1

Real-Time Edge Processing During Data
Acquisition

Max Rietmann®), Praveen Nakshatrala, Jonathan Lefman,
and Geetika Gupta

NVIDIA Corporation, Ziirich, Switzerland
mrietmann@nvidia.com
https://www.nvidia.com

Abstract. The next generation of high-intensity light sources, micro-
scopes, and particle accelerators enable exciting new insights and discov-
eries. However, the data rates generated by these sophisticated instru-
ments are exploding due to higher sensor scan rates and increased res-
olution. In parallel, the vision connecting experiments with real time
feedback, steering, and integration demands new solutions in both hard-
ware and software. An edge-supercomputer co-located with the sensors
or instruments combined with a larger supercomputer enables real-time
processing of streaming experimental data at the edge with resource
intensive analysis, simulation, and reconstruction at the larger cluster.

Today, post-acquisition data processing is expensive in terms of time
as well as storage, and it is scientifically costly since many opportunities
are missed during data acquisition. We will describe how a small compu-
tational infrastructure can reduce the cost and latency to using the data
as it is generated.

Using applications in ptychography and light sheet microscopy as
examples, this paper will show how to build data streaming pipelines that
form the foundation for real-time processing, visualization, feedback, and
steering. We will show how a developer can write high-performance data
processing pipelines using Python and C/C++ to integrate traditional
processing with the latest ML and AI techniques. We highlight end-to-
end performance profiling and optimization as well as the libraries and
frameworks from NVIDIA to build these application-driven processing
pipelines from edge to computing center.

This work pushes us towards the vision of realizing an end-to-end
workflow starting with streaming directly from the instrument at the
edge to the data center.

Keywords: HPC@QEdge -+ GPU computing - Streaming processing *
Visualization

Introduction

®

Check for
updates

The next generation of high-intensity light sources and advanced microscopes will
lead to exciting new scientific discoveries and insights. With enhanced resolution

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Doug et al. (Eds.): SMC 2022, CCIS 1690, pp. 191-205, 2022.
https://doi.org/10.1007/978-3-031-23606-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23606-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-23606-8_12

192 M. Rietmann et al.

and increased speeds of sensor-data acquisition, these sophisticated instruments
produce data at high volumes and velocities. To manage this data deluge, stream-
ing processing pipelines are a key building block to ensuring timely results, live
visualization, and feedback control. Such real-time processing of data pipelines
from the edge to the computing center warrants novel software and hardware
enhancements.

Often, various processing steps are involved in the analysis of data and typi-
cally, a data-processing pipeline is employed. Staging data through non-volatile
I/0 between these processing steps, though common, is a bottleneck to achieving
real-time analysis of data at scale. To address these concerns, this paper presents
a suite of solutions for developing streaming reactive pipelines, GPU-accelerated
libraries for data ingestion and processing.

Despite the accelerating computational requirements, most scientists have
embraced Python-based open-source frameworks because of the ease of proto-
typing and iterating on new implementations. Computational performance opti-
mization is often pushed to the final stages of deployment, after a satisfactory
implementation is in place. Frameworks and libraries like NumPy and PyTorch
are often employed. This paper will address improving computational through-
put and efficiency for real-time experiments without dramatic changes to current
code bases.

This paper will cover topics including:

Commonalities across these sensor-driven processing pipelines, particularly
the transition from high-data rate processing (frame-by-frame) to high-corpus
processing (collective processing and analysis of many frames).

— Example applications include x-ray ptychography and lattice light sheet
microscopy; covering common workflows, data rates and processing require-
ments.

— Performance optimization results obtained through the adoption of GPU-
accelerated frameworks like JAX and CuPy.

— Introduction of a new streaming data-processing library, NVIDIA Streaming
Reactive Framework (SRF). This library enables developers to build high-
performance data-pipelines containing several processing stages.

— Conclusions and discussion on what can be realized today and the future for

streaming processing pipelines.

2 Common Sensor-Driven Workflows

Typical real-time sensor-driven experimental processing pipelines have common
patterns. Considering scientific and manufacturing instruments, sensors generate
raw data streams which are consumed and processed into downstream data com-
ponents. In Fig. 1, raw data from sensors are corrected and normalized, forming
sub-components of data. An example of such a process is dark current compensa-
tion for electron-counting cameras. These sub-components are further assembled
into minimal data units. An example of assembling data sub-components into a
minimal data unit is correcting motion from electron beam induced motion from

Real-Time Edge Processing During Data Acquisition 193

a cryo-EM datasets [15]. Finally, minimal data units assembled or reconstructed
into a complete finalized dataset. An example of creating a finalized dataset is
aligning and mutually reconstructing multiple overlapping x-ray tomographic
projections [5].

‘ Sensor (Normalization and denoising)

L Data sub- (Linear, non-linear transforms)
component

L Minimal data (Tiling, reconstruction)
unit
Assembled S,
L Jata (Analysis, Viz)

Fig.1. Typical processing and data flows across real-time instrument processing
pipelines

This generic workflow model applies to many use cases, and a critical property
of these data-processing pipelines is the change of the data rate through the
application and how dependencies across data units change through the pipeline.

2.1 Data Rates and Data Burden

Many applications tend to stage data through non-volatile I/O because real-
time processing has not been achievable, thus data streams are stored. Using
files from storage is a limitation to make real-time processing schemes; reading
data from disk takes as much or more time than processing. To meet high data
rates and achieve real-time data processing, it is imperative to move toward an
in-memory streaming workflow. Based on our collaboration with several research
groups, streaming and collective operations are a commonality among various
edge processing workflows. Streaming processing relies on data with no or few
dependencies and performance is typically limited by 1/O throughput. Collective
operations require several large blocks of data to build the final result, whether
it be the final reconstructed image or 3D tomogram, for example.

These operations can be thought of as a transition from the source, raw
sensor data, which typically generates data at the highest rate but with lower
data amount than what goes into a minimal data unit. The transition from the
data generator (sensor) to the final data product (assembled data) is visualized
in Fig. 2.

194 M. Rietmann et al.

High data rate High data corpus

Low data corpus Low data rate

3 Data sub- 3 Minimal data 3
Sensor ’ component ' it ’ Assembled data

Fig. 2. Evolution of data rate and data corpus through a processing pipeline

A key factor in this data-rate and data-corpus transition is the hardware and
software requirements and architecture at each step. When the peak data-rate is
highest, ensuring that the data processing and streaming is not limited by I/0 or
inefficient processing is critical. When the data-corpus is high, I/O throughput
is less critical, but processing times and potentially memory capacity become
more critical and need to rely on larger computational resources.

3 Applications

With the transition from high-data rates to high-data corpus pipelines in mind,
we will now introduce two application areas that fit this model, ptychography
and lattice light sheet microscopy. For each of these applications, the specifics of
the data flow components including data dimensions and rate for each step will
show how the general concept applies and conforms to general computational
workflows originating at scientific instruments.

Through representative examples from ptychography and lattice light sheet
microscopy, we demonstrate the application of these technologies to enable real-
time data processing and visualization at the edge.

3.1 X-Ray Ptychography

One application that we will focus on is ptychography, a growing technique using
high-energy X-rays to image objects with high resolution in 2D and even 3D. The
x-rays are created at a facility commonly called a “light source”, which derives
the x-rays from a synchrotron. The technique eschews using a lens to focus the
light, and instead a sensor collects a large number of scattered images, each asso-
ciated with a different scan position (due to moving either the specimen or light
source), as seen in Fig.3. This enables sharper final images as well as energy
regimes where lens design and construction is very challenging or impossible.
This collection of images (which visually appear only as scattered light or infer-
ence patterns) undergoes several processing steps followed by a final iterative
reconstruction stage which yields an image of the scanned object [7]. Depending
on the location and angle of the light source, these final scans can be associ-
ated with a particular depth, such that a collection of scans can be processed
into a full 3D tomographic image allowing for non-destructive visualization of
integrated circuits [8] with a resolution down to 10 nm scale [9].

Real-Time Edge Processing During Data Acquisition 195

(@) (b)

Overlap area

Incident
radiation:
Second position

Incident
radiation:
First position

petector - scattered Specimen: shifted up !Jetector - scattered
interference pattern: interference pattern:
first position Second position

-

lllumination

position (x,y)

(c) (d)

Fig. 3. Ptychography imaging overview (Image Credit: Wikipedia user 22sm22/CC
BY-SA 4.0).

The data rate of ptychography is simply a product of scan rate (number of
images/sec), the sensor resolution, and the image bit-depth. Current experiments
produce raw data in the GB/s rate, but as sensor rates and resolutions increase,
this is expected to increase to TB/s in the near term. A ptychography processing
pipeline follows a common pattern:

1. Byte-level processing — arranging the raw sensor data into the image format

2. Scattered Image processing — combining multiple exposures, filtering, and
image downsampling.

3. Image Reconstruction — Iteratively combine many scattered images into a
single reconstructed image of the original object.

The image reconstruction is where the bulk of the algorithmic, scientific,
and computational challenges are located and, accordingly, where the bulk of
the development work has focused. The reconstruction algorithm itself is mostly
limited by FFT throughput and performance, which is particularly well suited
to GPU-accelerated FFT libraries like CUFFT. In our experience, reconstruc-
tion implementations are written using CuPy [13], PyCuda [10], and C++ with
CUDA [11] and can leverage MPI to accelerate processing on multiple GPUs
across many processing nodes [3,11,12]. Although most current reconstruction
implementations currently require all scanned images to be present, the iterative
nature of the algorithm does allow for streaming reconstruction [6], meaning that
a progressive and real-time visualization of the result is possible.

196 M. Rietmann et al.

Many of the codes referenced here have seen their initial processing bottle-
neck from step 3 to a combination of all three steps, along with any downstream
processing (after step 3). This performance bottleneck is typically due to 3 fac-
tors:

1. Single-threaded Python & NumPy (CPU-only) byte and image processing.

2. Disk & File throughput limitations.

3. “Keyboard throughput” i.e., limits for users to coordinate the processing by
copying files and starting scripts on a sequence of machines.

Factor 1 can be accelerated by converting the NumPy code to JAX, which we
highlight in Sect. 4. Factors 2 & 3 are a more complex challenge. Files are com-
monly the conduit between stages, and users initiate and manage the pipeline
stages by hand, transferring files from acquisition to compute nodes for prepro-
cessing and again to multi-node systems for final analysis and reconstruction.
We solve this problem in Sect. 5, using NVIDIA’s SRF streaming pipeline frame-
work.

3.2 Lattice Light Sheet Microscopy

Lightsheet microscopy is used for 3D high resolution imaging of biological sam-
ples with minimal phototoxicity and photobleaching. Images are obtained by
illuminating portions of samples in the focal-plane with thin sheets of light. The
fluorescence from the molecules excited within each optical section, and the field
of view of the observing lens, are collected and stacked. Multiple color channels
of the image correspond to different wavelengths of the light.

The data rate depends on the experiment at hand. For living and evolving
biological samples, multiple image volumes are collected in short burst cycles. For
dead specimens, large single volume images are acquired. Automating data acqui-
sition will enable researchers to obtain reproducible results with minimal man-
ual intervention, increasing experimental throughput and reliability. As a result,
new techniques should be implemented to discover unique biological events. For
example, cancer cells were observed splitting from 1 cell to 3 cells, instead of a
canonical 1-to-2 split. This is seen in Fig.4(a) in experimental output from the
Advanced Bioimaging Center, University of California, Berkeley.

A typical data processing pipeline (Fig. 4(b)), among other processing steps,
involves

1. Light sensitive camera captures a series of frames corresponding to the volume
of the physical sample

2. Iterative deconvolution to filter out noise and undo the transfer function of
the optical instrument

3. Deskew the 3D image volume to orient the image with respect to instrument
coordinates

4. Visualizing the processed image volume in instrument coordinates

Real-Time Edge Processing During Data Acquisition 197

Instrument i . .
frame buffer i Online Processing
PCle bus Deconvolution

System buffer—bf

Fig. 4. (a) 3-way splitting of cancer cells (b) Typical processing steps in lightsheet
microscopy

For this pipeline, visualization is desired not only as the final result, but also
at several intermediate steps in the processing pipeline. A pipeline framework
(see Sect. 5) can help break up the individual operations and expose the data as
it moves through the pipeline to enable this visualization without a significant
overhead or added implementation complexity.

LN
BB

Fig. 5. SRF segment and nodes for real-time data processing. Visualization is provided
for each operation of the processing pipeline.

4 High Performance GPU-Enabled Python

Working with the ptychographic imaging group at the Advanced Light Source
(ALS), we were able to profile and help optimize their processing pipeline. As

198 M. Rietmann et al.

mentioned earlier, they put significant effort into optimizing their reconstruction
software, leveraging CuPy to enable GPU-based computing, and MPI to accel-
erate the time-to-solution as well as enable larger working image sets. Without
this acceleration, the reconstruction would be the stand-out bottleneck, but as
can be seen in Fig. 6, for an example of 2500 scans of 1040 x 1152 resolution, the
image processing (pre-processing) is the obvious next optimization goal (Fig.5).

BEFORE
C + Python

Packet

Processing = Disk (10s) Reconstruction

(3s)

(3s)

Total Time: 105s I

Fig. 6. Initial ptychographic processing pipeline with timing information

The pre-processing was written in NumPy with HDF5 (h5py) as the file
storage library. The many NumPy operations in this processing step made it
an ideal candidate for JAX, a python-based computing library from Google
with CPU, GPU, and TPU support through their XLA compiler. Compared to
another GPU-enabled framework like CuPy where all numerical expressions are
strict, it has the ability to trace expressions at the function level at runtime. The
intermediate representation created by each functional trace is passed to the XLA
compiler for just-in-time compilation (jit) or other analysis like batch processing
(vmap), creation of expression gradients (grad), or multi-GPU parallelization
(pmap).

Superficially, porting NumPy to jax can be as simple as replacing
import numpy as np
with
import jax.numpy as np.

In practice, however, to enable all tracing features, jax enforces variable
immutability. Thus any places where variables are updated using indexing,
require a change in syntax from
imgs_out[i,:,:] = process(imgs_in[i,:,:])
to
imgs_out = imgs_out.at[i].set(process(imgs_in[i,:,:]1))

Also any significant loops need modification to use JAX’s looping mechanism so
that JAX can capture the semantics of the loop without unwinding all expres-
sions at runtime. Finally, h5py provides a convenient NumPy-like interface into
the arrays stored in the HDF'5 file, such that file access is on-demand and appears

Real-Time Edge Processing During Data Acquisition 199

to the user as simple numpy arrays. These file-access objects must be explicitly
moved into JAX arrays on the GPU.

Pre-processing Time (lower is better)

NumPy
Jax JIT

JAX JIT+VMAP

0 25 50 75

Fig. 7. Timing information for pre-processing using JAX jit() and vmap().

Figure 7 highlights how leveraging JAX’s features accelerates the preprocess-
ing step. After applying the aforementioned changes to the processing code,
including only the jit () operation, we already saw a 7x performance improve-
ment from 80s to 12s. With some additional work to capture all processing into
a single function called def process(image) which has only a single image as
input (tensor shape = (1040, 1152)), we can leverage JAX vmap() operator to
create a function that processes all the images (tensor shape = (2500, 1040,
1152)), which improved the runtime from 12s to 2s, another 6x gain for a total
gain of 40x.

We additionally highlight that despite being ported to JAX, the code is
still (mostly) NumPy processing code, which can be read and modified by the
application scientists who first wrote and continue to maintain the code. This
is a critical requirement; legibility and modifiability is critical for these smaller
scale HPC applications where the user-base is small. This motivates the next
section of the paper — how to chain these frequently python-based processing
nodes together without losing performance (GPU data stays on the GPU) while
maintaining legibility for the users.

5 Streaming Processing Pipelines

The component-wise speedups in the JAX work shown in the previous section
are a critical component of the performance story of a processing pipeline, but
will expose the inefficiencies in an existing file-based pipeline. Copies between
CPU host memory and GPU device memory create performance bottlenecks,
and using stored files as the conduit between pipeline stages only exacerbates
the bottlenecks. If users manage the pipeline stages manually, often the latency
they introduce will be another bottleneck, and a source of errors.

To maintain the performance gained through the use of GPU-computing we
require a framework that allows us to create computational pipelines that have
the following capabilities:

200 M. Rietmann et al.

1. GPU-aware: Data on the GPU stays on the GPU when possible

2. Network aware: Transparent (to the user) high-performance transferring of
data between physical nodes is critical because most pipelines will reach from
the edge to the computing center.

3. Easy to build and maintain: Building pipelines in Python (with GPU-enabled
Python frameworks) should feel natural. Additionally debugging and profiling
should be possible with standard tools.

4. High Performance: Overhead should be minimal and pathways to “upgrade”
pipeline stages from Python to C++ should feel natural.

Introducing SRF. Streaming Reactive Framework (SRF) is a component of
NVIDIA’s Morpheus (a network analysis software-development kit (SDK)) that
allows users to build high-performance streaming data pipelines. It supports
building complex pipelines that involve branching, joining, flow control, feed-
back, and back pressure. The sequence of data processing operations is captured
in a computational graph. Visualized in Fig. 8, the basic building blocks of this
computational graph are called nodes and segments. SRF-nodes define basic
computational units, typically python functions, that perform computationally
expensive operations on an input to produce an output. The connectivity of
the computational graph is broken into “segments”, the SRF-nodes of which are
guaranteed to run on the same compute resource, meaning that node-to-node
transfers remain in GPU or system memory. For segments executing on dif-
ferent computational resources, data transfer occurs through the network. SRF
orchestrates the execution of this data pipeline by setting up an event-loop, asyn-
chronously offloading the computation and efficiently executing the processing
pipeline on the available compute-resources.

GPU-MEMORY
OR
Network

Segment I Segment I

Fig. 8. SRF pipeline with several nodes connected by two segments.

SRF has a C++ runtime and the nodes typically run within a single process,
and hence common debugging and profiling tooling will “just work”. If several
segments connect across multiple processes on different nodes, the standard tool-
ing needs to be adapted accordingly. Nodes within SRF can be written either in
Python or C++. C++ nodes are type-checked for compatibility. Python nodes

Real-Time Edge Processing During Data Acquisition 201

simply transfer python objects from one node to the next and hence the owner-
ship has to be managed by the user i.e., care must be taken to avoid modifying
data downstream.

In Python, defining a segment is as simple as defining a source (see code
below), processing node, and a sink (or just source & sink). In the code below, you
can see an example of defining such a pipeline, where deconvolve () implements
an image processing algorithm.

1 def segment_init(seg: srf.Segment):

2 source = seg.make_source("source", data_source())
3 sink = seg.make_sink("sink",

4 sink_on_next,

5 sink_on_error,

6 sink_on_complete)

7

8 deconvolution_node= seg.make_node(”deconvolution",
9 lambda x: deconvolve(x, PSF))
10 seg.make_edge (source, deconvolution_node)

11 seg.make_edge (deconvolution_node, sink)

A key usability feature of SRF is that nodes pass Python objects between each
other, such that a deconvolution node simply wraps your existing deconvolution
routine without changes, as can be seen here.

1 def deconvolve(img, psf, iterations=20):

2 e

3 This function runs the Richarson-Lucy deconvolutions.

4 :img: Is the input image and it could be a numpy array oT a Cupy array.

5 :psf: Is the Point Spread Function and it can be a numpy array or a cupy array.
6 :iteration: Is the number of Richarson-Lucy titerations.

7 e

8

9 # Pad PSF with zeros to match image shape

10 pad_l, pad_r = np.divmod(np.array(img.shape) - np.array(psf.shape), 2)

11 pad_r += pad_l

12 psf = np.pad(psf, tuple(zip(pad_l, pad_r)), 'constant', constant_values=0)
13

14 # Recenter PSF at the origin.

15 for i in range(psf.ndim):

16 psf = np.roll(psf, psf.shapelil // 2, axis=i)

17

18 # Convolution requires FFT of the PSF

19 psf = np.fft.rfftn(psf)

20

21 # Perform deconvolution in-place on a copy of the image (avoids changing the original)
22 img_decon = np.copy (img)

23 for _ in range(iterations):

24 ratio = img / np.fft.irfftn(np.fft.rfftn(img_decon) * psf)

25 img_decon *= np.fft.irfftn((np.fft.rfftn(ratio).conj() * psf).conj())

26 return img_decon

202 M. Rietmann et al.

As we saw in the JAX section, batching is a critical performance optimization
in many image-processing algorithms. We can implement a batched node in a
fashion similar to the code below:

def batch_pipeline(pipe_state, metadata, frame_in, frame_out):

def on_next(frame):
i_batch = pipe_state["current_num_in_batch"]
pipe_state["exp_frame_batch"] [i_batch, :, :] = frame_i
pipe_state[“current_num_in_batch"] += 1
if pipe_state["current_num_in_batch"] == metadata["batchsize"]:
pipe_state["current_num_in_batch"] = 0

© 0w N ;A W N e

return pipe_state["exp_frame_batch"]

o
= o

def on_complete():

=
M)

if pipe_state["current_num_in_batch"] > 0:
batch_i = pipe_state["current_num_in_batch"]

=
w

return pipe_state["exp_frame_batch"][:batch_i, :, :]

-
S

frame_in.pipe(ops.map(on_next),

o
o

ops.filter(lambda x: not isinstance(x, type(None))),
ops.on_completed(on_complete)) .subscribe (frame_out)

=
N~ o

By maintaining a mutable state variable pipe_state, we gather frames into a
batched image container, which is passed downstream to the next node once full
(on_next). If the stream ends without completely filling the batch, on_complete
sends the existing frames which ensures that we neither hang waiting for more
frames nor drop frames. This enables a pipeline seen in Fig.9. Considering the

Batched

Source Batcher Processing

Fig. 9. Batched deconvolution pipeline

pre-processing example given in the JAX section, with this pipeline we are able
to eliminate the disk stages taking the runtime from 105s to 125, a speedup 9x
which is highlighted in Fig. 10. By using SRF to eliminate files connecting the

C +Python SRF JAX CuPy

Packet
AFTER Processing
(59) (5s)

Reconstruction

Total Time: 12s -> Speedup 9x

Fig. 10. Batched Ptychographic processing pipeline using JAX & SRF.

Real-Time Edge Processing During Data Acquisition 203

three pipeline stages we can yield a total speedup of 9x. Additionally, we can run
the packet processing and image pre-processing at a node close to the sensor,
and the reconstruction in a more-powerful system with pre-processed images
transferred over the network.

5.1 Supercomputing as a Service (SCaaS)

With SRF, we can process and stream data from high-throughput edge hard-
ware to larger-compute resources located at a supercomputing center to han-
dle the high data corpus components of the processing workflow (e.g., ptycho-
graphic reconstruction) where time-to-solution and memory requirements are
more demanding. With most of the processing software challenges solved, the
problem becomes the ability to guarantee computing resources during data col-
lection and stream the data from the experiment to the cluster. Recent work
towards streaming Ptychography process in Switzerland at the Paul Scherrer
Institute, (PSI) and the Swiss Supercomputing Center (CSCS) have managed to
build streaming workflows [11] and have proven that these centers can stream
results reliably and securely.

Alternatively, Globus (globus.org) is a framework and system for managing
large datasets, and is a common way for scientists to transfer, manipulate, and
process files across their own local systems and supercomputing resources like
those found at NERSC and others. Extending Globus is Globus Automate, which
provides the ability to write “flows” which allow the user to specify computa-
tional events triggered by files. These computational stages can be run locally or
on supercomputing resources, yielding a service oriented structure to the compu-
tation and the center itself [4]. Assuming Ptychography or other Sensor-driven
workflows are pipelined with SRF, we also require “SCaaS” to enable data to
be streamed to the computing center live while avoiding expensive file-oriented
designs, which limit the streaming performance to disk throughput.

The framework and the GPU optimizations highlighted in this paper have
given solutions to the software architecture and performance requirements for
streaming sensor processing, however we hope that supercomputing centers can
use it as a benchmark for modifying and designing current and next generation
systems for the expanding needs of their users.

6 Conclusion

Instruments and their research tasks have unique workflows, but have overall
commonalities where best practices can be applied. Examples as diverse as par-
ticle accelerator beam lines to constantly changing novel light microscopes, we
apply accelerated processing and visualization where it is most beneficial today.
Each scientific domain will adopt such techniques independently.

Science and manufacturing disciplines are deploying more dynamic
approaches to increase the efficiency of instrument usage: maximize data quality
and minimize blind data acquisition. Developing integrated intelligent workflows

204 M. Rietmann et al.

as close to the sensor as possible ultimately improves data acquisition and opti-
mizes time per experiment [14]. The demand is increasing for instruments like
cryo-em, which make extensive use of automation already, but high purchase and
operation costs are barriers to access [2]. National centers like NTH-funded cryo-
em centers [1] are the worldwide trend. The focus is on maximizing instrument
throughput and training new technologists. Globally such efforts democratize
access to expensive instruments and technological best practices.

A key component to ensuring these trends continue is rapid access to data
at all steps of the acquisition process. Breaking down the data acquisition pro-
cess into components from raw data streams to final assembled data gives us
an opportunity to apply optimal processing at each step using the right level of
computational infrastructure. With access to the data, streaming visualization
can be more easily implemented, giving quicker feedback for experimental adjust-
ments and even higher-level experimental control. The GPU-accelerated Python
and SRF tooling described in this paper show the advantages such workflows
could provide to help the application scientists achieve the performance neces-
sary to unlock the potential of their newest and future devices while keeping
their software simple enough for them to maintain.

Acknowledgements. We thank our colleagues Jack Wells, Chris Porter, and Ryan
Olson for their useful feedback. We additionally thank David Shapiro and Pablo
Enfedaque at ALS for their collaboration; and Gokul Upadhyaula, Matthew Mueller,
Thayer Alshaabi, and Xiongtao Ruan at the Advanced Bioimaging Center, University
of California, Berkeley for their ongoing collaboration.

References

1. NIH funds three national cryo-EM service centers and training for new micro-
scopists | National Institutes of Health (NIH). https://www.nih.gov/news-events/
news-releases/nih-funds-three-national-cryo-em-service-centers-training-new-
microscopists

2. The must-have multimillion-dollar microscopy machine | News | Nature
Index. https://www.natureindex.com/news-blog/must-have-multimillion-dollar-
microscopy-machine-cryo-em

3. Batey, D., Rau, C., Cipiccia, S.: High-speed X-ray ptychographic tomography. Sci.
Rep. 12(1), 1-6 (2022). https://doi.org/10.1038 /s41598-022-11292-8

4. Blaiszik, B., Chard, K., Chard, R., Foster, 1., Ward, L.: Data automation
at light sources. In: AIP Conference Proceedings, vol. 2054, no. 1, p. 020003
(2019). https://doi.org/10.1063/1.5084563. https://aip.scitation.org/doi/abs/10.
1063/1.5084563

5. Elbakri, I.A., Fessler, J.A.: Statistical image reconstruction for polyenergetic X-ray
computed tomography. IEEE Trans. Med. Imaging 21(2), 89-99 (2002). https://
doi.org/10.1109/42.993128

6. Enders, B., et al.: Dataflow at the COSMIC beamline - stream processing and
supercomputing. Microsc. Microanal. 24(S2), 56-57 (2018). https://doi.org/10.
1017/S1431927618012710. https://www.cambridge.org/core/journals /microscopy-
and-microanalysis/article/dataflow-at-the-cosmic-beamline-stream-processing-
and-supercomputing/2F4AD3721A36EE02C0336A8191356065

https://www.nih.gov/news-events/news-releases/nih-funds-three-national-cryo-em-service-centers-training-new-microscopists
https://www.nih.gov/news-events/news-releases/nih-funds-three-national-cryo-em-service-centers-training-new-microscopists
https://www.nih.gov/news-events/news-releases/nih-funds-three-national-cryo-em-service-centers-training-new-microscopists
https://www.natureindex.com/news-blog/must-have-multimillion-dollar-microscopy-machine-cryo-em
https://www.natureindex.com/news-blog/must-have-multimillion-dollar-microscopy-machine-cryo-em
https://doi.org/10.1038/s41598-022-11292-8
https://doi.org/10.1063/1.5084563
https://aip.scitation.org/doi/abs/10.1063/1.5084563
https://aip.scitation.org/doi/abs/10.1063/1.5084563
https://doi.org/10.1109/42.993128
https://doi.org/10.1109/42.993128
https://doi.org/10.1017/S1431927618012710
https://doi.org/10.1017/S1431927618012710
https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/dataflow-at-the-cosmic-beamline-stream-processing-and-supercomputing/2F4AD3721A36EE02C0336A8191356065
https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/dataflow-at-the-cosmic-beamline-stream-processing-and-supercomputing/2F4AD3721A36EE02C0336A8191356065
https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/dataflow-at-the-cosmic-beamline-stream-processing-and-supercomputing/2F4AD3721A36EE02C0336A8191356065

10.

11.

12.

13.

14.

15.

Real-Time Edge Processing During Data Acquisition 205

Guizar-Sicairos, M., et al.: High-throughput ptychography using Eiger: scanning
X-ray nano-imaging of extended regions. Opt. Express 22(12), 14859-14870 (2014).
https://doi.org/10.1364/OE.22.014859

Holler, M., et al.: High-resolution non-destructive three-dimensional imaging of
integrated circuits. Nature 543(7645), 402-406 (2017). https://doi.org/10.1038/
nature21698. https://www.nature.com/articles/nature21698

Holler, M., et al.: Three-dimensional imaging of integrated circuits with macro- to
nanoscale zoom. Nat. Electron. 2(10), 464-470 (2019). https://doi.org/10.1038/
$41928-019-0309-z. https://www.nature.com/articles/s41928-019-0309-z
Klockner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA
and PyOpenCL: a scripting-based approach to GPU run-time code generation.
Parallel Comput. 38(3), 157-174 (2012). https://doi.org/10.1016/J.PARCO.2011.
09.001

Leong, S.H., Stadler, H.C., Chang, M.C., Dorsch, J.P., Aliaga, T., Ashton, A.W.:
SELVEDAS: a data and compute as a service workflow demonstrator targeting
supercomputing ecosystems. In: Proceedings of SuperCompCloud 2020: 3rd Work-
shop on Interoperability of Supercomputing and Cloud Technologies, Held in con-
junction with SC 2020: The International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 7-13 (2020). https://doi.org/10.
1109/SUPERCOMPCLOUD51944.2020.00007

Marchesini, S., et al.. SHARP: a distributed GPU-based ptychographic
solver. J. Appl. Crystallogr. 49(4), 1245-1252 (2016). https://doi.org/10.1107/
S1600576716008074. http://scripts.iucr.org/cgi-bin/paper?jo5020. URN: ISSN
1600-5767

Okuta, R., Unno, Y., Nishino, D., Hido, S., Loomis, C.: CuPy: a NumPy-
compatible library for NVIDIA GPU calculations. Technical report (2017). https://
github.com/cupy/cupy

Zhang, Z., et al.: Toward fully automated UED operation using two-stage machine
learning model. Sci. Rep. 12(1), 1-12 (2022). https://doi.org/10.1038 /s41598-022-
08260-7. https://www.nature.com/articles/s41598-022-08260-7

Zheng, S.Q., Palovcak, E.; Armache, J.P., Verba, K.A., Cheng, Y., Agard, D.A.:
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-
electron microscopy. Nat. Methods 14(4), 331-332 (2017). https://doi.org/10.
1038 /nmeth.4193. https://www.nature.com/articles/nmeth.4193

https://doi.org/10.1364/OE.22.014859
https://doi.org/10.1038/nature21698
https://doi.org/10.1038/nature21698
https://www.nature.com/articles/nature21698
https://doi.org/10.1038/s41928-019-0309-z
https://doi.org/10.1038/s41928-019-0309-z
https://www.nature.com/articles/s41928-019-0309-z
https://doi.org/10.1016/J.PARCO.2011.09.001
https://doi.org/10.1016/J.PARCO.2011.09.001
https://doi.org/10.1109/SUPERCOMPCLOUD51944.2020.00007
https://doi.org/10.1109/SUPERCOMPCLOUD51944.2020.00007
https://doi.org/10.1107/S1600576716008074
https://doi.org/10.1107/S1600576716008074
http://scripts.iucr.org/cgi-bin/paper?jo5020
https://github.com/cupy/cupy
https://github.com/cupy/cupy
https://doi.org/10.1038/s41598-022-08260-7
https://doi.org/10.1038/s41598-022-08260-7
https://www.nature.com/articles/s41598-022-08260-7
https://doi.org/10.1038/nmeth.4193
https://doi.org/10.1038/nmeth.4193
https://www.nature.com/articles/nmeth.4193

	Real-Time Edge Processing During Data Acquisition
	1 Introduction
	2 Common Sensor-Driven Workflows
	2.1 Data Rates and Data Burden

	3 Applications
	3.1 X-Ray Ptychography
	3.2 Lattice Light Sheet Microscopy

	4 High Performance GPU-Enabled Python
	5 Streaming Processing Pipelines
	5.1 Supercomputing as a Service (SCaaS)

	6 Conclusion
	References

