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Comparative Analysis of Handwritten Digit
Recognition Investigation Using Deep
Learning Model

Joel Sunny Deol Gosu, Balu Subramaniam, Sasipriyaa Nachimuthu,
Kamalanathan Shivasankaran, Arjun Subburaj, and Sudhakar Sengan

1 Introduction

A Convolutional Neural Network provides the convenience of extracting and using
feature vectors over other ANN to evaluate the awareness of 2D form with a
significantly lower degree of accuracy and no translation, balancing/manipulations.
Initially, this research was addressed in their object. Convolutional Neural Networks
was a control layer by the author to determine the digit and character [1]. CNN
technology is simple, making it easy to install. We might well take the MNIST set of
data for training and identification. This set of data aims primarily at characterising
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articles 1–10. Therefore, we have a total of 85,000 images for training and valida-
tion. Each digit is described by 32 grey image pixels [2]. The quantities are
transferred to the Convolutional Neural Networks input layers, and afterwards, the
hidden layers usually contain two sets of the convolutional layer. After this, it is
visualised to the fully connected layers, and a SoftMax classification scheme is
presented to dial the numbers. Researchers will use Python, OpenCV, Django, or
TensorFlow to incorporate this classification [3]. To achieve accuracy with
decreased operating uncertainty and costs, the Convolutional Neural Networks
framework is proposed. To express the best learning parameters to set up a CNN,
the complete innovative database identifies the investigator applying the review
process for HDR and the mathematical collection of neural networks. The cohesive
hybrid set of mathematical and geometric features aims to accomplish local and
global sample numbers’ characteristics [4]. The process utilises genetic modification
algorithms to select the best attributes and a neighbour to evaluate the handwritten
digit dataset’s endurance. Regarding the purpose of isolated handwritten words [5],
suggested a deep CNN. The proposed method is an excellent way of extracting
practical visual attributes from an image frame. The approach assumes two hand-
written datasets (IAM and RIMES) under several experiments to determine the
model’s optimal parameters [6].
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1.1 Abbreviations and Acronyms

• CNN – Convolution Neural Network
• NN – Neural Network

1.1.1 Units

• Fully Connected Multi-layer Neural Network: The multi-layer CNN can label
data points in the MNIST training dataset at a failure of less than 4.42% on the
validation dataset with one or more neural networks [7]. This channel extracts the
features that encompass the practical spatial domain of the image data, and
therefore extraordinarily high dimensions are required. Such CNN is questionable
because such networks’ criteria are more than 200,000, which is unacceptable if
complex and complicated faults have collaborated with large data sets [8].

• Data Sets: The classification of specific character recognition is investigated in
this problem. The MNIST database provided an example of training. This
research created a database of 50,000 training sets and 20,000 test results,
including census responses extracted. The original images are 64 × 64
standardised in size; however, they contain grey images because of the Graphical
User Interface [9].



Comparative Analysis of Handwritten Digit Recognition Investigation. . . 49

The image pixel resolution results are computed as -0.1 in shadow (white) and
1.275 in the middle of the photo (black)—the actual outcomes in a measured input of
0 and a difference of roughly 1. The decision variables are 15 grey images of 15 × 8
digits developed by hand. But only data variables were used in this case [10]: the
background and foreground (-1) result in binary images. Such images were con-
figured to provide adequate imbalance features for discriminatory practices in each
‘0’.

2 Related Works

HSD of minimal security has indeed formed significant improvements. Several
papers were published with research and development of new handwritten numerals,
characters, and English word categorisation [11]. The 3-layer Deep Belief Network
(DBN) with a greedy algorithm for the MNIST dataset was evaluated, and a
precision of 98.75% was described. In the aim of improving the efficiency of
recurrent neural networks (RNN), the procedures and principles for deactivating
were adapted in recognition of unpredictable handwriting. The reviewer significantly
improved RNN efficiency, reducing the Character Error Rate (CER) and Word Error
Rate (WER) [12]. The experiment explained that he might have been sufficient to
attain an extremely high degree of precision using DL. The accuracy of the CNN
with Keras and Theano was 98.72% [13]. Consequently, CNN operations that have
used Tensorflow performance in an exceedingly better outcome of 99.70%. Even
though the method and guidelines seem more complex and challenging than stan-
dard ML algorithms, precision becomes apparent. The investigator focuses on the
various pre-processing methods used to recognise characters by respective classes of
images, from easy, handwritten verification and information with a vibrantly
coloured, cluttered background and wide-ranging complexity. This describes spe-
cific pre-processing methodologies, including skew detection and identification,
stretching of the image, character recognition, deletion of noise, widespread accep-
tance and differentiation, and morphological diagnostic methods [14]. It was con-
cluded that together we could process the image completely using a single
pre-processing approach. However, a pre-processing module could not achieve
complete precision even after implementing all these methodologies. CNN can be
used for the acknowledgement of English character recognition. The features are
considered from threshold mapping and its Fourier descriptors. The character is
described by researching its template and attributing its attributes. To have access, a
test was conducted to determine the number of hidden layer nodes to attain the
network’s maximum performance. For handwritten English alphabets with a minor
test set, 94.13% accuracy was mentioned [15].
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3 Proposed CNN Image Classification

Classified images are not a simple problem that can be managed to achieve by
various methods. Nevertheless, many ML systems have been effectively
implemented in recent times. Researchers consequently recommended dramatic
CNNs to direct and evaluate our handwritten figures throughout that work. Building
Convolutional Neural Networks plays an essential role in effectiveness and cost
factors. So, after thoroughly reading its boundary conditions, we have established a
chic CNN in our execution. Usually, critical elements described below have included
Convolutional Neural Networks for HDR: Prepare patterns before feeding CNN.
Before actually accessing the network, all images are pre-processed [16–18]. CNN is
constructed for the size of 64 × 64 pixels in our experimental tests. Subsequently, all
images were cut to the same size to feed the model. They are provided to the deep
model to prepare images to retrieve characteristics. As relatively recently shown, a
clear CNN is used throughout the experiment to extract powerful features used in the
ultimate decision to support their classification [54–56]. The last layer, SoftMax,
minimises the variance at the highest possible CNN level [19, 20].

3.1 PReLU

A Parametric Rectified Linear Unit (PReLU) is an intuitionistic fuzzy rectified unit
with a curve for zero value. Lawfully: f (Bi) = Bi if Bi ≥ 0f (Bi) = Ai Bi if Bi ≤ 0.

• Feature Extraction: LR Image
• CNN Layer 1: 56 Filters of 1 × 5 × 5 Image Size Extraction
• Activation Function: ReLU
• Result: 56 Map Feature Set
• Limits: 1 × 5 × 5 × 56

3.2 Shrinking

Reduces the function vectors’ size (by limiting parameters) using reduced filters
(compared to the number of filters used for image feature extraction).

• Conv. Layer 2: Shrinking 12 filters of size 56 × 2 × 2
• Activation Function: PReLU
• Result: 12 Feature Maps
• Limits: 56 × 2 × 2 × 12
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3.3 Non-linear Mapping

Maps the LR to HR patches image features. This procedure is performed with many
map-based layers relatively small than SCRNN (Fig. 1).

• Conv. Layers 3–6:
• Mapping
• 4 × 12 Filters of Size 12 × 4 × 4
• Activation Function: PReLU
• Result: HR Feature Maps
• Limits: 4 × 12 × 4 × 4 × 12

3.4 Expanding

Determines the complexity of the feature vector. The whole procedure performs the
complete reverse function as the decreasing layers produce the HR image more
reliably.

• Conv. Layer 7:

– Increasing
– 56 Filters of Size 12 × 2 × 2

Fig. 1 Process of image
function extraction
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Convolution
+ReLU

Convolution
+ReLU

Convolution
+ReLU

Convolution
+ReLUInput (LR)

Output (HR)

Deconvolution

12 3x3 filters 56 1x1 filters 1 9x9 filter12 1x1 filters56 5x5 filters

Fig. 2 Image processing

• Activation Function: PReLU
• Result: 12 Feature Maps
• Limits: 12 × 2 × 2 × 56

3.5 Deconvolution

Produces the HR image from HR features

• DeConv Layer 8:

– Deconvolution
– One filter of size 56 × 8 × 9

• Activation Function: PReLU
• Output: 13 Feature Maps
• Parameters: 56 × 8 × 9 × 1

The down-sampling layer might be another layer and is often hidden (Fig. 2).

4 Mathematical Model

4.1 Subsampling Layer

The sub-sampling function applies a sampling technique on the input maps. The
input and output visualisations do not alter in this interface. For instance, if there are
N input maps, there are N output maps exactly [21–29]. The test operation reduces
the size of the feature maps based on the size of the mask [30–34]. The two different
shows are used in this investigation as Eq. (1).
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Imageij =MapFunction βijDownSampling Imagei- 1
j

� �
þ Bi

j

h
ð1Þ

where (�) is a sub-sampling feature. This predominant source encapsulates the
estimated value or n to block the actual accuracy of the input image maps [35–
41]. Therefore, the map output dimension significantly decreases to n periods for
both feature vector components. The output maps are ultimately triggered as linear/
non-linear [42–47].

5 Result and Discussion

In this case, the digital image of the handwritten digit is the pattern x, and0–9 is the
category y. We use 1500 of 64 × 64 gray scaled images as a dataset, and we separate
this dataset into 1200 for training data and 300 for testing data. For pattern x, we
reshape 64 × 64 gray scaled images to 4096-dimension vectors [48–53]. Therefore,
we apply LDA on a Gaussian model with 4096-dimension Gaussian distribution
(Figs. 3, 4, 5, 6, 7, 8 and 9).

6 Conclusion

The proposed Handwritten Digital Recognition has shown us that traditional neural
networks training can distribute comparatively more minor fault rates that aren’t too
far from several other trailing results that focus on deep Convolutional Neural
Networks. Convolutional Neural Networks has the advantage of being able to extract
and use feature data. This research’s significance would address all the
Convolutional Neural Networks model features that deliver the best precise

Fig. 3 Convolution Neural Framework
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Fig. 4 Input Image and the
function

Fig. 5 The use of six images increases the final image size

CAR
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FEATURE LEARNING

CONVOLUTION + RELU POOLING

CLASSIFICATION

BICYCLE

INPUT

Fig. 6 Fully connected layer



assessment for an MNIST dataset. The model’s metadata of dissimilar methodolo-
gies and error frequency is ordered as follows: (a) Random Forest Classifier is
1.32%, (b) K-Nearest Neighbours is 4.34%, (c) Support Vector Machine is
4.134%, (d) Convolutional Neural Networks is 5.28%, (e) TensorFlow is appropriate
and provides a maximum 100% presentation similar to OpenCV.
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Fig. 7 Accuracy Rate at each level

Fig. 8 Tensorflow using
CNN

Fig. 9 Open CV using
Django
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