenmochi, Y., Sugimoto, A.: Visiting bijective digitized reflections
and rotations using geometric algebra. In: Lindblad, J., Malmberg, F., Sladoje,
N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 242–254. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76657-3 17

19. Brimkov, W.E., Barneva, R.P.: Analytical honeycomb geometry for raster and
volume graphics. Comput. J. 48(2), 180–199 (2005)

20. Butt, M.A., Maragos, P.: Optimum design of chamfer distance transforms. IEEE
Trans. Image Process. 7(10), 1477–1484 (1998)

21. Comic, L.: A combinatorial coordinate system for the vertices in the octagonal
C4C8(S) grid. In: 12th International Symposium on Image and Signal Processing
and Analysis (ISPA 2021), pp. 235–240. IEEE (2021)

22. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. AK
Peters (2008)

23. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren
der mathematischen Wissenschaften, vol. 290. Springer, New York (1993).
https://doi.org/10.1007/978-1-4757-6568-7

24. Das, P.P.: Counting minimal paths in digital geometry. Pattern Recognit. Lett.
12, 595–603 (1991). https://doi.org/10.1016/0167-8655(91)90013-C

25. Das, P.P.: Best simple octagonal distances in digital geometry. J. Approx. Theory
68, 155–174 (1992)

26. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Generalised distances in digital
geometry. Inf. Sci. 42, 51–67 (1987)

27. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Distance functions in digital geom-
etry. Inf. Sci. 42, 113–136 (1987)

28. Das, P.P., Chatterji, B.N.: Octagonal distances for digital pictures. Inf. Sci. 50,
123–150 (1990)

29. Das, P.P., Mukherjee, J., Chatterji, B.N.: The t-cost distance in digital geometry.
Inf. Sci. 59(1–2), 1–20 (1992)

30. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular
arrays. Commun. ACM 15(3), 827–837 (1972)

https://doi.org/10.1109/ISPA.2019.8868526
https://doi.org/10.1109/ISPA.2019.8868526
https://doi.org/10.1007/s10472-019-09688-w
https://doi.org/10.1007/s10472-019-09688-w
https://doi.org/10.1007/s11760-021-01993-4
https://doi.org/10.1007/978-3-030-76657-3_17
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1016/0167-8655(91)90013-C

Non-traditional 2D Grids in Combinatorial Imaging 23

31. Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1-
and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26145-4 9

32. Farkas, J., Baják, Sz., Nagy, B.: Notes on approximating the Euclidean circle in
square grids. Pure Math. Appl. PU.M.A. 17, 309–322 (2006)

33. Gale, D.: A theorem on flows in networks. Pac. J. Math. 7(2), 1073–1082 (1957)
34. Grünbaum, B., Shephard, G.C.: Tilings by regular polygons. Math. Mag. 50(5),

227–247 (1977)
35. Hales, T.: The honeycomb conjecture. Discret. Comput. Geom. 25, 1–22 (2001)
36. Hartman, N.P., Tanimoto, S.L.: A hexagonal pyramid data structure for image

processing. IEEE Trans. Syst. Man Cybern. 14(2), 247–256 (1984)
37. Her, I.: A symmetrical coordinate frame on the hexagonal grid for computer

graphics and vision. ASME J. Mech. Des. 115(3), 447–449 (1993)
38. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image

Proc. 4, 1213–1221 (1995)
39. Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math.

Artif. Intell. 75(1), 53–68 (2015)
40. Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangu-

lar, square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)
41. Kaufman, A.: Voxels as a computational representation of geometry. Presented at

the SIGGRAPH 1999/Course 29, Los Angeles Convention Center, Los Angeles,
CA, USA, 8–13 August 1999, pp. 14–58 (1999)

42. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected
topologies on finite ordered sets. Topol. Appl. 36 (1990)

43. Khassawneh, B., Nagy, B.: Polynomial and multinomial coefficients in terms of
number of shortest paths. C. R. Acad. Bulgare Sci. 75(4), 495–503 (2022). https://
doi.org/10.7546/CRABS.2022.04.03

44. Kiselman, C.O.: Elements of Digital Geometry, Mathematical Morphology, and
Discrete Optimization. World Scientific, Singapore (2022)

45. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Pic-
ture Analysis. Morgan Kaufmann, Elsevier Science B.V. (2004)

46. Kovács, G., Nagy, B., Stomfai, G., Turgay, N.D., Vizvári, B.: On chamfer distances
on the square and body-centered cubic grids: an operational research approach.
Math. Probl. Eng. 2021, 9, Article ID 5582034 (2021). https://doi.org/10.1155/
2021/5582034

47. Kovács, G., Nagy, B., Turgay, N.D.: Distance on the Cairo pattern. Pattern
Recogn. Lett. 145, 141–146 (2021). https://doi.org/10.1016/j.patrec.2021.02.002

48. Kovács, G., Nagy, B., Vizvári, B.: On weighted distances on the Khalimsky grid.
In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647,
pp. 372–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-
2 29

49. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances and digital disks on the
Khalimsky grid. J. Math. Imaging Vis. 59(1), 2–22 (2017). https://doi.org/10.
1007/s10851-016-0701-5

50. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the trihexagonal grid. In:
Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502,
pp. 82–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5 8

51. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the truncated hexagonal
grid. Pattern Recogn. Lett. 152, 26–33 (2021). https://doi.org/10.1016/j.patrec.
2021.09.015

https://doi.org/10.1007/978-3-319-26145-4_9
https://doi.org/10.1007/978-3-319-26145-4_9
https://doi.org/10.7546/CRABS.2022.04.03
https://doi.org/10.7546/CRABS.2022.04.03
https://doi.org/10.1155/2021/5582034
https://doi.org/10.1155/2021/5582034
https://doi.org/10.1016/j.patrec.2021.02.002
https://doi.org/10.1007/978-3-319-32360-2_29
https://doi.org/10.1007/978-3-319-32360-2_29
https://doi.org/10.1007/s10851-016-0701-5
https://doi.org/10.1007/s10851-016-0701-5
https://doi.org/10.1007/978-3-319-66272-5_8
https://doi.org/10.1016/j.patrec.2021.09.015
https://doi.org/10.1016/j.patrec.2021.09.015

24 B. Nagy

52. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In:
Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3 27

53. Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topol-
ogy and Algorithms for Computer Imagery), editing house Dr. Bärbel Kovalevski,
Berlin (2008)

54. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Trans. Comput.
5, 532–533 (1976)

55. Lukić, T., Nagy, B.: Regularized binary tomography on the hexagonal grid. Phys-
ica Scripta 94, paper 025201, 9 p. (2019). https://doi.org/10.1088/1402-4896/
aafbcb

56. Matej, S., Herman, G.T., Vardi, A.: Binary tomography on the hexagonal grid
using Gibbs priors. Int. J. Imaging Syst. Technol. 9, 126–131 (1998)

57. Matej, S., Vardi, A., Herman, G.T., Vardi, E.: Binary tomography using Gibbs
priors. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations,
Algorithms and Applications, chap. 8, pp. 191–212. Birkhäuser, Boston (1999)

58. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach.
Springer, London (2005)

59. Mir-Mohammad-Sadeghi, H., Nagy, B.: On the chamfer polygons on the triangular
grid. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp.
53–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7 5

60. Moisi, E., Nagy, B.: Discrete tomography on the triangular grid: a memetic app-
roach. In: 7th IEEE International Symposium on Image and Signal Processing
and Analysis (ISPA 2011), Dubrovnik, Croatia, pp. 579–584. IEEE (2011)

61. Mukherjee, J.: Linear combination of weighted t-cost and chamfering weighted
distances. Pattern Recogn. Lett. 40, 72–79 (2014)

62. Mukhopadhyay, J.: Approximation of Euclidean Metric by Digital Distances.
Springer, Heidelberg (2020)

63. Nagy, B.: Finding shortest path with neighborhood sequences in triangular grids.
In: Proceedings of ITI-ISPA 2001: 2nd IEEE R8-EURASIP International Sym-
posium on Image and Signal Processing and Analysis, Pula, Croatia, pp. 55–60.
IEEE (2001)

64. Nagy, B.: Metrics based on neighbourhood sequences in triangular grids. Pure
Math. Appl. 13, 259–274 (2002)

65. Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. J.
Comput. and Inf. Tech. 11, 111–122 (2003)

66. Nagy, B.: Distance functions based on neighbourhood sequences. Publicationes
Mathematicae Debrecen 63, 483–493 (2003)

67. Nagy, B.: A family of triangular grids in digital geometry. In: 3rd International
Symposium on Image and Signal Processing and Analysis (ISPA 2003), Rome,
Italy, pp. 101–106. IEEE (2003)

68. Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Theoretical
Computer Science - Information Society (ACM Conference), Ljubljana, Slovenia,
pp. 193–196 (2004)

69. Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica
Academiae Paedagogicae Nyiregyháziensis 20, 63–78 (2004)

70. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recogn.
Lett. 25(11), 1231–1242 (2004). https://doi.org/10.1016/j.patrec.2004.04.001

71. Nagy, B.: Calculating distance with neighborhood sequences in the hexagonal
grid. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 98–109.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3 8

https://doi.org/10.1007/978-3-540-30503-3_27
https://doi.org/10.1088/1402-4896/aafbcb
https://doi.org/10.1088/1402-4896/aafbcb
https://doi.org/10.1007/978-3-319-59108-7_5
https://doi.org/10.1016/j.patrec.2004.04.001
https://doi.org/10.1007/978-3-540-30503-3_8

Non-traditional 2D Grids in Combinatorial Imaging 25

72. Nagy, B.: Metric and non-metric distances on Z
n by generalized neighbourhood

sequences. In: 4th International Symposium on Image and Signal Processing and
Analysis (ISPA 2005), Zagreb, Croatia, pp. 215–220. IEEE (2005)

73. Nagy, B.: Transformations of the triangular grid. In: Third Hungarian Conference
on Computer Graphics and Geometry (GRAFGEO), Budapest, Hungary, pp.
155–162 (2005)

74. Nagy, B.: Geometry of neighborhood sequences in hexagonal grid. In: Kuba, A.,
Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 53–64. Springer,
Heidelberg (2006). https://doi.org/10.1007/11907350 5

75. Nagy, B.: Distances with neighbourhood sequences in cubic and triangular grids.
Pattern Recogn. Lett. 28, 99–109 (2007). https://doi.org/10.1016/j.patrec.2006.
06.007

76. Nagy, B.: Nonmetrical distances on the hexagonal grid using neighborhood
sequences. Pattern Recogn. Image Anal. 17, 183–190 (2007)

77. Nagy, B.: Optimal neighborhood sequences on the hexagonal grid. In: 5th Inter-
national Symposium on Image and Signal Processing and Analysis, (ISPA 2007),
Istanbul, Turkey, pp. 310–315. IEEE (2007)

78. Nagy, B.: Distance with generalized neighbourhood sequences in nD and ∞D.
Discret. Appl. Math. 156(12), 2344–2351 (2008). https://doi.org/10.1016/j.dam.
2007.10.017

79. Nagy, B.: Isometric transformations of the dual of the hexagonal lattice. In: Pro-
ceedings of the 6th International Symposium on Image and Signal Processing and
Analysis, pp. 432–437. IEEE (2009)

80. Nagy, B.: Cellular topology on the triangular grid. In: Barneva, R.P., Brimkov,
V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 143–153. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34732-0 11

81. Nagy, B.: Weighted distances on a triangular grid. In: Barneva, R.P., Brimkov,
V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 37–50. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07148-0 5

82. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal
and on the triangular grids. Ann. Math. Artif. Intell. 75(1-2), 117–134 (2015).
https://doi.org/10.1007/s10472-014-9404-z

83. Nagy, B.: Application of neighborhood sequences in communication of hexagonal
networks. Discret. Appl. Math. 216, 424–440 (2017). https://doi.org/10.1016/j.
dam.2015.10.034

84. Nagy, B.: Binary morphology on the triangular grid. In: Workshop on Digital
Topology and Mathematical Morphology on the Occasion of the Retirement of
Gilles Bertand, ESIEE Paris (2019). (Preconference Workshop of DGCI 2019)

85. Nagy, B.: On the number of shortest paths by neighborhood sequences on the
square grid. Miskolc Math. Notes 21, 285–301 (2020). https://doi.org/10.18514/
MMN.2020.2790

86. Nagy, B.: Diagrams based on the hexagonal and triangular grids. Acta Polytech-
nica Hungarica 19(4), 27–42 (2022)

87. Nagy, B., Abuhmaidan, K.: A continuous coordinate system for the plane by
triangular symmetry. Symmetry 11(2), 17, Article no. 191 (2019). https://doi.
org/10.3390/sym11020191

88. Nagy, B., Akkeleş, A.: Trajectories and traces on non-traditional regular tessella-
tions of the plane. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS,
vol. 10256, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59108-7 2

https://doi.org/10.1007/11907350_5
https://doi.org/10.1016/j.patrec.2006.06.007
https://doi.org/10.1016/j.patrec.2006.06.007
https://doi.org/10.1016/j.dam.2007.10.017
https://doi.org/10.1016/j.dam.2007.10.017
https://doi.org/10.1007/978-3-642-34732-0_11
https://doi.org/10.1007/978-3-319-07148-0_5
https://doi.org/10.1007/s10472-014-9404-z
https://doi.org/10.1016/j.dam.2015.10.034
https://doi.org/10.1016/j.dam.2015.10.034
https://doi.org/10.18514/MMN.2020.2790
https://doi.org/10.18514/MMN.2020.2790
https://doi.org/10.3390/sym11020191
https://doi.org/10.3390/sym11020191
https://doi.org/10.1007/978-3-319-59108-7_2
https://doi.org/10.1007/978-3-319-59108-7_2

26 B. Nagy

89. Nagy, B., Khassawneh, B.: On the number of shortest weighted paths in a
triangular grid. Mathematics 8(1), paper 118 (2020). https://doi.org/10.3390/
math8010118

90. Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Fund.
Inform. 145, 125–141 (2016). https://doi.org/10.3233/FI-2016-1350

91. Nagy, B., Lukić, T.: Binary tomography on triangular grid involving hexagonal
grid approach. In: Barneva, R.P., Brimkov, V.E., Tavares, J.M.R.S. (eds.) IWCIA
2018. LNCS, vol. 11255, pp. 68–81. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-05288-1 6

92. Nagy, B., Lukić, T.: Binary tomography on the isometric tessellation involving
pixel shape orientation. IET Image Proc. 14(1), 25–30 (2020). https://doi.org/
10.1049/iet-ipr.2019.0099

93. Nagy, B., Moisi, E.V.: Binary tomography on the triangular grid with 3 alternative
directions - a genetic approach. In: 22nd International Conference on Pattern
Recognition (ICPR 2014), Stockholm, Sweden, pp. 1079–1084. IEEE Computer
Society (2014). https://doi.org/10.1109/ICPR.2014.195

94. Nagy, B., Moisi, E.V.: Memetic algorithms for reconstruction of binary images
on triangular grids with 3 and 6 projections. Appl. Soft Comput. 52, 549–565
(2017). https://doi.org/10.1016/j.asoc.2016.10.014

95. Nagy, B., Moisi, E.V., Cretu, V.I.: Discrete tomography on the triangular grid
based on Ryser’s results. In: 8th International Symposium on Image and Signal
Processing and Analysis (ISPA 2013), Trieste, Italy, pp. 794–799. IEEE (2013).
https://doi.org/10.1109/ISPA.2013.6703846

96. Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood
sequences in a hexagonal grid. Theoret. Comput. Sci. 412, 1364–1377 (2011).
https://doi.org/10.1016/j.tcs.2010.10.028

97. Nagy, B., Strand, R., Normand, N.: A weight sequence distance function. In: Hen-
driks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp.
292–301. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-
9 25

98. Nagy, B., Strand, R., Normand, N.: Distance functions based on multiple types
of weighted steps combined with neighborhood sequences. J. Math. Imaging Vis.
60, 1209–1219 (2018). https://doi.org/10.1007/s10851-018-0805-1

99. Nagy, B., Strand, R., Normand, N.: Distance transform based on weight
sequences. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI
2019. LNCS, vol. 11414, pp. 62–74. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-14085-4 6

100. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Honeycomb geometry: rigid
motions on the hexagonal grid. In: Kropatsch, W.G., Artner, N.M., Janusch, I.
(eds.) DGCI 2017. LNCS, vol. 10502, pp. 33–45. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66272-5 4

101. Pluta, K., Roussillon, T., Coeurjolly, D., Romon, P., Kenmochi, Y., Ostro-
moukhov, V.: Characterization of bijective digitized rotations on the hexagonal
grid. J. Math. Imaging Vis. 60(5), 707–716 (2018)

102. Radványi, A.G.: On the rectangular grid representation of general CNN networks.
Int. J. Circuit Theory Appl. 30(2–3), 181–193 (2002)

103. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recogn.
1, 33–61 (1968)

104. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math.
9, 371–377 (1957)

https://doi.org/10.3390/math8010118
https://doi.org/10.3390/math8010118
https://doi.org/10.3233/FI-2016-1350
https://doi.org/10.1007/978-3-030-05288-1_6
https://doi.org/10.1007/978-3-030-05288-1_6
https://doi.org/10.1049/iet-ipr.2019.0099
https://doi.org/10.1049/iet-ipr.2019.0099
https://doi.org/10.1109/ICPR.2014.195
https://doi.org/10.1016/j.asoc.2016.10.014
https://doi.org/10.1109/ISPA.2013.6703846
https://doi.org/10.1016/j.tcs.2010.10.028
https://doi.org/10.1007/978-3-642-38294-9_25
https://doi.org/10.1007/978-3-642-38294-9_25
https://doi.org/10.1007/s10851-018-0805-1
https://doi.org/10.1007/978-3-030-14085-4_6
https://doi.org/10.1007/978-3-030-14085-4_6
https://doi.org/10.1007/978-3-319-66272-5_4
https://doi.org/10.1007/978-3-319-66272-5_4

Non-traditional 2D Grids in Combinatorial Imaging 27

105. Saadat, M.R., Nagy, B.: Cellular automata approach to mathematical morphology
in the triangular grid. Acta Polytechnica Hungarica (J. Appl. Sci.) 15(6), 45–62
(2018)

106. Saadat, M., Nagy, B.: Digital geometry on the dual of some semi-regular tessel-
lations. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS,
vol. 12708, pp. 283–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-76657-3 20

107. Stojmenovic, I.: Honeycomb networks: topological properties and communication
algorithms. IEEE Trans. Parallel Distrib. Syst. 8, 1036–1042 (1997)

108. Strand, R., Nagy, B.: A weighted neighbourhood sequence distance function with
three local steps. In: 7th International Symposium on Image and Signal Processing
and Analysis (ISPA 2011), Dubrovnik, Croatia, pp. 564–568. IEEE (2011)

109. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing admissible rotation angles
from rotated digital images. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A.
(eds.) IWCIA 2008. LNCS, vol. 4958, pp. 99–111. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78275-9 9

110. Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal
cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA
2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78275-9 2

111. Yamashita, M., Honda, N.: Distance functions defined by variable neighborhood
sequences. Pattern Recogn. 17, 509–513 (1984)

112. Yamashita, M., Ibaraki, T.: Distances defined by neighborhood sequences. Pattern
Recogn. 19, 237–246 (1986)

https://doi.org/10.1007/978-3-030-76657-3_20
https://doi.org/10.1007/978-3-030-76657-3_20
https://doi.org/10.1007/978-3-540-78275-9_9
https://doi.org/10.1007/978-3-540-78275-9_2
https://doi.org/10.1007/978-3-540-78275-9_2

Digital Geometry and Topology

Rectangularization of Digital Objects
and Its Relation with Straight Skeletons

Anukul Maity1, Mousumi Dutt2(B), and Arindam Biswas3

1 Narula Institute of Technology, Kolkata, India
2 St. Thomas’ College of Engineering and Technology, Kolkata, India

duttmousumi@gmail.com
3 Indian Institute of Engineering Science and Technology, Howrah, Shibpur, India

Abstract. The rectangular partitioning of a digital object, A (without
holes) is presented here. The partitioning is obtained in such a way that
the set of connected output rectangles are related to the straight skele-
ton of the corresponding digital object. The given digital object, A is
imposed on background grid of size, g (say) and its inner isothetic cover,
P is obtained which is the maximum area orthogonal polygon inside the
digital object. The combinatorial rules are formulated to apply those on
P to partition it into a set of rectangles such that it is related to the
straight skeleton of P . The partitioning algorithm discussed here runs in
O(n/g log n/g) where n being the number of pixels on the periphery of
digital object and g being the grid size. The experimental result shows
the efficiency of the algorithm.

Keywords: Rectangular decomposition · Straight skeleton · Inner
isotheic cover · Minimal partition · Orthogonal polygon · Shape
analysis

1 Introduction

The polygonal decomposition is two types: covering problem and partitioning
problem, where the input polygon may be hole-free or with holes. In this work,
the partitioning is performed on non self-intersecting and hole-free orthogonal
polygons. Decomposition of hole-free orthogonal polygon is a crucial and chal-
lenging task in many areas of scientific analysis due to its cognitive content. It is
heavily used in computer vision and VLSI layout design [21]. The typical appli-
cations of shape description, shape analysis, and shape matching include art,
architecture, robotic vision, cell biology, satellite imagery, neuron morphology,
psycholinguistics, qualitative reasoning, image processing [14], pattern recogni-
tion [2], chip manufacturing [20], etc.

There are many research works on polygon decomposition in different
domains, of which some of the problems are NP-hard [24]. In [7,8,19,25], it
is shown that the decomposition of polygon with holes into minimum number
of components is NP-hard. An optimal solution of polygon decomposition for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 31–45, 2023.
https://doi.org/10.1007/978-3-031-23612-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_2

32 A. Maity et al.

(a) Digital Object (b) Orthogonal Polygon (c) Straight Skeleton (d) Rectangularization

Fig. 1. (a) The 8-connected digital object, A, (b) Inner isothetic cover, P , for g = 4,
(c) The straight skeleton, S(P), (d) Rectangularization, R.

the polygons without holes into minimum number of convex pieces is proposed
in [8] whereas the corresponding covering problem is NP-hard [9]. The decom-
position of polygons with holes allowing Steiner points is NP-hard [18]. As the
convex decomposition into minimum number of components is NP-hard, approx-
imate decomposition in 3D domain is presented in [17]. The rectangular polygon
decomposition are discussed in literature [11,26]. In [8,13,15,23], the polygon
partitioning into minimum number of convex components are given. Optimum
rectangular partitioning of simple polygon by minimising the stabbing num-
ber for the problem of finding a spanning tree or a triangulation is NP-hard
[1,3,4,12]. In this paper, the rectangularization is related to the corresponding
straight skeleton. The shape skeleton influences the perception of shape structure
and have important consequence in visual processing and human vision [22].

Here, in this paper a 8-connected digital object, A is taken as input
(Fig. 1(a)). A is imposed on background grid of size g and its inner isothetic
cover, P [5,6] is obtained (Fig. 1(b)) which is an orthogonal polygon. The com-
binatorial rules are applied on P to partition it into rectangles such that the
set of rectangles are related to the straight skeleton P . The straight skeleton,
S(P) and its partitioning into rectangles (R) are shown in Fig. 1(c) and Fig. 1(d)
respectively for the digital object shown in Fig. 1(a). This paper is organized as
follows. The definitions are stated in Sect. 2. Section 3 explains the combinatorial
rules of partitioning an orthogonal polygon. In Sect. 4, the procedure of partition-
ing orthogonal polygons into rectangles is explained along with the algorithm,
time complexity analysis, and demonstration The experimental results and its
analysis are depicted in Sect. 5. Section 6 presents concluding remarks.

2 Definitions

Definition 1 (Digital object): A digital object A is defined as k-connected (k = 4
or 8) subset of Z2 [16].

Rectangularization of Digital Objects 33

vi

vi+1
vi+2

vi−1

vi+3

v′(vi.x, vi+2.y,)
Pseudo vertex

Cancel vertex

Convex edge < vi, vi+1 >

Polygon vertex

ei

vi+4 vi−2

v′′
Convex Region

Fig. 2. Convex edge ei = 〈vi, vi+1〉 is represented by two consecutive type-1 vertices
along with different types of vertices (polygon vertex, v, internal vertex, u, pseudo
vertex, v′). Solid line indicates the edge of polygon and dotted line indicates common
edge of two adjacent rectangles. The convex region is marked by lightcyan color. (Color
figure online)

In this paper, 8-connected digital objects are used whose background grid is
4-connected.

Definition 2 (Digital grid): The digital grid is defined as G = (H,V), where H
is the set of horizontal grid lines and V is the set of vertical grid lines which are
equi-distant from each other. The grid size (g) is defined as the distance between
two consecutive horizontal or two consecutive vertical grid lines and intersection
of a horizontal and a vertical grid line is called grid point. The edge between
two consecutive grid points is called grid edge. A unit grid block (UGB) is the
smallest unit square block in grid consisting of four grid points and four grid
edges.

Definition 3 (Orthogonal polygon): An orthogonal polygon P is a polygon
whose edges are axes parallel.

Here, in this paper simple orthogonal polygon (isothetic polygon) is consid-
ered, i.e., the orthogonal polygon without holes and without self intersecting
edges. The two consecutive edges of an orthogonal polygon either intersects at
90◦ or 270◦. The vertex with 90◦ angle is termed as type 1 vertex and the vertex
with 270◦ angle is termed as type 3 vertex. The type 3 vertex is also sometimes
termed as Reflex Vertex. The inner isothetic cover (which is an orthogonal poly-
gon) of 8-connected digital object is obtained here using the algorithm in [5,6].
To obtain more (less) tightly fitted inner isothetic cover of digital objects grid
size needs to be decreased (increased).

Definition 4 (Convex edge and Convex region): An edge 〈vi, vi+1〉 of P is called
a convex edge if and only if two consecutive vertices have the same vertex type
1 (90◦) and the rectangular area RCR corresponding to the convex edge is called
convex region as shown in Fig. 2.

34 A. Maity et al.

l1

l2

vk+1v1

v2 v3
l3

lk

v5

vk

lk+1

vk−1 vk−1vk

v4

v4

lk−1

l′

l4

lk+1

l2

vk+1

v2 v3

lk

l3
v4

v′

vk

v1

l1

vk−1

vk−1vk

v′

v4

vk+1
lk+1 − l2

l4

l′
lk

lk+1

l1

l2

lk

vk+1v1

v2 v3

v5

vk
v5

vk vk−1

v′ v3

lk−1

l′

vk−1

v4
v4

v′

Rule 11 (lk+1 = l2)

Rule 12 (lk+1 > l2)

l′ = l1 − l3

Rule 13 (lk+1 < l2)

l′ = l2 − lk+1

(R11)

(R12)

(R13)

l′ = l1 − (lk + l3)

v′ = (v1.x, v3.y)

v′ = (v2.x, vk+1.y)
l1 − lk

v5

v5

v5

Fig. 3. The description of rule 1.

The conventional definition of the straight skeleton, S(P), of a polygon as
stated in [10] is as follows. Imagine shrinking δP via a parallel translation of all
edges at the same speed inward, with each vertex following the angle bisector.
Reflex vertices also travel on angle bisectors, which implies that the incident
edge grows in length at that endpoint. The shrinking continues until one of two
events occurs.

– An edge shrinks to zero length. This is exactly the event we saw with the
medial axis of convex polygons and, just as in that circumstance, the process
continues with the new vertex tracking the bisector of the neighboring edges.

– A reflex vertex collides with an edge. At this point, the original polygon is
“pinched off”, creating two new polygons. The shrinking process then con-
tinues on the two polygons independently.

3 Rules for Partitioning into Rectangles

The inner isothetic cover, P is traversed anticlockwise from top-left corner. While
traversing anticlockwise from the vertex vi to vi+1, the direction of traversal

Rectangularization of Digital Objects 35

of vi+1 is di+1, which is obtained from the previous direction di+1 = (di +
ti) mod 4 (di ∈ 〈0, 1, 2, 3〉, denoting the direction towards right, top, left, or
bottom respectively). Let li be the length of edge ei(vi, vi+1). At each step while
the rule is applied and desired rectangle is identified, the resulting rectangle is
temporarily discarded and P is updated. The rules are explained as follows.

Rule 1: This rule is applied when there is a sequence of vertices of types
〈3, 1, 1, 1, 1, 3〉 as shown in Fig. 3. The rectangle for the convex region is detected
as marked by blue dashed line and accordingly the rectangle is discarded from
the polygon. Let lk be the length of edge associated with vertex vk. Depending
on the length of lk+1 and l2 three cases are there as shown in Fig. 3. The three
cases are as follows.

Rule R11 (lk+1 = l2): This rule is applied when lk+1 = l2. Let the rectangle be
consisted of the sequence of vertices 〈v1, v2, v3, vk+1〉. The rectangle associated
with convex region are determined and thereby the following vertices v1, v2, v3,
and vk+1 are removed to update the polygon and lk is modified to l1 − (l3 + lk).

Rule R12 (lk+1 > l2): This rule is applied to remove the convexity where
lk+1 is greater than l2. After removing the resulting rectangle, the length of the
corresponding edges are updated from lk+1 and l3 to lk+1 − l2 and l′ = l1 − l3
respectively.

Rule R13 (lk+1 < l2): This is another variation of Rule R12.

Rule 2: This rule is applied when there is a sequence of vertices of types
〈3, 1, 1, 1, 3〉 as shown in Fig. 4. Depending on the length of lk+1 and l2, there are
three cases as discussed in the following. In each cases, the resulting rectangle is
marked by blue dashed line.

Rule R21 (lk+1 = l2): This rule is applied when the length of l2 and lk+1 are
equal. The sequence of vertices of the resulting rectangle is 〈v1, v2, v3, vk+1〉. The
vertices v1, v2, v3, and vk+1 are removed and the length of the corresponding
edge is updated from l3 to l1 − lk + l3.

Rule R22 (lk+1 < l2): This rule is applied when lk+1 is less than l2. A pseudo
vertex (edge point) v′ is determined where the coordinate of v′ is (v3.x, vk+1.y).
The vertices v1, v2, and vk+1 are removed. The length of the corresponding edges
are updated from lk and l2 to l1 − lk and l′ = l2 − lk+1 respectively.

Rule R23 (lk+1 > l2): This rule is applied when lk+1 is greater than l2. The
length of the corresponding edges are updated from lk and l2 to l′ = l1 − lk and
l′′ = lk+1 − l2 respectively. The vertices v1, v2, and vk+1 are removed.

Rule 3: This rule is applicable when there is a sequence of vertices of type
〈3, 1, 1, 3〉 as shown in Fig. 5. There are three cases as discussed below. In each
cases the resulting rectangle is marked by blue dashed line.

Rule R31 (lk+1 = l2): This rule is applied when the length l2 and lk+1 are equal.
The vertices v2, v3, v4, and v5 are removed on detecting the resulting rectangle.
The length of corresponding edge is modified from l1 to l1 + l3 + l5.

36 A. Maity et al.

lk+1

l1

l2

lk

vk+1

v2

v1

v4

v3

v5

vk

lk+1

l1

l2

lk

vk+1v1

v2
v3

v4 v5

vk

l1

l2

lk

vk+1v1

v2
v3

v′

v5

vk

v5

vk vk−1

v′ v3

lk − l1

lk−1

l′

vk−1

lk+1

vk−1

vk−1vk

v4 v5

vk−1
vk−1

v5v4 l4

lk−1

l′

l4
l3

l3

l3

l4

l4

Rule 21 (lk+1 = l2)
l′ = l1 − lk + l3

Rule 22 (lk+1 < l2)

l′ = l2 − lk+1

l′ = l1 − lk

(R21)

(R22)

(R23)

Rule 23 (lk+1) > l2

vk

lk+1 − l2

v′ = (v2.x, vk.y)

v′ = (v2.x, vk+1.y)

l3

v3

v′
v′l′
l′

l′′
l′′ = lk+1 − l2

Fig. 4. The description of rule 2.

Rule R32 (lk+1 < l2): This rule is applied when lk+1 < l2. The vertices v3, v4,
and v5 are removed and length of corresponding edges are modified from l5 and
l2 to l′ = l2 − l4 and l3 + l5 respectively.

Rule R33 (lk+1 > l2): This rule is applied when lk+1 > l2. The vertices v2, v3,
and v4 are removed and the length of corresponding edges modified from l1 and
l4 to l1 + l3 and l′ = l4 − l2 respectively.

Rule 4: This rule is applicable when there is a sequence of vertices of more than
four type 1 vertices as shown in Fig. 6. The sequence of type 1 vertices ends
with a type 3 vertex (v7 in Fig. 6). From that type 3 vertex two rectangles are
considered R1 and R2 as shown in lightblue and lightgreen color respectively in
Fig. 6. There are two cases based on the areas of R1 and R2 as discussed below.

Rule R41: When the area of R1 is less than R2, the corresponding result is
shown in Fig. 6. The vertices v5, v6, and v7 are deleted and v′

5 is inserted.

Rule R42: When the area of R1 is greater than R2, the corresponding result is
shown Fig. 6. The vertices v4, v5, and v6 are deleted and v′ is inserted.

On application of Rule 4, the polygon will be reduced and number of con-
secutive Type 1 vertices will be reduced such that again rules can be applied to

Rectangularization of Digital Objects 37

v′

l1

l3

v7v′

v1 vk+1 vk+1v1

v2
v3

v4 v5
v6

l4 l5

lk+1 lk+1

l1 + l3

l′

l′ = l4 − l2

Rule 33 (l2 < l4)

v5
v6(R33)

v1

v2

v6

v4 v5

v3 l1l2

l3

l4 l5
v7

vk+1
Rule 31 (l2 = l4)

vk+1v1

v6
v7

l6l6

l′ = l1 + l3 + l5

(R31)

lk+1

lk+1v1

v2

v3

v4 v5
v6 v7

vk+1
l1

l2

l3

l4
l6

v′v′

v1

v2

vk+1

v6
v7

l3 + l5

l′

l6

lk+1 Rule 32 (l2 > l4)

l′ = l2 − l4

(R32)

lk+1

v′ = (v2.x, v5.y)

v′ = (v5.x, v1.y)

l2

l5

l′

v7

Fig. 5. The description of rule 3.

v1

v2 v3

v4
v5

v6 v7
v8v9

v10
v1

v2 v3

v4
v5

v6 v7
v8v9

v10
v1

v2 v3

v4

v8v9

v10

R41 : R1 < R2
v1

v2 v3

v4
v5

v8v9

v10

v6 v7

R1
R2v′

4

v′
3

v′
5

R1

v1

v2 v3

v4
v5

v8v9

v10

v6 v7v′
4

v′
3

v′
5

R2

R42 : R1 > R2

v′
5

v1

v2 v3v8v9

v10

v6 v7 v′

Fig. 6. The description of rule 4.

38 A. Maity et al.

Algorithm 1: Rectangular-Polygon-Partition

Input: A, g
Output: R

1 L, Lx, Ly ← Find-IIC(A); R ← {φ}
2 L ← InitPoly(L)
3 while L �= {φ} do
4 if vi → t = 1 & vi+1 → t = 1 then
5 if vi−1 → Type = 3, & vi+2 → Type = 3 then
6 Ri ← Apply-Rule3(L, vi, vi+1);

7 else
8 val ← Find-Sequence-Type1(vi, vi+1);
9 if val = 3 then

10 Ri ← Apply-Rule2(L, vi, vi+1);

11 else if val = 4 then
12 Ri ← Apply-Rule1(L, vi, vi+1);

13 else if val > 4 then
14 Ri ← Apply-Rule4(L, vi, vi+1);

15 else
16 Ri ← Find-Rect(vi−1, vi, vi+1, vi+1);

17 R ← R ∪ Ri

18 Update-Poly(P)

19 return R

solve the rectangularization. Since the number of Type 1 vertices is four more
than the number of Type 3 vertices in an orthogonal polygon, existence of convex
region is essential. In other words, sequence vertices of types only 〈1, 3, 1, 3, . . .〉
are not possible. Hence the rules are exhaustive.

4 Rectangular Partitioning Procedure

The orthogonal polygon, P is traversed anticlockwise from top left corner. When
the sequence of vertex types matches with the rules as stated in Sect. 3, the
corresponding rule is applied and the resulting rectangle is detected (say, Ri).
Ri is discarded from P and again P is traversed to detect next rectangles. This
procedure continues till P =

∑k
i=1 Ri where k is the number of non-overlapping

rectangles. The algorithm is discussed in Sect. 4.1. The demonstration and time
complexity are presented in Sect. 4.2 and Sect. 4.3 respectively.

4.1 Algorithm

The Algorithm 1 Rectangular-Polygon-Partition is used to find the rect-
angles of orthogonal polygon (inner isothetic cover that tightly inscribes the
8-connected digital object imposed on 4-connected background grid of size g).

Rectangularization of Digital Objects 39

Procedure InitPoly(L = 〈v1, v2, v3, . . . , vn〉)
1 n ← length(L);
2 for i → 1 to n do
3 vi → l = distance(vi);
4 vi → s = 1;
5 if (di+1 − di) mod 4 == 1 then
6 vi → t = 1;

7 else
8 vi → t = 3;

The digital object, A and the grid size, g are the input of the algorithm and
it returns the set of rectangles, R as the output. The partitioning is obtained
in such a way that the set of connected output rectangles are related to the
straight skeleton. The linear list, L, is used to store the sequence of vertices of P
generated by invoking the procedure Find-IIC as stated in [5,6] (Step 1). The
lexicographically sorted lists Lx and Ly are also obtained which are required
to find vertices along a vertical line or horizontal line. Lx is lexicographically
sorted list w.r.t. x as primary key and y as secondary key and Ly is lexicograph-
ically sorted list w.r.t. y as primary key and x as secondary key. Lx and Ly

contain vertices and edge points (grid points on the edge of the polygon). The
vertices of P contain vertex type, t, length of edge (vivi+1), l, and vertex status,
s (si ∈ {1, 2, 3}, where 1, 2, and 3 indicate original vertex, pseudo vertex and
cancel vertex respectively) using InitPoly procedure (Step 2). The rules stated
in Sect. 3 are applied in Steps 3–18. The loop is executed until all the vertices in
L is traversed (Step 3). When there are two consecutive type 1 vertices (Step 4),
the rules are checked in Steps 5–16. When there is a sequence of vertices of types
〈3, 1, 1, 3〉, Rule 3 is applied (Steps 5–6) by calling the procedure Apply-Rule3.
Otherwise, the total number of consecutive type 1 vertices is counted and stored
in val in Step 8 using the procedure Find-Sequence-Type1. If there are three
consecutive type 1 vertices 〈3, 1, 1, 1, 3〉, i.e., val = 3, Rule 2 is applied by calling
the procedure Apply-Rule2 (Steps 9–10). If there are four consecutive type 1
vertices 〈3, 1, 1, 1, 1, 3〉, i.e., val = 4, Rule 1 is applied by calling the procedure
Apply-Rule1 (Steps 11–12). Otherwise, Rule 4 is applied (Steps 13–14) when
val > 4 (by the procedure Apply-Rule4). When there are only four vertices of
type 1 or the polygon is reduced to a rectangle, the last rectangle is identified by
using the procedure Find-Rect (Steps 15–16). On application of rules, the rect-
angle is detected and added to the set R (Step 17) and the polygon is updated by
calling the procedure Update-Poly (Step 18). The set of partitioned rectangles,
R is returned in Step 19.

4.2 Demonstration

The polygon P is defined as an ordered sequence of vertices 〈1, 2, 3, . . . , 16〉
(Fig. 7(a)). The vertices 3 and 4 are two consecutive type 1 vertices and Rule 3

40 A. Maity et al.

R1

2′

1
23

4 5
67

8
9

1011
12

13

14
15
16

R1

2′

R2

15′

1
23

4 5
67

8
9

1011
12

13

14
15
16

R1

2′

R2

15′

R3

11′

1
23

4 5
67

8
9

1011
12

13

14
15
16

(a) (b) (c)

R1

2′

R2

15′

R3

11′

12′

R4

1
23

4 5
67

8
9

1011
12

13

14
15
16

R1

2′

R2

15′

R3

11′

12′

R4

R5

R6

1
23

4 5
67

8
9

1011
12

13

14
15
16

2′ 15′

11′

12′

1
23

4 5
67

8
9

1011
12

13

14
15
16

(d) (e) (f)

Fig. 7. Demonstration of partitioning into rectangles and corresponding straight skele-
ton.

is applied as the sequence of vertices of types 〈3, 1, 1, 3〉 is there. R1 is obtained
as shown in Fig. 7(a). The polygon is updated and the vertex 2′ is added and
the vertices 2, 3, and 4 are deleted. Rule 2 is applied on the sequence of vertices
〈15, 16, 1, 2′, 5〉 of types 〈3, 1, 1, 1, 3〉 and R2 is obtained as shown in Fig. 7(b).
The vertices 1, 2′ and 16 are deleted and 15′ is added. Next, consecutive type 1
vertices are obtained for the vertices 〈6, 7, 8, 9, 10, 11〉 with types 〈3, 1, 1, 1, 1, 3〉.
Rule 1 is applied and the rectangle R3 is obtained as shown in Fig. 7(c). The
vertices 9, 10 and 11 are deleted and 11′ is added. Now, Rule 2 is applied on the
vertices 〈6, 7, 8, 11′, 12〉 with types 〈3, 1, 1, 1, 3〉 as shown in Fig. 7(d). The rect-
angle R4 is obtained and the vertices 12′ are added and the vertices 7, 8, and 11′

are deleted. Rule 1 is applied on the sequence of vertices 〈12′, 12, 13, 14, 15, 15′〉
with types 〈3, 1, 1, 1, 1, 3〉. The rectangle R5 is obtained as shown in Fig. 7(e).
The vertices 12, 13, 14, and 15 are deleted. Now the remaining part of the poly-
gon is a rectangle identified by the procedure Find-Rect. The algorithm stops
and R6 is enlisted as shown in Fig. 7(e). The corresponding straight skeleton is
shown in Fig. 7(f) which has a relation with the set of rectangles as partitioned.

4.3 Time Complexity Analysis

The digital object is imposed on background grid of size g and the number of
pixels on the periphery of the digital object is n. The inner isothetic cover, P of

Rectangularization of Digital Objects 41

Fig. 8. Experimental results of partitioning into rectangles for a set of 8-connected
digital objects.

the digital object is obtained in O(n/g) time and lexicographically ordered lists,
Lx and Ly, are constructed in O(log n/g) time. P is partitioned into rectangles
using the combinatorial rules. To apply the rules, there is a need to search for
vertices and requires to add and/ or delete from vertex list, L. To find the oppo-
site vertex (horizontally or vertically), Lx and Ly are traversed in O(log(n/g)).
The addition and deletion of vertices from L needs linear time w.r.t. the total
number of vertices in L. The polygon P is traversed once in anti-clockwise man-
ner from top-left corner once to find the rectangularization by applying the rules
which needs O((n/g) + log(n/g)) = O(n/g log n/g) time.

5 Experimental Results

The proposed combinatorial algorithm is implemented using C programming lan-
guage in Ubuntu 14.04 environment. The algorithm is tested on various types of

42 A. Maity et al.

Fig. 9. Experimental results of partitioning into rectangles for another set of 8-
connected digital objects.

Table 1. The data of experimental results shown in Fig. 8 and Fig. 9.

Digital
object

Vertices
of P

Area of P #Rectangles Maximum area
Rectangle

CPU Time
(ms)

Fig. 8(a) 162 39816 72 7056 4.949

Fig. 8(b) 230 75900 108 25480 6.426

Fig. 8(c) 158 79600 69 14000 4.324

Fig. 8(d) 110 95226 36 37026 2.633

Fig. 8(e) 146 89712 68 22464 6.209

Fig. 8(f) 130 90500 49 48400 3.294

Fig. 8(g) 172 50292 77 14364 6.133

Fig. 8(h) 166 29328 65 6688 3.942

Fig. 8(i) 258 38608 117 9600 5.732

Fig. 9(a) 202 87552 83 27900 7.802

Fig. 9(b) 350 97984 160 17920 8.987

Fig. 9(c) 256 104076 108 36864 5.868

Fig. 9(d) 344 61088 149 8000 8.556

Fig. 9(e) 150 64675 62 18224 3.063

Fig. 9(f) 202 72396 90 11664 6.21

complex digital objects (8-connected) as shown in Fig. 8 and Fig. 9. All the opera-
tions are performed in the integer domain. The experimental results demonstrate

Rectangularization of Digital Objects 43

the correctness of the proposed algorithm. The number of resulting rectangles,
the number of vertices, the number of convex regions, the area and the perime-
ter of resulting rectangles are important features for shape analysis. Some of
the data are shown in Table 1. The way the rectangularization occurs here has
a relation with the corresponding straight skeleton w.r.t. the shape of the dig-
ital objects. A tree can be formed by the centers of the partitioned rectangles,
which has a similarity with the straight skeleton tree. The advantage is that the
rectangularization tree has less storage compared to the straight skeleton tree.
If the number of rectangles with less area is more and they are consecutive, it
implies complexity on that part of the digital object. For simpler digital objects,
the number of rectangles are less and rectangles are comparatively larger. For
symmetric objects, w.r.t. the line of symmetry, the number of rectangles are
same and correspondingly their area also. The complexity of the shape of digital
objects can be determined from these data. The symmetry of digital objects can
also be obtained from these data along with the degree of symmetry. All these
features are useful for defining the shape signature of the digital objects. With
some more features, these data will be useful for shape classification.

6 Conclusion

The polygon partitioning into minimum number of rectangles is NP-hard. Here,
the rectangularization is performed in such a way that straight skeleton has a
relation with it. Thus the resulting set of rectangles are useful shape signature
of digital objects. The rectangularization algorithm presented here applies com-
binatorial rules and runs in O(n/g log n/g) where n being the number of pixels
on the periphery of digital object and g being the grid size on which the digital
object is imposed. The experimental results are also presented. The problem
has applications mainly in shape analysis. The set of rectangles represent the
underlying structure of digital objects and preserves the geometrical and topo-
logical information of orthogonal polygons. This approach can be extended to
orthogonal polyhedron as the future scope of this work.

References

1. Abam, M.A., Aronov, B., De Berg, M., Khosravi, A.: Approximation algorithms
for computing partitions with minimum stabbing number of rectilinear and simple
polygons. In: Proceedings of the Twenty-Seventh Annual Symposium On Computa-
tional Geometry, SOCG 2011, pp. 407–416. Association for Computing Machinery,
New York (2011)

2. Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into
star-shaped polygons. Pattern Recogn. 13(6), 395–398 (1981)

3. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry:
Algorithms and Applications, 3rd edn. Springer-Verlag, Heidelberg (2008)

4. Berg, M.D., Kreveld, M.V.: Rectilinear decompositions with low stabbing number.
Inf. Process. Lett. 52(4), 215–221 (1994)

44 A. Maity et al.

5. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: on finding a tight Isothetic
polygonal shape covering a 2D object. In: Kalviainen, H., Parkkinen, J., Kaarna,
A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005).
https://doi.org/10.1007/11499145 94

6. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of Isothetic covers
of a digital object: a combinatorial approach. J. Vis. Commun. Image Represent.
21(4), 295–310 (2010)

7. Chazelle, B.: A theorem on polygon cutting with applications. In: Proceedings of
23rd Annual Symposium on Foundations of Computer Science, pp. 339–349. IEEE
Computer Society (1982)

8. Chazelle, B., Dobkin, D.: Decomposing a polygon into its convex parts. In: Pro-
ceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp.
38–48. Association for Computing Machinery, New York (1979)

9. Culberson, J.C., Reckhow, R.A.: Covering polygons is hard. In: Proceedings of
29th Annual Symposium on Foundations of Computer Science, pp. 38–48. IEEE
Computer Society (1988)

10. Devadoss, S.L., Rourke, J.O.: Discrete and Computational Geometry. Princeton
University Press, Princeton (2011)

11. Dutt, M., Biswas, A., Bhowmick, P.: Approximate partitioning of 2D objects into
orthogonally convex components. Comput. Vis. Image Underst. 117(4), 326–341
(2013)

12. Fekete, S., Lübbecke, M., Meijer, H.: Minimizing the stabbing number of match-
ings, trees, and triangulations. Discret. Comput. Geom. 40, 595–621 (2008).
https://doi.org/10.1007/s00454-008-9114-6

13. Garey, M., Johnson, D., Preparata, F., Tarjan, R.: Triangulating a simple polygon.
Inf. Process. Lett. 7(4), 175–179 (1978)

14. Gourley, K., Green, D.: A polygon-to-rectangle conversion algorithm. IEEE Com-
put. Graph. Appl. 3(1), 31–36 (1983)

15. Keil, J.M.: Decomposing a polygon into simpler components. SIAM J. Comput.
14(4), 799–817 (1985)

16. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

17. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. Com-
put. Geom. Theory Appl. 35(1), 100–123 (2006)

18. Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.)
Automata, Languages and Programming. Lecture Notes in Computer Science, vol.
140, pp. 369–383. Lecture Notes in Computer Science (LNCS), Springer, Cham
(1982). https://doi.org/10.1007/BFb0012784

19. Lingas, A., Soltan, V.: Minimum convex partition of a polygon with holes by cuts
in given directions. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri,
S. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, pp.
315–325. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0009508

20. Liu, C., et al.: An effective chemical mechanical polishing fill insertion approach.
ACM Trans. Des. Autom. Electron. Syst. 21(3), 1–21 (2016)

21. Lopez, M.A., Mehta, D.P.: Efficient decomposition of polygons into L-shapes with
application to VLSI layouts. ACM Trans. Des. Autom. Electron. Syst. 1(3), 371–
395 (1996)

22. Lowet, A.S., Firestone, C., Scholl, B.J.: Seeing structure: shape skeletons mod-
ulate perceived similarity. Atten. Percept. Psychophys. 80(5), 1278–1289 (2018).
https://doi.org/10.3758/s13414-017-1457-8

https://doi.org/10.1007/11499145_94
https://doi.org/10.1007/s00454-008-9114-6
https://doi.org/10.1007/BFb0012784
https://doi.org/10.1007/BFb0009508
https://doi.org/10.3758/s13414-017-1457-8

Rectangularization of Digital Objects 45

23. Lubiw, A.: Decomposing polygonal regions into convex quadrilaterals. In: Pro-
ceedings of the First Annual Symposium on Computational Geometry, pp. 97–106.
Association for Computing Machinery, New York (1985)

24. Rourke, J.O., Supowit, K.J.: Some NP-hard polygon decomposition problems.
IEEE Trans. Inf. Theory 29(2), 181–190 (1983)

25. Schachter, B.: Decomposition of polygons into convex sets. IEEE Trans. Comput.
27(11), 1078–1082 (1978)

26. Suk, T., Höschl, C., Flusser, J.: Decomposition of binary images- a survey and
comparison. Pattern Recogn. 45(12), 4279–4291 (2012)

On the Number of 0-Tandems in Simple
nD Digital 0-Connected Curves

Lidija Čomić(B)

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

comic@uns.ac.rs

Abstract. A 0-tandem is a configuration of two voxels (n-cells) sharing
exactly one vertex. We propose a formula connecting the number of 0-
tandems in a simple nD digital open or closed 0-connected curve γ with
the number of cells in γ. Our formula generalizes the formula by Brimkov
et al. (2006) from closed to open curves, and the formula by Maimone
and Nordo (2015) from open curves in 3D to open or closed curves in
nD. We also propose an alternative formula valid for 3D curves.

Keywords: Digital topology · Digital curves · Tandems · Gaps ·
Critical configurations

1 Introduction

Topological analysis of images and shapes is an active research field with many
applications. One important topological property of a digital object O is its well-
composedness or manifoldness [2,17,18]. The numerical characterization of this
property, the number of critical configurations (tandems or gaps) in the object O,
has been widely investigated in the literature. Establishing the relations between
this descriptor and the number of cells of different types in the decomposition
of the digital object O into a cell complex Q (the set of voxels in O plus all
of their faces) enables a better understanding and a deeper insight into the
topological structure of the object O and the complex Q. Tandems and gaps play
an important role in ray-casting based rendering of digital curves and surfaces
[10,25], and in particular of digital planes [1,12,13].

Many different formulas have been proposed expressing the number of (n−2)-
tandems ((n − 2)-gaps) in an nD digital object O through the number of cells
of various types in Q, or some other topological descriptors of O, like its Euler
characteristic [3,6–8,11,19,20]. For simple digital curves, formulas expressing the
number of the k-cells through the number of n-cells and j-tandems of a closed
curve in nD [3,8], k ≤ j ≤ n, or expressing the number of 0-tandems through
the number of cells of an open curve in 3D [21,23], have been proposed as well.

We propose a formula expressing the number of 0-tandems in a simple open
or closed 0-connected curve γ in nD through the number of cells in γ, thus
generalizing the results by Brimkov et al. [3,8] from closed to open curves, and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 46–55, 2023.
https://doi.org/10.1007/978-3-031-23612-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_3

On 0-Tandems in nD Digital Curves 47

the results by Maimone and Nordo [21,23] from open curves in 3D to open or
closed curves in nD. We also propose an alternative formula valid for simple
open or closed curves in 3D.

2 Preliminaries

We introduce some basic notions on the cubic grid [14,15], on tandems and gaps
in digital objects in this grid [3,6,12,19], and on simple digital curves [5,14,21].

2.1 The Cubic Grid

Definition 1. The nD cubic grid is a set of closed unit axis-aligned n-cubes (n-
cells or voxels) centered at points in Z

n. The naturally associated (cubical) cell
complex is composed of all voxels, and all their k-faces (k-cells), 0 ≤ k ≤ n − 1.

Each k-face is a k-cube in the space with n − k Cartesian coordinates fixed to
half-integer values [16]. Due to the regular structure of the grid, the number of
j-cells incident with a given k-cell is constant.

Lemma 1. Each voxel has 2n−k
(
n
k

)
k-faces, 0 ≤ k ≤ n − 1. Each k-cell is

incident with 2n−k voxels, 0 ≤ k ≤ n − 1.

Different types of adjacency relation are defined between the voxels in the grid,
depending on their intersection.

Definition 2. Two voxels are k-adjacent if they share a common k-cell. They
are strictly k-adjacent if they are k-adjacent but not (k + 1)-adjacent.

2.2 Tandems and Gaps in Digital Objects

Definition 3. An nD digital object O is a finite set of voxels in the nD cubic
grid.

The voxels in O are called black (object) voxels. The voxels in the complement
Oc of O are called white (background).

Definition 4. The cubical complex Q associated with an object O consists of all
the voxels in O and all their k-faces, 0 ≤ k ≤ n − 1.

The number of k-faces (k-cells) in Q is denoted by ck.

Definition 5. A 2n−k×1k block of voxels is called a 2n−k1k-block, 0 ≤ k ≤ n−1.
The 2n−k1k-block Bk(e) centered at a k-cell e consists of 2n−k voxels incident
with e.

Definition 6. A pair of strictly k-adjacent voxels through a k-cell e is called a
k-tandem over e, 0 ≤ k ≤ n − 1.

48 L. Čomić

(a) (b)

Fig. 1. Two strictly (a) 1-adjacent and (b) 0-adjacent voxels in 3D forming a 1-tandem
(and 1-gap) and 0-tandem, respectively.

Definition 7. An object O has a k-tandem at a k-cell e if Bk(e) ∩ O is a k-
tandem over e.

Definition 8. An object O has a k-gap at a k-cell e if Bk(e)\O is a k-tandem
over e.

Thus, tandems and gaps are dual to each other: a k-tandem of an object O is a
k-gap of the complement of O. A k-tandem is determined by a pair of strictly
k-adjacent black voxels through a k-cell e, the other voxels incident with e being
white. Similarly, a k-gap is determined by a pair of strictly k-adjacent white
voxels in the 2n−k1k-block centered at a k-cell e.

In 2D, a 0-tandem (and a 0-gap) occurs at a vertex incident with two strictly
0-adjacent black pixels (and to two white ones). In 3D, a 1-tandem (and a 1-
gap) occurs at the edge incident with exactly two strictly 1-adjacent black voxels
(and to two white ones), see Fig. 1 (a). A 0-tandem occurs at a vertex incident
with two strictly 0-adjacent black voxels (and to six white ones), see Fig. 1 (b).
A 0-gap occurs at a vertex incident with two strictly 0-adjacent white voxels
(and to six black ones). The numbers of k-tandems and k-gaps in an object are
denoted by tk and gk, respectively.

Definition 9. A boundary (free) k-cell in Q, 0 ≤ k ≤ n− 1, is a k-cell incident
both to a voxel in O and a voxel in Oc. An interior cell is incident to voxels in
O only.

A k-cell e in Q is interior if the 2n−k1k-block Bk(e) centered at e is contained in
O. Otherwise, e is a boundary k-cell [7,20]. The number of interior and boundary
k-cells in Q is denoted by c′

k and c∗
k, respectively, and

ck = c′
k + c∗

k.

Definition 10. A totally boundary k-cell in Q, 0 ≤ k ≤ n − 1, is a k-cell
incident with exactly one voxel in O. A non totally boundary cell belongs to the
shared face of at least one tandem in dimension j ≥ k.

The numbers of totally boundary and non totally boundary k-cells in Q are
denoted by ntb

k and cntbk , respectively, and

ck = ctbk + cntbk .

On 0-Tandems in nD Digital Curves 49

2.3 Digital Curves

Definition 11. [5,21,23] For an adjacency relation k, a simple closed k-
connected digital curve γ of length m is a set {v0, v1, ..., vm = v0} of voxels
such that any voxel vi in γ is k-adjacent in γ only to vi−1 and vi+1 (modulo m),
and vi−1 and vi+1 are not k-adjacent to each other.

Definition 12. [5] A simple open k-connected curve is a k-connected proper
subset of a simple closed k-connected curve.

If the open curve contains at least two voxels, then it contains exactly two voxels,
called end voxels, that have exactly one neighbor in the curve. All other voxels
have exactly two such neighbors. Specially, if the open curve contains only one
voxel, this voxel has no neighbors in γ.

3 Related Work

We review relevant work related to the number of 0-gaps in 2D, as well as some
relations between the number of tandems and the numbers of cells of different
types for digital curves.

3.1 2D Objects

Two equivalent [22] formulas have been proposed for the number g0 of 0-gaps
(i.e., the number t0 of 0-tandems) in a 2D digital object O. One [6] states that

g0 = t0 = c0 − 2(c2 + c0 − h1) + c′
0,

where c0 is the number of 0-components (maximal connected components of
black pixels with respect to 0-adjacency), and h1 is the number of 1-holes (max-
imal finite connected components of white pixels with respect to 1-adjacency).

An alternative formula for the number of gaps in 2D [4,7,9] expresses g0 in
terms of boundary cells in Q as

g0 = t0 = c∗
1 − c∗

0 = c1 − c′
1 − c0 + c′

0.

This relation has been obtained independently in the context of calculating
the number of holes in a 2D binary image [24]. The number of 0-gaps in 2D has
been related to the dimension of a digital object O [22].

3.2 Digital Curves

Two sets of formulas have been proposed relating the numbers of cells and the
numbers of tandems in a simple digital 0-connected curve γ. The first one [3,8],
proposed for closed 0-connected curves in nD, gives a connection between the

50 L. Čomić

numbers ck of k-cells, 0 ≤ k ≤ n − 1 and tj of j-tandems k ≤ j ≤ n − 1 and cn
of n-cells as

ck = 2n−k

(
n

k

)
cn −

n−k−1∑

i=0

2i
(

k + i

k

)
ti+k. (1)

The second one [21,23], proposed for open 0-connected curves in 3D, expresses
the number t0 of 0-tandems in γ through the numbers ck of k-cells in γ, 0 ≤ k ≤ 3
as

t0 =
3∑

i=0

(−1)i+12ici = −c0 + 2c1 − 4c2 + 8c3. (2)

The proof of Formula 1 is based on distinguishing the cells in γ as belonging or
not to some tandem in γ, i.e., on counting the (non) totally boundary cells in γ.
The proof of Formula 2 relies on some advanced combinatorial notions.

4 0-Tandems in nD Digital Curves

Let us denote by A the sum
n∑

i=0

(−1)i+12ici. We will show that t0(γ) = A for both

open and closed 0-connected simple curves in nD, thus extending the results of
[3,8] to open curves and of [21,23] to closed ones (and to arbitrary dimensions).

Proposition 1. Let γ be a simple 0-connected digital open curve in nD with ci
i-cells, 0 ≤ i ≤ n. Then

t0(γ) =
n∑

i=0

(−1)i+12ici.

Proof. The proof is by induction on the length (the number of voxels) m of γ.

1. For m = 1, γ consists of one voxel, it has no 0-tandems and

A =
n∑

i=0

(−1)i+12ici

=
n∑

i=0

(−1)i+12i2n−i
(
n
i

)

= −2n
n∑

i=0

(−1)i
(
n
i

)

= −2n(1 − 1)n

= t0(γ).

2. Let t0(γ) = A for each curve of length m, m ∈ N, and let γ = {v1, v2, ..., vm+1}
be a curve of length m+1. Let δ be the curve obtained from γ by removing its
end voxel vm+1, and let di be the number of i-cells in δ. Then, by inductive

hypothesis, t0(δ) =
n∑

i=0

(−1)i+12idi. We distinguish between two cases

On 0-Tandems in nD Digital Curves 51

(a) If vm+1 and vm are strictly 0-adjacent, then t0(γ) = t0(δ) + 1, and

A =
n∑

i=0

(−1)i+12ici

=
n∑

i=0

(−1)i+12idi +
n∑

i=0

(−1)i+12i2n−i
(
n
i

)
+ 1

= t0(δ) + 0 + 1
= t0(γ).

(b) If vm+1 and vm are strictly k-adjacent, 1 ≤ k ≤ n− 1, then t0(γ) = t0(δ),
and

A =
n∑

i=0

(−1)i+12ici

=
n∑

i=0

(−1)i+12idi +
n∑

i=0

(−1)i+12i2n−i
(
n
i

) −
k∑

i=0

(−1)i+12i2k−i
(
k
i

)

= t0(δ) + 0 − 0
= t0(γ).

Proposition 2. Let γ be a 0-connected digital closed curve in nD with ci i-cells,
0 ≤ i ≤ n. Then

t0(γ) =
n∑

i=0

(−1)i+12ici.

Proof. Let δ = {v1, v2, , , , vm−1} be the curve obtained from γ = {v0, v1,
v2, ..., vm = v0} by removing the voxel vm = v0, and let di be the number of
i-cells in δ. Let vm be strictly k-adjacent to vm−1 and strictly j-adjacent to v1,

k, j ∈ {0, 1, ..., n − 1}. By Proposition 1, t0(δ) =
n∑

i=0

(−1)i+12idi. We distinguish

between three cases

1. If k = j = 0, then t0(γ) = t0(δ) + 2, and

A =
n∑

i=0

(−1)i+12ici

=
n∑

i=0

(−1)i+12idi +
n∑

i=0

(−1)i+12i2n−i
(
n
i

)
+ 2

= t0(δ) + 0 + 2
= t0(γ).

2. If k = 0, j > 0 (and similarly for k > 0, j = 0), then t0(γ) = t0(δ) + 1, and

A =
n∑

i=0

(−1)i+12ici

=
n∑

i=0

(−1)i+12idi +
(

n∑

i=0

(−1)i+12i2n−i
(
n
i

) − 1
)

−
k∑

i=0

(−1)i+12i2k−i
(
k
i

)

= t0(δ) + 1 − 0
= t0(γ).

52 L. Čomić

3. If k, j > 0, then t0(γ) = t0(δ), and

A =
n∑

i=0

(−1)i+12ici

=
n∑

i=0

(−1)i+12idi +
n∑

i=0

(−1)i+12i2n−i
(
n
i

)−
k∑

i=0

(−1)i+12i2k−i
(
k
i

) −
j∑

i=0

(−1)i+12i2j−i
(
j
i

)

= t0(δ) + 0 − 0 − 0
= t0(γ).

5 0-Tandems in 3D Digital Curves

We give an alternative formula for the number of 0-tandems in simple open or
closed 0-connected digital curves in 3D.

Proposition 3. Let γ be an open 0-connected digital curve in 3D with c3 cubes
(voxels), c2 faces, c∗

2 boundary faces and c1 edges. Then

t0(γ) = c3 − c2 − c∗
2 + c1 − 1.

Proof. The proof is by induction on the length m of γ. Let A = c3−c2−c∗
2+c1−1.

We will show that A = t0(γ).

1. For m = 1, γ consists of one voxel, it has no 0-tandems and

A = 1 − 6 − 6 + 12 − 1 = 0 = t0(γ)

2. Let A = t0(γ) for each open curve of length m, m ∈ N, and let γ =
{v1, v2, ..., vm+1} be a curve of length m + 1. Let δ be the curve obtained
from γ by removing its end voxel vm+1, and let d3, d2, d∗

2 and d1 be the
number of voxels, faces, boundary faces and edges in δ. Then, by inductive
hypothesis, t0(δ) = B where B = d3 − d2 − d∗

2 + d1. We distinguish between
three cases
(a) If vm+1 and vm are strictly 0-adjacent, then t0(γ) = t0(δ) + 1, and

A = c3 − c2 − c∗
2 + c1 − 1

= (d3 + 1) − (d2 + 6) − (d∗
2 + 6) + (d1 + 12) − 1

= d3 − d2 − d∗
2 + d1

= t0(δ) + 1
= t0(γ).

(b) If vm+1 and vm are strictly 1-adjacent, then t0(γ) = t0(δ), and

A = c3 − c2 − c∗
2 + c1 − 1

= (d3 + 1) − (d2 + 6) − (d∗
2 + 6) + (d1 + 11) − 1

= d3 − d2 − d∗
2 + d1 − 1

= t0(δ)
= t0(γ).

On 0-Tandems in nD Digital Curves 53

(c) If vm+1 and vm are strictly 2-adjacent, then t0(γ) = t0(δ), and

A = c3 − c2 − c∗
2 + c1 − 1

= (d3 + 1) − (d2 + 5) − (d∗
2 + 4) + (d1 + 8) − 1

= d3 − d2 − d∗
2 + d1 − 1

= t0(δ)
= t0(γ).

Intuitively, for each maximal 2-connected component of γ (parallel to one of the
coordinate axes) the number of voxels is greater by one than the number of inner
faces, and each voxel belongs to exactly one such component. Thus, c3 − c′

2 is
equal to the number of 2-components of γ. Let us denote this number by X. At
each 1-tandem, two such 2-components merge, creating 1-components. Thus, the
number Y of 1-components of γ is equal to X − t1. Since t1 = g1 = 2c∗

2 − c∗
1 =

2c∗
2−c1 [6], we have that Y = c3−c′

2−t1 = c3−c′
2−2c∗

2+c1 = c3−c2−c∗
2+c1. At

each 0-tandem, 1-components merge to produce the (connected) curve γ, which
has one 0-component. Thus, 1 = Y − t0, i.e., t0(γ) = c3 − c2 − c∗

2 + c1 − 1.

Proposition 4. Let γ be a closed 0-connected digital curve in 3D with c3 cubes
(voxels), c2 faces, c∗

2 boundary faces and c1 edges. Then

t0(γ) = c3 − c2 − c∗
2 + c1.

Proof. Let δ = {v1, v2, ..., vm−1} be the curve obtained from γ =
{v0, v1, v2, ..., vm = v0} by removing the voxel vm = v0, and let di be the number
of i-cells in δ. Let r and s be the cells shared by the voxel vm and the voxels v1
and vm−1, respectively. The curve δ is 0-connected, because γ is. Thus, the cells r
and s are incident with two opposite faces f and g of vm. Let C = c3−c2−c∗

2+c1,
D = d3 − d2 − d∗

2 + d1 = t0(δ) + 1 and Δ = D − C.
The cells of the voxel vm which are not incident with either f or g contribute

four faces (all four are boundary faces) and four edges to Δ (with the appropriate
sign), i.e., they add −3 to Δ. If vm and v1 are face-adjacent, then f adds 1 to Δ
(the face f is a boundary face in δ but not in γ). If vm and v1 are edge-adjacent,
then f adds 1 to Δ (the face f and its three non-shared edges are not present
in δ and f is a boundary face in γ). If vm and v1 are vertex-adjacent, then f
adds 2 to Δ (it contributes one face which is a boundary face, together with its
four edges). It also creates a 0-tandem in γ which was not present in δ. Thus, f
adds 1 + tf to Δ, where tf is the number of tandems created by f (tf = 1 if vm
and v1 are 0-adjacent (if they form a 0-tandem), and tf = 0 otherwise). Similar
considerations and notations apply for the face g, and t0(γ) = t0(δ) + tf + tg.
Then

C = D − Δ
= (t0(δ) + 1) − Δ
= (t0(δ) + 1) − 3 + (1 + tf) + (1 + tg)
= t0(δ) + tf + tg
= t0(γ).

54 L. Čomić

The intuitive reasoning is similar as above, except that the final tandem does
not merge two different components of γ, but connects two endpoints of γ to
produce a closed curve.

Acknowledgement. This work has been partially supported by the Ministry of Edu-
cation, Science and Technological Development of the Republic of Serbia through the
project no. 451-03-68/2020-14/200156.

References

1. Andres, E., Acharya, R., Sibata, C.H.: Discrete analytical hyperplanes. CVGIP:
Graph. Model Image Process. 59(5), 302–309 (1997)

2. Boutry, N., Géraud, T., Najman, L.: A Tutorial on Well-Composedness. J. Math.
Imaging Vis. 60(3), 443–478 (2018). https://doi.org/10.1007/s10851-017-0769-6

3. Brimkov, V.E.: Formulas for the number of (n− 2)-gaps of binary objects in arbi-
trary dimension. Discret. Appl. Math. 157(3), 452–463 (2009)

4. Brimkov, V.E., Barneva, R.P.: Linear time constant-working space algorithm for
computing the genus of a digital object. In: Bebis, G., et al. (eds.) ISVC 2008.
LNCS, vol. 5358, pp. 669–677. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89639-5 64

5. Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency
relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 276–
290. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3 21

6. Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of
tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/
0505084

7. Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In:
Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006.
LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006). https://doi.org/10.1007/
11774938 2

8. Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pic-
tures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245,
pp. 189–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350 16

9. Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of
digital images and their time- and space-efficient computation. Int. J. Shape Model.
14(2), 147–168 (2008)

10. Cohen-Or, D., Kaufman, A.E.: 3D line voxelization and connectivity control. IEEE
Comput. Graph. Appl. 17(6), 80–87 (1997)

11. Čomić, L.: On gaps in digital objects. In: Barneva, R.P., Brimkov, V.E., Tavares,
J.M.R.S. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 3–16. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05288-1 1

12. Françon, J., Schramm, J.-M., Tajine, M.: Recognizing arithmetic straight lines
and planes. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS,
vol. 1176, pp. 139–150. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-62005-2 12

13. Kenmochi, Y., Imiya, A.: Combinatorial topologies for discrete planes. In: Nyström,
I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 144–
153. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39966-7 13

https://doi.org/10.1007/s10851-017-0769-6
https://doi.org/10.1007/978-3-540-89639-5_64
https://doi.org/10.1007/978-3-540-89639-5_64
https://doi.org/10.1007/978-3-540-30503-3_21
http://arxiv.org/abs/cs/0505084
http://arxiv.org/abs/cs/0505084
https://doi.org/10.1007/11774938_2
https://doi.org/10.1007/11774938_2
https://doi.org/10.1007/11907350_16
https://doi.org/10.1007/978-3-030-05288-1_1
https://doi.org/10.1007/3-540-62005-2_12
https://doi.org/10.1007/3-540-62005-2_12
https://doi.org/10.1007/978-3-540-39966-7_13

On 0-Tandems in nD Digital Curves 55

14. Klette, R., Rosenfeld, A.: Digital Geometry Geometric: Methods for Digital Picture
Analysis. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2004)

15. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Vis. Graph. Image Process. 48(3), 357–393 (1989)

16. Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topol-
ogy and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski,
Berlin (2008)

17. Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process.
59(3), 164–172 (1997)

18. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image
Underst. 61(1), 70–83 (1995)

19. Maimone, A., Nordo, G.: On 1-gaps in 3D digital objects. Filomat 22(3), 85–91
(2011)

20. Maimone, A., Nordo, G.: A formula for the number of (n − 2)-gaps in digital
n-objects. Filomat 27(4), 547–557 (2013)

21. Maimone, A., Nordo, G.: 0-gaps on 3D digital curves. Appl. Math. Math. Phys. 1,
119–128 (2015)

22. Maimone, A., Nordo, G.: A note on dimension and gaps in digital geometry. Filo-
mat 31(5), 1215–1227 (2017)

23. Nordo, G., Maimone, A.: 0-gaps on 3D digital curves. CoRR abs/2109.13341 (2021)
24. Sossa, H.: On the number of holes of a 2-D binary object. In: 14th IAPR Interna-

tional Conference on Machine Vision Applications, MVA, pp. 299–302 (2015)
25. Yagel, R., Cohen, D., Kaufman, A.E.: Discrete ray tracing. IEEE Comput. Graph.

Appl. 12(5), 19–28 (1992)

On Density Extrema for Digital Discs

Nilanjana G. Basu1 , Partha Bhowmick2(B) ,
and Subhashis Majumder1(B)

1 Department of Computer Science and Engineering,
Heritage Institute of Technology, Kolkata, India

{nilanjanag.basu,subhashis.majumder}@heritageit.edu
2 Department of Computer Science and Engineering, Indian Institute of Technology,

Kharagpur, India
pb@cse.iitkgp.ac.in

https://www.heritageit.edu/CSE.aspx, https://cse.iitkgp.ac.in/~pb/

Abstract. The act of characterizing and measuring different attributes
of primitive shapes is of paramount importance in the subject of dis-
crete geometry. A very rich collection of work can be found in this
domain, which is predominantly focused on the Euclidean space. The
digital space, on the contrary, is relatively unexplored, possibly because
of the fact that it has evolved much later and it does not readily migrate
to the continuous space. This work studies the unique problem of char-
acterizing density extrema (of integer points) for discs moving on the
integer plane. To the best of our knowledge, there has not been a signifi-
cant study in this direction, which motivates us to look into this problem.
As ‘density’ provides a notion of the relative concentration or rarefaction
of a collection of points within a given shape or region, it has applica-
tions in image analysis and related areas, apart from different branches
of physical science. We present some novel results, which are fundamen-
tal to understanding density minima and maxima for circular shapes in
digital space. We have also pointed out a few more interesting problems
that might advance this study further ahead.

Keywords: Digital disc · Digital geometry · Pixel density · Geometry
of numbers · Number theory

1 Introduction

The subject of Euclidean distance geometry is concerned with the geometry
based on a distance function and has uses in a wide variety of applications,
ranging from identification of molecular conformations in computational chem-
istry [16] to pattern recognition and image processing [25]. Different types of
mathematical transforms are used to generate efficient algorithms that find appli-
cations in various problems [10,11,24]. Exploring the nature of an ensemble
of points and thereby analyzing their properties have gathered sufficient inter-
est among researchers in different domains. Among many other properties, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 56–70, 2023.
https://doi.org/10.1007/978-3-031-23612-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_4&domain=pdf
http://orcid.org/0000-0001-5053-7517
http://orcid.org/0000-0003-2765-7777
http://orcid.org/0000-0002-0849-9016
https://doi.org/10.1007/978-3-031-23612-9_4

On Density Extrema for Digital Discs 57

knowledge of a particular fact – how clustered or how much dense the points
are in the corresponding space turned out to be of remarkable importance. It
has been quite conspicuous in the realms of Social Networking and Complex
Networks, which got established as some of the hugely popular areas in recent
times.

1.1 Existing Work

In the domain of computational and discrete geometry, some of the early works
tried to answer the question of whether a particular subset of points is more
concentrated or dispersed with respect to a given set. Some of the geometers used
the term ‘discrepancy of points’ [1] to describe it, whereas some others preferred
to introduce a new concept called ‘density of points’ [18]. For 2D applications,
‘discrepancy’ has mostly been used in a rectangular axes-parallel setting [6,9],
while ‘density’ though first defined for an axes-parallel rectangle [17], is more
open to accommodating different shapes or configurations in consideration for
containing the set of points. A short account of why the two measures, though
appear to be similar, are different from each other can be seen in [18]. Typically,
for the case of unweighted (weighted) points, density in a 2D region is expressed
as the count (sum) of the points (weights) present in that region per unit area.

As shown in [18], the axis-parallel region of maximum (minimum) density
would always contain only two (one) of the points from the given set of points.
An efficient algorithm has been proposed in [18] to identify the rectangular region
of maximum density in R

2 when the points are of uniform weight. For higher
dimensions, algorithms for finding maximum- and minimum-density regions have
been proposed later in [4].

One of the topmost motivations for characterizing or computing density func-
tion comes from the VLSI domain. Identification of hotspots on a chip is a burn-
ing issue, as the dimensions of the chips keep on shrinking every year by leaps
and bounds. Hence, locating the areas on the chip where the thermal sources
are present with the highest concentration is a crucial problem. The rationale
to locate the regions of minimum density is to find alternate places where the
circuitry with the trouble-making heat sources can be moved so that the ther-
mal gradient of the chip gets balanced again. As VLSI floorplans are generally
rectangular, rectangular regions are usually considered for calculating densities.
However, as discussed in [18], awkwardly thin rectangles pose unwanted prob-
lems as their densities become unnecessarily high and hence incorrectly reflect
the exact physical scenario of thermal transmission.

A representative example is illustrated in Fig. 1. It shows two axis-parallel
rectangles, each of 16 square units of area. By the definition of density, both
of them would be considered to have the same density. However, in reality, the
two heat sources placed at the two corner points of the thin rectangle are far
more distant than those of the square, and hence should not cause the same
type/level of damage to a VLSI chip. So the method used for the calculation of
the density of the rectangle will unnecessarily flag a higher value, thus raising
a false alarm. This gave us the motivation to look for an alternative to the

58 N. G. Basu et al.

area = 16× 1 = 16

area = 4× 4 = 16

Fig. 1. Anomalies with densities for rectangles.

notion of using axes-parallel regions. Note that, for finding maximum density, if
we relaxed the criterion of axis-parallelism and in turn tried to find rectangles
of any orientation that will be of minimum area, then a region containing a
set of only two points will have zero area, as the corresponding rectangle will
degenerate to a straight line segment. Though the idea of using a convex hull
instead of rectangles is suggested in [18] to avoid the anomaly posed by thin
rectangles, from the perspective of symmetry, we thought considering a circular
region would be an appropriate way to tackle it.

In the literature of digital geometry, there is a good collection of work related
to digital disks and digital balls defined on a square or non-square grid. Some
of these may be seen in [15,19,21] and in the bibliographies therein. Another
geometric primitive that is closely related to digital disc is digital circle, and
there are even more research work on its analytical description and algorithmic
construction. We refer to [2,3,7,20,23] for different algorithmic techniques and
their analyses related to the construction of digital circles. In [8], a theoreti-
cal analysis and experimental findings for polygonal covers of digital discs are
presented. In connection with digital image processing, there are various works
on the recognition of digital discs, e.g., [12]. Also, about the counting of digi-
tal discs and digital circles, their encoding and recognition, and on estimation
and measures of related parameters, there are several research papers, such as
[13,14,20,22,23,26,27].

It may be noted that the concept of density estimation or density extrema for
digital discs is not found in the existing literature, some of which are mentioned
above. This motivates us to look into this problem, and our contribution is
highlighted in the following section.

1.2 Our Contribution

Finding optimally dense circular regions is a different ball game altogether from
that of identifying axes-parallel regions, especially when the points under consid-
eration can be located anywhere in R

2 and we address this problem elsewhere.
In this work, we consider that the input points are all grid points of a square grid
and have a uniform weight. The grid is conceived as the integer plane, i.e., Z

2,
for simplicity. We prove that for a circular region whose center is aligned with a
grid point, and the radius is an integral multiple of the grid unit, the maximum-

On Density Extrema for Digital Discs 59

and the minimum-density circular regions respectively occur when the radii are
one and seven. We have also identified the location of the discs with maximum
and minimum densities, when the radius is relaxed to be any real number but
the center remains pinned to a grid point. We also found the maximum-density
disc on this grid set-up, when the center can be located anywhere on the plane
and the radius can be any real number. The only combination that remains
unexplored here is the case of minimum-density discs with real values of center
and radius, which we plan to do in near future.

2 Maximum Density

An integer point or pixel is an element of Z
2; that is, it is a two-dimensional

point with integer coordinates. We denote by Dc,r the real disc centered at c
and of radius r. When c ∈ Z

2, our analysis and result are independent of the
coordinates of c, and hence for brevity we will drop ‘c’ from our notations; that is,
we will use Dr instead of Dc,r, and will use simplified notations in what follows.
In particular, we will fix the center at (0, 0). When the center is an arbitrary
point in R

2, we will modify the notations accordingly with a note in the relevant
section.

The set of pixels contained in Dr is denoted by Dr := Dr ∩Z
2 and is referred

to as a digital disc. The cardinality of Dr is denoted by |Dr|, and the density of
pixels in Dr is given by dr := |Dr|

πr2 .
Let Sr be the real axis-parallel square that circumscribes Dr; that is, Sr =

{(x, y) ∈ R
2 : max(|x|, |y|) ≤ r}. Let Sr := Sr ∩ Z

2 be the digital square, defined
as the set of pixels contained in Sr. An illustration is given in Fig. 2.

2.1 Integer Center and Integer Radius

Let r be a positive integer. Then,
√

2(r − 1) < r if and only if r ≤ 3, which
implies Sr−1 ⊂ Dr if and only if r ≤ 3. This leads to the following observation.

Observation 1. For a positive integer r,

Sr−1 � Dr = ∅ if r ≤ 3 (1a)
Sr−1 � Dr �= ∅ otherwise. (1b)

Further, for any positive integer r, it is easy to see that the following two state-
ments are true.

1. The set Dr � Sr−1 is identical to the set Dr ∩ (Sr � Sr−1).
2.

∣
∣Dr ∩ (Sr � Sr−1)

∣
∣ = 4.

An example is shown in Fig. 2 where the pixels in Dr �Sr−1 for r = 4 are colored
red. Combining the above two statements, we have the following observation.

Observation 2. For any positive integer r,
∣
∣Dr � Sr−1

∣
∣ = 4.

60 N. G. Basu et al.

D3

S2

D4

S3

one of the four pixels in D4 � S3

S2 � D3 = ∅

S3 � D4 �= ∅

Fig. 2. Concentric discs with integer center and integer radii, and their circumscribing
squares.

Based on the above results, we have the following lemma on the density of
pixels in a disc centered at a pixel and having an integer radius.

Theorem 1. In the collection of all discs with integer centers and integer radii,
d1 > dr ∀ r ≥ 2.

Proof. Let us first consider that r ≥ 4. Then, from (1b) of Observation 1 and
from Observation 2, it follows that |Dr| < |Sr−1| + 4, which implies

dr <
|Sr−1| + 4

πr2
=

(2r − 1)2 + 4
πr2

=
1
π

(

4 − 4
r

+
5
r2

)

=⇒ dr − d1 <
1
π

(

4 − 4
r

+
5
r2

)

− 5
π

=
1
π

(

−1 − 4
r

+
5
r2

)

=
5 − 4r − r2

πr2
=

(1 − r)(5 + r)
πr2

< 0

=⇒ d1 > dr.

Now, from Fig. 2, we can see that d1 = 5
π , d2 = 13

4π , d3 = 29
9π , which implies

d1 > d2 > d3, and hence the proof. ��

2.2 Integer Center and Real Radius

For discs with integer centers and (positive) real radii, we modify some of the
previous notations. We now denote by Dx,y the real disc centered at (0, 0) and
passing through the point (x, y) ∈ R

2. Accordingly, we denote by Dx,y the digital
disc corresponding to Dx,y, i.e., Dx,y := Dx,y ∩ Z

2, and by dx,y the density of
pixels in Dx,y, i.e., dx,y = |Dx,y|

π(x2+y2) . Note that, as in Lemma 1, the density

On Density Extrema for Digital Discs 61

remains invariant with the choice of the center as it has integer coordinates, and
hence w.l.o.g. we consider (0, 0) as the center. Further, as the density of such a
disc can be made arbitrarily large by making its radius infinitesimally small, we
consider here discs with at least two pixels.

As we are concerned with the maximum density of pixels over all real-valued
radii, we now make an important observation that comes to use in narrowing
down our attention to a countable collection of discs and subsequently in proving
the next lemma. Let Dx,y be a disc that does not contain any pixel on its
boundary. Let (i, j) ∈ Dx,y be a pixel lying farthest from (0, 0). Then, Di,j �

Dx,y and Di,j = Dx,y, which implies that the density for Di,j is larger than that
for Dx,y, whence the following observation.

Observation 3. For any disc without any pixel on its boundary, there always
exists a higher-density disc with a pixel on its boundary.

Observation 3 implies that the maximum density over all discs with real radii
will be the density of a disc from the countable collection

{

Di,j : (i, j) ∈ Z
2
}

,
i.e.,

max
{

dx,y : (x, y) ∈ R
2
}

= max
{

di,j : (i, j) ∈ Z
2
}

.

Now, consider any disc Di,j with (i, j) ∈ Z
2
�{(0, 0)}. If i = j, then its boundary

will contain four pixels, namely
{

(a, b) : |a| = |b| = |i|}. If i �= j, then its
boundary will contain four or eight pixels — four if j = 0 and eight if j �= 0 —
comprising the set

{

(a, b) : {|a|}∪{|b|} = {|i|, |j|}}. In either case, the boundary
may contain more pixels—when i2 + j2 is expressible as the sum of squares of
a pair of positive integers other than (|i|, |j|). Out of all such pixels that lie on
the boundary of Di,j , we fix (i, j) as the defining pixel of Di,j if 0 ≤ j ≤ i. An
illustration is given in Fig. 3. Thus, the aforesaid countable collection of discs
reduces to a smaller countable collection of discs, namely D :=

{

Di,j : (i, j) ∈
Z
2, 0 ≤ j ≤ i

}

.1 In what follows next, we assume that each disc Di,j belongs to
D .

As before, we denote by Sr the set {(x, y) ∈ R
2 : max(|x|, |y|) ≤ r}, and by

Sr the set Sr ∩ Z
2.

For any integer i ≥ 0, we define

SΔi
:=

{
S0 := {(0, 0)} if i = 0,
Si � Si−1 otherwise.

Notice that the sets SΔi
and SΔi+1 are pairwise disjoint, and the set Z

2 admits
the partition

{

SΔi

}∞
i=0

. As a result, we get

D =

{

Di,j : (i, j) ∈
∞⊎

i=0

SΔi
, 0 ≤ j ≤ i

}

. (2)

1 The countability of D follows from the fact that Z
2 is countable. However, we call it

a “countable collection” instead of “countable set” because a disc may appear more
than once; e.g., D5,0 and D4,3 are identical discs but defined twice—once by (5, 0)
and once by (4, 3).

62 N. G. Basu et al.

Fig. 3. Digital discs with their boundaries defined by pixels (shown in red) on the
boundaries of squares. For example, the discs in D5 are defined by the red pixels of
SΔ5 := S5 �S4. For clarity, the other defining pixels of S5 are shown in light red. (Color
figure online)

For a given integer i > 0, we denote by Di the sub-collection of D that
comprises the discs defined by SΔi

, i.e., Di :=
{

Di,j : (i, j) ∈ SΔi
, 0 ≤ j ≤ i

}

.

Theorem 2. In the collection of all discs with integer centers and real radii,
d1 > dr ∀ r > 1.

Proof. Let i, j be two integers such that i ≥ 1 and 0 ≤ j ≤ i. Let r =
√

i2 + j2.
Then, Sr circumscribes Di,j , which implies Di,j ⊆ Sr. Thus,

∣
∣Di,j

∣
∣ ≤ |Sr| ≤ (

2r + 1
)2 = 4r2 + 4r + 1.

An example is shown in Fig. 4.
This gives

dr =

∣
∣Di,j

∣
∣

πr2
≤ 4

π
+

4
πr

+
1

πr2
.

A manual counting of pixels shows that d1 = 5
π is the unique maximum over

all discs Di,j ∈ ⋃4
r=1 Dr (see Fig. 3 and Table 1).

For Di,j ∈ ⋃∞
r=5 Dr, we have r ≥ 5, and so we get

4
πr

+
1

πr2
≤ 4

5π
+

1
25π

=
21
25π

=⇒ d(r) <
5
π

= d1.

��

On Density Extrema for Digital Discs 63

Fig. 4. An example with for which Di,j � Sr. Here (i, j) = (5, 2), and so r =
√

i2 + j2 =√
29. The pixels in D5,2 are shown in gray, and those in S√

29 � D5,2 in black.

Table 1. Densities in Di,j ∈ ⋃4
r=1 Dr.

(i, j) r |Dr| πdr

(1, 0) 1 5 5

(1, 1)
√

2 9 9
2

(i, j) r |Dr| πdr

(2, 0) 2 13 13
4

(2, 1)
√

5 21 21
5

(2, 2) 2
√

2 25 25
8

(i, j) r |Dr| πdr

(3, 0) 3 29 29
9

(3, 1)
√

10 37 37
10

(3, 2)
√

13 45 45
13

(3, 3) 3
√

2 61 61
18

(i, j) r |Dr| πdr

(4, 0) 4 49 49
16

(4, 1)
√

17 57 57
17

(4, 2) 2
√

5 69 69
20

(4, 3) 5 81 81
25

(4, 4) 4
√

2 89 89
32

2.3 Unrestricted Center and Radius

We have a few observations when centers and radii are all in the real space.
As in the previous sections, we consider discs containing at least two pixels,
because one-pixel containment is trivial and degenerates to the limiting case of
infinite density. Here, “k-pixel containment” refers to those cases where any disc
contains exactly k pixels.

We start with the following observation, which is needed to conceive later
observations. Its rationale follows from elementary geometry and, for quick com-
prehension, is illustrated in Fig. 5.

64 N. G. Basu et al.

p

pushing towards p along
the diameter through p

q

p

pushing towards pq along the
perpendicular bisector of pq

q

r

Fig. 5. Left: We can reduce the enclosing circle passing through a single point p by
shifting its center along the diameter through p, towards p, until it touches a second
point, q. Right: When the circle passes through exactly two points, p and q, such that
pq is not a diameter, we can reduce it further by shifting its center towards pq until it
touches a third point, r.

Observation 4. Out of all discs containing a given set S of two or more pixels,
the smallest disc is unique and contains at least two pixels from S on its bound-
ary. Further, if exactly two pixels lie on the boundary, then they are diametrically
opposite.

An immediate outcome of Observation 4 is that for 2-pixel containment, both
the pixels are boundary pixels, and so we have the following observation.

Observation 5. For 2-pixel containment, the densest disc has unit diameter
with density 8

π .

As shown later, 8
π is, in fact the maximum density.

Three-pixel containment is not possible, because either two or three pixels
will lie on the boundary of the disc, and hence more pixels get covered by the
disc (Fig. 6). So we make the following observation.

Observation 6. The densest disc contains either two or at least four pixels.

For 4- and 5-pixel containments, simple geometric arguments yield the fol-
lowing.

Observation 7. The smallest disc containing 4 pixels has radius 1√
2
, and that

with 5 pixels has radius 1.

From the above results, we get the following theorem.

Theorem 3. Maximum density over all discs containing at least two pixels is
8
π , which occurs for 2-pixel and 4-pixel containments only, corresponding to the
radii 1

2 and 1√
2
respectively.

On Density Extrema for Digital Discs 65

Fig. 6. Three possible (rotationally asymmetric) configurations of three black pixels.
In every configuration, the smallest disc containing the black pixels must contain some
other (i.e., gray) pixel.

Fig. 7. Densest discs for 6- and 7-pixel containments.

Proof. From Observation 5 and Observation 7, we see that up to k = 5, maxi-
mum density is 8

π , which occurs for 2-pixel and 4-pixel containments only. For
6-pixel containment, it can be verified that the smallest disc has radius

√
5
2

(Fig. 7), and so its density is 24
5π . We also verify that for k = 7, the smallest disc

has radius 5
4 (Fig. 7) and density less than 8

π .
For k ≥ 8, radius r of the smallest disc Dr will be no less than that corre-

sponding to k = 7, i.e., r ≥ 5
4 . As Dr contains no more than (2r + 1)2 pixels, we

have

dr ≤ (2r + 1)2

πr2
≤ 4

π
+

16
5π

+
16
25π

=
196
25π

<
8
π

.

Now, using the maximum density values for other types of discs (Sect. 2.1 and
Sect. 2.2), the proof concludes. ��

3 Minimum Density

Finding the minimum density seems to be more difficult. We present here some
results for discs with integer center—first for integer radius and then for real
radius. For maximum density over discs having real centers, we have shown
results in Sect. 2.3. However, similar results for minimum density is not yet known
to us.

66 N. G. Basu et al.

Table 2. Densities in Dr for r ≤ 45.

r |Dr| πdr

1 5 5

2 13 13
4

3 29 29
9

4 49 49
16

5 81 81
25

6 113 113
36

7 149 149
49

8 197 197
64

9 253 253
81

r |Dr| πdr

10 317 317
100

11 377 377
121

12 441 441
144

13 529 529
169

14 613 613
196

15 709 709
225

16 797 797
256

17 901 901
289

18 1009 1009
324

r |Dr| πdr

19 1129 1129
361

20 1257 1257
400

21 1373 1373
441

22 1517 1517
484

23 1653 1653
529

24 1793 1793
576

25 1961 1961
625

26 2121 2121
676

27 2289 2289
729

r |Dr| πdr

28 2453 2453
784

29 2629 2629
841

30 2821 2821
900

31 3001 3001
961

32 3209 3209
1024

33 3409 3409
1089

34 3625 3625
1156

35 3853 3853
1225

36 4053 4053
1296

r |Dr| πdr

37 4293 4293
1369

38 4513 4513
1444

39 4777 4777
1521

40 5025 5025
1600

41 5261 5261
1681

42 5525 5525
1764

43 5789 5789
1849

44 6077 6077
1936

45 6361 6361
2025

3.1 Integer Center and Integer Radius

Let the radius r be a positive integer. As before, w.l.o.g., we consider the center
at (0, 0). We denote by Dr the real disc centered at (0, 0) and having radius r.

Let p be any pixel, and let up denote the cell (i.e., the unit-length axis-parallel
square) centered at p. Clearly, the (Euclidean) distance of p from any point in
up is at most 1√

2
. So if p ∈ Z

2
�Dr, then the distance of p from Dr− 1√

2
is greater

than 1√
2
, which implies up ∩ Dr− 1√

2
= ∅. An illustration is given in Fig. 8. This

results to the following observation.

Observation 8. Dr− 1√
2
lies in the interior of

⋃

p∈Dr
up.

The above observation is needed to prove the following theorem.

Theorem 4. In the collection of all discs with integer centers and integer radii,
d7 < dr ∀ r ≥ 1.

Proof. By brute-force counting (Table 2), we get d7 = 149
49π , which, in fact, is the

unique smallest in the set {dr : 1 ≤ r ≤ 45}. So, what remains to show now is
d7 < dr ∀ r ≥ 46, and its proof goes as follows.

The area of the (closed) region
⋃

p∈Dr
up is numerically equal to |Dr|, and so

by Observation 8 we have

|Dr| > π

(

r − 1√
2

)2

=⇒ dr >

(

1 − 1√
2r

)2

=⇒ dr >

(
63
64

)2

∀ r ≥ 46.

On Density Extrema for Digital Discs 67

Fig. 8. Disc Dr− 1√
2

lies in the interior of
⋃

p∈Dr
up. Black pixels comprise Dr, gray

pixels comprise Z
2

� Dr, white cells comprise {up : p ∈ Dr−1}, and gray cells comprise
{up : p ∈ Dr � Dr−1}.

From the continued fraction representation of π [5], we have

π =
4

1 + 12

3+ 22

5+ 32

7+ 52

. . .

= (4−1)+

(
1

6
− 1

34

)
+

(
16

3145
− 4

4551

)
+

(
1

6601
− 1

38341

)
+· · · ,

which implies

π > 3 +
(

1
6

− 1
34

)

+
(

16
3145

− 4
4551

)

=
644
205

.

So, we get

d7 <
149

49 × 644
205

=
30545
31556

<
632

642
< dr ∀r ≥ 46,

and hence the proof. ��

3.2 Integer Center and Real Radius

As before, w.l.o.g., we consider the center at (0, 0). Let ε be a real number. We
have the following theorem.

Theorem 5. In the collection of all discs with integer centers and real radii,
lim
ε→0

d1−|ε| < dr ∀ r > 0.

Proof. Note that the minimum distance between two points, one on the bound-
ary of Dr and the other on the boundary of Dr− 1√

2
is 1√

2
, and so Observation 8

68 N. G. Basu et al.

holds just as well if r is real. That means, here, in particular, for any real r > 1√
2
,

Dr− 1√
2

lies in the interior of
⋃

p∈Dr
up. So, we have

|Dr| > π

(

r − 1√
2

)2

=⇒ dr >

(

1 −
1√
2

r

)2

>
1
π

∀r ≥ 2.

It is easy to see that for r < 2 there exists only the following maximal discs
with no points on their boundary, and their densities are as follows.

lim
ε→0

d1−|ε| =
1

π · 12
=

1
π

,

lim
ε→0

d√
2−|ε| =

5
π · (

√
2)2

=
5
2π

,

lim
ε→0

d2−|ε| =
9

π · 22
=

9
4π

.

Note that the least among them is 1
π and so for all real r, dr ≥ 1

π . Hence,
the minimum-density disc with integer center and real radius is the one that
contains only one pixel and has a radius just less than unity. ��

4 Conclusion and Future Work

As per our investigations so far, finding minimum-density discs for real-valued
specification of center and radius remains an open problem. In addition, and
more importantly, the following questions are quite natural as a followup to
what is presented in this paper.

1. Given a range of radius, what would be a/the radius for which density is
maximum (or for minimum) in that range? Further, how does it differ between
real and integer specification, and how with the position of the center?

2. How does the result presented in this paper come around when the distance
metric is not Euclidean but some other norm (e.g., l∞ or l1)? This might play
a crucial role to generalize the result of density extrema from ‘discs’ to ‘balls’.

3. How would the techniques used to derive the density extrema for discs in 2D
be commensurate with mathematical deductions in higher dimensions?

References

1. Alexander, J.R., Beck, J., Chen, W.W.L.: Handbook of Discrete and Computa-
tional Geom, 2nd edn. CRC Press, Boca Raton (1997)

2. Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-
Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS,
vol. 6607, pp. 235–246. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19867-0 20

https://doi.org/10.1007/978-3-642-19867-0_20
https://doi.org/10.1007/978-3-642-19867-0_20

On Density Extrema for Digital Discs 69

3. Barrera, T., Hast, A., Bengtsson, E.: A chronological and mathematical overview
of digital circle generation algorithms - introducing efficient 4- and 8-connected
circles. Int. J. Comput. Math. 93(8), 1241–1253 (2016). https://doi.org/10.1080/
00207160.2015.1056170

4. Basu, N.G., Majumder, S., Hon, W.K.: On finding the maximum and minimum
density axis-parallel regions in R

d. Fundam. Informaticae 152(1), 1–12 (2017)
5. Beckmann, P.: A History of Pi. St. Martin’s Press Inc., Manhattan (1971)
6. Berg, M.D., Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational Geom-

etry: Algorithms and Applications. Springer, Heidelberg (1997)
7. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construc-

tion of a digital circle. Discret. Appl. Math. 156(12), 2381–2399 (2008). https://
doi.org/10.1016/j.dam.2007.10.022

8. Bhowmick, P., Bhattacharya, B.B.: Real polygonal covers of digital discs - some
theories and experiments. Fundam. Informaticae 91(3–4), 487–505 (2009). https://
doi.org/10.3233/FI-2009-0053

9. Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures
and applications. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of
Discrepancy Theory. LNM, vol. 2107, pp. 621–678. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-04696-9 10

10. Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices:
essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32(6),
12–30 (2015). https://doi.org/10.1109/MSP.2015.2398954

11. Fabbri, R., Costa, L., Torelli, J., Bruno, O.: 2D euclidean distance transform algo-
rithms: a comparative survey. ACM Comput. Surv. 40, 1–44 (2008). https://doi.
org/10.1145/1322432.1322434

12. Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE
Trans. Pattern Anal. Mach. Intell. 8(4), 554–556 (1986). https://doi.org/10.1109/
TPAMI.1986.4767821

13. Huxley, M.N., Zunic, J.D.: The number of n-point digital discs. IEEE Trans. Pat-
tern Anal. Mach. Intell. 29(1), 159–161 (2007). https://doi.org/10.1109/TPAMI.
2007.250606

14. Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In:
DeMillo, R.A. (ed.) Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, 30 April - 2 May 1984, Washington, DC, USA, pp. 117–124. ACM
(1984). https://doi.org/10.1145/800057.808673

15. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances and digital disks on the
khalimsky grid. J. Math. Imaging Vision 59(1), 2–22 (2017). https://doi.org/10.
1007/s10851-016-0701-5

16. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geome-
try and applications. SIAM Rev. 56(1), 3–69 (2014). https://doi.org/10.1137/
120875909

17. Majumder, S., Bhattacharya, B.B.: Density or discrepancy: a VLSI designer’s
dilemma in hot spot analysis. In: Proceedings of the 17th Canadian Conference
on Computational Geometry, CCCG’05, University of Windsor, Ontario, Canada,
10–12 August 2005, pp. 167–170 (2005). http://www.cccg.ca/proceedings/2005/
22.pdf

18. Majumder, S., Bhattacharya, B.B.: On the density and discrepancy of a 2D point
set with applications to thermal analysis of VLSI chips. Inf. Process. Lett. 107(5),
177–182 (2008)

https://doi.org/10.1080/00207160.2015.1056170
https://doi.org/10.1080/00207160.2015.1056170
https://doi.org/10.1016/j.dam.2007.10.022
https://doi.org/10.1016/j.dam.2007.10.022
https://doi.org/10.3233/FI-2009-0053
https://doi.org/10.3233/FI-2009-0053
https://doi.org/10.1007/978-3-319-04696-9_10
https://doi.org/10.1007/978-3-319-04696-9_10
https://doi.org/10.1109/MSP.2015.2398954
https://doi.org/10.1145/1322432.1322434
https://doi.org/10.1145/1322432.1322434
https://doi.org/10.1109/TPAMI.1986.4767821
https://doi.org/10.1109/TPAMI.1986.4767821
https://doi.org/10.1109/TPAMI.2007.250606
https://doi.org/10.1109/TPAMI.2007.250606
https://doi.org/10.1145/800057.808673
https://doi.org/10.1007/s10851-016-0701-5
https://doi.org/10.1007/s10851-016-0701-5
https://doi.org/10.1137/120875909
https://doi.org/10.1137/120875909
http://www.cccg.ca/proceedings/2005/22.pdf
http://www.cccg.ca/proceedings/2005/22.pdf

70 N. G. Basu et al.

19. Matic-Kekic, S., Acketa, D.M., Zunic, J.D.: An exact construction of digital con-
vex polygons with minimal diameter. Discret. Math. 150(1–3), 303–313 (1996).
https://doi.org/10.1016/0012-365X(95)00195-3

20. Nagy, B.: An algorithm to find the number of the digitizations of discs with a
fixed radius. Electron. Notes Discret. Math. 20, 607–622 (2005). https://doi.org/
10.1016/j.endm.2005.04.006

21. Nagy, B.: Number of words characterizing digital balls on the triangular tiling. In:
Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp.
31–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2 3

22. Nakamura, A., Aizawa, K.: Digital circles. Comput. Vis. Graph. Image Process.
26(2), 242–255 (1984). https://doi.org/10.1016/0734-189X(84)90187-7

23. Pham, S.: Digital circles with non-lattice point centers. Vis. Comput. 9(1), 1–24
(1992). https://doi.org/10.1007/BF01901025

24. Tasissa, A., Lai, R.: Exact reconstruction of euclidean distance geometry prob-
lem using low-rank matrix completion. IEEE Trans. Inf. Theory 65(5), 3124–3144
(2019). https://doi.org/10.1109/TIT.2018.2881749

25. Wang, J., Tan, Y.: Efficient euclidean distance transform using perpendicular bisec-
tor segmentation. In: CVPR 2011, pp. 1625–1632 (2011). https://doi.org/10.1109/
CVPR.2011.5995644

26. Zunic, J.D.: On the number of digital discs. J. Math. Imaging Vis. 21(3), 199–204
(2004). https://doi.org/10.1023/B:JMIV.0000043736.15525.ed

27. Žunić, J., Sladoje, N.: A characterization of digital disks by discrete moments.
In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp.
582–589. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63460-6 166

https://doi.org/10.1016/0012-365X(95)00195-3
https://doi.org/10.1016/j.endm.2005.04.006
https://doi.org/10.1016/j.endm.2005.04.006
https://doi.org/10.1007/978-3-319-32360-2_3
https://doi.org/10.1016/0734-189X(84)90187-7
https://doi.org/10.1007/BF01901025
https://doi.org/10.1109/TIT.2018.2881749
https://doi.org/10.1109/CVPR.2011.5995644
https://doi.org/10.1109/CVPR.2011.5995644
https://doi.org/10.1023/B:JMIV.0000043736.15525.ed
https://doi.org/10.1007/3-540-63460-6_166

Sufficient Conditions
for Topology-Preserving Parallel

Reductions on the BCC Grid

Kálmán Palágyi(B), Gábor Karai, and Péter Kardos

Department of Image Processing and Computer Graphics, University of Szeged,
Szeged, Hungary

{palagyi,karai,pkardos}@inf.u-szeged.hu

Abstract. Parallel reductions transform binary pictures only by chang-
ing a set of black points to white ones simultaneously. Topology preser-
vation is a major concern of some topological algorithms composed of
parallel reductions. For 3D binary pictures sampled on the body-centered
cubic (BCC) grid, we propose a new sufficient condition for topology-
preserving parallel reductions. This condition takes some configurations
of deleted points into consideration, and it provides a method of verifying
that formerly constructed parallel reductions preserve the topology. We
present two further sufficient conditions that investigate individual points,
directly provide deletion rules of topology-preserving parallel reductions,
and allow us to construct parallel thinning algorithms.

Keywords: Digital topology · Topology preservation · BCC grid ·
Thinning

1 Introduction

A binary digital picture is composed of black and white points that form black
and white components [8]. A parallel reduction is an operation that transforms
a picture only by changing a set of black pixels to white ones at a time, which
is referred to as deletion [4].

Topology preservation is a major concern of thinning algorithms composed
of parallel reductions. A parallel reduction in a 2D picture does not preserve
topology if any black component in the input picture is split or is completely
deleted, any white component in the input picture is merged with another white
component, or a white component is created where there was none in the input
picture [8]. There is an additional concept called hole in 3D pictures. A hole
(which donuts have) is formed of white points, but it is not a white component.
Topology preservation in 3D implies that eliminating or creating any hole is not
allowed [8].

Methods of verifying that a given topological algorithm is topology-
preserving (i.e., it performs topology-preserving reductions for all possible pic-
tures) are well-established for 2D pictures on the three possible regular grids
[6,7,9,12,14] and the 3D pictures sampled on the conventional cubic grid
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 71–83, 2023.
https://doi.org/10.1007/978-3-031-23612-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_5

72 K. Palágyi et al.

[1,9,10,13]. It cannot be stated for 3D pictures on the body-centered cubic (BCC)
grid which tessallates the space into truncated octahedra [8], however, the impor-
tance of the BCC grid shows an upward tendency due to its advantages of geo-
metrical and topological properties [2,3,11,15,17,18].

In this work, we propose a new sufficient condition for topology-preserving
parallel reductions on the BCC grid. Our condition takes some configurations
of deleted points into consideration, and it provides a method of verifying that
formerly constructed parallel reductions preserve the topology. Two further suf-
ficient conditions are stated that investigate individual points, directly provide
deletion rules of topology-preserving parallel reductions, and allow us to con-
struct parallel thinning algorithms.

The rest of this paper is organized as follows: Sect. 2 reviews the basic notions
and results. Then, in Sect. 3 we recall the only existing configuration-based suffi-
cient condition for topology-preserving parallel reductions on the BCC grid, and
its simplified version is proposed. Section 4 presents our symmetric and asym-
metric point-based sufficient conditions, and we generate directly two topology-
preserving parallel reductions in Sect. 5. Finally, we round off this work with
some concluding remarks.

2 Basic Notions and Results

Next, we recall the basic notions and results concerning the BCC grid [8].
The BCC grid is the following subset of Z3:

B = {(x, y, z) ∈ Z
3 | x ≡ y ≡ z (mod 2)}.

Let B ⊂ B be the the set of black points in a binary digital picture sampled on
the BCC grid, and each point in B\B is said to be a white point in this picture.
For practical purposes we assume that B contains finitely many points.

The same adjacency relation called 14-neighborhood is assigned to the sets
of black and white points, and let N14(p) denote the set of points that are 14-
adjacent to p, see Fig. 1.

Fig. 1. The studied adjacency relation on B (left). The 14 points marked ‘�’ form
the set N14(p). (Note that unmarked elements in Z

3 are not points in B.) The voxel-
representation of N14(p), where each voxel is a truncated octahedron (right).

Sufficient Conditions for TPP Reductions on the BCC Grid 73

Since the considered adjacency relation is symmetric, its reflexive-transitive
closure generates an equivalence relation, and its equivalence classes are called
components. A black component or an object is a component of B, while a white
component is a component of B\B.

A point p ∈ B is an interior point for B if N14(p) ⊂ B, p is called a border
point if it is not an interior point, and p is said to be an isolated point if it forms
a singleton object (i.e., N14(p) ∩ B = ∅).

A single black point is said to be simple if its deletion is a topology-preserving
reduction. Now we will make use of the following characterization of simple
points:

Theorem 1. [16] A point p ∈ B is simple for the set of black points B if and
only if the following conditions hold:

1. Set of black points N14(p) ∩ B contains exactly one component.
2. Set of white points N14(p)\B contains exactly one component.

It is an easy consequence of Theorem 1 that only non-isolated border points
may be simple, and the simpleness of a point p can be decided by examin-
ing N14(p) (i.e., its small local neighborhood). Figure 2 gives some illustrative
examples of simple and non-simple points.

Deleting a single black point p preserves the topology if and only if p is
simple. Since parallel reductions can delete a set of points simultaneously, we
need a precise definition of what is meant by topology preservation when a
number of points are deleted at a time.

Here, we need to define the concepts of a simple set and a simple sequence.

Definition 1. [9,10] Let P be an arbitrary picture. A set of n black points Q
is a simple set in P if it is possible to arrange the elements of Q in a sequence
〈q1, . . . , qn〉 such that q1 is simple in P and each qi is simple after the set of
points {q1, . . . , qi−1} is deleted (i = 2, . . . , n). Such a sequence is called a simple
sequence. (And let the empty set be simple.)

Figure 3 gives examples of simple and non-simple sets in a picture on the
BCC grid.

3 Configuration-Based Conditions

One of the authors established the very first sufficient condition for topology-
preserving parallel reductions on the BCC grid:

Theorem 2. [5] A parallel reduction R is topology-preserving if it fulfills the
following conditions:

1. Any set of at most three mutually 14-adjacent black points deleted by R is
simple.

74 K. Palágyi et al.

Fig. 2. Examples for simple and non-simple points. The positions marked ‘•’ and ‘◦’
represent black and white points, respectively. Black point p is simple only in the top
left configuration. In the top right example, p is an isolated black point, while in the
bottom left figure we can find two 14-components in N14(p) ∩ B, hence in both cases
Condition 1 of Theorem 1 is violated. The bottom right configuration depicts a case
where there exist two 14-components in N14(p)\B, thus Condition 2 of Theorem 1 does
not hold.

2. R does not delete completely any object composed of at most four mutually
14-adjacent points.

We can state that Theorem 2 takes configurations of at most four mutually
14-adjacent points into consideration. Thus that theorem states a configuration-
based sufficient condition for topology-preserving parallel reductions.

Notice that, by Theorem 2, it is difficult to verify that a previously designed
parallel reduction preserves the topology. That is why we simplify this very first
condition.

Firstly we need to recall an absolutely general lemma stated by Kardos and
Palágyi:

Lemma 1. [7] Let p and q be two black simple points in an arbitrary picture. If
p remains simple after the deletion of q, q remains simple after the deletion of
p.

Lemma 1 can be rephrased as follows:

– If a simple set is formed by two simple points, then both possible sequences
of its elements are simple sequences.

Sufficient Conditions for TPP Reductions on the BCC Grid 75

Fig. 3. Examples of simple and non-simple sets. The set of four black points {a, b, c, d}
is simple since the 10 sequences (of the possible 24 ones) 〈a, b, c, d〉, 〈a, b, d, c〉, 〈a, c, b, d〉,
〈a, d, b, c〉, 〈b, a, c, d〉, 〈b, a, d, c〉, 〈b, c, a, d〉, 〈c, a, b, d〉, 〈c, b, a, d〉, 〈d, a, b, c〉 are all simple.
The set of black points {c, d} is non-simple, since both sequences 〈c, d〉 and 〈d, c〉 are
non-simple. Note that {a, b, c, e, f} ⊂ N14(d) and thick lines connect 14-adjacent points
in {a, b, c, e, f}.

– If two black points p and q are simple in a picture, then the following two
statements are equivalent:

• p is simple after the deletion of q (i.e., 〈q, p〉 is a simple sequence).
• q is simple after the deletion of p (i.e., 〈p, q〉 is a simple sequence).

In other words, the simpleness of a set of two simple points can be decided
by testing just one sequence of its elements.

The following proposition is a straightforward consequence of Definition 1:

Proposition 1. Let 〈q1, . . . , qn〉 be a simple sequence of a set of n ≥ 0 black
points Q. If a black point p �∈ Q is simple after the deletion of Q, the set of n+1
points {q1, . . . , qn, p} is simple.

We will also make use of the following proposition:

Proposition 2. If a set of black points Q forms an object, Q is not a simple
set.

Proof. Let us investigate an arbitrary sequence 〈q1, . . . , qn−1, qn〉 of the elements
of the set of n points Q (n ≥ 1). It is obvious that qn is an isolated point after
the deletion of the set {q1, . . . , qn−1}. Since only non-isolated border points may
be simple, 〈q1, . . . , qn−1, qn〉 is not a simple sequence. Thus Q is not a simple
set. �

76 K. Palágyi et al.

With the help of Lemma 1, Proposition 1, and Proposition 2, Theorem 2 can
be rephrased as follows:

Theorem 3. A parallel reduction is topology-preserving for B ⊂ B if the
following conditions hold:

1. Only simple points for B are deleted.
2. If two 14-adjacent points p and q are deleted, p is simple for B\{q}.
3. If three mutually 14-adjacent points p, q, and r are deleted,

p is simple for B\{q, r}, or
q is simple for B\{p, r}, or
r is simple for B\{p, q}.

4. No object consisting of exactly four mutually 14-adjacent points is deleted
completely.

Proof. Let us suppose that a parallel reduction satisfies all conditions of this
theorem, and it deletes the set of points D ⊂ B. To prove this theorem, we must
show that both conditions of Theorem 2 hold.

– Let Q ⊆ D be a set of at most three mutually 14-adjacent black points. Then
the following three points are to be investigated:

• Q = {p}:
By Condition 1 of this theorem, point p is simple for B. Thus the singleton
set Q is a simple set.

• Q = {p, q}:
By Condition 1 of this theorem, both points p and q are simple for B.
By Condition 2 of this theorem, p is simple for B\{q}.
Consequently the set of two points Q is a simple set. (Note that, by
Lemma 1, q is also simple after the deletion of p. That is why we do not
need to distinguish p and q.)

• Q = {p, q, r}:
By Condition 1 of this theorem, all the three points p, q, and r are simple
for B.
By Condition 2 of this theorem and Lemma 1, all the three sets of points
{p, q}, {p, q}, and {p, q} are simple sets, and all the six sequences 〈p, q〉,
〈q, p〉, 〈p, r〉, 〈r, p〉, 〈q, r〉, and 〈r, q〉 are simple sequences. By Condition
3 of this theorem and Proposition 1, at least two of the six sequences
〈p, q, r〉, 〈q, p, r〉, 〈p, r, q〉, 〈r, p, q〉, 〈q, r, p〉, and 〈r, q, p〉 are simple. Thus
the set of three points Q is a simple set.

Since any set of at most three mutually 14-adjacent deleted points is a simple
set, Condition 1 of Theorem 2 holds.

– Let us assume that the set of points Q ⊆ D forms an object of at most four
mutually 14-adjacent points. Then the following two cases are distinguished:

Sufficient Conditions for TPP Reductions on the BCC Grid 77

• If Q contains at most three elements, by Condition 1 of Theorem 2, Q is
a simple set. By Proposition 2, Q cannot form an object. Hence we arrive
at a contradiction.

• If Q contains exactly four points, by Condition 4 of this theorem, Q cannot
be deleted completely.

Thus Condition 2 of Theorem 2 holds.

Since both conditions of Theorem 2 are satisfied, the proof is completed. �

We can state that (similarly to Theorem 2) Theorem 3 provides a

configuration-based sufficient condition for topology-preserving parallel reduc-
tions on the BCC grid.

4 Point-Based Conditions

Theorems 2 and 3 (i.e., the two configuration-based sufficient conditions for
topology-preserving parallel reductions) just provide methods of verifying that
a previously designed parallel reduction preserves the topology, rather than a
methodology, for constructing topology-preserving parallel reductions. That is
why we propose point-based sufficient conditions that directly provide deletion
rules of topology-preserving parallel reductions, and allow us to generate various
topology-preserving parallel thinning algorithms.

The following theorem (i.e., the very first point-based condition on the BCC
grid) states the deletability of individual points:

Theorem 4. A parallel reduction is topology-preserving for B ⊂ B if each point
p deleted by this reduction satisfies the following conditions:

1. Point p is simple for B.
2. For any point q ∈ N14(p)∩B that is simple for B, point p is simple for B\{q}.
3. For any two points q ∈ N14(p) ∩ B and r ∈ N14(p) ∩ N14(q) ∩ B that are

simple for B, and q is simple for B\{r}, p is simple for B\{q, r}.
4. Point p is not an element of an object consisting of four mutually 14-adjacent

points.

Proof. Let us suppose that a parallel reduction satisfies all conditions of this
theorem, it deletes the set of points D ⊂ B, and a black point p is in D. To
prove this theorem, we must show that all conditions of Theorem 3 hold.

– By Condition 1 of this theorem, point p is simple for B. Thus Condition 1 of
Theorem 3 holds.

– By Condition 2 of this theorem, for any q ∈ B, the set of two mutually 14-
adjacent points {p, q} is simple for B. It also holds if q ∈ D. Consequently
Condition 2 of Theorem 3 is satisfied.

– By Condition 3 of this theorem, 〈r, q, p〉 is a simple sequence for any two
points q and r. Thus the set of three mutually 14-adjacent points {r, q, p} is
simple if q ∈ D and r ∈ D. Therefore Condition 3 of Theorem 3 holds.

78 K. Palágyi et al.

– By Condition 4 of this theorem, none of the elements of an object consisting
of four mutually 14-adjacent points may be deleted. Since such an object is
not deleted completely, Condition 4 of Theorem 3 is satisfied.

Since all conditions of Theorem 3 hold, this theorem is true. �

Conditions of Theorem 4 may be viewed as symmetric since elements in the

examined sets of at most four mutually 14-adjacent points are not distinguished.
Let us focus on the addressing scheme shown in Fig. 4, which maps every

point in B to a triplet of integer coordinates. The lexicographical order relation
‘≺’ between two distinct points p = (px, py, pz) and q = (qx, qy, qz) is defined as
follows:

p ≺ q ⇔ (pz < qz) ∨ (pz = qz ∧ py < qy) ∨ (pz = qz ∧ py = qy ∧ px < qx).

Fig. 4. The considered coordinate system (left) and the proposed ordering scheme for
the BCC grid (right). The elements of the set of seven points { q | q ∈ N14(p) and p ≺ q }
are marked ‘�’, and the remaining seven points in { r | r ∈ N14(p) and r ≺ p } are
marked ‘♦’.

Let Q ⊂ B be a finite set of points. Point p ∈ Q is the smallest element of Q
if for any q ∈ Q \{p}, p ≺ q.

With the help of the proposed ordering, we state the following asymmetric
point-based condition for topology-preserving parallel reductions:

Theorem 5. A parallel reduction is topology-preserving for B ⊂ B if each point
p deleted by that reduction satisfies the following conditions:

1. Point p is simple for B.
2. For any point q ∈ N14(p)∩B that is simple for B, point p is simple for B\{q},

or q ≺ p.
3. For any two points q ∈ N14(p) ∩ B and r ∈ N14(p) ∩ N14(q) ∩ B that are

simple for B, and q is simple for B\{r}, point p is simple for B\{q, r}, or p
is not the smallest element of set {p, q, r}.

4. Point p is not the smallest element of an object formed by four mutually
14-adjacent points.

Sufficient Conditions for TPP Reductions on the BCC Grid 79

Proof. Let us suppose that a parallel reduction satisfies all conditions of this
theorem, and it deletes the set of points D ⊂ B. To prove this theorem, we must
show that all the four conditions of Theorem 3 hold.

– Let Q ⊆ D be a set of at most three mutually 14-adjacent black points. Then
the following three points are to be investigated:

• Q = {p}:
By Condition 1 of this theorem, point p is simple for B. Thus Condition
1 of Theorem 3 holds.

• Q = {p, q}:
By Condition 1 of this theorem, both points p and q are simple for B. By
Condition 2 of this theorem, p is simple for B\{q}, or q ≺ p.

* If p is simple for B\{q}, Condition 2 of Theorem 3 is satisfied.
* If p is not simple for B\{q} and q ≺ p, by Lemma 1, q is not simple

for B\{p}. Since q ∈ Q ⊆ D, Condition 2 of this theorem is violated,
and we arrive at a contradiction.

• Q = {p, q, r}:
Let us assume that p is the smallest element of set {p, q, r}. Since p ∈
Q ⊆ D, by Condition 3 of this theorem, p is simple for B\{q, r}. Thus
Condition 3 of Theorem 3 holds.

– By Condition 4 of this theorem, the smallest element of an object formed by
four mutually 14-adjacent points cannot be deleted. Thus that object cannot
be deleted completely, and Condition 4 of Theorem 3 is satisfied.

Since all the four conditions of Theorem 3 hold, the proof is completed. �

5 Generating Topology-Preserving Parallel Reductions

In this section we show that the point-based sufficient conditions (see Theorems
4 and 5) allow us to generate directly topology-preserving parallel reductions.

Definition 2. A black point is deleted by the parallel reduction Rsymm if it
satisfies all conditions of Theorem 4.

Definition 3. A black point is deleted by the parallel reduction Rasymm if it
satisfies all conditions of Theorem 5.

The support of a parallel reduction is the minimal set of points whose values
determine whether a point is deleted [4]. The support of Rsymm contains 64
points (see Fig. 5), and the count of points is 47 in the support of Rasymm (see
Fig. 6). Note that the symmetric reduction has a symmetric support, and the
support of the asymmetric reduction is asymmetric.

By Theorems 4 and 5, it is obvious that both derived parallel reductions
Rsymm and Rasymm are topology-preserving.

80 K. Palágyi et al.

Fig. 5. The 64 points marked ‘�’ are in the symmetric support of Rsymm. Note that
points marked ‘�’ are in Z

3\B.

Fig. 6. The 47 points marked ‘�’ are in the asymmetric support of Rasymm. Note
that the points depicted ‘�’ are only contained in the symmetric support (see Fig. 5),
and the points marked ‘�’ are in Z

3\B.

Sufficient Conditions for TPP Reductions on the BCC Grid 81

By Lemma 1, if a set of two simple points {p, q} is simple, both sequences
〈p, q〉 and 〈q, p〉 are simple. Similarly, if a set of two simple points {p, q} is not
simple, both sequences 〈p, q〉 and 〈q, p〉 are not simple. If the set of two mutually
14-adjacent simple points {p, q} is not simple, none of them can be deleted by
parallel reduction Rsymm (since Condition 2 of Theorem 4 is violated). On
the contrary, in the same case it is possible to delete point p ≺ q by Rasymm
(see Condition 2 of Theorem 5). Conditions 3 and 4 of Theorem 5 also involve
that reduction Rasymm can delete more points from a picture than reduction
Rsymm does. Figure 7 illustrates the different behaviors of these two generated
parallel reductions.

Fig. 7. An image of a small cube containing 128 black points/voxels (a) and the
two different objects produced by parallel reductions Rsymm (b) and Rasymm (c).
Reductions Rsymm and Rasymm can delete 50 and 62 points/voxels, respectively.

The otherness of the two generated reductions Rsymm and Rasymm is
markedly illustrated by Figs. 8 and 9. In these figures these two reductions
are iterated until stability is reached.

Fig. 8. An image of a ‘P’ containing 19 362 black points/voxels (a) and the objects
produced by the iteratively repeated parallel reductions Rsymm (b) and Rasymm
(c). Iterated reductions Rsymm and Rasymm lead to objects containing 264 and 97
points/voxels, respectively.

82 K. Palágyi et al.

Fig. 9. An image of a tube containing 269 336 black points/voxels (a) and the objects
produced by the iteratively repeated parallel reductions Rsymm (b) and Rasymm
(c). Iterated reductions Rsymm and Rasymm lead to objects containing 597 and 198
points/voxels, respectively.

6 Conclusions

In this paper, a simplified version of the only existing configuration-based suf-
ficient condition for topology-preserving parallel reductions on the BCC grid is
reported. We established two further sufficient conditions that investigate the
deletability of individual points. These point-based conditions directly provide
deletion rules of two topology-preserving parallel reductions.

In a future work, we are to combine our point-based conditions with parallel
thinning strategies and geometric constraints to generate a family of topology-
preserving parallel thinning algorithms on the BCC grid.

Acknowledgments. Project no. TKP2021-NVA-09 has been implemented with the
support provided by the Ministry of Innovation and Technology of Hungary from the
National Research, Development and Innovation Fund, financed under the TKP2021-
NVA funding scheme.

References

1. Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple
sets, P-simple points and critical kernels. J. Math. Imaging Vis. 35, 23–35 (2009).
https://doi.org/10.1007/s10851-009-0152-3

2. Čomić, L., Nagy, B.: A combinatorial coordinate system for the body-centered
cubic grid. Graph. Models 87, 11–22 (2016). https://doi.org/10.1016/j.gmod.2016.
08.001

3. Csébfalvi, B.: Cosine-weighted B-spline interpolation: a fast and high-quality recon-
struction scheme for the body-centered cubic lattice. IEEE Trans. Visual. Comput.
Graph. 19, 1455–1466 (2013). https://doi.org/10.1109/TVCG.2013.7

4. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y.,
Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–
179, Elsevier Science (1996). https://doi.org/10.1016/S0923-0459(96)80014-0

https://doi.org/10.1007/s10851-009-0152-3
https://doi.org/10.1016/j.gmod.2016.08.001
https://doi.org/10.1016/j.gmod.2016.08.001
https://doi.org/10.1109/TVCG.2013.7
https://doi.org/10.1016/S0923-0459(96)80014-0

Sufficient Conditions for TPP Reductions on the BCC Grid 83

5. Kardos, P.: Topology preservation on the BCC grid. J. Comb. Optim. 44, 1981–
2995 (2021). https://doi.org/10.1007/s10878-021-00828-9

6. Kardos, P., Palágyi, K.: Topology-preserving hexagonal thinning. Int. J. Comput.
Math. 90, 1607–1617 (2013). https://doi.org/10.1080/00207160.2012.724198

7. Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math.
Artif. Intell. 75, 53–68 (2015). https://doi.org/10.1007/s10472-014-9426-6

8. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Visi. Graph. Image Process. 48, 357–393 (1989). https://doi.org/10.1016/0734-
189X(89)90147-3

9. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J.
Pattern Recognit Artif Intell. 9, 813–844 (1995). https://doi.org/10.1142/
S0218001495000341

10. Ma, C.M.: On topology preservation in 3D thinning. CVGIP: Image Underst. 59,
328–339 (1994). https://doi.org/10.1006/ciun.1994.1023

11. Matej, S., Lewitt, R.M.: Efficient 3D grids for image reconstruction using
spherically-symmetric volume elements. IEEE Trans. Nucl. Sci. 42, 1361–1370
(1995). https://doi.org/10.1109/23.467854

12. Németh, G., Palágyi, K.: Topology-preserving hexagonal thinning. Int. J. Comput.
Math. 90, 1607–1617 (2013). https://doi.org/10.1007/s10472-014-9426-6

13. Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning
algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms:
Theoretical Foundations and Applications to Computational Imaging, pp. 165–188.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-94-007-4174-4 6

14. Ronse, C.: Minimal test patterns for connectivity preservation in parallel thin-
ning algorithms for binary digital images. Discrete Appl. Math. 21, 67–79 (1988).
https://doi.org/10.1016/0166-218X(88)90034-0

15. Strand, R.: Surface skeletons in grids with non-cubic voxels. In Proceedings of 17th
International Conference on Pattern Recognition, ICPR 2004, pp. 548–551 (2004).
https://doi.org/10.1109/ICPR.2004.1334195

16. Strand, R., Brunner, D.: Simple points on the body-centered cubic grid. Technical
report 42, Centre for Image Analysis, Uppsala University, Uppsala, Sweden (2006)

17. Strand, R., Nagy, B.: Weighted neighbourhood sequences in non-standard three-
dimensional grids - Metricity and algorithms. In Proceedings of 14th IAPR Inter-
national Conference on Discrete Geometry for Computer Imagery, DGCI 2008, pp.
201–212 (2008). https://doi.org/10.1007/978-3-540-79126-3 19

18. Theussl, T., Möller, T., Grölle, M.E.: Optimal regular volume sampling. In Pro-
ceedings of IEEE Visualization, VIS 2001, pp. 91–98 (2001). https://doi.org/10.
1109/VISUAL.2001.964498

https://doi.org/10.1007/s10878-021-00828-9
https://doi.org/10.1080/00207160.2012.724198
https://doi.org/10.1007/s10472-014-9426-6
https://doi.org/10.1016/0734-189X(89)90147-3
https://doi.org/10.1016/0734-189X(89)90147-3
https://doi.org/10.1142/S0218001495000341
https://doi.org/10.1142/S0218001495000341
https://doi.org/10.1006/ciun.1994.1023
https://doi.org/10.1109/23.467854
https://doi.org/10.1007/s10472-014-9426-6
https://doi.org/10.1007/978-94-007-4174-4_6
https://doi.org/10.1016/0166-218X(88)90034-0
https://doi.org/10.1109/ICPR.2004.1334195
https://doi.org/10.1007/978-3-540-79126-3_19
https://doi.org/10.1109/VISUAL.2001.964498
https://doi.org/10.1109/VISUAL.2001.964498

On the Construction of Planar
Embedding for a Class of Orthogonal

Polyhedra

Nilanjana Karmakar1, Arindam Biswas2(B), Subhas C. Nandy3,
and Bhargab B. Bhattacharya4

1 Department of Information Technology,
St. Thomas’ College of Engineering and Technology, Kolkata, India

nilanjana.nk2@gmail.com
2 Department of Information Technology,

Indian Institute of Engineering Science and Technology, Shibpur, India
barindam@gmail.com

3 Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

nandysc@isical.ac.in
4 Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur, Kharagpur, India

bbbiitkgp@gmail.com

Abstract. 2D-representations of 3D digital objects find versatile appli-
cations to computer vision, robotics, medical imaging, and in discrete
geometry. This work presents an algorithm for constructing a planar
embedding with only straight-line edges for a general non-intersecting
orthogonal polyhedron that has genus 0. We discover certain charac-
terizations of vertices and edges of a polyhedron that lead to efficient
graph-drawing on the 2D plane. The original orthogonal polyhedron can
be fully reconstructed from this graph provided the information regard-
ing the coordinates of vertices, are preserved. The time complexity of the
proposed embedding is linear in the number of edges of the orthogonal
polyhedron.

Keywords: Orthogonal polyhedron · Planar graph · Graph drawing

1 Introduction

Analysis of polyhedrons using graph-theoretic tools has always drawn consider-
able attention in the field of combinatorics. In the words of Grunbaum, Steinitz’s
theorem “is the most important and deepest known result on 3-polytopes” [15].
1-skeleton of a polyhedron is the graph consisting only of its vertices and edges.
Steinitz’s theorem may be stated in terms of graph theory as: A graph G is
isomorphic to the 1-skeleton of a 3-dimensional convex polyhedron P if and only
if G is planar and 3-connected [17]. In other words, a given convex polyhedron
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 84–104, 2023.
https://doi.org/10.1007/978-3-031-23612-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_6

On the Construction of Planar Embedding 85

can be represented as a polyhedral graph, i.e., a 3-connected planar graph. A
cubic bipartite polyhedral graph always corresponds to some specific type of
orthogonal polyhedron termed as simple orthogonal polyhedron [14,15]. This
type of orthogonal polyhedron excludes those not having the topology of sphere,
or containing more than three edges incident at each vertex. Therefore, the graph
representing an orthogonal polyhedron need not necessarily be a cubic bipartite
polyhedral graph. The current work generalizes previous approaches and shows
how every closed non self-intersecting orthogonal polyhedron that has genus 0,
can be embedded on the 2D plane using only non-crossing straight-line edges.
Note that given such a polyhedron, the use of direct (i.e., without re-embedding
it on a sphere) stereographic projections may lead to edge-crossovers on the
plane.

Certain graphic standards are generally maintained to produce aesthetically
desirable graphs for any application. For instance, edge crossings and bends in
edges are avoided, uniformity of edge lengths and distribution of vertices are
maintained, etc. Optimization of such standards have been found to be NP-
hard [5]. Even then aesthetic criteria play an important role in graph drawing
to maintain readability of the graph, thereby optimizing graphic standards with
certain trade-offs [9]. One such aesthetically desirable graph of importance is
planar graph [32]. Several works have contributed to the testing of planarity of
a graph by vertex addition method, path addition method, etc. [20,24]. Planar
graph drawing has been categorized as straight line drawing, polyline drawing,
orthogonal drawing etc. as mentioned in [4,12,25,30,31]. In the current work,
straight line drawing of planar graphs has been adopted to represent a non-self-
intersecting orthogonal polyhedron of genus 0.

In the orthogonal domain, it has been proved that it is NP-hard to decide
whether a graph with fixed combinatorial embedding, edge lengths, and facial
angles, is the graph of an orthogonal polyhedron [7]. However, it is possible to
decide the same, and hence reconstruct, in case of orthogonal convex polyhe-
dron [7]. Reconstruction of an orthogonal polyhedron based on its dual graph,
dihedral angles, facial angles, edge lengths, or vertex coordinates has been stud-
ied in detail [16]. A famous theorem by Cauchy states that a convex polyhedron
can be uniquely determined given its incidence structure and face polygons [8].
The limitation of this theorem to convex polyhedra has been overcome by prov-
ing that Cauchy’s theorem holds for orthogonal polyhedra of genus 0, considering
faces without holes [8]. A graph is said to be 3-connected if it has more than 3
vertices and the result of deleting any set of fewer than 3 vertices is a connected
graph. Algorithms to produce polyhedral representations from 3-connected pla-
nar graphs have also been dealt with in [26]. Other works regarding polyhedral
graphs, planar graphs, and construction and unfolding of 3D polytopes are avail-
able in [2,3,11,13,18] and [27–29,33].

86 N. Karmakar et al.

Fig. 1. (a,b) Self-intersecting orthogonal polyhedrons. (c) A non self-intersecting
orthogonal polyhedron of genus 0 (Color figure online).

Contribution of Our Work: We propose a straight line planar graph drawing of a
given orthogonal polyhedron with genus 0. The polyhedron may have any number
of mutually perpendicular axis parallel edges incident at a vertex and may have
faces with cavities (holes). A genus 0 polyhedron represents a connected set that
is disconnected by a single cut. By non self-intersecting orthogonal polyhedron we
mean an orthogonal polyhedron that does not intersect itself along a vertex or an
edge. Note that all genus-0 polyhedrons are non self-intersecting. In Fig. 1(a,b)
some self-intersecting orthogonal polyhedrons are shown and an example of a
non self-intersecting orthogonal polyhedron of genus 0 is shown in Fig. 1(c).

Figure 2(a)(left) shows a non self-intersecting orthogonal polyhedron of genus
0 with a vertex (the red point) incident with more than three axis-parallel edges.
The corresponding graph is planar as shown in Fig. 2(a)(right). Also, if an orthog-
onal polyhedron contains convex or concave regions that touch the polyhedron at
a single face and not at its boundary edges (Fig. 2(b)(left)), then the correspond-
ing graph is a disconnected one as shown in Fig. 2(b)(right). Each of the vertices
and edges in the graph corresponds to a vertex or edge in the orthogonal poly-
hedron thereby preserving the incidence structure. Although edge lengths in the
graph may not match with those of the polyhedron, they can easily be computed
from vertex information stored in the graph. The number of faces in the graph
is also equal to that in the orthogonal polyhedron where the face that appears
furthest while viewing the polyhedron corresponds to the unbounded outer face
of the graph. The incidence structure of the polyhedron faces is maintained in
the graph whereas the shape and area of the faces, though visibly different, may
be calculated from the information stored in the graph.

The rest of the paper is continued as follows. Section 2 may be referred to
recall some relevant definitions and notation. The characterization of an orthogo-
nal polyhedron in terms of its vertex categories is provided in Sect. 3. The graphic
standards of planar embedding used in this work are discussed in Sect. 4. The
main algorithm is presented in Sect. 5 followed by a detailed discussion in Sect. 6
where several possible cases are analyzed. Finally in Sect. 7, the paper is con-
cluded with future directives.

On the Construction of Planar Embedding 87

Fig. 2. Two non self-intersecting orthogonal polyhedrons of genus 0 and the corre-
sponding planar graphs. The red point shown in the graph of Fig. 2(a) corresponds to
the red-vertex of the polyhedron shown on the left where more than three axis-parallel
edges meet. (Color figure online)

Fig. 3. 3D digital space and 26N [23]. Left: A 3-cell and its corresponding grid point.
Right: Three pairs of α-adjacent 3-cells for α ∈ {0, 1, 2}, α ∈ {0, 1}, and α = 0 (from
left to right). The 3-cells in each of these three pairs are connected in 26N.

2 Definitions and Preliminaries

Definition 1 (Unit grid cube). A unit grid cube (UGC) is a (closed) cube of
length g whose vertices are grid vertices, edges constituted by grid edges, and
faces constituted by grid faces. Each face of a UGC lies on a face plane (hence-
forth referred as a UGC-face), which is parallel to one of the three coordinate
planes (Fig. 3).

Definition 2 (Orthogonal polyhedron). An orthogonal polyhedron imposed on
a 3D digital grid G is a 3D polytope with all its vertices as grid vertices, all its
edges made of grid edges, and all its faces lying on face planes (see Fig. 3) [21,22].
Each face of an orthogonal polyhedron is an orthogonal polygon whose alternate
edges are axis-parallel and constituted by grid edges of G .

Definition 3 (Genus). Genus of a connected set is the minimum number of cuts
required to transform the set into a simply connected set (Fig. 4). By a simply
connected set in R

3 we mean a connected set that has no tunnels [23] .

88 N. Karmakar et al.

h2

h1

v1 v2

v3v4

v5 v6

v7
v8

v9 v10

v11v12

v13
v14

v15v16

h2h1

v5 v6

v7v8

v1 v2

v3
v4

v9 v10

v11v12

v13 v14

v15v16

(a) (b)

Fig. 4. A sample orthogonal polyhedron of genus 1 and the corresponding graph.

l1 = 6

l2 = 2 l3 = 1

b1 = 2

b2 = 1

b3 = 4h1 = 2

h2 = 1

h3 = 3

l = 1
b = 1

h = 1

(a) (b)

Fig. 5. Determination of unit cube from a given orthogonal polyhedron. (a) l =
GCD(6, 2, 1) = 1, b = GCD(2, 1, 4) = 1, h = GCD(2, 1, 3) = 1. (b) unit cube with
l = 1, b = 1, and h = 1

Polyhedron as a collection of Unit Cubes

A unit cube is the lowest unit of measurement in three dimensions, which is
defined as follows. Given an orthogonal polyhedron, the GCD (Greatest Common
Divisor) of the lengths of all of its edges along the three coordinate planes gives
the length of the unit cube (Fig. 5(a)). Without loss of generality we equate it
with the concept of UGC defined in Sect. 2 (Fig. 5(b)). It is to be noted that
the unit cube is selected w.r.t. the polyhedron. It may have length, breadth, and
height greater than unity. However, it can be decomposed into a cube of unit
length, unit breadth, and unit height and hence it is justified to equate it with
a UGC.

Singular Point and Singular Line Segment

Let us consider a point p of the orthogonal polyhedron P. Let Ball(p, δ) be a
ball of radius δ(> 0) in R

3 centered at p. Then, we use the following definitions.

On the Construction of Planar Embedding 89

p (interior point)

Ball(p, δ)

Ball(p, δ)

p (exterior point)

Ip(P)

Ball(p, δ0)

p (singular point)

Ep(P)

Ip(P)

Ip(P) ∩ Ball(p, δ0)

Ep(P) ∩ Ball(p, δ0)

Ep(P) ∩ Ball(p, δ0)

(a) (b)

p1

p2

δ

Cyl(p1, p2, δ)

l (interior line

p1

p2

δ l (exterior line
segment)

segment)

p1

p2

δ

l (singular line
Il(P)

Il(P)
El(P)

segment)

(c) (d)

Fig. 6. (a,b) Singular point and (c,d) Singular line segment (Color figure online).

Definition 4 (Interior point). A point p is an interior point of P if Ball(p, δ)
⊆ P for some δ > 0.

Definition 5 (Exterior point). A point p is an exterior point of P if Ball(p, δ)
∩P = ∅ for some δ > 0.

Examples of interior and exterior points are shown in Fig. 6(a). We denote the set
of all interior points and the set of exterior points by I(P) and E(P) respectively.

Definition 6 (Non-singular point). If ∃ δ0 such that ∀δ ∈ (0, δ0) we have I(P)∩
Ball(p, δ) �= ∅ and E(P) ∩ Ball(p, δ) �= ∅ and each of I(P) ∩ Ball(p, δ) and
E(P) ∩ Ball(p, δ) is connected, then p is a non-singular point [19].

Definition 7 (Singular point). If ∃ δ0 such that ∀δ ∈ (0, δ0) we have I(P) ∩
Ball(p, δ) �= ∅ and E(P) ∩ Ball(p, δ) �= ∅ and either or both of I(P) ∩ Ball(p, δ)
and E(P) ∩ Ball(p, δ) are disconnected, then p is a singular point [19].

A singular point is illustrated in the Fig. 6(b).

90 N. Karmakar et al.

Now, let us consider two points p1 and p2 belonging to the orthogonal poly-
hedron P. From the existing definition of non-singular point a concept of non-
singular line segment is derived as follows. Cyl(p1, p2, δ) is a cylinder of radius
δ(> 0) in R

3 bounded at the two ends by discs of radius δ centered at p1 and p2.
The line segment l = [p1, p2] is an interior line segment of P if Cyl(p1, p2, δ) ⊆ P
for some δ > 0; l is an exterior line segment of P if Cyl(p1, p2, δ) ∩ P = ∅ for
some δ > 0 (Fig. 6(c)).

Definition 8 (Non-singular Line Segment). If ∃ δ0 such that ∀δ ∈ (0, δ0) we
have I(P) ∩ Cyl(p1, p2, δ) �= ∅ and E(P) ∩ Cyl(p1, p2, δ) �= ∅ and each of Il(P) ∩
Cyl(p1, p2, δ) and El(P)∩Cyl(p1, p2, δ) is connected, then l is denoted as a non-
singular line segment.

Definition 9 (Singular Line Segment). If there is no such δ0, then l is denoted
as a singular line segment.

A singular line segment is shown in the Fig. 6(d). It may be noted here that
any point on the singular line segment is a singular point.

(a) (b)

Fig. 7. (a) An orthogonal polyhedron and (b) its corresponding polyhedron graph.

On the Construction of Planar Embedding 91

Table 1. Vertex classification for orthogonal polyhedra and orthogonal pseudo-
polyhedra.

incident
UGCs

combinations Sub-categories Configuration

0
(8
0

)
= 1 — —

1
(8
1

)
= 8 1 for each UGC Fig. 9(a)

2
(8
2

)
= 28 12 for face adjacency Fig. 9(b)

12 for edge adjacency Fig. 8(c)
4 for vertex adjacency Fig. 8(a)

3
(8
3

)
= 56 24 for face-face-edge

adjacency
Fig. 9(c)

24 for face-edge-vertex
adjacency

Fig. 8(e)

8 for edge-edge-edge
adjacency

Fig. 8(i)

4
(8
4

)
= 70 6 combinations Fig. 9(d)

24 combinations Fig. 9(e)
24 combinations Fig. 8(h)
8 combinations Fig. 9(f)
6 combinations Fig. 8(g)
2 combinations Fig. 8(k)

5
(8
5

)
= 56 24 for face-face-edge

adjacency
Fig. 9(g)

24 for face-edge-vertex
adjacency

Fig. 8(f)

8 for edge-edge-edge
adjacency

Fig. 8(j)

6
(8
6

)
= 28 12 for face adjacency Fig. 9(h)

12 for edge adjacency Fig. 8(d)
4 for vertex adjacency Fig. 8(b)

7
(8
7

)
= 8 1 for each set of 7 UGCs Fig. 9(i)

8
(8
8

)
= 1 — Fig. 9(j)

3 Characterization of an Orthogonal Polyhedron

Given a closed orthogonal polyhedron P, its abstract graph G = (V,E, F) is
defined by the set of vertices V , edges E, and faces F of the polyhedron P such
that

– there is only one edge e between two vertices v1 and v2,
– there is only one edge e incident with two faces f1 and f2,
– there are exactly two faces f1 and f2 incident on one edge e.
– every vertex v is incident with at least three faces f1, f2, and f3, and
– every face f is incident with at least four vertices v1, v2, v3, and v4.

92 N. Karmakar et al.

A graph G is planar if it can be drawn on the Euclidean plane with no two
edges intersecting each other [10]. As a convention P is viewed either from the
front or from the top whereby the most distant face invisible from the front or
top is embedded on the plane as the infinite face.

An orthogonal polyhedron, P, of genus 0 is shown in Fig. 7(a) and its cor-
responding polyhedron graph is planar (Fig. 7(b)). On the other hand, Fig. 4(a)
shows an orthogonal polyhedron, P, of genus one and Fig. 4(b) shows the corre-
sponding graph which is not planar. We devote our study on orthogonal poly-
hedra of genus 0.

According to the marching cube algorithm, a cube is intersected by a surface
such that some of the vertices of the cube lie on or inside the surface while others
do not. Therefore, the eight vertices of the cube are classified into two types. An
edge between two opposite types of vertices is intersected by the surface. As a
cube consists of eight vertices, each in one of the two states (inside or outside
the surface), the cube can be intersected by the surface in at most 28 = 256
possible ways. Since at most eight UGCs may be incident at a vertex v, the
classification procedure of v is in accordance with the above process of classifying
vertices in the marching cube algorithm. The possible number of combinations
of UGCs neighboring v that may appear in an orthogonal polyhedron is 28 =
256 [1]. The 256 combinations may be grouped into 22 equivalence classes by
using rotational symmetries as shown by the configurations in Fig. 8 and Fig. 9.
The 22 configurations are computed as shown in Table 1. For instance, if three
UGCs are incident at v with face-face-edge adjacency (Table 1), i.e., two pairs
of UGCs are face-adjacent and one pair of UGCs is edge adjacent (Fig. 9(c)),
then the configuration can be symmetrically rotated to four sub-categories along
each of yz-, zx-, and xy-planes. The set of these 24 configurations comprise an
equivalence class.

Of all the possible arrangements for one or more (maximum eight) incident
UGCs at a given vertex of P, Fig. 8 shows the exhaustive cases of the singular ver-
tices (Fig. 8 (a) and (b)) and singular line segments (Fig. 8 (c)–(k)). In Fig. 8(a),
two UGCs (∈ P) are incident at the vertex, and I(P) ∩ Ball(p, δ) �= ∅ and
disconnected, hence it is a singular vertex. Similarly, the vertex in Fig. 8(b) is a
singular vertex because E(P)∩Ball(p, δ) �= ∅ and disconnected. It may be noted
here that the arrangement shown in Fig. 8(b) is the complement of the arrang-
ment in Fig. 8(a). The arrangement shown in Fig. 8(c) has a singular line segment
(also referred as singular edge) as I(P) ∩ Cyl(p1, p2, δ) �= ∅ and disconnected.
Figure 8(d) shows an example of a singular edge where E(P)∩Cyl(p1, p2, δ) �= ∅
and disconnected. In each of Figs. 8(c)–(f), there is one singular edge, whereas
two singular edges in Figs. 8(g)–(h), three singular edges in Figs. 8(i)–(j), and
four singular edges in Fig. 8(k). It is evident that as a singular edge consists of a
set of singular points, the end point of a singular edge (∈ P), which is a vertex,
is a singular vertex. Hence, the following observations hold.

Observation 1. If one or more edges incident at a vertex, v ∈ P, is a singular
edge then v is a singular vertex.

On the Construction of Planar Embedding 93

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 8. Configurations of orthogonal polyhedra w.r.t. a vertex v showing all possible
cases of singular points and singular line segments.

Observation 2. If, for a vertex, v ∈ P, one of the following conditions holds,

i. only two diagonal UGCs incident at v belong to P (P ′) and the rest six belong
to P ′ (P).

ii. at least one edge incident at v has exactly four incident faces.

then v is a singular point.

Observation 3. A singular vertex, v ∈ P, cannot be embedded in a plane.

It is evident that if v is singular then the intersection with Ball(v, δ), disconnects
either the interior or the exterior of P. In order to embed v, it is required that
both interior and exterior should be connected.

94 N. Karmakar et al.

(a) (1,3,3) (b) (2,2,2) (c) (3,3,3) (d) (4,0,1) (e) (4,4,4)

(f) (4,6,6) (g) (5,3,3) (h) (6,2,2) (i) (7,3,3) (j) (8,0,0)

Fig. 9. Configurations of orthogonal polyhedra w.r.t. a vertex v excluding the cases of
singular points or singular line segments. For each vertex, the configuration comprises
the 3-tuple (# incident UGCs, # incident edges, # incident faces).

Observation 4. A singular edge cannot be embedded in a plane.

It is evident from the observations that self intersection at a vertex or an edge
cannot be embedded in a plane. Let us consider the orthogonal polyhedra rep-
resenting the different configurations containing at most eight UGCs incident at
a vertex v [1]. The configurations containing singular points and singular line
segments are shown in Fig. 8. Note that the configurations in Fig. 8 (a) and (b)
contain singular point and those in Fig. 8(c)–(k) contain singular points as the
end points of singular line segments. If a singular point v is embedded on a plane,
then at least one of its incident edges intersects another edge. Since, each point
on a singular line segment is a singular point, embedding a singular line segment
also results in edge intersections.

4 Planar Graph Drawing

In order to propose a planar graph drawing algorithm, Fig. 9 shows all possible
configurations w.r.t. v that represent an orthogonal polyhedron without singular
point and without singular line segment. Considering at most eight UGCs may
be incident at a vertex, the configurations are based on the 3-tuple (# incident
UGCs, # incident edges, # incident faces) w.r.t the vertex. A vertex with degree
3, 4, or 6 may serve as a proper vertex to be embedded on a plane. Hence,
configurations shown in Fig. 9 (a,c,e,f,g, and i) are considered for planar graph
drawing. The graph corresponding to a configuration is considered as planar if
there exists as least one way of embedding it on a plane. Hence, the orthogonal
polyhedron is viewed either from the top or from the front to ensure clarity
of the planar graph. The infinite face in the graph represents the face of the
orthogonal polyhedron which is parallel to and invisible from the xy-plane (in
case of front view) or from the zx-plane (in case of top view). Thus, the graph
represents the orthogonal polyhedron back to front or bottom to top. In Fig. 10,

On the Construction of Planar Embedding 95

the planar graphs corresponding to the configurations in Fig. 9 (a,c,e,f,g, and
i) are displayed. Note that the face adjacency of the orthogonal polyhedron is
maintained in the corresponding graph. That is why configurations like Fig. 8(e)
do not admit a planar graph drawing.

The planar graph drawing of such an orthogonal polyhedron follows certain
graphic standards. The incidence structure of vertices, edges, and faces in the
polyhedron are maintained in the graph. Although the edge lengths and face
areas are not in accordance with those of the orthogonal polyhedron, they can
be calculated from the information stored in the graph. Vertices are represented
by filled discs. Edge lengths are proportional to the edges in the orthogonal
polyhedron. Straight line drawing standard is adopted for drawing edges, i.e.,
edges are straight line segments with no bend in edges. Size of the faces increases
in the direction farther from view. Also, faces at the same level of view are equal
in size. Thus, symmetry is maintained. A scheme to decide the angular resolution
of the angles incident at a vertex may be decided in future. Also, minimum
distance between vertices may be specified in future for further accuracy in
maintaining graphic standards.

(a) (1,3,3) (b) (2,2,2)

(c) (4,4,4) (d) (4,6,6)

(e) (5,3,3) (f) (6,2,2)

Fig. 10. Planar graphs of orthogonal polyhedra having permissible configurations w.r.t.
a vertex v.

96 N. Karmakar et al.

5 Algorithm

Given an orthogonal polyhedron P of genus 0, its graph drawing algorithm
(Fig. 11) will be characterized by the following features:

i. If there exists any singular point or singular line segment in P, then its
planar graph cannot be drawn.

ii. Otherwise all vertices, edges and faces of P represent the vertices, edges and
faces of the planar graph respectively.

iii. Depending on the structural complexity of the given orthogonal polyhedron,
either the top view or the front view is considered for representing the planar
graph.

iv. Accordingly the face invisible from view is represented as the infinite face
in the graph.

v. If there exists a concave region in the polyhedron, then it must be adjacent
to a hole polygon on a face of the polyhedron. The edges connecting the
concave region to the hole polygon are represented by dotted lines in the
planar graph. All other edges are represented by solid lines.

vi. The resultant planar graph is represented by an adjacency list G. Each value
of G[i, j] contains the coordinates of the vertices i and j, the face number
to which these vertices belong and a marker to state whether the edge (i, j)
is to be represented by a dotted line or solid line.

Fig. 11. The algorithm for planar graph drawing and its related procedures.

5.1 Reconstruction

The input orthogonal polyhedron P is represented as a Doubly Connected Edge
List (DCEL) [6] containing the vertex list, edge list, and face list with the fol-
lowing fields.

On the Construction of Planar Embedding 97

– Vertex list V : vertex id, coordinates
– Edge list E: half-edge id, source vertex, destination vertex, face number, flag,

pair, next, previous
– Face list F : face id, source vertex

While traversing the resultant adjacency matrix G, G[i, j] represents a half-edge
(i, j) between vertices i and j. This half-edge can be inserted in the edge list with
an assigned half-edge id, source vertex i, destination vertex j, and face number f
stored in G[i, j]. Consequently, vertices i and j are inserted in the vertex list with
assigned vertex ids and coordinates stored in G[i, j]. Also, the face id f stored in
G[i, j] is entered in the face list along with the source vertex i. The half-edge id
of (i, j) may be stored separately and used to populate the pair field when G[j, i]
is traversed. The value of the marker in G[i, j], that indicates whether the face f
is a hole or not, is used to populate the flag field. Thus the vertex list, face list,
and the first six fields of the edge list are populated by traversing the adjacency
list G once. A separate list of faces may be maintained during the traversal of G,
which contains the set of half-edges belonging to each face. A single traversal of
this list of faces will be enough to identify the order of the half-edges comprising
each face which may be used to populate the next and previous fields. Thus, the
resultant adjacency matrix G suffices to reconstruct the orthogonal polyhedron
(represented as DCEL) leading to the efficiency of the algorithm.

5.2 Time Complexity

Let |E| be the number of edges in the edge list representing the orthogonal
polyhedron. In the algorithm Planar GraphDraw, w.r.t. a face f , its edges
are traversed (Steps 1 and 2). For each edge e ∈ f , the type of two end vertices are
checked to decide whether or not the graph is planar (Steps 3–5 and Procedure
PointType). In case of a planar graph, the edge e is embedded as solid line
(denoted by 1 in G) (Steps 10 and 11) unless the pairing edge e′ belongs to a
hole polygon on some face f ′ (Procedure LineType). Then edge e is represented
by dotted line (denoted by 2 in G) (Steps 12 and 13). The total procedure can
be done by traversing the edge list exactly once. Hence time complexity of the
algorithm is given by O(|E|). The graph can be embedded on the plane while
populating the adjacency matrix G. Hence the time complexity remains O(|E|).

During the reconstruction procedure as described in Sect. 5.1, each edge of
the graph is traversed exactly once to populate the face list, vertex list and the
first six fields of the DCEL using vertex coordinates and the face id stored in
G[i, j]. The separate list of faces (mentioned in Sect. 5.1) is traversed once to
populate its next and previous pointer fields. Hence, the time complexity of the
reconstruction procedure will be O(|E|) + O(|F |) ≈ O(|E|).

98 N. Karmakar et al.

v1
v2

v3
v4

v5

v6

v7

v13
v21

v25

v26
v29

v32

v33
v34

v8v9

v10

v11

v12

v14
v15

v16

v17

v18
v19

v20

v22

v23

v24

v27
v28

v30

v31

v35

v1 v2

v3 v4

v5 v6

v7v8

v9 v10

v11v12

v13 v14

v15
v16

v17 v18
v19

v20v21

v22
v23

v24

v25

v26
v27

v28v29

v30
v31

v32v33

v34 v35

(a) (b)

Fig. 12. (a) A non self-intersecting orthogonal polyhedron of genus 0, (b) Planar graph
corresponding to the polyhedron. (Color figure online)

6 Discussion

A few orthogonal polyhedra and their corresponding planar graphs are shown in
Figs. 12–14. The orthogonal polyhedra are of genus 0 and do not contain singular
points or singular line segments. Note that in Fig. 12(a), the vertices v15 and v17
(shown in red) belong to the types of vertices (Fig. 9(f) and (e) respectively).

In Fig. 14(a), the polyhedron contains a number of convex (marked as C1,
C3, and C4) and concave (marked as C2 and C5) regions (cavities) that touch the
polyhedron at a single face but do not touch its boundary edges. Such a concave
or convex region touches the polyhedron face along the edges of a hole polygon.
For the sake of clarity each component is marked by different colors instead of
numbering all the vertices. Such a portion is shown as a separate component in
a planar graph. Hence, the graph in Fig. 14(b) consists of five components apart
from the polyhedron component. C1 lies on the front face of the polyhedron in
the top view. C2 lies on the front face of the polyhedron where the open face
v1v2v3v4v5v6 touches the front face but the lower face v7v8v9v10v11v12 does not
touch any face of the polyhedron. A small nested concavity exists on the lower
face. C3 portrays a nested convex region on a vertical face of the polyhedron and
C4 is a convex portion on a face of the polyhedron with a small cavity on one of
its faces. C5 depicts the reverse scenario of C4, i.e., a convex region is nested in
a concavity at the back face of the polyhedron.

While drawing the graphs in Figs. 12(b), 13(b), and 14(b), the top view of
the polyhedron is considered. The following conventions are followed.

i. The more distant a polytope face is, the larger is its size in the graph,
ii. The edges connecting a concave region to the hole polygon on the face of

the polyhedron are shown as dotted lines.
For instance, in Fig. 14(b), the polygon representing the back face of the

On the Construction of Planar Embedding 99

v1 v2
v3

v4

v5 v6
v7 v8

v9 v10

v11
v12

v13 v14

v15v16
v17 v18

v19v20 v21

v22
v23

v24
v25

v26
v27 v28

v29
v30 v31

v32
v33

v34v35 v36 v37
v38

v39v40

v41 v42
v43 v44

v45
v46

v47v48

v49 v50

v51
v52v52

(a)

v1 v2

v3 v4

v5 v6

v7 v8

v9
v10

v11v12

v13
v14

v15v16

v17 v18

v19v20
v21

v22 v23

v24v25

v26 v27

v28 v29

v30
v31

v32
v33

v34v35
v36 v37

v38
v39v40v41 v42

v43 v44

v45v46

v47v48

v49
v50

v51
v52

(b)

Fig. 13. (a) A non self-intersecting orthogonal polyhedron of genus 0, (b) Planar graph
corresponding to the polyhedron.

component C2 is connected by dotted lines to the polygon representing the
front face.

iii. The back face of a polyhedron is represented by the infinite face outside the
graph representing the polyhedron.

iv. If a depressed concave region lies on the back face of a polyhedron, then the
component of the graph representing the region is placed in the infinite face
outside the graph representing the polyhedron.
For instance, in Fig. 14(a), C5 lies on the back face of the polyhedron. Its
corresponding component in the graph (Fig. 14(b)) is shown in the infinite
face outside the polyhedron component. Note that the region projected out

100 N. Karmakar et al.

C1

C2

C3
C4

C5

v1
v2

v3 v4

v5v6

v7 v8
v9 v10

v11
v12

C1

C2

C3

C4

C5

v1 v2

v3 v4

v5v6

v7 v8

v9 v10

v11v12

)b()a(

Fig. 14. (a) A non self-intersecting orthogonal polyhedron of genus 0, (b) Planar graph
corresponding to the polyhedron (Color figure online).

from C5 is shown partially by dotted lines due to the convention followed in
ii.

v. If a protruded convex region lies on the back face of a polyhedron, then it
is treated according to convention i.

It is evident from the conventions that corresponding to each face of P there
exists a face in the graph G. Hence, corresponding to the vertices and edges of a
face in P there exists vertices and edges of the face in G. Hence, the number of
vertices, edges, and faces (including the infinite face) in G are equal to those in
P . The incidence structure of the vertices, edges, and faces of P are maintained
in the corresponding graph. Though the facial angles and edge lengths are not
maintained, enough information is maintained in G to calculate those and hence
to reconstruct P, as explained in Sect. 5.1.

On the Construction of Planar Embedding 101

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) Graph of P P

Fig. 15. (a) An orthogonal polyhedron P is augmented with (b) a UGC 2-adjacent
to P along 2 UGC-faces. In the process, (c) vertices to be deleted (shown in orange),
(d) edges to be deleted (orange) and extended or reduced (turquoise), (e) faces to be
deleted (orange) and extended or reduced (turquoise), (f) vertices added (magenta), (g)
edges added (magenta) and extended or reduced (turquoise), and (h) faces extended
or reduced (turquoise) are shown. In this case, none of the vertices have undergone a
type change and no face has been added. The graphs in (i) and (j) are planar and their
combination (k) is also planar. The vertices, edges, and faces in (i,j,k) are marked in
accordance with those in (c–h). (Color figure online)

Dynamic Planar Graph Drawing

The planar graph drawing algorithm explained above can adapt itself to dynamic
changes in the orthogonal polyhedron. Figure 15 illustrates a situation where an
orthogonal polyhedron P is augmented with a UGC 2-adjacent to P along 2
UGC-faces. The resultant changes in the vertices, edges, and faces of P along
with the corresponding changes in the planar graph are shown in Fig. 15(a-k).
Another example in Fig. 16 demonstrates the step by step changes in the planar
graph as the orthogonal polyhedron P is augmented with subsequent UGCs.

102 N. Karmakar et al.

Fig. 16. (a,c,e)P is augmented with a new UGC step by step. (b,d,f)The corresponding
changes in the planar graph. In each case, only a section of the graph is affected. The
inserted (magenta), deleted (orange), and modified (turquoise) vertices, edges, and
faces are marked. (Color figure online)

On the Construction of Planar Embedding 103

7 Conclusion

In this paper, we have described a planar graph-drawing algorithm for a cer-
tain class of orthogonal polyhedra based on digital-geometric properties. Many
operations on such 3D objects can thus be envisaged as algorithms for pla-
nar graphs. The application areas for this work include computer vision, robot
motion planning, and 3D integrated circuits. The planar embedding may be
useful for the characterization of the polyhedron and subsequent treatise for
purposes like reachability andor shortest traversal from a given face to another
and it may also be useful for topological analysis.

References

1. Aguilera, A.: Orthogonal Polyhedra: Study and Application. Ph.D. thesis, Univer-
sitat Politécnica de Catalunya (1998)

2. Alexa, M.: Merging polyhedral shapes with scattered features. In: Proceedings of
the International Conference on Shape Modeling and Applications, SMI 1999, p.
202 (1999)

3. Alexa, M.: Merging polyhedral shapes with scattered features. Vis. Comput. 16(1),
26–37 (2000)

4. Batini, C., Nardelli, E., Talamo, M., Tamassia, R.: A Grap-theoretic approach to
aesthetic layout of information systems diagrams. In: 10th International Workshop
on Graph-theoretic Concepts in Computer Science, Trauner Verlag, Berlin, pp.
9–18 (1984)

5. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs:
an annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)

6. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry-
Algorithms and Applications, 3rd edn. Springer, Heidelberg (1997)

7. Biedl, T.C., Genc, B.: When can a graph form an orthogonal polyhedron? In:
Canadian Conference On Computational Geometry, pp. 53–56 (2004)

8. Biedl, T., Genc, B.: Cauchy’s theorem for orthogonal polyhedra of genus 0. In: Fiat,
A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 71–82. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04128-0 7

9. Cruz, I.F., Tamassia, R.: Graph Drawing Tutorial. http://cs.brown.edu/people/
rtamassi/gd-tutorial.html

10. Deo, N.: Graph Theory with Application to Engineering and Computer Science.
PHI Learning Private Limited, New Delhi (2009)

11. Duijvestijn, A.J.W.: The number of polyhedral (3-connected planar) graphs. Math.
Comput. 65, 1289–1293 (1996)

12. Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149–160 (1984)
13. Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In:

Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 212–223. Springer, Heidel-
berg (1996). https://doi.org/10.1007/BFb0021805

14. Eppstein, D.: The topology of bendless three-dimensional orthogonal graph draw-
ing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9 9

15. Eppstein, D., Mumford, E.: Steinitz theorems for orthogonal polyhedra. In: Pro-
ceeedings 2010 Annual Symposium on Computational Geometry, SoCG 2010,
ACM, New York, USA, pp. 429–438 (2010)

https://doi.org/10.1007/978-3-642-04128-0_7
http://cs.brown.edu/people/rtamassi/gd-tutorial.html
http://cs.brown.edu/people/rtamassi/gd-tutorial.html
https://doi.org/10.1007/BFb0021805
https://doi.org/10.1007/978-3-642-00219-9_9

104 N. Karmakar et al.

16. Genc, B.: Reconstruction of Orthogonal Polyhedra. Ph.D. thesis, University of
Waterloo (2008)

17. Grünbaum, B.: Graphs of polyhedra. Polyhedra Graphs. Discrete Math. 307(3–5),
445–463 (2007)

18. Henk, M., Richter-Gebert, J., Ziegler, G.M.: Basic properties of convex polytopes,
second edn. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and
Computational Geometry, chap. 15, pp. 243–270. CRC Press LLC, Boca Raton,
FL, USA (2004)

19. Hong, S.H., Nagamochi, H.: Extending Steinitz’s theorem to upward star-shaped
polyhedra and spherical polyhedra. Algorithmica 61(4), 1022–1076 (2011)

20. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974)

21. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of 3D
orthogonal cover of a digital object. In: Aggarwal, J.K., Barneva, R.P., Brimkov,
V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636,
pp. 70–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-
0 9

22. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: A combinatorial
algorithm to construct 3D isothetic covers. Int. J. Comput. Math. 90(8), 1571–
1606 (2013)

23. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

24. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs.
In: International Symposium on Theory of Graphs, Gordon and Breach, New York,
pp. 215–232 (1967)

25. Lipton, R., North, S., Sandberg, J.: A method for drawing graphs. In: ACM Sym-
posium on Computational Geometry, pp. 153–160 (1985)

26. Orbanić, A., Boben, M., Jaklič, G., Pisanski, T.: Algorithms for drawing polyhedra
from 3-connected planar graphs. Spec. Issue: Theor. Comput. Sci. Guest Editors:
Boštjan Vilfan 28, 239–243 (2004)

27. O’Rourke, J.: Unfolding orthogonal polyhedra. Contemp. Math. 453, 307 (2008)
28. Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics,

vol. 164. Springer-Verlag, Berlin (1996)
29. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings 1st Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)
30. Tamassia, R.: Planar orthogonal drawings of graphs. In: IEEE International Sym-

posium on Circuits and Systems, vol. 1, pp. 319–322 (1990)
31. Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability

of diagrams. IEEE Trans. Syst. Man Cybern. SMC-18(1), 61–79 (1988)
32. Tarjan, R.E.: Algorithm design. Commun. ACM 30(3), 205–212 (1987)
33. Ziegler, G.M.: Convex Polytopes: Extremal Constructions and f -Vector Shapes,

vol. 14. IAS/Park City Mathematics, Salt Lake City (2004)

https://doi.org/10.1007/978-3-642-21073-0_9
https://doi.org/10.1007/978-3-642-21073-0_9

Extractive Text Summarization Using
Topological Features

Ankit Kumar and Apurba Sarkar(B)

Department of Computer Science and Technology,
Indian Institute of Engineering Science and Technology, Howrah, Shibpur, India

as.besu@gmail.com

Abstract. The amount of text data generated these days is increas-
ing exponentially, and it is becoming a very tedious process to extract
meaningful information from the huge amounts of text data. In this work,
we propose two methods to summarize the texts using topological fea-
tures that capture the information over the topological structure, such
as connected components and holes in the text data. The first method
uses the concept of minimum dominating set to group the sentences
into multiple clusters and to find the similarities between clusters using
topological features (connected components and tunnels). Sentence scor-
ing and extraction of key sentences from each cluster are done by the
existing method of TextRank. The second method uses the pretrained
GloVe (global vectors to represent the words) and to find the similarities
between sentences using topological features. A classical set cover based
algorithm has been used to extract the key sentences for the summary.
Both methods are compared on the basis of rouge scores with the existing
method, i.e., TextRank, and the results are satisfactory.

Keywords: Extractive text summarization · Minimum dominating
set · Persistent homology · Topological features

1 Introduction

Text summarization reduces the text of a document to provide concise repre-
sentation retaining the semantic of the entire document. It is categorized into
Extractive and Abstractive summarizations [8]. In extractive summarization, the
summary is created by using the words, sentences, or keyphrases of the original
document. It includes only those sentences or words which are in the source
documents and do not include new sentences or words. Whereas in abstrac-
tive summarization, summary represents the idea behind the source document
by including sentences or words which may or may not be present in the source
document. The paper presents an extractive summarization approach using topo-
logical features.

Various document summarization methods have been proposed based on dif-
ferent graph features such as betweenness centrality, degree centrality, etc. How-
ever, these measures do not consider the structure of data, therefore they may
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 105–121, 2023.
https://doi.org/10.1007/978-3-031-23612-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_7

106 A. Kumar and A. Sarkar

lose the information over topological structure such as the connected compo-
nents and holes in data. The proposed methods extract these information from
the topological structure of text data.

It has been observed that topological data analysis is used in different sce-
narios like, Almgren et al. proposed a method [2] for mining social media data
to cluster the images based on their popularity using topological data analysis
and it outperforms the traditional K-means, hierarchical clustering algorithms.
Chuan-Shen et al. proposed a method [6] for video summarization using topologi-
cal data analysis that generates video summaries without any training procedure.
Hui-Guan et al. proposed a method [4] Docollapse, a topological collapse-based
unsupervised method for document summarization. It outperforms the graph-
based keyphrase extraction methods such as TF-IDF, TextRank, and TopicRank.
Gholizadeh et al. [3] proposed a method that uses persistent homology to predict
the author based on the graph of the main character extracted from the novel.
Similarly, Proposed methods extract the topological features from the text to
summarize the document using the above-mentioned features thus obtained.

2 Background

To give a brief overview of topology. It is the study of the shape of objects
that does not change on any transformation except gluing and tearing, because
gluing and tearing change the neighborhood relation. Topology tries to describe
an object based on connected components or cavities (Fig. 1).

2.1 Simplicial Complex

Definition 1. A p-simplex [12] σ is the convex hull of p+1 affinely independent
points {x0, x1, . . . , xp} ∈ R

d. We denote σ= conv{x0, x1, . . . , xp} and the dim{σ}
is p.

Fig. 1. 0-d simplex: Vertex, 1-d simplex: edge, 2-d simplex: triangle, 3-d simplex:
tetrahedron.

Definition 2. A simplicial complex [12] K is a finite set of simplices such that
σ ∈ K and τ being a face of σ implies τ ∈ K, and σ, σ

′ ∈ K implies σ ∩ σ
′
is

either empty or a face of both σ and σ
′
.

Extractive Text Summarization Using Topological Features 107

The above definition implies that if a simplex (σ) is in simplicial complex (K),
all its faces need to be in K, too and the simplices have to be glued together
along with whole faces or be separate. The proposed methods use Vietoris-Rips
complex for sentences or words.

A Vietoris-Rips complex [12] of diameter ε is the simplicial complex

V R(ε) = {σ|dia(σ) ≤ ε}
where, dia(σ) is the largest distance between two points in σ. For a way to
form a Vietoris-Rips complex, some threshold value needs to be defined. As
threshold value increases, the lower dimensional simplex gets merged to form
higher-dimensional simplex and a Vietoris-Rips complex is formed. In the sim-
plicial complexes a tool, called Persistent Homology can be used for the analysis
of connected components, holes, and voids.

2.2 Persistent Homology

Persistent homology is a mathematical topological data analysis tool which has
the advantage to capture the structural features of documents [12]. It identifies
the holes in each dimension known as betti numbers [3], as well as it captures at
what value of ε these holes appear and how long they persist. Betti numbers in
each dimension are described as β0 (0-d connected components), β1 (1-d holes),
β2 (2-d void) and βk (k-d holes) in simplicial complex. The lifespan (birth, death)
of each homological feature is called persistence interval at different values of ε.
These persistence intervals can be easily visualized using the persistence diagram
and persistence barcode.

Persistence diagram or persistence barcode are used for the comparison
between simplicial complexes. The proposed methods use the Gudhi [5] python
library to create persistence diagrams for V R-complexes. Two persistence dia-
grams Pi and Pj can be compared to obtain the similarity between simplicial
complexes Ki and Kj respectively where, i, j ∈ [n] and [n] is the set of number
of simplicial complexes. Such comparison can be done by measuring the dis-
tance between matching points in the persistence diagram Pi and Pj . There are
two distance metrics: Bottleneck distance and q-Wasserstein distance defined to
measure the similarity between the persistence diagram Pi and Pj .

Definition 3. Let P and Q be two persistence diagrams. The bottleneck distance
[1] between P and Q is defined as

dB(P,Q) = inf
γ

sup
x∈P

‖ x − γ(x) ‖∞

where, γ ranges over all matchings from P to Q and ‖ p − q ‖∞ = max(|p1 −
q1|, |p2 − q2|) for p = (p1, p2), q = (q1, q2) ∈ R̄

2 with |∞ − ∞| = 0.

Basically, bottleneck distance b is the shortest maximum distance between two
points in matching from P to Q for which any matched point is at maximum dis-
tance b. While q-Wasserstein distance is calculated as the total distance between
all matched pairs of points.

108 A. Kumar and A. Sarkar

Definition 4. Let P and Q be two persistence diagrams. The q-Wasserstein
distance [1] between P and Q is defined as

dWq
(P,Q) = inf

γ

(∑
x∈P

‖ x − γ(x) ‖q

) 1
q

where, γ ranges over all matchings from P to Q and ‖ p − q ‖q = (|p1 − q1|q +
|p2 − q2|q) 1

q for p = (p1, p2), q = (q1, q2) ∈ R̄
2 with |∞ − ∞| = 0.

2.3 Minimum Dominating Set

Definition 5. Let G(V,E) a graph, the dominating set of G is a subset S of
vertices V with the properties that each v ∈ V is either in S or adj(v�). adj(v�)
implies adjacent to v� where, v� ∈ S.

Minimum Dominating Set is the dominating set with a minimum number of
vertices of G. Shen et al. [11] used minimum dominating set properties for multi-
document text summarization, where each vertex vi is the representative of
sentence Si in document. An edge ei,j gets added on the basis of cosine similarity
between vi and vj . The vertices in the minimum dominating set represent that
they cover all the information about the adjacent vertices to it. Finding the
minimum dominating set is a NP-hard problem, so it uses an approximation
algorithm that uses a greedy approach.

2.4 Cosine Similarity

Cosine similarity CS(A,B) used to find the similarity between two vectors A
and B that is calculated as

CS(A,B) =
∑n

i=1 AiBi√∑n
i=1 Ai

2
√∑n

i=1 Bi
2

(1)

Rest of the paper is organized as follows. Section 3 presents two methodologies
for text summerization where algorithms for respective methods are also given.
Section 4 presents experimental results with comparison of both methods with
TextRank based on Rouge score. Finally, the paper concludes in Sect. 5.

3 Proposed Methodology

We propose two methods for extractive summarization with the help of topo-
logical features. As an initial step, the input document needs to be preprocessed
to remove stop words, extra white space, and newline characters. After that,
proposed methods are applied to the preprocessed text as described below.

Extractive Text Summarization Using Topological Features 109

3.1 Proposed Method (I)

This method uses the minimum dominating set to cluster the preprocessed text
and persistence interval to find the similarity between clusters. Initially, we need
to tokenize the preprocessed text into sentences and construct the similarity
graph G(V,E). In the graph, V is the set of vertices where each v ∈ V corre-
sponds to a sentence represented by a TF-IDF vector. E is the set of edges where
edge e(i, j) gets added if the cosine similarity between the vertices vi and vj is
greater than Tth. The threshold, Tth is defined as mean of the cosine similarities
between all the vertices. Isolated vertices in the graph denote that they do not
contain relevant information related to the document.

The Algorithm 1 is used for the sentence clustering which, takes a similarity
graph G(V,E) as input and returns a dictionary in the form of key, value pair. A
key of the dictionary is the v� ∈ M and values are v ∈ adj(v�)−{M ∪Adj} that
avoids the selection of a single vertex into multiple pairs. Where, adj(v�) is a set
of adjacent vertices to v� and M is the set of dominating vertices. Consider the
sentences of each key, values pair into a cluster. In this, the vertex v� which has
max{|adj(v�)|} gets added first and so on. So Algorithm 1 groups the sentences
into ones that have more similarities as compared to the sentences of other
clusters.

Algorithm 1. Algorithm for sentence clustering
1: procedure Sentence clustering(G(V, E))
2: M ← φ
3: Adj ← φ
4: dict = {}
5: while |V | ≥ (|M | + |Adj|) do
6: for v ∈ (V − M) do
7: s(v) = |adj(v) − {M ∪ Adj}|
8: v� ← arg maxvs(v)
9: M ← M ∪ {v�}
10: dict[v�] = adj(v�) − {M ∪ Adj}
11: Adj ← Adj ∪ adj(v�)

12: return dict, M

The sentences of the document have been divided into multiple clusters [C]
where, |[C]| euqal to |M |. A V R(ε) complex has been constructed for each cluster
ci where, ci ∈ [C]. The construction of the V R(ε) complex needs a pairwise
distance matrix, so the proposed method uses the cosine distance matrix. The
cosine distance matrix has been calculated between each pair of the sentences in
a cluster. For the proposed method, ε = 1 has been taken because cosine distance
has the range [0,1]. Hence, the V R(1) complex captures the homological features
till the maximum value of ε. For the proposed method, 2 -simplex is considered
as maximum dimensional simplex. Next, persistence diagrams P for each cluster
are drawn using the Gudhi [5] package in python. From the persistence diagram,

110 A. Kumar and A. Sarkar

0 -dimensional persistence interval (I0) and 1 -dimensional persistence interval
(I1) have been extracted for each cluster.

Two V R-complex V Ri(ε) & V Rj(ε) have the same persistence interval shows
that V Ri(ε) & V Rj(ε) are topologically equivalent due to the number of con-
nected components, 1 -d holes generated and collapsed at same value of ε. So, the
both V Ri(ε) & V Rj(ε) have been merged into one, that results in only unique
V R-complexes with distinct persistence intervals. The Algorithm 2 is used for
merging the complexes. It takes C (contain all clusters ci) as input and results
in clusters C� (contain left clusters) that form V R-complex with distinct persis-
tence intervals.

Algorithm 2. Algorithm for merging the cluster
1: procedure Cluster collapsing(C)
2: D ← Array(|C|,|C|)
3: for ci ∈ C do
4: Calculate cosine distance for ci

5: Build V R-complex V Ri(1)
6: Extract I0

i and I1
i

7: for i ∈ [|C|] do
8: for j ∈ [|C|] do
9: D[i][j] = Dis(V Ri(1), V Rj(1))

10: thr ← mean.D
11: min ← arg min.D
12: i,j ← Index(min.D)
13: if (min ≤ thr) then
14: merge(ci, cj)
15: goto Step(2)
16: else
17: C� ← C
18: return C�

Let persistence diagram Pi has been drawn and found from the persistence
interval of I0i and I1i for each V Ri(ε). A V Ri(ε) is the representative of each
cluster ci. The similarity between V Ri(ε) and V Rj(ε), {i, j ∈ [|M |]} is defined
by the distance calculated using Eq. 2. Where dW1 is the q-Wasserstein distance
at q=1 as defined in Defnition 4 . If q-Wasserstein distance between V Ri(ε) and
V Rj(ε) is less than thr then, merge the cluster ci and cj . The threshold, thr is
defined as the mean for all Dis(V Ri(ε),V Rj(ε)) where, i, j ∈ [|M |].

Dis(V Ri(ε), V Rj(ε)) = {dW1(I
0
i , I0j) + dW1(I

1
i , I1j)} (2)

After the merging, some C� clusters remain. These clusters contain the sentences
of the document. Now, the sentences of each cluster ci ∈ C� are scored using
traditional TextRank [9] for weighted graphs as,

Extractive Text Summarization Using Topological Features 111

S(vi) = (1 − d) + d ∗
∑

vj∈adj(vi)

wj,i∑
vk∈adj(vj)

wj,k
S(vj) (3)

where S(vi) and S(vj) are the TextRank score of sentence si and sj represented
as node vi and vj such that vj ∈ adj(vi). The weight wj,i on the edge ej,i is the
cosine similarity between vj and vi. The damping factor d is set to 0.85 same
as Mihalcea et al. [9]. Next, sentences are sorted on the basis of their scores in
descending order, and the n top ranked sentences are extracted from each cluster
ci. After that, the indexes of extracted n sentences from each ci are rearranged.

3.2 Proposed Method (II)

In the previous proposed method, V R-complexes were constructed for each clus-
ter, but now V R-complexes are constructed for each sentence of the document
with the maximum 2 -dimensional simplices. The words of the documents are
represented by pretrained GloV e (Global vector) [10]. Cosine distance has been
calculated between the words of a sentence to generate the V R-complex for each
sentence.

The proposed method calculates the bottleneck distance between persistence
diagrams as defined in Defnition 3 to find the similarity between them. We know
that persistence diagrams are drawn for each V R-complex, which is representa-
tive of the sentences. So basically, the proposed method tried to find the similar-
ity between sentences using the persistence diagram and the bottleneck distance.
The sum of the distance from Pi to Pj , where j = 0,1,2,....n and j 	= i describes
the score of the sentence Si. The Algorithm 3 describes the process of selecting
the sentences for the summary that is based on the classical set cover algorithm.

Algorithm 3. Sentence Cover Algorithm
1: procedure Sentence cover(S,B,n,Score,K)
2: Repr Sent ← φ
3: while K > |Repr sent| do
4: W ← Score.keys
5: for i ∈ min.Scorei do
6: if K > |Repr Sent| then
7: if i ∈ W then
8: Repr Sent ← Repr Sent ∪ {Si}
9: Remove Scorei

10: Tr = 1
n

∑n
j∈0 Bij

11: for j ∈ 0 to n do
12: if Bij < Tr then
13: W ← W − {j}
14: else
15: Break
16: return Repr Sent

112 A. Kumar and A. Sarkar

In the algorithm, Repr Sent is an empty set initially, which will later contain
the indexes of the sentences that will appear in the summary. K is the number
of sentences to be extracted for the summary. B describes the bottleneck dis-
tance among the persistence diagrams. S are the sentences, and n describes
the total number of sentences in the document. The algorithm works in pass
(similar to bubble sort) until the given number of sentences (K) for the sum-
mary are extracted. It starts with Pi having the least score and for every Pi,
the algorithm discards Pj having the bottleneck distance less than the threshold
Tr = 1

n

∑n
j∈0 Bij . The sentence Si representing Pi is included in Repr Sent.

So Algorithm 3 tries to cover the more dissimilar information from the input
documents.

4 Experimental Results

The performance of proposed methods is evaluated on 100 documents of the
DUC-2002 dataset using the ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) [7] score. Specifically, ROUGE-1, ROUGE-2, and ROUGE-L
are considered for performance metrics. ROUGE-N is the N-gram overlapping
between system-generated summaries and reference summaries, computed as

Rouge N =

∑
s∈ref summary

∑
gramn∈s Cmatch(gramn)∑

s∈ref summary

∑
gramn∈s C(gramn)

(4)

where n stands for the length of the n-gram. The C(gramn) and Cmatch(gramn)
are the maximum number of n-gram co-occurring in the system-generated sum-
mary and set of reference summaries, respectively. ROUGH-L refers to the
longest common sub-sequence between the system-generated summaries and ref-
erence summaries. LCS based f -measures to estimate the similarity between two
summaries X of length m and Y of length n, are computed using Eqs. 5, 6, and 7.
Let X be a reference summary sentence and Y be a system-generated summary
sentence.

Rlcs =
LCS(X,Y)

m
(5)

Plcs =
LCS(X,Y)

n
(6)

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(7)

where LCS(X,Y) denotes the length of the longest common subsequence of X
and Y , and β is equal to Plcs/Rlcs. The Rouge score of both proposed methods
has been compared with TextRank and the results are mentioned in further
sections.

Extractive Text Summarization Using Topological Features 113

4.1 Proposed Methodology (I) and TextRank

In method 3.1, 10% of sentences have been extracted from each cluster ci ∈
C� and rearranged based on their index for the summary. For TextRank, 10%
of sentences were extracted from the entire document. To compute the rouge
scores, the summary generated by Method 3.1 is compared with the summary
generated by TextRank. The evaluated results are shown in Table 1 and Figs. 2,
3, and 4.

Table 1. ROUGE Score of 10% summary extracted from the proposed method (I) and
TextRank.

Proposed method (I) TextRank

F-Score Precision Recall F-Score Precision Recall

Rough-1 0.10619 to
0.56818

0.15860 to
0.82222

0.05941 to
0.56731

0.14359 to
0.57292

0.14583 to
0.84000

0.10784 to
0.57000

Rouge-2 0.00000 to
0.38095

0.00000 to
0.63636

0.00000 to
0.32673

0.00000 to
0.38411

0.00000 to
0.63636

0.00000 to
0.30693

Rouge-L 0.10526 to
0.58333

0.13122 to
0.75676

0.06024 to
0.50649

0.12214 to
0.52893

0.11739 to
0.75758

0.09722 to
0.46753

In 38 documents out of 100 documents, the proposed method gives better
Rough-1 F -Score. In 36 documents out of 100 documensts, the proposed method
gives better Rough-2 F -Score. In 40 documents out of 100 documents, the pro-
posed method gives better Rough-L F -Score, as compared to TextRank.

4.2 Proposed Methodology (II) and TextRank

In Method 3.2, 10% of the sentences have been extracted and rearranged based
on their index for the summary. Similarly, for TextRank, 10% of sentences have
been taken from the same document. To compute the rouge scores, the summary
generated by Method 3.2 is compared with the summary generated by TextRank.
The evaluated results are shown in Table 2 and Figs. 5 ,6, and 7.

Table 2. ROUGE Score of 10% summary extracted from the proposed method (II)
and TextRank.

Proposed method (II) TextRank

F-Score Precision Recall F-Score Precision Recall

Rough-1 0.15254 to
0.60714

0.13183 to
0.84000

0.08108 to
0.52703

0.14359 to
0.57292

0.14583 to
0.84000

0.10784 to
0.57000

Rouge-2 0.00000 to
0.48193

0.00000 to
0.70455

0.00000 to
0.40404

0.00000 to
0.38411

0.00000 to
0.63636

0.00000 to
0.30693

Rouge-L 0.10769 to
0.60937

0.09722 to
0.82927

0.08108 to
0.52703

0.12214 to
0.52893

0.11739 to
0.75758

0.09722 to
0.46753

114 A. Kumar and A. Sarkar

Fig. 2. F-Score comparison between Method 3.1 and TextRank w.r.t. ith document.
Where X-axis represents the ith document out of 100 and the Y-axis represents the
respective Rough-1 F-Score, Rough-2 F-Score, and Rough-L F-Score.

Extractive Text Summarization Using Topological Features 115

Fig. 3. Precision comparison between Method 3.1 and TextRank w.r.t. ith document.
Where X-axis represents the ith document out of 100 and the Y-axis represents the
respective Rough-1, Rough-2, and Rough-L Precision.

116 A. Kumar and A. Sarkar

Fig. 4. Recall comparison between Method 3.1 and TextRank w.r.t. ith document.
Where X-axis represents the ith document out of 100 and the Y-axis represents the
respective Rough-1, Rough-2, and Rough-L Recall.

Extractive Text Summarization Using Topological Features 117

Fig. 5. F-Score comparison between Method 3.2 and TextRank w.r.t. ith document.
Where X-axis represents the ith document out of 100 and the Y-axis represents the
respective Rough-1 F-Score, Rough-2 F-Score, and Rough-L F-Score.

118 A. Kumar and A. Sarkar

Fig. 6. Precision comparison between Method 3.2 and TextRank w.r.t. ith document.
Where X-axis represents the ith document out of 100 and the Y-axis represents the
respective Rough-1, Rough-2, and Rough-L Precision.

Extractive Text Summarization Using Topological Features 119

Fig. 7. Recall comparison between Method 3.2 and TextRank w.r.t. ith document.
Where X-axis represents the ith document out of 100 and the Y-axis represents the
respective Rough-1, Rough-2, and Rough-L Recall.

120 A. Kumar and A. Sarkar

In 39 documents out of 100 documents, the proposed method gives better
Rough-1 F -Score. In 36 documents out of 100 documensts, the proposed method
gives better Rough-2 F -Score. In 38 documents out of 100 documents, the pro-
posed method gives better Rough-L F -Score, as compared to TextRank.

5 Conclusion

In this paper, we proposed two methods for extractive text summarization
using topological features. The unique characteristics of topology are the n-
dimensional holes that can help to distinguish objects. We tried to distinguish
the clusters and sentences based on the 0-d and 1-d persistence intervals at
which these holes appear and disappear. Moreover, these n-dimensional holes in
data can be used as important features for network analysis and classification.
Method 3.1 uses Algorithm 1 and the minimum dominating set for clustering the
sentences and Algorithm 2 for merging the simplicial complexes into one, based
on their topological features. We used a 1 -Wasserstein distance to find the sim-
ilarity between V R-complexes, and TextRank is used for scoring the sentences
in each cluster. In Method 3.2, VR-Complexes are formed for each sentence, and
sentences are scored based on the bottleneck distance. Algorithm 3 can be used
for selection of sentences in other Extractive Text Summarization methods also.

References

1. Aktas, M.E., Akbas, E., Fatmaoui, A.E.: Persistence homology of networks: meth-
ods and applications. Appl. Netw. Sci. 4(1), 1–28 (2019). https://doi.org/10.1007/
s41109-019-0179-3

2. Almgren, K., Kim, M., Lee, J.: Mining social media data using topological data
analysis. In: 2017 IEEE International Conference on Information Reuse and Inte-
gration (IRI), pp. 144–153. IEEE (2017)

3. Gholizadeh, S., Seyeditabari, A., Zadrozny, W.: Topological signature of 19th cen-
tury novelists: persistent homology in text mining. Big Data Cognit. Comput. 2(4),
33 (2018)

4. Guan, H., Tang, W., Krim, H., Keiser, J., Rindos, A., Sazdanovic, R.: A topological
collapse for document summarization. In: 2016 IEEE 17th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5.
IEEE (2016)

5. Gudhi python documentation. https://gudhi.inria.fr/python/latest/
6. Hu, C.S., Yeh, M.C.: A topological data analysis approach to video summarization.

In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1815–
1819. IEEE (2019)

7. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text sum-
marization Branches Out, pp. 74–81 (2004)

8. Madhuri, J.N., Kumar, R.G.: Extractive text summarization using sentence rank-
ing. In: The 2019 International Conference on Data Science and Communication
(IconDSC), pp. 1–3. IEEE (2019)

9. Mihalcea, R., Tarau, P.: Textrank: bringing order into text. In: Proceedings of
the 2004 Conference on Empirical Methods in Natural Language Processing, pp.
404–411 (2004)

https://doi.org/10.1007/s41109-019-0179-3
https://doi.org/10.1007/s41109-019-0179-3
https://gudhi.inria.fr/python/latest/

Extractive Text Summarization Using Topological Features 121

10. Pretrained GloVe. https://nlp.stanford.edu/projects/glove/
11. Shen, C., Li, T.: Multi-document summarization via the minimum dominating set.

In: Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010), pp. 984–992 (2010)

12. Zhu, X.: Persistent homology: an introduction and a new text representation for
natural language processing. In: IJCAI, pp. 1953–1959 (2013)

https://nlp.stanford.edu/projects/glove/

Largest Area Parallelogram Inside
a Digital Object in a Triangular Grid

Md Abdul Aziz Al Aman1, Raina Paul1, Apurba Sarkar1(B),
and Arindam Biswas1,2

1 Department of Computer Science and Technology,
Indian Institute of Engineering Science and Technology,

Botanical Garden Road, Howrah 711103, West Bengal, India
as.besu@gmail.com

2 Department of Information Technology, Indian Institute of Engineering Science

and Technology, Botanical Garden Road, Howrah 711103, West Bengal, India

Abstract. A combinatorial algorithm to construct Largest Area Par-
allelogram (LAPT) inside a digital object lying on a Triangular grid
is proposed in this work. An inner triangular cover (ITC) is first con-
structed, where the sides of ITC lies on the grid line and within the
object. After the ITC is constructed, the proposed algorithm maintain
few lists and a set of rules to find the LAPT . It is observed that the algo-
rithm runs in O(k · n

g
lg n

g
) time where n number pixel on the boundary

of the digital object, g is grid size, and k is the number of convexities.

Keywords: Triangular grid · Triangular cover · Largest
parallelogram · Largest rectangle

1 Introduction

A number of work has been done to compute different geometric figures of max-
imum area inscribed inside a polygon. The application of this type of work can
be found in internal approximation of polygon, textile industry [1,2], metal sheet
cutting with minimum wastage etc. Apart from the industrial application these
works are also of theoretical interest in computational geometry. To give a brief
overview of the works done so far, Mackenn et al. [3] proposed an algorithm
of finding maximum empty rectangle inside an orthogonal polygon in the 1985.
There are other similar kind of work after that. To mention a few of them, algo-
rithm to find largest equilateral triangles and squares was proposed by DePano
et al. [4] that runs in O(n2) time. An algorithm to find largest box inside a
convex polygon proposed by N. Amenta [5]. S. Fekete [6] proposed an algorithm
to find the inscribed squares in a convex polygon with one vertex of the square
lying on one vertex of polygon in O(n log2 n) time. Alt et al. [7] and Daniels
et al. [8] proposed an algorithm to find largest empty axis parallel rectangle
inside a polygon. Finding largest empty rectangles from a point set was pro-
posed by Chaudhuri et al. [9]. Ahn et al. [10] gave an approximation algorithm
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 122–135, 2023.
https://doi.org/10.1007/978-3-031-23612-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_8

Largest Area Parallelogram 123

Digital Object

(a) (b)

Inner
Triangular

C
over

(c)

Parallelogram

Fig. 1. (a) Object (b) Object with ITC (c) Largest Area Parallelogram

to find axially symmetrical polygon inscribed inside convex sets. Optimization
problem to find the longest line segment (stick) or maximum area triangle or
convex body (potato) was given by Hall et al. [11]. Largest inscribed rectangle
inside a given polygon with n vertices is proposed by Knauer et al. [12]. They
have provided an algorithm, assuming that the vertices are provided in order.
Apurba et al. [13,14] proposed a combinatorial algorithm to find largest rectan-
gle (LR) inside a given digital object, which runs in O(n log n) time. To obtain
the largest rectangle inside the inner triangular cover of the digital object, they
first construct a histogram polygon based on the convex edge and then within
the histogram polygon, the LR is determined. However, there are no reported
work to find LAPT within a digital object in the literature.

A combinatorial algorithm has been proposed to find the largest area par-
allelogram in triangular grid which we call LAPT inside a digital object. The
digital object and inner triangular cover are shown in Fig. 1 (a), (b) respectively
and the largest area parallelogram for the object is shown in Fig. 1(c).

The rest of the paper is organized as follows. All the required definitions and
preliminaries are presented in Sect. 2. The procedure to compute sub-polygon
and finding parallelogram within sub-polygon are explained in Sect. 3 and 3.1
respectively. The reduction rules are explained in Sect. 3.2. The proposed algo-
rithm with explanation and time complexity are given in Sect. 4 and Sect. 4.1
respectively. Section 5 contains some output of the proposed algorithm. Finally,
Sect. 6, concludes with future work.

2 Definitions and Preliminaries

This section defines few terminologies those are required to explain the proposed
algorithm.

Definition 1 (Digital object): A digital object, Q, is a finite subset of Z2 con-
sisting of one or more k(= 4 or 8)-connected components [15].

A discrete triangular coordinate system [16] (as shown in Fig. 2) consists of three
sets of lines, namely, L0, L60, and L120, where θ is the set of parallel lines inclined
at an angle θ with respect to the X-axis, separated by unit distance, measured
along a line inclined at (θ +60) or (θ +120). Note that the unit distance is equal

124 M. A. A. Al Aman et al.

to the side of the equilateral triangles constituting the discrete triangular plane
in the discrete coordinate system.

Definition 2 (Triangular Grid): A triangular grid (henceforth simply referred
as grid) T := (L0, L60, L120) consists of three sets of equispaced parallel grid
lines, which are inclined at 0◦, 60◦, and 120◦ w.r.t. x-axis, such that one line
from each of L0, L60, and L120 meet at the origin of the discrete triangular
coordinate system.

The grid lines in L0, L60, and L120 correspond to three distinct coordinate axes,
namely α, β, and γ. A grid point is the intersection between three grid lines L0,
L60, and L120. A grid size, g is the distance between two consecutive grid points
along a grid line. A grid edge is the grid line segment of length g and connecting
two consecutive grid points. An unit grid triangle (UGT) is the smallest-area
triangle formed by three grid edges (marked by grey in Fig. 2). A grid point, p
consists of six neighboring UGT’s, given by {Ti: i = 0, 1, 2, ...5 } as shown in
Fig. 2.

Fig. 2. A triangular canvas with UGT’s T0, T1 , . . . , T5 incident at a vertex p, and
the direction codes 0, 1, ..., 5 of neighboring grid points of p

Definition 3 (Digital object in triangular grid): A digital object in the trian-
gular grid is a finite subset of triangles of the discrete triangular plane. It may
be one or more connected components (edge adjacent or vertex adjacent).

Largest Area Parallelogram 125

Definition 4 (Triangular distance): The triangular distance (dt) between two
points p(αp, βp, γp) and q(αq, βq, γq) is defined by dt(p, q)= max(| αp − αq |, |
βp − βq |, | γp − γq |).
Definition 5 (Triangular Polygon): A (finite) polygon P imposed on the grid T

is termed as a triangular polygon if its sides are collinear with lines in L0, L60,
and L120.

Definition 6 (ITC): The inner triangular cover of a digital object(Q) is the
maximum area triangular polygon inscribing the digital object Q in T.

The inner triangular cover of a digital object(Q) consists of different vertex types.
A vertex q is said to be type i, i ∈ {1, 2, 3, 4, 5} if the internal angle at a vertex
q is i × π

3 . A digital object (Fig. 1(a)) with its inner triangular cover is shown in
Fig. 1(b).

Definition 7 (Concavity): A type 5 vertex or two consecutive vertices of types
44, 45, 54, and 55 create concavity in Q.

Different types of concavities are shown in Fig. 4.

1 2

(a) (b) (c) (d) (e)

l 1 1 1 12 22

Fig. 3. (a) Convex portion due to single vertex, (b), (c), (d), (e) convex portion due
to pattern xy where x, y ∈ {1, 2}

5 4
(a) (b) (d) (e)

l

(c)
4 4 5 5 4 5 5

Fig. 4. (a) Concave portion due to single vertex, (b), (c), (d), (e) concave portion due
to pattern xy where x, y ∈ {4, 5}

2.1 Deriving the Inner Triangular Cover (ITC)

To construct the inner triangular cover of a digital object the combinatorial
algorithm proposed in [17] is used. The grid points of the triangular canvas
can be divided into three categories after as follows: (i) none of the UGTs of a
grid point completely occupies the object pixel as shown in the Fig. 5 (a); (ii)
all UGTs of a grid point completely occupies the object pixel as shown in the
Fig. 5 (b) and (iii) some UGTs of a grid point entirely occupies the object pixel
as shown in the Fig. 5 (c), (d), and (e) which is taking part to construct the
inner triangular cover. These grid points or vertex are further divided into five

126 M. A. A. Al Aman et al.

different types based on the object occupancy as shown in Fig. 6. Another type
of vertices that does not part of a simple polygon are shown in Fig. 7. During the
construction of Q, the type of a vertex q is determined based on the incoming
direction (din) and the outgoing direction (dout) at q. An object occupancy vector
Aq = 〈a0, a1, . . . a5〉 (〈Ti : i = 0, 1, . . . 5〉) incident at q is maintained throughout
the process. If the incoming direction is din then aj = 1 and a(j+1)mod 6 = 1
where j = (din+2) mod 6. Now dout determined by incrementing j until the next
1-bit in Aq. If, say at j′, Aq[j′] = 1, then dout = j′. A type 3 vertex is considered
as an edge point. Type 1, 2 vertices are convex vertices and type 4, 5 vertices
are concave vertices. The construction of Q keeps the background of A to the
right during the traversal. After determining the type outgoing direction of q,
the polygon is traced to the next grid point qn and type of qn and the direction
of traversal from qn is determined. The traversal continues until the start vertex,
vs, is reached. During the construction of Q, 4 lists are maintained L, Lα, Lβ ,
and Lγ , where, L is a list of vertices of Q and Lα, Lβ , and Lγ simultaneously
contain vertices as well as edge points of Q in lexicographically sorted order with
their respective primary and secondary keys. The primary key for Lα is α and
secondary key is β, similarly the keys for Lβ and Lγ can be defined. An index (in
increasing order) is assigned to each vertex in order of their occurrences in Q.

T0

T1

T2

T3

T4

T5

T0

T1

T2

T3

T4

T5

T0

T1

T2

T3

T4

T5

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

(a) (b) (c) (d) (e)

vs vs vs

Fig. 5. (a) Strictly outside and (b) strictly inside of a digital object. (c), (d) and (e)
Start vertex from the top-left. Object-occupied UGT’s are shown in light grey, and
start directions shown by arrow

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

a) Type-1 b) Type-2 c) Type-3 d) Type-4 e) Type-5

Fig. 6. Different vertex type based on object occupancy

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

T0

T1

T2

T3

T4

T5

q

(a) (b) (c) (d) (e)

Fig. 7. Different vertex type that does not belong to simple polygon

Largest Area Parallelogram 127

Fig. 8. (a) inner triangular cover and (b) sub-polygon(shaded) based on convex
edge(v1v7)

3 Procedure to Compute LAPT

To find the largest area parallelogram, the inner triangular cover is constructed
using the method described in [17]. The ITC thus obtained contains many convex
and concave edges. The proposed algorithm runs in two passes, in the first pass
it traverses in anti-cock wise direction from the top-left corner of the ITC and
three extreme points reachable(that lies on the ITC and which we reach without
going outside the object) along the three axes (α, β and γ) from each vertex are
found out and stored with that vertex. For example the extreme points of v1
along α and β are v7 and v28 respectively. There is no extreme vertex of v1 along
γ direction. The extreme points of v4 along α, β, and γ are respectively v7, v18,
and v30. Similarly extreme points of all other vertices are found and stored.
During the second pass, again the traversal starts from the top left corner of the
ITC and whenever a convex edge is encountered a sub-polygon is constructed
assuming the convex edge as the base of the sub-polygon. To construct the sub-
polygon for an convex edge say (u, v) an anti-clock wise traversal is made starting
from vertex v until it reaches u. Only the vertices which has extreme points on
the convex edge (u, v) either in α, β or γ are made part of the sub-polygon. For
example, Fig. 8 shows the sub-polygon corresponding to the convex edge (v1, v7).
After the sub-polygon is constructed, the LAPT inscribed within it is found out
using the procedure explained in Sect. 3.1. This way, LAPT corresponding to
each convex edge is found out and maximum of all of them gives the LAPT
inscribed in the digital object.

3.1 Finding LAPT Within Sub-polygon

To find the largest area parallelogram inscribed within the sub-polygon corre-
sponding to a convex edge say (u, v) a traversal is made in anti-clock wise direc-
tion from v. Whenever a convex edge say (ui, vi) is encountered the extreme
points of ui say uiex and extreme points of vi say viex determined. It is to be
noted that these information of extreme points are already kept with ui and vi.
The area of the parallelogram consisting of the points u,vi, viex and uiex is calcu-
lated and stored in a temporary variable. The convex edge ui, vi is then reduced

128 M. A. A. Al Aman et al.

Fig. 9. Largest area parallelogram inside sub-polygon (Color figure online)

and the traversal proceeds to the next point on the sub-polygon. This process
continues till it reaches the vertex ui. The procedure is explained in steps in
Fig. 9. In this figure, the intermediate parallelogram is shown in red. The maxi-
mum among all these red parallelogram is the largest area parallelogram for this
sub-polygon.

3.2 Reduction Rules

During the process of finding LAPT , the convex portion (Fig. 3) of polygon and
sub-polygons were reduced in different phases. For that, various combinatorial
rules are formulated and used through out. The different reduction rules used
are explained in this section. A convex region may occur due to a single convex
vertex (type 1) or two or more consecutive convex vertices (type 1, 2). Differ-
ent convexities created by single type 1 vertex is shown in Fig. 3(a). Similarly
different convexities created by two convex vertices are shown in Fig. 3(b-e). All
possible patterns that create convexity are 1, 11, 12, 21, and 22. For the convexity
formed by a single type 1 vertex, four most recently visited vertices v0, v1, v2,
and v3, are considered, where v1 is type 1 and v3 is the most recently visited
vertex. Rule 1 and its sub cases are used to remove this type of convexity. On
the other hand, if the pattern is 11, 12, 21 or 22, then five most recently visited
vertex will be considered. Rule 2 with its possible subcases are used to remove
this type of convexity. Both the rules i.e. Rule 1 and Rule 2 with their possible
subcases are explained bellow. Figure 10 and 11 shows the result of both the
rules respectively.

Largest Area Parallelogram 129

Fig. 10. Illustration of Rule 1

Rule R1: The pattern t11t2, where t1, t2 ∈ {4, 5} implies a convex region of the
polygon. In this pattern, a type 1 vertex is preceded and followed by either type
4 or type 5 vertex. The shape of the convex region for this pattern is always an
equilateral triangle. The rules are shown in Fig. 10.

R11 (l1 > l2): < v0(t0, l0), v1(t1, l1), v2(t2, l2), v3(t3, l3) >→
< v0(t0, l0), v1(t1, l1 − l2), v2(t2 + 1, l2), v3(t3 − 1, l3) >

R12 (l1 = l2): < v0(t0, l0), v1(t1, l1), v2(t2, l2), v3(t3, l3) >→
< v0(t0, l0), v1(t1 − 1, l1), v3(t3 − 1, l3) >

R13 (l1 < l2): < v0(t0, l0), v1(t1, l1), v2(t2, l2), v3(t3, l3) >→
< v0(t0, l0), v1(t1 − 1, l1), v2(t2 + 1, l2 − l1), v3(t3, l3) >

where, v0, v1, v2, and v3 are the most recently traversed vertices.

Rule R2: This pattern represents a vertex t1 ∈ {4, 5} followed by two consec-
utive vertices t2, t3 ∈ {1, 2} and another vertex t4 ∈ {4, 5}. The rules for the
elimination of the convex portion is shown in Fig. 11.

R21 (l1 > l2): < v1(t1, l1), v2(t2, l2), v3(t3, l3), v4(t4, l4) >→
< v1(t1, l1 − l3), v2(t2, l1 + l2), v4(t4 − 1, l4) >

R22 (l1 = l2): < v1(t1, l1), v2(t2, l2), v3(t3, l3), v4(t4, l4) >→
< v1(t1 − 1, l1 + l2), v4(t4 − 1, l4) >

R23 (l1 < l2): < v1(t1, l1), v2(t2, l2), v3(t3, l3), v4(t4, l4) >→
< v1(t1 − 1, l1 + l2), v3(t3, l3 − l1), v4(t4, l4) >

130 M. A. A. Al Aman et al.

Fig. 11. Illustration of Rule 2

4 Algorithm

The algorithm starts from the top-left corner of the ITC of the digital object Q
and continues till it reaches the start vertex (steps 3−23). While traversing when
a convex edge is encountered each vertex of the convex edge is appended to the
list Lbase which forms the base of the sub-polygon (Steps 5–13). Starting from
vertex(v2) at step 12 another traversal is made and all the vertices which satisfies
the criteria mentioned in Sect. 3 is added to the list Lsp. Procedure 1 in step 14
finds the sub-polygon and returns it. Procedure Find LAP() in step 15 returns
the largest empty parallelogram within the sub-polygon just computed. Steps
16–17 compares the area of the parallelogram just computed with the maximum
area parallelogram computed so far and updates the variable LAP which stores
the global maximum. In step 19, the convex edge is reduced following the rules
explained in Sect. 3.2 and the process is repeated till the sub-polygon can be
reduced no more.

In procedure Find SubPoly(Procedure 1), the traversal starts from the end
point v2 of the base. The direction of the base is determined in steps 3, 6, and 9.
For each vertex during the anti-clockwise traversal from v2 to v1, the procedure
Find intersection() appends all the vertex encountered such that vertex has
a projection on the base (i.e. extreme vertex). For example, in Fig. 8(b), the
extreme vertex of v14 is v11 that does not have a projection with the base so it is
discarded, on the other hand the vertex v15 whose extreme point v6 meets with
base. So, the vertex v15 is appended to the list Lsp. This procedure continues
till the traversal reaches to v1.

The procedure Find Parallelogram()(Procedure 2) constructs all possi-
ble parallelogram within the sub-polygon and find the largest area parallelogram
among them. The traversal starts from v2 and when a convex edge appears (in
step 4), the procedure Compute Parallelogram() constructs the parallelo-
gram and it is saved (step 7). In step 6, the procedure Cal Area() calculates

Largest Area Parallelogram 131

the area of the parallelogram and compare it with the previously stored LAP
and updates the global variable for LAP in step 7. After that, the reduction
rules are applied on the convex edge of the sub-polygon (step 9). The traversal
will continue till it reaches the vertex v1.

4.1 Complexity Analysis

The proposed algorithm finds all possible parallelograms inscribed inside the
ITC of the digital object and reports the largest one among them. Let n be the
number of contour points of the digital object and g be the grid size of T. Ini-
tially, the inner triangular cover of the object is constructed which takes O(n

g)
time. To constructs all possible parallelograms and find the LAPT , the algo-
rithm traverses the ITC, and whenever a convex edge encountered, the procedure
Find Subpoly() is called. To compute the sub-polygon, we need to find extreme
vertex of all vertices of ITC using the search Lα, Lβ , or Lγ list. Time taken
to compute the sub-polygon is O(n

g lg n
g). The procedure like Apply Rule(),

Cal Area(), consists of only some arithmetic operations like addition, subtrac-
tion or multiplication, and which takes O(1). During the whole procedure the

Algorithm 1. Find LAP()
Require: Input Image Q
Ensure: Largest area Parallelogram
1: L, Lα, Lβ , Lγ = Construct ITC(Q);
2: vs, curr ← Lstart

3: while curr → next �= vs do
4: v1 ← curr
5: if v1.type ∈ {1, 2} then
6: Append(Lbase, v1)
7: while curr.next ∈ {3} do
8: Append(Lbase, curr.next)
9: curr ← curr.next

10: end while
11: v2 ← curr.next
12: if v2.type ∈ {1, 2} then
13: Append(Lbase, v2)
14: SP ← Find Subpoly(L, Lbase, v1, v2)
15: curr LAP ← Find LAP(SP)
16: if Cal Area(LAP)≤Cal Area(curr LAP) then
17: LAP ← curr LAP
18: end if
19: Apply Rule(L, v1, v2)
20: end if
21: end if
22: curr ← curr.next
23: end while

return LAP

132 M. A. A. Al Aman et al.

Procedure 1. Find Subpoly(L,Lbase, v1, v2)
1: Lsp ← Append(v1)
2: while v1 �= v2.next do
3: if Lbase.dir ∈ {0, 3} then
4: v ← Find intersection(L, Lbase.β, Lbase.γ)
5: Lsp ← Append(v)
6: end if
7: if Lbase.dir ∈ {2, 5} then
8: v ← Find intersection(L, Lbase.α, Lbase.β)
9: Lsp ← Append(v)

10: end if
11: if Lbase.dir ∈ {1, 4} then
12: v ← Find intersection(L, Lbase.α, Lbase.γ)
13: Lsp ←Append(v)
14: end if
15: v2 ← v2.next
16: end while

return Lsp

Procedure 2. Find Parallelogram(Lsp, v1, v2)
1: v ← v1
2: while v2.next �= v do
3: v1 ← v2.next; v2 ← v1.next
4: if (v1.type ∈ {1, 2} and v2.type ∈ {1, 2}) or v1.type ∈ {1} then
5: temp Parallelogram ← Compute Parallelogram(v1, v2, Lsp)
6: if Cal Area (Lparallelogram) ≤ Cal Area (temp Parallelogram) then
7: Lparallelogram ← temp Parallelogram
8: end if
9: Apply Rule(v1, v2)

10: end if
11: v2 ← v2.next
12: end while

return Lparallelogram

ITC is traversed only once and each convexity is also considered only once. So,
if there are k (k << n) such convexities encountered then the total time to
compute LAPT is O(k · n

g lg n
g) + O(n

g) + O(1)) � O(k · n
g lg n

g).

5 Experimental Results

The proposed algorithm is implemented in python 3.9 in Ubuntu 16.04, 64-bit
kernel version, the processor being Intel R©CoreTMi7-6700 CPU @ 3.40GHz × 8.
To check the correctness of the proposed algorithm, it is tested exhaustively on
several digital objects. The result on a few different objects are shown in the
Fig. 12. The blue line shows the triangular inner cover, and the red line indicates
the largest parallelogram inscribed in the corresponding digital object.

Largest Area Parallelogram 133

Fig. 12. Experimental results of LAPT for different objects where parallelogram is
marked by red, ITC is marked by blue for grid size g = 8 (Color figure online)

134 M. A. A. Al Aman et al.

6 Conclusions

A combinatorial algorithm to find and locate the largest area parallelogram
inside a digital object that lies on a triangular grid has been proposed. The
proposed algorithm maintains some lists and uses few reduction rules to derive
the desired output. It take O(n

g lg n
g) time where n is the number of pixel on the

boundary of the digital object and g is grid size. In this paper, the algorithm
tested on digital objects only but it can be applied to any simple triangular
polygon. Though the work is theoretical in nature but can be useful in areas like
industrial metal sheet cutting or VLSI design. The algorithm can also be useful
for shape analysis of objects by iteratively generating the largest parallelogram
up to a certain limit. In future, the algorithm can be modified to apply on digital
objects or polygons that contains holes.

References

1. Milenkovic, V., Daniels, K., Li, Z.: Automatic marker making. In: Proceedings of
the Third Canadian Conference on Computational Geometry, pp. 243–246. Simon
Fraser University (1991)

2. Milenkovic, V., Daniels, K., Li, Z.: Placement and Compaction of Nonconvex Poly-
gons for Clothing Manufacture (1992)

3. MacKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthog-
onal polygon (1985)

4. DePano, A., Ke, Y., O’Rourke, J.: Finding largest inscribed equilateral triangles
and squares. In: Proceedings of the 25th Allerton Conference Communication Con-
trol Computing, pp. 869–878 (1987)

5. Amenta, N.: Largest volume box is convex programming. Pers. Commun. (1992)
6. Fekete, S.P.: Finding all anchored squares in a convex polygon in subquadratic

time. In: Proceedings of the Fourth Canadian Conference on Computational Geom-
etry, pp. 71–76 (1992)

7. Alt, H., Hsu, D., Snoeyink, J.: Computing the largest inscribed isothetic rectangle.
In: CCCG, pp. 67–72 (1995)

8. Daniels, K., Milenkovic, V., Roth, D.: Finding the largest area axis-parallel rect-
angle in a polygon. Comput. Geom. 7(1–2), 125–148 (1997)

9. Chaudhuri, J., Nandy, S.C., Das, S.: Largest empty rectangle among a point set.
J. Algorithms 46(1), 54–78 (2003)

10. Ahn, H.-K., Brass, P., Cheong, O., Na, H.-S., Shin, C.-S., Vigneron, A.: Inscrib-
ing an axially symmetric polygon and other approximation algorithms for planar
convex sets. Comput. Geom. 33(3), 152–164 (2006)

11. Hall-Holt, O., Katz, M.J., Kumar, P., Mitchell, J.S., Sityon, A.: Finding large sticks
and potatoes in polygons. In: SODA, vol. 6, pp. 474–483 (2006)

12. Knauer, C., Schlipf, L., Schmidt, J.M., Tiwary, H.R.: Largest inscribed rectangles
in convex polygons. J. Discrete Algorithms 13, 78–85 (2012)

13. Sarkar, A., Biswas, A., Dutt, M., Bhattacharya, A.: Finding a largest rectangle
inside a digital object and rectangularization. J. Comput. Syst. Sci. 95, 204–217
(2018)

14. Sarkar, A., Biswas, A., Dutt, M., Bhattacharya, A.: Finding largest rectangle inside
a digital object. In: Computational Topology in Image Context, pp. 157–169 (2016)

Largest Area Parallelogram 135

15. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

16. Nagy, B., Abuhmaidan, K.: A continuous coordinate system for the plane by tri-
angular symmetry. Symmetry 11(2) (2019)

17. Biswas, A., Bhowmick, P., Bhattacharya, B.B., Das, B., Dutt, M., Sarkar, A.:
Triangular covers of a digital object. Appl. Math. Comput. 58(1), 667–691 (2018)

Picture Languages

Weighted Three Directions OTA
and Weighted Hexapolic Picture

Automata

Meenakshi Paramasivan1(B) and D. G. Thomas2

1 FB IV - Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
meena maths@yahoo.com

2 Department of Mathematics, Madras Christian College, Chennai, India

Abstract. Two-dimensional hexagonal arrays seen on a triangular grid
can be treated as two-dimensional representations of three-dimensional
rectangular parallelepipeds. We are introducing weighted 3 directions
on-line tessellation automata (W3OTA) and investigating formal power
series on hexagonal pictures. These are functions that map hexagonal
pictures to elements of a semiring and provide an extension of two-
dimensional hexagonal picture languages to a quantitative setting.

Keywords: Picture series · Two-dimensional languages · Hexagonal
pictures · Recognizable hexagonal picture languages · Weighted 3OTA

1 Introduction

Picture languages generated by grammar models and recognized by automata
models have been investigated since the 1970s for their complications raised in
the framework of pattern recognition and image analysis [10,17,18,20]. These
two-dimensional picture languages have a connection with the generation of
Kolam patterns [19,22], which are traditional pieces of the South Indian style
of painting. Dora Giammarresi and her co-authors investigated two-dimensional
picture languages and their connection to tiling systems [2,8] through local and
recognizable picture languages. In [12], characterizations of recognizable picture
series were investigated. In [7], weighted two-dimensional on-line tessellation
automata (W2OTA) were introduced and proven that the picture series is rec-
ognizable by some weighted two-dimensional on-line tessellation automaton if
and only if it has the behavior of a weighted picture automaton. A Nivat theo-
rem on W2OTA has been proved; (see [3]).

Siromoney has defined an arrowhead catenation for the two-dimensional
hexagonal arrays. These arrays on a triangular grid can be viewed or treated
as two-dimensional representations of three-dimensional rectangular paral-
lelepipeds [16]. Hexagonal cellular automata (HCA) were introduced as a vari-
ation of the rectangular two-dimensional cellular automata (RCA). The equiva-
lence of HCA and RCA was shown in [11]. Hexagonal array patterns are found

Mathematics Subject Classification: 68Q45, 68Q70, 68R01

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 139–153, 2023.
https://doi.org/10.1007/978-3-031-23612-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_9&domain=pdf
http://orcid.org/0000-0002-1509-6557
http://orcid.org/0000-0001-6327-8446
https://doi.org/10.1007/978-3-031-23612-9_9

140 M. Paramasivan and D. G. Thomas

in the literature on picture processing and scene analysis. Hexagonal Image Pro-
cessing (HIP) provides an introduction to the processing of hexagonally sampled
images. The utility of the HIP framework is demonstrated by implementing sev-
eral basic image processing techniques. The HIP framework serves as a tool
for comparing the processing of images defined on a square versus a hexagonal
grid [13].

In [5,6], two classes, namely (i) local hexagonal picture languages (HLOC)
and (ii) reognizable hexagonal picture languages (HREC), were introduced, and
also hexagonal wang systems (HWS) and hexagonal tiling systems (HTS) were
used to study these picture languages. In [21], to recognize HREC, 3 directions
on-line tessellation automata were introduced. Jaya Abraham et al. [1] stud-
ied characterizations of hexagonal recognizable picture series through weighted
hexapolic picture automata (WHPA).

A preliminary version of this paper and some of its properties were presented
in [14,15]. Now the paper is organized as follows: In Sect. 2, we recall some basics.
In Sect. 3, we introduce weighted three directions on-line tessellation automata
(W3OTA) and investigate formal power series on hexagonal pictures. In Sect. 4,
we show that the W3OTA recognizable series are WHPA recognizable. In Sect. 5,
we conclude with a further connection to MSO logic over hexagonal pictures.

2 Pictures and Hexagonal Pictures

In this section, we shall briefly recall some of the required standard notations
and definitions of two-dimensional hexagonal pictures and languages [6,21].

2.1 Two-Dimensional Hexagonal Pictures and Languages

A hexagonal picture p over the finite alphabet Σ is a hexagonal array of symbols
from Σ. The set of all non-empty hexagonal pictures over Σ is denoted by Σ++H .
Let p ∈ Σ++H . We get the bordered version of p denoted by p̂ when the special
symbol # /∈ Σ is added as boundary to p.

Example 1. A hexagonal picture p ∈ Σ++H over Σ = {a, b, c} and its bordered
version p̂ is given in Fig. 1.

With respect to a triad x

z

y of triangular axes x, y, z the coordinates
of each element of the hexagonal pictures can be fixed. For a similar hexagonal
picture in Example 1 we depict the coordinates in Fig. 2.

Given a hexagonal picture p ∈ Σ++H let �, m, n denote the number of
elements in the direction of x, y, z respectively. The directions are fixed with
origin of reference as the upper left vertex, having coordinates (1, 1, 1). The triple
(�,m, n) denotes the size of the hexagonal picture p. Hexagonal pictures of size
(0,m, n), (�, 0, n), or (�,m, 0) where �,m, n > 0 are not defined. Furthermore, let
pijk denote the symbol in p with coordinates (i, j, k), where 1 ≤ i ≤ �, 1 ≤ j ≤ m,

Weighted 3OTA and Weighted Hexapolic Picture Automata 141

Fig. 1. A hexagonal picture over Σ = {a, b, c} and its bordered version.

Fig. 2. Coordinates of a hexagonal picture p.

1 ≤ k ≤ n. For instance, p in Example 1 is of size (2, 2, 2) and p111 = b, p221 = c,
and so on. Every subset L ⊆ Σ++H is a hexagonal picture language. Given a
hexagonal picture p of size (�,m, n), if g ≤ �, h ≤ m and k ≤ n then we denote
by Bg,h,k(p) the set of all hexagonal blocks (or hexagonal sub-pictures) of p of
size (g, h, k). In fact a hexagonal tile is a hexagonal picture of size (2, 2, 2).

Definition 1 [6]. A hexagonal tiling system (in short, HTS) is a 4-tuple T =
(Σ,Γ, π,Θ), where Σ and Γ are two finite alphabets, π : Γ → Σ is a projection
and Θ is a finite set of hexagonal tiles over the alphabet Γ ∪ {#}.

Note that HREC [6,21] is exactly the family of all hexagonal picture languages
recognizable by hexagonal tiling systems L(HTS).

Example 2. Let Σ = {1, 2, 3};

Θ =

{ # #
1 1

2 2
,

#
1 1 1

2 2
,

#
1 1 #

2 2
,

1
2 2

3
,

1 1
2 2 2

3 3
,

1 #
2 2 #

3 #
,

2 2
3 3

#
,

2 2
3 3 3

#
,

2 2
3 3 #

#

}
.

142 M. Paramasivan and D. G. Thomas

Then

L1 = π(L(Θ)) =

{ 1 1
2 2 2

3 3
,

1 1 1
2 2 2 2

3 3 3
,

1 1 1
2 2 2 2

3 3 3
, . . .

}
.

L1 is the set of all hexagons of sizes (2, 2, k)(k ≥ 2) with z direction elements
respectively at the top are 1, at the middle are 2 and at the bottom are 3.

3 Weighted Automata over Hexagonal Pictures

In this section, we shall briefly recall some of the required standard notations
and definitions with respect to picture series and hexagonal picture series.

3.1 Series on Pictures

A semiring (K,+, ·, 0, 1) is a structure K such that (K,+, 0) is a commutative
monoid, (K, ·, 1) is a monoid, multiplication distributes over addition, and x ·0 =
0 = 0 · x for all elements x ∈ K. If multiplication is commutative, K is called
commutative. Examples of semirings useful to model problems in operations
research and carrying quantitative properties for many devices include e. g. the
Boolean semiring B = (0, 1,∨,∧, 0, 1), the natural numbers N = (N,+, ·, 0, 1), the
tropical semiring T = (R∪ {∞},min,+,∞, 0), the artical (or max-plus) semiring
A = (N ∪ {−∞},max,+,−∞, 0), the language-semiring (P(Σ∗),∪,∩, ∅, Σ∗)
and ([0, 1],max, ·, 0, 1) (to capture probabilities).

Subsequently, K will always denote a commutative semiring. Let Σ, Γ be
alphabets. We will now assign weights to hexagonal pictures. This provides a
generalization of the theory of hexagonal pictures to formal power series over
hexagonal pictures. In [4,12] this generalization was done to rectangular pictures.

A picture series is a mapping S : Σ++ → K. We let K〈〈Σ++〉〉 comprise all
picture series. We write (S, p) for S(p), then a picture series S often is written as
a formal sum S =

∑
p∈Σ++(S, p) · p. The set supp(S) = {p ∈ Σ++ | (S, p) �= 0}

is the support of S. For a picture language L ⊆ Σ++, the characteristic series
1L : Σ++ → K is defined by setting (1L, p) = 1 if p ∈ L, and (1L, p) = 0
otherwise. For K = B, the mapping L �→ 1L gives a natural bijection between
languages over Σ and series in B〈〈Σ++〉〉.

We define rational operations � and �, referred to as sum and Hadamard
product, respectively, and also · : K × K〈〈Σ++〉〉 → K〈〈Σ++〉〉, the scalar multi-
plications with elements of the semiring, in the following way:

For two series S, T ∈ K〈〈Σ++〉〉, k ∈ K and p ∈ Σ++, we set

(S � T, p) := (S, p) + (T, p) ,

(S � T, p) :=(S, p) · (T, p) and (k · S, p) := k · (S, p).

Note that k ·S = (k ·1Σ++)�S. Now, defining projections and inverse projections
for series, given additionally π : Γ → Σ, R ∈ K〈〈Γ++〉〉 and q ∈ Γ++, we put

Weighted 3OTA and Weighted Hexapolic Picture Automata 143

(π(R), p) :=
∑

π(p′)=p

(R, p′) and(π−1(S), q) := (S, π(q)).

We will call the series, π(R) ∈ K〈〈Σ++〉〉 projection of R by π and π−1(S) ∈
K〈〈Γ++〉〉 inverse projection of S by π, respectively. In the boolean case we get
for languages L ⊆ Σ++ : π−1(L) = {p ∈ Γ++ | π(p) ∈ L}. There are further
rational operations on picture series like horizontal/vertical multiplication and
horizontal/vertical star. The closure of the class of series having finite support
(polynomials) under rational operations and projections defines the family of
projections of rational picture series which coincides with the family of series that
are behaviours of weighted picture automata (WPA) [12]. In [7] the equivalence
of weighted 2-dimensional on-line tessellation automata and WPA is proved.

3.2 Series on Hexagonal Pictures

A hexagonal picture series [1] is a mapping S : Σ++H → K. We let K〈〈Σ++H〉〉
contains all hexagonal picture series over Σ. We write (S, p) for S(p), then a
hexagonal picture series S is written as S = Σp∈Σ++H (S, p)·p. The set supp(S) =
{p ∈ Σ++H | (S, p) �= 0} is the support of S. For a language L ⊆ Σ++H , the
characteristic series 1L : Σ++H → K is defined by setting (1L, p) = 1 if p ∈ L,
and (1L, p) = 0 otherwise. For K = B, the mapping L �→ 1L gives a natural
bijection between languages over Σ and series in B〈〈Σ++H〉〉.

We recall rational operations on hexagonal picture series �, �, �, �

and � referred to as sum, Hadamard product, x-directional multiplication, y-
directional multiplication and z-directional multiplication respectively, and also
· : K × K〈〈Σ++H〉〉 → K〈〈Σ++H〉〉, the scalar multiplications with elements of
the semiring, in the following way:

For two series S, T ∈ K〈〈Σ++H〉〉, k ∈ K and p ∈ Σ++H , we set

(S � T, p) := (S, p) + (T, p) ,

(S � T, p) :=(S, p) · (T, p) and (k · S, p) := k · (S, p).

Note that k · S = (k ·1Σ++H) � S. Now, defining projections and inverse projec-
tions for series, given additionally π : Γ → Σ, R ∈ K〈〈Γ++H〉〉 and q ∈ Γ++H ,
we put

(π(R), p) :=
∑

π(p′)=p

(R, p′) and (π−1(S), q) := (S, π(q)) .

We will call the series, π(R) ∈ K〈〈Σ++H〉〉 projection of R by π and π−1(S) ∈
K〈〈Γ++H〉〉 inverse projection of S by π, respectively. In the boolean case we get
for languages L ⊆ Σ++H : π−1(L) = {p ∈ Γ++H | π(p) ∈ L}. There are further
rational operations on hexagonal picture series (similar to horizontal/vertical
multiplication/star on picture series) which we define in the following:

144 M. Paramasivan and D. G. Thomas

(S � T, p) =
∑

p=p1�p2

(S, p1) · (T, p2) .

(S � T, p) =
∑

p=p1�p2

(S, p1) · (T, p2) .

(S � T, p) =
∑

p=p1�p2

(S, p1) · (T, p2) .

(S�+, p) =
∑

p=p1�p2�···�pn

(S, p1) · (S, p2) · · · (S, pn) .

(S�+, p) =
∑

p=p1�p2�···�pn

(S, p1) · (S, p2) · · · (S, pn) .

(S�+, p) =
∑

p=p1�p2�···�pn

(S, p1) · (S, p2) · · · (S, pn) .

The closure of the class of series having finite support (polynomials) under
rational operations and projections defines the family of projections of ratio-
nal hexagonal picture series which coincides with the family of series that are
behaviours of weighted hexapolic picture automata (WHPA) [1] (See Definition 4
for WHPA).

In this paper, we introduce W3OTA and in order to prove the equivalence of
W3OTA and WHPA, we consider two types of devices for our study on quanti-
tative setting:

1. 3 directions on-line tessellation automata (3OTA) [21].
2. weighted hexapolic picture automata (WHPA) [1] (See Definition 4).

Definition 2 [21]. A non-deterministic (deterministic) 3 directions on-line tes-
sellation automaton (3OTA) is defined by a 5-tuple A = (Σ,Q, q0, F, δ) where

– Σ is the input alphabet
– Q is a finite set of states
– q0 ∈ Q is the initial state
– F ⊆ Q is the set of final states
– δ : Q × Q × Q × Σ → 2Q (δ : Q × Q × Q × Σ → Q) is the transition function.

A run of A on a hexagonal picture p ∈ Σ++H consists of associating a state
(from the set Q) to each position (i, j, k) of p. Such state is given by the transition
function δ and depends on the states already associated. For p, consider p̂ and
let all the border letters # in p be associated with state q0. The computation of
the automaton starts at time t = 1, by reading p111 and associating the state
δ(q0, q0, q0, p111) to position (1, 1, 1). In general, we view δ(q1, q2, q3, pijk) as

q2

q1

q3

pijk

Weighted 3OTA and Weighted Hexapolic Picture Automata 145

At time t = 2, states are simultaneously associated to positions p211 and p112.
This process continues until a state is associated to position (�1(p), �2(p), �3(p)).
A 3OTA A recognizes a hexagonal picture p if there exists a run of A on p̂ such
that the state associated to position (�1(p), �2(p), �3(p)) is a final state. The set
of all hexagonal pictures recognized by A is denoted by L(A). Let L(3OTA) be
the set of hexagonal picture languages recognized by 3OTAs.

Example 3. A 3OTA for L1 in Example 2 is a 5-tuple A1 = (Σ1, Q1, q0, F1, δ1)
where Σ1 = {1, 2, 3}, Q1 = {q0, q1, q2, q3}, δ1(q0, q0, q0, 1) = q1, δ1(q0, q0, q1, 2) =
q2, δ1(q1, q0, q0, 1) = q1, δ1(q2, q1, q1, 2) = q2, δ1(q0, q2, q2, 3) = q3,
δ1(q3, q2, q2, 3) = q3, δ1(q2, q1, q0, 2) = q2, and F1 = {q3}.

We now present the detailed definition of a weighted 3 directions on-line
tessellation automata. It generalizes in a straightforward way the automata-
theoretic definition of recognizability for hexagonal picture languages in terms
of 3OTA.

Definition 3. A weighted 3 directions on-line tessellation automata (in short,
W3OTA) over Σ is a tuple H = (Q,E, I, F), consisting of a finite set Q of
states, a finite set of transitions E ⊆ Q × Q × Q × Σ × K × Q and sets of initial
and final states I, F ⊆ Q, respectively.

For a transition e = (qx, qy, qz, a, w, q) ∈ E, we set σx(e) = qx, σy(e) = qy,
σz(e) = qz and σ(e) = q. We denote by label(e) its label a and by weight(e) its
weight w. We extend these both functions to hexagonal pictures by setting, for
c = (ci,j,k) ∈ E�×m×n:

label(c)(i, j, k) := label(ci,j,k), weight(c) =
∏
i,j,k

weight(ci,j,k).

It defines functions label : E++H → Σ++H and weight : E++H → K. We
call label(c) the label and weight(c) the weight of c. A run (or computation)
in H is an element in E�×m×n satisfying natural compatibility properties, more
precisely, for c = (ci,j,k) ∈ E�×m×n we have ∀1 ≤ i ≤ �, 1 ≤ j ≤ m, 1 ≤ k ≤ n:

σx(ci,j,k) = σ(ci−1,j,k), σy(ci,j,k) = σ(ci,j−1,k), σz(ci,j,k) = σ(ci,j,k−1).

A run c ∈ E�×m×n is successful if for all 1 ≤ i ≤ �, 1 ≤ j ≤ m and 1 ≤ k ≤ n,
we have σx(c1,j,k), σy(ci,1,k), σz(ci,j,1) ∈ I and σ(c�,m,n) ∈ F . The set of all
successful runs labelled with a hexagonal picture p is denoted by I

p� F .

We define a hexagonal picture series ||H|| as follows. If p ∈ Σ++H has no
successful run in H, ||H|| sends p to 0. Otherwise, we define

(||H||, p) =
∑

c∈I
p�F

weight(c).

146 M. Paramasivan and D. G. Thomas

Intuitively, the weight of a hexagonal picture p is the sum of the weights of
all successful runs in H that read p. We call ||H|| the behaviour of H and say
that the automaton H computes (or recognizes) the hexagonal picture series
||H|| : Σ++H → K. We write Krec〈〈Σ++H ,W3OTA〉〉 for the family of hexagonal
series that are computable by W3OTA over Σ, elements of which are referred
to as W3OTA-recognizable series.

Considering Definition 3 above, where K equals B. We get precisely the
definition of a 3 directions OTA (3OTA). Here, instead of E, one could also define
a transition function δ : Q×Q×Q×Σ → 2Q. If I = 1 and δ : Q×Q×Q×Σ → Q,
we call H deterministic. For an alphabet Σ, devices of 3OTA over Σ define
hexagonal picture languages and were shown to compute precisely the family
HREC [21]. We shall have an example of hexagonal picture series S : Σ++H →
R ∪ {∞}.

Similar to common constructions on picture automata and using ideas in
[1,4], we have the following.

Proposition 1. Let K be a commutative semiring. W3OTA-recognizable hexag-
onal picture series over K are closed under �, �, scalar multiplications with ele-
ments of K, projections and inverse projections. For languages, inverse projec-
tions of languages that are deterministically 3OTA-recognizable are again recog-
nizable by some deterministic 3OTA. If L is deterministically 3OTA-recognizable
then 1L is W3OTA-recognizable.

Proof. As usual, for the operations � and � we use the direct product and the
union of automata, respectively. Let w ∈ K. The W3OTA H = ({0, 1}, E, {0},
{1}) defined by

E =
⋃

a∈Σ

{(0, 0, 0, a, w, 1), (1, 0, 0, a, 1, 1), (0, 0, 1, a, 1, 1), (0, 1, 1, a, 1, 1),

(1, 1, 0, a, 1, 1), (1, 1, 1, a, 1, 1)}

computes ||H|| : w · 1Σ++H . Now, since in genereal, for a series S ∈ K〈〈Σ++H〉〉,
we have w · S = (w ·1Σ++H) � S, we get the assertion for scalar multiplications.
Let π : Γ → Σ. If E ⊆ Q × Q × Q × Σ × K × Q denotes the weighted transition
set of a W3OTA H over Γ , then we define the transition set for an automaton
computing π(||H||), as

{(qx, qy, qz, σ, w, q) | a ∈ Σ,w =
∑

(qx,qy,qz,γ,w′,q)∈E π(γ)=σ

w′}.

For the inverse projection let H = (Q,E, I, F) be a W3OTA computing S :
Σ++H → K with E ⊆ Q × Q × Q × Σ × K × Q. We obtain a W3OTA H′ =
(Q,E′, I, F) on Γ for π−1(S) by putting

E′ := {(qx, qy, qz, a, w, q) | (qx, qy, qz, π(a), w, q) ∈ E}.

Weighted 3OTA and Weighted Hexapolic Picture Automata 147

This construction also works for the language case of 3OTA and then preserves
deterministic devices. For the last claim, let A be a deterministic 3OTA recogniz-
ing L. Assigning 1 to every transition in A, and hence extending the transitions
to weighted transitions, will result in a W3OTA recognizing 1L. ��

Next we define weighted hexapolic picture automata. These devices were intro-
duced by A. Jaya et al. in [1].

Definition 4 [1]. A weighted hexapolic picture automaton (WHPA) is a 8-
tuple H = (Q,R,Fn, Fs, Fnw, Fsw, Fne, Fse) consisting of finite set Q of states,
a finite set of rules R ⊆ Σ × K × Q6, as well as six poles of acceptance
Fn, Fs, Fnw, Fsw, Fne, Fse ⊆ Q.

Precisely as with W3OTA in Definition 3, for r = (a, k, qn, qs, qnw,
qsw, qne, qse) ∈ R, we denote by label(r) its (input) label a (extended then to
hexagonal pictures), by weight(r) its weight w and corresponding to the six
poles σn(r) := qn, σs(r) := qs, σnw(r) := qnw, σne(r) := qne, σsw(r) := qsw,
σse(r) := qse. We extend the functions label and weight to hexagonal pictures
by setting for a hexagonal picture c = (ci,j,k) ∈ R++H over the set of rules,
label(c)i,j,k = label(ci,j,k) and call label(c), the label of c. A run or (computa-
tion) is an element c = (ci,j,k) ∈ R�×m×n satisfying

∀i ≤ � − 1, j ≤ m, k ≤ n : σn(ci,j,k) = σs(ci+1,j,k),

∀i ≤ �, j ≤ m − 1, k ≤ n : σnw(ci,j,k) = σse(ci,j+1,k),

∀i ≤ �, j ≤ m, k ≤ n − 1 : σsw(ci,j,k) = σne(ci,j,k+1).

We put weight(c) =
∏

i,j,k weight(ci,j,k) and call weight(c) the weight of c. A run
c is successful if it has its (outer) pole-states in the respective poles of acceptance,
that is to say:

∀i ≤ �, j ≤ m, k ≤ n : σn(c1,j,k) ∈ Fn σs(c�,j,k) ∈ Fs,

σnw(ci,1,k) ∈ Fnw σse(ci,m,k) ∈ Fse,

σsw(ci,j,1) ∈ Fsw σne(ci,j,n) ∈ Fne.

For a successful run c with label(c) = p we shortly write c ∈ Succ(p). The
automaton computes a picture series ||H|| : Σ++H → K such that

(||H||, p) =
∑

c∈Succ(p)

weight(c) ,

called the behaviour of H. The weight of a hexagonal picture p is the sum of the
weights of all successful runs with label p. The family of hexagonal picture series
computed by WHPA over Σ will be denoted by Krec〈〈Σ++H ,WHPA〉〉. We call
the elements of this family WHPA-recognizable.

148 M. Paramasivan and D. G. Thomas

4 W3OTA-Recognizable Series are WHPA-Recognizable

We shall now convert a weighted 3 directions on-line tessellation automaton
into a weighted hexapolic picture automaton. This inclusion is by defining some
intermediate “hexagonal tiling” device, describing the context of pixels within
their computation. Here these hexagonal tiles are encoded into the states of the
new automaton.

Let K be a commutative semiring. For the proof of Theorem 1 we will first
convert a given W3OTA into some “deterministic” device of a certain type via a
projection similar to a construction in [1] where a Kleene-Schützenberger The-
orem for hexagonal picture series is proved. However, in the present paper we
apply this contruction to W3OTA rather than to WHPA. The behaviour of
the constructed deterministic automaton will then be proved to be WHPA-
recognizable.

Definition 5. A weighted 3 directions on-line tessellation automaton is called
rule deterministic if for every input label a of the underlying alphabet there is at
most one transition with label a.

Given a rule determinsitic W3OTA with transition set E, for (qx, qy, qz,
a, w, q) ∈ E as a transition with label a we abbreviate (qx, qy, qz, a, w, q) by
r(a).

Proposition 2. Let H be a W3OTA over Σ. There exists a rule deterministic
W3OTA H′ over an alphabet Γ and a projection π : Γ → Σ satisfying ||H|| =
π(||H′||).

Proof. Let H = (Q,E, I, F) be a W3OTA over Σ and K computing S. We
set Γ := E and define a rule deterministic W3OTA over Γ by letting H′ =
(Q,E′, I, F) such that

E′ := {(qx, qy, qz, (qx, qy, qz, a, w, q), w, q) | (qx, qy, qz, a, w, q) ∈ E}.

Clearly, for every input label(qx, qy, qz, a, w, q) ∈ Γ there is at most one transition
with label (qx, qy, qz, a, w, q) in E′. We define a projection π : Γ → Σ by letting

π(qx, qy, qz, a, w, q) �→ a.

We have to prove ||H|| = π(||H′||) (*).
Let p ∈ Σ�×m×n. If there was no successful run of p in H, then there is

no hexagonal picture in E++H with a successful run in H′, which is mapped
to p by π, so (*) holds. For the other case, let {c1, c2, . . . , cs} ⊆ E++H be the
set of successful computations for p in H. These runs belong to successful runs
{c′

1, c
′
2, . . . , c

′
s} ⊆ E′++H in H′ such that

∀1 ≤ i ≤ s : π(label(c′
i)) = p,

∑
1≤i≤s

weight(ci) =
∑

1≤i≤s

weight(c′
i).

Weighted 3OTA and Weighted Hexapolic Picture Automata 149

Since there cannot be other successful runs in H′ mapped by the projection π
to p, we conclude (*):

(||H||, p) =
∑

1≤i≤s

weight(ci) =
∑

π(p′=p)

(||H′||, p′) = (π(||H′||), p).

��

Proposition 3. Every hexagonal picture series that is recognizable by a rule
deterministic W3OTA is WHPA-recognizable.

Proof. Let H = (Q,E, I, F) be a rule deterministic W3OTA over the alpha-
bet Σ computing a series ||H|| : Σ++H → K. We construct a WHPA B =
(L,R, Fn, Fs, Fnw, Fsw, Fne, Fse) over Σ computing ||H|| by defining L as the
largest subset of (Σ ∪ {#})2×2×2 satisfying for all letters a, b, c, d ∈ Σ and
p, q, s ∈ Σ ∪ {#}:

If

(
p q

a s
#

∈ L ∨
#

p a #
q s

∈ L

)
then σx(r(a)) ∈ I

If

(# #
a s

p q
∈ L ∨

q s
p a #

#
∈ L

)
then σy(r(a)) ∈ I

If

(# p
a q

s
∈ L ∨

p #
q a #

s #
∈ L

)
then σz(r(a)) ∈ I

If
c d

b a #
#

∈ L then σ(r(a)) ∈ F.

We define

• Fn =

{ # #
a b

c d
| a ∈ Σ, b, c, d ∈ Σ ∪ {#}

}

• Fs =

{ c d
b a #

#
| a ∈ Σ, b, c, d ∈ Σ ∪ {#}

}

• Fne =

{ # #
b a #

c d
| a ∈ Σ, b, c, d ∈ Σ ∪ {#}

}

• Fsw =

{
b c

a d
#

| a ∈ Σ, b, c, d ∈ Σ ∪ {#}
}

• Fse =

{ b #
c a #

d #
| a ∈ Σ, b, c, d ∈ Σ ∪ {#}

}

150 M. Paramasivan and D. G. Thomas

• Fnw =

{ # b
a c

d
| a ∈ Σ, b, c, d ∈ Σ ∪ {#}

}

We set R = Rulc ∪ Rlc ∪ Rrc ∪ Rue ∪ Rle ∪ Rm ⊆ Σ ×K ×L6 (where ulc, lc,
rc, ue, le and m stands for upper left corner, left corner, right corner, upper edge,
lower edge and middle respectively) with (a, b, c, d, f, g, h, i, j, k, l,m, n, t, x, y, z ∈
Σ ∪ {#}):

• Rulc =

{
r =

(# a
c d

g
,

#
a b

c d
,

#
a b #

d f
, a, weight(r(a)),

a b
c d f

g h

)
| a ∈ Σ

}
,

• Rlc =

{
r =

(y z
a b

c d
,

a
c d

g
,

c d
g h

x
, c, weight(r(c)),

a b
c d f

g h

)
| a, c, g ∈ Σ

}
,

• Rrc =

{
r =

(c g
b x #

f y
,

x #
f y #

z #
,

f y
h z #

a #
, y, weight(r(y)),

b x
d f y

h z

)
| x, y, z ∈ Σ

}
,

• Rue =

{
r =

(a b
c d f

g h
,

#
a b i

d f
,

t
b i z

f j
, b, weight(r(b)),

b i
d f j

h k

)
| a, b ∈ Σ

}
,

• Rle =

{
r =

(a b
c d f

g h
,

d f
g h k

#
,

f j
h k z

t
, h, weight(r(h)),

b i
d f j

h k

)
| g, h ∈ Σ

}
,

• Rm =

{
r =

(c d
l g a
m n

,
h b

c d f
g a

,
b i

d f j
a k

, a, weight(r(a)),

d f
g a k

n t

)
| a, g, d, f ∈ Σ

}

Weighted 3OTA and Weighted Hexapolic Picture Automata 151

To prove ||H|| = ||B||, we observe the following: Given a picture p ∈ Σ++H

with successful computation c ∈ E++H in H, for weight(c), the weight of the
rule of every pixel of p occurs exactly once in the multiplication. On the other
hand, the hexagonal tiles of an arbitrary hexagonal picture p are encoded in
L. The given construction with its accepting condition defines an unambiguous
weighted hexapolic picture automaton which has a unique successful run for
every element in Σ++H . Hence for p ∈ Σ++H we have

||B||(p) =
∏

1≤i≤�+1
1≤j≤m+1
1≤k≤n+1

weight(r(pi,j,k)) = (||H||, p).

��

Similar to Proposition 1 we can prove that the family of WHPA-recognizable
series are closed under projection.

Lemma 1 [1]. Let π : Γ → Σ and S ∈ Krec〈〈Γ++H ,WHPA〉〉. Then π(S) ∈
Krec〈〈Σ++H ,WHPA〉〉

Theorem 1. Krec〈〈Σ++H ,W3OTA〉〉 ⊆ Krec〈〈Σ++H ,WHPA〉〉.

Proof. Immediate by Propositions 2 and 3 and Lemma 1. ��

5 Conclusions

(i) The difference between the work of K. S. Dersanambika et al. [6] and D.
G. Thomas et al. [21] is the following: Dersanambika et al. introduced two
interesting classes of hexagonal picture languages, namely, the class of local
hexagonal picture languages (HLOC) and the class of recognizable hexago-
nal picture languages (HREC). It is known that HLOC is a subset of HREC,
where as D. G. Thomas et al. developed a recognizing device called 3 direc-
tions on-line tessellation automata (3OTA) to recognize these classes of
hexagonal picture languages. It was shown [21] that the class of all hexagonal
picture languages recognized by 3OTAs is exactly the family of hexagonal
picture languages recognized by hexagonal tiling systems (HTS).

(ii) The difference between the work of Jaya Abraham et al. [1] and the work
of the present paper is the following: Jaya Abraham et al. introduced the
weighted hexapolic picture automata (WHPA) and proved the equivalence
of the families of projections of rational hexagonal picture series and the
series recognized by WHPA. In this paper we introduced weighted 3 direc-
tions on-line tessellation (W3OTA) and proved that every W3OTA recog-
nizable hexagonal picture series is WHPA recognizable.

(iii) The work initiated in this paper leads to yield promising results because of
the following connections:
– Monadic Second Order Logic over hexagonal pictures and recognizability

of hexagonal tiling systems (HTS),

152 M. Paramasivan and D. G. Thomas

– Weighted 3OTA and weighted logics,
– Nivat theorem for W3OTA and weighted MSO logics.

The research work done in [3,8,9] will be helpful to explore the connections
of two-dimensional hexagonal picture languages and W3OTA with MSO logics.

Acknowledgements. The authors give a big thanks to QuantLA at the University
of Leipzig, Germany for the support provided during 2015 and 2019. We also thank
the University of Trier, Germany and Madras Christian College, Chennai, India for
the visits in 2019 and 2020. The authors owe a great thanks to Manfred Droste for his
fruitful discussions and comments.

References

1. Abraham, J., Dersanambika, K.S.: Characterizations of hexagonal recognizable
picture series. J. Glob. Res. Math. Arch. 5(5), 65–71 (2018)

2. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529
(2009)

3. Babari, P., Droste, M.: A Nivat theorem for weighted picture automata and
weighted MSO logics. J. Comput. Syst. Sci. 104, 41–57 (2019)

4. Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. In: Droste, M.,
Vogler, H. (eds.) Special Issue on Weighted Automata, Presented at WATA 2004,
Dresden, vol. 10, pp. 159–183. Journal of Automata, Languages and Combinatorics
(2005)

5. Dersanambika, K.S., Krithivasan, K., Martin-Vide, C., Subramanian, K.G.: Hexag-
onal pattern languages. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol.
3322, pp. 52–64. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30503-3 4

6. Dersanambika, K.S., Krithivasan, K., Mart́ın-Vide, C., Subramanian, K.G.: Local
and recognizable hexagonal picture languages. IJPRAI 19(7), 853–871 (2005)

7. Fichtner, I.: Weighted picture automata and weighted logics. Theory Comput. Syst.
48(1), 48–78 (2011)

8. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6 4

9. Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-order
logic over rectangular pictures and recognizability by tiling systems. Inf. Comput.
125(1), 32–45 (1996)

10. Krithivasan, K., Siromoney, R.: Array automata and operations on array languages.
Int. J. Comput. Math. 4(A), 3–40 (1974)

11. Mahajan, M., Krithivasan, K.: Hexagonal cellular automata. In: Narasimhan, R.
(ed.) A Perspective in Theoretical Computer Science - Commemorative Volume for
Gift Siromoney, World Scientific Series in Computer Science, vol. 16, pp. 134–164.
World Scientific (1989)

12. Mäurer, I.: Characterizations of recognizable picture series. Theor. Comput. Sci.
374(1–3), 214–228 (2007)

13. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach.
Advances in Pattern Recognition, Springer, London (2005). https://doi.org/10.
1007/1-84628-203-9

https://doi.org/10.1007/978-3-540-30503-3_4
https://doi.org/10.1007/978-3-540-30503-3_4
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/1-84628-203-9
https://doi.org/10.1007/1-84628-203-9

Weighted 3OTA and Weighted Hexapolic Picture Automata 153

14. Paramasivan, M., Thomas, D.G., Immanuel, S.J., Lakshmi, M.G.: Weighted hexag-
onal picture automata. In: Droste, M., Gastin, P., Guillon, P., Monmege, B., Vogler,
H. (eds.) 10th International Workshop - Weighted Automata: Theory and Appli-
cations. WATA 2020 (2021)

15. Paramasivan, M., Thomas, D.G., Immanuel, S.J., Lakshmi, M.G.: Weighted hexag-
onal picture automata. In: Maletti, A. (ed.) 31. Theorietag “Automaten und For-
male Sprachen”, pp. 37–40 (2021)

16. Siromoney, G., Siromoney, R.: Hexagonal arrays and rectangular blocks. Comput.
Graph. Image Process. 5, 353–381 (1976)

17. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1, 284–307 (1972)

18. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Inf. Control (Now Inf. Comput.) 22(5), 447–470 (1973)

19. Siromoney, G., Siromoney, R., Krithivasan, K.: Array grammars and kolam. Com-
put. Graph. Image Process. 3, 63–82 (1974)

20. Subramanian, K.G., Revathi, L., Siromoney, R.: Siromoney array grammars and
applications. Int. J. Pattern Recognit. Artif. Intell. 3, 333–351 (1989)

21. Thomas, D.G., Begam, M.H., David, N.G., de la Higuera, C.: Hexagonal array
acceptors and learning. In: Mukund, M., Rangarajan, K., Subramanian, K.G. (eds.)
Formal Models, Languages and Applications [this Volume Commemorates the 75th
Birthday of Prof. Rani Siromoney]. Series in Machine Perception and Artificial
Intelligence, vol. 66, pp. 364–378. World Scientific (2007)

22. Yanagisawa, K., Nagata, S.: Fundamental study on design system of kolam pattern.
Forma 22, 31–46 (2007)

A Myhill-Nerode Theorem for Finite
State Matrix Automata and Finite

Matrix Languages

Abhisek Midya1(B) and D. G. Thomas2

1 CMR Institute of Technology, Bengaluru, India
abhisekmidyacse@gmail.com

2 Department of Mathematics, Madras Christian College, Chennai, India

Abstract. We propose a deterministic version of finite state matrix
automaton (DFSMA) which recognizes finite matrix languages (FML).
Our main result is a generalization of the classical Myhill-Nerode theo-
rem for DFSMA. Our generalization requires the use of two relations
to capture the additional structure of DFSMA. Vertical equivalence ≡v

captures that words sharing the same vertical location, horizontal equiva-
lence ≡h captures that words sharing the same horizontal location. A finite
matrix language is defined to be regular if relations ≡v and ≡h exist that
satisfy certain conditions, in particular, they have finite index. We show
that the language associated to a DFSMA is regular, and we construct,
for each finite matrix language, a DFSMA that accepts this language.
Our result provides a foundation for learning algorithms for DFSMA.

Keywords: Myhill-Nerode equivalence · Deterministic finite state
matrix automata · Finite matrix languages

1 Introduction

Grammatical inference is the realistic common area of research between machine
learning and formal language theory. The concept of Grammatical inference
deals with the automatic learning of grammars, automata and other language
describing devices. We attempt to satisfy both (machine Learning and formal
Language Theory) parts of the potential readership of this paper, as it has
been shown that the inter-dependencies between both areas are strong. The
basic motivation for investigating the learning of DFSMA, is to investigate the
connection between matrix languages and automata learning.

1.1 Learning Aspects

It has been investigated that the passive learning problem of finding a mini-
mal deterministic finite automata (DFA) is NP-hard, and it is compatible with
a finite set of positive and negative examples, in [16]. In spite of this, many
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 154–170, 2023.
https://doi.org/10.1007/978-3-031-23612-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_10&domain=pdf
http://orcid.org/0000-0001-5692-565X
http://orcid.org/0000-0001-6327-8446
https://doi.org/10.1007/978-3-031-23612-9_10

A Myhill-Nerode Theorem for Finite State Matrix 155

DFA identification algorithms have been developed. [2] presented an efficient
algorithm for active learning a regular language L, which assumes a minimally
adequate teacher (MAT) that answers two types of queries about L, with a
membership query, the algorithm asks whether or not a given word w is in L,
and with an equivalence query it asks whether or not the language LH of an
hypothesized DFA H is equal to L. If LH and L are not same, a word which
is in the symmetric difference of the two languages gets returned. Also there
are alternative versions of algorithms for learning regular languages in the MAT
model appeared in [7,8,17,30,40]. The limits of the model were investigated in
[3,5]. There was an interesting question arose, whether it can be extended to the
supersets of regular sets.

In [29] Radhakrishnan and Nagaraja proposed a method for the inference
of even linear languages from positive examples, also the proposed method can
be used in a hierarchical manner to infer grammars for complex pictures. The
interesting work of [36] and [34] established the reduction technique of the learn-
ing of even linear languages (introduced in [1]) to the learning of regular lan-
guages. Also, the usefulness of the concept of control languages (originating from
[15]) was shown in the reduction of the learning problem of languages through
controlled fixed grammars in [20,21,36,38,39]. In particular, Takada used this
concept to develop an efficient learning algorithm, called “even equal matrix
languages” [37,39]. Also, in [23,24] polynomial time learning algorithms are pro-
posed for interesting subclasses of contextual array and string languages respec-
tively. Also, in [25], a two dimensional automaton had been defined for array
languages. In this way, we realize the importance of learning matrix languages
and in this paper we deal with finite matrix languages.

In this article, we propose a deterministic version of finite state matrix
automata (DFSMA) which can recognize finite matrix languages (FML). More
importantly, we establish a Myhill-Nerode theorem for DFSMA and FML. We
know that the Myhill-Nerode theorem refers to a single equivalence relation on
words, and constructs a DFA in which states are equivalence classes, our gener-
alization requires the use of two relations to capture the additional structure of
DFSMA. The Myhill-Nerode theorem makes the platform to develope a learn-
ing algorithm for DFSMA using query learning model [2].

Myhill-Nerode theorems are of pivotal importance for learning algorithms.
Angluin’s classical L∗ algorithm for active learning of regular languages, as well
as improvements such as [11,19,30], use an observation table to approximate the
Myhill-Nerode congruence. Maler and Steiger [22] established a Myhill-Nerode
theorem for ω-languages that serves as a basis for a learning algorithm described in
[4]. The SL∗ algorithm for active learning of register automata of Cassel et al. [10]
is directly based on a generalization of the classical Myhill-Nerode theorem to a
setting of data languages and register automata (extended finite state machines).

1.2 Formal Language Aspects

Syntactic approaches, on account of their structure-handling capability, have
played an important role in the problem of description of picture patterns

156 A. Midya and D. G. Thomas

considered as connected digitized, finite arrays of symbols. Pioneering work in
suggesting and applying a linguistic model for the solution of nontrivial prob-
lems in picture processing was presented in [27]. Using the techniques of formal
string language theory, various types of picture or array grammars have been
introduced and investigated in [9,13,14,31,32]. Most of the array grammars are
based on Chomskian string grammars. Some recent results on picture languages
can be found in [6,12,26].

A picture can be represented as a m × n matrix in which each entry is aij

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. By an operation on a digitized picture is meant a
function which transforms a given picture matrix into another one. Programming
languages have types and a function may have an argument, which is of type
matrix, and it is not trivial to handle computationally. For practical purposes it
is desirable to work with operations on digitized pictures which can be defined
in terms of functions having considerably fewer arguments.

In this paper we deal with a linguistic model for the generation of matrices
(rectangular arrays of terminals) by the substitution of regular sets [18] into
well-known families of formal languages. In formal language theory the substi-
tution operator operates on ‘string languages’ (languages made up of strings of
terminals). Here the substitution operator operates on a ‘string language’ and
the resultant is a ‘matrix language’ (language whose sentences are matrices, i.e.,
m × n arrays of terminals). In particular, we recall finite/regular matrix lan-
guages and we propose the corresponding deterministic version of automaton,
called deterministic finite state matrix automata (DFSMA). Matrix grammar
refers to a grammar in which the production rules are applied together in fixed
sets. There are several variants where the rewriting rules are regular, context-free
or context-sensitive with arrays of terminals in the place of strings of terminals.
Furthermore, in order to obtain richer families, restrictions are imposed on the
use of production rules in well known families of grammars. Several such studies
are available in the literature [33]. In this paper, our focus is on FML where the
rewriting rules are regular. Some interesting classes of pictures including certain
letters of the alphabet, kolam, (traditional picture patterns used to decorate the
floor in South Indian homes) and wall paper designs (repetitive patterns) can
be generated by finite matrix grammars.

The remainder of this paper is organized as follows. Section 2 recalls the def-
inition of FML and Subsect. 2.1 presents examples of FML for better under-
standing. Section 3 proposes the definition of DFSMA and examples are dis-
cussed in Subsect. 3.1 Section 4 presents some of the important results about
FML. In Sect. 5, we discuss the Myhill-Nerode equivalence and establish the
Myhill-Nerode theorem for DFSMA with illustrations with examples in Sub-
sect. 5.1 and 5.2. Section 6 concludes the work and shows a future direction of
work.

2 Finite Matrix Language (FML)

We recall the definition of FML [35] based on right linear grammar [18].

A Myhill-Nerode Theorem for Finite State Matrix 157

Definition 1 (Finite Matrix Language (FML)). A Finite matrix gram-
mar (FMG) is a pair G = (G1, G2), where G1 = (V1, I1, P1, S) is a right
linear grammar with V1, a finite set of horizontal non-terminals, I1, a finite
set of intermediates (i.e., I1 = {S1, S2, ..., Sk}), P1 is a finite set of right lin-
ear grammar production rules called horizontal production rules, and S, the
start symbol where S ∈ V1 and V1 ∩ I1 = φ. We define G2 = (

⋃k
i=1 G2i)

where G2i = (V2i, I2i, P2i, Si) is a right linear grammar, V2i is a finite set
of vertical non terminals, I2i is a finite set of vertical terminals, Si is the
start symbol, P2i is a finite set of vertical production rules, V2i ∩ V2j = φ, if
i �= j. The horizontal derivations and vertical derivations are denoted as =⇒

h
,=⇒

v

respectively. The derivations are obtained by first applying horizontal produc-
tion rules and then the vertical production rules. Firstly a horizontal string
S1S2...Sk ∈ I1

∗ has been generated using horizontal production rules P1 in G1,
i.e., S

∗G1==⇒
h

S1S2...Sn. A vertical derivation has been defined as follows : if there

are rules Si ↓ a1iAi, Ai ↓ a2iB3i, Bji ↓ ajiBj+1i, Bri ↓ ari, 3 ≤ j ≤ r − 1 in G2i,
where i ∈ {1, ..., k} for i = 1, ..., n, then the matrices will be generated in the
following way :

S
∗=⇒
h

[
S1 . . . Sn

]
=⇒
v

[
a11 . . . a1n

A1 . . . An

]

=⇒
v

⎡

⎢
⎢
⎣

a11 . . . a1n

.
a(r−1)1 . . . a(r−1)n

Br1 Brn

⎤

⎥
⎥
⎦

=⇒
v

⎡

⎢
⎢
⎣

a11 . . . a1n

.
a(r−1)1 . . . a(r−1)n

ar1 arn

⎤

⎥
⎥
⎦

Here ∗=⇒
v

is the transitive closure of ⇒. The vertical derivation gets terminated if
Bri → ari are all terminal rules in G2i where i = 1, ..., n.

The set of all matrices is defined as follows:

L(G) = {r × n arrays [aij] | i = 1, ..., r, j = 1, ..., n, r, n ≥ 1, S
∗G1==⇒
h

S1S2...Sn
∗G2==⇒
v

[aij]}

Remark 1. A single non terminal is produced in each column as the rules are in
the form of A → aB,A → a where a ∈ I2.

Remark 2. No cell in any column is blank or empty as a rule from one of G2i

where i = 1, ..., k is supposed to be ε free.

Remark 3. In the definition of finite matrix grammar, the production rules are
applied in a simultaneous fashion. In that sense, the grammars are matrix gram-
mars. Moreover, the definition is more general in that the set of rules applied at
one stage is not fixed but restricted by the horizontal string generated at the first
stage. The name matrix grammar is retained to refer to this generalization also.
Importantly, it should be noted that in this paper, the matrix grammars generate

158 A. Midya and D. G. Thomas

matrix languages whose sentences are matrices (m × n rectangular arrays). On
the other hand, in the formal language theory, the matrix languages are consid-
ered to be string languages where sentences are strings-generated by grammars
written in the form of a matrix.

Remark 4 (Notation). If L′ is the language generated by G1, and R1, ..., Rk (the
subsets of) the regular sets corresponding to G2i where i = 1, ..., k, then we can
write L(G) = (L′) : : (R1, ..., Rk)

2.1 FML - Examples

Example 1. Let G = (G1, G2) where G1 = ({S, S′}, {S1, S2}, {S → S1S
′, S′ →

S2S
′, S′ → S2}, S), G2 = G21 ∪ G22, G21 = ({S1, A}, {X}, {S1 → XA,A →

XA,A → X}, S1), G22 = ({S2, A}, {.,X}, {S2 → .A,A → .A,A → X}, S2),
then L = {S1S

n
2 | n ≥ 1}, R1 = {Xm | m ≥ 1}, R2 = {(.)m−1X | m ≥ 1} and

L(G) = (L′) : : (R1, R2). L(G) is a finite matrix language and consists of m×n
arrays (m > 1, n > 1) describing the token L.

G generates m × n matrices (m > 1, n > 1) which describe the token L. We
illustrate by generating a 6 × 5 matrix from G.

S
∗G1==⇒

h

[
S1 S2 S2 S2 S2

] G2=⇒
v

[
X
A A A A A

]
G2=⇒
v

⎡

⎣
X
X
A A A A A

⎤

⎦

G2=⇒
v

⎡

⎢
⎢
⎣

X
X
X
A A A A A

⎤

⎥
⎥
⎦

G2=⇒
v

⎡

⎢
⎢
⎢
⎢
⎣

X
X
X
X
A A A A A

⎤

⎥
⎥
⎥
⎥
⎦

G2=⇒
v

⎡

⎣

X
X
X
X
X
A A A A A

⎤

⎦

G2=⇒
v

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X
X
X
X
X
X X X X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ L(G)

Example 2. Let G = (G1, G2) where G1 = ({S, S′}, {S1, S2}, {S → S′S, S →
S′S1, S

′ → S1S2S2S2}, S), G2 = G21 ∪ G22, G21 = ({S1, A}, {X}, {S1 →
XA,A → XA,A → X}, S1), G22 = ({S2, S

′
2}, {.,X}, {S2 → S′

2S2, S2 →
S′

2X,S′
2 → X..}, S2), then L = {S1S2S2S

n
2 S1 | n ≥ 1}, R1 = {Xm1 |

m1 ≥ 1}, R2 = {(X..)m2X | m2 ≥ 1} and L(G) = (L′) : : (R1, R2).
L(G) is regular and describes rectangular grids made up of r × s rectangles
(r = 1, 2, . . . , s = 1, 2, . . .) of the same size.

G generates the 2 × 4 grid ∈ L(G).

S
∗G1==⇒

h
[S1 S2 S2 S2 S1 S2 S2 S2 S1 S2 S2 S2 S1 S2 S2 S2 S1]

A Myhill-Nerode Theorem for Finite State Matrix 159

G1,G2====⇒
h,v

[
X S′

2 S′
2 S′

2 X S′
2 S′

2 S′
2 X S′

2 S′
2 S′

2 X S′
2 S′

2 S′
2 X

A S2 S2 S2 A S2 S2 S2 A S2 S2 S2 A S2 S2 S2 A

]

∗G1,∗G2=====⇒
v

⎡

⎢
⎣

X X X X X X X X X X X X X X X X X
X . . . X . . . X . . . X . . . X
X . . . X . . . X . . . X . . . X
X X X X X X X X X X X X X X X X X
X . . . X . . . X . . . X . . . X
X . . . X . . . X . . . X . . . X
X X X X X X X X X X X X X X X X X

⎤

⎥
⎦ ∈ L(G)

In the next section we define deterministic finite state matrix automata
(DFSMA), to correspond to families of matrices (FML).

3 Deterministic Finite State Matrix Automata (DFSMA)

We define a deterministic version of finite state matrix automata.

Definition 2 (Deterministic finite state matrix automaton(DFSMA)).
A deterministic finite state matrix automaton is defined as a 9 tuple DFSMA =
(Q, I, T, δ, δ′, S, F ′, F, $) where

– T : Set of horizontal symbols and |T | is the number of horizontal symbols and
it denotes the number of horizontal states also.

– I : Set of vertical symbols.
– Q = (

⋃k
i=1 Qi) ∪ Q′ is the finite set of states where Qi is the finite set of

vertical states corresponding to each horizontal state Si ∈ Q′, Q′ is the finite
set of horizontal states where (

⋃k
i=1 Qi) ∩ Q′ = φ and |Q′| = |T | = k.

– Vertical transition function δ : (Qi ∪ Q′) × I → Qi. A vertical transition of
DFSMA is of the form : δ(qi, x) = qj where qi, qj ∈ (Qi∪Q′), if qi = Sj ∈ Q′

where i = 0, then it is the first transition of the automata which starts from
the start state S0 ∈ Q′, and if i �= 0 then it is the first transition from
any other horizontal state Sj ∈ Q′. The vertical transition function δ can be
extended to δ̂ that operates on states and strings (as opposed to states and
symbols), such that, δ̂(qi, ε) = qi, δ̂(qi, xa) = δ(δ̂(qi, x), a).

Qi = {qk | (δ̂(qj , xa) = qk) ∧ (qj ∈ Qi ∨ qj = Sj)}.

– Horizontal transition function δ′ : F ′ × {$} → Q′, then the horizontal transi-
tion is of the form δ′(fi, $) = Sj. (F ′ ∩ Qi) is a singleton set which contains
only fi, x∗,i denotes the ith column vector.

Q′ = {Sj | δ′(fi, $) = Sj ∧ (fi ∈ F ′) : δ′(δ̂(Si, x∗,i), $) = Sj}
– S0 ∈ Q′ : Initial state
– We define finite set of vertically accepting states F ′ = (

⋃k
i=1 fi), such that,

F ′ = {fi | δ̂(qi, x∗,i) = fi ∧ δ′(fi, $) = Sj ∧ (1 ≤ i ≤ k)}

– F = fk denotes the final state of DFSMA, such that, δ̂(Sk, x∗,k) = fk where
fk ∈ Qk and k is the number of horizontal states.

160 A. Midya and D. G. Thomas

– $ is the end marker where $ /∈ I

The (standard) semantics of DFSMA is defined as follows.
A vertical run of DFSMA over a vertical word wv = x0 · · · xn, is a sequence

of steps of DFSMA:

Si
x0−→ q1 . . . qn

xn−−→ qn+1

We say a vertical run is accepting if qn+1 = fi ∈ F ′. It is rejecting if qn+1 �∈ F ′

. Vertical word wv is accepted (rejected) if DFSMA has an accepting (reject-
ing) run over wv. There must be an accepting vertical run corresponding each
intermediate state Sj ∈ Q′ where 1 ≤ j ≤ k.

A horizontal run of DFSMA over a horizontal word wh = x∗,0x∗,1 · · · x∗,n

where x∗,i denotes the ith column of the matrix, a horizontal word wh is a
sequence of column vectors where each column vector is followed by the end
marker $ /∈ I, such that, wh = x∗,0$ x∗,1$ · · · x∗,n, is a sequence of steps of
DFSMA :

S0
x∗,0−−→ f0

$−→ S1 . . . Sn
x∗,n−−−→ fn.

We say a horizontal run is accepting if fn = fk ∈ F ′ where |T | = k. Horizontal
word wh is accepted (rejected) if DFSMA has an accepting (rejecting) run over
wh. The language of DFSMA, notation L(DFSMA), is the set of all horizontal
words or images that are accepted by DFSMA.

Our proposed DFSMA has single initial state S0. The automaton starts read-
ing from the first column of the input matrix. All the vertical and horizontal
moves are unique. It reaches fi and then using enmarker $i goes to another
column corresponding to some Sj . If i = j then it will create a loop, otherwise
it will go to new horizontal state. If there exist an input matrix m × n then
the automaton reads till the nth column, there will not be any endmarker $n

followed by the nth column, so the last horizontal move is based on the end-
marker $n−1 which takes the automaton to Sn. The automaton will finish the
reading with the nth set of vertical moves corresponding to Sn, and it ends up
with fn = F , it has single final state (Fig. 1).

3.1 DFSMA - Examples

Example 3. We define DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $) which can accept
the language of Example 2.1 (L token).

– Q = {Q1 ∪ Q2 ∪ Q′} where Q1 = {q11}, Q2 = {q21 , q22} and F ′ = {q11 , q22}
where q11 = f1, q22 = f2 and Q′ = {S1, S2},

– I = {., x},
– T = {S1, S2},
– F ′ = {f1 = q11 , f2 = q22}, and f2 = q22 is the final state.
– S1 is the initial state.
– $ is the end marker where $ /∈ I
– Vertical transitions (δ) and horizontal transitions (δ′) are given below.

A Myhill-Nerode Theorem for Finite State Matrix 161

1. δ(S1, x) = q11 where q11 = f1
2. δ(q11 , x) = q11
3. δ′(q11 , $) = S2

4. δ(S2, .) = q21
5. δ(q21 , .) = q21
6. δ(q21 , x) = q22
7. δ′(q22 , $) = S2

S1start S2

q11 q21

q22q22

x

x

$.

.

x

$

Fig. 1. Deterministic finite state matrix automaton.

Example 4. We define DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $) which can accept
the language of Example 2.2 (L token).

– Q = {Q1 ∪ Q2 ∪ Q3 ∪ Q4 ∪ Q′} where Q1 = {q11}, Q2 = {q121 , q
1
22 , q

1
23}, , Q2 =

{q121 , q
1
22 , q

1
23}, Q3 = {q221 , q

2
22 , q

2
23}, Q4 = {q321 , q

3
22 , q

3
23} and F ′ =

{q11 , q
1
23 , q

2
23 , q

3
23} where q11 = f1, q

1
23 = f2, q

2
23 = f3, q

3
23 = f4 and Q′ =

{S1, S
2
1 , S2

2 , S2
3},

– I = {., x},
– T = {S1, S

2
1 , S2

2 , S2
3},

– F ′ = {f1 = q11 , f2 = q223 , f3 = q223 , f4 = q323}, and f1 = q11 is the final state.
– S1 is the initial state.
– $ is the end marker where $ /∈ I
– Vertical transitions (δ) and horizontal transitions (δ′) are given below (Fig.

2).

1. δ(S1, x) = q11 where q11 = f1
2. δ(q11 , x) = q11
3. δ′(q11 , $) = S2

1

4. δ(S2
1 ,X) = q121

162 A. Midya and D. G. Thomas

5. δ(q121 , .) = q122
6. δ(q122 , .) = S2

1
7. δ(q122 ,X) = q123
8. δ′(q123 , $) = S2

2
9. δ(S2

2 ,X) = q221
10. δ(q221 , .) = q222
11. δ(q222 , .) = S2

2
12. δ(q222 ,X) = q223
13. δ′(q223 , $) = S2

3
14. δ(S2

3 ,X) = q321
15. δ(q321 , .) = q322
16. δ(q322 , .) = S2

3
17. δ(q322 ,X) = q323
18. δ′(q323 , $) = S1

S1start S2
1 S2

2 S2
3 S1

1

q11 q12q121

q122

q123

q221

q222

q223

q321

q322

q323

q12

x

x

$
x

x

$

X

.

.

X

$

X

.

.

X

$

X

.

.

X

$

Fig. 2. Deterministic finite state matrix automaton for 2 × 4 grid

In the next section, we show some of the important results of FML.

4 Properties of Finite Matrix Languages

In this section, we summarize some of the important closure properties of FML
in Table 1. Also, we present some of the decidable results of FML in Table 2.
The following important results had been eastablished in [28].

A Myhill-Nerode Theorem for Finite State Matrix 163

Table 1. Closure property results

Union Closed

Concatenation Closed

Kleene Closure Closed

Complementation Closed

Intersection Closed

Table 2. Decidability results

L = φ Decidable

L = Σ∗ Decidable

L1 = L2 Decidable

w ∈ L Decidable

As the membership problem, (w ∈ L), is decidable, it would be possible to
apply MAT model to learn DFSMA. In order to apply MAT model, very impor-
tantly we must establish the important Myhill - Nerode theorem for DFSMA
and FML.

In the next section, we discuss the Myhill - Nerode equivalence of DFSMA
and FML.

5 Myhill - Nerode Equivalence

The Myhill-Nerode equivalence [2] considers two words w and w′ of a language L
equivalent if there does not exist a suffix u that distinguishes them, that is, only
one of the words wu and w′u is in L. The Myhill-Nerode theorem states that L
is regular if and only if this equivalence relation has a finite index, and moreover
that the number of states in the smallest deterministic finite automaton (DFA)
recognizing L is equal to the number of equivalence classes. In this section, we
present a Myhill-Nerode theorem for DFSMA and FML. In string languages,
Myhill and Nerode only needs a single equivalence relation on words to capture
DFAs, we need two relations ≡v, ≡h on words to capture the richer structure of
DFSMA.

Here, first we define Right invariant vertical equivalence relation and Right
invariant horizontal equivalence relation in order to establish the Myhill - Nerode
theorem for DFSMA and FML.

Definition 3 (Right invariant vertical equivalence relation). A vertical
equivalence relation ≡v on I∗ is said to be right invariant if, for x, y, z ∈ I∗,
x ≡v y =⇒ ∀z(xz ≡v yz).

Example 5. Suppose L = (L′) : : (R1, ..., Rk) be a language over I∗∗ where
each Ri, i ≥ 1 be a language over I. If there exist an equivalence relation ≡R on

164 A. Midya and D. G. Thomas

I∗ then it is a right invariant equivalence relation on I∗. We define x ≡R y if and
only if ∀z(xz ∈ R ⇐⇒ yz ∈ R). It can be easily cross-checked that x ≡R y is an
equivalence relation as it satisfies reflexive, symmetric, and transitive properties.
We assume that x ≡R y where x, y ∈ I∗ and z ∈ I∗ be an arbitrary, now our
claim is xz ≡R yz, that is, (∀w)(xzw ∈ R ⇐⇒ yzw ∈ R). For any arbitrary
w ∈ I∗, we write u = zw, now since x ≡R y, we have xu ∈ R ⇐⇒ yu ∈ R, so
xzw ∈ R ⇐⇒ yzw ∈ R.

Definition 4 (Right invariant horizontal equivalence relation). Hor-
izontal equivalence relation ≡h on I∗∗ is said to be right invariant if, for
x, y, z ∈ I∗∗, x ≡h y =⇒ ∀z(xz ≡h yz).

Example 6. Suppose L = (L′) : : (R1, ..., Rk) be a language over I∗∗. If there
exist an equivalence relation ≡L′ on I∗∗ then it is a right invariant equivalence
relation on I∗∗. We define x ≡L′ y if and only if ∀z(xz ∈ L′ ⇐⇒ yz ∈ L′) where
x, y, z ∈ I∗∗. It can be easily verified that x ≡L′ y is an equivalence relation as it
satisfies reflexive, symmetric, and transitive properties. We assume that x ≡L′ y
where x, y ∈ I∗∗ and z ∈ I∗∗ be an arbitrary, Now we claim xz ≡L′ yz, that is,
(∀w)(xzw ∈ L′ ⇐⇒ yzw ∈ L′). For any arbitrary w ∈ I∗∗, we write u = zw,
now since x ≡L′ y, we have xu ∈ L′ ⇐⇒ yu ∈ L′, so xzw ∈ L′ ⇐⇒ yzw ∈ L′.

Lemma 1. Suppose DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $). There exist a vertical
equivalence ≡DFSMAv

and it is right invariant.

Proof. We define x ≡DFSMAv
y if and only if δ̂(s0, x) = δ̂(s0, y) where x, y ∈

I∗. It is trivial that x ≡DFSMAv
y is an equivalence relation as it satisfies

reflexive, symmetric and transitive properties. We consider x ≡DFSMAv
y that

is δ̂(s0, x) = δ̂(s0, y), for z ∈ I∗, δ̂(s0, xz) = δ̂(δ̂(s0, x), z) = δ̂(δ̂(s0, y), z) =
δ̂(s0, yz) as we know already that δ̂(s0, x) = δ̂(s0, y). (See Definition 3)

Lemma 2. Suppose DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $). There is a horizontal
relation ≡DFSMAh

on I∗∗, and it is right invariant.

Proof. Suppose w = x∗,0 · · · x∗,n and w′ = y∗,0 · · · y∗,n′ then w ≡DFSMAh
w′ if

and only if -

δ′(δ̂(s0, x∗,0), $) = δ′(δ̂(s0, y∗,0), $)

δ′(δ̂(s1, x∗,1), $) = δ′(δ̂(s1, y∗,1), $)
...

δ′(δ̂(sn, x∗,n), $) = δ′(δ̂(sn′ , y∗,n′), $)

Now it can be easily understood that ≡h is right invariant equivalence relation
if, for all z ∈ I∗∗, wz and w′z leads DFSMA to same state. (See Definition 4)

We can now state and prove the celebrated result of Myhill & Nerode.

A Myhill-Nerode Theorem for Finite State Matrix 165

Theorem 1. Suppose there is a DFSMA. Then L(DFSMA) = (L′) ::
(R1, ..., Rk).

Proof. Assume (L′) : : (R1, ..., Rk) is recognized by DFSMA = (Q, I, T, δ, δ′,
S, F, F ′, $),

– For (x ∈ Ri), if δ̂(s0, x) = p, then

[x]i = {y ∈ Ri | δ̂(s0, y) = p}
(All those strings member of Ri, if we put them in the initial state S0 and if
they reach p, they are equivalent to x).

– That is given, (q ∈ Qi), we define -

Cq = {x | (x ∈ Ri) ∧ (Ri ⊆ I∗) ∧ δ̂(S0, x) = q}
(All those strings if we put them in the initial state S0, if they reach q, then
those strings are in equivalence class Cq. Cq is possibly empty if q is reachable.
So corresponding to each state there is an equivalence class of ≡Ri

and it is
finite index.)

– The vertical equivalence classes corresponding to each Ri are completely deter-
mined by the vertical states of DFSMA. More over the number of vertical
equivalence classes of ≡Ri

for each Ri is less than or equal to the number of
vertical states of DFSMA for each Ri. As we know that for each i, |Qi| is
finite, we can conclude that the number of vertical equivalence classes of ≡Ri

for each Ri is finite index.
–

Ri = {x ∈ I∗ | δ̂(S0, x) ∈ F ′}
=

⋃

pv∈F ′
{x ∈ I∗ | δ̂(S0, x) = pv}

=
⋃

pv∈F ′
Cpv

(Cpv
is a vertical equivalence class corresponding to state pv, Ri is union of all

Cpv
for pv ∈ F ′. Some of the intermediate final states may not be reachable,

in that case the set is empty) (See Lemma 1)
– Similarly it can be shown that the horizontal equivalence classes are completely

determined by the the horizontal states of DFSMA, a horizontal word w ∈
I∗∗ is consisting of multiple column vectors, such that, w = x∗,0 x∗,1 · · · x∗,j,

we define, s0
x∗,0$ x∗,1$···x∗,j−1$−−−−−−−−−−−−−→ sj using a sequence of steps of DFSMA:

s0
x∗,0−−→ f0

$−→ s1 . . . sj−1
x∗,j−1−−−−→ fj−1

$−→ sj ,

We define [sj], if s0
x∗,0$ x∗,1$···x∗,j−1$−−−−−−−−−−−−−→ sj, then,

[x∗,0 x∗,1 · · · x∗,j−1] = {y∗,0 y∗,1 · · · y∗,k ∈ I∗∗ | s0
y∗,0$ y∗,1$···y∗,k$−−−−−−−−−−−−→ sj}

166 A. Midya and D. G. Thomas

– More over the number of horizontal equivalence classes of ≡L′ is less than or
equal to the number of horizontal states of DFSMA.

Csj
= {x∗,0 x∗,1 · · · x∗,n′ ∈ I∗∗ | s0

x∗,0$ x∗,1$···x∗,n′$−−−−−−−−−−−−→ sj},

is an equivalence class of ≡L′ and finite index.
–

L′ = {x ∈ I∗∗ | δ′(δ̂(s0, w), $) ∈ Sj}
=

⋃

ph∈Sj

{x ∈ I∗∗ | δ′(δ̂(s0, w), $) = ph}

=
⋃

ph∈Sj

Cph

(Cph
is a horizontal equivalence class corresponding to state ph, L is union

of all Cph
for ph ∈ F . Some of the final states may not be reachable, in that

case the set is empty)(See Lemma 2)

Example 7. In the Example 1 of Subsect. 3.1, the vertical equivalence classes are
following:

– Cq11
= {Xm | (δ̂(s1,Xm) = q11,m ≥ 1}

– Cq21
= {(.)m | (δ̂(s2, (.)m) = q21,m ≥ 1}

– Cq22
= {(.)mX | (δ̂(s2, (.)mX) = q22,m ≥ 1}

Horizontal equivalence class is given below.

Cs1 = {ε | s1
ε−→ s1}

S1 is the start state.

Cs2 = {((.)mX)0 · · · ((.)mX)n | s2
((.)mX)0···((.)mX)n−−−−−−−−−−−−−→ s2}

Theorem 2. Suppose L = (L′) : : (R1, ..., Rk) is an FML over I∗∗. Then
there exist a DFSMA such that L = L(DFSMA).

Proof. We define DFSMA = (Q, I, T, δ, δ′, S, F, F ′, $) where

– Q = Q′′∪Q′ such that Q′′ =
⋃k

i=1 Qi where ∀i Qi = {[x]i | (x ∈ Ri∧Ri ⊆ I∗)}
is a finite set of vertical states corresponds to Si and Q′ = {[x∗,i] | x∗,i ∈ I∗∗}
where x∗,i is the ith column vector and it is followed by the ith end marker
$i, then it goes to another horizontal state Sj. ∀i Qi is the set of equivalence
classes of ≡Ri

and Q′ is the set of equivalence classes of ≡L′ .
(We consider that for each horizontal state Si, i ≥ 0, there is a finite set
Qi of vertical states, all these vertical moves are same as DFA. In case of
horizontal moves, the automaton needs to read atleast one column, if it reads
the ith column vector x∗,i, then it encounters with the ith end marker $i,
finally it goes to some another horizontal state Sj, then it is called horizontal
move.)

A Myhill-Nerode Theorem for Finite State Matrix 167

– S0 = [ε]
(Since we assume that L is nonempty, ε ∈ Pref(L). Here S0 is the first
horizontal state, always the first horizontal state will be considered as the
initial state of the automata. Here S0 will have Q0 which will contain a finite
set of vertical states and using them the automata will read the corresponding
0th column vector x∗,0, followed by $0, then it goes to some Sj where j ≥ 0.)

– F = {[w] | w ∈ L} where w = x∗,0 · · · x∗,n.
(w = x∗,0 · · · x∗,n where x∗,0 represents the 0th column, x∗,1 represents 1th
column so on. So 0th to nth column vector, that i, an array of n columns
is getting accepted. Every column is followed by an end marker $ apart from
the last column x∗,n, in case of the last column, it reaches fn which is the
final state. There is no more column, so there does not exist more horizontal
state.)

– F ′ = {[x∗,i] ∈ Qi | [x∗,i] ∈ Ri ∧ (1 ≤ i ≤ k)}.
(Each column vector x∗,i takes the automata to vertical final state fi ∈ F ′.
After reaching the vertical final state, the automaton encounters with end
marker $, then it goes to another horizontal state.)

– Vertical transition : δ([x], a) = [xa] and there exist Qi, such that, [x] ∈ Qi.
– Horizontal transition : δ′([x∗,i], $) = [SiSj] where Si, Sj corresponds to

x∗,i, x∗,j respectively, [x∗,i] = fi ∈ F ′, [SiSj] ∈ Q′.

Example 8. Example 1 in Sect. 2.1 is suggested to refer. Now, we show that
L(DFSMA) = Ri.

Corollary 1. (Ri ⊆ L(DFSMA) ∧ L(DFSMA) ⊆ Ri) =⇒ (Ri =
L(DFSMA))

Proof. First we will show that ∀i Ri ⊆ L(DFSMA), wv = x0 · · · xn, if wv =
x0 · · · xn is an arbitrary element, then the vertical run of DFSMA:

Si
x0−→ q1 . . . qn

xn−−→ qn+1

Here the run will be accepted if qn+1 ∈ F ′, so any wv ∈ Ri, that will be accepted
by DFSMA, that is, ∀i Ri ⊆ L(DFSMA).

Now, we need to show that L(DFSMA) ⊆ Ri, using contrapositive we can
write ¬Ri � ¬L(DFSMA), then the run of DFSMA:

Si
x0−→ q1 . . . qn

xn−−→ qn+1

Here the run of DFSMA will be rejected as qn+1 /∈ F ′.

Here, we show that L(DFSMA) = L.

Corollary 2. (L ⊆ L(DFSMA) ∧ L(DFSMA) ⊆ L) =⇒ (L = L(DFSMA))

Proof. First we will show that L ⊆ L(DFSMA), if w = x∗,0$ x∗,1$ · · · x∗,n is
an arbitrary element, then the run of DFSMA:

S0
x∗,0−−→ f0

$−→ S1 . . . Sn
x∗,n−−−→ fn.

168 A. Midya and D. G. Thomas

Here the run is accepting if fn ∈ F , so any w ∈ L, that will be accepted by
DFSMA, that is, L ⊆ L(DFSMA).

Now, we need to show that L(DFSMA) ⊆ L, using contrapositive we can
write ¬L � ¬L(DFSMA), then the run of DFSMA:

S0
x∗,0−−→ f0

$−→ S1 . . . Sn
x∗,n−−−→ fn.

Here the run of DFSMA is will be rejected as fn /∈ F .

6 Conclusion and Future Work

In this paper we define deterministic finite state matrix automata, DFSMA,
which can recognize finite matrix languages, FML. DFSMA has single initial
state and single final state. More importantly, we established the Myhill-Nerode
theorem for DFSMA and FML. Unlike the classical Myhill-Nerode theorem,
here we need two equivalence relations, called vertical equivalence relation ≡v

and horizontal equivalence relation ≡h to capture the behaviour of DFSMA.
Now as we have Myhill-Nerode theorem for DFSMA and FML, we can come
up with a learning algorithm for DFSMA.

So, in the form of future work, it could be the immediate step of this work
to develop an efficient learning algorithm for DFSMA, it could be interesting
to explore query learning model [2] in this context.

References

1. Amar, V., Putzolu, G.: On a family of linear grammars. Inf. Control 7(3), 283–291
(1964)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5(2), 121–150
(1990)

4. Angluin, D., Fisman, D.: Learning regular omega languages. Theoret. Comput.
Sci. 650, 57–72 (2016)

5. Angluin, D., Kharitonov, M.: When won’t membership queries help? In: Proceed-
ings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pp.
444–454 (1991)

6. Anselmo, M., Giammarresi, D., Madonia, M.: A common framework to recognize
two-dimensional languages. Fund. Inform. 171(1–4), 1–17 (2020)

7. Bergadano, F., Varricchio, S.: Learning behaviors of automata from shortest coun-
terexamples. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 380–391.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2 193

8. Birkendorf, A., Böker, A., Simon, H.U.: Learning deterministic finite automata
from smallest counterexamples. SIAM J. Discret. Math. 13(4), 465–491 (2000)

9. Bunke, H., Sanfeliu, A.: Syntactic and Structural Pattern Recognition: Theory and
Applications, vol. 7. World Scientific, Singapore (1990)

https://doi.org/10.1007/3-540-59119-2_193

A Myhill-Nerode Theorem for Finite State Matrix 169

10. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016). https://doi.org/
10.1007/s00165-016-0355-5

11. Cavalcanti, A., Dams, D.: FM 2009: Formal Methods: Second World Congress,
Eindhoven, The Netherlands, November 2–6, 2009, Proceedings, vol. 5850. Springer
(2009). https://doi.org/10.1007/978-3-642-05089-3

12. Fernau, H., Paramasivan, M., Schmid, M.L., et al.: Simple picture processing based
on finite automata and regular grammars. J. Comput. Syst. Sci. 95, 232–258 (2018)

13. Firschein, O.: Syntactic pattern recognition and applications. Proc. IEEE 71(10),
1231–1231 (1983)

14. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

15. Ginsburg, S., Spanier, E.H.: Control sets on grammars. Math. Syst. Theory 2(2),
159–177 (1968)

16. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
17. Habarra, O., Jiang, T.: Learning regular languages from counterexamples. J. Com-

put. Syst. Sci. 43(2), 299–316 (1991)
18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-

guages, and computation. ACM SIGACT News 32(1), 60–65 (2001)
19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-

roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

20. Koshiba, T., Mäkinen, E., Takada, Y.: Learning deterministic even linear languages
from positive examples. Theoret. Comput. Sci. 185(1), 63–79 (1997)

21. Mäkinen, E.: A note on the grammatical inference problem for even linear lan-
guages. Fund. Inform. 25(2), 175–182 (1996)

22. Maler, O., Staiger, L.: On syntactic congruences for ω-languages. Theoret. Comput.
Sci. 183(1), 93–112 (1997)

23. Midya, A., Thomas, D., Malik, S., Pani, A.K.: Polynomial time learner for infer-
ring subclasses of internal contextual grammars with local maximum selectors. In:
Hung, D., Kapur, D. (eds.) Theoretical Aspects of Computing- ICTAC 2017. Lec-
ture Notes in Computer Science, vol. 10580, pp. 174–191. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67729-3 11

24. Midya, A., Thomas, D.G., Pani, A.K., Malik, S., Bhatnagar, S.: Polynomial time
algorithm for inferring subclasses of parallel internal column contextual array lan-
guages. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp.
156–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7 13

25. Midya, A., Vaandrager, F., Thomas, D.G., Ghosh, C.: Simulating parallel inter-
nal column contextual array grammars using two-dimensional parallel restarting
automata with multiple windows. In: Lukić, T., Barneva, R.P., Brimkov, V.E.,
Čomić, L., Sladoje, N. (eds.) IWCIA 2020. LNCS, vol. 12148, pp. 106–122. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51002-2 8

26. Mráz, F., Pr̊uša, D., Wehar, M.: Two-dimensional pattern matching against basic
picture languages. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol.
11601, pp. 209–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23679-3 17

27. Narasimhan, R.: Labeling schemata and syntactic descriptions of pictures. Inf.
Control 7(2), 151–179 (1964)

https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/978-3-642-05089-3
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-67729-3_11
https://doi.org/10.1007/978-3-319-59108-7_13
https://doi.org/10.1007/978-3-030-51002-2_8
https://doi.org/10.1007/978-3-030-23679-3_17
https://doi.org/10.1007/978-3-030-23679-3_17

170 A. Midya and D. G. Thomas

28. Radhakrishnan, V., Chakravarthy, V., Krithivasan, K.: Some properties of matrix
grammars- parallel image analysis. In: International Work shop on Parallel Image
Processing and Analysis-Theory and Applications, pp. 213–225 (1999)

29. Radhakrishnan, V., Nagaraja, G.: Inference of even linear grammars and its appli-
cation to picture description languages. Pattern Recogn. 21(1), 55–62 (1988)

30. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

31. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Aca-
demic Press, Cambridge (2014)

32. Rosenfeld, A., Siromoney, R.: Picture languages-a survey. Lang. Des. 1(3), 229–245
(1993)

33. Salomaa, A.: On grammars with restricted use of productions. Suomalainen
Tiedeakatemia (1969)

34. Sempere, J.M., Garćıa, P.: A characterization of even linear languages and its
application to the learning problem. In: Carrasco, R.C., Oncina, J. (eds.) ICGI
1994. LNCS, vol. 862, pp. 38–44. Springer, Heidelberg (1994). https://doi.org/10.
1007/3-540-58473-0 135

35. Stromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972)

36. Takada, Y.: Grammatical inference for even linear languages based on control sets.
Inf. Process. Lett. 28(4), 193–199 (1988)

37. Takada, Y.: Algorithmic learning theory of formal languages and its applications.
Ph.D. thesis, International Institute for Advanced Study of Social Information
Science . . . (1992)

38. Takada, Y.: A hierarchy of language families learnable by regular language learning.
Inf. Comput. 123(1), 138–145 (1995)

39. Takada, Y.: Learning formal languages based on control sets. In: Jantke, K.P.,
Lange, S. (eds.) Algorithmic Learning for Knowledge-Based Systems. LNCS, vol.
961, pp. 316–339. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60217-8 15

40. Yokomori, T.: Learning non-deterministic finite automata from queries and coun-
terexamples. In: Machine Intelligence, vol. 13, pp. 169–189 (1992)

https://doi.org/10.1007/3-540-58473-0_135
https://doi.org/10.1007/3-540-58473-0_135
https://doi.org/10.1007/3-540-60217-8_15
https://doi.org/10.1007/3-540-60217-8_15

Algebraic Properties of Parikh q-Matrices
on Two-Dimensional Words

K. Janaki1 , R. Arulprakasam1(B) , Meenakshi Paramasivan2 ,
and V. Rajkumar Dare3

1 Department of Mathematics, Faculty of Engineering and Technology,
SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

{jk1063,arulprar}@srmist.edu.in
2 FB IV - Informatikwissenschaften, Universität Trier, 54286 Trier, Germany

3 Department of Mathematics, Madras Christian College, Chennai 600059, India

Abstract. Based on the idea of q−count of certain subwords of a word,
the notion of Parikh q−matrix of a word over an ordered alphabet was
introduced. On the other hand, with a two-dimensional picture array of
symbols arranged in rows and columns, two kinds of upper triangular
matrices, known as row and column Parikh q−matrices have also been
introduced and investigated. Certain algebraic properties such as Parikh
q−matrices commutators, alternate Parikh q−matrices and extending
Parikh q−matrices have been investigated for one dimensional case, yet
they do not suffice for two-dimensional words. In this paper, we intro-
duce Parikh q−matrices commutators, alternate Parikh q−matrices and
extending Parikh q−matrices for two-dimensional words and discuss their
properties. We also derive the result used for transferring information
with respect to subword occurrences derived from Parikh q−matrices to
corresponding information derived from extending Parikh q−matrices.

Keywords: Subwords · Parikh matrix · M-ambiguity · Parikh
q−matrix · Two-dimensional words

Mathematics Subject Classification: 68R15 · 68Q42 · 68R99 ·
68Q45 · 68Q15 · 68Q25.

1 Introduction

The Parikh matrix mapping [16] was initially introduced as an extension of the
Parikh vector [17]. Parikh matrices provide more structural information about
words than Parikh vectors and are a useful tool in studying subword occur-
rences. A number of studies on various properties related to Parikh matrices
have been extensively investigated in [1–3,14,15,18–21,23,25–28]. The alternate
Parikh matrix defined and developed in [16] gives an interesting relation between
the Parikh matrix and its inverse. It is shown that the inverse of the Parikh
matrix is the alternate Parikh matrix of the mirror image of the word. Thus
without computing the adjoint and determinant of the Parikh matrix one can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 171–188, 2023.
https://doi.org/10.1007/978-3-031-23612-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_11&domain=pdf
http://orcid.org/0000-0003-0217-1797
http://orcid.org/0000-0001-5652-4346
http://orcid.org/0000-0002-1509-6557
https://doi.org/10.1007/978-3-031-23612-9_11

172 K. Janaki et al.

find its inverse. Parikh matrix of a word does not count scattered subwords of the
word with repeated letters. To facilitate this, in [22], the concept of extending
Parikh matrix mapping induced by a word instead of being defined with respect
to an ordered alphabet.

The Parikh q−matrix which maps words to matrices with polynomial entries
in q was introduced by Egecioglu et al. [12] as an extension of the Parikh matrix.
Parikh q−matrix provides more information about words than the Parikh matrix.
Two words having the same Parikh matrix can have different Parikh q−matrices.
Since the Parikh q−matrix mapping is not injective, a number of studies on
injectivity related to Parikh q−matrix have been investigated in [4,6,7,13]. The
notion of the alternate Parikh q−matrix was introduced by Egecioglu and Ibarra
in [12] and showed that the alternate Parikh q−matrix of the mirror image of
the word is indeed the adjoint matrix of the Parikh q−matrix of the word. In
[5], the notion of extending Parikh q−matrix concerning a word instead of an
ordered alphabet was introduced and investigated some basic properties of this
extending Parikh q−matrices.

On the other hand, a two-dimensional word or picture array is an arrange-
ment of symbols from a finite alphabet in rows and columns. Literature has
explored many combinatorial properties of arrays [9–11]. In [24], two types of
Parikh matrices are defined, namely a row Parikh matrix and a column Parikh
matrix for a picture array. These matrices extend the notion of a Parikh matrix
to arrays. The notion of M−ambiguity of a picture array is introduced in [24] by
considering two picture arrays to be M−equivalent if their row Parikh matrices
and their column Parikh matrices are the same. More specifically, conditions
that ensure M−ambiguity are established for binary and ternary words. The
problem of reconstruction of two-dimensional binary images has been studied
[29] based on Parikh matrices. Based on the notion of Parikh q−matrices on
words and Parikh matrices of picture array, two types of Parikh q−matrices are
introduced in [8]. Also the notions of q−row and q−column equivalences of two
arrays and also several properties relating to q−ambiguity including conditions
for q−ambiguity of row or column products for binary arrays are derived. How-
ever, Parikh q−matrix of an array does not q−count scattered subwords of the
array with repeated letters. To facilitate this, in this paper, we introduce extend-
ing Parikh q−matrix of picture arrays induced by a word instead of being defined
with respect to an ordered alphabet.

The remainder of this paper is structured as follows. Section 2 provides basics
which are used in subsequent sections. In Sect. 3, we give a similar analogue of
Parikh q−matrix commutators of words, called Parikh q−matrix commutators of
array and discuss some basic properties. In Sect. 4, we introduce alternate Parikh
q−matrix for picture arrays and investigate interrelation between the inverse of
a Parikh q−matrix associated with an array and the Parikh q−matrix of the
mirror image of an array. In Sect. 5, we introduce extending Parikh q−matrix for
picture arrays and investigate the results used for transferring information with
respect to subword occurrences derived from Parikh q−matrices to corresponding

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 173

information derived from extending Parikh q−matrices. We end the paper with
concluding remarks.

2 Preliminaries

In this section, we recollect fundamental definitions and notations of words,
scattered subwords, Parikh matrix and Parikh q−matrix for two-dimensional
words.

2.1 Subwords

Consider an alphabet Σ = {a1, a2, · · · , ak} and the set of all words over Σ is Σ∗.
For any word x ∈ Σ∗, the length of x is denoted by |x|. An ordered alphabet
is an alphabet Σ = {a1, a2, · · · , ak} with the total order relation a1 < a2 < · · · <
ak and it is denoted by Σk. The empty word is denoted by λ. A word y ∈
Σ∗ is called a scattered subword of x if there exist words y1, y2, · · · , yn and
x0, x1, x2, · · · , xn over Σ such that y = y1y2 · · · yn and x=x0y1x1y2 · · · ynxn. The
number of occurrences of the word y as a scattered subword of the word x is
denoted by |x|y. For instance |abbbaaab|aab = 6. Let aij be the word aiai+1 · · · aj

for 1 ≤ i < j ≤ k and if i = j then aij = ai. Let x, y be two letters in an alphabet Σ
and δa,b be the Kronecker symbol regarding letters such that

δa,b =

{
1 if a = b,
0 if a ≠ b.

2.2 Parikh Matrix

Let Mk denote the set of all k × k upper triangular matrices with entries N and
unit diagonal where N is the set of all non-negative integers.

Definition 1. Let Σk ={a1, a2, · · · , ak} be an ordered alphabet where k ≥ 1. The
Parikh matrix mapping denoted by ψk is the morphism ψk : Σ∗

k → Mk+1 defined
as ψk(al) = (mij)1 ≤ i, j ≤ k+1 where

– mii = 1 for 1 ≤ i ≤ k + 1
– ml,(l+1) = 1

and all other entries are zero. For every word x ∈ Σ∗
k such that x = x1x2 · · · xn

with xi ∈Σk then

ψk(x) = ψk(x1)ψk(x2) · · · ψk(xn).

174 K. Janaki et al.

Example 1. Let x = acbc over Σ3 then the Parikh matrix of x is

ψ3(acbc) = ψ3(a)ψ3(c)ψ3(b)ψ3(c)

=

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 1 1 1
0 1 1 1
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦ .

Two words x, y ∈Σ∗
k are said to be M−equivalent denoted by x ∼M y if and only if

ψk(x) = ψk(y). A word z ∈ Σ∗
k is said to be M−ambiguous if there exists a word

w ≠ z such that z ∼M w. Otherwise z is called M−unambiguous.

2.3 Parikh q−Matrix

The notion of Parikh matrices is extended to a mapping called Parikh q−matrix
mapping which takes its values in matrices with polynomial entries. The entries
of the Parikh q−matrices are obtained by q−counting the number of occurrences
of certain words as scattered subwords of a given word. The q-counting of a
scattered subword aij of a word x represented by Sx,aij is defined as follows:

Definition 2. Let Σk = {a1, a2, · · · , ak} be an ordered alphabet where k ≥ 1,
x ∈Σ∗

k and aij be a scattered subword of x for 1 ≤ i ≤ j < k. Then

Sx,aij
(q) =

∑
x=uiaiui+1···ujajuj+1

q
|ui|ai

+|ui+1|ai+1+···+|uj |aj
+|uj+1|aj+1 .

Example 2. Let x = baaabb be a word over Σ2. Considering x as a word over Σ3.
Then

– For i = 1 and j = 1 we get aij = a and Sx,a(q) = q0+2 + q1+2 + q2+2 = q2 + q3 + q4

– For i = 2 and j = 2 we get aij = b and Sx,b(q) = q0+0 + q1+0 + q2+0 = 1 + q + q2

– For i = 1 and j = 2 we get aij = ab and Sx,ab(q) = q0+0+0 + q0+1+0 + q1+0+0 +
q1+1+0 + q2+0+0 + q2+1+0 = 1 + 2q + 2q2 + q3.

For any word x ∈Σ∗
k , Sx,aij

(1) = |x|aij
for 1 ≤ i ≤ j ≤ k. Let Mk(q) denote the set

of all k × k upper triangular matrices with entries N(q) and unit diagonal where
N(q) is the set of all polynomials in the variable q with coefficients from N.

Definition 3. Let Σk = {a1, a2, · · · , ak} be an ordered alphabet and x ∈Σ∗
k then

the Parikh q-matrix mapping denoted by ψq is the morphism ψq : Σ∗
k → Mk(q)

defined as ψq(al) = (mij)1 ≤ i, j ≤ k+1 where

– mll = q

– mii = 1 for 1 ≤ i ≤ k, i ≠ l

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 175

– ml(l+1) = 1 if l < k

and all other entries are zero.

Definition 4. Let Σk = {a1, a2, · · · , ak} be an ordered alphabet and x ∈Σ∗
k then

the principal diagonal entries of the matrix ψq(x) is (q|x|a1 , q|x|a2 , · · · , q|x|ak).

Note that the Parikh vector of x is given by the formal derivative of (q|x|a1 , q|x|a2 ,
· · · , q|x|ak) with respect to q at q=1. The entries of the q−matrices are obtained
by q−counting the number of occurrences of certain words as scattered subwords
of a given word.

Theorem 1. [12] Let Σk = {a1, a2, · · · , ak} be an ordered alphabet and x ∈ Σ∗
k.

Then the Parikh q−matrix has the following properties

– mij = 0 for all 1 ≤ j < i ≤ k
– mii = q

|x|ai for 1 ≤ i ≤ k
– mi(j+1) = Sx,aij

(q) for all 1 ≤ i ≤ j < k.

Example 3. Let x = acbc over Σ3 then the Parikh q−matrix of x is

ψq(acbc) = ψq(a)ψq(c)ψq(b)ψq(c)

=

⎡
⎣q 1 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣1 0 0

0 1 0
0 0 q

⎤
⎦

⎡
⎣1 0 0

0 q 1
0 0 1

⎤
⎦

⎡
⎣1 0 0

0 1 0
0 0 q

⎤
⎦

=

⎡
⎣q q q

0 q q
0 0 q2

⎤
⎦

=

⎡
⎣q|x|a Sx,a(q) Sx,ab(q)

0 q|x|b Sx,b(q)
0 0 q|x|c

⎤
⎦ .

The Parikh q−matrix of a word x over Σk = {a1, a2, · · · , ak} coincides with the
usual Parikh matrix, when the q−matrix is evaluated at q=1 treating the word x
as a word over Σk+1 = {a1, a2, · · · , ak+1}. The Parikh matrix of the word x=acbc
over Σ3 is a 4 × 4 upper triangular matrix given by

ψ3(acbc) =

⎡
⎢⎢⎣

1 1 1 1
0 1 1 1
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦ .

By comparing Parikh matrix with Parikh q−matrix, add a new symbol d to Σ3

to get Σ4 = {a, b, c, d} and compute the Parikh q−matrix of the word x treating
it as a word over Σ4. For example,

176 K. Janaki et al.

ψq(acbc) = ψq(a)ψq(c)ψq(b)ψq(c)

=

⎡
⎢⎢⎣
q 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 q 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 q 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 q 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
q q q 1
0 q q 1
0 0 q2 q + 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
q|x|a Sx,a(q) Sx,ab(q) Sx,abc(q)

0 q|x|b Sx,b(q) Sx,bc(q)
0 0 q|x|c Sx,c(q)
0 0 0 1

⎤
⎥⎥⎦ .

Two words x, y ∈Σ∗
k are said to be q-equivalent denoted by x ∼q y if and only

if ψq(x) = ψq(y). A word z ∈Σ∗
k is said to be q-ambiguous if there exists a word

w ≠ z such that z ∼q w. Otherwise z is called q-unambiguous. Note that if two
words x, y are q−equivalent then they have same Parikh vector.

In [6], a notion called partial sum of two Parikh q−matrices was introduced,
which was motivated by the notion in [15] considered for words.

Definition 5. [6] Let x and y be the words over Σk. Let ψq(x) and ψq(y) be the
corresponding Parikh q−matrices. Define ψq(x)⊕ψq(y)=M =(cij)k×k where cij is
the usual sum of the corresponding entries of the matrices ψq(x) and ψq(y) except
for the elements in the main diagonal of M which are defined by cii = q

|x|ai
+|y|ai

for 1 ≤ i ≤ k.

Throughout the paper if there is a word x from Σk, we assume x to be a
word from Σk+1 and compute the Parikh q−matrix of x in Mk+1(q).

Definition 6. Let Σk = {a1, a2, · · · , ak} be an ordered alphabet and x ∈Σ∗
k then

the alternate Parikh q-matrix mapping denoted by ψq is the morphism ψq : Σ∗
k →

Mk(q) defined as ψq(al) = (mij)1 ≤ i, j ≤ k where

– mll = 1
– mii = q for 1 ≤ i ≤ k, i ≠ l
– ml(l+1) = −1 if l < k

and all other entries are zero.

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 177

Example 4. Let x = abba over Σ3 then the alternate Parikh q−matrix of x is

ψq(abba) = ψq(a)ψq(b)ψq(b)ψq(a)

=

⎡
⎣1 −1 0

0 q 0
0 0 q

⎤
⎦

⎡
⎣q 0 0

0 1 −1
0 0 q

⎤
⎦

⎡
⎣q 0 0

0 1 −1
0 0 q

⎤
⎦

⎡
⎣1 −1 0

0 q 0
0 0 q

⎤
⎦

=

⎡
⎣q2 −(q + q2) (q + q2)

0 q2 −(q2 + q3)
0 0 q4

⎤
⎦ .

Definition 7. Let Σk={a1, a2, · · · , ak} be an ordered alphabet where k≥1, x∈Σ∗
k

and aij be a scattered subword of x for 1≤ i≤ j <k. Then the alternate q-counting
of a scattered subword aij of a word x represented by Sx,aij is defined as

Sx,aij
(q) = (−1)i+j+1

∑
x=uiaiui+1···ujajuj+1

q
∑j+1

t=i (|ut|−|ut|at).

Example 5. Let x = abba be a word over Σ2. Considering x as a word over Σ3.
Then

– For i= 1 and j = 1 we get aij =a and Sabba,a(q)=−(q0+3−2 +q3−1+0)=−(q1 +q2)
– For i=2 and j =2 we get aij =b and Sabba,b(q)=−(q1−0+2−0+q2−1+1)=−(q3+q2)
– For i = 1 and j = 2 we get aij = ab and Sabba,ab(q) = q0+0+2−0 + q0+1−1+1 = q+ q2.

Definition 8. Let Σk = {a1, a2, · · · , ak} be an ordered alphabet and x ∈Σ∗
k and

u = u1u2 · · · ut be a word of length t where ui ∈ Σk for all 1 ≤ i ≤ t then the
extending Parikh q-matrix mapping induced by the word u denoted by ψu

q is the
morphism ψu

q : Σ∗
k → Mt+1(q) defined as follows. Assume that the letter a ∈Σk

and ψu
q (a) = (mij)1 ≤ i, j ≤ t+1 where

– mij = 1, if i = j
– If δbl,a = 1, 1 ≤ l ≤ t then update the entries mll = q

– ml(l+1) = 1

and all other entries are zero.

Definition 9. Let Σk={a1, a2, · · · , ak} be an ordered alphabet where k≥1, x∈Σ∗
k

and aij be a scattered subword of x for 1≤i≤j<|u|. Then the extending q-counting
of a scattered subword aij of a word x with respect to the word u represented by
Su
x,aij is defined as

Sux,aij
(q) =

∑
x=uiaiui+1···ujajuj+1

q
∑j+1

t=i |ut|at .

In [6], a notion called partial sum of two Parikh q−matrices was introduced,
which was motivated by the notion in [15] considered for words.

178 K. Janaki et al.

Definition 10. [6] Let x and y be the words over Σk. Let ψq(x) and ψq(y) be the
corresponding Parikh q−matrices. Define ψq(x)⊕ψq(y)=M =(cij)k×k where cij is
the usual sum of the corresponding entries of the matrices ψq(x) and ψq(y) except
for the elements in the main diagonal of M which are defined by cii = q

|x|ai
+|y|ai

for 1 ≤ i ≤ k.

Throughout the paper if there is a word x from Σk, we assume x to be a
word from Σk+1 and compute the Parikh q−matrix of x in Mk+1(q).

2.4 Two Dimensional Words

Let Σk = {a1 < a2 < · · · < ak} be an ordered alphabet and h, v be two positive
integers. A two dimensional word (or picture array) X is a rectangular array of
symbols over Σk in h rows and v columns which is in the form of

a11 a12 · · · a1v

...
.

...
ah1 ah2 · · · ahv

where aij ∈Σ and 1≤i≤h, 1≤j≤v. The set of all picture arrays over Σk is denoted
by ℘. Let ◦ and � be the symbol of column concatenation and row concatenation
of picture arrays respectively in ℘. For X,Y ∈ ℘, X ◦ Y is defined if and only if
X and Y have same number of rows and X � Y is defined if and only if X and
Y have same number of columns.

2.5 Parikh q−Matrices of a Picture Array

Definition 11. For h, v ≥ 1, let X ∈ ℘ be a h × v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns. Let
ψq(xi) and ψq(yt

j) be the Parikh q−matrix of xi and yt
j respectively. Then the

row and column Parikh q−matrix Rq(X) and Cq(X) respectively are defined as

Rq(X) = ψq(x1)⊕ ψq(x2)⊕ · · ·⊕ ψq(xh)

=

h

⊕

i=1
ψq(xi)

Cq(X) = ψq(yt
1)⊕ ψq(yt

2)⊕ · · ·⊕ ψq(yt
v)

=

v

⊕

j=1
ψq(yt

j).

Definition 12. For h, v ≥ 1, let X ∈ ℘ be a h × v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns. Let
ui,j be a scattered subword of X where 1 ≤ i ≤ j ≤ k. Then the row and column
q−counting scattered subword ui,j of an array X denoted by R(SX,ui,j

(q)) and
C(SX,ui,j

(q)) respectively and defined as
R(SX,ui,j

(q)) =
∑h

i=1 Sxi,ui,j
(q)

C(SX,ui,j
(q)) =

∑v
j=1 Syt

j ,ui,j
(q).

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 179

3 Extending Parikh q−Matrix of Picture Arrays

In this section we define row and column extending Parikh q−matrix of a pic-
ture array. And also we derive the result used for transferring information with
respect to subword occurrences derived from Parikh q−matrices to corresponding
information derived from extending Parikh q−matrices.

Definition 13. For h, v ≥ 1, let X ∈ ℘ be a h × v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns.
Let u = u1u2...ut be a word of length t over Σk. Let ψu

q (xi) and ψu
q (yt

j) be the
extending Parikh q−matrix of xi and yt

j respectively. Then the row and column
extending Parikh q−matrix with respect to u are denoted as Ru

q (X) and Cu
q (X)

respectively and defined as

Ru
q (X) = ψu

q (x1)⊕ ψu
q (x2)⊕ · · ·⊕ ψu

q (xh)

= ⊕

h
i=1ψ

u
q (xi)

Cu
q (X) = ψu

q (yt
1)⊕ ψu

q (yt
2)⊕ · · ·⊕ ψu

q (yt
v)

= ⊕

v
j=1ψ

u
q (yt

j).

Example 6. Let X =

a a b a b
b a a a b
b a b a b
a a b b b

be the array and u = aba be the word over Σ2.

Then the row extending Parikh q−matrix of X with respect to the word aba is

Ru
q (X) =

4

⊕

i=1
ψu

q (xi)

= ψu
q (x1)⊕ ψu

q (x2)⊕ ψu
q (x3)⊕ ψu

q (x4)

=

⎡
⎢⎢⎣
q3 2q3 + q2 3q2 + 2q q + 1
0 q2 2q 1
0 0 q3 q2 + q + 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
q3 q3 + q2 + q q2 + q + 1 0
0 q2 q3 + q q2 + q + 1
0 0 q3 q2 + q + 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
q2 2q2 3q 1
0 q3 3q2 2q + 1
0 0 q2 q + 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
q2 q4 + q3 q3 + 2q2 + 2q + 1 0
0 q3 q2 + q + 1 0
0 0 q2 q + 1
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
q10 q4 + 4q3 + 4q2 + q q3 + 6q2 + 8q + 2 q + 2
0 q10 q3 + 4q2 + 4q + 1 q2 + 3q + 3
0 0 q10 2q2 + 4q + 4
0 0 0 1

⎤
⎥⎥⎦ .

180 K. Janaki et al.

The column extending Parikh q−matrix of X with respect to the word aba is

Cu
q (X) =

5

⊕

j=1
ψu
q (yt

j)

= ψu
q (yt

1)⊕ ψu
q (yt

2)⊕ ψu
q (yt

3)⊕ ψu
q (yt

4)⊕ ψu
q (yt

5)

=

⎡
⎢⎢⎣
q2 q2 + q q2 + q q + 1
0 q2 q2 + q q + 1
0 0 q2 q + 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
q4 q3 + q2 + q + 1 0 0
0 1 0 0
0 0 q4 q3 + q2 + q + 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
q q2 q + 1 0
0 q3 q2 + 2q 1
0 0 q 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
q3 q3 + q2 + q q2 + q + 1 0
0 q 1 0
0 0 q3 q2 + q + 1
0 0 0 1

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣

1 0 0 0
0 q4 q3 + q2 + q + 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
q10 2q3 + 4q2 + 3q + 1 2q2 + 3q + 2 q + 1
0 q10 q3 + 3q2 + 4q + 2 q + 2
0 0 q10 q3 + 2q2 + 3q + 4
0 0 0 1

⎤
⎥⎥⎦ .

Definition 14. For h, v ≥ 1, let X ∈ ℘ be a h × v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns. Let
u = u1u2...ut be a word of length t over Σk and ui′,j′ be a scattered subword of
X where 1 ≤ i′ ≤ j′

≤ t. Then the row and column q−counting scattered subword
ui′,j′ of an array X with respect to a word u respectively and defined as

R(SuX,ui′,j′ (q)) =
h∑
i=1

Suxi,ui′,j′ (q) and C(SuX,ui′,j′ (q)) =
v∑

j=1

Suyt
j ,ui′,j′ (q).

Example 7. Let X =

a a b a b
b a a a b
b a b a b
a a b b b

be the array and u = bab be the word over Σ2.

Then the row q−counting scattered subword ba of X with respect to the word
bab is

R(SuX,ba(q)) =
4∑

i=1

Suxi,ba(q)

= Sux1,ba(q) + S
u
x2,ba(q) + S

u
x3,ba(q) + S

u
x4,ba(q)

= (q1) + (q1 + q2 + q3) + (3q2) + (0)
= 2q1 + 4q2 + q3.

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 181

The column q−counting scattered subword ba of X with respect to the word bab
is

C(SuX,ba(q)) =
5∑

j=1

Suyt
j ,ba

(q)

= Suyt
1,ba

(q) + Suyt
2,ba

(q) + Suyt
3,ba

(q) + Suyt
4,ba

(q) + Suyt
5,ba

(q)

= (1 + q1) + (0) + (q2) + (0) + (0)
= 1 + q1 + q2.

Theorem 2. Let X be an array and u be a word of length t over Σk. For every
row and column extending Parikh q−matrix, Ru

q (X) and Cu
q (X) respectively, let

Σt = {a1 <a2 < · · · at} be an ordered alphabet and let X ′ be an array over Σt such
that

Ru
q (X) = Rq(X ′)

Cu
q (X) = Cq(X ′)

can be effectively constructed.

Proof. Consider the word u of length t over Σk such that number the occurrences
of the letters in u by 1, 2, · · · , t which constitute the ordered aplhabet Σt (Σt =

{1 < 2 < · · · < t}). Consider a morphism δ of Σ∗
k into Σ∗

t is defined as follows. Let
a ∈ Σ which appear in u in positions q1, q2, · · · , qs for 1 ≤ s ≤ t where qi < qi+1,
1 ≤ i ≤ s − 1. Then we define δ(a) = qsqs−1 · · · q1. Choose X ′

= δ(X) for X ∈ ℘ over
Σ∗

k . For instance, let

X =

a b b a b
b a a b a
a b a a b
a b a b b
b b b a a

and u = abab then δ(a) = 31 and δ(b) = 42. Hence for X we obtain

X ′
=

3 1 4 2 4 2 3 1 4 2
4 2 3 1 3 1 4 2 3 1
3 1 4 2 3 1 3 1 4 2
3 1 4 2 3 1 4 2 4 2
4 2 4 2 4 2 3 1 3 1

.

For the ordered alphabet Σ4 = {1, 2, 3, 4}, we have Rq(X ′)=⎡
⎢⎢⎢⎢⎣

q12 4q3 + 5q2 + 2q + 1 7q2 + 8q 2q2 + 2q + 1 2q + 2
0 q13 q4 + 2q3 + 6q2 + 4q q3 + 7q2 + 7q + 1 4q + 4
0 0 q12 4q3 + 6q2 + q + 1 4q2 + 6q + 3
0 0 0 q13 3q2 + 5q + 5
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

182 K. Janaki et al.

=Rq(X). Similarly we show that

Cq(X ′) =

⎡
⎢⎢⎢⎢⎣

q12 3q3 + 7q2 + 2q 3q2 + 5q + 2 q2 + 6q + 1 q + 2
0 q13 3q3 + 6q2 + 4q 2q3 + 4q2 + 7q 2q2 + 4q + 5
0 0 q12 3q3 + 7q2 + 2q 3q2 + 7q + 5
0 0 0 q13 q3 + 2q2 + 5q + 5
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

= Cq(X).

��

4 Alternate Parikh q−Matrix of Picture Array

In this section we define row and column alternate Parikh q−matrix of a picture
array. Also we provide a relation between Parikh q−matrix and its alternative
Parikh q−matrix of a picture array.

Definition 15. For h, v ≥ 1, let X ∈ ℘ be a h × v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns.
Let ψq(xi) and ψq(yt

j) be the alternate Parikh q−matrix of xi and yt
j respec-

tively. Then the row and column alternate Parikh q−matrix Rq(X) and Cq(X)
respectively are defined as

Rq(X) =
h

⊕

i=1
ψq(xi) and Cq(X) =

v

⊕

j=1
ψq(y

t
j).

Example 8. Consider the array X =

a a b a b
b a a a b
b a b a b
a a b b b

over Σ2. Then the row alternate

Parikh q−matrix of X is

Rq(X) =
4

⊕

i=1
ψq(xi)

= ψq(x1)⊕ ψq(x2)⊕ ψq(x3)⊕ ψq(x4)

=

⎡
⎣q2 −2q − q2 q3 + 2q2 + 2q

0 q3 −q3 − q4

0 0 q5

⎤
⎦
⊕

⎡
⎣q2 −q − q2 − q3 q3 + q2 + q

0 q3 −q3 − q4

0 0 q5

⎤
⎦
⊕

⎡
⎣q3 −2q2 2q2 + q3

0 q2 −q2 − q3 − q4

0 0 q5

⎤
⎦
⊕

⎡
⎣q3 −1 − q 1 + 2q + 2q2 + q3

0 q2 −q2 − q3 − q4

0 0 q5

⎤
⎦

=

⎡
⎣q10 −q3 − 4q2 − 4q − 1 4q3 + 7q2 + 5q + 1

0 q10 −4q4 − 4q3 − 2q2

0 0 q20

⎤
⎦ .

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 183

The column alternate Parikh q−matrix of X is

Cq(X) =
5

⊕

j=1
ψq(y

t
j)

= ψq(y
t
1)⊕ ψq(y

t
2)⊕ ψq(y

t
3)⊕ ψq(y

t
4)⊕ ψq(y

t
5)

=

⎡
⎣q2 −q2 − q q + q2

0 q2 −q2 − q3

0 0 q4

⎤
⎦
⊕

⎡
⎣1 −1 − q − q2 − q3 0

0 q4 0
0 0 q4

⎤
⎦
⊕

⎡
⎣q3 −q q + q2

0 q −q − q2 − q3

0 0 q4

⎤
⎦
⊕

⎡
⎣q −1 − q − q2 1 + q + q2

0 q3 −q3

0 0 q4

⎤
⎦
⊕

⎡
⎣q4 0 0

0 1 −1 − q − q2 − q3

0 0 q4

⎤
⎦

=

⎡
⎣q10 −q3 − 3q2 − 4q − 2 3q2 + 3q + 1

0 q10 −q4 − 3q3 − 3q2 − 2q − 1
0 0 q20

⎤
⎦

Definition 16. For h, v ≥ 1, let X ∈ ℘ be a h × v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns.
Let ui,j be a scattered subword of X where 1 ≤ i ≤ j ≤ k. Then the row and
column alternate q−counting scattered subword ui,j of an array X denoted by
R(SX,ui,j

(q)) and C(SX,ui,j
(q)) respectively and defined as

R(SX,ui,j
(q)) =

h∑
i=1

Su
xi,ui,j

(q) and C(SX,ui,j
(q)) =

v∑
j=1

Su
yt
j ,ui,j

(q).

Theorem 3. [6] Let x be a word over Σ2 then Sx,a(q)Sx,b(q) − q|x|bSx,ab(q) =
Smi(x),ab(q).

We extend Theorem 3 for picture array as follows.

Theorem 4. For h, v ≥1, let X ∈℘ be an array over Σ2. Let xi be the horizontal
words in the h rows and yj be the vertical words in the v columns. Then

(i)
∑h

i=1

[
Sxi,a(q)Sxi,b(q) − q

|xi|bSxi,ab(q)
]
=R

(
SXv,ab(q)

)
(ii)

∑v
j=1

[
Syt

j ,a
(q)Syt

j ,b
(q) − q|yt

j |bSyt
j ,ab

(q)
]
= C

(
SXv,ab(q)

)
.

Proof. Let X be the array in ℘ over Σ2 with h number of rows and v number of
columns such that X = x1 � x2 � · · · � xh, xi ∈Σ

∗
2 , 1 ≤ i ≤ h. Let xi be a horizontal

words over Σ2 then by Theorem 3 we have Sxi,a(q)Sxi,b(q) − q|xi|bSxi,ab(q) =(
Smi(xi),ab(q)

)
. As there are h number of rows we have

h∑
i=1

[
Sxi,a(q)Sxi,b(q) − q

|xi|bSxi,ab(q)
]
=R

(
SXv,ab(q)

)
.

184 K. Janaki et al.

Similarly let X = yt
1 ◦ yt

2 ◦ · · · ◦ yt
v, yt

j ∈ Σ∗
2 , 1 ≤ j ≤ v. Let yt

j be a vertical words

over Σ2 then we have Syt
j ,a

(q)Syt
j ,b

(q)− q|yt
j |bSyt

j ,ab
(q) =

(
Smi(yt

j),ab
(q)

)
. As there

are v number of columns we have
v∑

j=1

[
Syt

j ,a
(q)Syt

j ,b
(q) − q|yt

j |bSyt
j ,ab

(q)
]
= C

(
SXv,ab(q)

)
.

��
Theorem 5. [5] For any word x ∈ Σ∗

k treating x as a word over Σk+1,
ψq(x)ψq(mi(x)) = q|x|Ik+1.

The Theorem 5 does not hold for Picture array. For instance let X =
a b a a b
b a b a a
b b b a b

be the array over Σ2 and Xv be the array obtained by reflecting X on its

rightmost column i.e. Xv =

b a a b a
a a b a b
b a b b b

. Then Rq(X)Rq(Xv)=

⎡
⎣q7 q3 + 3q2 + 3q q2 + 2q + 3

0 q8 q3 + q2 + 3q + 3
0 0 1

⎤
⎦

⎡
⎣q8 −q3 − 3q2 − 3q 3q3 + 4q2 + 3q

0 q7 −3q4 − 3q3 − q2 − q
0 0 q15

⎤
⎦

≠q(3×5)I3.

Theorem 6. For h, v ≥ 1, let X ∈℘ be an array over Σ2 treating X as an array
over Σ3. Let xi be the horizontal words in the h rows and yj be the vertical words
in the v columns. Then

(i) ⊕h
i=1ψq(xi)ψq(mi(xi)) = q(h×v)I3

(ii) ⊕v
j=1ψq(yt

j)ψq(mi(yt
j)) = q

(h×v)I3.

Proof. Let X be the array in ℘ over Σ2 with h number of rows and v number of
columns such that X = x1 � x2 � · · · � xh, xi ∈Σ

∗
2 , 1 ≤ i ≤ h. Let xi be a horizontal

words over Σ2 then by Theorem 5 we have ψq(xi)ψq(mi(xi)) = q|xi|I3. As there
are h number of rows we have

h

⊕

i=1
ψq(xi)ψq(mi(xi)) = q(h×v)I3.

The proof of (ii) is similar. ��
Theorem 7. [4] Let x, y be two words over Σk then x∼qy if and only if mi(x)∼q
mi(y)

We extend Theorem 7 for picture array as follows.

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 185

Theorem 8. For h, v≥1, let X, Y be two arrays over Σ2 such that X ∼q Y then
Xv ∼q Yv.

Proof. For 1 ≤ i ≤ h, let xi and yi are the words in the ith rows of X and Y
respectively such that xi ∼q yi implies Rq(X) = Rq(Y) then by Theorem 7, we
have mi(xi) ∼q mi(yi) which implies that Rq(Xv) =Rq(Yv). Similarly let xj and
yj are the words in the jth columns of X and Y respectively such that xj ∼q yj
implies Cq(X) = Cq(Y) then by Theorem 7, we have mi(xj) ∼q mi(yj) which
implies that Cq(Xv) = Cq(Yv). Therefore we have that Xv ∼q Yv. ��

5 Parikh q−Matrix Commutator of Arrays

In this section we introduce Parikh q−matrix commutator of arrays and discuss
some properties.

Definition 17. For h, v ≥1, let X and Y be two picture arrays over Σk are said
to be

1. q−row equivalent if Rq(X) =Rq(Y)
2. q−column equivalent if Cq(X) = Cq(Y).

If the arrays X and Y are both having q−row equivalent and q−column equivalent
then the arrays are q− equivalent (i.e. X ∼q Y) also we can call that X as well
as Y are q−ambiguous. Otherwise the arrays are said to be q−unambiguous.

Definition 18. Let X,Y ∈Σ∗∗
2 . The set of all Parikh q−matrix commutators of

a binary picture array X is defined as

φq
com(X) = {Y |XY ∼q Y X}

Theorem 9. Let X,Y ∈Σ∗∗
2 . The following are equivalent.

1. Y ∈ φq
com(X)

2. for all i, j ≥ 1, the successive column concatenations Y i
∈ φ

q
com(Xj) and the

successive row concatenations Yi ∈ φ
q
com(Xj)

3. Yv ∈ φ
q
com(Xv).

Proof. 1 ⇒ 2 : Y ∈ φq
com(X) ⇒ XY ∼q Y X. Therefore

Y iXj
∼q Y i−1Y XXj−1

∼qY
i−1XY Xj−1

∼qY
i−2Y XY Xj−1

∼qY
i−2XY 2Xj−1.

Proceeding in this way we get Y iXj
∼q XjY i. Therefore Y i

∈φ
q
com(Xj). Similarly

Yi ∈ φ
q
com(Xj).

2 ⇒ 3 : Taking i = j = 1, we get Y X ∼ qXY and by Theorem 8, we have
(Y X)v ∼q (XY)v which implies that YvXv ∼q XvYv. Therefore Yv ∈ φ

q
com(Xv).

3 ⇒ 1 : By Theorem 8, Y ∈ φq
com(X). ��

186 K. Janaki et al.

Remark 1. Let X,Y,Z ∈Σ∗∗
2 . Then the following holds good

1. If Z, Y ∈ φ
q
com(X) then the column concatenation Z · Y and Y · Z are in

φ
q
com(X)

2. If Z, Y ∈ φ
q
com(X) then the row concatenation

Z
·

Y
and

Y
·

Z
are in φ

q
com(X)

3. The successive column concatenation of X given by X2,X3,X4, · · · · · · ∈
φq
com(X)

4. The successive row concatenation of X given by X2,X3,X4, · · · · · · ∈φq
com(X)

5. X ∈ φq
com(X) ⇒ φq

com(X) ≠ ∅.

6 Conclusion

Several studies have been done on the combinatorial properties of picture arrays
in relation to areas such as image processing, pattern recognition and computer
vision. In this paper, we contribute to this field as well, by extending notions
and concepts of Parikh q−matrices that have already been explored with one
dimensional cases. It will be of interest to consider picture arrays to analyze the
behaviour of these Parikh q-matrices under some array morphisms.

Acknowledgements. We would like to thank the unknown referees for their com-
ments and suggestions on the manuscript in improving from an earlier version. The
authors K. Janaki and R. Arulprakasam are very much thankful to the management,
SRM Institute of Science and Technology for their continuous support and encourage-
ment.

References

1. Atanasiu, A.: Binary amiable words. Int. J. Found. Comput. Sci. 18(2), 387–400
(2007). https://doi.org/10.1142/S0129054107004735

2. Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theor.
Comput. Sci. 390(1), 102–109 (2008). https://doi.org/10.1016/j.tcs.2007.10.022

3. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the parikh
matrix mapping. Fundam. Informaticae 49(4), 289–299 (2002). http://content.
iospress.com/articles/fundamenta-informaticae/fi49-4-01

4. Bera, S., Ceterchi, R., Mahalingam, K., Subramanian, K.G.: Parikh q-matrices and
q-ambiguous words. Int. J. Found. Comput. Sci. 31(1), 23–36 (2020). https://doi.
org/10.1142/S012905412040002X

5. Bera, S., Mahalingam, K.: Extending parikh q-matrices. Int. J. Comput. Appl.
975, 8887 (2016)

6. Bera, S., Mahalingam, K.: Some algebraic aspects of parikh q-matrices.
Int. J. Found. Comput. Sci. 27(4), 479–500 (2016). https://doi.org/10.1142/
S0129054116500118

7. Bera, S., Mahalingam, K.: On commuting parikh q-matrices. Fundam. Informaticae
172(4), 327–341 (2020). https://doi.org/10.3233/FI-2020-1907

https://doi.org/10.1142/S0129054107004735
https://doi.org/10.1016/j.tcs.2007.10.022
http://content.iospress.com/articles/fundamenta-informaticae/fi49-4-01
http://content.iospress.com/articles/fundamenta-informaticae/fi49-4-01
https://doi.org/10.1142/S012905412040002X
https://doi.org/10.1142/S012905412040002X
https://doi.org/10.1142/S0129054116500118
https://doi.org/10.1142/S0129054116500118
https://doi.org/10.3233/FI-2020-1907

Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words 187

8. Bera, S., Mahalingam, K., Pan, L., Subramanian, K.: Two-dimensional picture
arrays and parikh q-matrices. In: Journal of Physics: Conference Series, vol. 1132,
p. 012006. IOP Publishing (2018)

9. Berthé, V., Tijdeman, R.: Balance properties of multi-dimensional words.
Theor. Comput. Sci. 273(1–2), 197–224 (2002). https://doi.org/10.1016/S0304-
3975(00)00441-2

10. Carpi, A., de Luca, A.: Repetitions and boxes in words and pictures. In:
Karhumäki, J., Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp.
295–306. Springer, Cham (1999). https://doi.org/10.1007/978-3-642-60207-8 26

11. Carpi, A., de Luca, A.: Repetitions, fullness, and uniformity in two-dimensional
words. Int. J. Found. Comput. Sci. 15(2), 355–383 (2004). https://doi.org/10.1142/
S0129054104002479

12. Egecioglu, O., Ibarra, O.H.: A matrix Q-analogue of the Parikh map. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 125–138.
Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3 12

13. Egecioglu, Ö., Ibarra, O.H.: A q-analogue of the Parikh matrix mapping. In:
Mukund, M., Rangarajan, K., Subramanian, K.G. (eds.) Formal Models, Lan-
guages and Applications [this volume commemorates the 75th birthday of Prof.
Rani Siromoney]. Series in Machine Perception and Artificial Intelligence, vol. 66,
pp. 97–111. World Scientific (2007). https://doi.org/10.1142/9789812773036 0007

14. Janaki, K., Arulprakasam, R., Dare, V.: Generalized Parikh matrices of picture
array. J. Math. Comput. Sci. 11(2), 1955–1969 (2021)

15. Mateescu, A.: Algebraic aspects of Parikh matrices. In: Karhumäki, J., Maurer, H.,
Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 170–180.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27812-2 16

16. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh map-
ping. RAIRO Theor. Inf. Appl. 35(6), 551–564 (2001). https://doi.org/10.1051/
ita:2001131

17. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://doi.
org/10.1145/321356.321364

18. Poovanandran, G., Teh, W.C.: On m-equivalence and strong m-equivalence for
Parikh matrices. Int. J. Found. Comput. Sci. 29(1), 123–138 (2018). https://doi.
org/10.1142/S0129054118500065

19. Poovanandran, G., Teh, W.C.: Strong (2 · t) and strong (3 · t) transformations for
strong m-equivalence. Int. J. Found. Comput. Sci. 30(5), 719–733 (2019). https://
doi.org/10.1142/S0129054119500187

20. Salomaa, A.: On the injectivity of parikh matrix mappings. Fundam. Informat-
icae 64(1–4), 391–404 (2005). http://content.iospress.com/articles/fundamenta-
informaticae/fi64-1-4-33

21. Salomaa, A.: Parikh matrices: subword indicators and degrees of ambiguity. In:
Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower
Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 100–112. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98355-4 7

22. Serbanuta, T.: Extending Parikh matrices. Theor. Comput. Sci. 310(1–3), 233–246
(2004). https://doi.org/10.1016/S0304-3975(03)00396-7

23. Subramanian, K.G., Huey, A.M., Nagar, A.K.: On Parikh matrices. Int. J. Found.
Comput. Sci. 20(2), 211–219 (2009). https://doi.org/10.1142/S0129054109006528

24. Subramanian, K.G., Mahalingam, K., Abdullah, R., Nagar, A.K.: Two-dimensional
digitized picture arrays and Parikh matrices. Int. J. Found. Comput. Sci. 24(3),
393–408 (2013). https://doi.org/10.1142/S012905411350010X

https://doi.org/10.1016/S0304-3975(00)00441-2
https://doi.org/10.1016/S0304-3975(00)00441-2
https://doi.org/10.1007/978-3-642-60207-8_26
https://doi.org/10.1142/S0129054104002479
https://doi.org/10.1142/S0129054104002479
https://doi.org/10.1007/1-4020-8141-3_12
https://doi.org/10.1142/9789812773036_0007
https://doi.org/10.1007/978-3-540-27812-2_16
https://doi.org/10.1051/ita:2001131
https://doi.org/10.1051/ita:2001131
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1142/S0129054118500065
https://doi.org/10.1142/S0129054118500065
https://doi.org/10.1142/S0129054119500187
https://doi.org/10.1142/S0129054119500187
http://content.iospress.com/articles/fundamenta-informaticae/fi64-1-4-33
http://content.iospress.com/articles/fundamenta-informaticae/fi64-1-4-33
https://doi.org/10.1007/978-3-319-98355-4_7
https://doi.org/10.1016/S0304-3975(03)00396-7
https://doi.org/10.1142/S0129054109006528
https://doi.org/10.1142/S012905411350010X

188 K. Janaki et al.

25. Teh, W.C.: On core words and the Parikh matrix mapping. Int. J. Found. Comput.
Sci. 26(1), 123–142 (2015). https://doi.org/10.1142/S0129054115500069

26. Teh, W.C.: Parikh matrices and strong M-equivalence. Int. J. Found. Comput. Sci.
27(5), 545–556 (2016). https://doi.org/10.1142/S0129054116500155

27. Teh, W.C.: Parikh-friendly permutations and uniformly Parikh-friendly words.
Australas. J. Comb. 76, 208–219 (2020). http://ajc.maths.uq.edu.au/pdf/76/ajc
v76 p208.pdf

28. Teh, W.C., Kwa, K.H.: Core words and Parikh matrices. Theor. Comput. Sci. 582,
60–69 (2015). https://doi.org/10.1016/j.tcs.2015.03.037

29. Masilamani, V., Krithivasan, K., Subramanian, K.G., Huey, A.M.: Efficient algo-
rithms for reconstruction of 2D-arrays from extended Parikh images. In: Bebis,
G., et al. (eds.) ISVC 2008. LNCS, vol. 5359, pp. 1137–1146. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89646-3 113

https://doi.org/10.1142/S0129054115500069
https://doi.org/10.1142/S0129054116500155
http://ajc.maths.uq.edu.au/pdf/76/ajc_v76_p208.pdf
http://ajc.maths.uq.edu.au/pdf/76/ajc_v76_p208.pdf
https://doi.org/10.1016/j.tcs.2015.03.037
https://doi.org/10.1007/978-3-540-89646-3_113

Adjunct Partial Array Token Petri Net
Structure

T. Kalyani1(B), K. Sasikala2 , D. G. Thomas3 , and K. Bhuvaneswari4

1 Department of Mathematics, St. Joseph’s Institute of Technology,
Chennai 600119, India
kalphd02@yahoo.com

2 Department of Mathematics, St. Joseph’s College of Engineering,
Chennai 600119, India

3 Department of Science and Humanities (Mathematics Division),
Saveetha School of Engineering, SIMATS, Chennai 602105, India

4 Department of Mathematics, Sathayabama Institute of Science and Technology,

Chennai 600119, India

Abstract. Adjunct Array Token Petri Net Structure (AATPNS) and
Adjunct Hexagonal Array Token Petri Net Structure (AHATPNS) are
recently introduced in the literature. Partial Array Token Petri Net
Structure (PATPNS) is introduced to generate partial array languages.
In this paper, we extend this model using some control device called
inhibitor arc and propose Adjunct Partial Array Token Petri Net Struc-
ture (APATPNS). It is compared with some partial array generating and
recognizing models with respect to the generative power.

Keywords: Petri net · Partial arrays · Inhibitor arcs · Picture
languages

1 Introduction

In formal languages, picture processing, picture generation, pattern matching,
etc., play an important role. Many picture generative devices namely matrix
grammars, automata, array grammars, kolam grammars and pasting systems
have been proposed in the literature to generate two-dimensional picture lan-
guages [3,9]. Array grammars have been used effectively in the field of character
recognition [2]. Cluster analysis can be accomplished on a set of patterns on the
basis of a selected similarity measure, which can be used for pattern recognition
[7]. Clustering methods is one of the methods effectively used in classification
and production.

Motivated by the study of words and array languages, Berstel and Boas-
son [1] introduced partial words and many characterizations of partial words
were derived. Later on partial array languages were introduced in [14] and its
combinatorial properties were studied.

Recently another mechanism to generate array languages called Array Token
Petri Net Structure was introduced in the literature [6,8,10]. Many extensions of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 189–203, 2023.
https://doi.org/10.1007/978-3-031-23612-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_12&domain=pdf
http://orcid.org/0000-0002-4862-0335
http://orcid.org/0000-0001-6327-8446
http://orcid.org/0000-0002-3561-2993
https://doi.org/10.1007/978-3-031-23612-9_12

190 T. Kalyani et al.

Petri nets have also been defined. These are called high-level Petri nets: coloured
Petri nets, nested Petri nets and object nets. Recently, time has been included in
Petri nets as a specification, which led to the evolution of Time Petri Nets (TPN)
and Stochastic Petri Nets (STN). Adjunct Array Token Petri Net Structure is
defined using adjunct rules to increase the generative capacity of the model
[4,5]. As an application of array token Petri nets clustering analysis is used for
character recognition [7].

In this paper, we propose Adjunct Partial Array Token Petri Net Structure
(APATPNS) model to generate partial array languages. A control mechanism
called inhibitor arc is also introduced and it is compared with other generating
devices of partial array languages with respect to the generative capacity [11–13].

2 Preliminaries

In this section, we recall the definitions of partial word, partial array, Petri net,
basic puzzle partial array grammar, partial array token Petri net structure with
examples.

Definition 1. [11] Let Σ be a finite alphabet of symbols. A partial word pw of
length m over Σ, is a partial function pw : N → Σ. For 1 ≤ i ≤ m, if pw(i) is
defined, then i ∈ D(pw); otherwise i ∈ h(pw). D(pw) is the domain of pw and
H(pw) is the hole set of pw. A word over Σ is a partial word over Σ with an
empty set of holes. The ‘do not know’ symbol is denoted by ‘♦’ which does not
belong to Σ. H(pw) is the set of positions in which ‘♦’ appears in pw.

Definition 2. [11] Let Σ be a finite alphabet. A rectangular arrangement of
elements over Σ ∪ {♦} is defined as a partial array over Σ ∪ {♦}.
Definition 3. [11] If B is a partial array of size m × n over Σ ∪ {♦}, then
the companion of B (denoted by B♦) is the total function B♦ : Z2

+ → Σ ∪ {♦}

defined by B♦(i, j) =

{
B(i, j), (i, j) ∈ D(B)
♦, otherwise, where ♦ �∈ Σ

.

Example 1. Let B♦ =

⎛
⎝a ♦ b

♦ b ♦
b ♦ a

⎞
⎠. B♦ is the companion of a partial array B of

size (3, 3).
D(B) = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}
H(B) = {(1, 2), (2, 1), (2, 3), (3, 2)}.

The set of all partial arrays over Σ ∪ {♦} is denoted by Σ∗∗
p , where Σp =

Σ ∪ {♦}. Σ++
p = Σ∗∗

p − {Λ}, where Λ is the empty array. Σ
(�,m)
p is the set of all

partial arrays over Σ ∪ {♦} of size (�,m).

Definition 4. [13] The structure of a Basic Puzzle Partial Array Grammar
(BPPAG) is BPGp = (A,B ∪ {♦}, P, S) where A is a finite non empty set
of non terminal symbols and B is a finite non empty set of terminal symbols.
‘♦’ is a ‘do not know’ symbol, where ♦ �∈ A ∪ B, S ∈ A is the axiom pattern
and P is a set of rules of the following forms:

Adjunct Partial Array Token Petri Net Structure 191

(i) X → x Y (ii) X → ♦ Y (iii) X → Y x

(iv) X → Y ♦ (v) X → Y x (vi) X → Y ♦

(vii) X → x Y (viii) X → ♦ Y (ix) X → x

Y

(x) X → ♦
Y

(xi) X → Y

x
(xii) X → Y

♦

(xiii) X → Y
x

(xiv) X →
Y

♦ (xv) X → x

Y

(xvi) X → ♦
Y

(xvii) X → x (xviii) X → ♦

where X,Y ∈ A and x, y ∈ B.

While processing the derivations in the production rule X → x Y, the non-
terminal X is replaced by the right-hand member whose left-hand side is X.

The replacement is possible only if the noncircled symbol of the production
rule consists of a blank symbol. The blank symbol is represented by the letter
‘#’, which is an unoccupied place where any symbol can be occupied as per the
derivation. The language generated by BPPAG is denoted by L(BPPAG).

Definition 5. [12] If C = (P, T, I,O) is a Petri Net structure with partial arrays
over (Σ ∪ {♦})∗∗ as initial markings. μ0 : P → (Σ ∪{♦})∗∗ label of at least one
transition being catenation rule and a finite set of final places F ⊂ P, then the
Petri net structure C is defined as a Partial Array Token Petri Net Structure
(PATPNS).

Definition 6. [12] If C is a PATPNS, then the Partial array language generated
by the Petri Net C is defined as

PL(C) = {A♦ ∈ (Σ ∪ {♦})∗∗ / A♦ is in p for some p in F}

with partial arrays over (Σ ∪ {♦})∗∗ in some places as initial marking when all
possible sequences of transitions are fired. The set of all partial arrays collected
in the final places F is called the partial array language generated by C. Let
L(PATPNS) = {PL(C)/C is a PATPNS}.
Firing Rules in PATPNS [12]
We define three different types of enabled transition in PATPNS. The pre and
post condition for firing the transition in all the three cases are given below:

1. When all the input places of t1 (without label) have the same partial array
as token.

192 T. Kalyani et al.

– Each input place should have at least the required number of partial
arrays.

– Firing t1 removes partial array from all the input places and moves the
partial array to all its output places.

The graph in Fig. 1 shows the position of the partial array before the transition
fires and Fig. 2 shows the position of the partial array after transition t1 fires.

P2

P1
P3

t1
A

A

Fig. 1. Position of partial array before firing

P2

P1
P3

t1

A

Fig. 2. Position of partial array after firing

2. When all the input places of t1 have different partial arrays as token
– The label of t1 designates one of its input places.
– The designated input place has sufficient number of partial arrays as

tokens.
– Firing t1 removes partial array from all the input places and moves the

partial array from the designated input place to all its output places.
The graph in Fig. 3 shows the position of the partial array before the transition
fires and Fig. 4 shows the position of the partial array after transition t1 fires.
Since the designated place is P1, the partial array in P1 is moved to the output
place.

P2

P1
P3

A 1

A 2

1 1
t (p)

Fig. 3. Transition with label before firing

Adjunct Partial Array Token Petri Net Structure 193

P2

P1
P3

1 1
t (p)

A 1

Fig. 4. Transition with label after firing

3. When all the input places of t1 (with catenation rule as label) have the same
partial array as token

– Each input place should have at least the required number of partial
arrays.

– The condition for catenation should be satisfied.
– The designated input place has sufficient number of partial arrays as

tokens.
– Firing t1 removes partial array from all the input places P and the cate-

nation is carried out in all its output places.

Catenation Rule as Label for Transitions: [12]
Column catenation rule is in the form A | B. Here the partial array A denotes
the m × n partial array in the input place of the transition. B is a partial array
whose number of rows will depend on ‘m’, the number of rows of A. The number
of columns of B is fixed. For example A | (x x)m adds two columns of x

after the last column of the partial array A which is in the input place. But
(x x)m | A would add two columns of x before the first column of A. ‘m’
always denote the number of rows of the input partial array A. Row catenation
rule is in the form A − B. Here again the partial array A denotes the m × n

partial array in the input place of the transition. B is a partial array whose
number of columns will depend on ‘n’, the number of columns of A. The number

of rows of B is always fixed. For example A −
[

x
x

]n

adds two rows of x after

the last row of the array A which is in the input place. But
[

x
x

]n

− A would

add two rows of x before the first row of the partial array A. ‘n’ always denotes
the number of columns of the input partial array A.

An example to explain row catenation rule is given below. The position of
the partial array before the transition fires is shown in Fig. 5 and Fig. 6 shows
the position of the partial array after transition t1 fires. Since the catenation
rule is associated with the transition, catenation takes place in P3.

194 T. Kalyani et al.

Aθ(x)n−1y

P3

P1

P2

t1
A1

A1

Fig. 5. Transition with catenation rule before firing

P1

P2

t1

A1 = Aθ(x)n−1y, θ =

P3A1

Fig. 6. Transition with catenation rule after firing

In A♦ =
a a a
a ♦ a
a a a

, the number of columns of A is 3, n − 1 is 2, firing t1 adds

the row x x y as the last row. Hence A1♦ =

a a a
a ♦ a
a a a
x x y

Example 2. [12] Let Σ = {a}, F = P1, where S♦ =
a a a
a ♦ a
a a a

, Q1 = (♦)m,

Q2 = (♦)n Q3 = (a)m, Q4 = (a)n

S is the initial partial array placed in P1. The PATPNS is shown in Fig. 7.
Derivations in PATPNS is given in the following tabular column.

Input place Transition Output place

S A | Q1

a a a ♦
a ♦ a ♦
a a a ♦

a a a ♦
a ♦ a ♦
a a a ♦

Q1 | A
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

A − Q2

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Adjunct Partial Array Token Petri Net Structure 195

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Q2 − A

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

A | Q3

♦ ♦ ♦ ♦ ♦ a
♦ a a a ♦ a
♦ a ♦ a ♦ a
♦ a a a ♦ a
♦ ♦ ♦ ♦ ♦ a

♦ ♦ ♦ ♦ ♦ a
♦ a a a ♦ a
♦ a ♦ a ♦ a
♦ a a a ♦ a
♦ ♦ ♦ ♦ ♦ a

Q3 | A

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a

A − Q4

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

Q4 − A

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

The firing of sequence (t1t2t3t4t5t6t7t8)k, k ≥ 0 puts a square partial arrays
of size 4k + 3 in P1, where the boundaries of the squares are alternatively ♦’s
and a’s. The partial array language generated by the PATPNS is a square partial
array of size 4k+3, k ≥ 0 where the boundaries are alternatively ♦’s on the odd
numbered boundaries and a’s on the even numbered boundaries.

196 T. Kalyani et al.

AQ4 AQ2

t1

P2

S

P1 P3
t2

P4
t3

Q1A Q1 A A Q2

t5t6t7
P5P6P7P8 A Q3Q3 AA Q4

t8 t4

Fig. 7. PATPNS generating square partial arrays of size 4k + 3, k ≥ 0

Example 3. [12] Consider a partial array language of square partial arrays of
size 4k + 3, k ≥ 0 whose boundaries are alternatively ♦’s on the odd numbered
boundaries and a’s on the even numbered boundaries.

BPGP2 = (A,B ∪ {♦}, P, S)

where A = {X,Q1, Q2, Q3, Q4, Q5, Q6}, B = {a}, S = X and P consists of the
following rules:

(i) X → a Q (ii) Q → a Q (iii) Q → Q1

a

(iv) Q1 → Q2 a (v) Q2 → Q3 ♦ (vi) Q3 → Q4

a

(vii) Q4 → a Q5 (viii) Q5 → a Q5 (ix) Q5 → a

(x) Q3 → ♦ Q3 (xi) Q5 → ♦ Q6 (xii) Q6 → a Q6

(xiii) Q6 → ♦ Q (xiv) Q3 → Q2 a (xv) Q3 → Q3 ♦

(xvi) Q → ♦ Q

The first member of the language generated is shown below:

X
(i)−→ a Q

(ii)−−→ a a Q
(iii)−−→ Q1

a a a
(iv)−−→ Q2 a

a a a

(v)−−→ Q3 ♦ a

a a a

(vi)−−→
Q4

a ♦ a
a a a

(vii)−−−→
a Q5

a ♦ a
a a a

(viii)−−−→
a a Q5

a ♦ a
a a a

(ix)−−→
a a a
a ♦ a
a a a

Adjunct Partial Array Token Petri Net Structure 197

3 Adjunct Partial Array Token Petri Net Structure

Here, the definition of adjunct array token Petri net structure is recalled and
Adjunct Partial Array Token Petri Net Structure with and without inhibitor
arcs is defined with examples.

If A and B are two partial arrays having same number of rows then A ©| B
is the catenation of A and B columnwise. A ©− B is the row catenation of A and
B, provided A and B are having the same number of columns.

Whereas, in row adjunction the partial array B can be joined to the partial
array A after any row of A. In a similar manner, column adjunction can join
partial array B after any column of A.

In partial array token Petri net structure, the partial arrays over the alphabet
Σp are used as tokens in some input places.

Let B ∈ Σ∗∗
p be a partial array of size m × n called host partial array. Let

D ∈ Σ∗∗
p be a partial array language consisting of partial arrays called adjunct

partial arrays having fixed number of rows.

Definition 7. An adjunct partial array D can be joined with a host partial array
B by row adjunct rule (RAdR) in two ways as follows. The partial arrays B and
D have the same number of columns.

(i) By post rule denoted by (B,D, arj), the partial array D is adjoined to host
partial array B after the jth row.

(ii) By pre rule (B,D, brj), the adjunct partial array D is adjoined to the host
partial array B before the jth row.

In a similar manner, the column adjunct rule (CAdR) can be defined.

(i) Post rule (B,D, acj) and Pre rule (B,D, bcj) join D into B after the jth

column of B and before the jth column of B respectively.

Definition 8. An Adjunct partial Array Token Petri Net Structure (APATPNS)
is a five tuple S = (Σ,Q,M0, μ, F) where Σ is a given finite alphabet, Q =
(P, T, I,O) is a Petri net structure with partial arrays over Σ ∪ {♦} as tokens,
M0 : P → Σ∗∗

p , is the initial marking of the net, μ : T → L, a function from
the set of transitions to the set of labels where catenation rules of the labels are
either RAdR or CAdR and F ⊂ P is a finite set of final places.

The language generated by APATPNS S is
L(S) = {A ∈ (Σ ∪ {♦})∗∗/A is the place q for some q ∈ F}.
Example 4. Consider the Adjunct Partial Array Token Petri Net Structure S1 =
(Σ,Q,M0, μ, F) where Σ = {a}, Q = (P, T, I,O), P = {p1, p2}, T = {t1, t2},
I(t1) = {p1}, I(t2) = {p2}, O(t1) = {p2}, O(t2) = {p1}, M0 is the initial
marking; the partial array S is in p1 and there is no partial array in p2, μ(t1) =
(B,D1, ac1) and μ(t2) = (B,D2, br1) and F = {p1}. The Petri net diagram is
shown in Fig. 8.

198 T. Kalyani et al.

p1 p2
t1(B,D1, ac1)

t2(B,D2, br1)

S

Fig. 8. APATPNS

The partial arrays used in the Petri net structure are defined as follows:

S =
a ♦
a a

;D1 = (a)m and D2 = (♦)n.

Initially t1 is the only enabled transition.
Firing of t1 adjoins a column of a’s after the first column of partial array S

and puts the generated partial array in p2, making t2 enabled. Firing t2 adjoins
a row of ♦’s before the first row of the partial array in p2 and puts the generated
partial array in p1. When the transitions t1, t2 fire, the partial array that reaches
the output place p1 is shown as below:

a ♦
a a

t1=⇒ a a ♦
a a a

t2=⇒
♦ ♦ ♦
a a ♦
a a a

.

Firing the sequence (t1t2)2 generates the output partial array as

♦ ♦ ♦ ♦
♦ a ♦ ♦
a a a ♦
a a a a

.

The partial array language L1 generated by the Adjunct partial array token
Petri net structure is the set of square partial arrays of size, ‘n’ consisting of only
♦’s above the main diagonal and only a’s below the main diagonal except the
first column and the main diagonal starts with a ‘♦’ followed by n − 1 a’s. The

first column is of the form

⎛
⎝(♦)n−2

a
a

⎞
⎠ where n is the size of the square partial

array.

Example 5. Consider the Adjunct Partial Array Token Petri Net Structure S2 =
(Σ,Q,M0, μ, F), where Σ = {a}, Q = (P, T, I,O), P = {p1, p2, p3, p4, p5, p6, p7},

Adjunct Partial Array Token Petri Net Structure 199

T = {t1, t2, t3, t4, t5, t6}, I(t1) = {p1, p2}, O(t1) = {p3}, I(t2) = {p3}, O(t2) =
{p4}, I(t3) = {p4}, O(t3) = {p2, p5}, I(t4) = {p1, p5}, O(t4) = {p6}, I(t5) =
{p5, p6}, O(t5) = {p1}, I(t6) = {p1, p2}, O(t6) = {p7, p2}. μ : T → L is defined as
μ(t1) = p2, μ(t2) = (A,B1, acn), μ(t3) = (A,B2, arm), μ(t4) = μ(t5) = μ(t6) =
λ. F = {p7}. The Petri net graph is shown in Fig. 9.

2

S p3p2
p4

p6 p5

p7
t2(A, B1, acn)

t3(A, B2, arm)

t6 t1(p2)

t5 t4

S

p1

S

Fig. 9. APATPNS with inhibitor arcs

The partial arrays used in the Petri net structure are S =
a ♦
a ♦ , B1 =

(
a ♦

)
m

,

B2 =
(

♦
a

)n

.

To being with only t1 is enabled. After t2 is enabled, the partial array B1 is
adjuncted with S after column 2 and the result is placed in p4, now transition
t3 is enabled, the partial array B2 is adjuncted with the resultant partial array
after 2nd row. Thus firing of sequence of transitions t1t2t3 results in a square
partial array of {a,♦} of size 4 × 4 in p2 and p5.

a ♦
a ♦

t1t2t3−→
a ♦ a ♦
a ♦ a ♦
♦ ♦ ♦ ♦
a a a a

.

Firing the transition t6 puts the above partial array of size 4×4 in p7. Firing
t4 pushes the partial array to p6, emptying p5. In this position t5 is enabled.
Firing t5 puts two copies of the same partial array in p1. Now, there are two
copies in p1, therefore to empty p1, the sequence of transitions t1t2t3 has to fire
two times. The firing of sequence t4t5(t1t2t3)2t6 puts a square partial array over
{a,♦} of size 8×8 in p7. The inhibitor input p1 makes sure that a square partial
array over {a,♦} of size 6×6 does not reach p7. Thus this APATPNS generates a
language of square partial arrays as in the following figure of size (2n, 2n), n ≥ 1
(Fig. 10).

200 T. Kalyani et al.

a ♦ a ♦ a ♦ a ♦
a ♦ a ♦ a ♦ a ♦
♦ ♦ ♦ ♦ a ♦ a ♦
a a a a a ♦ a ♦
♦ ♦ ♦ ♦ ♦ ♦ a ♦
a a a a a a a ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
a a a a a a a a

Fig. 10. Square partial array of size (23, 23)

4 Comparative Results

In this section, we compare APATPNS with (i) Partial Array Token Petri Net
Structure (PATPNS) and (ii) Basic Puzzle Partial Array Grammar System
(BPPAG) for generative powers. The notation L(X) denotes the family of all
partial array languages generated by the above systems X.

Theorem 1. The family of languages generated by PATPNS is properly con-
tained in the family of languages generated by APATPNS.

Proof. The row catenation in PATPNS can be handled by the following row
adjunct rules (i) By post rule (B,D, arm), the partial array D is adjoined to
host partial array B after the mth row (ii) By pre rule (B,D, br1), the partial
array D is adjoined to the host partial array B before the 1st row.

The column catenation in PATPNS can be handled by the following column
adjunct rules (i) By post rule (B,D, acn) and (ii) By pre rule (B,D, bc1) join D
into B, after the nth column of B and before the 1st column of B respectively.

Hence L(PATPNS) is a subset of L(APATPNS), this is also evident from
the following example.

Consider a partial array language of square partial arrays of size 4k+3, k ≥ 0
whose boundaries are alternatively ♦’s on the odd numbered boundaries and a’s
on the even numbered boundaries (Example 2). This partial array language is
generated by APATPNS.

Now, let us consider a APATPNS generating this partial array lan-
guage S3 = (Σ,Q,M0, μ, F) where Σ = {a}, Q = (P, T, I,O), P =
{p1, p2, p3, p4, p5, p6, p7, p8}, T = {t1, t2, t3, t4, t5, t6, t7, t8}, I(t1) = {p1}, I(t2) =
{p2}, I(t3) = {p3}, I(t4) = {p4}, I(t5) = {p5}, I(t6) = {p6}, I(t7) = {p7},
I(t8) = {p8}, O(t1) = {p2}, O(t2) = {p3}, O(t3) = {p4}, O(t4) = {p5},
O(t5) = {p6}, O(t6) = {p7}, O(t7) = {p8}, O(t8) = {p1}. M0 is the initial mark-
ing, the partial array S is in p1 and there is no partial array in the remaining
places μ(t1) = (B,D1, acn), μ(t2) = (B,D1, bc1), μ(t3) = (B,D2, arm), μ(t4) =
(B,D2, br1), μ(t5) = (B,D3, acn), μ(t6) = (B,D3, bc1), μ(t7) = (B,D4, arm),
μ(t8) = (B,D4, br1) and F = {p1}.

The Petri net graph is shown in Fig. 11.
The partial array language given in Example 5 generated by APATPNS can-

not be generated by PATPNS, since in PATPNS, the axiom array can only be

Adjunct Partial Array Token Petri Net Structure 201

p1 p2 p4

p5p6p7p8

p3

t1(B,D1, acn) t2(B,D1, bc1) t3(B,D2, arm)

t6(B,D3, bc1)t7(B,D4, arm) t5(B,D3, acn)

t4(B,D2, br1)t8(B,D4, br1)

Fig. 11. APATPNS generating square partial arrays of size 4k + 3, k ≥ 0

concatenated either rowwise or columnwise but any row or column cannot be
inserted which proves a proper containment.

Theorem 2. The family of languages generated by BPPAG is properly con-
tained in the family of languages generated by APATPNS.

Proof. (a) The basic puzzle partial array grammar rules

(i) X → ©x
Y

(ii) X → ©♦
Y

(iii) X → Y
©♦ (iv) X → ©Y

x

(v) X → Y
©x (vi) X → Y

©♦ (vii) X → x
©Y (viii) X → ♦

©Y
(ix) X → ©x (x) X → ©♦
can be handled by the following row adjunct rules (i) (B,D, arm) and (B,D, br1).

(b) The basic puzzle partial array grammar rules of the forms

(i) X → ©x Y (ii) X → ©♦ Y (iii) X → ©Y x (iv) X → Y ©♦
(v) X → Y ©x (vi) X → Y ©♦ (vii) X → ♦ ©Y (viii) X → x ©Y
(ix) X → ©x (x) X → ©♦
can be handled by the following column adjunct rules (B,D, acn) and (B,D, bc1).
Hence L(BPPAG) is a subset of L(APATPNS). This is also evident from the
following example.

The partial array language of square partial arrays of size 4k+3, k ≥ 0 whose
boundaries are alternatively ♦’s on the odd numbered boundaries and a’s on the
even numbered boundaries is generated by BPPAG (Example 3). This partial
array language is also generated by APATPNS as shown in Theorem 1. Hence
the two families intersect.

The language of partial arrays given in Example 5 cannot be generated by
BPPAG, since in BPPAG, the partial array can be extended in right, left, up
or down provided the place is empty for the symbol to be occupied. Any row or
column cannot be inserted into a partial array. This proves proper containment.

202 T. Kalyani et al.

5 Conclusion

In this paper we have considered Partial Array Token Petri Net structure with
adjunction rules and also we have given example for APATPNS with inhibitor
arcs and proved that inhibitor arcs is more powerful in generative power than
APATPNS. APATPNS is compared with PATPNS and BPPAG and it is proved
that APATPNS is more powerful in generative power when compared with these
two models.

Adjunct Partial Array Token Petri net P system can be defined and its
generative power can be tested with our earlier models. Also as an application
of adjunct partial array token Petri structure various kolam patterns can be
generated and character recognition can be done using clustering analysis. This
is our future work.

It would be of interest in deciding whether a given image belongs to the lan-
guage generated by a given APATPNS. This membership problem is equivalent
to the Petri net reachability problem, which states that whether from the given
initial configuration there exists a sequence of valid execution sets that reaches
the given final configuration. The complexity of the petri net reachability prob-
lem is unsettled since the year 1960 and it is one of the most prominent open
question in the theory of verification. We are exploring the membership problem
for our future study.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoret.
Comput. Sci. 218(1), 135–141 (1999)

2. Fernau, H., Freund, R., Holzer, M.: Character recognition with k -head finite array
automata. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SSPR /SPR 1998.
LNCS, vol. 1451, pp. 282–291. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0033246

3. Giammarresi, D., Restivo, A.: Two - Dimensional Languages. Handbook of Formal
Languages, pp. 215–267 (1997)

4. Kamaraj, T., Lalitha, D., Thomas, D.G.: A comparative study on adjunct array
token Petri nets with some classes of array grammars. Appl. Math. Sci. 7(135),
6705–6713 (2013)

5. Kamaraj, T., Lalitha, D., Thomas, D.G., Thambuarj, R., Atulya, K.: Nagar:
adjunct hexagonal array token Petri nets and hexagonal picture languages. Math.
Appl. 3, 45–59 (2014)

6. D., L.: Rectangular array languages generated by a Petri net. In: Sethi, I.K. (ed.)
Computational Vision and Robotics. AISC, vol. 332, pp. 17–27. Springer, New
Delhi (2015). https://doi.org/10.1007/978-81-322-2196-8 3

7. Lalitha, D., Rangarajan, K.: An application of array token Petri nets to clustering
analysis for syntactic patterns. Int. J. Comput. Appl. 42(16), 21–25 (2012)

8. Lalitha, D., Rangarajan, K., Thomas, D.G.: Rectangular arrays and Petri nets. In:
Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol.
7655, pp. 166–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34732-0 13

https://doi.org/10.1007/BFb0033246
https://doi.org/10.1007/BFb0033246
https://doi.org/10.1007/978-81-322-2196-8_3
https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-3-642-34732-0_13

Adjunct Partial Array Token Petri Net Structure 203

9. Nivat, M., Saoudi, A., Subramanian, K.G., Siromoney, R., Dare, V.R.: Puzzle
grammar and context - free array grammars. Int. J. Pattern Recogn. Artif. Intell.
05(05), 663–676 (1991)

10. Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs (1981)

11. Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array grammars and partial array
- rewriting P systems. Math. Eng. Sci. Aero Space 11(1), 227–236 (2020)

12. Sasikala, K., Sweety, F., Kalyani, T., Thomas, D.G.: Partial array token Petri
net and P system. In: Freund, R., Ishdorj, T.-O., Rozenberg, G., Salomaa, A.,
Zandron, C. (eds.) CMC 2020. LNCS, vol. 12687, pp. 135–152. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77102-7 8

13. Sweety, F., Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array - rewriting P
systems and basic puzzle partial array grammar. In: AIP Conference Proceedings,
vol. 2277, p. 030003 (2020)

14. Vijaya Chitra, S., Sasikala, K.: Squares in partial arrays. In: AIP Conference Pro-
ceedings, vol. 2112, pp. 20–34 (2019)

https://doi.org/10.1007/978-3-030-77102-7_8

2D Oxide Picture Languages and Their
Properties

Helen Vijitha Ponraj1(B) , Robinson Thamburaj2(B) ,
and Meenakshi Paramasivan3(B)

1 Department of Mathematics, Rajalakshmi Engineering College,
Chennai 602105, India

helenvijitha.p@rajalakshmi.edu.in
2 Department of Mathematics, Madras Christian College, Chennai 600059, India

robinson@mcc.edu.in
3 FB IV - Informatikwissenschaften, Universität Trier, 54286 Trier, Germany

meena maths@yahoo.com

Abstract. In the theory of formal languages, two-dimensional (picture)
languages are a generalization of string languages to two dimensions. Pic-
tures may be regarded as digitized finite arrays, occurring in studies con-
cerning pattern recognition, image analysis, cellular automata, and paral-
lel computing. Several studies have been done for generating and (or) rec-
ognizing rectangular, triangular, and hexagonal arrays using formal syn-
tactic methods. Motivated by oxide molecular structures, the oxide pic-
tures, a special class of two-dimensional pictures, are considered. Vari-
ous generating and recognizing schemes, such as the Oxide Tiling System
(OXTS), Oxide Wang System (OXWS), Oxide Tile Rewriting Grammar
(OXTRG), and Oxide Sgraffito Automata (OXS), have been developed
recently. It is found that the family of oxide picture languages recogniz-
able by oxide tiling systems is closed under union, overlapping, half-turn,
transpose, anti-transpose, and reflection (both along horizontal and ver-
tical lines), but not closed under quarter-turn and anti-quarter-turn. This
paper further discusses some language theoretic results as well.

Keywords: Two-dimensional languages · Oxide pictures · Oxide tiles

Mathematics Subject Classification: 68Q45 · 68R15

1 Introduction

Syntactic considerations of digital images have a tradition of about six decades.
Two-dimensional picture languages generated by grammars or recognized by
automata have been studied since the 1970s for their complications arising in
the framework of pattern recognition and image analysis. Rani Siromoney and
her co-authors in the early 1970s studied two-dimensional picture languages [7,
21,26] where pictures are digitized finite arrays in a rectangular grid. These two-
dimensional picture languages have connections with the generation of Kolam
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 204–225, 2023.
https://doi.org/10.1007/978-3-031-23612-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_13&domain=pdf
http://orcid.org/0000-0002-4217-4725
http://orcid.org/0000-0001-8507-4196
http://orcid.org/0000-0002-1509-6557
https://doi.org/10.1007/978-3-031-23612-9_13

2D Oxide Picture Languages and Their Properties 205

patterns [28,31], which are traditional pieces of the south Indian style of painting.
Dora Giammarresi and her co-authors studied two-dimensional picture languages
and investigated its connection to Tiling systems [1,4] by defining local and
recognizable picture languages.

Wang systems [16] are used as a formalism to recognize picture languages.
It has been proved that the family of picture languages defined by Wang sys-
tems coincides with the family of picture languages recognized by tiling systems.
In [18] triangular picture languages were studied by introducing triangular Wang
automata based on triangular Wang tiles. It has been proved that triangular
Wang automata with a specific scanning strategy recognize the class of triangu-
lar pictures recognized by triangular tiling systems. Two-dimensional hexagonal
arrays on a triangular grid can be viewed or treated as its two-dimensional rep-
resentations of three-dimensional rectangular parallelepipeds. Hexagonal arrays
and hexagonal patterns are found in the literature on picture processing and
scene analysis [2,20,25].

The study of picture languages has been carried out on appropriate grids:
square grids, triangular grids, and hexagonal grids. To study oxide pictures, we
define a hexo-triangular grid obtained from a triangular grid. We remove certain
points in the triangular grid: starting from any arbitrarily chosen point remove
the points of the grid alternatively in the directions of x, y, and z. Figure 4 is
the punctured triangular grid obtained by removing the green grid points in
Fig. 3. This punctured triangular grid can be viewed as a hexo-triangular grid
with a hexagon whose neighbors are triangles. We name the hexo-triangular grid
as oxide grid as it resembles the oxide network structure (see Fig. 2) proposed
by Paul Manuel and Indira Rajasingh. Two-dimensional oxide pictures were
considered and studied by introducing oxide tiling systems, oxide Wang systems,
oxide tile rewriting grammars, and oxide Sgraffito automata (see [12–14]).

Fig. 1. SiO4 - Silicon-oxygen Tetrahe-
dron.

Fig. 2. An oxide network.

206 H. V. Ponraj et al.

A preliminary version of this paper and some of its properties were presented
by the authors in [15]. Now the paper is organized as follows: In Sect. 2 we recall
some basics. In Sect. 3 we introduce two-dimensional oxide pictures and lan-
guages. A coordinate system is established for oxide pictures and types of oxide
pictures with a special case namely, triangular oxide pictures. In Sect. 4 we prove
some major results in connection with closure and non-closure under Boolean,
unary, and binary operations. In Sect. 5 we conclude a few connections to further
applications and implementations as directions to future research topics.

2 Preliminaries

In this section, we briefly recall the standard definitions and notations regarding
two-dimensional oxide pictures and languages (see [12]). Let N := {1, 2, 3, . . .}
be the set of all natural numbers. For a finite alphabet Σ, a string or word
(over Σ) is a finite sequence of symbols from Σ, and λ stands for the empty
string. The notation Σ+ denotes the set of all nonempty strings over Σ, and
Σ∗ := Σ+ ∪ {λ}. A two-dimensional word (also called a picture, a matrix or, an
array) over Σ is a tuple

W := ((a1,1, a1,2, . . . , a1,n), (a2,1, a2,2, . . . , a2,n), . . . , (am,1, am,2, . . . , am,n)) ,

where m,n ∈ N and, for every i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ n, ai,j ∈ Σ (see
[3,11]).

An oxide array is a hexo-triangular array that is a hexagon surrounded by
six triangles. The hexo-triangular arrangement of the oxide grid sensitized us to
consider the pictures on this grid as oxide pictures and the languages of oxide
pictures as oxide picture languages.

Fig. 3. A triangular grid. (Color figure
online)

Fig. 4. An oxide (hexo-triangular) grid.

Definition 1. An oxide picture over Σ is an oxide array of symbols. The set
of all oxide pictures over Σ is denoted by Σ∗∗OXp . An oxide picture language
over Σ is a subset of Σ∗∗OXp .

2D Oxide Picture Languages and Their Properties 207

Let OXp ∈ Σ∗∗OXp , we get the bordered version of OXp denoted by ˆOXp

when the special symbol # /∈ Σ is added as the boundary to OXp.

Example 1. An OXp ∈ Σ∗∗OXp over Σ = {a, b, c} and its bordered version ˆOXp

are given in Fig. 5.

a

c b c b

a a

b c b c

a

and

#
#

a
c b c b #

a a
b c b c #

a
#

#

Fig. 5. An oxide picture over Σ = {a, b, c} and its bordered version.

Definition 2. Let π : Γ → Σ be a mapping where Γ , Σ are finite set of alpha-
bets. Let OXp ∈ Γ ∗∗OXp be an oxide picture of size (l,m, n). The projection by
mapping π of oxide picture OXp is the oxide picture OXp′ ∈ Σ∗∗OXp such that
OXp′(x, y, z) = π(OXp(x, y, z)), for all 1 ≤ x ≤ l, 1 ≤ y ≤ m, 1 ≤ z ≤ n.

We will use π(OXp) instead of π(OXp(x, y, z)) to indicate the projection of oxide
picture OXp by mapping π, when there is no ambiguity. It is natural to extend
the definition of projection of an oxide picture to sets of oxide pictures.

a

c b c b

a a

b c b c

a

e

a

a a

b

b

b

Fig. 6. An oxide picture and an oxide tile.

Definition 3. Let L ⊆ Γ ∗∗OXp be an oxide picture language. The projection
by mapping π of oxide picture language L is the oxide picture language L′ =
{OXp′ | OXp′ = π(OXp) ∀OXp ∈ L} ⊆ Σ∗∗OXp .

208 H. V. Ponraj et al.

By π(L) we indicate the projection of oxide picture language L by mapping π,
as in the case of oxide pictures. Given an oxide picture OXp of size (�1 − 1, �2 −
1, �3 − 1) for g ≤ �1 − 1, h ≤ �2 − 1, and k ≤ �3 − 1, we denote by Bg,h,k(OXp)
the set of all oxide blocks (or oxide sub-pictures) of OXp of size (g, h, k). Each
member of B2,2,2(OXp) is called an oxide tile that resembles the star of David.

An oxide picture can be represented either by an oxide array or by an oxide
tile as shown in Fig. 6. On the issue of labeling, an array is expressed with labeled
vertices, a tile is labeled with its tiles (faces). The situation with oxide tiles is
challenging as compared to rectangular and triangular arrays and tiles. In oxide
tiles, we use two types of tiles, namely triangular tiles and hexagonal tiles.

Definition 4. Let Σ be a finite alphabet. An oxide picture language L ⊆ Σ∗∗OXp

is called recognizable if there exists an oxide local picture language L′ (given by
a set of oxide tiles) over an alphabet Γ and a mapping π : Γ → Σ such that
L = π(L′).

The family of all recognizable oxide picture languages is denoted by OXREC.

Definition 5 [12]. An oxide tiling system (in short, OXTS) is a 4-tuple OT =
(Σ,Γ, π,Θ), where Σ and Γ are two finite alphabets, π : Γ → Σ is a projection
and Θ is a finite set of oxide tiles over the alphabet Γ ∪ {#}.

The oxide tiling system OT defines (recognizes) an oxide picture language L over
the alphabet Σ as follows: L = π(L′) where L′ = L(Θ) is the local oxide picture
language over Γ corresponding to the set of oxide tiles Θ. We write L = L(OT)
and we say that L is the oxide picture language recognized by OT . We will refer
to the local oxide picture language L′ ⊆ Γ ∗∗OXp as the underlying local oxide
picture language for L, while we call Γ the local alphabet. We say that an oxide
picture language L ⊆ Σ∗∗OXp is recognizable by oxide tiling systems (or oxide
tiling recognizable) if there exists an oxide tiling system OT = (Σ,Γ, π,Θ) such
that L = L(OT).

We denote by L(OXTS) the family of all oxide picture languages recognizable
by oxide tiling systems. In other words, L ∈ L(OXTS) if it is a projection of
some local oxide picture language. Note that OXREC is exactly the family of
oxide picture languages recognizable by oxide tiling systems L(OXTS).

2D Oxide Picture Languages and Their Properties 209

Θ =

{
Θ1 = e1

#

a

#

b

#
, Θ2 = e2

#

a a

#

b

#
, Θ3 = e3

#

a

#

b

b

,

Θ4 = e4

#

a #

#

b

#
, Θ5 = e5

#

a

#

#

b

, Θ6 = e6

#

a #

b

#

#
,

Θ7 = e7

a

a #

b

#

#
, Θ8 = e8

a

#

#

#

b

, Θ9 = e9

a

#

b

#

b

,

Θ10 = e10

a

#

b

#

#
, Θ11 = e11

a

a a

b

b

b

, Θ12 = e12

#

a #

b

b

#
,

Θ13 = e13

a

a

#

#

b }
.

210 H. V. Ponraj et al.

Example 2. Let Θ be a finite set of oxide tiles over Γ = {a, b}. Then the language
L ∈ L(OXTS) has oxide pictures with symbols a and b in A and V triangles
respectively, and ei’s in the hexagonal tile respectively. B stands for the border
symbol #. Figure 7, 8, and 9 illustrates types of oxide pictures with borders
viewed as oxide tiles (see Sect. 3.2).

Fig. 7. Type I: OXp(4, 4, 4)

Fig. 8. Type II: OXp(4, 2, 4) Fig. 9. Type III: OXp((4, 2), (2, 4),
(4, 6))

3 Two-Dimensional Oxide Pictures and Languages

Silicates are minerals that comprise metal oxides and sand. In chemistry, a sili-
cate is a member of the family of anions: a silicon atom surrounded by four oxy-
gen atoms, usually with the general formula

[
SiO(4−2x)−

4−x

]
n
, where 0 ≤ x < 2.

2D Oxide Picture Languages and Their Properties 211

A silicon-oxygen tetrahedron (see Fig. 1) is the SiO4 anionic group, or a silicon
atom with four surrounding oxygen atoms arranged to define the corners of a
tetrahedron. A silicate sheet is formed by the silicon ions, that are connected to
get a silicate network. From this silicate network, a new network of oxygen net-
work is obtained by removing the silicate ions alone. This new network of oxygen
ions without silicon ions is named as oxide network (see Fig. 2). This network
was identified by the graph theorists Paul Manuel and Indira Rajasingh [8] as
a new network from the silicate network, when all the silicon nodes are deleted
from a silicate network, we obtain an oxide network [19].

An oxide picture is viewed as a collection of symbols (an oxide array of
elements) on an oxide grid. The boundary of the oxide pictures is filled with
a special symbol # as explained in Fig. 5. Now, we propose a coordinate sys-
tem for oxide pictures, the size of oxide pictures is defined in reference to the
smallest hexagon that bounds the given oxide picture. We do classify the oxide
pictures based on the sizes. We also realize a special case of oxide picture namely
triangular oxide picture in this paper.

3.1 Coordinates and Size of Oxide Pictures

We fix the coordinates of each element of the oxide pictures similar to hexagonal

pictures with respect to a triad x

z

y of triangular axes x, y, and z. Given
an oxide picture OXp ∈ Σ∗∗OXp , let �1 denote the number of elements in the
hexagonal border of OXp from the upper left vertex to the leftmost vertex in the
x-direction, �2 denote the number of elements in the hexagonal border of OXp

from the upper right vertex to the rightmost vertex in the y-direction and �3
denote the number of elements in the hexagonal border of OXp from the upper
left vertex to the upper right vertex in the z-direction.

a

c b c b

a a

b c cb

a

(1,1,2)

(1,2,3)

(1,3,2)

(2,3,2)(2,3,1)
(3,2,1)

(2,2,1)

(2,1,1)
(1,2,1) (1,2,2)

(2,3,3)

(3,3,2)

Fig. 10. Coordinates of elements of OXp in Fig. 5.

212 H. V. Ponraj et al.

The directions are fixed for some vertices only, as given in Fig. 10, whereas
the coordinates are fixed with the origin of reference the outermost hexagon’s
upper left vertex having coordinates (1, 1, 1). The triple (�1 − 1, �2 − 1, �3 − 1) is
called the size of the oxide picture OXp. Furthermore, if 1 ≤ i ≤ �1, 1 ≤ j ≤ �2,
1 ≤ k ≤ �3, where �1, �2, �3 ≥ 3 then let OXpijk

denote the symbol in OXp with
coordinates (i, j, k). Here we can see that, for instance, the oxide picture in Fig. 5
of size (2, 2, 2) has OXp111 = λ, OXp112 = a, OXp122 = c and OXp123 = b. The
coordinates for the oxide picture in Example 5 are as in Fig. 10. In our study,
there cannot be two rightmost vertices in the hexagon, which is well explained
below with a few remarks.

a

c b c b

a a

b c cb

a

(1,1,2)

(1,2,3)

(1,3,3)

(2,3,2)(2,3,1)(3,2,1)

(3,1,1)

(2,1,1)

(1,1,1) (1,1,3)

(2,3,3)

(3,3,2)

UL UR

LM RM

(3,3,1) (3,3,3)LL LR

Fig. 11. The smallest bounding hexagon of OXp in Example 5.

The coordinates are assigned to an oxide picture similar to hexagonal pic-
tures [30]. Consider the oxider picture in Example 1. The smallest hexagon that
bounds the given oxide picture is presented in Fig. 11.

Remark 1. In this section, we consider oxide pictures whose outer most hexagon
has the same number of elements in both sides of x-direction, the same number
of elements in both sides of y-direction and the same number of elements in both
sides of z-direction. Also the center element of the hexagons in the oxide pictures
are empty strings (that is, λ s), for instance OXp131 = λ in Example 1. To be
more precise, in this section, we do consider the outer most hexagon which is
of irregular shape as given in Fig. 12, also in Sect. 3.3 we will be encountering
similar type of such hexagons (as the outermost hexagons).

Example 3. Let Σ = {0, 1, 2, 3}. Let L(2,2,2k) be the set of all oxide pictures of
sizes (2, 2, 2k), with k ≥ 1. Some sample elements from L(2,2,2k) can be collected
in L0123 as given as follows:

2D Oxide Picture Languages and Their Properties 213

0 0 0 0

1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3 3

0 0 0 0 0 0

Fig. 12. An irregular shape of hexagon.

L0123 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0
0 1 1 0
2 2

0 3 3 0
0

,

0 0
0 1 1 1 1 0
2 2 2

0 3 3 3 3 0
0 0

,

0 0 0
0 1 1 1 1 1 1 0

2 2 2 2
0 3 3 3 3 3 3 0

0 0 0

, · · ·

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Note that L0123 has the property that with z-direction elements at the top,
one level below the top respectively are 0, 0 followed by 1s and ends with 0, at
the middle are 2, and at the bottom, one level above the bottom respectively
are 0, 0 followed by 3s and ends with 0. Here L0123 � L(2,2,2k), for instance, all
positions filled with 0s are not in L0123 where as it is an element in L(2,2,2k).

Now we define the concept of complete oxide pictures, which are the only
permissible oxide pictures in our study.

Definition 6. A complete oxide picture is an oxide picture, only if

– there exists a smallest bounding hexagon.
– there exists no single hole (♦) in any of the positions of the oxide arrays.

a

b b b b

a a

b b b b

a

b b b b

a a

b b b b

a

Fig. 13. No smallest bounding
hexagon.

b

♦
a

b b

a

b b

b

a

b

b

b

b

b

a

b

b b

a

b

a

a a

b

a

b

♦

a

Fig. 14. An oxide picture with two holes.

For better readability, in Fig. 13, the oxide picture does not have the smallest
hexagon. Figure 14 has two holes in the neighborhood position of the bounding

214 H. V. Ponraj et al.

hexagon, and a similar picture is depicted in Fig. 15 as well. We call such oxide
pictures “incomplete oxide pictures” and we do not consider such oxide pictures.
We use this symbol ♦ to denote holes in incomplete oxide pictures.

0 a a a

0 a a a a a 0

a a a 0

a a a a a

aaaaa

0 a 0 0

0a00

Fig. 15. Another incomplete oxide picture.

Remark 2. If �1 = �2 = �3 where �1, �2, �3 ∈ N are even numbers, then we
observe that it sketches possible regular and (or) irregular hexagons, but violates
to include complete oxide pictures. One can view this argument in Fig. 15, but
it has a complete oxide picture of size (2, 4, 2).

Note 1. No oxide pictures with size odd numbers exist, which is evident from
Remark 2.

3.2 Types of Oxide Pictures

There are many types of oxide pictures depending on the size. For us, it is of
interest to consider the oxide pictures that have the same size on the opposite
sides of the x, y, and z directions.

x1

y1

z1

x2

y2

z2

UL UR

RMLM

LL LR

Let us now call the opposite sides of x-direction as x1, x2 similarly y1, y2 and
z1, z2 for the y and z-directions. Among these pictures there are four types:

2D Oxide Picture Languages and Their Properties 215

1. Type 1 (Regular Oxide Pictures I): x1 = x2 = y1 = y2 = z1 = z2.
2. Type 2 (Regular Oxide Pictures II): If x1 = x2, y1 = y2, z1 = z2 then

– Case 1: x1 	= y1, y1 	= z1, x1 	= z1
– Case 2: x1 	= y1, y1 	= z1, x1 = z1
– Case 3: x1 	= y1, y1 = z1, x1 	= z1
– Case 4: x1 = y1, y1 	= z1, x1 	= z1

3. Type 3 (Regular Oxide Pictures III): If x1 	= x2, y1 	= y2, z1 	= z2 then
– Case 1a: x2 = y1 = z1 = 2 and x1 = y2 = z2.
– Case 1b: x2 = y1 = z1 = 2 and x1 = y2 and x1 	= z2
– Case 1c: x2 = y1 = z1 = 2 and x1 	= y2 and x1 	= z2

We will be focusing on a detailed study of this special case of oxide pic-
tures in Sect. 4

– Case 2: x1 = y2, x2 = y1, z1 	= z2
For the moment remaining cases are out of our focus.

4. Type 4 (Irregular Oxide Pictures): x1 	= x2 	= y1 	= y2 	= z1 	= z2. We will be
dealing with regular types of oxide pictures only.

If �1 = �2 = �3 where �1, �2, �3 ∈ N are odd numbers, then we say that
an oxide picture OXp is of size n, where n = 2k, k ≥ 0, and it is denoted by
OXp(n). The set of all oxide pictures Σ∗∗OXp of size n is denoted by Σ∗∗OXp(n).
Irregular oxide pictures also have the size ((l1, l2), (m1,m2), (n1, n2)) similar to
regular oxide pictures.

Example 4. An OXp(4) over Σ = {a, b} and its bordered version are given in
Fig. 16 which is type 1 of oxide pictures.

a a

a b a a b a

a b a

a a b a a b a a

b a a b

a a b a a b a a

a b a

a b a a b a

a a

b aa b

a b a a b a## # #

abaaba

##

#######

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

a a a bb a aa

a

a b

a b a

a

a

#
a b a a b aa# a #

#aa

Fig. 16. An OXp(4) over Σ = {a, b} and its bordered version.

216 H. V. Ponraj et al.

Example 5. OXp(2, 6, 6) and OXp((6, 2), (2, 6), (6, 10)) over Σ = {a} are given
in Fig. 17 and Fig. 18 which are of Type 2 (Case 3) and Type 3 (Case 2) oxide
pictures.

Note 2. We would like to note that there are 212 (i.e., 4096) oxide pictures of
size 2 over Σ = {a, b}. There are 312 (i.e., 531441) oxide pictures of size 2 over
Σ = {a, b, c}. One of them is illustrated in Example 1. Similarly, there are 242

oxide pictures of size 4 over Σ = {a, b} and one is illustrated in Fig. 16.

Remark 3. At time step t ≥ 1 there are |Σ|9t
2+3t oxide pictures of size n, where

n = 2k, k ≥ 1 over Σ with 3t2 − 3t + 1 oxide tiles.

Remark 4. As a special case at time step t = 0, we get the empty oxide picture
that is denoted by ΛOXp

or OXp(0) that has |Σ|0 possible pictures over Σ with 1
oxide tile which is an empty oxide tile. There are some sizes of oxide pictures, that
can not be defined, for instance (0,m, n), (l, 0, n), or (l,m, 0) where l,m, n ∈ N.

Remark 5. We can generalize the number of oxide pictures and tiles with sizes
as follows:

– At time step t ≥ 1 there are |Σ|O
T1

oxide pictures of size (l,m, n) over Σ
with OT1 oxide tiles, where OT1 , OT1 ∈ N.

– At time step t ≥ 1 there are |Σ|O
T2,3

oxide pictures of size ((l1, l2), (m1,m2),
(n1, n2)) over Σ with OT2,3 oxide tiles, where OT2,3 , OT2,3 ∈ N.

a a a

a a a a a a a a

a a a a

a a a a a a a a a

a a a a

a a a a a a a a a

a a a a

a a a a a a a a

a a a

Fig. 17. An OXp(2, 6, 6) over Σ =
{a}.

a a a

a a a a a a a a

a a a a

a a a a a a a a a a

a a a a a

a a a a a a a a a a a a

a a a a a a

a a a a a a a a a a a a

a a a a a

Fig. 18. An OXp((6, 2), (2, 6), (6, 10)) over
Σ = {a}.

3.3 Triangular Oxide Pictures and Languages

Definition 7. A triangular oxide picture over Σ is a triangular arrangement
of oxide pictures. The set of all triangular oxide pictures over Σ is denoted by
Σ∗∗TOXp . A triangular oxide picture language over Σ is a subset of Σ∗∗TOXp .

2D Oxide Picture Languages and Their Properties 217

Let TOXp ∈ Σ∗∗TOXp , we get the bordered version of TOXp denoted by
ˆTOXp when the special symbol # /∈ Σ is added as the boundary to TOXp.

Given TOXp ∈ Σ∗∗TOXp of size (l,m, n) we say that the TOXp is of size n and
it is denoted by TOXp(n) if l = m = n. The set of all triangular oxide pictures
Σ∗∗TOXp of size n is denoted by Σ∗∗TOXp(n).

Example 6. A TOXp ∈ Σ∗∗TOXp over Σ = {a, b} and its bordered version
ˆTOXp are given in Fig. 19 and it is of size 6.

ba

aa

aaba

a b

a

#

#

#

#

#

#

#

#

#

#

#

#

#

#

##

#

#

#

#

#

#

#

#

#

#

##

a

bba aa

b b

a

ab ab

a

a a

####

ab b a

ba ab aba a

##

###

Fig. 19. TOXp((6, 2), (2, 6), (2, 6)) over Σ = {a, b} with its bordered version.

Note 3. We note that there are 212 (i.e., 4096) triangular oxide pictures of size
2 over Σ = {a, b}. There are 312 (i.e., 531441) triangular oxide pictures of size
2 over Σ = {a, b, c}. One of them is illustrated in Fig. 5. Similarly, there are
239 triangular oxide pictures of size 6 over Σ = {a, b} and one is illustrated in
Example 6.

Remark 6. At time step t ≥ 1 there are |Σ|6t
2+9t−3 triangular oxide pictures of

size n, where n = 2k, k ≥ 1 over Σ with 2t2 − t oxide tiles. Empty triangular
oxide pictures can also be seen as a special case, also certain sizes of triangular
oxide pictures are not defined.

Note 4. OXp(2, 6, 6) can become a TOXp((10, 2), (2, 10), (2, 10)) over Σ = {a}
if we add 13 nodes both in the y, z direction whereas OXp((6, 2), (2, 6), (6, 10))
will become a TOXp((10, 2), (2, 10), (2, 10)) over Σ = {a} if we add 13 nodes in
the z-direction only.

218 H. V. Ponraj et al.

Definition 8. A triangular oxide tiling system, (TOXTS) is a 4-tuple T OT =
(Σ,Γ, π,Θ), where Σ and Γ are two finite alphabets, π : Γ → Σ is a projection
and Θ is a finite set of triangular arrangement of oxide tiles over the alphabet
Γ ∪ {#}.

Example 7. Let Θ = {Θ1, Θ2, . . . , Θ11} be a finite set of oxide tiles over Γ =
{a, b}, where Θ1 to Θ11 are as listed in Sect. 2 except for the last two tiles Θ12 and
Θ13. Then the language L ∈ L(OXTS) has only Type II oxide pictures (x1 = x2,
y1 = y2, z1 = z2) with symbols a and b in A and V triangles respectively. We
can observe that this tile set Θ = {Θ1, Θ2, . . . , Θ11} does not recognize Type I
and Type III oxide pictures.

4 Results

We do a comparison with the families L(OXTS) and L(TOXTS) and we also see
the closure properties of these families on some operations.

Theorem 1. L(TOXTS) ⊆ L(OXTS)

Proof. Let L1 be a oxide picture language over Σ, that is recognizable by an
oxide tiling system OT 1 = (Σ,Γ, π,Θ1). Let L2 be a triangular oxide picture
language over Σ, that is recognizable by a triangular oxide tiling system T OT 2 =
(Σ,Γ, π,Θ2). It is enough to show that Θ2 ⊆ Θ1. Let Θ2 = Θ2′ ∪ Θ#2′ where

– Θ2′ is the set of oxide tiles without borders and
– Θ#2′ is the set of bordered oxide tiles.

Let Θ#2′ = Θ#21′ ∪ Θ#22′ where

– Θ#21′ is the set of bordered oxide tiles present along x1, y2, and z2 and
– Θ#22′ is the set of bordered oxide tiles present along with x2, y1, and z1.

Similarly, let Θ1 = Θ1′ ∪ Θ#1′ where

– Θ1′ is the set of oxide tiles without borders and
– Θ#1′ is the set of bordered oxide tiles.

Similarly, let Θ#1′ = Θ#11′ ∪ Θ#12′ where

– Θ#11′ is the set of bordered oxide tiles present along x1, y2, and z2 and
– Θ#12′ is the set of bordered oxide tiles present along with x2, y1, and z1.

Since Θ#22′ has x2 = y1 = z1 = 2 where as Θ#12′ has x2 = y1 = z1 ≥ 2 and
for sufficiently large sizes Θ#21′ has some tiles that are having same projection as
of Θ#11′ . Without loss of generality, we assume that Θ′

1 and Θ′
2 are also having

same projections.
�

2D Oxide Picture Languages and Their Properties 219

4.1 Boolean Operations

Theorem 2. The family L(OXTS) is closed under union.

Proof. Let OT 1 = (Σ,Γ1, π1, Θ1) and OT 2 = (Σ,Γ2, π2, Θ2) that recognize
oxide picture languages L1 and L2 respectively. We construct an oxide tiling
system OT = (Σ,Γ, π,Θ) for L = L1 ∪ L2. For this let Γ = Γ1 ∪ Γ2, Γ1 and Γ2

are considered to be disjoint. Let Θ = Θ1 ∪ Θ2. Define a projection π : Γ → Σ
in such a way that Γ1 coincides with π1 and Γ2 coincides with π2.
�

Due to Theorem 1 we have the following:

Corollary 1. The family L(TOXTS) is closed under union.

The families L(OXTS), L(TOXTS) are not closed under complementation and
are closed under intersection. As oxide pictures can also be seen as geometrical
objects, several further unary and binary operations can be introduced [21].

4.2 Unary Operations

Definition 9. Let OXp ∈ Σ∗∗OXp then the operations for turns (rotations) are
defined as follows:

– H(OXp) is the half-turn,
– Q(OXp) is the quarter-turn,
– Q−1(OXp) is the anti-quarter-turn.

It is natural to extend these turn (rotational) operations to the sets of oxide
pictures and to lift these turn (rotational) operations to the families of oxide
picture languages. Consider the oxide picture in Example 1, where

OXp =

a
c b c b
a a

b c b c
a

then H(OXp) = OXp and

a
bc

cb a

b c

a a

c b

Q(OXp) = Q−1(OXp) =

Theorem 3. The family L(OXTS) is closed under half-turn.

Proof. Let L ∈ L(OXTS) then there exists an OT = (Σ,Γ, π,Θ) that recognizes
L. Since L ∈ L(OXTS) there is an underlying local oxide picture language L′ such
that L = π(L′). Construct an oxide tiling system OT H = (Σ,ΓH , πH , ΘH) that
accepts LH . We have to show LH ∈ L(OXTS). This can be done by taking the
local alphabet Γ = ΓH . Let πH be a projection from ΓH to Σ. Since the family
L(OXTS) is closed under projection, L′ is also an underlying local language for
LH .
�

220 H. V. Ponraj et al.

Theorem 4. The family L(OXTS) is not closed under quarter-turn and anti-
quarter-turn.

Proof. Let L ∈ L(OXTS) and OT = (Σ,Γ, π,Θ) be an oxide tiling system that
recognizes L. Then it is easy to show that no oxide tiling system recognizes
quarter-turn and anti-quarter-turn of oxide pictures.
�

Following Theorem 3 and Theorem 4 we have: The family L(TOXTS) is
closed under half-turn. The family L(TOXTS) is not closed under quarter-turn
and anti-quarter-turn.

Definition 10. Let OXp ∈ Σ∗∗OXp then the operations for reflections are
defined as follows:

– Rx(OXp), Ry(OXp), Rz(OXp) are the reflection along the diagonals in
x, y, z directions respectively,

– Rx1(OXp), Rx2(OXp), Ry1(OXp), Ry2(OXp), Rz1(OXp), Rz2(OXp) are the
reflection along the sides in both sides of x, y, z directions.

It is natural to extend these reflection operations to the sets of oxide pictures
and to lift these reflection operations to the families of oxide picture languages.

Theorem 5. The families L(OXTS) and L(TOXTS) are closed under

– the diagonal reflections Rx, Ry, Rz

– the reflections along the sides Rx1 , Rx2 , Ry1 , Ry2 , Rz1 , Rz2 .

Proof. The proof follows for the reflections Rz, Rz1 , and Rz2 as the families
L(OXTS) and L(TOXTS) are closed under half-turn. Same arguments can be
borrowed for other reflections as well Rx, Ry, Rx1 , Rx2 , Ry1 and Ry2 .
�

4.3 Binary Operations

In this section, we will see some binary operations such as gluing and overlapping
on various types of oxide pictures and languages. We define glueable A-arrays
and glueable V -arrays as follows:

Definition 11. Let A triangular arrays (�) and V triangular arrays (�) are

of the form
x

x x
and

x x
x

respectively.

– Let A1 =
a1

b1 c1
and A2 =

a2
b2 c2

are A-triangular arrays. A1 and A2

are glueable A-triangular arrays, only if a1 = a2, b1 = b2 and c1 = c2.

– Let V1 =
x1 y1

z1
and V2 =

x2 y2
z2

are V -triangular arrays. V1 and V2 are

glueable V -triangular arrays, only if x1 = x2, y1 = y2 and z1 = z2.

2D Oxide Picture Languages and Their Properties 221

– Let T1 =

a1
b1 c1 d1 e1

f1 g1
h1 i1 j1 k1

l1

and T2 =

a2
b2 c2 d2 e2

f2 g2
h2 i2 j2 k2

l2

are two oxide

arrays. T1 and T2 are glueable oxide arrays, only if a1 = a2, b1 = b2 and
c1 = c2, d1 = d2, e1 = e2 and f1 = f2, g1 = g2, h1 = h2 and i1 = i2,
j1 = j2, k1 = k2 and l1 = l2.

We now define overlapping operations on oxide pictures using glueable A-
triangular arrays, glueable V -triangular arrays, and glueable oxide arrays. Over-
lapping can happen between any two oxide pictures in the following ways:

Definition 12. Let OXpA, OXpB are any two oxide pictures.

– if the rightmost V -triangular array and the rightmost A-triangular array of
OXpA are glueable with the leftmost V -triangular array and the leftmost A-
triangular array of OXpB respectively, then it is a right overlapping of oxide
pictures, denoted by OXpA �R OXpB.

– if the leftmost V -triangular array and the leftmost A-triangular array of
OXpA are glueable with the rightmost V -triangular array and the rightmost
A-triangular array of OXpB respectively, then it is a left overlapping of oxide
pictures, denoted by OXpA �L OXpB.

– if the rightmost (leftmost) oxide arrays of OXpA are glueable with leftmost
(rightmost) oxide arrays of OXpB then it is an overlapping of oxide pictures.

It is natural to extend these operations to the sets of oxide pictures and to
lift these operations to the families of oxide picture languages.

Example 8. Let OXpA =

b
b b a a
b a

b b a a
b

and OXpB =

c
a a c c
a c

a a c c
c

be two oxide

pictures of size (2, 2, 2), the right overlapping of oxide pictures OXpA and OXpB ,

OXpA �R OXpB =

b c
b b a a c c
b a c

b b a a c c
b c

.

Theorem 6. The family L(OXTS) is closed under (right or (left)) overlapping
operations.

Proof. Consider two oxide picture languages L1 and L2 over Σ1 and Σ2. Let
OT 1 = (Σ1, Γ1, π1, Θ1) and OT 2 = (Σ2, Γ2, π2, Θ2) be oxide tiling systems of
L1 and L2 respectively. By definition of right overlapping, OXp ∈ L is composed
of a pair of glueable oxide pictures OXp1 ∈ L1 and OXp2 ∈ L2 with the same

222 H. V. Ponraj et al.

number of rows of oxide tiles in the same direction such that the rightmost oxide
tiles of OXp1 are overlapped with the leftmost oxide tiles of OXp2 . We define
an oxide tiling system OT = (Σ,Γ, π,Θ) of L as follows:

Let Σ = Σ1∪Σ2. Let us assume that Γ1 and Γ2 are disjoint and Γ = Γ1∪Γ2.
Consider Θ, the set of oxide tiles over Γ that contains all the tiles from Θ1 except
those corresponding to the oxide tiles that are to the right borders and all the
tiles from Θ2 except those corresponding to the oxide tiles that are to the left
borders. Some bordered oxide tiles are added in the upper and lower arrays when
overlapping is done between the set of oxide pictures.

We define the three sets of tiles as follows: Θ′
1 of Θ contains all the oxide

tiles from Θ1 except those corresponding to the oxide tiles that are to the right
borders. Θ′

2 of Θ contains all the oxide tiles from Θ2 except those corresponding
to the oxide tiles that are to the left borders. Θ12 contains all the bordered
oxide tiles corresponding to the respective overlapping performed. Take Θ =
Θ′

1 ∪ Θ′
2 ∪ Θ12. Projection π is defined from Γ → Σ in such a way that elements

of Γ1 coincides with π1 and of Γ2 coincides with π2.
�

Due to Theorem 6 we can also have the following:

Corollary 2. The family L(TOXTS) is closed under (right or (left)) overlap-
ping operations.

5 Conclusions

Motivated by these types of silicate structures we have recently attempted to
have a language theoretic investigation on the special class of oxide pictures,
we further aim to compare and make a detailed study on Oxide Tile Rewriting
Grammars and Oxide Wang Systems for other types of regular oxide picture
languages also with Oxide Wang automata and Oxide Sgraffito Automata. On
the other hand, the oxide grid is similar to one of the 8 semi-regular grids, mostly
known as trihexagonal tiling/grid, some other ideas and results are in [6], also
in [10] however picture languages are not studied in these cited papers, only
some basic digital geometry, for instance, coordinate systems and distances.

In this paper, we set the stage with aspects such as size, category, closure
properties, comparison with other generative models, etc. In the near future,
we aim to implement through combinatorial algorithms with applications of
oxide arrays through exploring several other language theoretic results through
a comparative study on further properties. Our next focus is to study the state
complexity and descriptional complexity for automata models and tiling systems
that we have introduced in this paper via the Cut operation [5]. We further aim
to achieve applications and implementations for 2D picture/tiling generation
through a systematic approach listed below:

– Comparing automata, recognition schemes for 2D pictures, and 2D tiling
patterns from [22–24].

2D Oxide Picture Languages and Their Properties 223

– Studying the suitability of extending or applying schemes like pasting, a spe-
cial kind of graph known as “map systems” that represents the cell structure
of a plant, for oxide pictures and oxide tiles through connections from [9,27–
29].

– Developing a modified Sgraffito automaton [17] for oxide pictures and oxide
tiles (Fig. 20).

(a) Glass painting. (b) Paper folding.

Fig. 20. The star of David in glass painting and paper folding.

Acknowledgements. The authors are grateful to the referees for their very useful
comments, which helped to improve the presentation of the paper. The third author
would like to express gratitude to the University of Trier, Germany, and Madras Chris-
tian College in Chennai, India, for visits in 2019 and 2020.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529
(2009)

2. Dersanambika, K.S., Krithivasan, K., Mart́ın-Vide, C., Subramanian, K.G.: Local
and recognizable hexagonal picture languages. IJPRAI 19(7), 853–871 (2005)

3. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture pro-
cessing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95,
232–258 (2018)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6 4

5. Holzer, M., Hospodár, M.: The range of state complexities of languages resulting
from the cut operation. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA
2019. LNCS, vol. 11417, pp. 190–202. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-13435-8 14

6. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the trihexagonal grid. In:
Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502,
pp. 82–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5 8

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1007/978-3-319-66272-5_8

224 H. V. Ponraj et al.

7. Krithivasan, K., Siromoney, R.: Array automata and operations on array languages.
Int. J. Comput. Math. 4(A), 3–40 (1974)

8. Manuel, P., Rajasingh, I.: Topological properties of silicate networks. In: 5th IEEE
GCC Conference and Exhibition (2009)

9. Nagata, S., Thamburaj, R.: Digitalization of kolam patterns and tactile kolam
tools. In: Mukund, M., Rangarajan, K., Subramanian, K.G. (eds.) Formal Models,
Languages and Applications. Series in Machine Perception and Artificial Intelli-
gence, vol. 66, pp. 354–363. World Scientific (2007)

10. Nagy, B.: Generalised triangular grids in digital geometry. Acta Math. Acad.
Paedag. Nyiregyhaziensis 20(1), 63–78 (2004)

11. Paramasivan, M.: Operations on graphs, arrays and automata. Ph.D. thesis, Uni-
versity of Trier, Germany (2018)

12. Ponraj, H.V., Thamburaj, R.: Oxide tiling system and oxide Wang system. Int. J.
Curr. Trends Eng. Technol. 4(2), 105–110 (2018)

13. Ponraj, H.V., Thamburaj, R.: Generative aspects of oxide pictures by oxide tile
rewriting grammar. Int. J. Recent Technol. Eng. (IJRTE) 8(3), 1537–1543 (2019)

14. Ponraj, H.V., Thamburaj, R.: Recognizability of oxide pictures by Sgraffito
automata. J. Adv. Res. Dyn. Control Syst. (JARDCS) 11(1), 285–293 (2019)

15. Ponraj, H.V., Thamburaj, R., Paramasivan, M.: Two-dimensional oxide picture
languages. In: Proceedings of the 17th International Symposium on Artificial Intel-
ligence and Mathematics 2022 (ISAIM 2022), Fort Lauderdale, Florida, USA, 3–5
January 2022 (2022)

16. de Prophetis, L., Varricchio, S.: Recognizability of rectangular pictures by Wang
systems. J. Autom. Lang. Comb. 2(4), 269–288 (1997)

17. Pr̊uša, D., Mráz, F., Otto, F.: Two-dimensional Sgraffito automata. RAIRO Theor.
Inform. Appl. 48(5), 505–539 (2014)

18. Rajaselvi, V.D., Kalyani, T., Dare, V.R., Thomas, D.G.: Recognizability of tri-
angular picture languages by triangular Wang automata. In: Pant, M., Deep, K.,
Nagar, A., Bansal, J.C. (eds.) Proceedings of the Third International Conference
on Soft Computing for Problem Solving. AISC, vol. 258, pp. 481–493. Springer,
New Delhi (2014). https://doi.org/10.1007/978-81-322-1771-8 42

19. Simonraj, F., George, A.: Topological properties of few poly oxide, poly silicate,
DOX and DSL networks. Int. J. Future Comput. Commun. 2, 90–95 (2013)

20. Siromoney, G., Siromoney, R.: Hexagonal arrays and rectangular blocks. Comput.
Graph. Image Process. 5, 353–381 (1976)

21. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Inf. Control (Now Inf. Comput.) 22(5), 447–470 (1973)

22. Smith, T.J., Salomaa, K.: Recognition and complexity results for projection lan-
guages of two-dimensional automata. In: Jirásková, G., Pighizzini, G. (eds.) DCFS
2020. LNCS, vol. 12442, pp. 206–218. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-62536-8 17

23. Smith, T.J., Salomaa, K.: Concatenation operations and restricted variants of two-
dimensional automata. In: Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol.
12607, pp. 147–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67731-2 11

24. Smith, T.J., Salomaa, K.: Decision problems and projection languages for restricted
variants of two-dimensional automata. Theor. Comput. Sci. 870, 153–164 (2021)

25. Subramanian, K.G.: Hexagonal array grammars. Comput. Graph. Image Process.
10, 388–394 (1979)

26. Subramanian, K.G., Revathi, L., Siromoney, R.: Siromoney array grammars and
applications. Int. J. Pattern Recognit. Artif. Intell. 3, 333–351 (1989)

https://doi.org/10.1007/978-81-322-1771-8_42
https://doi.org/10.1007/978-3-030-62536-8_17
https://doi.org/10.1007/978-3-030-62536-8_17
https://doi.org/10.1007/978-3-030-67731-2_11
https://doi.org/10.1007/978-3-030-67731-2_11

2D Oxide Picture Languages and Their Properties 225

27. Thamburaj, R.: A study on circular languages, patterns and map systems. Ph.D.
thesis, University of Madras, Chennai (2002)

28. Thamburaj, R.: Extended pasting scheme for kolam pattern generation. Forma 22,
55–64 (2007)

29. Robinson, T., Jebasingh, S., Nagar, A.K., Subramanian, K.G.: Tile pasting systems
for tessellation and tiling patterns. In: Barneva, R.P., Brimkov, V.E., Hauptman,
H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol.
6026, pp. 72–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12712-0 7

30. Thomas, D.G., Begam, M.H., David, N.G., de la Higuera, C.: Hexagonal array
acceptors and learning. In: Mukund, M., Rangarajan, K., Subramanian, K.G. (eds.)
Formal Models, Languages and Applications. Series in Machine Perception and
Artificial Intelligence, vol. 66, pp. 364–378. World Scientific (2007)

31. Yanagisawa, K., Nagata, S.: Fundamental study on design system of kolam pattern.
Forma 22, 31–46 (2007)

https://doi.org/10.1007/978-3-642-12712-0_7
https://doi.org/10.1007/978-3-642-12712-0_7

Lyndon Partial Words and Arrays
with Applications

Meenakshi Paramasivan1 , R. Krishna Kumari2(B) , R. Arulprakasam2(B) ,
and V. Rajkumar Dare3

1 FB IV - Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
2 Department of Mathematics, Faculty of Engineering and Technology,

SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
{kr1062,arulprar}@srmist.edu.in

3 Department of Mathematics, Madras Christian College, Chennai 600059, India

Abstract. Lyndon words have been extensively studied in different con-
texts of free Lie algebra and combinatorics. We introduce Lyndon par-
tial words, arrays and trees. We also study free monoid morphisms that
preserve finite Lyndon partial words and check whether a morphism pre-
serves or does not preserve the lexicographic order. We propose an algo-
rithm to determine Lyndon partial words of given length over the binary
alphabet. Image analysis in several way of scanning via automata and
grammars has a significance in two-dimensional models, we connect 2D
Lyndon partial words with few automata and grammar models.

Keywords: Lyndon partial words · 2D Lyndon words · 2D arrays

Mathematics Subject Classification: 68Q45 · 68Q70 · 68R15 ·
68U10

1 Introduction

Lyndon words serve to be a useful tool for a variety of problems in combina-
torics [2,19,21,23]. There are many applications of Lyndon words in semigroups,
pattern matching, representation theory of certain algebras and combinatorics
such as they are used to describe the generators of the free Lie algebras. All of
these applications make use of the combinatorial properties of Lyndon words,
in particular the factorisation theorem. Their role in factorising a string over
an ordered alphabet was initially illustrated by Chen et al. [7]. Duval [9] pre-
sented a algorithm to derive a factorisation of strings over an ordered alphabet
known as Lyndon factorisation. Lyndon trees [8] are associated with Lyndon
words under the name of standard lexicographic sequences. The Lyndon arrays
[4,13] of Lyndon words has recently become of interest since it could be used to
efficiently compute all the maximal periodicities in a word. Lyndon trees have
lately been shown to have solid connections with the structure in words and
the Lyndon tree associated to a given word can be used as a basis for effective
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 226–244, 2023.
https://doi.org/10.1007/978-3-031-23612-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_14&domain=pdf
http://orcid.org/0000-0002-1509-6557
http://orcid.org/0000-0002-1802-628X
http://orcid.org/0000-0001-5652-4346
https://doi.org/10.1007/978-3-031-23612-9_14

Lyndon Partial Words and Arrays with Applications 227

computation of maximal repeats in that word [1,14]. A unique factorisation the-
orem for factoring a tree in terms of Lyndon trees is proved in [27]. The work in
[24] characterised Lyndon morphisms and proved that they are order-preserving
morphisms.

Partial words are nothing but words with holes over the alphabet and are con-
sidered in gene comparisons [12]. For instance, alignment of two DNA sequences
which are genetic information carriers can be viewed as construction of two
partial words that are compatible. In DNA computation, DNA strands are con-
sidered as finite words and are utilized for encoding information. While encoding,
some part of information may be unseen or missing which are revealed by using
partial words that denotes the positions of the missing symbols in a word. The
study of partial words was initiated by Berstel and Boasson [3] and later the
work was extended by Blanchet Sadri [5,6]. Both Lyndon and partial words
have wide application in pattern matching. In this paper the concept of Lyn-
don partial words [17] is used and tree structure associated to Lyndon partial
words is introduced. We also introduce free monoids morphisms that preserve
finite Lyndon partial words and check whether a morphism preserves or does not
preserve the lexicographic order. Image analysis is a rapidly growing technology.
It is an important branch of science that investigates image descriptions that
have relational structures that express relationships between image parts and
describe their properties. Three steps are involved in image analysis: Import-
ing the image via image acquisition tools; Analysis and manipulation of the
image; Depending upon the image analysis, the output can be an altered image
or report. In [10,11,22], the authors have derived an automaton model namely
Boustrophedon finite automata (BFA) for picture processing, which is equivalent
to Regular matrix grammars (RMGs). The paper has the following organisation.
In Sect. 2 we recall some basics. In Sect. 3 we introduce Lyndon partial words
and Lyndon partial arrays. A relation between the Lyndon partial words and
trees is established. In Sect. 4 we characterise �◊-morphism and show that they
are order-preserving morphism. In Sect. 5 we investigate few connections to 2D
Lyndon words through 2D Lyndon partial words.

2 Basic Notations and Terminology

Let Σ termed as an alphabet represent a non-empty (≠∅) finite set of symbols
(or letters). A total word (or string) is a sequence of letters over Σ. The length
(or size) of a total word x=x[1 . . . n] is n. The length of a total word x is denoted
by |x|. Σ∗ denotes the set of all total words from Σ. Σ+ = Σ∗ ∖ {λ} where λ
denotes the empty word. A language L is a subset of Σ∗. The total word p is a
subword (or factor) of q if there exists the total words x and y such that q =xpy.
If x, y ≠ λ then p is a proper subword of q. If x = λ then p is a prefix of q. If
y =λ then p is a suffix of q. An ordered alphabet is an alphabet with a total order
so that comparisons of any two symbols from the alphabet can be computed
in constant time. The alphabetical order (lexicographical order) ≺ on (Σ∗, ≺) is
defined by setting u ≺ v if at least one of the following conditions is satisfied:

228 M. Paramasivan et al.

1. u is a proper prefix of v,
2. there exists words x, y, z (possibly empty) and elements a and b of Σ such

that u = xay, v = xbz, a ≺ b.

The following Table 1 illustrates examples of alphabetical order of words over
binary and tertiary alphabet.

Table 1. Alphabetical order of words

Alphabet Order Alphabetical order

a, b a ≺ b aa ≺ aab ≺ aba ≺ b

a, b, c a ≺ b ≺ c ab ≺ abb ≺ abbc ≺ abc ≺ acbc

A Lyndon word l = l[1 . . . n] is a primitive word which is non-empty (≠∅)
and less than all its rotations (conjugates) in the alphabetical order. Let Σ1, Σ2

be two alphabets. A morphism g is a mapping from Σ∗1 to Σ∗2 such that for
all words x, y over Σ1, g(xy) = g(x)g(y) over Σ2. The sequence of symbols that
contains a number of “do not know symbols” or “holes” denoted as ◊ is termed as
a partial word. A total word is a partial word with zero holes. Empty word is not
a partial word. The symbol ◊ does not belong to the alphabet Σ but a standby
symbol for the unknown letter. ◊ alone of any length cannot exist as a word. In
other words, the hole of any length is neither a total word nor a partial word.
A partial word x = x[1 . . . n] over Σ is a partial function x : {1, 2, . . . , n} → Σ.
For 1 ≤ i < n if x(i) is defined, then we say i ∈D(x) (the domain of x), otherwise
i ∈H(x) (the set of holes). The following definition is used in order to represent
the positions of the holes of the partial words. The partial word of x denoted by
x◊ is the total function x◊ : {1, 2, . . . , n}→Σ◊ =Σ ∪ {◊} defined by

x◊(i) =

{
x(i) if i ∈D(x)
◊ if i ∈H(x).

The set of all partial words over Σ◊ is denoted as Σ∗◊. Σ+◊ =Σ∗◊ ∖ {λ}. A partial
Language L◊⊆Σ

∗
◊ is a set of all partial words over Σ◊. A partial word x = x[1 . . . n]

is primitive (non-periodic) if there exists no word y such that x = yi with i≥2. A
partial word x is unbordered if no non-empty words p, q, y exist such that x◊ ⊂ py
and x◊ ⊂ qp. Unbordered partial words are primitive. Partial words that are not
primitive are said to be periodic partial words.

3 Lyndon Partial Words

Here we introduce and study the generalisation of finite Lyndon partial words by
using trees. A standard theorem for factoring a tree concerning trees associated
to Lyndon partial words is proved. In [21], the authors have defined that a

Lyndon Partial Words and Arrays with Applications 229

primitive partial word is a partial Lyndon word if and only if it is minimal in its
conjugate class with respect to alphabetical order by assuming the order of ◊ as
{a ≺ b ≺ . . . ≺ ◊}. The order of ◊ does not play a special role in the definition by
studying properties of partial Lyndon words since the ◊ is considered as a letter
with highest order which makes the definition similar to that of Lyndon words.
In our definition of Lyndon partial word, the order of ◊ plays a special role in
studying certain properties.

Definition 1. A Lyndon partial word l◊ = l◊[1 . . . n] over the ordered alphabet
Σk,◊ = Σk

⋃{◊} = {a1 ≺ a2 ≺ ... ≺ ak}
⋃{◊}, k > 1 is less than all its conjugates

(rotations) with respect to the alphabetical order. Here the order of ◊ is considered
as a1 ⪯ ◊, ◊ ⪯ ak and ◊ is compatible with all other elements of Σk. A Lyndon
partial language over Σ is a subset of Σ∗◊, the set of all Lyndon partial words
over Σ◊.

Note 1. For readability we use L◊ notation for partial languages which shall not
be confused with the �◊ notation for Lyndon partial languages.

Remark 1. Any Lyndon partial word is primitive but the converse may not be
true. For instance ◊abb is a primitive partial word but its conjugacy class {◊abb,
abb◊, bb ◊ a, b ◊ ab} does not contain a Lyndon partial word (see in Table 2
for length 4). This shows that the lexicographical order relation among Lyndon
partial words is not always a total order relation but sometimes a partial order
relation due to the presence of ◊. We remark a ◊ aabb, a ◊ bbab that these two
partial words are also not Lyndon partial words for our further references. Also
note that aa∗◊+aa∗◊bb∗+◊(b+bbb∗) is the expression for the machine in Fig. 1.
It is easy to think of another machine for (a∗aa + a) ◊ +aa∗ ◊ bb∗ + ◊(b + bbb∗)
instead of aa∗ ◊ +aa∗ ◊ bb∗ + ◊(b + bbb∗) in order to build the “basic blocks” of
estimated elements in Table 2 also with elements like aa∗ ◊ bb∗ especially in odd
lengths.

start
a

a

b

b
b

Fig. 1. Rough outline for some Lyndon partial words in Table 2

The following table shows the set of all Lyndon partial words with length at
most five over the ordered alphabet Σ◊ = {a ≺ b} ⋃{◊}.

Remark 2. It is easy to observe that Lyndon partial words on binary alphabet
takes the same integer sequence starting from 2, 3, 6, 9 by excluding the first
three numbers namely 1, 2, 1 of that of Lyndon words as compared and evidenced
in Table 2.

230 M. Paramasivan et al.

start

a ba

b

b

a

a

aa
. . .

a
. . .

a

a b

b

b

b

b

b

a

b

b

Fig. 2. Estimated automaton for some Lyndon partial words in Table 2

Table 2. Lyndon words along with Lyndon partial words

Length Lyndon words Lyndon partial words

0 λ –
1 a, b –
2 ab a◊,◊b

3 aab, abb aa◊, a◊b,◊bb

4 aaab, aabb, abbb aaa◊, aa◊b, a◊ab, a◊bb, ab◊b,◊bbb

5 aaaab, aaabb, aabab,
aabbb, ababb, abbbb

aaaa◊, aaa◊b, aa◊ab, aa◊bb, aab◊b,
a◊abb, a◊bbb, ab◊bb,◊bbbb

... · · · . . .

Lyndon Partial Words and Arrays with Applications 231

Algorithm 1: To determine Lyndon partial words of given length over the
binary alphabet
Input: Finite set of symbols/letters, Hole set, Length ‘n’
Output: Collection of Lyndon partial words of given length
p.sort()
result = [−1]
k = len(p)
while result: do

result[−1] + =1
m = len(result)

if (m = =n) : then
(′′.join(s[i] for i in result))

while len(result)<n: do
result.append(result[-m])

while result and result[-1] == k−1: do
result.pop()

n = int(input("Enter the length of the partial word: "))
p = [′a′,′ b′] ∪ [′◊′]
lyndon partial words(p, n)

Theorem 1 [17]. No proper subword exists as both prefix and a suffix of a Lyn-
don partial word.

Theorem 2 [17]. A partial word l◊ over Σ+◊ belongs to L◊ if and only if l◊ ≺ q◊
for each proper suffix q◊ of l◊.

Example 1. Consider a Lyndon partial word l◊[1 . . . 5] ∈ L◊. l◊ = aa◊bb ≺ b = q◊.
Here q◊ is a proper suffix of l◊

Theorem 3 [17]. Consider p◊, q◊ ∈ L◊. Then p◊q◊ ∈ L◊ if and only if p◊ ≺ q◊.

Theorem 4. Each Lyndon partial word l◊ over Σ+◊ is unbordered but the con-
verse is not true.

Proof. Assume that l◊ has a non-overlapping border x. Then l◊ = xl◊x. Let i ≥ 0
be maximal such that l◊=x

il1◊. Then l◊=x
i+1l1◊x. Then xi+2l1◊ is lexicographically

smaller than xi+1l1◊, a contradiction with l◊=x
i+1l1◊x being Lyndon partial word.

The following example illustrates that the converse is not true.

Example 2. Consider the unbordered partial word l◊ = bb◊aa over Σ◊ which is
also primitive. But l◊ is not a Lyndon partial word.

232 M. Paramasivan et al.

.

a .

a b
or

.

a .

a .

b

.

.

a .

a b

b

.

b

Fig. 3. An example for Theorem 3

Theorem 5 Factorisation Theorem [17]. Any partial word l◊ over the alpha-
bet Σ+◊ can be uniquely written as l◊ = l1◊ . . . lr◊ with l1◊, . . . , l

r
◊ ∈L◊ and l1◊ ⪰ . . .⪰ lr◊.

Definition 2. A Lyndon partial factor l◊[i . . . j] of a Lyndon partial word
l◊[i . . . n] for any j ≤ n is a maximal Lyndon partial factor if it is Lyndon.

Definition 3. A Lyndon partial array (denoted as lA◊) of l◊[1 . . . n] is an array
of integers in the range [1 . . . n] such that, at each position i = 1 . . . n stores the
length of the longest Lyndon partial factor of l◊[1 . . . n] starting at i.

Example 3. Consider a Lyndon partial word l◊[1 . . . 7] = aabab◊b. The maximal
Lyndon partial factor starting at position 1 is aabab, so lA◊ [1] = 5. The maximal
Lyndon partial factor at position 2 is ab, so lA◊ [2] = 3. The maximal Lyndon
partial factor starting at position 3 is b, so lA◊ [3] = 3. The maximal Lyndon
partial factor starting at position 4 is ab, so lA◊ [4] = 5. The maximal Lyndon
partial factor starting at position 5 is b, so lA◊ [1] = 5. The maximal Lyndon partial
factor starting at position 6 is ◊b, so lA◊ [6] = 7. The maximal Lyndon partial factor
starting at position 7 is b, so lA◊ [7] = 7. Therefore, lA◊ = [5 3 3 5 5 7 7].

a a b a b ◊ bLyndon partial word

a a b a b ◊ bMaximal Lyndon partial
factor

Position 1 2 3 4 5 6 7

Lyndon partial array 5 3 3 5 5 7 7

Theorem 6. If the positions i, j in l◊[1 . . . n] satisfy 1 ≤ i < j ≤ n, then the two
intervals

〈
i, lA◊ [i]

〉
and

〈
j, lA◊ [j]

〉
are not intersecting each other.

Lyndon Partial Words and Arrays with Applications 233

Proof. Assume that the two intervals
〈
i, lA◊ [i]

〉
and

〈
j, lA◊ [j]

〉
are intersecting each

other. Then u◊ = l◊[i . . . lA◊ [i]] and v◊ = l◊[j . . . lA◊ [j]] with longest length have a
non-empty intersection. Then we can write u◊ = x′x, v◊ = xx′ for some empty x
and x′. But then, we get u◊ ≺ x ≺ v◊ ≺ x′ showing that u◊x

′ is a Lyndon partial
word. This contradicts the assumption that u◊ is of the longest length. Thus the
two intervals

〈
i, lA◊ [i]

〉
and

〈
j, lA◊ [j]

〉
are not intersecting each other.

Theorem 7. Consider a Lyndon partial word l◊[1 . . . n] over the ordered alpha-
bet Σ◊. Let sufl◊(i) = l◊[i . . . n] denote the suffix of l◊ beginning at position i.
Then a Lyndon partial factor l◊[i . . . j] is the maximal Lyndon partial factor of
l◊ if and only if sufl◊(i)≺ sufl◊(k) for any 1 < j ≤ k and sufl◊(j + 1)< sufl◊(i).

Proof. Assume that l◊[1 . . . n] is Lyndon. Now to prove that sufl◊(j+1)< sufl◊(i),
consider for j <n, sufl◊(j+1)≮ sufl◊(i). Since sufl◊(i) and sufl◊(j+1) are distinct,
it follows that sufl◊(i)< sufl◊(j+1). Let P represent the longest common position
of (sufl◊(i), sufl◊(j + 1)) + 1. The following two cases arise:

1. If P ≤ j − i.
Here i≤i+P ≤j. Thus l◊[i . . . i+P1] = l◊[j+1 . . . j+P] and l◊[i+P]<l◊[j+1+P],
and so for j≺k≤j+1+P, l◊[i . . . j+1+P]≺ l◊[k . . . j+1+P]. Since l◊[i . . . j] is a
Lyndon partial word, l◊[i . . . j]≺l◊[k . . . j] and so l◊[i . . . j+1+P]≺l◊[k . . . j+1+
P] for any i<k≤j. Thus l◊[i . . . j+1+P] is a Lyndon partial word, contradicting
the assumption that l◊[i . . . j] is the longest Lyndon partial factor starting at
i.

2. If j − i ≤ P . Let P = r(j − i) + P1, where P1 ≺ j − i. Then r ⪰ 1 and l◊[i +
P] ≺ l◊[j + 1 + P]. This implies l◊[i . . . j + 1 + P] is Lyndon, contradicting the
assumption that l◊[i . . . j] is the longest Lyndon partial factor starting at i.
Thus sufl◊(j + 1)< sufl◊(i), as required.

Conversely, let l◊[i . . . k] be a longest Lyndon partial factor of l◊ starting at
position i. If k < j, then sufl◊(k + 1)< sufl◊(i), a contradiction since k + 1 ≤ j.
If k > j, then sufl◊(i)< sufl◊(j + 1) because j + 1 ≤ k, which again gives us a
contradiction. Thus k = j and l◊[i . . . j] is a longest Lyndon factor of x.

3.1 Tree Representation of a Lyndon Partial Word

Trees are non-linear data structure that are widely used for data organisation,
sorting and pattern matching. The tree associated with a Lyndon partial word
l◊ over Σ = {a, b} ∪ {◊} with order {a ≺ b} denoted as ζ is represented in an
hierarchical form. Since l◊ is a partial word, |l◊| ≥ 2 such that the parent node
(root) of ζ(l◊) has left child ζ(r◊) and right child ζ(s◊) where (r◊, s◊) is an
ordered pair of Lyndon partial words r◊, s◊ with l◊ = r◊s◊ and s◊ is lexico-
graphically smallest proper suffix of l◊. The tree ζ originates from the topmost
node called root and the letters occur as node (vertices) connected by edges in
each state. The leaf nodes are terminal nodes in the final state. They are also
described as nodes with no child. The set of terminal nodes of ζ are denoted by
δ(ζ). ζ+ represents the set of non-empty trees over Lyndon partial word. The

234 M. Paramasivan et al.

ROOT

a bb

a b

a b

b

ab

a b

or

ROOT

a bb

a b

a b

b

ab

a b

Fig. 4. Tree of (a◊bbab)

tree of a Lyndon partial word is written as ζ = ζm + vζn where ζm, ζn ∈ ζ
+ and v

denotes a node (vertex) such that v ∈ δ(ζm). Figure 4 shows an illustration of a
tree associated to the Lyndon partial word l◊ = a◊bbab.

.

.

.

a b

b

.

a b

or

.

.

.

a b

b

.

a b

Fig. 5. Outline of tree of (a◊bbab)

Precisely the tree ζ(l◊) in Fig. 4 is established as in Fig. 5

Definition 4. A tree ζ associated with a Lyndon partial word is described with
its minimal among all of its rotations. � denotes set of such trees. A sub-tree of
ζ is a tree with set of nodes as a subset of ζ.

Theorem 8. No proper subtree exists as both initial and terminal of the tree ζ.

Proof. Let us consider ζ to be a tree of a Lyndon partial word over Σ+◊. Let P
be a subtree of ζ such that P is both initial and terminal of ζ. Then we have

ζ = P + vQ, v ∈ δ(P) and

ζ = R + v�P, v�

∈ δ(R)

Lyndon Partial Words and Arrays with Applications 235

where v, v� are nodes and Q,R ∈ ζ+. By Definition 4, we get

ζ < Q + v�P, v�

∈ δ(Q) and

ζ < P + vR, v ∈ δ(P)

Therefore we get P + vQ ≺ P + vR such that Q ≺R and R + v�P ≺Q + v�P such
that R ≺Q. This shows that Q ≺R and R ≺Q which is impossible. Therefore no
proper subtree exists as both initial and terminal of the tree of a Lyndon partial
word.

.

.

a .

a b

b

.

b

Fig. 6. Tree of aa◊bb ≺ b

Theorem 9. ζ is a tree of a Lyndon partial word if and only if ζ = P + vQ, v ∈
δ(P) where ζ, P,Q ∈ � and P ≺Q.

Proof. Consider a tree ζ associated with a Lyndon partial word u◊. Let ζ have
P and Q as left and right sub trees and let p◊ and q◊ be the segments of u◊
respectively floating from P and Q in (u◊, ζ). By Theorem 2 and Theorem 8, ζ
is a tree of u◊ if and only if ζ ≺Q. For instance, consider Example1 (see Fig. 6).
Thus alike the proof of Theorem 3, ζ(u◊) is a tree in Fig. 3.

Theorem 10. Any tree ζ over the alphabet Σ+◊ can be uniquely written as ζ =
P0 + v1P1 + v2P2 +vkPk, vm ∈ δ(vnPn) for some n ⪰m such that P0 ⪰ P1 ⪰

P2.... ⪰ Pk.

Proof. We have to show that a tree associated with any partial word factorises
uniquely as a non-increasing product of trees. Now observe a factorisation of
factors ζ = P0 + v1P1 + v2P2 +vkPk with k minimal. If viPi ≺ v(i+1)P(i+1)

for some i then ζ = P0 + v1P1 + v2P2 +viPiv(i+1)P(i+1)....vkPk is a factori-
sation of factors in trees associated with Lyndon partial words since we have
viPiv(i+1)P(i+1) ∈ δ(vnPn) for some n ⪰ i. Now we have to prove the uniqueness.
Let us assume that for any viPi, wiQi ∈ δ(vnPn) such that P0 + v1P1 + v2P2 +

....viPiv(i+1)P(i+1).... vkPk = Q0 + w1Q1 + w2Q2 + ...wiQiw(i+1)Q(i+1)...wkQk,
we have P0 ⪰P1 ⪰P2....⪰Pk and Q0 ⪰Q1 ⪰Q2....⪰Qk. Assume that v1P1 is longer
than w1Q1. Then v1P1 = w1Q1 + w2Q2 + ...wiQix with x a non empty prefix
of w(i+1)Q(i+1). Then v1P1 ≺ x ≠ w(i+1)Q(i+1) ≠ w1Q1v1P1 which contradicts our
assumption.

236 M. Paramasivan et al.

4 �◊ - Morphism

In this section we characterise �◊-morphism and show that they are order-
preserving morphism. A non-empty morphism g over an ordered alphabet Σk,◊

containing atleast two letters is an order-preserving morphism if for all partial
words r◊, s◊ over Σ◊, r◊ ≺ s◊⇒ g(r◊) ≺ g(s◊).

Definition 5. Consider two ordered alphabets U◊ and V◊ each containing atleast
two letters such that a morphism g from U∗◊ to V ∗◊ is called a �◊- morphism if
for any Lyndon partial words l◊ over U◊, g(l◊) is a Lyndon partial word over
V◊. In short a morphism that preserves the property of Lyndon partial words is
defined as �◊ - morphism.

Theorem 11. A non-empty morphism g on Σ+◊ containing atleast two letters is
a �◊- morphism if and only if g is an order preserving morphism such that for
each u◊ ∈Σ◊, g(u◊) is a Lyndon partial word.

Proof. Consider g to be a �◊- morphism. Then by Definition 5, for each u◊ ∈Σ◊,
g(u◊) is a Lyndon partial word. Let m,n be two integers such that 1 < m < n
and given a least integer p ⪰ 0. Then, since g to be a �◊- morphism g(um) ≺
g(umup

n)≺ g(um+1) such that |g(um)|> |g(umup
n)|> |g(um+1)|. This implies that g

is order preserving. Conversely, assume that g is an order preserving morphism
such that for each u◊ ∈ Σ◊, g(u◊) is a Lyndon partial word. Now we have to
show that for each m such that 1 <m < n, g(umup

n) ≺ g(um+1). Since g is a non-
empty order preserving morphism, g(umup

num+1) is a Lyndon partial word. Also
g(um) ≺ g(umup

num+1) ≺ g(um+1). Thus g is a �◊- morphism.

Corollary 1. g is a �◊- morphism on Σ◊ = {a, b} ∪ {◊} if and only if g(a) and
g(b) are Lyndon partial words with g(a) ≺ g(b).

5 Two-Dimensional Lyndon Partial Words

The concept of Lyndon words are extended as two-dimensional Lyndon words in
[20]. Those are useful to capture 2D horizontal periodicity of a matrix in which
each row is highly periodic. It is also utilised to solve 2D horizontal suffix–
prefix matching among a set of rectangular patterns efficiently. We introduce
the following.

Definition 6. A two-dimensional row Lyndon partial word is a horizontally
primitive matrix which is least among its horizontal conjugates.

Example 4. Consider a two-dimensional partial word A =
a ◊ a
◊ b a
b b ◊.

of size (3 × 3)

over Σ◊ = {a ≺ b}∪{◊}. The horizontal conjugates of A are
a ◊ a
◊ b a
b b ◊

,
◊ a a
b ◊ a
b ◊ b

,
a a ◊
a ◊ b
◊ b b

.

Lyndon Partial Words and Arrays with Applications 237

Here
a a ◊
a ◊ b
◊ b b

is a two-dimensional row Lyndon partial word with each horizontal

rows as minimal among its conjugates.

Definition 7. A regular two-dimensional Lyndon partial word is a horizontally
primitive matrix which is least of its horizontal conjugates by maintaining a
regular order.

In one-dimensional case Lyndon partial words of length 4 over binary alpha-
bet are aaa◊, aa◊b, a◊ab, a◊bb, ab◊b, ◊bbb. Now we can derive two-dimensional
partial words as follows where there will be many 2D partial words, few sam-
ple of those 2D partial words are given in Example below which maintains a
specific/regular ordering of Lyndon partial arrays.

Example 5. a a a ◊
a a a ◊

, a a a ◊
a a ◊ b

, a a a ◊
a ◊ a b

, a a a ◊
a ◊ b b

, a a a ◊
◊ b b b

, a a ◊ b
a a ◊ b

, a a ◊ b
a ◊ a b

, a a ◊ b
a ◊ b b

,

a a ◊ b
◊ b b b

, a ◊ a b
a ◊ a b

, a ◊ a b
a ◊ b b

, a ◊ a b
◊ b b b

, a ◊ b b
a ◊ b b

, a ◊ b b
◊ b b b

, ◊ b b b
◊ b b b

,

a a a ◊
a a a ◊
a a a ◊

, · · · ,
◊ b b b
◊ b b b
◊ b b b

,

a a a ◊
a a a ◊
a a a ◊
a a a ◊

, · · · ,
◊ b b b
◊ b b b
◊ b b b
◊ b b b

,

a a a ◊
a a a ◊
a a a ◊
a a a ◊
a a a ◊

, · · · ,

a a a ◊
a a ◊ b
a ◊ a b
a ◊ b b
◊ b b b

, · · · ,

◊ b b b
◊ b b b
◊ b b b
◊ b b b
◊ b b b

.

One can observe that these 6 elements that follows are similar to many other

elements which are NOT present in above collection:

◊ a a a
b a a ◊
b a ◊ a
b a ◊ b
b ◊ b b

,

a ◊ a a
◊ b a a
a b a ◊
b b a ◊
b b ◊ b

,

a a ◊ b
a ◊ a b
a ◊ b b
◊ b b b
a a a ◊

,

a a a ◊
a ◊ a b
a ◊ b b
◊ b b b
a a ◊ b

,

a a a ◊
a a ◊ b
a ◊ b b
◊ b b b
a ◊ a b

,

a a a ◊
a a ◊ b
a ◊ a b
◊ b b b
a ◊ b b

as these do not satisfy the property of being a regular

2D Lyndon partial word. Now it is of interest to identify specific/regular 2D
Lyndon partial words among those elements.

Due to Remark 2, we see the following pattern collected as a 2D partial
language which shall be named as LDD for further references in our work based
on this paper.

238 M. Paramasivan et al.

LDD =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ◊
◊ b

,
a a ◊
a ◊ b
◊ b b

,

a a a ◊
a a ◊ b
a b ◊ b
a ◊ a b
a ◊ b b
◊ b b b

,

a a a a ◊
a a a ◊ b
a a b ◊ b
a a ◊ a b
a a ◊ b b
a b ◊ b b
a ◊ a b b
a ◊ b b b
◊ b b b b

,

a a a a a ◊
a a a a ◊ b
a a a b ◊ b
a a b b ◊ b
a a a ◊ a b
a a a ◊ b b
a a b ◊ a b
a a b ◊ b b
a a ◊ a a b
a a ◊ a b b
a a ◊ b a b
a a ◊ b b b
a ◊ a a a b
a ◊ a b b b
a ◊ b b b b
◊ b b b b b

, · · · ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Fig. 7. Kambi Kolam (5 × 5)

Connections to Image Analysis

Kolam is one of several types of street/home art practices performed as
ephemeral designs on thresholds in India. In Tamil Nadu, kolam designs that
grace the thresholds of houses each day attract attention from different angles.
In addition to their importance within Tamil culture, there are an unusual exam-
ple of mathematical ideas expressed in a cultural context. In recent years, kolam
figures have also attracted the attention of computer scientists interested in
analysing and describing images with picture languages [26]. The kolam figures
grouped into families attracted theoretical computer scientists who are involved
in the analysis and description of images using picture languages [29]. These lan-
guages use basic units and formal rules for combining them. Studies of picture
languages are similar to formal language theory, which dates back to the study of
natural languages some 45 years ago. The analysis and specification of program-
ming languages has been supported by formal language theory in subsequent
decades.

Lyndon Partial Words and Arrays with Applications 239

Fig. 8. Kolams for 2D row Lyndon partial word

Figure 7 is a kambi kolam of (5×5). In Fig. 8 we embed the kolam in Fig. 7 with
any two-dimensional row Lyndon partial word of size 5×5 over Σ◊ = {a ≺ b}∪{◊}.
Among the 9 Lyndon partial words of length 5 mentioned in Table 2, if aaa◊b,

240 M. Paramasivan et al.

Fig. 9. Kolam patterns to show sensitivity of aaaa◊

aa◊ab, aa◊bb, aab◊b, a◊abb, a◊bbb, ab◊bb occurs as ANY of the rows of a two-
dimensional word, then the obtained two-dimensional word will become a two-
dimensional row Lyndon partial word. Also no change in the fixed kolam pattern
is allowed to occur while the ◊ in each row is replaced by the letters a or b of Σ

Lyndon Partial Words and Arrays with Applications 241

Fig. 10. Kolam patterns to show sensitivity of ◊bbbb

due to the sensitive cases that is explained in the below lines fixes the property
of Definition 6.

The sensitive cases are the remaining two Lyndon partial words aaaa◊ and
◊bbbb (out of those 9 Lyndon partial words of length 5). Both of these Lyndon

242 M. Paramasivan et al.

partial words gets converted to periodic total words, if the ◊ in the former
replaced by the letter a and if the ◊ in the latter replaced by the letter b by
violating the property of Lyndon word.

The Figs. 9 and 10 shows the changes in the kolam patterns of these sensitive
cases of the two-dimensional row Lyndon partial words. The dots in each rows
of the kolam patterns denotes each letter corresponding to the Lyndon partial
words, but as a whole the kolam patterns are not two-dimensional row Lyndon
partial words due to the sensitivity of the ◊s.

6 Discussions

In [17], we introduced Lyndon partial words and proved that the language of
all Lyndon partial words over the binary alphabet is not context free. Now in
this paper, we introduced Lyndon partial arrays and trees associated with Lyn-
don partial words. Kolams, Celtic knots (indo-germanic patterns) were studied
for decades by researchers worldwide since 1970s. We learned to find out very
basic connections to two-dimensional formal languages through Lyndon partial
words [17], arrays with few automata and grammar models in [22].

In near future, we will do a detailed study on several variants of 2D Lyndon
partial words and their properties in an upgraded version of this paper. Moti-
vated by the questions on the study of Lyndon partial words one can think of
an automaton model as we tried to carve in Figs. 1, 2, as we remarked in this
paper to find a sequence of Lyndon partial words (for binary alphabet) is not
achieved so far as similar as the Lyndon word integer sequence namely (sequence
A001037 in the OEIS). We aim to solve this problem by developing the borders
with further connections to that of Descriptional Complexity of Formal Systems
through studies on State Complexity [15,18].

Also time and space complexity of Lyndon partial words versus 2D Lyn-
don partial words shall be investigated similar to [20]. Closure properties on
several operations shall be investigated along with the comparison of the fam-
ily of languages with other several family of languages for both Lyndon partial
words versus 2D Lyndon partial words with different variants shall be thor-
oughly investigated through more study with finite array automata and array
grammars [16,25]. We also aim to connect with Computer Vision [28] to find out
the lost or hidden information which is main application/implementation areas
to connect with the partiality and sensitivity of holes in our study.

Acknowledgements. We would like to thank the unknown referees for their com-
ments and suggestions on the manuscript in improving from an earlier version. The
corresponding authors R. Krishna Kumari and R. Arulprakasam are very much thank-
ful to the management, SRM Institute of Science and Technology for their continuous
support and encouragement. Meenakshi Paramasivan would like to thank the financial
support provided by CIRT (Center for Informatics Research and Technology) - Uni-
versity of Trier, Germany for the Celtic Studies in 2017–2018. The authors owe a big
thanks to Prof. Rani Siromoney and her co-authors.

Lyndon Partial Words and Arrays with Applications 243

References

1. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

2. Barcelo, H.: On the action of the symmetric group on the free lie algebra and the
partition lattice. J. Comb. Theory Ser. A 55(1), 93–129 (1990)

3. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci. 218(1), 135–141 (1999)

4. Bille, P., et al.: Space efficient construction of Lyndon arrays in linear time. In: Czu-
maj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, 8–11 July 2020, Saarbrücken, Ger-
many (Virtual Conference). LIPIcs, vol. 168, pp. 14:1–14:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2020)

5. Blanchet-Sadri, F.: Primitive partial words. Discret. Appl. Math. 148(3), 195–213
(2005)

6. Blanchet-Sadri, F., Goldner, K., Shackleton, A.: Minimal partial languages and
automata. RAIRO Theor. Inform. Appl. 51(2), 99–119 (2017)

7. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quotient
groups of the lower central series. Ann. Math. 81–95 (1958)

8. Crochemore, M., Russo, L.M.: Cartesian and Lyndon trees. Theoret. Comput. Sci.
806, 1–9 (2020)

9. Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381
(1983)

10. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Scanning pictures the
boustrophedon way. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 202–216. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26145-4_15

11. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture pro-
cessing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95,
232–258 (2018)

12. Fischer, M.J., Paterson, M.S.: String-matching and other products. In: Karp, R.M.
(ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp. 113–125
(1974)

13. Franek, F., Islam, A.S.M.S., Rahman, M.S., Smyth, W.F.: Algorithms to com-
pute the Lyndon array. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague
Stringology Conference 2016, Prague, Czech Republic, 29–31 August 2016, pp.
172–184. Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague (2016)

14. Hohlweg, C., Reutenauer, C.: Lyndon words, permutations and trees. Theor. Com-
put. Sci. 307(1), 173–178 (2003)

15. Holzer, M., Kutrib, M.: Descriptional complexity - an introductory survey. In:
Martín-Vide, C. (ed.) Scientific Applications of Language Methods, Mathematics,
Computing, Language, and Life: Frontiers in Mathematical Linguistics and Lan-
guage Theory, vol. 2, pp. 1–58. World Scientific/Imperial College Press (2010)

16. Krithivasan, K., Siromoney, R.: Array automata and operations on array languages.
Int. J. Comput. Math. 4, 3–30 (1974)

17. Kumari, R.K., Arulprakasam, R., Dare, V.: Language of Lyndon partial words.
Comput. Sci. 15(4), 1173–1177 (2020)

18. Kutrib, M., Wendlandt, M.: State complexity of partial word finite automata. In:
Han, Y., Ko, S. (eds.) DCFS 2021. LNCS, vol. 13037, pp. 113–124. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-93489-7_10

https://doi.org/10.1007/978-3-319-26145-4_15
https://doi.org/10.1007/978-3-319-26145-4_15
https://doi.org/10.1007/978-3-030-93489-7_10

244 M. Paramasivan et al.

19. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library, 2nd edn.
Cambridge University Press, Cambridge (1997)

20. Marcus, S., Sokol, D.: 2D Lyndon words and applications. Algorithmica 77(1),
116–133 (2017)

21. Nayak, A.C., Kapoor, K.: On the language of primitive partial words. In: Dediu, A.-
H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977,
pp. 436–445. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-
1_34

22. Paramasivan, M.: Operations on graphs, arrays and automata. Ph.D. thesis, Uni-
versity of Trier, Germany (2018)

23. Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monographs New
Series (1993). Cohn, P.M., Dales, H.G. (eds.)

24. Richomme, G.: Lyndon morphisms. Bull. Belgian Math. Soc.-Simon Stevin 10(5),
761–785 (2003)

25. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Inf. Control 22(5), 447–470 (1973)

26. Siromoney, R., Subramanian, K.G., Dare, V.R., Thomas, D.G.: Some results on
picture languages. Pattern Recognit. 32(2), 295–304 (1999)

27. Subramanian, K.G., Siromoney, R., Mathew, L.: Lyndon trees. Theor. Comput.
Sci. 106(2), 373–383 (1992)

28. Szeliski, R.: Computer Vision - Algorithms and Applications. Texts in Com-
puter Science, 2nd edn. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-34372-9

29. Waring, T.M.: Sequential encoding of Tamil kolam patterns. Forma 27, 83–92
(2012)

https://doi.org/10.1007/978-3-319-15579-1_34
https://doi.org/10.1007/978-3-319-15579-1_34
https://doi.org/10.1007/978-3-030-34372-9
https://doi.org/10.1007/978-3-030-34372-9

Theory and Applications

Tomography Reconstruction Based
on Null Space Search

Tibor Lukić(B) and Tamara Kopanja

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
{tibor,kopanja.v11.2019}@uns.ac.rs

Abstract. The paper introduces a new tomography reconstruction app-
roach for gray and binary image reconstruction. The proposed method
intends to find a solution by searching for the best linear combination of
the basis vectors of the null space of the projection matrix. One of the
advantages of the proposed approach is that the projection error remains
always extremely low, practically equal to zero, during the reconstruction
process. The method applies a gradient based optimization algorithm. A
short experimental evaluation, including three relevant and well-know
algorithms for comparison, is presented.

Keywords: Tomography reconstruction · Null space · Energy
minimization · Gradient based optimization · Regularization

1 Introduction

Tomography is a field of image processing which deals with reconstruction of
unknown images from available projection data [7]. Mathematically, the image
can be modeled by a function whose codomain or range may be continuous or
discrete set. In the Computerized Tomography the image function has a contin-
uous range. The Discrete Tomography (DT) [8,9] is a sub-field of tomography,
where the range of the image function is a finite and discrete set. If this range
contains just a few predefined intensity levels, then we talk about Multi-Level
Tomography [12]. In particular, in Binary Tomography (BT), the unknown image
contains only two different intensity values, usually zero and one.

Application spectrum for tomography methods is very wide. Tomography
image reconstruction techniques are widely used in different industrial investiga-
tion problems, often in the form of nondestructive material testing [4]. Another
vast field of its application is connected to the human radiology diagnostic pro-
cedures, like CT scanning. Great field of tomography application belongs to
security screening techniques, for example, many airports use X-rays computed
tomography for screening baggage [11]. BT methods are extremely useful in
cases when we investigate the presence or absence of a specific material inside
a homogeneous structure, for example in the determination of the presence of
atoms in crystalline structures [10].

There are several successful methods, proposed in literature, for solving the
tomography reconstruction problem. We just mention a few well-known iter-
ative algorithms: Algebraic Reconstruction Technique (ART) [6], Simultaneous
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 247–259, 2023.
https://doi.org/10.1007/978-3-031-23612-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_15&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_15

248 T. Lukić and T. Kopanja

Iterative Reconstruction Technique (SIRT) [5], Discrete Algebraic Reconstruc-
tion Technique (DART) [1,2], Spectral Projected Gradient (SPG) [15], Difference
of Convex functions (DC) [21]. The common feature of these methods is that
they change the pixel intensities of the current solution in attempt to reduce the
projection error, in other words, the projection error is minimized by the con-
vergence process of these methods. As a result of that, the projection error may
be minimized with smaller or higher success. This issue motivated us to develop
a reconstruction method where the projection error does not change during the
iterative process.

In the reconstruction process the basic criteria is the matching of the recon-
structed image with the measured projection data. The acquired data is often
the most reliable information about the unknown image. Therefore, it is impor-
tant that the projection error of the reconstructed image remains as small as
possible. In this paper we propose a new reconstruction method which seeks
to answer to this issue. In the proposed reconstruction process the projection
error always remains unchanged and theoretically equals to zero - in practical
applications close to zero.

The paper has the following structure. Section 2 gives the description of
the basic tomography reconstruction problem. In Sect. 3 the new reconstruction
method is presented. In Sect. 4 a short experimental evaluation of the proposed
new reconstruction method is given. Finally, the conclusion is given in the Sect. 5.

2 Tomography Reconstruction Problem

In this paper we consider transmission tomography reconstruction model. The
main characteristic of transmission tomography is that the both, source and
detector are placed out of the considered object. Mathematically the problem of
tomography reconstruction may be formulated by the following system of linear
equations

Au = b, A ∈ R
m×n, u ∈ R

n, b ∈ R
m, (1)

where u represents the unknown image which should be reconstructed. In the
case of binary tomography, components of vector u have only two different values,
usually 0 and 1. The matrix A is so-called projection matrix and its rows hold
information about a length of the projection ray passing through the pixel. The
assumption is that each pixel is represented as a square with unit side length, see
Fig. 1. Further, it represents calculation projection value for a given image from
one projection direction denoted by angle θ. The another projection direction is
obtained by rotation source-detector system around of the center of the circle.
Each projection direction contributes a new parallel set of the projection rays.
Detected projection values are placed in the projection vector b. It is not hard
to see that the projection matrix A is spare, i.e. the majority of elements ai,j

are equal to zero.
In the reconstruction problem, both the matrix A and the projection vector

b are given, as a calculated or measured data. The task is to determine the
unknown image u. The system (1) is often underdetermined (m << n), and

Tomography Reconstruction Based on Null Space Search 249

consequently, in general case, we can count on an infinite number of possible
solutions. The applied parallel beam projection geometry, see Fig. 1, allows us
to assume that the matrix A is full row rank, that is rank(A) = m. Therefore,
the general solution has n − m degrees of freedom.

Fig. 1. The transmission parallel beam projection geometry. The i-th projection value
is obtained as bi = ai,13u13 + ai,9u9 + ai,10u10 + ai,11u11 + ai,7u7 + ai,8u8.

3 Tomography Reconstruction Method Based on Null
Space Search

In this section we introduce a new tomography reconstruction method for both
gray-scale and binary image reconstructions. The main idea uses the fact that
any solution of the projection linear system of Eqs. (1)

Au = b,

can be represented as a sum of one particular solution up(Aup = b) and an
appropriate vector belongs to the null space of the matrix A, defined by

N (A) = {x ∈ R
n |Ax = 0}.

Hence the set of all solutions can be represented as

up + z, where z ∈ N (A).

250 T. Lukić and T. Kopanja

Let us denote a basis of the vector space N (A) by the set of vectors {b1,b2,
. . .bk}, where k = n − m. Each solution of the system (1) may be represented
in the following form

w(α) = up + α1b1 + α2b2 + . . . + αkbk,

where α = (α1, α2, . . . , αk) ∈ R
k and bi ∈ R

n for all i = 1, . . . , k.
(2)

Now we will choose coefficients α1, α2, . . . αk in α in a such way that the obtained
solution w(α) ∈ R

n lies in a predefined area, for example in the hyper cube [0, 1]n.
To achieve this, let us look at the following unconstrained optimization problem

arg min
α

n∑

i=1

W (w(α)i), (3)

where W is a specially designed potential function. It is defined by

W (x) =

⎧
⎨

⎩

x2, x ≤ 0
(x − 1)2, x ≥ 1

0, 0 < x < 1
. (4)

W is a continuously differentiable function consisting of two square parabolas
and a horizontal line. Its important property is that it is always greater than
zero except for values between 0 and 1, when it is zero, see Fig. 2. Therefore,
the solution α∗ of the problem (3) gives a combination of coefficients of basis
vectors in (2) for which the corresponding image solution w(α∗) belongs to the
set [0, 1]n.

W(x)

x ()x-1
2 2

x0 1

Fig. 2. Potential function W , designed for reconstruction of gray solution that belongs
to the hyper cube [0, 1]n.

The gradient of the objective function G(α) :=
n∑

i=1

W (w(α)i) in the optimiza-

tion problem (3) can be determined by elementary calculus and in analytical way.
It has the following form

grad G(α) = NT · [W ′(w(α)1),W ′(w(α)2), ...,W ′(w(α)n)]T ,

Tomography Reconstruction Based on Null Space Search 251

where the matrix N ∈ R
n×k represents the null space N (A) in a way that it

contains its basis vectors in the following way

N =

⎡

⎢⎢⎢⎣

b11 b12 ... b1k

b21 b22 ... b2k

...
...

...
...

bn1 bn2 ... bnk

⎤

⎥⎥⎥⎦ = [b1 b2 ... bk].

In practical applications, this matrix can be obtained by elementary calculus,
or just by applying the fast Matlab command N = null(A). For the minimization
of the problem (3) different gradient type deterministic algorithms can be used.
We suggest the Spectral Conjugate Gradient algorithm [3], which shows best
performance in our experiments.

It is necessary to determine one solution (a particular solution) up of the
system (1), since up is needed in the formula w(α) (2). We suggest the least
norm solution uLN , for this purpose. The algorithm of the Conjugate Gradient
[19] provides a very fast and very accurate calculation of uLN . Accordingly, the
calculation of particular solution in (2) does not reduce the speed and accuracy
of the whole reconstruction procedure.

The design of the proposed model (3) is such that the projection error of the
solution (‖Aw(α∗)− b‖) is always extremely low, practically equal to zero. This
is achieved by the manner of searching for the solution: the coefficients of basis
vectors of the null space (2) are changing during the process, however, this change
in the values has no effect on the projection error - this error always remains
practically zero. We emphasize that this fact is one of the main advantages of
the proposed reconstruction method. The projection data is the most accurate
information about the solution in the tomography image reconstruction, hence
their accordance with the reconstruction is extremely important. The proposed
new method, which we will call Null Space Search based Tomography (NSST),
has just this feature.

pv v

W x)(

x

h-c(x-p)

(x-1)

2

2

2

2

1 2 x

l l

0 1

Fig. 3. Potential function W2 (5), designed for reconstruction of binary solutions.

In a case when our goal is to find the binary solution of the tomography
reconstruction problem (1), this can be achieved if we replace the potential

252 T. Lukić and T. Kopanja

function (4) in the proposed NSST method with the two well potential function
defined by

W2(x) =

⎧
⎨

⎩

x2, x ≤ v1
(x − 1)2, x ≥ v2
h − c(x − p)2, v1 < x < v2

, (5)

where for the given parameter l we set

p =
1
2
, v1 = p − l, v2 = p + l, c =

1
2l

− 1 and

h =
1
4
(1 − 2l)

Function W2 has 2 minima in the points 0 and 1, such that W2(0) = W2(1) = 0,
see Fig. 3. It is a piece-wise quadratic function, where the constants h and c are
determined in such a way that the function W2 is continuously-differentiable for
each x. Therefore, the following optimizing problem

arg min
α

n∑

i=1

W2(w(α)i), (6)

can be solved in the same deterministic manner as it is suggested for the model
(3) - by a gradient based optimization algorithm.

The solution α∗ of (6) determines a binary image solution w(α∗) of the
tomography problem (1). This means that the proposed reconstruction model (6)
defines a variant of the NSST method which belongs to the binary tomography
reconstruction methods. The pseudo-algorithm of this method is presented in
Algorithm 1. The proposed approach envisages reconstruction by the sequence
of optimization steps, where the parameter l, starting from its largest possible
value 1

2 (for which W2 reduces to W), gradually decreased in each step. This
process slowly enforces the “binarization” of the current solution. The whole
process is terminated when the (almost) binary solution is achieved, which is
controlled by the exit condition of the while loop.

In many proposed tomography reconstruction models, different types of reg-
ularization approaches are applied in terms to enhance the quality of reconstruc-
tions, see [13,14,18]. The quadratic total variation type regularization, which in
continuous case has a form

∫∫

Ω

‖∇u(x, y)‖2 dxdy, (8)

has an isotropic diffusion type effect on an applied image u(x, y), and it is often
used in tomography reconstruction [16,17,22]. These good experiences motivated
us to adapt and add this regularization to the our model as well. Accordingly,
we propose the following regularized reconstruction model

arg min
α

n∑

i=1

W2(w(α)i) + μ

n∑

i=1

(w(α)i − w(α)r)2 + (w(α)i − w(α)b)2, (9)

Tomography Reconstruction Based on Null Space Search 253

Algorithm 1: NSST algorithm for binary reconstruction

Parameters: εout = 0.1, l =
1

2
, lΔ = 0.001, αinit = (0, 0, . . . 0).

while | w(αinit)T · ((1, 1, . . . , 1) − w(αinit)) | > εout

do
/* Solve by SCG algorithm: */

αnew = arg min
α

n∑

i=1

W2(w(α)i) (7)

αinit = αnew

l ← l − lΔ
end

where indices r and b point to neighbour pixels right and below from w(α)i,
respectively. The parameter μ > 0 balances between intensity of influence of
two different terms in the proposed energy function (9), its value is set to 0.01

in our experiments. Let us denote the second term by H(α) =
n∑

i=1

(w(α)i −

w(α)r)2 + (w(α)i − w(α)b)2. This function is an adapted discrete version of the
operator (8). The analytical expression of its gradient is given by gradH(α) =[

∂H(α)
∂α1

, ∂H(α)
∂α2

, . . . , ∂H(α)
∂αk

]T

, where

∂H(α)
∂αi

= 2
l=k∑

l=1

(w(α)l − w(α)r)(bli − bri) + (w(α)l − w(α)b)(bli − bbi).

Therefore, the gradient of the energy function in (9) is determined analytically
and it can be easily used in gradient based minimization algorithms. To minimize
the model (9), we apply the same approach as required by the Algorithm 1, but
in this case the model (7) is replaced by the regularized model (9).

IM1 IM2 IM3 IM4

Fig. 4. Original test images used in experiments.

254 T. Lukić and T. Kopanja

4 Experimental Evaluation

In this Section a short experimental evaluation of the proposed NSST method is
presented. Four test images are used in the experimental work, shown in Fig. 4.
Images denoted by IM1 and IM2 are binary phantoms, while IM3 is a phantom
with gray pixel intensities. Test image IM4 shows a fragment of a CT image of
a human lung with stain caused by COVID-19 disease. All test images (64 × 64)
have the same pixel intensity range of [0, 1]. These images are used as originals
in the reconstruction experiments.

Table 1. Experimental results for IM1 and IM2 images, using three different recon-
struction methods. The abbreviation d indicates the number of taken projection direc-
tions.

d IM1 IM2

2 3 4 6 2 3 4 6

NSST EP 2.22e−12 8.61e−08 6.44e−08 8.26e−08 1.73e−12 7.24e−08 8.63e−08 8.52e−08

ER 313.51 18.5770 5.30e–07 1.19e–06 1296 573.89 6.16 8.51e–07

rER 23.93% 1.42% ≈0% ≈0% 78.83% 34.91% 0.37% ≈0%

SPG EP 2.82 0 0 0 4.89 5.39 0 0

ER 21 0 0 0 1184 595 0 0

rER 1.60% 0% 0% 0% 72.02% 36.19% 0% 0%

DC EP 23.49 6.91 6.69 7.87 23.49 17.96 16.50 10.65

ER 1325 27 12 10 1325 1007 236 30

rER 1.01.15% 2.06% 0.92% 0.76% 80.60% 61.25% 14.36% 1.82%

The performance of the proposed NSST reconstruction method is compared
with performances of three well-known reconstruction procedures: with the SPG
[14,15] and the DC [21,22] algorithms for BT case, and with the SIRT [5,20]
algorithm for gray image reconstructions. All considered algorithms are imple-
mented in Matlab environment.

The quality of the obtained reconstructions is expressed by the following
three error measure functions

EP (ur) = ‖Aur − b‖,

ER(ur) =
n∑

i=1

|ur
i − u∗

i |,

rER(ur) =
ER(ur)

nO
· 100%,

where ur is the reconstructed image, while u∗ denotes the original image and
nO is the number of object pixels in u∗. Function EP is called projection error
and its measures the accordance of the reconstruction with the given projection
data. The reconstruction error ER expresses the distance of ur from the original
image u∗. In the case of binary reconstructions, the function ER express the

Tomography Reconstruction Based on Null Space Search 255

d CG (least norm) NSST (gray) NSST (binary)

2
1438.88 1278.55 1296.20

3
1241.11 837.33 573.89

4
1198.80 265.31 6.16

6
823.19 58.20 8.51e-07

Fig. 5. Reconstructions of the phantom image IM2. The presented values below the
reconstructions shows the corresponding reconstruction errors (ER).

number of misclassified pixels, while rER express this number but relative to
the size of the object, i.e., number of white pixels.

We note that the running time is not the advantage of the NSST method,
mostly due to increased memory consumption and computational costs: the
numerous (n − m) basis vectors bi ∈ R

n of the null space of the projection

256 T. Lukić and T. Kopanja

matrix, see Sect. 3, must be memorized and their linear combinations must be
manipulated during the whole reconstruction process.

Table 1 shows the obtained reconstruction results for binary test images. The
projection error EP for NSST is close to zero in all experiments. If we round
these values to zero, we can conclude that NSST performs the best regarding the
projection error. In terms of the reconstruction error ER, SPG is the winner in
four cases, while in the remaining other four cases NSST gives the best results
or shares first place with SPG.

Table 2. Experimental results for IM3 and IM4 images, using two different reconstruc-
tion methods. The abbreviation d indicates the number of taken projection directions.

d IM3 IM4

10 15 20 25 10 15 20 25

NSST EP 8.71e−08 9.50e−08 9.78e−08 6.90e−08 9.42e−08 9.184e−08 8.85e−08 8.63e−08

ER 114.87 77.49 65.36 52.26 191.60 152.31 130.18 100.56

SIRT EP 0.29 0.26 0.30 0.31 0.07 0.14 0.25 0.27

ER 253.27 197.87 170.24 135.58 212.35 176.25 152.70 125.87

Table 2 summarises the obtained reconstructions results for gray test images.
The NSST method has significantly better performance in all experiments,
regarding both projection and reconstruction errors, than the “control” SIRT
algorithm.

Figure 5 shows three important phases of the proposed NSST reconstruction
process for four different projection direction settings (d). First column shows
least norm reconstructions, obtained by the CG algorithm. In the next column
we can see results of the second phase, where reconstructions are provided by the
minimization model (3). The third column shows final results obtained by the
regularized binarization model (9). We note, that the binarization process may
be not “completed”, which means that pixel intensities are not always purely
binary, but just close to binary. The effect of this issue you can follow in cases
of low amount of projection data, when d is 2 and 3. One of the possible reason
for that can by the “highly” non convexity of the used potential function, see
Fig. 3.

Figure 6 shows reconstructions of gray images. NSST provides visually most
appealing results in all presented cases.

Summarizing all obtained experimental results, we can conclude that the
proposed NSST method shows best performance regarding the projection error
minimization, and also NSST shows good competence regarding the quality of
reconstructions.

Tomography Reconstruction Based on Null Space Search 257

d SIRT NSST SIRT NSST

10
253.27 114.87 212.35 191.60

25
135.58 52.26 125.87 100.56

Fig. 6. Reconstructions of test images IM3 and IM4. The presented values below of
reconstructions show the corresponding reconstruction errors (ER).

5 Conclusions

This paper introduces a new deterministic tomography reconstruction approach,
called NSST. The proposed method is based on searching through linear com-
binations of the basis vectors of the null space of the projection matrix. One
of the important advantages of the new method is that the projection error of
the reconstruction guaranteed to remain at a minimum possible level, practi-
cally equal to zero. This is the case even when different regularization terms is
involved into the reconstruction process. The minimization problem of the pro-
posed reconstruction model is solved by a gradient based iterative algorithm.
The obtained experimental results show good performance competence of the
new method in comparison with three well-known reconstruction methods.

Acknowledgement. Authors acknowledge the financial support of Department of
Fundamental Sciences, Faculty of Technical Sciences, University of Novi Sad, in the
frame of the Project “Primena opštih disciplina u tehničkim i informatičkim naukama”.
T. Lukić also acknowledges support received from the Hungarian Academy of Sciences
through the DOMUS project.

258 T. Lukić and T. Kopanja

References

1. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for dis-
crete tomography. IEEE Trans. Image Process. 20, 2542–2553 (2011)

2. Batenburg, K.J., Sijbers, J.: DART: a fast heuristic algebraic reconstruction algo-
rithm for discrete tomography. In: Proceedings of International Conference on
Image Processing (ICIP), pp. 133–136 (2007)

3. Birgin, E., Mart́ınez, J.: Spectral conjugate gradient method for unconstrained
optimization. Appl. Math. Optim. 43, 117–128 (2001)

4. Carmignato, S., Dewulf, W., Leach, R.: Industrial X-Ray Computed Tomography.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-59573-3

5. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an
object from projections. J. Theor. Biol. 36(1), 105–117 (1972). https://doi.org/10.
1016/0022-5193(72)90180-4, https://www.sciencedirect.com/science/article/pii/
0022519372901804

6. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART)
for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol.
29(3), 471–481 (1970). https://doi.org/10.1016/0022-5193(70)90109-8, https://
www.sciencedirect.com/science/article/pii/0022519370901098

7. Herman, G.T.: Image Reconstruction from Projections. Springer, Heidelberg
(1980)

8. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and
Applications. Birkhäuser (1999)

9. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.
Birkhäuser (2007)

10. Herman, G.T., Kuba, A.: Discrete tomography: Foundations, Algorithms, and
Applications. Springer, Heidelberg (2012)

11. Kisner, S.J.: image reconstruction for X-ray computed tomography in security
screening applications. Ph.D. thesis, USA (2013)

12. Lukić, T.: Discrete tomography reconstruction based on the multi-well potential.
In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 335–345. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21073-0 30

13. Lukić, T., Balázs, P.: Binary tomography reconstruction based on shape orienta-
tion. Pattern Recogn. Lett. 79, 18–24 (2016)

14. Lukić, T., Balázs, P.: Limited-view binary tomography reconstruction assisted by
shape centroid. Vis. Comput. (Springer) 38, 695–705 (2022)

15. Lukić, T., Lukity, A.: A spectral projected gradient optimization for binary tomog-
raphy. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Computational Intelligence in
Engineering. SCI, vol. 313, pp. 263–272. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15220-7 21

16. Lukić, T., Nagy, B.: Deterministic discrete tomography reconstruction method for
images on triangular grid. Pattern Recogn. Lett. 49, 11–16 (2014)

17. Lukić, T., Nagy, B.: Regularized binary tomography on the hexagonal grid. Phys.
Scripta 94, 025201(9pp) (2019)

18. Lukić, T., Balázs, P.: Shape circularity assisted tomography reconstruction. Phys.
Scripta 95(10), 105211 (2020). https://doi.org/10.1088/1402-4896/abb633

19. Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York
(2006). https://doi.org/10.1007/978-0-387-40065-5

https://doi.org/10.1007/978-3-319-59573-3
https://doi.org/10.1016/0022-5193(72)90180-4
https://doi.org/10.1016/0022-5193(72)90180-4
https://www.sciencedirect.com/science/article/pii/0022519372901804
https://www.sciencedirect.com/science/article/pii/0022519372901804
https://doi.org/10.1016/0022-5193(70)90109-8
https://www.sciencedirect.com/science/article/pii/0022519370901098
https://www.sciencedirect.com/science/article/pii/0022519370901098
https://doi.org/10.1007/978-3-642-21073-0_30
https://doi.org/10.1007/978-3-642-15220-7_21
https://doi.org/10.1007/978-3-642-15220-7_21
https://doi.org/10.1088/1402-4896/abb633
https://doi.org/10.1007/978-0-387-40065-5

Tomography Reconstruction Based on Null Space Search 259

20. Palenstijn, W.J., Bédorf, J., Sijbers, J., Batenburg, K.J.: A distributed ASTRA
toolbox. Adv. Struct. Chem. Imaging 2(1), 1–13 (2016). https://doi.org/10.1186/
s40679-016-0032-z

21. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-
concave regularization and D.C. programming. Discrete Appl. Math. 151, 229–243
(2005)

22. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation
of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl,
L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11907350 13

https://doi.org/10.1186/s40679-016-0032-z
https://doi.org/10.1186/s40679-016-0032-z
https://doi.org/10.1007/11907350_13

Instance Segmentation with BoundaryNet

Teodor Boyadzhiev1,2(B) and Krassimira Ivanova1

1 Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences,
Sofia, Bulgaria

{t.boadzhiev,kivanova}@math.bas.bg
2 University of Library Studies and Information Technologies, Sofia, Bulgaria

Abstract. Instance segmentation is one of the key technology in many
domains, such as medical image analysis, traffic and critical infrastruc-
tures monitoring, understanding of natural scenes. Recent methods for
instance segmentation rely on bounding box regression, however the
bounding boxes are not a natural representation for many domains.

We address the limitations of the bounding boxes with a new approach
called BoundaryNet, in which we train a fully convolutional neural net-
work to draw the boundaries around each object of each class. The bound-
aries allow for an easy bounding box and mask inference while still pro-
viding detailed information about the shape of the object.BoundaryNet

avoids the restrictions of YOLO such as the number of bounding boxes,
while it is more computationally efficient than the R-CNN methods.

The conducted experiments with the proposed neural network architec-
ture BoundaryNet on the Common Object in Context (COCO) dataset
show promising results in improving the instance segmentation process.

Keywords: Instance segmentation · Deep learning · BoundaryNet

1 Introduction

The Instance Segmentation is widely used in various fields such as medical
image analysis, traffic monitoring, and remote sensing. The field of medicine
has always been a primary source of image analysis tasks. Instance segmenta-
tion is extremely useful in histopathology for the detection of nuclei that can be
used to diagnose dangerous diseases [9,18] or segmentation of organs or tumors
in the organs from CT scans and MRI [1]. The combination between Semantic
Segmentation and Instance Segmentation is often used in the recognition of com-
plex street scenarios by self-driving cars [13] or by traffic management systems
[24], as well as in the monitoring of critical infrastructures such as stations and
airports [20]. The challenging tasks in the sphere of satellite and aerial imagery
have also benefited the instance segmentation field. Such tasks include auto-
mated artificial object detection and building extraction from satellite images
[21], evaluating building damage after a large-scale natural disaster from post-
event aerial images [23], extracting geographical features (such as water bodies)
from satellite maps using bounding boxes [3]. Of course, these areas do not
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 260–269, 2023.
https://doi.org/10.1007/978-3-031-23612-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_16&domain=pdf
http://orcid.org/0000-0002-9554-2608
http://orcid.org/0000-0001-5056-7513
https://doi.org/10.1007/978-3-031-23612-9_16

Instance Segmentation with BoundaryNet 261

exhaust the field of application of instance segmentation - recently its use in
more diverse tasks is increasing. A brief reference in Scopus on the keyword
“instance segmentation” shows an exponential increase in the number of articles
from 2016 so far.

In 2014 Girshick et al. proposed R-CNN for instance segmentation [5]. This
approach uses a class agnostic region proposal method, based on a generic object-
ness score, to propose around 2000 regions for each image. Then from each
region, a 4096-dimensional feature vector is extracted by a convolutional neural
network, which was trained on the Image-Net challenge. Finally, each of these
feature vectors is classified by a SVM.

This approach is later improved by Fast R-CNN for speed and accuracy by
sharing the computations for feature extraction between the proposed regions.
In the improved solution, feature maps are extracted by a convolutional neural
network, then for each region proposal a feature vector is extracted, through a
custom max-pool layer. For each of these feature vectors, a class and bounding
box are predicted, using fully connected layers [4]. Further improvements in the
same direction are made by Faster R-CNN by using a region proposal network
and sharing the computations between this network and the feature extraction
[17].

Based on these methods is proposed Mask R-CNN [8] which adds a third
path to the Fast R-CNN to predict also the semantic mask for each bounding
box. Gkioxari et al. [6] replace the mask branch in Mask R-CNN with a branch
that predicts a 3D triangular mesh.

A different approach is used by Redmon et al. [14], which is called You Only
Look Once (YOLO). YOLO splits the image in S × S grid and for each cell
from the grid it predicts B bounding boxes and C class probabilities. For each
bounding box is predicted also a confidence. The input image is processed by
24 convolutional layers, followed by 2 fully connected layers. The shape of the
output tensor is S × S × (B ∗ 5 + C). This method predicts one category and its
bounding box for each cell. YOLO is simpler and works much faster than the
R-CNN pipeline, however, the performance is lower at 57.9% mAP. An improved
version of YOLO is YOLO9000 which utilizes batch normalization, finer grid,
relative to the cell centers bounding box regression, and is capable of detecting
over 9000 object categories [15]. Further improvements were made in the third
version [16].

Frequently bounding boxes are not a good approximation for the object
boundaries in many domains. For instance, to overcome this problem Schmidt et
al. [19] use star-convex polygons for the detection of cells in microscope images,
while Loncomilla et al. [12] propose replacing bounding boxes with ellipses for
detecting rocks. Other methods such as Mask R-CNN could overcome this prob-
lem by also predicting masks, however, this might become a problem for over-
lapping objects of the same category, due to crowding.

Here we propose a different approach to instance segmentation, called
BoundaryNet, in which we train a fully convolutional neural network to draw
the boundaries around each object of each class. This method is inspired by Yu

262 T. Boyadzhiev and K. Ivanova

et al. [22] who use a neural network to draw boundaries around each category in
semantic segmentation, to improve the performance of their model. Instead of
drawing a boundary around each class, we draw boundaries around each instance
of a class.

Drawing the boundaries does not impose hard restrictions on the number
of bounding boxes, such as YOLO, does not have a complex pipeline such as
the R-CNN architectures, and has great flexibility with respect to the object
shape. The boundaries allow for easy bounding box and mask inference while
still providing detailed information about the shape of the object.

This paper is organized in 5 sections. Section 2 describes the problem repre-
sentation, the network architecture, and the error function. Section 3 provides
details about dataset size, image resolution, data augmentation, training algo-
rithm parameters, network size, etc. Section 4 shows the results from the exper-
iments and Sect. 5 contains discussion, conclusion, and directions for further
research.

2 BOUNDARYNET

The problem of instance segmentation is addressed by BoundaryNet by pre-
dicting the semantic masks for each class as well as the boundaries of each object.
The outputs of the network are two tensors, one for the semantic segmentation
and one for the boundaries. The semantic tensor has the shape H ×W ×(C +1),
where H and W are the height and the width of the image, and C is the number
of categories. One more channel is used for the background category, which is
considered everything else. The boundary tensor predicts whether each pixel is
a part of a boundary or not. It has the shape H ×W × 2. In general, it could be
replaced with H × W and sigmoid activation, since it is a binary classification.

2.1 Labelling

For the semantic segmentation the class of each pixel is determined by the cate-
gory of the object it belongs to. This is a multi-category classification at a pixel
level. Therefore, the semantic label is a matrix, Ls ∈ Lh×w, where L is the set
of the category labels, w is the width and h is the height of the input image.
During training each such matrix is converted into one-hot notation, making
it a 3D tensor. If there are less than 256 categories, the semantic label can be
represented as a gray-scale image.

For the boundary output, the class of each pixel is “background”, unless it
is on the inside of an edge of an object, in which case it is assigned the label
“boundary”. The boundary label a matrix, Lb ∈ {0, 1}h×w, where w is the width
and h is the height of the input image. The label can be represented as an image
containing the edges between the instances of interest and the background, Fig. 1.

Instance Segmentation with BoundaryNet 263

Fig. 1. The boundary label is a matrix, where each cell is either 0 or 1 depending on
whether the pixel is a part of a boundary of an object of interest.

2.2 Segments Extraction

Once the boundaries and the semantic information is extracted from the network,
each object of each class needs to be determined. The method consists of several
steps:

1. The boundaries are used to extract several segments of connected background.
Each segment is numbered with a different integer, creating a segment mask s.

2. For each category the semantic mask is extracted, ck, by setting the pixels
classified as this category to 1 and the rest to 0.

3. Each semantic mask is multiplied by the segments mask, element-wise

sk = s � ck (1)

where sk is the segments, belonging to category k.
4. Finally for each category, k, the segments have to be grouped into objects.

This step is outside the scope of this paper and remains for further develop-
ment.

2.3 Network Architecture

The architecture of BoundaryNet is based on the architecture of UNet [18],
(Fig. 2). It has one encoder and two independent decoders. Each skip connection
from the encoders is connected to the corresponding level of both decoders. At
each level the network has two convolutions with 3 × 3 kernel. Each convolution
uses batch normalization and has ReLU activation. At each level of the encoder
a 2 × 2 MaxPool operation is used. In the decoders UpSize operation with
linear resampling is used. After the last convolution of each decoder, a 1 × 1
convolution is used with softmax activation as a classifier for each pixel.

The error for the network is a weighted sum of cross-entropy error for the
semantic decoder and focal loss [10] for the boundary decoder

264 T. Boyadzhiev and K. Ivanova

Fig. 2. Framework of BoundaryNet.

E = αFocal + (1 − α)CE α ∈ [0, 1] (2)

where

Focal =
2∑

k=1

(1 − pbk)γbk log (pbk) (3)

and bk is the one-hot notation for the boundary labeling, pbk is the probability
of category k in the boundary decoder, and γ is a parameter. Since for the
boundary a binary classification is used, k ∈ 1, 2. This part can be substituted
by a sigmoid and binary focal loss.

The filters in each level, f(l), of the network are determined by

f(l) = �f2
l
d � (4)

where f is the number of frames in level 0, which is before the first MaxPool

layer, l is the level number, and d is a divider. For example, if the network has
5 MaxPool layers, it will have 6 levels, numbered from 0 to 5.

3 Methods

The network was trained on the COCO dataset for people only [11]. The images
were scaled to a resolution of 256×256. Objects which are composed of less than
256 pixels in total were removed, using image in-painting. In total 38027 images
were extracted. The boundary labels were created by using an edge detection
algorithm for each of the segments of objects of interest separately and then
interpolated on top of each other. Then a dilation of 1 pixel in each direction
was used to make them thicker and avoid small discontinuities.

Instance Segmentation with BoundaryNet 265

The network was initialized using the Xavier method [7], where the weights
were drawn from normal distribution and it was trained with the ADAM algo-
rithm with learning rate 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−5 for 100 itera-
tions. The training algorithm used batch size of 64 images. During the training
no L-regularization or dropout was used.

The training and testing set was split randomly, using 80% of the data for
training and the rest for testing. The training set was augmented using ran-
dom zoom, horizontal flip, vertical flip, and rotation. The parameters for these
operations are summarized in Table 1.

Table 1. Probability of augmentation and the parameters.

Operation Probability Parameters

Zoom 0.2 ∼ U (1, 1.5)

Rotation 0.2 ∼ U
(−π

2
, π
2

)

Horizontal flip 0.2

Vertical flip 0.2

The parameter of the weighted sum of the error function is α = 0.1. The
parameter for the focal loss is γ = 2. The filters in the topmost layer are f = 24
and the divider is d = 1.25. The network has 5 MaxPool layers, meaning that
in the lowest level it uses a feature map of 8 × 8 with 384 channels.

For the initialization and training algorithm were used the implementations
provided by Wolfram Mathematica 13.0.

4 Results

Figure 3 shows the training and testing intersection over union (IOU) for the
network trained for 100 iterations. The result shows that there is no over-fitting
for the first 100 iterations. The semantic IOU reached 67.7% on the testing
dataset and 71.6% on the training dataset. The boundary IOU reached 46.5%
on the testing dataset and 46.4% on the training dataset. The network could
reach better results if it is trained longer time since it has not fully converged.

Using IOU to measure the quality of the boundaries is not very appropriate,
since it is too sensitive. For example, if the boundary generated by the network
is half the thickness, the IOU would be 0.5, however, if it is unbroken and in the
correct place, it can still be used to identify the object correctly.

Figure 4a shows examples from the validation set, where the network man-
aged to find semantic mask and object boundaries with quality sufficient to
distinguish between objects. Figure 4b shows examples from the validation set,
where the network has made mistakes with the boundaries and the semantic
segmentation.

266 T. Boyadzhiev and K. Ivanova

Fig. 3. Training and testing intersection over union (IOU) for the boundaries and the
semantic segmentation.

Most of the mistakes for the boundaries are false negative, which will cause
incorrect segment merging. For instance, in the first example of the mistakes
(the left hand side of Fig. 4b), in the top right corner the contour of the palm
of the person is broken, which can cause his hand to be identified as part of the
person behind him.

In the second image (the center of Fig 4b), the boundary line of the child’s
elbow is broken. This will cause the child and the body of the man behind to be
identified as the same instance, while the head of the man will become a separate
instance.

The haze in the third image (the right hand side of Fig. 4b), causes the
boundary between the woman and the child to be broken and they will be
merged into the same instance later. In this case the algorithm will identify two
people instead of three.

5 Conclusion

In this paper we proposed a new approach for instance segmentation, based
on drawing boundaries around each object of interest. We used a deep fully
convolutional neural network, named BoundaryNet. The network, which is
based on the UNet architecture, has one encoder and two parallel decoders.
One of the decoders produces semantic masks and the other produces boundaries
around each object of interest.

We demonstrated successful boundary identification for people, however, it
is possible to have improvements in the quality of the boundaries. Further devel-
opments can include exploring different network architectures, such as channel
attention blocks [22] or atrous pooling [2]. Other work in the same area is han-
dling cases when the same object is covered by another object and therefore
splitting it into two segments.

The results which we demonstrated here are inferior to other approaches
such as YOLO and R-CNN, however, using transfer learning and exploring

Instance Segmentation with BoundaryNet 267

(a)
boundaries.

(b)
objects.

Fig. 4. Examples for drawing boundaries.

268 T. Boyadzhiev and K. Ivanova

other architectures could improve the quality of the results. Boundaries with
improved quality can provide an alternative approach to instance segmentation
with greater flexibility concerning the object shape. Such approach can be useful
to domains, dealing with objects which are hard to be described by bounding
boxes.

References

1. Altini, N., et al.: Liver, kidney and spleen segmentation from CT scans and MRI
with deep learning: a survey. Neurocomputing 490, 30–53 (2022)

2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

3. Dhyakesh, S., et al.: Mask R-CNN for instance segmentation of water bodies from
satellite image. In: Haldorai, A., Ramu, A., Mohanram, S., Chen, M.-Y. (eds.) 2nd
EAI International Conference on Big Data Innovation for Sustainable Cognitive
Computing. EICC, pp. 301–307. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-47560-4 24

4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

6. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9785–9795 (2019)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

9. Hou, L., et al.: Sparse autoencoder for unsupervised nucleus detection and repre-
sentation in histopathology images. Pattern Recogn. 86, 188–200 (2019)

10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

12. Loncomilla, P., Samtani, P., Ruiz-del Solar, J.: Detecting rocks in challenging min-
ing environments using convolutional neural networks and ellipses as an alternative
to bounding boxes. Expert Syst. Appl. 194, 116537 (2022)

13. Ojha, A., Sahu, S.P., Dewangan, D.K.: Vehicle detection through instance segmen-
tation using mask R-CNN for intelligent vehicle system. In: 2021 5th International
Conference on Intelligent Computing and Control Systems (ICICCS), pp. 954–959.
IEEE (2021)

14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

http://arxiv.org/abs/1706.05587
https://doi.org/10.1007/978-3-030-47560-4_24
https://doi.org/10.1007/978-3-030-47560-4_24
https://doi.org/10.1007/978-3-319-10602-1_48

Instance Segmentation with BoundaryNet 269

15. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

16. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

19. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex
polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C.,
Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00934-2 30

20. Tseng, C.H., Hsieh, C.C., Jwo, D.J., Wu, J.H., Sheu, R.K., Chen, L.C.: Person
retrieval in video surveillance using deep learning-based instance segmentation. J.
Sens. 2021, 12, 9566628 (2021). https://doi.org/10.1155/2021/9566628

21. Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios, N.: Building detec-
tion in very high resolution multispectral data with deep learning features. In:
2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pp. 1873–1876. IEEE (2015)

22. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative
feature network for semantic segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1857–1866 (2018)

23. Zhan, Y., Liu, W., Maruyama, Y.: Damaged building extraction using modified
mask R-CNN model using post-event aerial images of the 2016 kumamoto earth-
quake. Remote Sens. 14(4), 1002 (2022)

24. Zhang, X.: A method to estimate position relationship between pedestrian and
crosswalk based on YOLCAT++. In: 2021 2nd International Seminar on Artificial
Intelligence, Networking and Information Technology (AINIT), pp. 38–42. IEEE
(2021)

http://arxiv.org/abs/1804.02767
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1155/2021/9566628

Curvature-Based Denoising
of Vector-Valued Images

Christian Gapp(B) and Martin Welk

UMIT TIROL – Private University for Health Sciences,
Medical Informatics and Technology, Eduard-Wallnöfer-Zentrum 1,

6060 Hall in Tirol, Austria
{christian.gapp,martin.welk}@umit-tirol.at

Abstract. Salient visual information in images is often concentrated
on contours or on regions where edges or curves change their direction
abruptly. It is therefore of utmost importance in the processing of images
to preserve this kind of information. Recently, a curvature-based denois-
ing method has been proposed which first transforms an image into a
level-line tree, then smoothes the level lines, and finally reassembles the
image from those. Curvature information generated in this approach has
also potential for further applications in image analysis.

Focusing on denoising, we transfer curvature-based smoothing to
vector-valued images. We replace level lines by pseudo-level lines (inte-
gral curves of the vector field of directions of least vectorial contrast)
and design a robust algorithm for their extraction from a vector-valued
image. In this context we also propose a modification of the level line
extraction from grey-scale images for better rotational invariance. Since
intensities along pseudo-level lines are not constant, our method stores
this information along the pseudo-level lines, and performs an appropri-
ate smoothing on intensities. Finally we adapt the reconstruction process.

We present experiments on grey-scale and colour images to validate
our proposed modification of the original grey-scale method as well as
our new vector-valued curvature-based denoising method.

Keywords: Denoising · Curvature · Affine morphological scale space ·
Pseudo-level lines

1 Introduction

Due to the ubiquity of noise of various sources across image formation processes,
denoising continues to be a fundamental task of image processing. The purpose
of denoising is to remove noise while at the same time preserving as much as
possible the image features needed for further processing of images by humans or
computers. Telling apart noise from the relevant features is challenging, such that
denoising methods inevitably interfere with image features along with removing
noise. Together with the great variability in both noise sources and features that
need to be preserved depending on application context, this constitutes a major
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 270–287, 2023.
https://doi.org/10.1007/978-3-031-23612-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_17&domain=pdf
http://orcid.org/0000-0002-4520-298X
http://orcid.org/0000-0002-6268-7050
https://doi.org/10.1007/978-3-031-23612-9_17

Curvature-Based Denoising of Vector-Valued Images 271

Fig. 1. Morphological Cat, constructed by taking 38 points of maximum curvature from
the level lines, that represent the contours, and then connecting them with straight
lines. From [4].

reason why even after decades of research there is no universal denoising method
that suits all kinds of applications. For example, methods that directly smooth
the source image by minimising an energy functional struggle with preserving
the contrast and sharpness of contours.

A long-standing observation [4] is that salient information in images, espe-
cially for human observers, is concentrated along contours as well as feature
points like angles or curvature extrema, compare the example in Fig. 1. This has
inspired researchers to design denoising methods that specifically focus on this
kind of features.

In [5] it is suggested to denoise images by extracting first the curvature
image, similar to Fig. 1, then denoising the curvature image, and obtaining the
final denoised image by reconstruction from the modified curvature image. It
turns out that curvature images are less affected by additive noise n, leading to
a better separation of salient image information and noise in the process.

Despite promising results, the method from [5] has so far only been studied
for grey-scale images. Our aim in this paper is to extend the approach to vector-
valued, such as (RGB) colour images. To this end, several obstacles need to be
overcome.

First, the concept of level sets as such is suitable for grey-scale images only,
and needs to be replaced by a suitable generalisation in the case of vector-valued
images. To this end, we resort to the concept from [6] in which lines of minimal
colour/vector contrast are proposed as level lines; for clarity, we will denote these
as pseudo-level lines. Adapting the level-line extraction procedure from [19] to
pseudo-level lines is the first component of our proposed method.

Second, as image intensities along pseudo-level lines are not constant as
they are along level lines in grey-scale images, richer intensity information must
accompany an extracted pseudo-level line. In the smoothing step, it is therefore
necessary to not just smooth the pseudo-level line curves (which can be done
essentially by the same affine morphological scale space as for grey-scale images)
but also to take care of the intensity information. This is the second component
of our proposed method.

272 C. Gapp and M. Welk

Third, we need to provide a way to (approximately) reconstruct the original
image from pseudo-level line information, which again is more complex than in
the case of grey-scale images.

Our Contributions. Our main contribution is the extension of the curvature-
based smoothing algorithm from grey-scale to vector-valued images, which relies
on the concept of pseudo-level lines as a replacement for level lines. We spell
out the necessary adaptations of, and additions to the algorithm step by step.
Moreover, we introduce a modified choice for pixel neighbourhoods for the sake
of reducing directional bias, which can also be used beneficially in the base
algorithm for grey-scale images.

Structure of the Paper. In Sect. 2 we recall the curvature-based denoising method
for grey-scale images from literature, and introduce our modification of pixel
neighbourhoods. Our extension of the method to vector-valued images is devel-
oped in Sect. 3. Section 4 is devoted to the experimental demonstration of the
techniques. A summary and outlook in Sect. 5 conclude the paper.

2 Curvature-Based Denoising of Scalar-Valued Images

Let us recall first the curvature-based denoising method for grey-scale images. We
largely follow [7] but introduce a small modification of the pixel neighbourhoods
that helps to avoid directional bias.

2.1 Level Line Tree

Level lines in a (space-continuous) grey-scale image are lines of constant intensity.
They are closed curves (where curves ending in the image boundary can be closed
by suitable boundary segments), and different level lines cannot cross each other;
of two level lines, either one encircles the other, or both lie apart. Any finite set of
level lines is therefore naturally organised in a Level Line Tree (LLTree), with the
image boundary as its root. This intuition also carries over to discrete images,
with the only caveat that segments of different discrete level lines can coincide,
but still a strict tree-order is established by inclusion and exclusion.

A level line is a closed list of edge elements (edgels). An edge element (edgel)
is given by a pair of neighbouring pixels, with the understanding that the space-
continuous curve represented by the level line passes between these pixels. One
of the pixels making up an edgel, the immediate interior pixel (IIP), is inside the
private region (pregion) of the level line. The other one represents the immediate
exterior pixel (IEP) outside this region. The sequences of immediate interior
pixels (IIPs) and immediate exterior pixels (IEPs) in the list of edgels progress
from pixels to neighbouring pixels; repetitions (i.e. subsequent edgels sharing
their IIPs or IEPs) are allowed. Closedness of the level line means that the first
and last entry of the list of edgels are identical. The pregion is represented by
a list of pixels. As for grey-scale images a private value (pvalue) can easily be
defined as either being the maximum or minimum intensity of all IIPs along the

Curvature-Based Denoising of Vector-Valued Images 273

Fig. 2. Neighbourhood types as proposed in [19]; dark centre pixels are shown sur-
rounded by neighbours in grey. (a) 4-neighbourhood, (b) 8-neighbourhood, (c) 6-
neighbourhood of type 1, (d) 6-neighbourhood of type 2.

level line, the pregion contains all pixels inside the region with intensity equal
to the pvalue. Considering the connectedness graph of an image, i.e. the graph
whose vertices are the pixels, and edges connect exactly those pixels which are
neighbours (thus, edges represent edgels), one sees that a level line represents
a cut of this graph. The pregion of the level line corresponds to one of the
connected components into which the connectedness graph is split by the cut.

Defining a curve as a list of pixels, a level line is associated with two curves:
the curve-immediate-interior-pixel (curveIIP) that contains all IIPs, and the
curve-immediate-exterior-pixel (curveIEP) of all IEPs.

To establish the LLTree, each line is stored in a node together with its pvalue
and pregion, and an unordered list of references to their children (child nodes).
The LLTree contains all these nodes from the uppermost parent node down to
the bottom child node. Here the first node, the uppermost parent, always has a
level line that expresses the border of an image. A child of the parent describes a
region inside the parent’s region. Two or more children are called siblings. They
are in a common list of references and on the same level in the LLTree.

Note that a parent and a child node can have common IIPs and IEPs. Two
siblings can only have common IEPs.

Neighbourhoods. The set of edgels available in the extraction process depends
on a choice of neighbourhoods, see Fig. 2. Admissible edgels are always the pairs
(p, qi) of a centre pixel p as IIP and one of its n neighbours qi (i = 0, . . . , n − 1
where n is 4, 8 or 6) as IEP. Each of these choices, however, comes with a
downside. Using 8-neighbourhoods, Fig. 2b, on the pixel set of the given image
implies a non-planar connectedness graph due to the intersection of diagonal
edgels. However, representing level lines, thus cuts of the connectedness graph,
by sequences of edgels, actually relies on the assumption that the connectedness
graph is planar.

For the further discussion we remark that the level line extraction process will
be designed in a way that it proceeds from edgel to edgel via the meshes of the
connectedness graph. Whenever a level line enters one mesh of the connectedness
graph via an edgel, one has to determine by which edgel it leaves the mesh. This
will be particularly easy if the meshes of the connectedness graph are triangles:
In this case, the exit edge is always adjacent to the entrance edge of each mesh.

274 C. Gapp and M. Welk

Fig. 3. Image region Ω containing 5 × 5 original pixels (grey), extended by dummy
pixels (orange). Note that original pixels have 8-connectedness, whereas dummy pixels
have 4-connectedness. (Color figure online)

It only takes to choose between these to adjacent edges by keeping fixed either
the IIP or the IEP. Meshes circumscribed by more than three edges need more
complicated case distinctions.

Returning to neighbourhood choices, the 4-neighbourhood, Fig. 2a, leads to a
connectedness graph with quadrilateral meshes, which is therefore unfavourable
for the level line extraction process. For this reason, the 6-neighbourhoods from
Fig. 2c and Fig. 2d have been proposed; they yield planar graphs with triangular
cells that are a perfect fit for the extraction algorithm. Unfortunately, this comes
at the cost of sacrificing symmetry by preferring one diagonal direction over the
other. Thereby they introduce a directional bias which is generally unfavourable
in image processing; indeed, it leads to visible artifacts in the smoothed images,
cf. Fig. 12 in Sect. 4 where diagonal streaks in the direction of the preferred
diagonals are clearly visible.

We therefore favour an alternative approach. We insert dummy pixels located
at the common corners of four adjacent pixels of the original image grid, see
Fig. 3. By bilinear interpolation, each dummy pixel is assigned the average of
the intensities of the four surrounding original pixels as its intensity value. The
neighbourhood relation within this extended set of pixels, and thereby the con-
nectedness graph, is defined as follows. Each original pixel has eight neighbours:
the four original pixels which are located next to it in vertical and horizontal
direction, and the four dummy pixels next to it. In contrast, each dummy pixel
has only the four original pixels next to it as neighbours. In Fig. 3 this is visu-
alised by showing original pixels as octagons but dummy pixels as squares. Pixels
are considered neighbours if and only if they have a common border in this rep-
resentation. With this definition, the connectedness graph is planar and consists
entirely of triangular meshes. Each mesh is made up by two original pixels and
one dummy pixel. Thus, the graph meets the needs of the extraction algorithm,
while retaining all symmetries of the regular pixel grid.

Curvature-Based Denoising of Vector-Valued Images 275

Fig. 4. Two choices for the next edgel: e1 or e2. Edgel e = (p, q) is already in the
boundary. In case r is inside the region, the next edgel is e1 = (r, q). Otherwise r
becomes IEP and thus the next edgel is e2 = (p, r).

Fig. 5. Routine TreeLevelLine for scalar valued images.

Level Line Extraction. A new level line always begins with a start edgel α.
Let the actual edgel be e = (p, q). Then the NextPixel(p, q) operation returns
the pixel r that either is the next IIP or IEP, see Fig. 4.

As soon as the start edgel α is reached again, the level line is closed, and fur-
ther pixels are investigated. These are either pushed to the pregion or represent
IIPs of a child’s start edgel, meaning a child line is passing through.

The overall algorithm to build the LLTree is visualised in Fig. 5. In the recur-
sive part (CreateTree), all children are successively added to the parent currently
processed within the subroutine FindAllChildLines.

Within FindChildLine, edgels are added successively until the start edgel is
reached again. The edgel (p, q) is either followed by (r, q) or (p, r), depending

276 C. Gapp and M. Welk

Fig. 6. Example grey-scale image (10×5) with dummy pixels inserted. Ω, X, Y, Z are
the four regions with identical intensities each.

Fig. 7. Level lines in Fig. 6. ∂Ω (black) is the parent of ∂X (green) and ∂Y (red). ∂Z
(blue) is a child of ∂X. ∂X and ∂Y are siblings. (Color figure online)

on whether r (returned from NextPixel(p, q)) is declared to be an IIP or IEP.
In grey-scale images this decision is made using the pvalue as threshold. Let us
assume the pvalue v of the current level line is less than its parent’s pvalue. Then
pixels with intensity lower than v are IIPs, and the others IEPs. In the case v
is higher than the parent’s pvalue, only pixels with intensity greater than v are
IIPs (Fig. 6 and 7).

2.2 Level Line Shortening

Discrete Curvature of Level Lines. Let Γ = {x(s) : s ∈ [0, L],
‖x′(s)‖ = 1} be a sufficiently smooth (C2) curve in arc-length parametrisa-
tion. The second derivative x′′(s) then always points in normal direction, i.e.
[12]

x′′(s) = κ(s)n(s) (1)

with some function κ(s) which is called curvature of Γ , and n(s) denoting the
unit normal vector n(s) ⊥ x′(s). Assuming that the moving frame (x′(s),n(s)) is
positively oriented, κ(s) > 0 indicates that the curve is locally bent in mathemat-
ically positive sense whereas κ(s) < 0 indicates it turns in the mathematically
negative sense. The definition of κ via arc-length parametrisation is transferred
to curves in arbitrary parametrisation by reparametrisation, making κ(s) ≡ κ(x)

Curvature-Based Denoising of Vector-Valued Images 277

Fig. 8. Definitions and discretisation of the level line to display the computation of the
discrete curvature at the vertex Pj−1PjPj+1, from [7]. The curvature is κ(Pj) = 1/rj ,
with rj = ‖PjC‖.

in fact dependent only on the shape but not the parametrisation of the curve.
In fact, for κ(x) �= 0, 1/|κ(x)| is the radius of a best-fit (osculating) circle to Γ
at x.

For any non-singular point x of a sufficiently smooth (C2) image u : R2 → R,
the curvature κ(x) of the level line of u passing through x can be computed
as [7,17]

κ(x) =
uxxu2

y − 2uxyuxuy + uyyu2
x

(u2
x + u2

y)3/2
(x). (2)

Regarding the sign of κ, level lines are understood here to be oriented such that
the normalised local image gradient vector ∇u/‖∇u‖ points to the right of the
level line, i.e. ∇u/‖∇u‖ = −n locally.

As pointed out by Mondelli and Ciomaga [16], direct implementation of (2)
by finite difference scheme (FDS) models as done in [2] and [9] suffers from
numerous artifacts. Therefore it is preferable to compute instead the curvature
directly on the level lines.

To this end, let Γ be a closed discrete curve denoted as Γ = {Pj(xj , yj)},
with j ∈ {0, . . . , N} and P0 = PN . We assume that Γ approximates a (space-
continuous) level line; in fact, we will use for Γ the curveIIP of a discrete level
line. Building on the relation between curvature and osculating circles, the cur-
vature κ(Pj) of the discrete curve at Pj can be defined as

κ(Pj) := ±1/rj , (3)

with the radius rj = ‖PjC‖ computed with the three points Pj−1, Pj , Pj+1 (see
also Fig. 8) and the sign consistent with (1), compare Fig. 8.

As noted in [7], the discrete curvature at point Pj is

κ(Pj) =
−2 sin(ϑj)
‖Pj−1Pj+1‖ =

−2 det (PjPj−1 PjPj+1)
‖Pj−1Pj‖ ‖PjPj+1‖ ‖Pj−1Pj+1‖ , (4)

with

det (PjPj−1 PjPj+1) := det
(

xj−1 − xj xj+1 − xj

yj−1 − yj yj+1 − yj

)
. (5)

278 C. Gapp and M. Welk

AMSS – Affine Morphological Scale Space. Affine morphological scale
space is a curvature-driven process that preserves invariance properties such as
monotonicity, morphology and affine invariance [1,15].

The affine scale space can be interpreted as an intrinsic heat equation [13].
Let σ 	→ x(t, σ) be a Jordan arc (or curve) for each scale t. Then, in any neigh-
bourhood without an inflection point, the affine scale space

∂x

∂t
= κ(x)1/3 n(x) (6)

is equivalent to the intrinsic heat equation ∂x/∂t = ∂2x/∂σ2 with parametrisa-
tion σ (affine length) [13,18].

To implement (6) the geometric scheme proposed by Moisan [15] is used. The
latter equation can be interpreted as an alternating filter, switching between
affine erosion and dilation in dependence of the scale space parameter σ. This
can be realised working with affine erosion on the individual convex and concave
parts of the discrete curve Γ . Therefore first the inflection points Ei = Pj(i) must
be detected. After the resampling process, where points are added/removed to
get good smoothing results, each convex component

Ci = (Ei = Pj(i), Pj(i)+1, Pj(i)+2, . . . , Pj(i+1) = Ei+1) (7)

is processed by affine erosion resulting in an envelope of σ-chords

Cσ
i = (Ei, P

σ
j(i), P

σ
j(i)+1, P

σ
j(i)+2, . . . , P

σ
j(i+1), Ei+1), (8)

a set of middle points of σ-chords with unchanged inflection points [7]. This is
important here because the convex and concave parts are glued together after
each iteration. A σ-chord Cσ

i is defined as a segment connecting two points of
the (discrete) curve that cuts off a (polygonal) area of size σ between itself and
the curve (see Fig. 9).

The larger σ, the less the accuracy of the geometric scheme. Hence the affine
shortening process is iterated with a small σ as often as needed to achieve the
desired smoothness. The smoothing process can be described with Algorithm 1.

Algorithm 1. Smooth Curves
1: for all curves c ∈ LLTree do
2: while (desired scale t not reached) do
3: split c into convex and concave parts
4: resample c
5: affineErosion(c)
6: resample c

For all curves ∈ LLTree the process of splitting, resampling and affine erosion
is iterated until the desired scale t is reached (lines 2–5). As a last step the new
curve (σ-chord) is resampled again.

Curvature-Based Denoising of Vector-Valued Images 279

Fig. 9. Affine erosion of a corner, from [15]. (a) The affine erosion of a corner results in a
hyperbola. σ displays the area cut after several iterations. (b) Evolution of a hyperbola
(Hi,k) resulting from two edges. σi,k is the area cut after a couple of iterations, whereas
σ (note that σ includes σi,k) analogously to (a) displays the area trimmed after many
iterations.

2.3 Reconstruction

For scalar-valued images the regions can be filled straightforward by iterating the
LLTree from top to bottom and printing the inside of the regions with the level
lines’ pvalue. Herein the children’s pregion overprint their parents’. As siblings
do not affect each other, it is irrelevant which region is filled first on the same
level of the LLTree.

3 Curvature-Based Denoising of Vector-Valued Images

This section is devoted to adapting the denoising method recalled in the previous
section to vector-valued images.

3.1 Pseudo-level Lines

Unlike grey-scale images, vector-valued images are not filled by curves of constant
intensity, i.e. level lines. As a surrogate for these, it is proposed in [6] to consider
the integral curves of the directions of minimal vectorial change, also denoted
as level lines there. For a clear distinction, we will use the term pseudo-level
lines in the following. The first step towards computing pseudo-level lines is the
computation of gradients of vector-valued images; following [6] this can be done
using standard tools from Riemannian geometry [14].

For a (space-continuous) vector-valued image u(x) : R
2 → R

n, at each
location x = (x, y)T the directional derivative of the vector-valued image u at x

280 C. Gapp and M. Welk

in the direction of v then is the vector

∂vu(x) = Du(x)v (9)

where

Du(x) =

⎛
⎜⎝

∂xu1(x) ∂yu1(x)
...

...
∂xun(x) ∂yun(x)

⎞
⎟⎠ (10)

is the Jacobian matrix of u at x. The norm ‖∂vu(x)‖ yields the rate of change of
the values of u in the direction of v and can be written as a positive semidefinite
quadratic form of v by

‖∂vu(x)‖2 = (Du(x)v)TDu(x)v = vT
(
Du(x)TDu(x)

)
v. (11)

As a result, in each non-singular point x of the image domain there are two mutu-
ally orthogonal directions v1,2(x) in which the greatest and least rates of change,
respectively, are found; v1,2 are the eigenvectors of J(x) := Du(x)TDu(x). (The
matrix J(x) is also known as structure tensor.) The vector field v1(x) denoting
the directions of fastest change can be understood as surrogate of a gradient
vector field of u, and the vector field v2(x) of directions of slowest change as
surrogate of a level-line direction field; thus the pseudo-level lines are the inte-
gral curves of the vector field v2(x). Note that in the continuous case, under
regularity conditions, pseudo-level lines are closed curves, see [3,10,11].

The following Subsects. 3.2–3.4 correspond to the three steps of our overall
algorithm for curvature-based smoothing of vector-valued images.

3.2 First Step: Construction of the Pseudo-level Line Tree

From here on we assume that the vector-valued image is an RGB colour image
with the colour channels R, G, B. Unlike for grey-scale images, a unique pvalue
can not be defined for vector-valued images. Nevertheless, we define the mean
value of all IIPs as pvalue in order to push a pixel p̂, that fulfills the criteria

(
Rp̂ − RnIIP

)2 +
(
Gp̂ − GnIIP

)2 +
(
Bp̂ − BnIIP

)2
< s2, (12)(

Rp̂ − RnIEP

)2 +
(
Gp̂ − GnIEP

)2 +
(
Bp̂ − BnIEP

)2
< s2, (13)

where nIIP, nIEP represent the nearest IIP, IEP of the actual level line, and
s ∈ R is a tolerance limit, to a pseudo-level line’s pregion. Additionally, p̂ must
have a pixel q̂n in its immediate neighbourhood with radius r = 5, that is already
part of a pseudo-level line.

Pseudo-level Line Extraction. In order to build a discrete pseudo-level line
for vector-valued images, we need strict criteria for a pixel r to either be the
next IIP or IEP. To this end, we start from the 2 × 2 structure tensor

J = ∇R ∇RT + ∇G ∇GT + ∇B ∇BT (14)

Curvature-Based Denoising of Vector-Valued Images 281

where ∇c = (∂xc, ∂yc)T for c = R,G,B can be computed using central differences
involving the four immediate neighbours of the dummy pixel. (In each step, only
one of the three pixels p, q, r represents a dummy pixel, the others are integer.)

The spectral decomposition of the structure tensor J = λ1v1v
T
1 + λ2v2v

T
2

with the eigenvalues λ1 ≥ λ2 ≥ 0 and eigenvectors v1 ⊥ v2 yields the (pseudo-)
gradient direction v1 and pseudo-level line direction v2. The projection matrix

Z =

⎛
⎝〈∇R, v1〉

〈∇G, v1〉
〈∇B, v1〉

⎞
⎠ , (15)

is a 3×1 matrix that projects a 3×1 Red-Green-Blue (RGB)-vector (the intensity
of a pixel) onto the gradient in the colour space. Thus,

p(p) = pp =
〈

Z,
(
Rp Gp Bp

)T 〉
(16)

is the projection of the pixel p onto this gradient; pq and pr are computed
analogously. To give a certain criterion for r to be the next IIP or IEP, let
α̂ ∈ [0, 1] be the division ratio that splits pp and pq into two parts, then

pα̂ = (1 − α̂) · pp + α̂ · pq. (17)

If pp > pq, the eigenvector v1 is replaced with −v1 such that pp ≤ pα̂ ≤ pq is
applicable. The pixel r can now certainly be chosen as next IIP if

pr ≤ pα̂, (18)

and as IEP otherwise.
For the first edgel after the start edgel, α̂ is initialised with 0.5. Every time

a new edgel is added to the level line, α̂ is updated for the next step via

α̂ =
pα̂ − pr

pq − pr
if r = IIP, or α̂ =

pα̂ − pp

pr − pp
if r = IEP. (19)

Crash Handling. Although in the continuous domain pseudo-level lines are
closed curves, the discrete algorithm described so far can fail to yield a closed
level line. This is essentially due to accumulated errors in the estimation of colour
gradient projection matrices Z in the course of the computation. This means
that the sequence of pseudo-level line edgels might not return to the start edgel
exactly. If this is the case, the pseudo-level line LL crsahed into itself and must
be modified. Crashes can both happen from the inside and the outside. An inside
crash occurs if some IIP ∈ LL is picked as a new IEP. Crashes from the outside
are detected if some IEP ∈ LL is selected as new IIP. Another possibility is,
that a whole edgel β̂ already ∈ LL is found again. If the IIP(β̂) is found first, LL
crashed into itself from the inside. If IEP(β̂) is reached first, the crash occurred
from the outside.

In both cases, one edgel ∈ LL needs to be changed: (p, r) ↔ (r, q). Starting
from this edgel the pseudo-level line is recomputed. In the case of an inside crash,

282 C. Gapp and M. Welk

candidate edgels i ∈ {1, . . . , l − 1} – with l = length(LL) – for a change are of
the type

(pi, ri) → (ri, qi−1), (20)

forcing LL to make a turn to the outside. In the other case, LL is forced to make
a turn to the inside, meaning admissible edgels are of the type

(ri, qi) → (pi−1, ri). (21)

In most cases, more than one edgel lends itself as a candidate. To implement
a reliable rule to determine the best candidate, we assign alternative edgels as
described in (20) and (21) with costs ψ that measure how expensive it is for LL
to take the alternative direction. The more clearly the decision is for r to be IEP
or IIP (18), the higher the costs for the edgel to take r wrongly as IIP (20) or
IEP (21), respectively. Depending on the decision for r, we compute

ψ =
pα̂ − pr

pq − pp
if r = IIP, or ψ =

pr − pα̂

pq − pp
if r = IEP. (22)

When LL is approximated, from all potential candidates the one with the lowest
costs is modified. Each level line modified has a handicap Ψ , initialised with the
costs ψi of the first changed edgel ei. Let the second crash occur from the same
side with ej with i �= j, then Ψ is either set to ψj , if j < i, or ψj is added to Ψ
(Ψ = ψi + ψj), if j > i. Note that Ψ is added to all costs ψi+1, . . . , ψl−1 of the
edgels ∈ alternative path (ei+1, . . . , el−1) within each crash.

Intensity Handling. For vector-valued images the intensities must be carried
along the pseudo-level lines for each node in order to reconstruct a clean image
after having applied affine morphological scale space (AMSS) smoothing. Spe-
cial attention is paid to IIPs shared by parents and children: In such a case
RGB(IIPparent) is replaced with RGB(IEPchild) in order to have a consistent
treatment of which RGB values are associated to the inner and outer sides of
both pseudo-level lines, respectively.

Similar modifications regarding coincidences between IIP/IEP pixels of sib-
lings are under investigation but currently not part of our implementation.

3.3 Second Step: Smoothing

Smoothing the Pseudo-level Lines: AMSS. Affine morphological scale
space works equally to scalar-valued images with respect to process of curve
evolution itself. Additionally, for vector-valued images the curveIEP is evolved
too.

Furthermore, the intensities of each subpixel carried along the pseudo-level
line must be stored and, if necessary, modified correctly. This is only possible
with huge expense, because the number of subpixels ∈ c changes within the
smoothing process. New points inserted to the curve get the arithmetic mean
value, computed with the intensities of the immediate former and immediate
next subpixel, associated.

Curvature-Based Denoising of Vector-Valued Images 283

Smoothing the Intensities Along Curves. The second step of denoising is
to smooth the vectorial intensities along the curves. As these intensities affect
the quality of the denoised image, a smooth colour gradient is desired. Therefore
linear explicit diffusion is applied to all curves.

Denoting by vi the RGB value of the pixel pi ∈ curve c with i ∈ {0, . . . , l},
l = length(c), we smooth the discrete 1-D signal (v0, . . . , vl) by linear diffusion
[21, Chap. 1]. In doing so, we approximate the diffusion PDE vt = vxx by the
standard explicit finite-difference scheme

vk+1
i = vk

i + τ(vk
i+1 − 2vk

i + vk
i−1). (23)

for iteration numbers k ≥ 0, starting with the given signal in step k = 0 and
assuming a spatial step size of 1. This explicit scheme is stable for time step sizes
τ ≤ 1/2. In the present paper, we run three iterations, amounting to a diffusion
time t = 1.5.

3.4 Third Step: Reconstruction

Given the curvature image – shortened level lines printed equipped correct inten-
sities – it is necessary to reconstruct, finally, a clean denoised image.

To this end, the intensities (RGB) of IIPs and IEPs from the curvature
image are fixed. Using these as Dirichlet boundary conditions, intensities on the
remaining pixels can be inpainted by linear diffusion [21, Chap. 1] which should
in principle be computed until numerical convergence to a steady state. Using a
standard explicit finite-difference scheme for 2D diffusion, one computes

uk
i,j =

(
1 − 4

τ

h2

)
uk−1

i,j +
τ

h2

(
uk−1

i−1,j + uk−1
i,j−1 + uk−1

i,j+1 + uk−1
i+1,j

)
(24)

for all non-IIP/IEP pixels (i, j) and iterations k = 1, 2, . . . until

|uk
i,j − uk−1

i,j | < ε for all i, j. (25)

In (24), τ denotes the time step size and h the spatial grid step size of the image;
assuming h = 1 the scheme is stable for τ ≤ 1/4.

The number of iterations until the stopping condition (25) is met can be
reduced by a suitable initialisation; to this end, the pregion of each node nd l

with l = 0, . . . ,number(nodes) − 1 can be prefilled line by line by colouring the
pixels u0

i,j ∈ pregion(nd l) with the intensity of the last met IIP(nd l) in this line.

4 Experimental Demonstration

In this section we will illustrate curvature-based denoising of grey-scale and
colour images with some example images. All methods were implemented entirely
in C++ on the basis of the standard library, some components being adapted
from the published implementation of [7].

Before we turn to show actual image smoothing examples, we discuss the
visualisation of curvature maps.

284 C. Gapp and M. Welk

Fig. 10. Viridis colour bar. (Color figure online)

Fig. 11. Rescaled Viridis colour bar. (Color figure online)

Fig. 12. The level lines in the source image camera40.pgm [256 × 256] (a) noisy
with Gaussian noise (σ = 40) are extracted using different edgel types (cf. Fig. 2 in
Sect. 2.1). (b)–(d) Denoised images after having applied AMSS smoothing with SC2.
(b) 6-connectedness of type 1 (E1

6), (c) 6-connectedness of type 2 (E2
6) used. (b) shows

stripes 45◦ in lower right, (c) 45◦ in upper right direction. The 4- (for dummy pixels)
and 8-connectedness edgels (for integer pixels) – E4 + E8 – used in (d) remove the
artifacts.

4.1 Curvature Maps and Visualisation

Curvature maps give a coloured information about the curvatures present in
the denoised image. As not all pixels are part of a level line, we compute first
by (4) the curvatures in those pixels that are IIPs of the shortened level lines.
Fixing these as Dirichlet boundary conditions, we inpaint the curvature map to
the remaining pixels by running linear diffusion until numerical convergence to
a steady state is reached, analogous to Sect. 3.4.

For visualisation, the so obtained dense curvature field (ci,j) with values in
[−1, 1] is coloured on a modification of the Viridis colour scale [20] (see also
[8]) reaching from dark blue/purple, (R,G,B) = (68.0, 1.0, 84.0), for ci,j = −1,
via blue/green, (R,G,B) = (32.0, 146.0, 140.0), for ci,j = 0, to yellow/orange,
(R,G,B) = (253.0, 231.0, 37.0), for ci,j = 1.

Whereas the original Viridis colour scale, Fig. 10, ensures linear contrast
between different values visualised, we use a modification in which instead of ci,j

itself the quantity tanh(10 ci,j) is coloured by the original Viridis scale, resulting
in enhanced colour contrast for curvatures around zero as shown in Fig. 11.

Curvature-Based Denoising of Vector-Valued Images 285

Fig. 13. Smoothing a colour image. (a) Image flowers. (b)–(d): Result of AMSS
smoothing with SC5 applied to the 96 744 level lines. (Image source: https://cs.colby.
edu/courses/S19/cs151-labs/labs/lab04/Flowers.png, accessed 2022-02-02. Author:
Colby)

Fig. 14. Denoising of a colour image with Gaussian noise. (a) Image HoheMu-
nde40 degraded by Gaussian noise (σ = 40). – (b) Denoised by applying AMSS
smoothing with SC2 to the 206 842 level lines. (Image source: https://www.telfs.at/
files/user upload/915x375/wohnen-leben-hohe-munde-hausberg-telfs-02.jpg, accessed:
2022-02-02.)

4.2 Image Smoothing Experiments

First, we show an experiment on a grey-scale image, Fig. 12, to demonstrate the
effect of the modified neighbourhood setting with dummy pixels as introduced
in Sect. 2.1. Note that the denoising results in Fig. 12b and Fig. 12c are visibly
biased to the respective diagonal directions of the chosen 6-neighbourhoods.

For vector-valued images, first the effect of AMSS is highlighted with Fig. 13.
Further, in Fig. 14 we show a denoising result for a colour image with Gaussian
noise. In Fig. 15 we demonstrate the effect for impulse noise.

With our non-optimised implementation, run times ranged from about 2 min
(grey-scale experiment, Fig. 12) to about 10 min (noise-free colour experiment,
Fig. 13); surprisingly, the noisy colour images in Fig. 14 and Fig. 15 were pro-
cessed much faster than Fig. 13, probably due to the dominance of much shorter
pseudo-level lines. At any rate, we expect that run times can be significantly
reduced by future algorithmic optimisations.

5 Summary and Outlook

In this work, we have extended the curvature-based denoising algorithm for
grey-scale images from [7] to vector-valued, such as RGB colour, images. In

https://cs.colby.edu/courses/S19/cs151-labs/labs/lab04/Flowers.png
https://cs.colby.edu/courses/S19/cs151-labs/labs/lab04/Flowers.png
https://www.telfs.at/files/user_upload/915x375/wohnen-leben-hohe-munde-hausberg-telfs-02.jpg
https://www.telfs.at/files/user_upload/915x375/wohnen-leben-hohe-munde-hausberg-telfs-02.jpg

286 C. Gapp and M. Welk

Fig. 15. Denoising of a colour image with impulse noise. (a) Image MTBIN20 cbc
degraded by synthetic impulse noise where 20% of all pixels are replaced with a random
RGB value. – (b) Denoised by applying AMSS smoothing with SC1 to the 206 726 level
lines.

the course of this extension, we have designed a robust extraction algorithm for
pseudo-level lines. Due to the absence of a usable pvalue in vector-valued images,
the intensities must be carried along each line in a properly manner. Special
handling is required in certain configurations where nested discrete pseudo-level
lines touch each other.

The smoothing process for level lines using AMSS could be transferred verba-
tim to pseudo-level lines. However, along with smoothing the pseudo-level lines
their attached intensity information needs to be smoothed as well.

Finally, the reconstruction step required again an adaptation because for
vector-valued images it is no longer sufficient to fill private regions with constant
values. Diffusion inpainting was used to overcome this difficulty.

By experiments the viability of the approach was demonstrated. We pre-
sented processed colour images as well as exemplary curvature maps. Ongoing
work is, on one hand, directed at algorithmic optimisations.

On the other hand, as already pointed out in [7], denoising is just one applica-
tion of the curvature-based image processing paradigm underlying this work. The
sub-pixel localised curvature information extracted in the course of the method
bears potential for a range of further applications like image registration, seg-
mentation, sharpening, or feature extraction for computer vision applications;
note that points with extremal curvature such as corners are, in different formu-
lations, long-established features in computer vision. With our curvature-based
analysis method for vector-valued images the new paradigm can also be made
available for colour images.

References

1. Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and
multiple junctions. Int. J. Comput. Vis. 25(2) (1997)

2. Alvarez, L., Morel, J.M.: Formalization and computational aspects of image anal-
ysis. Acta Numer. 3, 1–59 (1994). https://doi.org/10.1017/S0962492900002415

https://doi.org/10.1017/S0962492900002415

Curvature-Based Denoising of Vector-Valued Images 287

3. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.M.: Connected components of
sets of finite perimeter and applications to image processing. J. Eur. Math. Soc.
3, 39–92 (2001). https://doi.org/10.1007/PL00011302

4. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3),
183–193 (1954)

5. Bertalmı́o, M., Levine, S.: Denoising an image by denoising its curvature image.
SIAM J. Imaging Sci. 7(1), 187–211 (2014). https://doi.org/10.1137/120901246

6. Chung, D.H., Sapiro, G.: On the level lines and geometry of vector-valued images.
IEEE Signal Process. Lett. 7(9), 241–243 (2000). https://doi.org/10.1109/97.
863143

7. Ciomaga, A., Monasse, P., Morel, J.M.: The image curvature microscope: accurate
curvature computation at subpixel resolution. Image Process. On Line 7, 197–217
(2017). https://doi.org/10.5201/ipol.2017.212

8. Crameri, F., Shephard, G.E., Heron, P.J.: The misuse of colour in science commu-
nication. Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-020-19160-7

9. Crandall, M.G., Lions, P.L.: Convergent difference schemes for nonlinear parabolic
equations and mean curvature motion. Numer. Math. 75(1), 17–41 (1996)

10. Cumani, A.: Edge detection in multispectral images. CVGIP: Graph. Models Image
Process. 53(1), 40–51 (1991). https://doi.org/10.1016/1049-9652(91)90018-F

11. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image
Process. 33(1), 116–125 (1986). https://doi.org/10.1016/0734-189X(86)90223-9

12. Guggenheimer, H.W.: Differential Geometry. McGrawHill, New York (1963)
13. Guichard, F., Morel, J.M., Ryan, R.: Contrast invariant image analysis and PDE’s.

Technical report, Image Processing On Line (2004). http://dev.ipol.im/∼morel/
LivreGMR/MMBookOct04.ps

14. Kreyszig, E.: Differential Geometry. University of Toronto Press, Toronto (2019).
https://doi.org/10.3138/9781487589455

15. Moisan, L.: Affine plane curve evolution: a fully consistent scheme. IEEE Trans.
Image Process. 7(3), 411–420 (1998). https://doi.org/10.1109/83.661191

16. Mondelli, M., Ciomaga, A.: Finite difference schemes for MCM and AMSS. Image
Process. On Line 1, 127–177 (2011). https://doi.org/10.5201/ipol.2011.cm fds

17. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cam-
bridge University Press, Cambridge (2001)

18. Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119,
79–120 (1994)

19. Song, Y.: A topdown algorithm for computation of level line trees. IEEE Trans.
Image Process. 16(8), 2107–2116 (2007). https://doi.org/10.1109/TIP.2007.899616

20. van der Walt, S., Smith, N.: MPL colour maps. Online Resource (2020). https://
bids.github.io/colormap. Accessed 12 Mar 2022

21. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

https://doi.org/10.1007/PL00011302
https://doi.org/10.1137/120901246
https://doi.org/10.1109/97.863143
https://doi.org/10.1109/97.863143
https://doi.org/10.5201/ipol.2017.212
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1016/1049-9652(91)90018-F
https://doi.org/10.1016/0734-189X(86)90223-9
http://dev.ipol.im/~morel/LivreGMR/MMBookOct04.ps
http://dev.ipol.im/~morel/LivreGMR/MMBookOct04.ps
https://doi.org/10.3138/9781487589455
https://doi.org/10.1109/83.661191
https://doi.org/10.5201/ipol.2011.cm_fds
https://doi.org/10.1109/TIP.2007.899616
https://bids.github.io/colormap
https://bids.github.io/colormap

Face Characterization Using Convex
Surface Decomposition

Somrita Saha(B) and Arindam Biswas

Department of Information Technolgy, Indian Institute of Engineering Science
and Technology, Howrah, Shibpur, WB, India

somrita.besu@gmail.com, barindam@gmail.com

Abstract. In 2-dimensions, the analysis of face images has been done
in a detailed way. The characterization of faces from 3D inputs may be
interesting and discerning with respect to the uniqueness of a face. In
this work, we have attempted to capture the surface curvature of a 3D
face and thereof derive its characteristic features. The approach is based
on the convex surface decomposition of the face models. Experimental
results are encouraging and amenable to further treatise towards better
realization of the characterization of a face.

Keywords: Face characterization · Convex decomposition · Surface
decomposition · Face recognition

1 Introduction

The early research works in the area of human face characterization can be
found almost half a century ago. Since then it has remained a very active field
of research and there are a lot of innovative works going on even now. This
field has an increasing demand in today’s digital world where human face recog-
nition is a very important aspect for information security, biometrics, smart
cards, access control, law enforcement, and surveillance system. Human faces
are unique, hence, most significant with respect to biometric traits.

Jafri et al. presented a survey on the face recognition techniques in 2009
in [4]. A 2D Gabor filter based face recognition system has been presented by
Barbu in [1]. Kar et al. proposed an automatic attendance system based on face
recognition [5]. Parmar et al. presented a detailed discussion on the existing
works on face recognition in [6]. Another detailed discussion on the evolution
of 2D face recognition techniques and their comparative study can be found
in [2]. In 2018, Yang et al. came up with an emotion recognition model based on
facial recognition in virtual learning environment [10]. Interest point based face
recognition system using adaptive neuro fuzzy interface system was proposed
by Rejeesh et al. [8]. A novel technique for spontaneous facial micro-expression
recognition was proposed by Reddy et al. using 3D spatiotemporal convolutional
neural networks in 2019 [7]. Watson et al. presented another method of data-
driven face characterization of natural facial expressions when giving good and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 288–300, 2023.
https://doi.org/10.1007/978-3-031-23612-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_18&domain=pdf
http://orcid.org/0000-0001-8318-8608
http://orcid.org/0000-0002-2141-0215
https://doi.org/10.1007/978-3-031-23612-9_18

Face Characterization Using Convex Surface Decomposition 289

bad news [9]. A 2D human face recognition technique was proposed by Gupta
et al. in 2021 using SIFT and SURF descriptors of the feature regions of a face [3].

The methodology presented in this work is based on the decomposition of
the human face model into a set of convex surface regions. The various parts of
human face are oriented with different convexity and can be identified separately
through convex surface decomposition. The convexity checking criterion is based
on scalar triple product of vectors. The outputs produced by the algorithm reveal
characteristic features of different faces. A comparative study of some related
works are given in Table 1.

The rest of the paper is organized in the following manner. Section 2 contains
the basic definitions and mathematical background of the presented work. In
Sect. 3, the proposed method is discussed. Section 4 contains the algorithm and
explanations of the steps of the algorithm. Section 5 contains the complexity
analysis. In Sect. 6, the results are given. Finally, concluding remarks are given
in Sect. 7.

The main contribution of this work is a simple method which exploits the
mutual orientation of adjacent faces to derive convex regions present in a 3D
face with which the face can be characterized. The runtime complexity of the
algorithm corresponding to this method is O(n) where n is the total number of
face triangles in the input face object.

2 Definitions and Preliminaries

Definition 1. Convex Decomposition: It is the process by which a large and
complicated digital object is decomposed into a number of convex subsets, union
of which results in the original object.

Exact Convex Decomposition (ECD) of a 3D input dataset generates a huge
number of convex subsets which may not be useful for the further analysis of the
object. Instead of ECD, some approximation can be adapted to produce lesser
number of convex regions which are comparable with the visual impression of
the original input object.

Figure 1 illustrates an example where the proposed convex surface decompo-
sition algorithm has been applied to an input face model, given in Fig. 1(a), and
the output produced is given in Fig. 1(b).

Definition 2. Surface Decomposition: It is the process by which the surface of
a 3D digital object is decomposed into a number of convex or concave subsets,
union of which results in the surface of the original object.

In this work, we have presented a method of face characterization using
convex surface decomposition where the convexity checking criterion is governed
by the volume of the tetrahedron formed by two edge-adjacent face triangles of
the 3D face input dataset. This volume can be calculated using the scalar triple
product or the mixed product of the vectors corresponding to the tetrahedron.
The volume of the tetrahedron, described by the two edge-adjacent face triangles

290 S. Saha and A. Biswas

Table 1. Related works and their features

Algorithm Remarks

Gupta et al., 2021 [3]
Approach: Speeded up robust
features (SURF) and scale-invariant
feature transform (SIFT)

An integration of feature extraction using
SURF and SIFT, the algorithm has a high
rate of recognition accuracy

Reddy et al., 2019 [7]
Approach: Based on Convolutional
Neural Network

Proposes two 3D-CNN methods:
MicroExpSTCNN and MicroExpFuseNet, for
spontaneous facial micro-expression
recognition utilizing the spatiotemporal
information

M. Rejeesh, 2019 [8]
Approach: An Adaptive Genetic
Algorithm and ANFIS-ABC based
algorithm

Interest points in the face objects are
determined using AGA and then classified
using ANFIS

Yang et al., 2018 [10]
Approach: Haar Cascades method to
detect input image and Neural
Network classifier training to detect
different emotions

Method facilitates emotion recognition
during distance education. Helps teacher to
change teaching strategies as required

Kar et al., 2012 [5]
Approach: Personal Component
Analysis (PCA) algorithm

Implements an automatic attendance system
which can be deployed in a classroom
environment

Proposed method
Approach: BFS
Complexity: O(n)

Convexity determined by the volume of the
tetrahedron generated by each two
edge-adjacent face triangles of the input face
object with both time and space complexity
of O(n), n being the number of faces in
input. Decomposed face helps in detection of
distinct features of the face

is negative when the faces are oriented in a convex manner w.r.t. each other.
Conversely, if this volume is positive, then the corresponding face triangles are
concavely oriented. A zero volume indicates that the face triangles are coplanar.
Figure 2 demonstrates the cases of convex and concave surfaces. The volume, v,
of the tetrahedron is the scalar triple products of the vectors p, q, and r. This
product is mathematically denoted by

v = [p, q, r] = p · (q × r)

Specific Volume: Specific volume, here, volume per area, vs, is denoted by the
ratio of the volume, v, of the tetrahedron generated by two edge-adjacent face
triangles and the sum of the areas, a, of these edge-adjacent face triangles. Here,
in this work, we will consider the volume, v, as the volume of the tetrahedron

Face Characterization Using Convex Surface Decomposition 291

Fig. 1. (a) Original input object and (b) After the decomposition. (Color figure online)

Fig. 2. Scalar triple product. (Color figure online)

formed by the two edge-adjacent triangles �P1P2P3 and �P1P2P4, and the area,
a, as the sum of their areas a1 and a2, respectively.

Definition 3. ρ-convexity: Two edge-adjacent face triangles are said to be ρ-
convex with respect to each other, if the specific volume, vs, of the tetrahedron
formed by them is less than a predefined threshold, ρ.

Let the area of the edge-adjacent triangles (�P1P2P3 and �P1P2P4, as in
Fig. 2) are a1 and a2, respectively, then the condition for ρ-convexity is

v

(a1 + a2)
� ρ (1)

where ρ is a threshold on the specific volume of the tetrahedron formed by
the corresponding triangles.

292 S. Saha and A. Biswas

The convex surface decomposition method for face objects is implemented
using Doubly Connected Edge List (DCEL) data structure. Apart from the origi-
nal structure of DCEL, some additional information are maintained in the DCEL
for this work. For the vertex object, additional information on whether it is a
part of the boundary of any convex region, number of region boundaries it is
part of, are stored. For the edge object, additional information on destination
vertex, twin half edge, new previous half edge, new next half edge, whether the
edge is dropped, and the convex region it is a part of, are maintained. For the
face object, additional information normal, color code of the convex region it
belongs to, area, and the base face corresponding to the convex region it is part
of, are stored. Finally, a new object structure for the convex regions is added
with some attributes, such as region id, base face, area, total number of faces
under this region, color, outer region id, first edge on boundary, etc.

3 Face Characterization Method

Two face triangles are said to be convexly oriented if the volume of the tetra-
hedron generated by them is negative, otherwise oriented in a concave way.
The proposed method can process watertight as well as not-watertight 3D face
objects. By the term ‘watertight’, it is meant that the 3D input object does not
have holes, cracks, or missing faces. A face has multiple surface regions with
varying curvature and convexity. Our objective is to decompose a human face
into some visually meaningful convex subsets based on the convexity checking
criterion given in Eq. 1.

The face list of the 3D face object is sorted based on descending order of
area. This sorting is performed as a preprocessing work before starting the actual
method of decomposition. The largest area triangle is selected as the base face
for the first convex surface region to be grown. The three edge-adjacent faces of
the base face are taken into consideration, one by one, for checking the convexity.
Each edge-adjacent face forms a tetrahedron with the base face. The volume, v,
of this tetrahedron can be computed by the scalar triple product of the vectors
defining the tetrahedron. Now, in our approach, the convexity criterion is defined
such that if the specific volume, vs, defined by the ratio of the volume, v, of
the tetrahedron and the sum of the areas of the concerning faces, is less than a
predefined threshold, ρ, then the tetrahedron is ρ-convex and the faces describing
the tetrahedron are convexly oriented. If the edge-adjacent face satisfies the
convexity criterion, then it is enqueued for further investigation of its edge-
adjacent faces. Once, all the three edge-adjacent faces are checked, a face is
dequeued from the queue and each of its edge-adjacent faces are checked for
convexity in turn. This process continues till the queue is exhausted. Once the
queue is exhausted, the first convex surface region of the face object is produced.
For the next region to be grown, the next uncolored face is chosen as the base
face from the sorted face list.

Face Characterization Using Convex Surface Decomposition 293

The above mentioned process continues till the last face in the sorted face list.
The algorithm generates a set of convex surface regions, once all the faces of the
sorted face list are checked for convexity. The convex regions generated by the
algorithm vary widely with respect to their area. The regions with a very small
area are merged with one of the adjacent convex regions. These small regions
are insignificant with respect to the visual impression of the face, therefore, may
not be considered as distinct convex surface regions.

4 Algorithm

The steps of the proposed algorithm are given in Algorithm 1. It takes a trian-
gulated face object in the form of DCEL(D) and the threshold, ρ, for specific
volume as input and produces modified DCEL(D) for the decomposed convex
surface of the face object. In Steps (1–4), initialization tasks are performed. F
is initialized to the already sorted face list in descending order of area (Step 1).
In Step 2, base face, b, is initialized to the first face from F . Then, in Step 3, b
is enqueued to a queue, Q and its color is initialized to Current Color, a color
which will be uniquely assigned to all the faces under the current region to be
grown. The base face, b, is added to the current ρ-convex set, S, of face triangles.

Then, in Steps (5–17), each face from the face list is checked for ρ-convexity
until F is empty. In Steps (6–11), each edge-adjacent face, t, of b is investigated.
If t is not colored and also ρ-convex with respect to b (Step 7), then it is enqueued
to Q and also added to the set S (Step 8). Also, t is assigned the Current Color
(Step 9). Else, in Step 10, if t already has the Current Color, then the shared
half-edges of b and t are marked as dropped (Step 11). In Steps (12–16), if the Q
is empty, it indicates that no more triangular faces can be added to this convex
region and the algorithm produces the convex region for the current iteration.
The ith convex surface region is formed with the set, S, of ρ-convex faces (Step
13). The Current Color is reset in the next step, Step 14. Then some reset
operations are performed for the next region to be grown. S is set to NULL
and i is incremented in Step 15. In Step 16, the next uncoloured face from F is
identified and enqueued to Q and added to S. In Step 17, Q is dequeued to get
the new face, b, to be checked.

When Steps (5–17) are executed till the last face of F , each of the significantly
small convex surface regions is merged with one of its adjacent convex surface
region which is bigger in size. Finally, the modified DCEL, (D), is returned as
the output of the algorithm.

294 S. Saha and A. Biswas

Algorithm 1. Face-Decomposition

Require: Triangulated face object in the form of DCEL(D), ρ
Ensure: Modified DCEL (D) for the decomposed convex surface of the face
1: F ← Sorted face triangle list in descending order of area.
2: Base face, b ← first face from F , i ← 1
3: Enqueue b to a queue, Q. Set the color of b as the Current Color.
4: Add b to the current ρ-convex set, S, of face triangles.
5: while (F �= ∅) do
6: for each edge-adjacent face t of b do
7: if t is Not Colored and ρ-convex w.r.t. b then
8: Enqueue(Q, t) and add t to S
9: Assign t the Current Color.

10: else if t has Current Color then
11: Drop the shared half-edges of t and b.

12: if Q = ∅ then
13: CRi (ith convex region) constructed with the faces in S.
14: Reset Current Color.
15: S ← ∅, i ← i + 1
16: Next uncolored face from F is identified, enqueued to Q, and added to S.

17: b ← Dequeue(Q)

18: for each CR do
19: if CR.area < ε then
20: Merge CR with adjacent bigger region.

21: return D

5 Complexity

The Algorithm 1 investigates the convexity of all the n face triangles in the face
list, F . The face list of the input dataset is sorted in descending order of area,
as a part of preprocessing, which takes O(n log n) time. Though, the time and
space complexity of the main algorithm are bounded by O(n).

5.1 Time Complexity

Each face triangle of the original input object is investigated a maximum of
three times as the triangle is edge-adjacent to only three other triangles. If the
convexity criterion satisfies for a face triangle, it is enqueued and dequeued only
once and is never investigated thereafter. In the loop Steps (5–17), the operations
involved are mainly enqueue, dequeue, convexity checking, and some assignment
operations which take constant amount of time. The merging operation in Step
20 is performed for a very small number of regions. The region boundary is
traversed to identify an adjacent bigger region. Once identified, the smaller region

Face Characterization Using Convex Surface Decomposition 295

is merged with the bigger one. As the region is small, its boundary is small as
well. Moreover, boundary traversal stops the moment a bigger region is identified.
The number of regions with smaller area, n1, is much less compared to n, i.e.,
n1 � n. Each edge of such a small region is considered only once. Hence, the
complexity of merging smaller regions is well within O(n). Therefore, the overall
time complexity of the algorithm is bounded by O(n), n being the number of
face triangles in the original input object.

5.2 Space Complexity

The algorithm is based on DCEL data structure which has a space complex-
ity of O(n). The original DCEL data structure is augmented by adding some
more attributes for vertex, edge, and face objects. A new object structure for
the convex regions is also added. All these augmentations are done keeping the
overall space complexity same as the original data structure. Hence, the space
complexity remains O(n).

6 Results

The proposed algorithm has been applied on some standard human face models
represented by 3D digital object datasets. These inputs are .obj files which are
processed by the programmatic implementation of the Algorithm 1 in C. The
output files are plotted in Python to produce the final images. Figure 3, Fig. 4,
Fig. 5, and Fig. 6 contain the outputs of four face objects for different convexity
thresholds (ρ) for specific volume of tetrahedrons. Each figure represents four
different levels of decomposition. The ρ values are chosen based on the overall
convexity of the input object. The number of convex regions, #CR, depends on
the value of ρ.

The bottom left images in all the figures (namely, Fig. 3, 4, 5, and 6) depict
the output for a ρ value which best justifies the original input data of the face
model. Looking at the bottom left image of the aforementioned figures, it can
be clearly seen that the different convex regions of a human face are being
captured distinctly in the results provided. For example, from the output image
of Augustus, in Fig. 5c, the forehead, cheeks, both the lips, and the nose can be
discerned separately. Also, it reveals the curly texture of his hair. For the male
and female heads, given in Fig. 3 and Fig. 4 respectively, the different parts of the
faces, such as forehead, eyes, nose, lips, ears, cheeks, and chin, can be identified.
The input datasets does not contain data on the hair texture. Therefore, the hair

296 S. Saha and A. Biswas

Fig. 3. Convex decomposition of a male head for different values of ρ. (Color figure
online)

texture is not discernible from the output images as well. Finally, the output
image given in Fig. 6c reveals the hair texture and elevated distinct portions just
above the two eyes along with other facial parts.

The algorithm is capable of identifying different parts of a human face model.
Therefore, it can be extended for the reading of facial expression and comparative
study of similar faces. Also, the boundary lines between two adjacent convex
regions can be smoothened for a better visual quality of the output.

Face Characterization Using Convex Surface Decomposition 297

Fig. 4. Convex decomposition of a female head for different values of ρ. (Color figure
online)

298 S. Saha and A. Biswas

Fig. 5. Convex decomposition of augustus for different values of ρ. (Color figure online)

Face Characterization Using Convex Surface Decomposition 299

Fig. 6. Convex decomposition of a male bust sculpture for different values of ρ. (Color
figure online)

7 Conclusion

The method proposed in this work is suitable for the easy characterization of
different parts of a human face in O(n) time. The algorithm has scope of practical
utility considering the application of human face recognition in various fields
such as biometrics, access control, smart cards, law enforcement, information
security, and surveillance system. The method can be used in extracting the
important convex regions which can be used as characterization of a face. Such
characterization may be useful in recognition of human faces in a real time end-
to-end application. Our approach is simple as it is based on an elementary vector
mathematics, called scalar triple product of vectors. As of now, various parts of

300 S. Saha and A. Biswas

human face and some distinct features are identifiable through our method. We
intend to improvise the work as to identify various facial expressions with clear
and smooth boundary between adjacent regions.

References

1. Barbu, T.: Gabor filter-based face recognition technique. Proc. Rom. Acad. 11(3),
277–283 (2010)

2. Chihaoui, M., Elkefi, A., Bellil, W., Ben Amar, C.: A survey of 2D face recognition
techniques. Computers 5(4), 21 (2016)

3. Gupta, S., Thakur, K., Kumar, M.: 2D-human face recognition using sift and surf
descriptors of face’s feature regions. Vis. Comput. 37(3), 447–456 (2021). https://
doi.org/10.1007/s00371-020-01814-8

4. Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process.
Syst. 5(2), 41–68 (2009)

5. Kar, N., Debbarma, M.K., Saha, A., Pal, D.R.: Study of implementing automated
attendance system using face recognition technique. Int. J. Comput. Commun.
Eng. 1(2), 100 (2012)

6. Parmar, D.N., Mehta, B.B.: Face recognition methods & applications. arXiv
preprint arXiv:1403.0485 (2014)

7. Reddy, S.P.T., Karri, S.T., Dubey, S.R., Mukherjee, S.: Spontaneous facial micro-
expression recognition using 3D spatiotemporal convolutional neural networks. In:
2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE
(2019)

8. Rejeesh, M.: Interest point based face recognition using adaptive neuro fuzzy infer-
ence system. Multimed. Tools Appl. 78(16), 22691–22710 (2019). https://doi.org/
10.1007/s11042-019-7577-5

9. Watson, D.M., Brown, B.B., Johnston, A.: A data-driven characterisation of natu-
ral facial expressions when giving good and bad news. PLoS Comput. Biol. 16(10),
e1008335 (2020)

10. Yang, D., Alsadoon, A., Prasad, P.C., Singh, A.K., Elchouemi, A.: An emotion
recognition model based on facial recognition in virtual learning environment. Pro-
cedia Comput. Sci. 125, 2–10 (2018)

https://doi.org/10.1007/s00371-020-01814-8
https://doi.org/10.1007/s00371-020-01814-8
http://arxiv.org/abs/1403.0485
https://doi.org/10.1007/s11042-019-7577-5
https://doi.org/10.1007/s11042-019-7577-5

Characterization and Reconstruction
of Hypergraphic Pattern Sequences

Michela Ascolese(B) and Andrea Frosini

University of Florence, Florence, Italy
{michela.ascolese,andrea.frosini}@unifi.it

Abstract. The notion of hypergraph has been introduced as a gen-
eralization of graphs so that each hyperedge is a subset of the set of
vertices, without constraints on its cardinality. Our study focuses on 3-
uniform hypergraphs, i.e., those hypergraphs whose (hyper)edges have
three as common cardinality. A widely investigated problem related both
to graphs and to hypergraphs concerns their characterization and recon-
struction from their degree sequences. Concerning graphs, this problem
has been efficiently solved in 1960 by Erdös and Gallai, while no efficient
solutions are possible in the case of hypergraphs, even in the simple case
of 3-uniform hypergraphs, as shown in 2018 by Deza et al. [4]. These
problems are among the most studied in the field of Discrete Tomogra-
phy (see [11,12] for a complete survey) and, in a more general fashion, of
Image Analysis. So, to reduce the NP-hard core of the hypergraph recon-
struction problem, we consider a class of degree sequences defined in [4]
that show interesting properties. Here, in particular, we characterize the
subclass P by using the new notion of pattern and pattern sequence.
First, we focus on t-pattern sequences, i.e., sequences with constant pat-
tern t ≥ 1, and we study the remarkable behaviour of their last elements,
called tails. In particular, for any fixed t, we show that the tails tend to
a fixed point when increasing the sequences’ lengths. The elements of
these fixed points, on varying t, are the same and form the sequence
A002620 in [13], generalizing the results in [6]. Finally, we provide a fast
algorithm to reconstruct the hypergraphs that realize the sequences in
P by iteratively discovering the elements of the characterizing pattern
sequence.

Keywords: Discrete tomography · Reconstruction problem · Image
analysis · Hypergraph · Degree sequences

AMS classification: 05C60 · 05C65 · 05C85 · 05C99

1 Introduction

Since their introduction, one of the most challenging problems related to (simple)
hypergraphs has been their characterization and reconstruction starting from the
degree sequences’ knowledge. Formally, we define the following problems: Given
a non-increasing sequence of positive integers π

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 301–316, 2023.
https://doi.org/10.1007/978-3-031-23612-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_19&domain=pdf
https://doi.org/10.1007/978-3-031-23612-9_19

302 M. Ascolese and A. Frosini

Consistency: does there exist a simple hypergraph having π as degree sequence?

Reconstruction: is it possible to reconstruct in polynomial time a hypergraph
whose degree sequence is π?

In case of graphs, in 1960, Erdös and Gallai completely characterized the
degree sequences related to simple graphs [5], and later many algorithms were
defined to provide a polynomial time solution for their reconstruction too (see
[9,10]). Moving to hypergraphs, the studies mainly focused on k-uniform hyper-
graphs, that can be seen as a first, simple generalization of the concept of graph.
In literature, we can find the characterization [2,3,8] and the efficient recon-
struction [7] of their degree sequences in case of classes of specific instances.

Due to the fact that each k-uniform hypergraph can be represented by its
incidence matrix, so that each row sums to k, and the i-th column sums to
the degree of the i-th vertex, we observe that those problems admit a general
formulation in the field of Discrete Tomography. In fact, it is required there to
characterize the couples of row and column sums that admit at least one binary
matrix realizing them (Consistency problem in [11]) and, in case of positive
answer, to reconstruct one (Reconstruction problem in [11]).

Coming back to hypergraphs, both the problems, in their general form,
remained open for many years. In 2018, Deza et al. [4] proved that the recon-
struction problem is NP-hard even in the simplest case of 3-uniform hypergraphs,
then it becomes relevant to define classes of hypergraphs that admit a polyno-
mial time solution for their reconstruction, in order to limit the NP-complete
core of the problem.

The NP-completeness proof in [4] relies on the definition, starting from a
generic integer sequence s, of a gadget 3-hypergraph where the instances of
the chosen NP-complete problem set down. Relying on this, in [6], the authors
defined a class of 3-hypergraphs whose degree sequences show very interesting
properties. Our studies here, deepen and generalize these properties to a wider
class P of instances. Then, we define a polynomial time reconstruction strategy
that, provided a degree sequence π computed from s, produces the related 3-
uniform hypergraph in P shrinking the NP-hard core of the general problem. In
particular, our strategy proceeds in recovering the mutual differences between
the positive elements of s, obtaining a new and yet unexplored way of facing the
reconstruction of the whole class D (defined in [1]).

2 Definitions and Previous Results

In this section we recall basic notions concerning hypergraphs and fix the nota-
tion we are going to use. Hypergraphs generalize the notion of graphs, as an edge
can join any number of vertices. Formally, a hypergraph H is a pair of sets (V,E)
where V = {v1, . . . , vn} is the set of vertices and E = {e1, . . . , em} ⊂ P(V)\∅
is the set of hyperedges, briefly edges, with P(V) the power set of V . A hyper-
graph is simple if it contains neither singleton nor repeated edges, and it is called
k-uniform, or simply k-hypergraph, if each edge has the same cardinality k. It

A Study on Hypergraphic Pattern Sequences 303

is clear that if k = 2 we get back the definition of graph. One of the standard
representations of a hypergraph is through its incidence matrix, that is a m × n
binary matrix in which each column corresponds to a vertex and each row to an
edge, such that the element in position (i, j) is set to 1 if and only if the edge
ei contains the vertex vj . We can observe that if H is simple we do not have
repeated rows in its incidence matrix, and that considering the rows’ sum we
get the edges’ cardinalities; trivially, when H is k-uniform the sum of each row
is k. In the sequel, by H we will equally refer both to a hypergraph and to its
incidence matrix.

The degree of a vertex v is the number of edges that contain v, and the
degree sequence of a hypergraph is the list of the degrees of all its vertices,
usually arranged in non-increasing order. If we consider the columns’ sum of its
incidence matrix, we get the degree sequence of the hypergraph. One of the main
problems related to hypergraphs is the so called reconstruction problem, that is
the reconstruction of a hypergraph, if it exists, having a given degree sequence.
In [4] the authors proved the NP-hardness of this problem even in the simple
case of 3-uniform hypergraphs. In Sect. 3 and 4, we define a class of 3-uniform
degree sequences that show interesting properties, and that reveal to be useful
to perform the related reconstruction problem in polynomial time.

More precisely, in their proof, Deza et al. reduced an instance of the NP-
complete problem 3-partition to an instance of the decision problem of the exis-
tence of a 3-uniform hypergraph having a given degree sequence. In an inter-
mediate step of the proof, it has been defined a class of 3-uniform hypergraphs
that show very strong properties, later generalized to the class D in [1]. So, let
us briefly recall the definition of the class D that will be the focus of our study.

Starting from a non-increasing integer sequence s =
(
s(1), . . . , s(n)

)
, with

n ≥ 3, we define the 3-uniform hypergraph H = (V,E) as follows: the set of
vertices is V = {v1, . . . , vn}, and the set of edges is composed by the triplets
(vi, vj , vk) such that s(i) + s(j) + s(k) > 0. This definition allows the incidence
matrix of H to be easily computed by (the pseudo-code of) Algorithm 1, Gen(s).

Algorithm 1. Gen(s)

Input: A weakly-decreasing integer sequence s of length n
1 Initialize an empty matrix H;
2 for each 1 ≤ i < j < k ≤ n do
3 if s(i) + s(j) + s(k) > 0 then
4 append to the matrix H the row corresponding to the edge (vi, vj , vk);
5 end

6 end
Output: H

The degree sequences of all the 3-hypergraphs thus obtained, on varying of
n, form the class D. One of the main properties of the degree sequences in D is

304 M. Ascolese and A. Frosini

their uniqueness, i.e., if π ∈ D then there exists one only 3-hypergraph (up to
isomorphism) having π as degree sequence (see [1]).

Example 1. The degree sequence π = (6, 4, 3, 2, 2, 1) ∈ D can be obtained from
the integer sequence s = (3, 1, 0,−1,−2,−3). Here is shown the incidence matrix
of the related 3-uniform hypergraph.

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

We underline the following remarkable

Property 1. Given π the degree sequence obtained from s = (s(1), . . . , s(n))
and H the related hypergraph, if (vi, vj , vk) is an edge of H, then (vi, vj , vk′) is
an edge of H for all j + 1 ≤ k′ ≤ k.

This property is clear from the construction of H, since s is non-increasing by
definition.

3 Definition and Properties of the Pattern Sequences

When the integer sequence s has a specific shape, some properties arise in the
degree sequence π of the constructed hypergraph. An interesting example is
studied in [6], where the authors considered the n-length sequences s such that
s(i + 1) − s(i) = 1 with i = 1, . . . , n − 1, and they found a link between their
number on varying n and some combinatorial structures enumerated by the same
sequence (sequence A002620 in [13]).

Our aim is to generalize these sequences s by relaxing the differences between
two consecutive, non-negative elements to a generic pattern, and keeping the
value 1 only if s(i) < 0. So, we just define a pattern as an array p = (t1, . . . , tn−1)
of non-negative integer values that store the differences between two consecutive
elements in the sequence s. In general, s(i) − s(i + 1) = ti. Each pattern can
be regarded as the concatenation of two arrays, p = (p+,p−), where p+ is the
pattern concerning the differences between the non-negative elements in s, while
p− refers to the negative part of the sequence. We underline that this decom-
position is unique for each pattern p and strictly depends from the sequence s.
In this paper, the pattern defined for the negative values of s will be fixed as
p− = (1, . . . , 1). With abuse of language, from now on, if not differently specified,
with the term pattern we will refer only to the array p+.

Example 2. The integer sequence s = (6, 3, 1, 1, 0, 0,−1,−2,−3,−4,−5,−6,
−7,−8) has pattern

A Study on Hypergraphic Pattern Sequences 305

p = (3, 2, 0, 1, 0,
︸ ︷︷ ︸

p+

1, 1, 1, 1, 1, 1, 1, 1)
︸ ︷︷ ︸

p−

.

Our aim is to study the class of the pattern degree sequences, briefly pattern
sequences, defined as the set of all the 3-degree sequences obtained on varying
of the pattern p+. At first, we will consider a constant pattern with value t. We
call the value t as the step of the sequence s.

Formally, for a given integer t ≥ 2 we iteratively define
{

s1,t = (t, 0,−1,−2, . . . ,−(t − 1)),
si,t = (it, (i − 1)t, . . . , 0,−1,−2, . . . ,−[2(i − 1)t − 1]) for all i ≥ 2

(1)

and denote πi,t the degree sequence of the 3-hypergraph Hi = Gen(si,t), whose
length is ni = (2t + 1)i − t (see Proposition 1). In general, the sequence si,t is
iteratively obtained from si−1,t by adding a first and 2t last elements according
to the pattern rules previous described. We observe that for t = 1 and i ≥ 2, we
get the sequences defined and studied in [6]. We underline that all the sequences
si,t are such that si,t(1) + si,t(2) + si,t(ni) = 1, with si,t(ni) its last element.
This choice is such that si,t(ni) is the minimum allowed value to avoid singleton
vertices, that is πi,t

ni
�= 0.

Lemma 1. Given a step t ≥ 2 and the integer sequence si,t, we have that si,t(i+
1) = 0 for all i ≥ 1. Moreover, it holds that

si,t(1) + si,t(k) + si,t(i + t(2i − k + 1)) = 1

for k = 2, . . . , i + 1.

Proof. It directly follows from the construction of the sequences si,t. Indeed, we
have that si,t(1) = it and si,t(k) = it− (k −1)t for all k = 2, . . . , i+1. The value
si,t(j) = −[(2i − k + 1)t − 1] is required in the equality, and, by construction, it
lies in position j = i + 1 + (2i − k + 1)t − 1. �	
Corollary 1. Keeping the notation of Lemma 1, it holds

si,t(1) + si,t(k) + si,t(j) ≤ 0 for all j ≥ i + 1 + t(2i − k + 1)

for k = 2, . . . , i + 1.

It directly follows by the non-increasing of the sequence si,t.
For a fixed value of t, we define Pt ⊂ D the class of the t-pattern sequences

as the set of all the degree sequences πi,t, with i ≥ 1. Since t is fixed, from now
on, to simplify the notation, we omit it when its value is clear from the context.

Example 3. If t = 2, the first integer sequences are

s1 = (2, 0,−1)
s2 = (4, 2, 0,−1,−2,−3,−4,−5)
s3 = (6, 4, 2, 0,−1,−2,−3,−4,−5,−6,−7,−8,−9)
s4 = (8, 6, 4, 2, 0,−1,−2,−3,−4,−5,−6,−7,−8,−9,−10,−11,−12, −13).

306 M. Ascolese and A. Frosini

The corresponding 2-pattern sequences are

π1 = (1, 1, 1)
π2 = (10, 7, 5, 4, 3, 2, 1, 1)
π3 = (28, 21, 16, 12, 10, 8, 7, 5, 4, 2, 2, 1, 1)
π4 = (55, 44, 35, 28, 22, 19, 16, 14, 12, 10, 7, 6, 4, 4, 2, 2, 1, 1).

Proposition 1. Given t ≥ 2, the length of the integer sequence si is ni =
(2t + 1)i − t for all i ≥ 1.

Proof. By induction on the index i. For i = 1, the sequence s1 has t as first entry
and then all the negative integers from 0 to −(t − 1), that is n1 = t + 1. The
generic sequence si is obtained by adding 2t+1 elements to the previous one, si−1,
that is ni = ni−1+2t+1. It follows that ni = n1+(i−1) · (2t+1) = (2t+1)i− t,
and so the thesis. �	

If we iteratively generate the t-pattern sequences πi, we observe an interesting
property on the lower values of their degrees: in Example 3, the last entries of
the array πi are preserved both as values and positions, from right to left, in
the last elements of πi+1. We are going to prove that they generate a numerical
sequence that generalizes the sequence indexed as A002620 in [13], defined and
studied in [6]. At each iteration, new elements of this numerical sequence are
revealed in the last part of the degree sequence. Formally: for a fixed step t and
i ≥ 1, we define the tail of πi as the array composed by its t(i − 1) + 1 last
entries, that is

T (i, t) =
(
πi(ni − t(i − 1)), . . . , πi(ni)

)
,

being ni the length of πi. It turns out that the tails of the 2-pattern sequences
in Example 3 are

T (1) = (1)
T (2) = (2, 1, 1)
T (3) = (4, 2, 2, 1, 1)
T (4) = (6, 4, 4, 2, 2, 1, 1).

In order to define a reconstruction algorithm for degree sequences having
fixed step, we investigate the behaviour of their tails on varying i.

Definition 1. For all i ≥ 1, we define e2i as the sum of the first even numbers
from 2 to 2i (included) and o2i−1 as the sum of the first odd numbers from 1 to
2i − 1 (included).

In the sequel, we use the standard exponential notation at to indicate the
sequence of t entries equal to a.

Theorem 1. Let Pt be the class of the t-pattern sequences πi iteratively gener-
ated for a fixed value t ≥ 2, and let T (i) be the tail of the i-th sequence. For all
i ≥ 1, we have that

T (i) =
(
oi, e

t
i−1, o

t
i−2, e

t
i−3, . . . , 2

t, 1t
)

if i is odd,
T (i) =

(
ei, o

t
i−1, e

t
i−2, o

t
i−3, . . . , 2

t, 1t
)

otherwise.

A Study on Hypergraphic Pattern Sequences 307

Proof. By induction on i.
If i = 1, T (1) has length 1. By definition s(1) + s(2) + s(n1) = 1 holds, then

T (1) = 1 = o1.
If i = 2, T (2) has length t + 1. By Lemma 1 and Property 1, we have that

s2(1) + s2(2) + s2(k) > 0 for 3 ≤ k ≤ n2,
s2(1) + s2(3) + s2(k) > 0 for 4 ≤ k ≤ n2 − t,
s2(1) + s2(4) + s2(k) ≤ 0 for k ≥ 5.

It follows that the last t + 1 entries of π2 are (2, 1, . . . , 1), i.e. T (2) = (e2, ot1).
Analogously we get T (3) = (4, 2, . . . , 2, 1, . . . , 1) = (o3, et2, o

t
1).

Let us now consider the generic iteration from i to i + 1. We remind that
T (i) and T (i + 1) have lengths t(i − 1) + 1 and ti + 1 respectively. Two cases
arise: if i is even, then considering only the hyperedges added to Hi to obtain
Hi+1, by Lemma 1 it holds that the degrees of the last ti + 1 vertices are

D = (i + 1, it, (i − 1)t, . . . , 3t, 2t, 1t).

Moreover, by the iterative construction of the integer sequences si and si+1,
we have

T (i + 1) =
(
T̃ (i), 02t

)
+ D,

where T̃ (i) stands for the tail T (i) up to its first t elements. We get rid of the
first t elements of T (i) since they overcame the required length of T (i + 1).
Furthermore, an easy check reveals that those first elements will be also changed
in the next iteration i + 2 of πi.

By induction hypothesis, we get

T (i+1) =
(
oi−1+(i+1), eti−2+(i)t, oti−3+(i−1)t, . . . , et2+4t, ot1+3t, 0t+2t, 0t+1t

)

that gives the thesis,

T (i + 1) = (oi+1, e
t
i, o

t
i−1, . . . , 2

t, 1t).

When i is odd, the proof is similar. �	
Corollary 2. For a fixed step t ≥ 2 and index i ≥ 1, the tail related to the i-th
t-pattern sequence is

T (i) = (ai, a
t
i−1, . . . , a

t
2, a

t
1),

with {an}n≥1 the numerical sequence whose generic element is

an =
⌈

n + 1
2

⌉
·
⌊

n + 1
2

⌋
for n ≥ 1.

308 M. Ascolese and A. Frosini

Proof. If n is even, i.e., n = 2k, we get an = k(k + 1), that is the sum of the
first k even numbers, e2k. On the other hand if n is odd, i.e., n = 2k + 1, we get
an = (k + 1)2, that is the sum of the first k + 1 odd numbers, o2k+1. �	
We again underline that {an}n≥1 is the A002620 numerical sequence in [13].

Definition 2. Given a generic t ≥ 1, we define the sequence

π = (. , at
i+1, a

t
i, , a

t
3, a

t
2, a

t
1)

as the fixed point of the class Pt.

The sequence π can be read as the limit of πi as i grows. We highlight that
at each iteration, t new elements of the fixed point appear in the tail T (i) of πi.
This is clear by Theorem 1.

The case t = 1

In this section we briefly point out a further property of the tails T (i) of 1-
pattern sequences already presented in [6]. Since by Eq. (1), s1 gives the empty
hypergraph, in this case we will consider the sequences si starting from i = 2.

By definition, the tail T (i) of the i-th degree sequence has length i. Let us
now consider the case of i even index, and observe πi(2i − 1): it is the first
element on the left of the tail of πi (we remind that πi has length ni = 3i − 1).
An easy check reveals that in case of t = 1 and i even, the equality of Lemma 1
also holds for k = i + 2, that is

si(1) + si(i + 2) + si(2i − 1) = 1.

Following the same argument used in the proof of Theorem 1, we can conclude
that πi(2i − 1) = o2i+1. On the other hand, if i is odd, the same equality of
Lemma 1 can not be extended till k = i + 2. We finally conclude that

Proposition 2. Let t = 1 and k ≥ 1. The following statements hold:

1. T (2k + 1) reveals one new element of the fixed point π,
2.

(
π2k(4k − 1), T (2k)

)
reveals two new elements of the fixed point π.

Proposition 2 is in accordance with the result obtained in [6]. The same
result holds if we iteratively generate degree sequences starting from an integer
sequence s = (s(1), . . . , s(n)) such that s(i + 1) − s(i) = t for all i = 1, . . . , n,
with t ≥ 1. Indeed, if we choose the constant pattern p = (t, . . . , t), we get again
the class of 1-pattern sequences P1, since s and t ·s = (ts(1), . . . , ts(n)) generate
by construction the same degree sequence π for all t ≥ 1 (see [1]).

Example 4. Let us consider the integer sequence s = (20, 15, 10, 5, 0,−5,−10,
−15,−20,−25,−30), whose pattern is p = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5). The degree
sequence of the corresponding 3-hypergraph is

π = (25, 21, 18, 15, 12, 10,9,6,4,2,1).

A Study on Hypergraphic Pattern Sequences 309

We observe that π corresponds to π4,1, since s = 5 · (4, 3, 2, 1, 0,−1,−2,−3,
−4,−5,−6).

Moreover, the array
(
π(7), T (4)

)
in boldface consists of the first five elements

of the numerical sequence {an}n≥1, according to Proposition 2.

4 Two Reconstruction Algorithms for Pattern Sequences

Due to the particular behaviour of their tails, the reconstruction problem is
polynomially solvable for the class Pt. As a matter of fact, if the smallest elements
of a given degree sequence π ∈ Pt constitute the first elements (from right to left)
of the fixed point π, we can immediately compute the values of the step t and
the i-th iteration of the integer sequence s that realizes it. Then, it is sufficient
to construct si,t and generate the corresponding hypergraph. The uniqueness
property of the degree sequences in the class Pt assures that the correspondence
between the degree sequence of the generated hypergraph and the input one
holds if and only if π ∈ Pt. The described procedure is provided in pseudo-code
in Algorithm 2, RecStep.

Algorithm 2. RecStep(π)

Input: A weakly-decreasing integer sequence π of length n
1 Compute t the number of 1 elements in π;
2 set i = 2;
3 while π(n − (i − 1)t) = · · · = π(n − (i − 2)t + 1) = ai do
4 i = i + 1;
5 end
6 if π(n − (i − 1)t) = ai then
7 compute the integer sequence si,t;

8 compute πi,t the degree sequence generated by si,t;

9 if πi,t = π then
10 return success;
11 else
12 return failure;
13 end

14 else
15 return failure;
16 end

Output: si,t

Example 5. Let us consider the following degree sequences (for brevity sake, we
omit the incidence matrices of the 3-hypergraphs that realize them):

π1 =(27,20,14,11,10,8,6,5,4,2,2,1,1): the entries π1(13), . . . , π1(9) equals T (3),
so they allow us to conjecture the inclusion of π1 in P2. RecStep(π1) computes
s3,2 and successively π3,2. Since π1 �= π3,2, then it holds that π1 /∈ P2.

310 M. Ascolese and A. Frosini

π2 =(28,21,16,12,10,8,7,5,4,2,2,1,1): acting as in case of π1, we note that
RecStep(π2) ends with success and returns s3,2. A final run of Gen(s3,2)
generates in polynomial time the hypergraph having π2 as degree sequence.

In this section, we further generalize the concept of pattern sequences and
introduce an algorithm that extends the classes Pt of instances that are polino-
mially reconstructable.

We define P as the class of the pattern degree sequences, weakening the
hypothesis on the integer sequences s that generate them and allowing any pos-
sible pattern p+. Obviously, this class is such that Pt ⊂ P ⊂ D, with t ≥ 1.

Definition 3. A degree sequence π ∈ D is in P if and only if the integer
sequence s of length n that realizes it satisfies the following conditions:

1. there exists at least one index i s.t. s(i) = 0, with 2 ≤ i ≤ n − 1;
2. s(i)− s(i+1) = 1 for all z ≤ i ≤ n−1, where z = max{1 < z < n | s(z) = 0}

denotes the position of the last entry equal to zero in s;
3. s(1) + s(2) + s(n) = 1.

As one can argue from the previous definition, the integer sequences s pre-
serve the same negative pattern p− = (1, . . . , 1) as the elements in Pt. On the
other hand, we do not impose any restriction on its positive part, allowing a
generic pattern p+.

Example 6. The integer sequence s = (9, 3, 1, 0,−1,−2,−3,−4,−5,−6,−7,−8
− 9,−10,−11) realizes the degree sequence π ∈ P, with π = (43, 19, 15, 13,
11, 10, 8, 6, 6, 5, 4, 3, 2, 1, 1). In this example, the distance between positive ele-
ments in s is not fixed, and the pattern is p+ = (6, 2, 1).

From Example 6, we can note that the characterization of the tail provided
in Theorem 1 concerning the elements of Pt is lost. In words, this is ascribable
to the lack of a constant gap between the non-negative elements of s in the sense
that the iterative procedure to generate the tails at step i + 1 does not allow
sequences of the same values to pack together in T̃ (i) and D.

Despite the fewer information directly provided by the degree sequence, the
strong hypothesis on the pattern of the negative elements of s allow again to
provide a polynomial time algorithm, say Rec, for the reconstruction of the
hypergraphs related to pattern sequences. The pseudo-code of Rec is described
in Algorithm 3, and its behavior sketched below.

Starting from a degree sequence π of length n, Rec computes the integer
sequence s that generates the relative hypergraph. If π /∈ P, then the recon-
struction fails.

A Study on Hypergraphic Pattern Sequences 311

Without loss of generality, we assume to have as prior knowledge both the
index z i.e., the position of the last null entry in the array s, and the first value of
the pattern, t1 = s(1) − s(2). These hypothesis are not restrictive, since we can
suppose to start n parallel computations, one for each position of z, and then
consider all the possible related values of t1, however keeping the polynomiality
of the process. Indeed, by the structure of s, the value t1 may vary from 0 to
−

⌊
s(n)
2

⌋
, with s(n) that can assume the value −n + 2 at most.

Rec is an iterative algorithm that progressively computes the elements of
the sequence s, revealing its pattern from the degree sequence π. The nega-
tive entries, s(z), . . . , s(n), are still known by the knowledge of z and p−. The
algorithm computes the missing values with the following iterative steps:

1. Let q be the number of 1 elements of π. It is easy to check that q = s(2)−s(3),
since if a vertex vk of a hypergraph in P has degree 1, then the inequality
s(i) + s(j) + s(k) > 0 is satisfied for one only couple of indices, that is
necessarily i = 1 and j = 2 by the non-increasing assumption on the elements
in s;

2. By the prior knowledge of t1 and q = t2, the algorithm uniquely computes
s(1), s(2) and s(3);

3. Rec computes the indexes i, j, and k such that s(i) + s(j) + s(k) > 0, with
the three indexes ranging on all the known values of s. Then, it inserts in the
hypergraph the computed edges (vi, vj , vk). The degree sequence π is then
updated by subtracting the degree sequence of the added hyperedges;

4. The algorithm computes the number of vertices that reached degree equal to
zero after the update of the sequence π. This value provides the difference
t3 = s(3) − s(4) and s(4) is determined;

5. The procedure described in points 3 and 4 is iteratively repeated until all the
entries of s are detected.

The proof of Theorem 2 will provide the correctness of the reconstruction
procedure.

312 M. Ascolese and A. Frosini

Algorithm 3. Rec(π,z,t1)

Input: A weakly-decreasing integer sequence π of length n
1 Initialize s a null array of length n;
2 set [s(z), . . . , s(n)] = [0, −1, . . . , −(n − z)];
3 compute q the number of elements in π that are equal to 1;

4 set s(2) = 1−s(n)−t1
2

, s(1) = 1 − s(n) − s(2) and s(3) = s(2) − q;
5 for i, j, k ∈ {1, 2, 3, z, z + 1, . . . , n} and i < j < k do
6 if s(i) + s(j) + s(k) > 0 then
7 π(i) = π(i) − 1;
8 π(j) = π(j) − 1;
9 π(k) = π(k) − 1;

10 end

11 end
12 π4 = π;
13 for l = 4 : z − 1 do

14 compute w the number of elements in πl that are equal to 0;

15 set t = w − q; s(l) = s(l − 1) − t; q = q + t; πl+1 = πl;
16 for i, j, k ∈ {1, . . . , l, z, z + 1, . . . , n} and i < j < k do
17 if s(i) + s(j) + s(k) > 0 and was not previously computed then

18 πl+1(i) = πl+1(i) − 1;

19 πl+1(j) = πl+1(j) − 1;

20 πl+1(k) = πl+1(k) − 1;

21 end

22 end

23 end
24 compute π∗ the degree sequence generated by s;
25 if π∗ = π then
26 return success;
27 else
28 return failure;
29 end

Output: s

Theorem 2. Given an integer sequence π of length n, if π ∈ P then the algo-
rithm Rec(π, z, t1) reconstructs in polynomial time the integer sequence s that
generates π.

Proof. We proceed by induction, proving that at each step of the For loop on
l (Algorithm 3, line 13) the algorithm correctly computes a new element of the
sequence s.

First, we observe that the values s(1), s(2) and s(3) are correctly computed.
In particular, s(1) and s(2) are uniquely determined by the conditions s(1) +
s(2) + s(n) = 1 and s(1) − s(2) = t1. Furthermore, the number q of elements
equal to 1 in the degree sequence corresponds to the difference between s(2) and
s(3). Indeed, vk has degree 1 if and only if the edge (v1, v2, vk) is part of the

A Study on Hypergraphic Pattern Sequences 313

hypergraph, and reaches degree at least 2 if and only if the edge (v1, v3, vk) is in
the hypergraph too. This holds since s(1)+ s(2) and s(1)+ s(3) are the greatest
sums we can get with couples of elements in s. We can conclude that q is the
number of vertices vk such that s(1)+ s(2)+ s(k) > 0 and s(1)+ s(3)+ s(k) ≤ 0
hold at the same time, i.e. q = t2 = s(2) − s(3).

As a matter of fact, the values s(i) for z ≤ i ≤ n are correctly individuated
by the index z and the fixed pattern p−.

Basis, l = 4.
After the insertion of all the possible edges (vi, vj , vk), with i, j, and k dif-

ferent indexes in {1, 2, 3, z, . . . n}, we update π to π4 = (∗, . . . , ∗, 0u4 , 0q), with
π4(n − q − u4) �= 0. Stars stand for non-null values. The following statements
hold by construction:

i) The edge (v1, v4, vn−q−u4) is part of the hypergraph, since, considering the
previous insertions we made, s(1) + s(4) is now the greatest sum we can
reach summing two elements of the sequence s;

ii) π(n − q + 1), . . . , π(n) became null due to the insertion of edges of type
(v1, v2, vx);

iii) π(n− q −u4 +1), . . . , π(n− q) became null also due to the insertion of edges
of type (v1, v3, vx), since they had degree ≥ 2.

It follows that the value u4 is exactly the number of vertices vx such that
(v1, v3, vx) is an edge of the hypergraph but (v1, v4, vx) is not, i.e. the difference
between s(1)+s(3) and s(1)+s(4). It directly follows that u4 = t3 = s(3)−s(4),
and the new value s(4) of the sequence is correctly computed by the algorithm.

Induction step, from l to l + 1.
The values of the integer sequence s up to s(l) are known.
After the insertion of the edges (vi, vj , vk), with i < j < k ∈

{1, 2, . . . , l, z, . . . , n}, we get the updated degree sequence

πl+1 = (∗, . . . , ∗, 0ul+1 , 0ql+1).

By induction hypothesis, ql+1 =
∑l−1

i=2 s(i) − s(i + 1), and the elements
πl+1(n − ul+1 − ql+1 + 1), . . . , πl+1(n − ql+1) became null due to the insertion
of edges (v1, vl, vk). On the other hand, π(n − ul+1 − ql+1) �= 0 implies that
(v1, vl+1, vn−ul+1−ql+1) is an edge of the hypergraph, since s(1) + s(l + 1) is now
the greatest sum we can obtain in s. It follows that ul+1 is the number of vertices
vk such that (v1, vl, vk) is an edge of the hypergraph while (v1, vl+1, vk) is not,
i.e. ul+1 = tl = s(l)−s(l+1). Then the value s(l+1) can be correctly computed.

At the end of the For loop in Algorithm 3, line 13, it is revealed the whole
pattern p+ = (t1, . . . , tz−1) of the sequence, and all the elements of s are correctly
detected. �	
Corollary 3. If π ∈ P, then the (unique) 3-hypergraph having π as degree
sequence can be reconstructed in polynomial time.

314 M. Ascolese and A. Frosini

Proof. The algorithm Rec allows to compute in polynomial time the integer
sequence s that generates the hypergraph H related to π. Starting from s, the
incidence matrix of H can be computed by Gen in polynomial time. �	

To clarify the action of Rec, we provide the following detailed example

Example 7. Let us consider Rec(πinput, z, t1), with z = 7, t1 = 4 and

πinput = (110, 76, 56, 50, 40, 36, 36, 31, 29, 24, 20, 17, 16, 12, 10, 9, 7, 4, 3, 3, 2, 1, 1, 1).

First, Rec creates a 24 length sequence s and initializes its last 18 elements
to [s(7), . . . , s(24)] = [0,−1, . . . ,−17]. Then the value q = 3 is computed and
s(1) = 11, s(2) = 7, s(3) = 4 are obtained from

⎧
⎪⎨

⎪⎩

s(1) + s(2) − 17 = 1
s(1) − s(2) = 4
s(2) − s(3) = 3.

The algorithm proceeds performing the insertion of the following edges:

(v1, v2, vi) for i = 3, . . . , 24,
(v1, v3, vi) for i = 4, . . . , 21, since s(1) + s(3) + s(22) = 0,
(v2, v3, vi) for i = 4, . . . , 17, since s(2) + s(3) + s(18) = 0,
(vi, vj , vk) such that i = 1, 2, 3, j = 7, . . . , 23, k = j + 1, . . . , 24 and s(i) + s(j) +

s(k) > 0,

getting the updated degree sequence

π4 = (46, 34, 25, 50, 40, 36, 14, 12, 12, 10, 8, 7, 7, 5, 4, 4, 3, 2, 1, 1,0, 0, 0, 0).

The value t3 = 1 is computed by subtracting q to the number of 0 elements
in π4 (in boldface), getting s(4) = 3.

The insertions of the edges involving v4 and the vertices vi, with i ∈
{1, 2, 3, 7, 8, . . . , 24}, are performed, updating π4 to the following

π5 = (30, 22, 16, 14, 40, 36, 9, 8, 8, 7, 5, 4, 4, 3, 2, 2, 2, 1,0,0, 0, 0, 0, 0).

The difference between s(4) and s(5) is obtained by the new 0 elements (in
boldface) that appear updating π4 to π5, i.e., t4 = 6 − 4. The entry s(5) = 1 is
also updated.

Acting similarly, the algorithm computes

π6 = (15, 11, 8, 7, 5, 36, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1,0, 0, 0, 0, 0, 0, 0)

and t5 = 1, that allows to get s(6) = 0. The procedure stops since all the unknown
values of s have been detected. We can check that Rec terminates with success and
that the output sequence s = (11, 7, 4, 3, 1, 0, 0,−1,−2, . . . ,−16,−17) corresponds
to the integer sequence that generates πinput.

Finally, Gen(s) constructs the incidence matrix of the 3-uniform hypergraph
that realizes πinput.

A Study on Hypergraphic Pattern Sequences 315

5 Conclusion and Open Problems

The present study focuses on the characterization and reconstruction of an inter-
esting class of hypergraphic degree sequences, say D, that held appeal after its
introduction by Deza et al. in [4]. In particular, those sequences appear as a
gadget in the NP-completeness proof of the characterization of 3-uniform hyper-
graphs by degree sequences, and immediately show interesting properties. To
study how far we can push in their characterization, we investigate a subclass of
D having a prior knowledge about part of their entries.

We rely on a previous study in [6] about Saind degree sequences and we
extend those results to a wider class P by introducing the notion of pattern and
pattern sequence. We show that the last entries of a t-pattern sequence, with
t a constant integer, provide a fixed point on growing in length. Moreover, the
sequence of the elements of those fixed points, when varying t, are similar and
equal the sequence found in [6], where t = 1.

Furthermore, we provide an algorithm that performs in polynomial time the
reconstruction of the elements of P (with generic pattern) by discovering the
different elements of the pattern and, consequently, the hyperedges of the related
3-uniform hypergraph.

By using the notion of pattern, we provide a different perspective for the
reconstruction of subclasses of uniform hypergraphs, one for all the class D, with
the aim of shrinking the hard-to-compute core of their reconstruction problem.

References

1. Ascolese, M., Frosini, A., Kocay, W.L., Tarsissi, L.: Properties of unique degree
sequences of 3-uniform hypergraphs. In: Lindblad, J., Malmberg, F., Sladoje,
N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 312–324. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76657-3 22

2. Behrens, S., et al.: New results on degree sequences of uniform hypergraphs. Elec-
tron. J. Comb. 20(4), P14 (2013)

3. Brlek, S., Frosini, A.: A tomographical interpretation of a sufficient condition on
h-graphical sequences. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI
2016. LNCS, vol. 9647, pp. 95–104. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32360-2 7

4. Deza, A., Levin, A., Meesum, S.M., Onn, S.: Optimization over degree sequences.
SIAM J. Discret. Math. 32(3), 2067–2079 (2018)

5. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices (in Hungarian).
Mat. Lapok (N.S.) 11, 264–274 (1960)

6. Frosini, A., Palma, G., Rinaldi, S.: Combinatorial properties of degree sequences of
3-uniform hypergraphs arising from Saind arrays. In: Anselmo, M., Della Vedova,
G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS, vol. 12098, pp. 228–238. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51466-2 20

7. Frosini, A., Picouleau, C., Rinaldi, S.: On the degree sequences of uniform hyper-
graphs. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013.
LNCS, vol. 7749, pp. 300–310. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37067-0 26

https://doi.org/10.1007/978-3-030-76657-3_22
https://doi.org/10.1007/978-3-319-32360-2_7
https://doi.org/10.1007/978-3-319-32360-2_7
https://doi.org/10.1007/978-3-030-51466-2_20
https://doi.org/10.1007/978-3-642-37067-0_26
https://doi.org/10.1007/978-3-642-37067-0_26

316 M. Ascolese and A. Frosini

8. Frosini, A., Picouleau, C., Rinaldi, S.: New sufficient conditions on the degree
sequences of uniform hypergraphs. Theoret. Comput. Sci. 868, 97–111 (2021)

9. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)

10. Havel, V.: A remark on the existence of finite graphs (in Czech). Časopis pro
pěstováńı matematiky 80, 477–480 (1955)

11. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms, and
Applications. Birkhauser, Boston (1999)

12. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.
Birkhauser, Boston (2007)

13. The On-Line Encyclopedia of Integer Sequences. http://oeis.org

http://oeis.org

The Generalized Microscopic Image
Reconstruction Problem for Hypergraphs

Niccolò Di Marco(B) and Andrea Frosini

University of Florence, Florence, Italy
{niccolo.dimarco,andrea.frosini}@unifi.it

Abstract. In this paper we study a particular case of the micro-
scopic image reconstruction problem, first introduced in [6,10] and then
extended to undirected unweighted graphs in [2]. We consider a general
hypergraph H = (V, E) such that each node v has assigned a physical
value lv that we would determine. Since in many applications it may be
difficult or almost impossible to directly extract these values, we study
how to retrieve them starting from the set of probes Pv =

∑
w∈N(w) lw,

i.e. the sum of labels of v’s neighbors. In particular, we prove that the
values lv can be found in polynomial time using linear algebra tools and
that the problem can be shifted to undirected weighted graphs trough
the concept of 2-section of a hypergraph. Finally, we provide some classes
of hypergraphs whose 2-intersection graphs have a specific form (a line or
a s-tree) and whose related reconstruction problem from the probes can
be performed with the minimum number of zero or one surgical probe.

Keywords: Image analysis · Discrete tomography · Reconstruction
problem · Hypergraph · Graph spectra

AMS Classification: 52C99 · 05C65 · 05C85 · 05C99

1 Introduction

In this paper we consider the problem of retrieving information and, at its best,
reconstructing, a physical discrete object from quantitative measurements of the
neighbours of each point. To each point x of the unknown object is assumed to be
assigned a value lx and our goal is to determine these values. As a matter of fact,
in many applications it is not easy or even not possible, to obtain them trough
a precise inspection (called surgical probe), since it may damage the structure
or may alter these values. A common alternative proposes the use of aggregate
measuring techniques, whereby measurements are taken over a larger area and
the values at each point are subsequently extracted by computational methods.

This general problem is often referred to as the Discrete Tomography Recon-
struction problem (DTR) (for a survey on the topic and the related problems see
[7,8]). The Microscopic Image Reconstruction problem (MIR) has been intro-
duced in [6,10] as a natural extension of DTR. In both problems the object is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. P. Barneva et al. (Eds.): IWCIA 2022, LNCS 13348, pp. 317–331, 2023.
https://doi.org/10.1007/978-3-031-23612-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23612-9_20&domain=pdf
http://orcid.org/0000-0003-4335-7328
http://orcid.org/0000-0001-7210-2231
https://doi.org/10.1007/978-3-031-23612-9_20

318 N. Di Marco and A. Frosini

represented by a subset U ⊆ Z × Z whose points have assigned non-negative
integer values. In the DTR problem, the window of a probe is typically an entire
row or column, and they are called probes. In contrast, in the MIR problem it
is assumed that the microscope’s scanning window is a subset of the plane (see
[3,6] for some examples). In [2] the authors extend this framework considering
a generalized setting where the inspected object is represented by an undirected
unweighted connected graph G = (V,E). In this case, the vector l ∈ R

n is an
assignment of values lv to each node v ∈ V . Moreover, in this context, a probe
centered in v captures the sum of its neighbours’ labels. Since in general this
problem may have multiple solutions, the authors of [2] studied the so-called
Minimum Surgical Probing problem (MSP) in which we ask to find the vector
l with as few as possible surgical probes, where a surgical probe is intended as
the exact knowledge of a single label. In the same paper the authors show that
the problem can be solved in polynomial time using linear algebra tools.

Here, we extend the MSP to hypergraphs, and we prove that it can be related
to the same problem on weighted graphs. Moreover, the problem can be solved
in polynomial time using tools similar to those used in [2]. Then, we consider
some classes of hypergraphs whose 2-intersection graphs (as defined in [5]) have
a specific form. In particular, we focus on line and s-trees 2-intersection graphs,
and we investigate the MSP problem of the related hypergraphs. We prove that
the values assigned to the hypergraphs’ nodes can be retrieved (in polynomial
time) by using zero or one surgical probes, and we show how to detect them.

2 Preliminaries and Previous Results

Recall that a graph G is composed by two set (V,E), where V = {v1, . . . , vn}
is called set of nodes and E ⊆ V × V is called set of edges. The definition of
hypergraph is a generalization of that of graph obtained by relaxing the condition
on the edges to E ⊆ P(V), where P(V) is the power set of V . From now on,
we will indifferently indicate each node vi with its integer index i. If it holds
that every edge in E has the same cardinality k, we say that H is a k-uniform
hypergraph, simply k-hypergraph.

Given a graph (or hypergraph) G, the vector l ∈ R
n is an assignment of

values lv to each node v and we call it label vector of the nodes.
For a node v we define its probes as

Pv =
∑

w∈V

F (v, w)lw (1)

where F (v, w) is the number of hyperedges that contain both v and w (we suppose
that F (v, v) = 0 for every node v). We stress that the probes of a node v
considers each neighbour’s label (neighbours indicates a node that share at least
one hyperedge with v) with a coefficient counting its occurrences in different
hyperedges (provided by F (·, ·)). On the other hand, the choice of computing
the probes of v without such coefficients allows the MSP problem to go back to
the (underlying hypergraph neighbour’s) graph case. We define the neighborhood
matrix F of a hypergraph as the matrix whose generic entry fi,j equals F (i, j).

On the Hypergraphs’ MSP Problem 319

Note that in [1,2] the authors consider v itself among its neighbours. However,
in [1] they inspect the links between the two cases. These few definitions are
enough to state two main questions:

Question 1. Is it possible to compute vector l from the knowledge of P, the
vector of probes Pv, for each v ∈ V ?

So, from the knowledge of the whole set of probes of a given weighted
(hyper)graph, we are asking if it is possible to find the exact label assigned
to each node. Since, in general, it may exist several vectors l that would yield to
the same probes P, we study a generalization of this problem described in [2].
Let us define surgical probe at node v to be the knowledge of its label lv:

Question 2. What is the minimal number of surgical probes needed for a unique
reconstruction of the label vector l from the knowledge of P?

We address this problem as the Minimum Surgical Probing problem (MSP).
Given a hypergraph G and a vector P, we aim at finding the vector l that
generates P, using as few surgical probes as possible.

In [2], the authors prove that MSP problem on graphs can be solved in
polynomial time and present an efficient algorithm to perform the task. In this
paper, we extend their study to hypergraphs.

So, our interest in Question 2 concerns the study of the solutions of the linear
system:

F l = P. (2)

Some linear algebra notions need to be recalled: given a matrix A, denote with
rank(A) its rank and with φλ(A) the geometric multiplicity of each λ ∈ Λ(A),
where Λ is the set of the eigenvalues of A.

We note that F is a non-negative n × n symmetric matrix, and therefore
φ0(F) = n − rank(F) is the kernel dimension of F .

Theorem 1. Let us consider a hypergraph H and let P be its probes vector and
F be its neighborhood matrix. It holds that

1. if F has full rank, then l can be found in polynomial time without surgical
probes;

2. otherwise the minimum number of surgical probes needed to compute l is s =
n − rank(F) = φ0(F).

The proof of Theorem 1 can be easily obtained from Theorem 2.2 in [2].
We stress that its proof only relies on the the symmetry of the matrix, without
imposing any constraint on its coefficients.

Observation 1. The minimum number of probes pointed out in Theorem 1
holds for a generic vector of labels l, while it can be considered as a lower bound
in case we require l to be an integer vector.

320 N. Di Marco and A. Frosini

Observation 2. In the framework we are setting up, we implicitly assume that
the probes vector P is obtained by the machinery scanning of a real object. This
implies that system (2) has always at least one solution. However, from a mathe-
matical point of view, it may happen that rank(F) < |V |, preventing the problem
from having a solution, in general.

3 The MSP Problem on Classes of Hypergraphs

Let H = (V,E) be a hypergraph, we define the graph GH = (VH , EH) such
that VH = V and EH = {{v, w} : there exists e ∈ E such that {v, w} ⊆ e}.
Furthermore, we define a weight function WH on EH such that WH(v, w) =
F (v, w), being F the neighborhood matrix of H.

In words, starting from H, we compute the graph GH by replacing each
hyperedge e ∈ E by a complete graph on the same set of nodes of e. The weight
function W (·, ·) indicates, for each edge (v, w) of GH , the number of hyperedges
of H including the two nodes v and w (see Fig. 1).

We indicate GH as the weighted 2-section of H. This notion has been intro-
duced in [4] and later studied in [9], where the authors consider the reconstruction
problem of a hypergraph starting from its weighted 2-section. It is worthwhile
that the MSP problem on hypergraphs H can be equivalently shifted to the
same problem on the weighted graph GH , where the probes are computed using
the edges’ weights, so that F turns out to be the weighted adjacency matrix of
GH .

(a) (b)

l1 l2

l3 l4

l1 l2

l3 l4

1

1

1

1 2

Fig. 1. The hypergraph H = {{1, 2, 3}{2, 3, 4}} is shown in (a). (b) represents the
related GH weighted graph.

Example 1. Consider the hypergraph H in Fig. 1 (a), whose hyperedges are
{{1, 2, 3}{2, 3, 4}}. Its probes are P1 = l2+l3, P2 = l1+2l3+l4, P3 = l1+2l2+l4,
and P4 = l2 + l3.

Consider the 2-section graph GH depicted in Fig. 1, (b). An easy check reveals
that GH satisfies the same probes P1 . . . P4 as H.

Let us recall the definition of t-intersection graph.

On the Hypergraphs’ MSP Problem 321

Definition 1. Let H = (V,E) be a hypergraph. The t-intersection graph
It(H) = (V ′, E′) of H is a graph such that V ′ = E and e′ = {e1, e2} ∈ E′

if and only if in H it happens that |e1 ∩ e2| ≥ t.

So far, the intersection graph has been a valuable tool to inspect structural
properties of uniform hypergraphs, such as the existence of a null labelling [5].
Similarly, in what follows, we use the intersection graph to solve the MSP
problem for some relevant classes of hypergraphs.

Observation 3. Let H be a hypergraph. If its 2-intersection graph I2(H) has
no edges, then no two hyperedges of H share two nodes. So, it holds that the
edges’ weights of GH have the same value 1, and the solution of the related
MSP problem (on unweighted graph) has already been studied in [2].

So, we focus on three classes of 3-hypergraphs whose 2-intersection graphs
have specific, non trivial, properties of regularity.

3.1 3-Hypergraphs Whose 2-Intersection Graph is a Line

Let us consider a 3-hypergraph H whose I2(H) intersection graph is a line.
Among them, we distinguish two types of hypergraphs: the cluster hypergraphs
and the path hypergraphs.

We begin our study from the former.
The MSP problem on cluster hypergraphs

Definition 2. A k-cluster hypergraph is a 3-hypergraph such that |V | = k +
2, |E| = k and its hyperedges are defined, up to isomorphism, as

{
e1 = {1, 2, 3}
ei = {1, i + 1, i + 2} i = 2 . . . k.

(3)

It is worthwhile that the 2-intersection graph of a k-cluster is a line of
length k. Figure 2 (a) depicts a 4-cluster hypergraph, and its four-length line
2-intersection graph is shown in (b).

Denote by Fk the neighborhood matrix of a k-cluster. Note that if |E| = k,
then |V | = k + 2.

In Table 1, we explicitly compute the neighborhood matrices of the 2-cluster
and 3-cluster hypergraphs H2 = {{1, 2, 3}, {1, 3, 4}} and H3 = {{1, 2, 3}, {1, 3, 4}
{1, 4, 5}}.

The elements that are in common are in boldface, according to the successive
Lemma 4 that highlights the relation between the generic matrices Fn−1 and Fn.

Lemma 1. Let Fn−1 and Fn be two neighborhood matrices of the (n−1)-cluster
and n-cluster, respectively. The following recursive equations define Fn+1

Fn+1(i, j) = Fn(i, j) if 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1 (4)

322 N. Di Marco and A. Frosini

{v1, v2, v3}

v1

e1

e2

e3

e4

{v1, v3, v4}

{v1, v4, v5}

{v1, v5, v6}

v2

v3

v4

v5

v6

Fig. 2. A 4-cluster hypergraph (left) and its 2-intersection (right)

Table 1. The neighborhood matrices associated to the clusters of dimensions 2 and 3.

F2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 2 1

1 0 1 0

2 1 0 1

1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

F3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 2 1

1 0 1 0 0

2 1 0 1 0

2 0 1 0 1

1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fn+1(i, n + 2) = Fn+1(n + 2, i) =

⎧
⎪⎨

⎪⎩

2 if i = 1
1 if i = n + 1
0 otherwise

(5)

Fn+1(i, n + 3) = Fn+1(n + 3, i) =

{
1 if i = 1 ∨ i = n + 2
0 otherwise.

(6)

Proof. Equation (4) states that the multiplicity of the edges {i, j} of Fn is not
affected by the addition of the new node.

Equation (5) states that adding node n+3 implies, by definition, the inclusion
of the hyperedge {1, n + 2, n + 3}. Therefore, {1, n + 2} shares two hyperedges
and {n + 2, n + 1} shares one hyperedge.

Equation (6) set the values of the row and the column of the new node n+3.
Since the new hyperedge is {1, n + 2, n + 3} the equation holds. �	

From Theorem 1, it follows that the MSP problem on cluster hypergraphs
can be solved by studying the rank of the associated Fn matrices.

Theorem 2. Let n ≥ 4 and consider n-cluster hypergraph. If n is even, then
the MSP problem can be solved with one surgical probes while, if n is odd, then
no surgical probes are needed.

On the Hypergraphs’ MSP Problem 323

Proof. Let us study rank(Fn−2) by inspecting its associated homogeneous sys-
tem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 + 2x3 + . . . + 2xn−1 + xn = 0
x1 + x3 = 0
2x1 + xi−1 + xi+1 = 0 if i = 3 . . . n − 1
x1 + xn−1 = 0.

From the second equation we get x3 = −x1, and from the last one,
xn−1 = −x1. By substituting the computed variables in the third equations,
with i ranging from 3 to n− 1, we obtain, for i = 4, the equation x5 = −x1 and,
in general, the equation xi = −x1, with i odd. On the other hand, xn−1 = −x1

implies xn−3 = −x1 when i = n − 2 and, in general x(n−1−2k) = −x1. We have
two cases:

1. if n is odd we obtain each xi = −x1. Since the first equation is a sum of all
the variables except x1, we obtain x1 = 0 and therefore xi = 0. So Fn−2 has
maximum rank;

2. if n is even we obtain xi = −x1, with i odd, and then we have an additional
equation that gives 0 = 0 (i.e., x1 is a free variable). Note that other equations
involving even index i are of the form

xi−2 + xi = −x1

Therefore, assuming i = 2k, we obtain x2k in terms of x1 and x2, so

x2k = −x1 − x2k−2 =

{
x2 if k ≡2 0
−x1 − x2 if k ≡2 1

(7)

Since the first equation is only a sum of all the other variables except x1,
rank(Fn−2) = n − 1. Therefore, from Theorem 1, we need one surgical probe
to determine l. �	

The MSP problem on path hypergraphs

Definition 3. A n-path hypergraph Cn, with n ≥ 1, is a 3-hypergraph H in
which |V | = n + 2, |E| = n and whose hyperedges are

{
e1 = {1, 2, 3}
ei = {i, i + 1, i + 2} i = 2, . . . n

(8)

Also in this case, w.l.g. we suppose that 1 is the starting node. See Fig. 3 for
an example.

Call Fn the neighborhood matrix of a n-path. The following lemma holds.

324 N. Di Marco and A. Frosini

e1

e2

e3

e4

v1

v2

v3

v4

v5

v6

{v2, v3, v4} {v4, v5, v6}
{v3, v4, v5}{v1, v2, v3}

Fig. 3. (a) shows a 4-path hypergraph. (b) shows its 2-intersection graph.

Lemma 2. Let H be Cn hypergraph. Then Fn is a symmetric pentadiagonal
matrix of dimension (n + 2) × (n + 2) such that:

⎧
⎪⎨

⎪⎩

diag(Fn) = (0, . . . , 0) ∈ R
n+2

diag±1(Fn) = (1, 2, 2, . . . , 2, 2, 1) ∈ R
n+1

diag±2(Fn) = (1, . . . , 1) ∈ R
n

(9)

where diag±k(Fn) indicates the k-th diagonals of Fn above and below the main
diagonal.

Proof. The first equation immediately follows by definition of neighborhood
matrix. Then, note that each node i different from 1 and n + 2 is connected
twice with i + 1 and i − 1. Moreover, nodes 1 and n + 2 are connected once with
node 2 by the hyperedge {1, 2, 3}, and with n+2 by the hyperedge {n, n+1, n+2}.
Therefore the second equation holds. Finally, each node i is connected only once
with i + 2 and i − 2, obtaining the third equation. �	

In Table 2, we explicitly compute the neighborhood matrices F4 and F5 of
the 4-path and 5-path hypergraphs, respectively. Again the sub-matrices with
equal elements are in boldface.

Table 2. The neighborhood matrices associated to the paths of dimensions 4 and 5.

F2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 1 0

1 0 2 1

1 2 0 1

0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎠

F3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 0

1 0 2 1 0

1 2 0 2 1

0 1 2 0 1

0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The following result holds.

On the Hypergraphs’ MSP Problem 325

Theorem 3. Consider a n-path. The MSP problem can be solved without sur-
gical probes if and only if n ≥ 3. In particular, if n = 2, a surgical probe is
needed.

Proof. The case n = 2 is obtained after noticing that rank(F2) = 3, so one
surgical probe is needed to recover l. Consider a generic Fn matrix, with n ≥ 3.
By Theorem 1 the statement is proved if rank(Fn) = n + 2. Following the same
strategy as in the proof of Theorem 3.1, let us inspect the homogeneous linear
system associated with Fn−2:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2 + x3 = 0
x1 + 2x3 + x4 = 0
xi−2 + 2xi−1 + 2xi+1 + xi+2 = 0 i = 3 . . . n − 2
xn−3 + 2xn−2 + xn = 0
xn−2 + xn−1 = 0

(10)

It follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x3 = −x2

x4 = −x1 + 2x2

xi+2 = −xi−2 − 2xi−1 − 2xi+1 i = 3, . . . n − 2
xn = −xn−3 − 2xn−2

xn−2 = −xn−1

(11)

The previous equations show that any variable can be expressed by a lin-
ear combination of x1 and x2. In the equation defining xi, we indicate αi the
coefficient of x1 and βi the coefficient of x2.

Furthermore, the following initial conditions hold:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 = 1
α2 = 0
α3 = 0
α4 = −1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1 = 0
β2 = 1
β3 = −1
β4 = 2

(12)

The next equations provide the recursive description of αi and βi for a generic
index i:

(
αi

βi

)
=

(−αi−4 − 2αi−3 − 2αi−1

−βi−4 − 2βi−3 − 2βi−1

)
. (13)

Note that the two coefficients follow the same equation with different initial
conditions. Let us consider αn (we can act similarly when considering βn); using
basic tools of finite differences equations’ theory we obtain that (13) has the
following general solution:

αn =
4∑

k=1

ckzn−1
k , n = 1, 2, . . . (14)

326 N. Di Marco and A. Frosini

where ck is a constant determined by the initial conditions and zk is a root of the
characteristic polynomial z4 +2z3 +2z +1 = 0. Moreover, the solutions {zn

k }4i=1

are linearly independent. In particular we have

z1 =
1
2
(−1 −

√
2 4
√

3 −
√

3), z2 =
1
2
(−1 +

√
2 4
√

3 −
√

3),

z3 = −1
2

− i 4
√

3√
2

+
√

3
2

, z4 = −1
2

+
i 4
√

3√
2

+
√

3
2

.

Note that |z3| = |z4| = 1, |z2| > 1 and |z1| < 1. So, (14) is the general expression
of the αi succession values and we use it in (11)). In particular from its last two
equations we obtain:

{
0 = xn−2 + xn−1 = x1(αn−2 + αn−1) + x2(βn−2 + βn−1)

0 = xn−3 + 2xn−2 + xn = x1(αn−3 + 4αn−1 + αn−4) + x2(βn−3 + 4βn−1 + βn−4)

(15)

These equations have a unique solution x1 = x2 = 0 since αn−2 + αn−1 =∑4
i=1 ci(1 + zi)zn−3

i , i.e. it is a linear combination of the solutions {zi}i=1...4.
Since they are linearly independent, then it holds αn−2 + αn−1 �= 0, with n ≥ 5.
The same holds for βn−1 + βn−2.

Therefore, from the first equation of (15) we obtain x2 = x1
(αn−2+αn−1)
(βn−2+βn−1)

.
Substituting the value of x2 in the second equation of (15), we finally obtain

x1

(
αn + 2αn−2 + αn−3 +

αn−1 + αn−2

βn−1 + βn−2
(βn + 2βn−2 + βn−3)

)

︸ ︷︷ ︸
=cn

= 0 (16)

The proof ends if cn �= 0. Since |z2| is the only root greater than 1, then its
exponential behavior overwhelms the other terms. In particular, the computation
of the values of cn that we provide up to n = 100, shows that the condition is
verified. As a consequence, the only solution of (16) is x = 0 obtaining that
rank(Fn) = n + 2. �	

As previous observed, both for cluster and path hypergraphs the 2-
intersection graph is a line. Conversely, a hypergraph that has a line 2-
intersection graph can contain both clusters and paths at the same time. In
such cases, it becomes quite hard to find a general expression of the related
neighborhood matrices.

3.2 3-Hypergraphs Whose 2-Intersection Graph is a Tree

Consider a 3-hypergraph Ts whose 2-intersection graph I2(Ts) is a perfectly
height-balanced tree of height s and each node, but for the leaves, has degree

On the Hypergraphs’ MSP Problem 327

3. We indicate it as s-tree. Suppose that the edge e of Ts appears (as node) in
I2(Ts) at level r. Then we say that e has level p(e) = r; if e is a leaf, then we call
it leaf hyperedge, and it holds p(e) = s. The set of all leaf hyperedges is indicated
with L.

Consider an internal node e = {x, y, z} in I2(Ts); its children are
{x, z, k1}, {y, z, k2}. Up to renaming of the nodes of Ts, we suppose that k1
and k2 appear only in the hyperedges that are nodes of the subtree of I2(Ts)
having root e. So, at each level of I2(Ts), we have a sequence of nodes related to
hyperedges of Ts of the form

{x1, z1, k1}, {y1, z1, k2}, . . . , {xn, zn, k2n−1}, {yn, zn, k2n}.

An order can be set on them according to the k1, . . . , k2n numbering. Further-
more, at level s of the s-tree, the new nodes k1, . . . k2n of the leaf hyperedges are
indicated as leaf nodes.

Observation 4. Since each internal node e = {x, y, z} of I2(Ts) has degree
3 and Ts is a perfectly height-balanced tree, e uses all the three couples
{x, y}, {y, z}, {x, z} to be connected to its neighbourhoods nodes. On the other
hand, if e is a leaf node, then it is connected with one only couple to its neigh-
bours.

We assume w.l.g. that the root of I2(Ts) is the hyperedge {1, 2, 3} of Ts. So,
by definition, it follows that there exists a unique s-tree hypergraph for each
s ∈ N (up to isomorphism). Figure 4 shows the s-tree T2.

Lemma 3. Let s ≥ 2. The following statements hold:

1. given a s-tree hypergraph Ts, the corresponding I2(Ts) has m = 3 ·2s−2 leaves;
2. for each node k of Ts, if k is not a leaf node, then there exist exactly two paths

in I2(Ts) that connect the first occurrence of k in a node to two corresponding
leaves. Furthermore, all the nodes in this two paths contains the node k;

3. an s-tree hypergraph Ts has 6 · 2s−2 nodes.

Proof. 1. Let s = 2 and consider T2. Without loss of generality we have

T2 = {{1, 2, 3}, {1, 2, 4}, {2, 3, 5}, {1, 3, 6}}
(see Fig. 4). Note that it has 3 = 3 · 22−2 leaves. Consider a general Ts+1 and
suppose the thesis is true for Ts. Since every leaf of Ts generates two new
leaves, Ts+1 has 2(3 · 2s−2) = 3 · 2s−1 leaves.

2. let z be a node of Ts and e = {x, y, z} (one of its hyperedges), the first internal
node of I2(Ts) in which z appears. By definition of s-tree its two children are
{x, z, k1} and {y, z, k2}. Note that only one child of each successive node will
contain z in its relative edge until reaching the leaves.

3. We proceed by a simple induction. Basis: the T2 hypergraph has 6 · 22−2 = 6
nodes. Suppose that the thesis holds for Ts and let us compute the number
of nodes of the successive s-tree Ts+1. When we add a new level, each leaf of
the s-tree hypergraph generates two children and therefore two new nodes.
Therefore it holds that the nodes of Ts+1 double those of Ts, so 2(6 · 2s−2) =
6 · 2s−1. �	

328 N. Di Marco and A. Frosini

Example 2. The T2 s-tree of Fig. 4 has {1, 2, 4}, {2, 3, 5}, {1, 3, 6} leaf hyper-
edges, and 4, 5, and 6 are the leaf nodes.

Moreover, the neighborhood matrix of T2 is F2, i.e., the following 6×6 square
matrix

F2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 2 2 1 0 1
2 0 2 1 1 0
2 2 0 0 1 1
1 1 0 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
=

(
A2A2A2 Bt

B 0

)
(17)

Note that the neighborhood matrix F2 of Example 3.2 can be decomposed
into four matrices of dimension 3 × 3. An easy check reveals that the boldface
entries refers to the matrix A2 that contains the values of the internal nodes’
links of I2(T2). The italic entries refers to the matrices B and Bt that contains
the connections between the internal nodes and the leaves of T2. The fourth
matrix is the zero matrix 0.

{1,2,3}

{1,2,4} {2,3,5} {1,3,6}

Fig. 4. The figure shows I2(T2) hypergraph. We have L = {{1, 2, 4}, {2, 3, 5}, {1, 3, 6}}.
Moreover nodes 4, 5, 6 are leaf nodes.

Let us consider the linear system associated to F2. From the last three rows
related to the matrix B we get

⎧
⎪⎨

⎪⎩

x1 = −x2

x1 = x3

2x1 = 0.

(18)

Therefore we obtain x1 = x2 = x3 = 0 and rank(B) = 3. Since rank(Bt) =
rank(B) = 3 we obtain also x4 = x5 = x6 = 0. Therefore F2 has maximum rank
and the MSP problem on T2 can be solved without surgical probes.

The previous example shows a general property of the neighbourhood matrix
of a Ts hypergraph. We underline that an immediate consequence of Lemma 3
is that the dimensions of Fs, for a generic t-tree hypergraph Ts, is always even.

On the Hypergraphs’ MSP Problem 329

Lemma 4. Let Ts be a s-tree hypergraph with s ≥ 3 and let n = 6 · 2s−2. Then
Fs can be decomposed into four n

2 × n
2 square matrices:

Fs =
(

As Bt

B 0

)
(19)

Moreover, the entries of As can be characterized as follows:

As(i, j) =

{
2 if Fs−1(i, j) �= 0
0 otherwise.

The matrix B (and its transpose Bt) contains exactly two non-zero elements in
each row and in each column. In particular

Bij = 1 if and only if there exists k >
n

2
such that (i, j, k) is an edge of Ts.

Finally, 0 is the null matrix.

Proof. Let us focus on the matrix As: we note that Lemma 3 assures that As

has the same dimension of Fs−1. By Observation 3.2, and since As contains
the connections between the first n

2 (i.e. non-leaf) nodes, then it has the same
non-zero elements of Fs−1. Furthermore, since I2(Ts) has one layer more than
I2(Ts−1), i.e., the last one, then each 1 entry of Fs−1 changes in a 2 entry of As

in the same position.
Concerning matrix B, its characterization follows from the definition of neigh-

borhood matrix. Note that B represents the last n
2 (i.e. leaf) nodes of Ts. By

Observation 3.2, every row of B has exactly two 1 entries and no two rows can
be equal.

Moreover, Lemma 3 states that every non-leaf node appears in exactly two
leaf hyperedges, therefore every column contains exactly two 1 entries and again
all the columns are different.

Finally, the leaf nodes are not connected so the bottom-right part of matrix
Fs is null. �	
Lemma 5. Let us consider the 2 × n

2 matrix πB whose generic elements in
positions (1, i) and (2, i), with 1 ≤ i ≤ n

2 , are the row indexes of the two only
first and second non-zero entries in column i of B (as defined in Lemma 4. It
holds that matrix πB is a permutation forming one single cycle of maximal length
n
2 .

The proof is a direct consequence of Point 2 in Lemma 3 and Lemma 4.

Theorem 4. Let s ≥ 3. The MSP problem on Ts can be solved with one surgical
probe.

Proof. Let Fs be the neighborhood matrix associated to Ts and decomposed
according to Lemma 4. The linear system associate to the matrix B, considering
the property states in Lemma 5, turns out to be, for each j = 1 . . . n

2 :

330 N. Di Marco and A. Frosini

{
xj = −x1 if j is a leaf node of Ts−1

xj = x1 otherwise.
(20)

By Lemma 3, B has an even number of rows when s ≥ 3, so the last equation
of this system is the identity 0 = 0, leading to rank(B) = n

2 −1. So, each variable
x2, . . . , xj is expressed in terms of x1 and it can be substituted in the variables
of As obtaining v x1, with v being the integer column vector of length n

2 of the
x1 coefficients in As. The variable column v x1 is then concatenated with the
part of the linear system related to Bt obtaining:

(
v Bt

)
x = 0. (21)

Note that, since As has the same form of Fs−1, we have v �= 0 (the rows of the
leaf nodes of Ts−1 do not sum to 0 since all the associated variables are equal
to −x1). With a similar procedure we obtain that rank(Fs) = n − 1. So, by
Theorem 1 it follows that one only surgical probe is required to solve the MSP
related problem. �	

4 Conclusion and Future Perspectives

In this paper we study the microscopic image reconstruction problem, a gen-
eralization of the standard tomographic reconstruction problem, by extending
the notion of projection to a generic-shape probe. In particular, we focus our
attention on specific configuration of points that are arranged as hyperedges of
a given labelled hypergraph and we consider, as projections of a node, the sums
of the labels of its neighbors. These projections are indicated as probes.

We investigate the minimum surgical probing problem (MSP), i.e., the min-
imum number of labels of the hypergraph required to retrieve all the remaining
ones from the probes’ knowledge. This problem has been considered in [1,2] with
respect to graphs. After generalizing their results to hypergraphs, we provide two
classes of hypergraphs whose 2-intersection graph has a specific form (a line and
s-tree) and such that they admit zero or one surgical probe to be fully recovered
from probes. However, the problem for hypergraphs which admit 2-intersection
that is a line still remains open, in its general formulation, since they reveal to
be a non yet characterized mix of paths and clusters, as here defined. Therefore,
it would be interesting to obtain a general result for the whole class and for
super-classes admitting circular inclusions.

On the other hand, since the notion of 2-intersection graph has been useful
in the detection of null label, as witnessed by [5], it would be worth studying
MSP problem for 3-hypergraphs that admit one. Finally, the result of Theorem
1 obviously holds for k-uniform hypergraph, however it could be interesting to
detect differences, if any, on the number of surgical probes needed to recover the
uniform hypergraphs’ labels according to their uniformity degrees.

On the Hypergraphs’ MSP Problem 331

References

1. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: Weighted micro-
scopic image reconstruction. In: Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol.
12607, pp. 373–386. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67731-2 27

2. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: The generalized micro-
scopic image reconstruction problem. Leibniz Int. Proc. Inform. 149, 42.1–42.15
(2019)

3. Battaglino, D., Frosini, A., Rinaldi, S.: A decomposition theorem for homogeneous
sets with respect to diamond probes. Comput. Vis. Image Underst. 17, 319–325
(2013)

4. Berge, C.: Hypergraphs. North-Holland, Amsterdam (1989)
5. Di Marco, N., Frosini, A., Kocay, W.L.: A study on the existence of null labelling

for 3-hypergraphs. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol.
12757, pp. 282–294. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79987-8 20

6. Frosini, A., Nivat, M.: Binary matrices under the microscope: a tomographical
problem. Theoret. Comput. Sci. 370(1–3), 201–217 (2007)

7. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations Algorithms
and Applications. Birkhauser, Boston (1999)

8. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and Its Appli-
cations (Applied and Numerical Harmonic Analysis). Birkhauser, Boston (2007)

9. Janczewski, R., Obszarski, P., Turowski, K.: Weighted 2-sections and hypergraph
reconstruction. Theoret. Comput. Sci. (2002, in press)

10. Nivat, M.: Sous-ensembles homogénes de Z2 et pavages du plan. C.R. Math. 335(1),
83–86 (2002)

https://doi.org/10.1007/978-3-030-67731-2_27
https://doi.org/10.1007/978-3-030-67731-2_27
https://doi.org/10.1007/978-3-030-79987-8_20
https://doi.org/10.1007/978-3-030-79987-8_20

Author Index

Al Aman, Md Abdul Aziz 122
Arulprakasam, R. 171, 226
Ascolese, Michela 301

Basu, Nilanjana G. 56
Bhattacharya, Bhargab B. 84
Bhowmick, Partha 56
Bhuvaneswari, K. 189
Biswas, Arindam 31, 84, 122, 288
Boyadzhiev, Teodor 260

Čomić, Lidija 46

Dare, V. Rajkumar 171, 226
Di Marco, Niccolò 317
Dutt, Mousumi 31

Frosini, Andrea 301, 317

Gapp, Christian 270

Ivanova, Krassimira 260

Janaki, K. 171

Kalyani, T. 189
Karai, Gábor 71
Kardos, Péter 71

Karmakar, Nilanjana 84
Kopanja, Tamara 247
Krishna Kumari, R. 226
Kumar, Ankit 105

Lukić, Tibor 247

Maity, Anukul 31
Majumder, Subhashis 56
Midya, Abhisek 154

Nagy, Benedek 3
Nandy, Subhas C. 84

Palágyi, Kálmán 71
Paramasivan, Meenakshi 139, 171, 204, 226
Paul, Raina 122
Ponraj, Helen Vijitha 204

Saha, Somrita 288
Sarkar, Apurba 105, 122
Sasikala, K. 189

Thamburaj, Robinson 204
Thomas, D. G. 139, 154, 189

Welk, Martin 270

	 Preface
	 Organization
	 Contents
	Invited Paper
	Non-traditional 2D Grids in Combinatorial Imaging – Advances and Challenges
	1 Introduction – Why (Not) the Traditional Square Grid?
	2 Regular, Semi-regular Grids and Their Duals
	3 Coordinate Systems
	3.1 Discrete Tomography

	4 Digital Distances
	5 Transformations
	5.1 Mathematical Morphology
	5.2 Thinning and Abstract Cell Complexes

	6 Final Comment
	References

	Digital Geometry and Topology
	Rectangularization of Digital Objects and Its Relation with Straight Skeletons
	1 Introduction
	2 Definitions
	3 Rules for Partitioning into Rectangles
	4 Rectangular Partitioning Procedure
	4.1 Algorithm
	4.2 Demonstration
	4.3 Time Complexity Analysis

	5 Experimental Results
	6 Conclusion
	References

	On the Number of 0-Tandems in Simple nD Digital 0-Connected Curves
	1 Introduction
	2 Preliminaries
	2.1 The Cubic Grid
	2.2 Tandems and Gaps in Digital Objects
	2.3 Digital Curves

	3 Related Work
	3.1 2D Objects
	3.2 Digital Curves

	4 0-Tandems in nD Digital Curves
	5 0-Tandems in 3D Digital Curves
	References

	On Density Extrema for Digital Discs
	1 Introduction
	1.1 Existing Work
	1.2 Our Contribution

	2 Maximum Density
	2.1 Integer Center and Integer Radius
	2.2 Integer Center and Real Radius
	2.3 Unrestricted Center and Radius

	3 Minimum Density
	3.1 Integer Center and Integer Radius
	3.2 Integer Center and Real Radius

	4 Conclusion and Future Work
	References

	Sufficient Conditions for Topology-Preserving Parallel Reductions on the BCC Grid
	1 Introduction
	2 Basic Notions and Results
	3 Configuration-Based Conditions
	4 Point-Based Conditions
	5 Generating Topology-Preserving Parallel Reductions
	6 Conclusions
	References

	On the Construction of Planar Embedding for a Class of Orthogonal Polyhedra
	1 Introduction
	2 Definitions and Preliminaries
	3 Characterization of an Orthogonal Polyhedron
	4 Planar Graph Drawing
	5 Algorithm
	5.1 Reconstruction
	5.2 Time Complexity

	6 Discussion
	7 Conclusion
	References

	Extractive Text Summarization Using Topological Features
	1 Introduction
	2 Background
	2.1 Simplicial Complex
	2.2 Persistent Homology
	2.3 Minimum Dominating Set
	2.4 Cosine Similarity

	3 Proposed Methodology
	3.1 Proposed Method (I)
	3.2 Proposed Method (II)

	4 Experimental Results
	4.1 Proposed Methodology (I) and TextRank
	4.2 Proposed Methodology (II) and TextRank

	5 Conclusion
	References

	Largest Area Parallelogram Inside a Digital Object in a Triangular Grid
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Deriving the Inner Triangular Cover (ITC)

	3 Procedure to Compute LAPT
	3.1 Finding LAPT Within Sub-polygon
	3.2 Reduction Rules

	4 Algorithm
	4.1 Complexity Analysis

	5 Experimental Results
	6 Conclusions
	References

	Picture Languages
	Weighted Three Directions OTA and Weighted Hexapolic Picture Automata
	1 Introduction
	2 Pictures and Hexagonal Pictures
	2.1 Two-Dimensional Hexagonal Pictures and Languages

	3 Weighted Automata over Hexagonal Pictures
	3.1 Series on Pictures
	3.2 Series on Hexagonal Pictures

	4 W3OTA-Recognizable Series are WHPA-Recognizable
	5 Conclusions
	References

	A Myhill-Nerode Theorem for Finite State Matrix Automata and Finite Matrix Languages
	1 Introduction
	1.1 Learning Aspects
	1.2 Formal Language Aspects

	2 Finite Matrix Language (FML)
	2.1 FML - Examples

	3 Deterministic Finite State Matrix Automata (DFSMA)
	3.1 DFSMA - Examples

	4 Properties of Finite Matrix Languages
	5 Myhill - Nerode Equivalence
	6 Conclusion and Future Work
	References

	Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words
	1 Introduction
	2 Preliminaries
	2.1 Subwords
	2.2 Parikh Matrix
	2.3 Parikh q-Matrix
	2.4 Two Dimensional Words
	2.5 Parikh q-Matrices of a Picture Array

	3 Extending Parikh q-Matrix of Picture Arrays
	4 Alternate Parikh q-Matrix of Picture Array
	5 Parikh q-Matrix Commutator of Arrays
	6 Conclusion
	References

	Adjunct Partial Array Token Petri Net Structure
	1 Introduction
	2 Preliminaries
	3 Adjunct Partial Array Token Petri Net Structure
	4 Comparative Results
	5 Conclusion
	References

	2D Oxide Picture Languages and Their Properties
	1 Introduction
	2 Preliminaries
	3 Two-Dimensional Oxide Pictures and Languages
	3.1 Coordinates and Size of Oxide Pictures
	3.2 Types of Oxide Pictures
	3.3 Triangular Oxide Pictures and Languages

	4 Results
	4.1 Boolean Operations
	4.2 Unary Operations
	4.3 Binary Operations

	5 Conclusions
	References

	Lyndon Partial Words and Arrays with Applications
	1 Introduction
	2 Basic Notations and Terminology
	3 Lyndon Partial Words
	3.1 Tree Representation of a Lyndon Partial Word

	4 - Morphism
	5 Two-Dimensional Lyndon Partial Words
	6 Discussions
	References

	Theory and Applications
	Tomography Reconstruction Based on Null Space Search
	1 Introduction
	2 Tomography Reconstruction Problem
	3 Tomography Reconstruction Method Based on Null Space Search
	4 Experimental Evaluation
	5 Conclusions
	References

	Instance Segmentation with BoundaryNet
	1 Introduction
	2 BoundaryNet
	2.1 Labelling
	2.2 Segments Extraction
	2.3 Network Architecture

	3 Methods
	4 Results
	5 Conclusion
	References

	Curvature-Based Denoising of Vector-Valued Images
	1 Introduction
	2 Curvature-Based Denoising of Scalar-Valued Images
	2.1 Level Line Tree
	2.2 Level Line Shortening
	2.3 Reconstruction

	3 Curvature-Based Denoising of Vector-Valued Images
	3.1 Pseudo-level Lines
	3.2 First Step: Construction of the Pseudo-level Line Tree
	3.3 Second Step: Smoothing
	3.4 Third Step: Reconstruction

	4 Experimental Demonstration
	4.1 Curvature Maps and Visualisation
	4.2 Image Smoothing Experiments

	5 Summary and Outlook
	References

	Face Characterization Using Convex Surface Decomposition
	1 Introduction
	2 Definitions and Preliminaries
	3 Face Characterization Method
	4 Algorithm
	5 Complexity
	5.1 Time Complexity
	5.2 Space Complexity

	6 Results
	7 Conclusion
	References

	Characterization and Reconstruction of Hypergraphic Pattern Sequences
	1 Introduction
	2 Definitions and Previous Results
	3 Definition and Properties of the Pattern Sequences
	4 Two Reconstruction Algorithms for Pattern Sequences
	5 Conclusion and Open Problems
	References

	The Generalized Microscopic Image Reconstruction Problem for Hypergraphs
	1 Introduction
	2 Preliminaries and Previous Results
	3 The MSP Problem on Classes of Hypergraphs
	3.1 3-Hypergraphs Whose 2-Intersection Graph is a Line
	3.2 3-Hypergraphs Whose 2-Intersection Graph is a Tree

	4 Conclusion and Future Perspectives
	References

	Author Index

